Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Light C_4 and C_5 in 3-polytopes with minimum degree 5

ABSTRACT

O.V. Borodin^a, A.O. Ivanova^{b,*}, D.R. Woodall^c

^a Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, 630090, Russia ^b Ammosov North-Eastern Federal University, Yakutsk, 677013, Russia

^c School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, England, United Kingdom

ARTICLE INFO

Article history: Received 10 September 2013 Received in revised form 25 June 2014 Accepted 26 June 2014 Available online 16 July 2014

Keywords: Planar graph Plane map Structure properties 3-polytope Weight

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of its incident edges. A k-vertex (k-neighbor, k-face) is a vertex (neighbor, face) with degree k, a k^+ -vertex has degree at least k, etc. The minimum vertex degree of G is $\delta(G)$. We will drop the arguments whenever this does not lead to confusion.

prove that $w_P(C_4) = 26$ and $w_P(C_5) = 30$.

weight, defined as the degree-sum of all vertices, at most k.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but d(x) > 3 for every vertex and face x. As proved by Steinitz [27], the 3-connected plane graphs are planar representations of the convex 3-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class M_5 of NPMs with $\delta = 5$ and its subclasses P_5 of 3-polytopes and T_5 of plane triangulations, where we define a triangulation to be simple (without loops or multiple edges), so that $\mathbf{T}_5 \subset \mathbf{P}_5 \subset \mathbf{M}_5$. A cycle on k vertices is denoted by C_k , and S_k stands for a *k*-star centered at a 5-vertex.

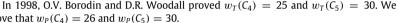
In 1904, Wernicke [28] proved that if $M_5 \in \mathbf{M}_5$ then M_5 contains a vertex of degree 5 adjacent to a vertex of degree at most 6. This result was strengthened by Franklin [15] in 1922 to the existence of a vertex of degree 5 with two neighbors of degree at most 6. In 1940, Lebesgue [22, p. 36] gave an approximate description of the neighborhoods of vertices of degree 5 in a $T_5 \in \mathbf{T_5}$.

Given a graph H, the weight $w_M(H)$ is the maximum over $M_5 \in M_5$ of the minimum degree-sum of the vertices of H over subgraphs H of M_5 . The weights $w_P(H)$ and $w_T(H)$ are defined similarly for P_5 and T_5 , respectively.

The bounds $w_M(S_1) < 11$ (Wernicke [28]) and $w_M(S_2) < 17$ (Franklin [15]) are tight. It was proved by Lebesgue [22] that $w_M(S_3) \le 24$ and $w_M(S_4) \le 31$, which were improved much later to the following tight bounds: $w_M(S_3) \le 23$ (Jendrol'– Madaras [17]) and $w_M(S_4) \leq 30$ (Borodin–Woodall [9]). Note that $w_M(S_3) \leq 23$ easily implies $w_M(S_2) \leq 17$ and immediately follows from $w_M(S_4) < 30$ (it suffices to delete a vertex of maximum degree from a star of the minimum weight).

* Corresponding author. E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), douglas.woodall@nottingham.ac.uk (D.R. Woodall).

http://dx.doi.org/10.1016/j.disc.2014.06.024 0012-365X/© 2014 Elsevier B.V. All rights reserved.



Let $w_P(C_l)$ ($w_T(C_l)$) be the minimum integer k with the property that every 3-polytope

(respectively, every plane triangulation) with minimum degree 5 has an *l*-cycle with

© 2014 Elsevier B.V. All rights reserved.

It follows from Lebesgue [22, p. 36] that $w_T(C_3) \le 18$. In 1963, Kotzig [21] gave another proof of this fact and conjectured that $w_T(C_3) \le 17$; the bound 17 is easily shown to be tight.

In 1989, Kotzig's conjecture was confirmed by Borodin [1] in a more general form, by proving $w_M(C_3) = 17$. Another consequence of this result is confirming a conjecture of Grünbaum [16] of 1975 that for every 5-connected planar graph the cyclic connectivity (defined as the minimum number of edges to be deleted to obtain two components each containing a cycle) is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [26]).

It also follows from Lebesgue [22, p. 36] that $w_T(C_4) \le 26$ and $w_T(C_5) \le 31$. In 1998, Borodin and Woodall [9] proved the following.

Theorem 1 (Borodin–Woodall [9]). For the class of plane triangulations with minimum degree 5, $w_T(C_4) = 25$ and $w_T(C_5) = 30$.

