# Light $C_{4}$ and $C_{5}$ in 3-polytopes with minimum degree 5 

O.V. Borodin ${ }^{\text {a }}$, A.O. Ivanova ${ }^{\text {b,*, D.R. Woodall }}{ }^{\text {c }}$<br>${ }^{\text {a }}$ Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, 630090, Russia<br>${ }^{\mathrm{b}}$ Ammosov North-Eastern Federal University, Yakutsk, 677013, Russia<br>${ }^{\text {c }}$ School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, England, United Kingdom

## ARTICLE INFO

## Article history:

Received 10 September 2013
Received in revised form 25 June 2014
Accepted 26 June 2014
Available online 16 July 2014

## Keywords:

Planar graph
Plane map
Structure properties
3-polytope
Weight


#### Abstract

Let $w_{P}\left(C_{l}\right)\left(w_{T}\left(C_{l}\right)\right)$ be the minimum integer $k$ with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has an l-cycle with weight, defined as the degree-sum of all vertices, at most $k$.

In 1998, O.V. Borodin and D.R. Woodall proved $w_{T}\left(C_{4}\right)=25$ and $w_{T}\left(C_{5}\right)=30$. We prove that $w_{P}\left(C_{4}\right)=26$ and $w_{P}\left(C_{5}\right)=30$.


© 2014 Elsevier B.V. All rights reserved.

## 1. Introduction

The degree $d(x)$ of a vertex or face $x$ in a plane graph $G$ is the number of its incident edges. A $k$-vertex ( $k$-neighbor, $k$-face) is a vertex (neighbor, face) with degree $k$, a $k^{+}$-vertex has degree at least $k$, etc. The minimum vertex degree of $G$ is $\delta(G)$. We will drop the arguments whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but $d(x) \geq 3$ for every vertex and face $x$. As proved by Steinitz [27], the 3-connected plane graphs are planar representations of the convex 3-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class $\mathbf{M}_{\mathbf{5}}$ of NPMs with $\delta=5$ and its subclasses $\mathbf{P}_{\mathbf{5}}$ of 3-polytopes and $\mathbf{T}_{\mathbf{5}}$ of plane triangulations, where we define a triangulation to be simple (without loops or multiple edges), so that $\mathbf{T}_{\mathbf{5}} \subset \mathbf{P}_{\mathbf{5}} \subset \mathbf{M}_{\mathbf{5}}$. A cycle on $k$ vertices is denoted by $C_{k}$, and $S_{k}$ stands for a $k$-star centered at a 5 -vertex.

In 1904, Wernicke [28] proved that if $M_{5} \in \mathbf{M}_{5}$ then $M_{5}$ contains a vertex of degree 5 adjacent to a vertex of degree at most 6. This result was strengthened by Franklin [15] in 1922 to the existence of a vertex of degree 5 with two neighbors of degree at most 6. In 1940, Lebesgue [22, p. 36] gave an approximate description of the neighborhoods of vertices of degree 5 in a $T_{5} \in \mathbf{T}_{\mathbf{5}}$.

Given a graph $H$, the weight $w_{M}(H)$ is the maximum over $M_{5} \in \mathbf{M}_{\mathbf{5}}$ of the minimum degree-sum of the vertices of $H$ over subgraphs $H$ of $M_{5}$. The weights $w_{P}(H)$ and $w_{T}(H)$ are defined similarly for $\mathbf{P}_{5}$ and $\mathbf{T}_{5}$, respectively.

The bounds $w_{M}\left(S_{1}\right) \leq 11$ (Wernicke [28]) and $w_{M}\left(S_{2}\right) \leq 17$ (Franklin [15]) are tight. It was proved by Lebesgue [22] that $w_{M}\left(S_{3}\right) \leq 24$ and $w_{M}\left(S_{4}\right) \leq 31$, which were improved much later to the following tight bounds: $w_{M}\left(S_{3}\right) \leq 23$ (Jendrol'Madaras [17]) and $w_{M}\left(S_{4}\right) \leq 30$ (Borodin-Woodall [9]). Note that $w_{M}\left(S_{3}\right) \leq 23$ easily implies $w_{M}\left(S_{2}\right) \leq 17$ and immediately follows from $w_{M}\left(S_{4}\right) \leq 30$ (it suffices to delete a vertex of maximum degree from a star of the minimum weight).

