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a b s t r a c t

Let wP (Cl) (wT (Cl)) be the minimum integer k with the property that every 3-polytope
(respectively, every plane triangulation) with minimum degree 5 has an l-cycle with
weight, defined as the degree-sum of all vertices, at most k.

In 1998, O.V. Borodin and D.R. Woodall proved wT (C4) = 25 and wT (C5) = 30. We
prove that wP (C4) = 26 and wP (C5) = 30.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of its incident edges. A k-vertex (k-neighbor, k-face)
is a vertex (neighbor, face) with degree k, a k+-vertex has degree at least k, etc. The minimum vertex degree of G is δ(G). We
will drop the arguments whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but d(x) ≥ 3 for
every vertex and face x. As proved by Steinitz [27], the 3-connected plane graphs are planar representations of the convex
3-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class M5 of NPMs with δ = 5 and its subclasses P5 of 3-polytopes and T5 of plane triangu-
lations, where we define a triangulation to be simple (without loops or multiple edges), so that T5 ⊂ P5 ⊂ M5. A cycle on k
vertices is denoted by Ck, and Sk stands for a k-star centered at a 5-vertex.

In 1904, Wernicke [28] proved that if M5 ∈ M5 then M5 contains a vertex of degree 5 adjacent to a vertex of degree at
most 6. This result was strengthened by Franklin [15] in 1922 to the existence of a vertex of degree 5 with two neighbors of
degree at most 6. In 1940, Lebesgue [22, p. 36] gave an approximate description of the neighborhoods of vertices of degree
5 in a T5 ∈ T5.

Given a graph H , theweight wM(H) is the maximum overM5 ∈ M5 of the minimum degree-sum of the vertices of H over
subgraphs H ofM5. The weights wP(H) and wT (H) are defined similarly for P5 and T5, respectively.

The boundswM(S1) ≤ 11 (Wernicke [28]) andwM(S2) ≤ 17 (Franklin [15]) are tight. It was proved by Lebesgue [22] that
wM(S3) ≤ 24 and wM(S4) ≤ 31, which were improved much later to the following tight bounds: wM(S3) ≤ 23 (Jendrol’–
Madaras [17]) and wM(S4) ≤ 30 (Borodin–Woodall [9]). Note that wM(S3) ≤ 23 easily implies wM(S2) ≤ 17 and immedi-
ately follows from wM(S4) ≤ 30 (it suffices to delete a vertex of maximum degree from a star of the minimum weight).
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It follows from Lebesgue [22, p. 36] thatwT (C3) ≤ 18. In 1963, Kotzig [21] gave another proof of this fact and conjectured
that wT (C3) ≤ 17; the bound 17 is easily shown to be tight.

In 1989, Kotzig’s conjecture was confirmed by Borodin [1] in a more general form, by proving wM(C3) = 17. Another
consequence of this result is confirming a conjecture of Grünbaum [16] of 1975 that for every 5-connected planar graph the
cyclic connectivity (defined as the minimum number of edges to be deleted to obtain two components each containing a
cycle) is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [26]).

It also follows from Lebesgue [22, p. 36] that wT (C4) ≤ 26 and wT (C5) ≤ 31. In 1998, Borodin and Woodall [9] proved
the following.

Theorem 1 (Borodin–Woodall [9]). For the class of plane triangulationswithminimumdegree5,wT (C4) = 25 andwT (C5) = 30.

The height of a subgraph H of graph G is the maximum degree of vertices of H in G. Now let ϕM(H) (ϕP(H), ϕT (H)) be the
minimum integer kwith the property that every normal planemap (3-polytope, plane triangulation) withminimum degree
5 has a copy of H with all vertices of degree at most k.

It follows from Franklin [15] that ϕM(S2) = 6. From wM(C3) = 17 (Borodin [1]), together with a simple example proving
ϕM(C3) ≥ 7, we have ϕM(C3) = 7. In 1996, Jendrol’ and Madaras [17] proved ϕM(S4) = 10 and ϕT (C4) = ϕT (C5) = 10.
R. Soták (personal communication, see the surveys of Jendrol’ andVoss [19, p.15], [20]) provedϕP(C4) = 11 andϕP(C5) = 10.