The *height* of a subgraph *H* of graph *G* is the maximum degree of vertices of *H* in *G*. Now let $\varphi_M(H)(\varphi_P(H), \varphi_T(H))$ be the minimum integer *k* with the property that every normal plane map (3-polytope, plane triangulation) with minimum degree 5 has a copy of *H* with all vertices of degree at most *k*.

It follows from Franklin [15] that $\varphi_M(S_2) = 6$. From $w_M(C_3) = 17$ (Borodin [1]), together with a simple example proving $\varphi_M(C_3) \ge 7$, we have $\varphi_M(C_3) = 7$. In 1996, Jendrol' and Madaras [17] proved $\varphi_M(S_4) = 10$ and $\varphi_T(C_4) = \varphi_T(C_5) = 10$. R. Soták (personal communication, see the surveys of Jendrol' and Voss [19, p.15], [20]) proved $\varphi_P(C_4) = 11$ and $\varphi_P(C_5) = 10$.

In 1999, Jendrol' et al. [18] obtained the following bounds: $10 \le \varphi_T(C_6) \le 11$, $15 \le \varphi_T(C_7) \le 17$, $15 \le \varphi_T(C_8) \le 29$, $19 \le \varphi_T(C_9) \le 41$, and $\varphi_T(C_p) = \infty$ whenever $p \ge 11$. Madaras and Soták [24] proved $20 \le \varphi_T(C_{10}) \le 415$.

For the broader class **P**₅, it was known that $10 \le \varphi_P(C_6) \le 107$ due to Mohar et al. [25] (in fact, this bound is proved in [25] for all 3-polytopes with $\delta \ge 4$ in which no 4-vertex is adjacent to a 4-vertex). Recently, Borodin et al. [12] proved $\varphi_P(C_6) = \varphi_T(C_6) = 11$.

For C_7 , besides the above mentioned result $15 \le \varphi_T(C_7) \le 17$, it was known that $\varphi_P(C_7) \le 359$ (Madaras et al. [23]). Recently, Borodin and Ivanova [8] proved $\varphi_P(C_7) = \varphi_T(C_7) = 15$, which answers a question raised in Jendrol' et al. [18].

The purpose of this paper is to prove the following analogue of Theorem 1.

Theorem 2. For the class of 3-polytopes with minimum degree 5, $w_P(C_4) = 26$ and $w_P(C_5) = 30$.

As an easy corollary, we obtain the above-mentioned unpublished result by R. Soták (for one direction, it suffices to take a C_l with $4 \le l \le 5$ of smallest weight and subtract l - 1 smallest degrees of its vertices; the other direction follows from the examples in Section 2).

Corollary 3. For the class of 3-polytopes with minimum degree 5, $\varphi_P(C_4) = 11$ and $\varphi_P(C_5) = 10$.

In fact, instead of Theorem 2 we prove the following stronger statement, which extends Theorem 1.

Theorem 4. Every 3-polytope with $\delta = 5$ has

- (i) a 4-cycle of weight at most 26,
- (ii) a 5-cycle of weight at most 30,
- (iii) either a 4-cycle of weight at most 25 or a facial 5-cycle of weight 25, where all bounds 26, 30 and 25 are tight.

In particular, Theorem 4(i +iii) says that $w_P(C_4)$ can reach its maximum of 26 only in the presence of a facial 5-cycle with weight 25, which is a 5-face completely surrounded by 5-vertices (as in Fig. 1). Theorem 4 refines Corollary 3 as follows.

Corollary 5. Every 3-polytope with $\delta = 5$ has

- (i) a 4-cycle of height at most 11,
- (ii) a 5-cycle of height at most 10,
- (iii) either a 4-cycle of height at most 10 or a facial 5-cycle of height 5, where all bounds 11, 10 and 5 are tight.

At the second part of the proof of Theorem 4 we use some ideas from Borodin [1] and Borodin–Woodall [9].

Other related structural results on 3-polytopes, some of which have application to coloring, can be found in the already mentioned papers and in [2–8,10–14,24].

2. Proving the tightness of Theorem 4

The bounds in Theorem 4 and Corollary 5 are all precise, as the following examples show. Truncate all vertices of the dodecahedron and cap each 10-face by putting a new vertex inside it and joining it to all the boundary vertices. We have obtained a triangulation with $\delta = 5$ in which $w_T(C_4) = 25$, $w_T(C_5) = 30$, and $\varphi_T(C_4) = \varphi_T(C_5) = 10$.