[^0]It follows from Lebesgue [22, p. 36] that $w_{T}\left(C_{3}\right) \leq 18$. In 1963, Kotzig [21] gave another proof of this fact and conjectured that $w_{T}\left(C_{3}\right) \leq 17$; the bound 17 is easily shown to be tight.

In 1989, Kotzig's conjecture was confirmed by Borodin [1] in a more general form, by proving $w_{M}\left(C_{3}\right)=17$. Another consequence of this result is confirming a conjecture of Grünbaum [16] of 1975 that for every 5-connected planar graph the cyclic connectivity (defined as the minimum number of edges to be deleted to obtain two components each containing a cycle) is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [26]).

It also follows from Lebesgue [22, p. 36] that $w_{T}\left(C_{4}\right) \leq 26$ and $w_{T}\left(C_{5}\right) \leq 31$. In 1998, Borodin and Woodall [9] proved the following.

Theorem 1 (Borodin-Woodall [9]). For the class of plane triangulations with minimum degree 5, $w_{T}\left(C_{4}\right)=25$ and $w_{T}\left(C_{5}\right)=30$.
The height of a subgraph $H$ of graph $G$ is the maximum degree of vertices of $H$ in $G$. Now let $\varphi_{M}(H)\left(\varphi_{P}(H), \varphi_{T}(H)\right)$ be the minimum integer $k$ with the property that every normal plane map (3-polytope, plane triangulation) with minimum degree 5 has a copy of $H$ with all vertices of degree at most $k$.

It follows from Franklin [15] that $\varphi_{M}\left(S_{2}\right)=6$. From $w_{M}\left(C_{3}\right)=17$ (Borodin [1]), together with a simple example proving $\varphi_{M}\left(C_{3}\right) \geq 7$, we have $\varphi_{M}\left(C_{3}\right)=7$. In 1996, Jendrol' and Madaras [17] proved $\varphi_{M}\left(S_{4}\right)=10$ and $\varphi_{T}\left(C_{4}\right)=\varphi_{T}\left(C_{5}\right)=10$. R. Soták (personal communication, see the surveys of Jendrol' and Voss [19, p.15], [20]) proved $\varphi_{P}\left(C_{4}\right)=11$ and $\varphi_{P}\left(C_{5}\right)=10$. In 1999, Jendrol' et al. [18] obtained the following bounds: $10 \leq \varphi_{T}\left(C_{6}\right) \leq 11,15 \leq \varphi_{T}\left(C_{7}\right) \leq 17,15 \leq \varphi_{T}\left(C_{8}\right) \leq 29$, $19 \leq \varphi_{T}\left(C_{9}\right) \leq 41$, and $\varphi_{T}\left(C_{p}\right)=\infty$ whenever $p \geq 11$. Madaras and Soták [24] proved $20 \leq \varphi_{T}\left(C_{10}\right) \leq 415$.

For the broader class $\mathbf{P}_{5}$, it was known that $10 \leq \varphi_{P}\left(C_{6}\right) \leq 107$ due to Mohar et al. [25] (in fact, this bound is proved in [25] for all 3-polytopes with $\delta \geq 4$ in which no 4 -vertex is adjacent to a 4 -vertex). Recently, Borodin et al. [12] proved $\varphi_{P}\left(C_{6}\right)=\varphi_{T}\left(C_{6}\right)=11$.

For $C_{7}$, besides the above mentioned result $15 \leq \varphi_{T}\left(C_{7}\right) \leq 17$, it was known that $\varphi_{P}\left(C_{7}\right) \leq 359$ (Madaras et al. [23]). Recently, Borodin and Ivanova [8] proved $\varphi_{P}\left(C_{7}\right)=\varphi_{T}\left(C_{7}\right)=15$, which answers a question raised in Jendrol' et al. [18].