In 1999, Jendrol’ et al. [18] obtained the following bounds: 10 ≤ ϕT (C6) ≤ 11, 15 ≤ ϕT (C7) ≤ 17, 15 ≤ ϕT (C8) ≤ 29,
19 ≤ ϕT (C9) ≤ 41, and ϕT (Cp) = ∞ whenever p ≥ 11. Madaras and Soták [24] proved 20 ≤ ϕT (C10) ≤ 415.

For the broader class P5, it was known that 10 ≤ ϕP(C6) ≤ 107 due to Mohar et al. [25] (in fact, this bound is proved
in [25] for all 3-polytopes with δ ≥ 4 in which no 4-vertex is adjacent to a 4-vertex). Recently, Borodin et al. [12] proved
ϕP(C6) = ϕT (C6) = 11.

For C7, besides the above mentioned result 15 ≤ ϕT (C7) ≤ 17, it was known that ϕP(C7) ≤ 359 (Madaras et al. [23]).
Recently, Borodin and Ivanova [8] proved ϕP(C7) = ϕT (C7) = 15, which answers a question raised in Jendrol’ et al. [18].

The purpose of this paper is to prove the following analogue of Theorem 1.

Theorem 2. For the class of 3-polytopes with minimum degree 5, wP(C4) = 26 and wP(C5) = 30.

As an easy corollary, we obtain the above-mentioned unpublished result by R. Soták (for one direction, it suffices to take
a Cl with 4 ≤ l ≤ 5 of smallest weight and subtract l − 1 smallest degrees of its vertices; the other direction follows from
the examples in Section 2).

Corollary 3. For the class of 3-polytopes with minimum degree 5, ϕP(C4) = 11 and ϕP(C5) = 10.

In fact, instead of Theorem 2 we prove the following stronger statement, which extends Theorem 1.

Theorem 4. Every 3-polytope with δ = 5 has
(i) a 4-cycle of weight at most 26,
(ii) a 5-cycle of weight at most 30,
(iii) either a 4-cycle of weight at most 25 or a facial 5-cycle of weight 25, where all bounds 26, 30 and 25 are tight.

In particular, Theorem 4(i+iii) says thatwP(C4) can reach its maximum of 26 only in the presence of a facial 5-cycle with
weight 25, which is a 5-face completely surrounded by 5-vertices (as in Fig. 1). Theorem 4 refines Corollary 3 as follows.

Corollary 5. Every 3-polytope with δ = 5 has
(i) a 4-cycle of height at most 11,
(ii) a 5-cycle of height at most 10,
(iii) either a 4-cycle of height at most 10 or a facial 5-cycle of height 5, where all bounds 11, 10 and 5 are tight.

At the second part of the proof of Theorem 4 we use some ideas from Borodin [1] and Borodin–Woodall [9].
Other related structural results on 3-polytopes, some of which have application to coloring, can be found in the already

mentioned papers and in [2–8,10–14,24].

2. Proving the tightness of Theorem 4

The bounds in Theorem 4 and Corollary 5 are all precise, as the following examples show. Truncate all vertices of the
dodecahedron and cap each 10-face by putting a new vertex inside it and joining it to all the boundary vertices. We have
obtained a triangulation with δ = 5 in which wT (C4) = 25, wT (C5) = 30, and ϕT (C4) = ϕT (C5) = 10.

We now construct a 3-polytope with wP(C4) = 26 (see Fig. 1). First, we replace each face of the icosahedron as shown in
Fig. 1(a). The resulting dual ‘‘blue’’ graph G1 is a cubic graph with only 5- and 6-faces such that the distance between 5-faces
is at least two.