We now construct a 3-polytope with $w_P(C_4) = 26$ (see Fig. 1). First, we replace each face of the icosahedron as shown in Fig. 1(a). The resulting dual "blue" graph G_1 is a cubic graph with only 5- and 6-faces such that the distance between 5-faces is at least two.

Then, with each 5-face of G_1 , we perform the operation depicted in Fig. 1(b) to obtain a graph G_2 with only 3-faces and (very few) 5-faces, in which every vertex is of degree 5, 11, or 12. In particular, we truncate all vertices of G_1 not incident with 5-faces. It is easy to check that each 4-cycle of G_2 goes through an 11^+ -vertex, and that $w_P(C_4) = 26$, $\varphi_P(C_4) = 11$, and every facial 5-cycle has weight 25 and hence consists of 5-vertices.

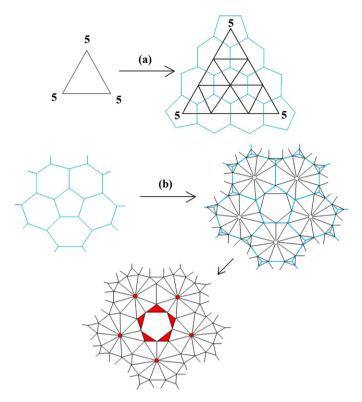


Fig. 1. A 3-polytope with $w_P(C_4) = 26$.

3. Proving the upper bounds in Theorem 4

Suppose G' is a counterexample to (some part of) Theorem 4. Let G be a maximal counterexample such that V(G') = V(G)and $E(G') \subseteq E(G)$. Clearly G is 3-connected, since G' is. Denote the sets of vertices, edges, and faces of G by V, E and F, respectively. Euler's formula |V| - |E| + |F| = 2 for G yields

$$\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2d(f) - 6) = -12.$$
⁽¹⁾

We assign an *initial charge* $\mu(x)$ to x whenever $x \in V \cup F$ as follows: $\mu(v) = d(v) - 6$ if $v \in V$ and $\mu(f) = 2d(f) - 6$ if $f \in F$. Note that only 5-vertices have a negative initial charge.

Using the properties of *G* as a counterexample to Theorem 4, we will define a local redistribution of charges, preserving their sum, such that the *new charge* $\mu'(x)$ is non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12, and this contradiction will prove Theorem 4.

3.1. Structural properties of G

Let $v_1, \ldots, v_{d(v)}$ denote the neighbors of a vertex v in cyclic order round v. The vertex v is *simplicial* if all its incident faces are 3-faces. If $d(v_i) = 5$ then v_i is a *strong, semiweak* or *weak* neighbor of v according as both, one or none of v_{i-1}, v_{i+1} are 6^+ -vertices, and v_i is *twice weak* if $d(v_j) = 5$ whenever $|j - i| \le 2$ (modulo d(v)). If v_i is a strong, semiweak or weak neighbor of v then we say that v is a strong, semiweak or weak *donor* to v_i (even if in fact v gives nothing to v_i).

In what follows, we will need the simple structural properties of *G* expressed by (SP1)–(SP4).

(SP1) The boundary $\partial(f)$ of every face of G is an induced cycle; that is, $\partial(f)$ is a cycle, and no two nonconsecutive vertices of $\partial(f)$ are adjacent.

This follows from the planarity and 3-connectedness of G.

(SP2) Every 10^+ -vertex v in *G* is simplicial.

Otherwise, let f be a 4⁺-face incident with v and let w be a vertex of $\partial(f)$ that is not adjacent to v, which exists by (SP1). Adding the edge vw preserves 3-connectedness and cannot create a 4-cycle of weight less than 11 + 6 + 5 + 5 = 27 or a 5-cycle of weight less than 11 + 6 + 5 + 5 = 32. So G + vw is a counterexample to Theorem 4, which contradicts the maximality of G. (SP3) Any four neighbors of a simplicial 5-vertex have degree-sum at least 26.

Otherwise, G would contain a 5-cycle of weight at most 30 and a 4-cycle of weight at most 25, and so would not be a counterexample to Theorem 4.

(SP4) No 10-vertex can have a twice weak neighbor.

Otherwise, by (SP2), G would have a 4-cycle of weight 25 and 5-cycle of weight 30.