The purpose of this paper is to prove the following analogue of Theorem 1.
Theorem 2. For the class of 3-polytopes with minimum degree $5, w_{P}\left(C_{4}\right)=26$ and $w_{P}\left(C_{5}\right)=30$.
As an easy corollary, we obtain the above-mentioned unpublished result by R. Soták (for one direction, it suffices to take a $C_{l}$ with $4 \leq l \leq 5$ of smallest weight and subtract $l-1$ smallest degrees of its vertices; the other direction follows from the examples in Section 2).

Corollary 3. For the class of 3-polytopes with minimum degree 5, $\varphi_{P}\left(C_{4}\right)=11$ and $\varphi_{P}\left(C_{5}\right)=10$.
In fact, instead of Theorem 2 we prove the following stronger statement, which extends Theorem 1.
Theorem 4. Every 3-polytope with $\delta=5$ has
(i) a 4-cycle of weight at most 26,
(ii) a 5-cycle of weight at most 30,
(iii) either a 4-cycle of weight at most 25 or a facial 5-cycle of weight 25 , where all bounds 26,30 and 25 are tight.

In particular, Theorem $4(\mathrm{i}+\mathrm{iii})$ says that $w_{P}\left(C_{4}\right)$ can reach its maximum of 26 only in the presence of a facial 5-cycle with weight 25 , which is a 5 -face completely surrounded by 5 -vertices (as in Fig. 1). Theorem 4 refines Corollary 3 as follows.

Corollary 5. Every 3 -polytope with $\delta=5$ has
(i) a 4-cycle of height at most 11,
(ii) a 5-cycle of height at most 10 ,
(iii) either a 4-cycle of height at most 10 or a facial 5-cycle of height 5, where all bounds 11,10 and 5 are tight.

At the second part of the proof of Theorem 4 we use some ideas from Borodin [1] and Borodin-Woodall [9].
Other related structural results on 3-polytopes, some of which have application to coloring, can be found in the already mentioned papers and in [2-8,10-14,24].

## 2. Proving the tightness of Theorem 4

The bounds in Theorem 4 and Corollary 5 are all precise, as the following examples show. Truncate all vertices of the dodecahedron and cap each 10 -face by putting a new vertex inside it and joining it to all the boundary vertices. We have obtained a triangulation with $\delta=5$ in which $w_{T}\left(C_{4}\right)=25, w_{T}\left(C_{5}\right)=30$, and $\varphi_{T}\left(C_{4}\right)=\varphi_{T}\left(C_{5}\right)=10$.

We now construct a 3-polytope with $w_{P}\left(C_{4}\right)=26$ (see Fig. 1). First, we replace each face of the icosahedron as shown in Fig. 1(a). The resulting dual "blue" graph $G_{1}$ is a cubic graph with only 5 - and 6 -faces such that the distance between 5 -faces is at least two.

Then, with each 5 -face of $G_{1}$, we perform the operation depicted in Fig. 1(b) to obtain a graph $G_{2}$ with only 3-faces and (very few) 5 -faces, in which every vertex is of degree 5,11 , or 12 . In particular, we truncate all vertices of $G_{1}$ not incident with 5-faces. It is easy to check that each 4 -cycle of $G_{2}$ goes through an $11^{+}$-vertex, and that $w_{P}\left(C_{4}\right)=26, \varphi_{P}\left(C_{4}\right)=11$, and every facial 5 -cycle has weight 25 and hence consists of 5-vertices.


Fig. 1. A 3-polytope with $w_{P}\left(C_{4}\right)=26$.