Then, with each 5-face of G1, we perform the operation depicted in Fig. 1(b) to obtain a graph G2 with only 3-faces and
(very few) 5-faces, in which every vertex is of degree 5, 11, or 12. In particular, we truncate all vertices of G1 not incident
with 5-faces. It is easy to check that each 4-cycle of G2 goes through an 11+-vertex, and thatwP(C4) = 26, ϕP(C4) = 11, and
every facial 5-cycle has weight 25 and hence consists of 5-vertices.
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Fig. 1. A 3-polytope with wP (C4) = 26.

3. Proving the upper bounds in Theorem 4

Suppose G′ is a counterexample to (some part of) Theorem 4. Let G be amaximal counterexample such that V (G′) = V (G)
and E(G′) ⊆ E(G). Clearly G is 3-connected, since G′ is. Denote the sets of vertices, edges, and faces of G by V , E and F , re-
spectively. Euler’s formula |V | − |E| + |F | = 2 for G yields

v∈V

(d(v) − 6) +


f∈F

(2d(f ) − 6) = −12. (1)

We assign an initial charge µ(x) to x whenever x ∈ V ∪ F as follows: µ(v) = d(v) − 6 if v ∈ V and µ(f ) = 2d(f ) − 6 if
f ∈ F . Note that only 5-vertices have a negative initial charge.

Using the properties of G as a counterexample to Theorem 4, we will define a local redistribution of charges, preserving
their sum, such that the new charge µ′(x) is non-negative whenever x ∈ V ∪ F . This will contradict the fact that the sum of
the new charges is, by (1), equal to −12, and this contradiction will prove Theorem 4.

3.1. Structural properties of G

Let v1, . . . , vd(v) denote the neighbors of a vertex v in cyclic order round v. The vertex v is simplicial if all its incident
faces are 3-faces. If d(vi) = 5 then vi is a strong, semiweak orweak neighbor of v according as both, one or none of vi−1, vi+1
are 6+-vertices, and vi is twice weak if d(vj) = 5 whenever |j − i| ≤ 2 (modulo d(v)). If vi is a strong, semiweak or weak
neighbor of v then we say that v is a strong, semiweak or weak donor to vi (even if in fact v gives nothing to vi).

In what follows, we will need the simple structural properties of G expressed by (SP1)–(SP4).
(SP1) The boundary ∂(f ) of every face of G is an induced cycle; that is, ∂(f ) is a cycle, and no two nonconsecutive vertices of ∂(f )
are adjacent.

This follows from the planarity and 3-connectedness of G.
(SP2) Every 10+-vertex v in G is simplicial.

Otherwise, let f be a 4+-face incident with v and let w be a vertex of ∂(f ) that is not adjacent to v, which exists by (SP1).
Adding the edge vw preserves 3-connectedness and cannot create a 4-cycle of weight less than 11 + 6 + 5 + 5 = 27 or a
5-cycle of weight less than 11 + 6 + 5 + 5 + 5 = 32. So G + vw is a counterexample to Theorem 4, which contradicts the
maximality of G.
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(SP3) Any four neighbors of a simplicial 5-vertex have degree-sum at least 26.
Otherwise, G would contain a 5-cycle of weight at most 30 and a 4-cycle of weight at most 25, and so would not be a

counterexample to Theorem 4.
(SP4) No 10-vertex can have a twice weak neighbor.

Otherwise, by (SP2), Gwould have a 4-cycle of weight 25 and 5-cycle of weight 30.
An 11-vertex is bad or an 11b-vertex if all its neighbors are 5-vertices. A 5-vertex v is special if it is incident with a 4-face

vv1xv2 and four 3-faces, and v3 is an 11b-vertex (so that d(v2) = d(v4) = 5), and at least one of v1 and x is a 5-vertex. A
5-vertex is good or a 5g-vertex if it is incident with a 6+-face, or with a 5-face that is incident with at least one 6+-vertex,
or with a 4-face that is incident with at least two 6+-vertices, or with at least two 4+-faces. Clearly the three adjectives
simplicial, special and good are mutually exclusive: no 5-vertex can satisfy more than one of them.