An 11-vertex is bad or an $11_{\rm b}$ -vertex if all its neighbors are 5-vertices. A 5-vertex v is special if it is incident with a 4-face vv_1xv_2 and four 3-faces, and v_3 is an 11_b -vertex (so that $d(v_2) = d(v_4) = 5$), and at least one of v_1 and x is a 5-vertex. A 5-vertex is good or a 5_g -vertex if it is incident with a 6⁺-face, or with a 5-face that is incident with at least one 6⁺-vertex, or with a 4-face that is incident with at least two 6^+ -vertices, or with at least two 4^+ -faces. Clearly the three adjectives simplicial, special and good are mutually exclusive: no 5-vertex can satisfy more than one of them.

3.2. Discharging on G

We use the following discharging rules (see Fig. 2).

Rule 0. Let f be a 4^+ -face.

- (a) If $d(f) \ge 6$ then f gives 1 to every incident 5-vertex.
- (b) If d(f) = 5 then f gives to every incident 5-vertex: (i) 1 if f is incident with at least one 6^+ -vertex;
 - (ii) $\frac{4}{5}$ otherwise.
- (c) If d(f) = 4 then f gives to every incident 5-vertex:
- (i) 1 if f is incident with at least two 6⁺-vertices; (ii) $\frac{2}{3}$ if f is incident with precisely one 6⁺-vertex, with the following exception. Suppose $f = vv_1v_2v_3$ where d(v) = 9, $d(v_3) = 5$ and v_1 and v_2 are special; then f gives $\frac{5}{12}$ to v_1 , $\frac{3}{4}$ to v_2 , and either $\frac{5}{12}$ or $\frac{2}{3}$ to v_3 according as v_3 is or is not special;

(iii) $\frac{1}{2}$ otherwise.

Rule 1.

- (a) Each vertex v of degree 7 sends $\frac{1}{3}$ to each strong 5-neighbor and $\frac{1}{6}$ to each semiweak 5-neighbor. (b) Each vertex v with degree 8, 9 or ≥ 12 first gives a "basic" contribution of $\rho(v) = \frac{\mu(v)}{d(v)} = \frac{d(v)-6}{d(v)}$ to each neighbor. Then each
- 6⁺-neighbor v_i shares the charge just received equally between v_{i-1} and v_{i+1} . (c) Each 10-vertex or 11-vertex v first gives a "basic" $\frac{2}{5}$ to each neighbor. Then each 6⁺-neighbor v_i transfers $\frac{1}{10}$ of v's donation to each 5-vertex in $\{v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}\}$.

Rule 2. If d(v) = 11 then v gives a "supplementary" $\frac{1}{10}$ to each twice weak neighbor.

Rule 3. If v is a simplicial 5-vertex adjacent to a bad 11-vertex w, say $w = v_5$, and if $d(v_1) = d(v_4) = 5$, then v gives back to v_5 the following:

(a) $\frac{1}{2}$ if both v_2 and v_3 have degree ≥ 9 ;

(b) $\frac{1}{4}$ if at least one of v_2 , v_3 has degree exactly 8.

Rule 4. Suppose v is a bad 11-vertex where v_1 and v_2 are special 5-vertices incident with a 4-face v_1v_2xy with d(x) = 5 and $d(y) \leq 9$. Then each of v_1 , v_2 gives back $\frac{1}{4}$ to v.

Rule 5. A good 5-vertex that is adjacent to a bad 11-vertex w gives back $\frac{1}{2}$ to w.

3.3. Checking $\mu'(x) \ge 0$ for $x \in V \cup F$

Case 1. $x = f \in F$.

If d(f) = 3 then $\mu'(f) = \mu(f) = 2 \times 3 - 6 = 0$ since f does not participate in discharging.

If d(f) = 4 then f gives at most 2 in total to its 5-vertices by R0, so $\mu'(f) \ge 2 \times 4 - 6 - 2 = 0$.

If d(f) = 5 then f gives to its 5-vertices either $5 \times \frac{4}{5}$ or at most 4×1 , hence $\mu'(f) \ge 2 \times 5 - 6 - 4 = 0$.

If $d(f) \ge 6$ then $\mu'(f) \ge 2d(f) - 6 - d(f) \times 1 \ge 0$ by R0.

In all cases, $\mu'(f) \ge 0$. From now on we assume that $x = v \in V$.

Case 2. d(v) = 5. Then $\mu(v) = d(v) - 6 = -1$, and v does not give charge to any other vertex, except that, by R3–R5, v may give back some charge to a bad 11-vertex w; note, however, that a bad 11-vertex gives $\frac{2}{5} + \frac{1}{10} = \frac{1}{2}$ to each of its neighbors by R1c and R2, and so v does not "give back" more charge to w than w has already given to v.

Subcase 2.1. v is simplicial. The amounts of charge received by v from its neighbors by Rules 1 and 2 are summarized in Table 1.