## 3. Proving the upper bounds in Theorem 4

Suppose $G^{\prime}$ is a counterexample to (some part of) Theorem 4. Let $G$ be a maximal counterexample such that $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$. Clearly $G$ is 3-connected, since $G^{\prime}$ is. Denote the sets of vertices, edges, and faces of $G$ by $V, E$ and $F$, respectively. Euler's formula $|V|-|E|+|F|=2$ for $G$ yields

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)+\sum_{f \in F}(2 d(f)-6)=-12 \tag{1}
\end{equation*}
$$

We assign an initial charge $\mu(x)$ to $x$ whenever $x \in V \cup F$ as follows: $\mu(v)=d(v)-6$ if $v \in V$ and $\mu(f)=2 d(f)-6$ if $f \in F$. Note that only 5 -vertices have a negative initial charge.

Using the properties of $G$ as a counterexample to Theorem 4, we will define a local redistribution of charges, preserving their sum, such that the new charge $\mu^{\prime}(x)$ is non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12 , and this contradiction will prove Theorem 4.

### 3.1. Structural properties of $G$

Let $v_{1}, \ldots, v_{d(v)}$ denote the neighbors of a vertex $v$ in cyclic order round $v$. The vertex $v$ is simplicial if all its incident faces are 3-faces. If $d\left(v_{i}\right)=5$ then $v_{i}$ is a strong, semiweak or weak neighbor of $v$ according as both, one or none of $v_{i-1}, v_{i+1}$ are $6^{+}$-vertices, and $v_{i}$ is twice weak if $d\left(v_{j}\right)=5$ whenever $|j-i| \leq 2$ (modulo $d(v)$ ). If $v_{i}$ is a strong, semiweak or weak neighbor of $v$ then we say that $v$ is a strong, semiweak or weak donor to $v_{i}$ (even if in fact $v$ gives nothing to $v_{i}$ ).

In what follows, we will need the simple structural properties of $G$ expressed by (SP1)-(SP4).
(SP1) The boundary $\partial(f)$ of every face of $G$ is an induced cycle; that is, $\partial(f)$ is a cycle, and no two nonconsecutive vertices of $\partial(f)$ are adjacent.

This follows from the planarity and 3-connectedness of $G$.
(SP2) Every $10^{+}$-vertex $v$ in $G$ is simplicial.
Otherwise, let $f$ be a $4^{+}$-face incident with $v$ and let $w$ be a vertex of $\partial(f)$ that is not adjacent to $v$, which exists by (SP1). Adding the edge $v w$ preserves 3 -connectedness and cannot create a 4 -cycle of weight less than $11+6+5+5=27$ or a 5 -cycle of weight less than $11+6+5+5+5=32$. So $G+v w$ is a counterexample to Theorem 4 , which contradicts the maximality of $G$.
(SP3) Any four neighbors of a simplicial 5-vertex have degree-sum at least 26.
Otherwise, $G$ would contain a 5 -cycle of weight at most 30 and a 4 -cycle of weight at most 25 , and so would not be a counterexample to Theorem 4.
(SP4) No 10-vertex can have a twice weak neighbor.
Otherwise, by (SP2), G would have a 4-cycle of weight 25 and 5-cycle of weight 30 .
An 11-vertex is bad or an $11_{\mathrm{b}}$-vertex if all its neighbors are 5 -vertices. A 5 -vertex $v$ is special if it is incident with a 4 -face $v v_{1} x v_{2}$ and four 3-faces, and $v_{3}$ is an $11_{\mathrm{b}}$-vertex (so that $d\left(v_{2}\right)=d\left(v_{4}\right)=5$ ), and at least one of $v_{1}$ and $x$ is a 5 -vertex. A 5 -vertex is good or a $5_{\mathrm{g}}$-vertex if it is incident with a $6^{+}$-face, or with a 5 -face that is incident with at least one $6^{+}$-vertex, or with a 4 -face that is incident with at least two $6^{+}$-vertices, or with at least two $4^{+}$-faces. Clearly the three adjectives simplicial, special and good are mutually exclusive: no 5-vertex can satisfy more than one of them.