3.2. Discharging on G

We use the following discharging rules (see Fig. 2).
Rule 0. Let f be a 4+-face.
(a) If d(f ) ≥ 6 then f gives 1 to every incident 5-vertex.
(b) If d(f ) = 5 then f gives to every incident 5-vertex:

(i) 1 if f is incident with at least one 6+-vertex;
(ii) 4

5 otherwise.
(c) If d(f ) = 4 then f gives to every incident 5-vertex:

(i) 1 if f is incident with at least two 6+-vertices;
(ii) 2

3 if f is incident with precisely one 6+-vertex, with the following exception. Suppose f = vv1v2v3 where d(v) = 9,
d(v3) = 5 and v1 and v2 are special; then f gives 5

12 to v1, 3
4 to v2, and either 5

12 or 2
3 to v3 according as v3 is or is not

special;
(iii) 1

2 otherwise.

Rule 1.
(a) Each vertex v of degree 7 sends 1

3 to each strong 5-neighbor and 1
6 to each semiweak 5-neighbor.

(b) Each vertex v with degree 8, 9 or ≥ 12 first gives a ‘‘basic’’ contribution of ρ(v) =
µ(v)

d(v)
=

d(v)−6
d(v)

to each neighbor. Then each
6+-neighbor vi shares the charge just received equally between vi−1 and vi+1.

(c) Each 10-vertex or 11-vertex v first gives a ‘‘basic’’ 2
5 to each neighbor. Then each 6+-neighbor vi transfers 1

10 of v’s donation
to each 5-vertex in {vi−2, vi−1, vi+1, vi+2}.

Rule 2. If d(v) = 11 then v gives a ‘‘supplementary’’ 1
10 to each twice weak neighbor.

Rule 3. If v is a simplicial 5-vertex adjacent to a bad 11-vertex w, say w = v5, and if d(v1) = d(v4) = 5, then v gives back to
v5 the following:

(a) 1
2 if both v2 and v3 have degree ≥9;

(b) 1
4 if at least one of v2, v3 has degree exactly 8.

Rule 4. Suppose v is a bad 11-vertex where v1 and v2 are special 5-vertices incident with a 4-face v1v2xy with d(x) = 5 and
d(y) ≤ 9. Then each of v1, v2 gives back 1

4 to v.

Rule 5. A good 5-vertex that is adjacent to a bad 11-vertex w gives back 1
2 to w.

3.3. Checking µ′(x) ≥ 0 for x ∈ V ∪ F

Case 1. x = f ∈ F .
If d(f ) = 3 then µ′(f ) = µ(f ) = 2 × 3 − 6 = 0 since f does not participate in discharging.
If d(f ) = 4 then f gives at most 2 in total to its 5-vertices by R0, so µ′(f ) ≥ 2 × 4 − 6 − 2 = 0.
If d(f ) = 5 then f gives to its 5-vertices either 5 ×

4
5 or at most 4 × 1, hence µ′(f ) ≥ 2 × 5 − 6 − 4 = 0.

If d(f ) ≥ 6 then µ′(f ) ≥ 2d(f ) − 6 − d(f ) × 1 ≥ 0 by R0.
In all cases, µ′(f ) ≥ 0. From now on we assume that x = v ∈ V .

Case 2. d(v) = 5. Then µ(v) = d(v)− 6 = −1, and v does not give charge to any other vertex, except that, by R3–R5, v may
give back some charge to a bad 11-vertex w; note, however, that a bad 11-vertex gives 2

5 +
1
10 =

1
2 to each of its neighbors

by R1c and R2, and so v does not ‘‘give back’’ more charge to w than w has already given to v.
Subcase 2.1. v is simplicial. The amounts of charge received by v from its neighbors by Rules 1 and 2 are summarized in
Table 1.