Suppose Rule 3(a) applies to v, so that v's neighbors v_1, \ldots, v_5 have degrees $(5, \ge 9, \ge 9, 5, 11)$. Then v is a semiweak neighbor of each of v_2 and v_3 and a weak neighbor of v_5 , so that it receives at least $\frac{1}{2}$ from each of them by Table 1, and gives back exactly $\frac{1}{2}$ to v_5 by Rule 3(a) and nothing to v_2 or v_3 . Hence $\mu'(v) \ge -1 + \frac{3}{2} - \frac{1}{2} = 0$.

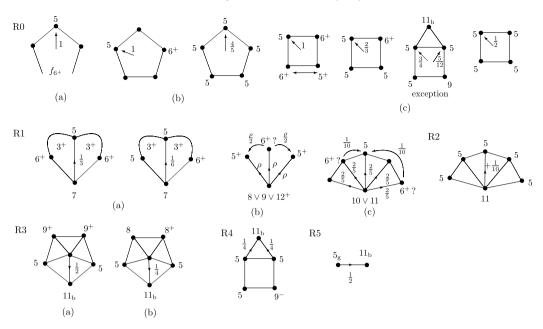


Fig. 2. Discharging rules.

Suppose now that Rule 3(b) applies. By (SP3), v's neighbors have degrees (5, 8, \geq 8, 5, 11). Now v receives at least $\frac{3}{8}$ from each of v_2 and v_3 and at least $\frac{1}{2}$ from v_5 by Table 1, and gives back exactly $\frac{1}{4}$ to v_5 by Rule 3(b) and nothing to v_2 or v_3 . Hence $\mu'(v) \ge -1 + \frac{3}{8} + \frac{3}{8} + \frac{1}{2} - \frac{1}{4} = 0.$ So we may assume that Rule 3 does not apply to v at all, and the amount that v receives from its neighbors is at least that

given in Table 1. By (SP3), if three neighbors of v have degree-sum at most 16 then the remaining two neighbors each have degree at least 10 and so each gives v at least $\frac{1}{2}$ by Table 1. We may assume this does not happen; in particular, v has at most two 5-neighbors. If it has exactly two, then two of v's 6^+ -neighbors are semiweak donors and the third, say w, is either a strong or a weak donor, according as the two 5-neighbors are adjacent or not; for the present purpose we may assume wis a weak donor to v. If v has exactly one 5-neighbor then v has two semiweak donors and two strong donors. If v has no 5-neighbors then it has five strong donors.

By these remarks, the degree-sequence of v's neighbors, in nondecreasing order, must be one of the following. In each case, we use Table 1 to check that v receives at least 1 in total from its neighbors.

 $(5, 5, 7, \ge 9, \ge 9)$: *v* receives at least $0 + \frac{1}{2} + \frac{1}{2} = 1$ (if its weak donor has degree 7) or $\frac{1}{6} + \frac{1}{3} + \frac{1}{2} = 1$ (if its weak donor has degree 9).

 $(5, 5, \ge 8, \ge 8, \ge 8)$: *v* receives at least $\frac{1}{4} + \frac{3}{8} + \frac{3}{8} = 1$.

 $(5, 6, 6, \ge 9, \ge 9)$: *v* receives at least $\frac{1}{2} + \frac{1}{2} = 1$.

 $(5, 6, \ge 7, \ge 8, \ge 8)$: *v* receives at least $\frac{1}{3} + \frac{3}{8} + \frac{3}{8} > 1$ (if a strong donor has degree 7) or $\frac{1}{6} + \frac{1}{2} + \frac{3}{8} > 1$ (if a strong donor has degree ≥ 8).

 $(5, \ge 7, \ge 7, \ge 7, \ge 7)$: *v* receives at least $\frac{1}{6} + \frac{1}{6} + \frac{1}{3} + \frac{1}{3} = 1$. (6, 6, 6, $\ge 8, \ge 8$): *v* receives at least $\frac{1}{2} + \frac{1}{2} = 1$.

 $(\geq 6, \geq 6, \geq 7, \geq 7, \geq 7)$: *v* receives at least $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$.

Subcase 2.2. v is special. Suppose v is surrounded by faces $f = vv_1xv_2, vv_2v_3, vv_3v_4, vv_4v_5$, and vv_5v_1 , where v_3 is a bad 11-vertex (so that $d(v_2) = 5$), and at least one of v_1 and x is a 5-vertex; then the other of these vertices is a 9⁻-vertex, by (SP2). Note that v receives $\frac{2}{5} + \frac{1}{10} = \frac{1}{2}$ from v_3 by R1c and R2, and may give back $\frac{1}{4}$ to v_3 by R4, so that v retains at least $\frac{1}{4}$ from v_3 .