Suppose Rule 3(a) applies to v, so that v’s neighbors v1, . . . , v5 have degrees (5, ≥9, ≥9, 5, 11). Then v is a semiweak
neighbor of each of v2 and v3 and a weak neighbor of v5, so that it receives at least 1

2 from each of them by Table 1, and gives
back exactly 1

2 to v5 by Rule 3(a) and nothing to v2 or v3. Hence µ′(v) ≥ −1 +
3
2 −

1
2 = 0.
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Fig. 2. Discharging rules.

Suppose now that Rule 3(b) applies. By (SP3), v’s neighbors have degrees (5, 8, ≥8, 5, 11). Now v receives at least 3
8 from

each of v2 and v3 and at least 1
2 from v5 by Table 1, and gives back exactly 1

4 to v5 by Rule 3(b) and nothing to v2 or v3. Hence
µ′(v) ≥ −1 +

3
8 +

3
8 +

1
2 −

1
4 = 0.

So wemay assume that Rule 3 does not apply to v at all, and the amount that v receives from its neighbors is at least that
given in Table 1. By (SP3), if three neighbors of v have degree-sum at most 16 then the remaining two neighbors each have
degree at least 10 and so each gives v at least 1

2 by Table 1.Wemay assume this does not happen; in particular, v has at most
two 5-neighbors. If it has exactly two, then two of v’s 6+-neighbors are semiweak donors and the third, say w, is either a
strong or a weak donor, according as the two 5-neighbors are adjacent or not; for the present purpose we may assume w
is a weak donor to v. If v has exactly one 5-neighbor then v has two semiweak donors and two strong donors. If v has no
5-neighbors then it has five strong donors.

By these remarks, the degree-sequence of v’s neighbors, in nondecreasing order, must be one of the following. In each
case, we use Table 1 to check that v receives at least 1 in total from its neighbors.

(5, 5, 7, ≥9, ≥9): v receives at least 0 +
1
2 +

1
2 = 1 (if its weak donor has degree 7) or 1

6 +
1
3 +

1
2 = 1 (if its weak donor

has degree 9).
(5, 5, ≥8, ≥8, ≥8): v receives at least 1

4 +
3
8 +

3
8 = 1.

(5, 6, 6, ≥9, ≥9): v receives at least 1
2 +

1
2 = 1.

(5, 6, ≥7, ≥8, ≥8): v receives at least 1
3 +

3
8 +

3
8 > 1 (if a strong donor has degree 7) or 1

6 +
1
2 +

3
8 > 1 (if a strong donor

has degree ≥8).
(5, ≥7, ≥7, ≥7, ≥7): v receives at least 1

6 +
1
6 +

1
3 +

1
3 = 1.

(6, 6, 6, ≥8, ≥8): v receives at least 1
2 +

1
2 = 1.

(≥6, ≥6, ≥7, ≥7, ≥7): v receives at least 1
3 +

1
3 +

1
3 = 1.

Subcase 2.2. v is special. Suppose v is surrounded by faces f = vv1xv2, vv2v3, vv3v4, vv4v5, and vv5v1, where v3 is a bad
11-vertex (so that d(v2) = 5), and at least one of v1 and x is a 5-vertex; then the other of these vertices is a 9−-vertex, by
(SP2). Note that v receives 2

5 +
1
10 =

1
2 from v3 by R1c and R2, and may give back 1

4 to v3 by R4, so that v retains at least 1
4

from v3.
If max{d(v1), d(x)} ≤ 8, then d(v5) ≥ 8, for otherwise we have a 4-cycle of weight at most 23 and 5-cycle of weight at

most 30 and G is not a counterexample to Theorem 4, which is a contradiction. Hence v5 gives at least 1
4 to v by Table 1. Also

v receives at least 1
2 from f by R0c and retains at least 1

4 from v3, as remarked above. So µ′(v) ≥ 0, as desired.
Now supposemax{d(v1), d(x)} = 9. If d(v1) = 9, then v receives at least 1

3 from v1 by R1b and 5
12 from f by the exception

to R0c, a total of at least 3
4 ; otherwise, if d(x) = 9, v receives 3

4 from f by the exception to R0c. In each case, adding in the 1
4

retained from v3 shows that µ′(v) ≥ 0.
Subcase 2.3. v is good. Then v receives 1 by R0a from a 6+-face, or by R0b from a 5-face that is incident with at least one
6+-vertex, or by R0c from a 4-face that is incident with at least two 6+-vertices, or else v receives at least two donations of
at least 1

2 from 4- or 5-faces by R0b and R0c. Thus µ′(v) ≥ −1 + 1 = −1 +
1
2 +

1
2 = 0, as desired.
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Table 1
Donations to a 5-vertex by Rules 1 and 2, using (SP4).

Donor: Strong Semiweak Weak

7: 1/3 1/6 0
8: 1/2 3/8 1/4
9: 2/3 1/2 1/3
10 ∨ 11: ≥3/5 ≥1/2 ≥1/2
≥12: ≥1 ≥3/4 ≥1/2

So from now on we will assume that v is neither simplicial nor special nor good, which implies that v gives back no
charge to bad 11-vertices by Rules 3, 4 and 5. It also implies that v is incident with exactly one 4+-face f , which is a 5-face
incident with five 5-vertices or a 4-face incident with at most one 6+-vertex.

Subcase 2.4. d(f ) = 5, say f = v1vv2xy, where all five vertices have degree 5. ThusG is not a counterexample to Theorem4(ii)
or (iii), and so must be a counterexample to Theorem 4(i). Note that at least one of v3 and v4 is an 8+-vertex, because
otherwise the 4-cycle vv2v3v4 has weight at most 24. This vertex gives at least 1

4 to v by Table 1, and v receives 4
5 from f ,

and so µ′(v) ≥ −1 +
4
5 +

1
4 > 0.

Subcase 2.5. d(f ) = 4, say f = v1vv2x, where at most one vertex has degree ≥6, and this vertex has degree at most 9 by
(SP2). Here, the boundary of f is a 4-cycle of weight at most 3 × 5 + 9; thus Gmust be a counterexample to Theorem 4(ii).

Now we have two cases to consider. First, suppose d(v1) = d(v) = d(v2) = d(x) = 5. Note that v3 and v5 are 11+-
vertices, for otherwise we have a 5-cycle of weight at most 30 and G is not a counterexample to Theorem 4(ii). So µ′(v) ≥

−1 +
1
2 +

1
2 +

1
2 > 0 by R0c and Table 1.

So we may suppose by symmetry that d(v2) = 5 and either 6 ≤ d(v1) ≤ 9 or 6 ≤ d(x) ≤ 9. Note that v3 and v5 are
7+-vertices, for otherwise we have a 5-cycle of weight at most 30.

If d(v4) ≥ 6, then v3 and v5 are at least semiweak donors to v and µ′(v) ≥ −1 +
2
3 +

1
6 +

1
6 = 0 by R0c and Table 1. So

wemay suppose that d(v4) = 5, which means that d(v3)+ d(v5) ≥ 16 since otherwise the 5-cycle vv2v3v4v5 has weight at
most 30. Now v3 and v5 are at least weak donors to v. If d(v3) ≥ 9 or d(v5) ≥ 9, then µ′(v) ≥ −1 +

2
3 +

1
3 = 0; otherwise

d(v3) = d(v5) = 8, and µ′(v) ≥ −1 +
2
3 +

1
4 +

1
4 > 0.

Case 3. d(v) ∉ {5, 11}. If v is the vertex vi in the last sentence of Rule 1(b) or 1(c), then v may pass on to 5-neighbors some
or all of the charge that v has received from a 6+-vertex w. But since v never passes on more than it receives from w, we
may ignore these two sentences, provided that we also ignore any charge that v receives from 6+-vertices.

Subcase 3.1. d(v) = 6. Then µ(v) = d(v) − 6 = 0, and µ′(v) = 0 also, since v does not participate in discharging.