If max $\{d(v_1), d(x)\} \le 8$, then $d(v_5) \ge 8$, for otherwise we have a 4-cycle of weight at most 23 and 5-cycle of weight at most 30 and G is not a counterexample to Theorem 4, which is a contradiction. Hence v_5 gives at least $\frac{1}{4}$ to v by Table 1. Also v receives at least $\frac{1}{2}$ from f by ROc and retains at least $\frac{1}{4}$ from v_3 , as remarked above. So $\mu'(v) \ge 0$, as desired.

Now suppose max{ $d(v_1), d(x)$ } = 9. If $d(v_1)$ = 9, then v receives at least $\frac{1}{3}$ from v_1 by R1b and $\frac{5}{12}$ from f by the exception to ROc, a total of at least $\frac{3}{4}$; otherwise, if d(x) = 9, v receives $\frac{3}{4}$ from f by the exception to ROc. In each case, adding in the $\frac{1}{4}$ retained from v_3 shows that $\mu'(v) \ge 0$.

Subcase 2.3. v is good. Then v receives 1 by R0a from a 6^+ -face, or by R0b from a 5-face that is incident with at least one 6^+ -vertex, or by ROc from a 4-face that is incident with at least two 6^+ -vertices, or else v receives at least two donations of at least $\frac{1}{2}$ from 4- or 5-faces by R0b and R0c. Thus $\mu'(v) \ge -1 + 1 = -1 + \frac{1}{2} + \frac{1}{2} = 0$, as desired.

Table 1Donations to a 5-vertex by Rules 1 and 2, using (SP4).

Donor:	Strong	Semiweak	Weak
7:	1/3	1/6	0
8:	1/2	3/8	1/4
9:	2/3	1/2	1/3
10 ∨ 11:	$\geq 3/5$	$\geq 1/2$	$\geq 1/2$
≥12:	≥ 1	$\geq 3/4$	$\geq 1/2$

So from now on we will assume that v is neither simplicial nor special nor good, which implies that v gives back no charge to bad 11-vertices by Rules 3, 4 and 5. It also implies that v is incident with exactly one 4⁺-face f, which is a 5-face incident with five 5-vertices or a 4-face incident with at most one 6⁺-vertex.

Subcase 2.4. d(f) = 5, say $f = v_1 v v_2 x y$, where all five vertices have degree 5. Thus *G* is not a counterexample to Theorem 4(ii) or (iii), and so must be a counterexample to Theorem 4(i). Note that at least one of v_3 and v_4 is an 8⁺-vertex, because otherwise the 4-cycle $v v_2 v_3 v_4$ has weight at most 24. This vertex gives at least $\frac{1}{4}$ to v by Table 1, and v receives $\frac{4}{5}$ from f, and so $\mu'(v) \ge -1 + \frac{4}{5} + \frac{1}{4} > 0$.

Subcase 2.5. d(f) = 4, say $f = v_1 v v_2 x$, where at most one vertex has degree ≥ 6 , and this vertex has degree at most 9 by (SP2). Here, the boundary of f is a 4-cycle of weight at most $3 \times 5 + 9$; thus G must be a counterexample to Theorem 4(ii).

Now we have two cases to consider. First, suppose $d(v_1) = d(v) = d(v_2) = d(x) = 5$. Note that v_3 and v_5 are 11⁺-vertices, for otherwise we have a 5-cycle of weight at most 30 and *G* is not a counterexample to Theorem 4(ii). So $\mu'(v) \ge -1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} > 0$ by R0c and Table 1.

So we may suppose by symmetry that $d(v_2) = 5$ and either $6 \le d(v_1) \le 9$ or $6 \le d(x) \le 9$. Note that v_3 and v_5 are 7⁺-vertices, for otherwise we have a 5-cycle of weight at most 30.

If $d(v_4) \ge 6$, then v_3 and v_5 are at least semiweak donors to v and $\mu'(v) \ge -1 + \frac{2}{3} + \frac{1}{6} + \frac{1}{6} = 0$ by ROc and Table 1. So we may suppose that $d(v_4) = 5$, which means that $d(v_3) + d(v_5) \ge 16$ since otherwise the 5-cycle $vv_2v_3v_4v_5$ has weight at most 30. Now v_3 and v_5 are at least weak donors to v. If $d(v_3) \ge 9$ or $d(v_5) \ge 9$, then $\mu'(v) \ge -1 + \frac{2}{3} + \frac{1}{3} = 0$; otherwise $d(v_3) = d(v_5) = 8$, and $\mu'(v) \ge -1 + \frac{2}{3} + \frac{1}{4} + \frac{1}{4} > 0$.