Subcase 3.2. d(v) = 7. Then µ(v) = d(v) − 6 = 1. By R1a, the amount given out by v does not exceed 1
3 times the number

of 5-neighbors of v. Also, v does not give more than 1
3 times the number of 6+-neighbors of v; for, if each 5-neighbor vi that

receives 1
3 from v transfers 1

6 to each of vi−1 and vi+1, and each vi that receives 1
6 from v transfers it to whichever of vi−1 and

vi+1 is a 6+-vertex, then all the charge given by v now resides with its 6+-neighbors, and each has received at most 1
3 . But

a 7-vertex must have either at most three 5-neighbors or at most three 6+-neighbors, and so µ′(v) ≥ µ(v) − 3 ×
1
3 = 0.

Subcase 3.3. 8 ≤ d(v) ≤ 10 or d(v) ≥ 12. By R1b and R1c, µ′(v) ≥ d(v) − 6 − d(v) ×
d(v)−6
d(v)

= 0.

Case 4. d(v) = 11. Then µ(v) = d(v) − 6 = 5. If v has a 6+-neighbor vi then none of vi−2, . . . , vi+2 is twice weak and so
none of them receives a supplementary 1

10 from v by Rule 2; thus µ′(v) ≥ 5−11×
2
5 −6×

1
10 = 0. So wemay assume that

all neighbors of v have degree 5, i.e. v is bad, and v gives 2
5 +

1
10 =

1
2 to each neighbor by R1c and R2. Thus µ′(v) ≥ −

1
2 . We

must find an extra 1
2 for v in order to show that µ′(v) ≥ 0.

First suppose that some neighbor, say v1, is not simplicial. If v1 is good, then v1 gives back 1
2 to v by R5, and so µ′(v) ≥ 0

as desired. Thuswemay assume that v1 is not good. Thismeans that v1 is incident with exactly one 4+-face f , which is either
a 5-face incident with five 5-vertices or a 4-face incident with at most one 6+-vertex. However, if f is a 5-face incident with
five 5-vertices thenG cannot be a counterexample to Theorem4(ii) or (iii), and it cannot be a counterexample to Theorem4(i)
either as we have a 4-cycle of weight 5 + 5 + 5 + 11 = 26. (Recall that v is simplicial, by (SP2).)

This contradiction shows that f is a 4-face, say f = v1xyz, which is incident with at most one 6+-vertex, which must
have degree at most 9 by (SP2). Thus the boundary of f is a 4-cycle with weight at most 24. This means that G cannot now
be a counterexample to Theorem 4(i) or (iii), and so it must be a counterexample to Theorem 4(ii).

If {x, z} ∩ {v2, v11} = ∅ then we have a 5-cycle of weight at most 24 + 5 < 30, and G is not a counterexample to
Theorem 4(ii), which is a contradiction. So by symmetry we can assume that x = v2, which means that both v1 and v2 are
special. Thus v receives 1

4 from each of them by R4, and µ′(v) ≥ 0 as desired.
From now on we can assume that all neighbors of v are simplicial. Each edge vivi+1 lies in two triangles, say vivi+1v and

vivi+1wi, and viwi−1wi is also a triangle since vi is simplicial. For each i, d(wi−1) + d(wi) ≥ 16 by (SP3). If d(wi−1) ≥ 9 and
d(wi) ≥ 9 for some i, then vi gives back 1

2 to v by Rule 3(a), and µ′(v) ≥ 0. If d(wi) = 8 for some i, then by Rule 3(b) v
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receives 1
4 from each of vi and vi+1, and again µ′(v) ≥ 0. So we may assume that, for each i, one of d(wi−1) and d(wi) is at

most 7 and the other is at least 9. But this cannot hold for all i modulo 11, since 11 is odd.
We have shown that µ′(x) ≥ 0 whenever x ∈ V ∪ F . This contradiction with (1) completes the proof of Theorem 4.
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