Case 3. $d(v) \notin \{5, 11\}$. If v is the vertex v_i in the last sentence of Rule 1(b) or 1(c), then v may pass on to 5-neighbors some or all of the charge that v has received from a 6⁺-vertex w. But since v never passes on more than it receives from w, we may ignore these two sentences, provided that we also ignore any charge that v receives from 6⁺-vertices.

Subcase 3.1. d(v) = 6. Then $\mu(v) = d(v) - 6 = 0$, and $\mu'(v) = 0$ also, since v does not participate in discharging.

Subcase 3.2. d(v) = 7. Then $\mu(v) = d(v) - 6 = 1$. By R1a, the amount given out by v does not exceed $\frac{1}{3}$ times the number of 5-neighbors of v. Also, v does not give more than $\frac{1}{3}$ times the number of 6^+ -neighbors of v; for, if each 5-neighbor v_i that receives $\frac{1}{3}$ from v transfers $\frac{1}{6}$ to each of v_{i-1} and v_{i+1} , and each v_i that receives $\frac{1}{6}$ from v transfers it to whichever of v_{i-1} and v_{i+1} is a 6^+ -vertex, then all the charge given by v now resides with its 6^+ -neighbors, and each has received at most $\frac{1}{3}$. But a 7-vertex must have either at most three 5-neighbors or at most three 6^+ -neighbors, and so $\mu'(v) \ge \mu(v) - 3 \times \frac{1}{3} = 0$.

Subcase 3.3. $8 \le d(v) \le 10$ or $d(v) \ge 12$. By R1b and R1c, $\mu'(v) \ge d(v) - 6 - d(v) \times \frac{d(v) - 6}{d(v)} = 0$.

Case 4. d(v) = 11. Then $\mu(v) = d(v) - 6 = 5$. If v has a 6⁺-neighbor v_i then none of v_{i-2}, \ldots, v_{i+2} is twice weak and so none of them receives a supplementary $\frac{1}{10}$ from v by Rule 2; thus $\mu'(v) \ge 5 - 11 \times \frac{2}{5} - 6 \times \frac{1}{10} = 0$. So we may assume that all neighbors of v have degree 5, i.e. v is bad, and v gives $\frac{2}{5} + \frac{1}{10} = \frac{1}{2}$ to each neighbor by R1c and R2. Thus $\mu'(v) \ge -\frac{1}{2}$. We must find an extra $\frac{1}{2}$ for v in order to show that $\mu'(v) \ge 0$.

First suppose that some neighbor, say v_1 , is not simplicial. If v_1 is good, then v_1 gives back $\frac{1}{2}$ to v by R5, and so $\mu'(v) \ge 0$ as desired. Thus we may assume that v_1 is not good. This means that v_1 is incident with exactly one 4^+ -face f, which is either a 5-face incident with five 5-vertices or a 4-face incident with at most one 6^+ -vertex. However, if f is a 5-face incident with five 5-vertices then G cannot be a counterexample to Theorem 4(ii) or (iii), and it cannot be a counterexample to Theorem 4(i) either as we have a 4-cycle of weight 5 + 5 + 5 + 11 = 26. (Recall that v is simplicial, by (SP2).)

This contradiction shows that f is a 4-face, say $f = v_1 xy_2$, which is incident with at most one 6⁺-vertex, which must have degree at most 9 by (SP2). Thus the boundary of f is a 4-cycle with weight at most 24. This means that G cannot now be a counterexample to Theorem 4(i) or (iii), and so it must be a counterexample to Theorem 4(ii).

If $\{x, z\} \cap \{v_2, v_{11}\} = \emptyset$ then we have a 5-cycle of weight at most 24 + 5 < 30, and *G* is not a counterexample to Theorem 4(ii), which is a contradiction. So by symmetry we can assume that $x = v_2$, which means that both v_1 and v_2 are special. Thus *v* receives $\frac{1}{4}$ from each of them by R4, and $\mu'(v) \ge 0$ as desired.

From now on we can assume that all neighbors of v are simplicial. Each edge $v_i v_{i+1}$ lies in two triangles, say $v_i v_{i+1} v$ and $v_i v_{i+1} w_i$, and $v_i w_{i-1} w_i$ is also a triangle since v_i is simplicial. For each i, $d(w_{i-1}) + d(w_i) \ge 16$ by (SP3). If $d(w_{i-1}) \ge 9$ and $d(w_i) \ge 9$ for some i, then v_i gives back $\frac{1}{2}$ to v by Rule 3(a), and $\mu'(v) \ge 0$. If $d(w_i) = 8$ for some i, then by Rule 3(b) v

receives $\frac{1}{4}$ from each of v_i and v_{i+1} , and again $\mu'(v) \ge 0$. So we may assume that, for each *i*, one of $d(w_{i-1})$ and $d(w_i)$ is at most 7 and the other is at least 9. But this cannot hold for all *i* modulo 11, since 11 is odd.

We have shown that $\mu'(x) > 0$ whenever $x \in V \cup F$. This contradiction with (1) completes the proof of Theorem 4.

Acknowledgments

The first author was supported by grants 12-01-00631 of the Russian Foundation for Basic Research and NSh-1939.2014.1 of the President of Russia's Grants for Leading Scientific Schools of the Russian Federation. The second author was supported by grants 12-01-00448 and 12-01-98510 of the Russian Foundation for Basic Research.

References

- [1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in a planar graph (Russian), Matem. Zametki 46 (5) (1989) 9-12. [2] O.V. Borodin, Structural properties of plane maps with minimum degree 5, Math. Nachr. 18 (1992) 109-117.
- [3] O.V. Borodin, Structural theorem on plane graphs with application to the entire coloring, J. Graph Theory 23 (3) (1996) 233–239.
- [4] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (4) (2013) 517–539.
- [5] O.V. Borodin, A.O. Ivanova, Describing (d 2)-stars at *d*-vertices, $d \le 5$ in normal plane maps, Discrete Math. 313 (17) (2013) 1700–1709.
- [6] O.V. Borodin, A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (17) (2013) 1710–1714. [7] O.V. Borodin, A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (23) (2013) 2841–2847.
- [8] O.V. Borodin, A.O. Ivanova, Every 3-polytope with minimum degree 5 has a 7-cycle with maximum degree at most 15 (Russian), submitted for
- publication.
- [9] O.V. Borodin, D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (2) (1998) 159 - 164
- [10] O.V. Borodin, A.O. Ivanova, T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34(3)(2014) 539-546
- [11] O.V. Borodin, A.O. Ivanova, T.R. Jensen, A.V. Kostochka, M.P. Yancey, Describing 3-paths in normal plane maps, Discrete Math. 313 (23) (2013) 2702-2711
- [12] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11, Discrete Math. 315-316 (2014) 128-134
- [13] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47-61.
- [14] B. Ferencová, T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661-1675.
- [15] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225–236.
- 16] B. Grünbaum, Polytopal graphs, in: D.R. Fulkerson (Ed.), MAA Studies in Mathematics, in: Studies in Graph Theory, 12, 1975, pp. 201–224.
- [17] S. Jendrol', T. Madaras, On light subgraphs in plane graphs with minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207–217.
- [18] S. Jendrol', T. Madaras, R. Soták, Z. Tuza, On light cycles in plane triangulations, Discrete Math. 197–198 (1999) 453–467.
- [19] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in the plane and in the projective plane a survey, Preprint, Institute of Algebra MATH-AL-2-2001 TU Dresden
- [20] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in the plane-a survey, Discrete Math. 313 (2013) 406-421.
- [21] A. Kotzig, From the theory of Eulerian polyhedra (Russian), Mat. Čas. (Math. Slovaca) 13 (1963) 20-31.
- [22] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27–43.
- [23] T. Madaras, R. Škrekovski, H.-J. Voss, The 7-cycle C₇ is light in the family of planar graphs with minimum degree 5, Discrete Math. 307 (2007) 1430-1435.
- [24] T. Madaras, R. Soták, The 10-cycle C₁₀ is light in the family of all plane triangulations with minimum degree five, Tatra Mt. Math. Publ. 18 (1999) 35-56.
- [25] B. Mohar, R. Škrekovski, H.-J. Voss, Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) 261–295.
- [26] M.D. Plummer, On the cyclic connectivity of planar graph, in: Graph Theory and Application, Springer, Berlin, 1972, pp. 235–242.
- [27] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. math. Wiss. (Geometrie) 3AB (12) (1922) 1-139.
- [28] P. Wernicke, Über den Kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.