### 3.2. Discharging on $G$

We use the following discharging rules (see Fig. 2).
Rule 0. Let $f$ be a $4^{+}$-face.
(a) If $d(f) \geq 6$ then $f$ gives 1 to every incident 5-vertex.
(b) If $d(f)=5$ then $f$ gives to every incident 5-vertex:
(i) 1 if $f$ is incident with at least one $6^{+}$-vertex;
(ii) $\frac{4}{5}$ otherwise.
(c) If $d(f)=4$ then $f$ gives to every incident 5-vertex:
(i) 1 if $f$ is incident with at least two $6^{+}$-vertices;
(ii) $\frac{2}{3}$ if $f$ is incident with precisely one $6^{+}$-vertex, with the following exception. Suppose $f=v v_{1} v_{2} v_{3}$ where $d(v)=9$, $d\left(v_{3}\right)=5$ and $v_{1}$ and $v_{2}$ are special; then $f$ gives $\frac{5}{12}$ to $v_{1}, \frac{3}{4}$ to $v_{2}$, and either $\frac{5}{12}$ or $\frac{2}{3}$ to $v_{3}$ according as $v_{3}$ is or is not special;
(iii) $\frac{1}{2}$ otherwise.

## Rule 1.

(a) Each vertex $v$ of degree 7 sends $\frac{1}{3}$ to each strong 5-neighbor and $\frac{1}{6}$ to each semiweak 5-neighbor.
(b) Each vertex $v$ with degree 8,9 or $\geq 12$ first gives a "basic" contribution of $\rho(v)=\frac{\mu(v)}{d(v)}=\frac{d(v)-6}{d(v)}$ to each neighbor. Then each $6^{+}$-neighbor $v_{i}$ shares the charge just received equally between $v_{i-1}$ and $v_{i+1}$.
(c) Each 10-vertex or 11-vertex $v$ first gives a "basic" $\frac{2}{5}$ to each neighbor. Then each $6^{+}$-neighbor $v_{i}$ transfers $\frac{1}{10}$ of $v$ 's donation to each 5-vertex in $\left\{v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}\right\}$.
Rule 2. If $d(v)=11$ then $v$ gives a "supplementary" $\frac{1}{10}$ to each twice weak neighbor.
Rule 3. If $v$ is a simplicial 5-vertex adjacent to a bad 11-vertex $w$, say $w=v_{5}$, and if $d\left(v_{1}\right)=d\left(v_{4}\right)=5$, then $v$ gives back to $v_{5}$ the following:
(a) $\frac{1}{2}$ if both $v_{2}$ and $v_{3}$ have degree $\geq 9$;
(b) $\frac{1}{4}$ if at least one of $v_{2}, v_{3}$ has degree exactly 8 .

Rule 4. Suppose $v$ is a bad 11-vertex where $v_{1}$ and $v_{2}$ are special 5-vertices incident with a 4 -face $v_{1} v_{2} x y$ with $d(x)=5$ and $d(y) \leq 9$. Then each of $v_{1}, v_{2}$ gives back $\frac{1}{4}$ to $v$.
Rule 5. A good 5-vertex that is adjacent to a bad 11-vertex $w$ gives back $\frac{1}{2}$ to $w$.

### 3.3. Checking $\mu^{\prime}(x) \geq 0$ for $x \in V \cup F$

Case 1. $x=f \in F$.
If $d(f)=3$ then $\mu^{\prime}(f)=\mu(f)=2 \times 3-6=0$ since $f$ does not participate in discharging.
If $d(f)=4$ then $f$ gives at most 2 in total to its 5-vertices by R0, so $\mu^{\prime}(f) \geq 2 \times 4-6-2=0$.
If $d(f)=5$ then $f$ gives to its 5 -vertices either $5 \times \frac{4}{5}$ or at most $4 \times 1$, hence $\mu^{\prime}(f) \geq 2 \times 5-6-4=0$.
If $d(f) \geq 6$ then $\mu^{\prime}(f) \geq 2 d(f)-6-d(f) \times 1 \geq 0$ by R0.
In all cases, $\mu^{\prime}(f) \geq 0$. From now on we assume that $x=v \in V$.
Case 2. $d(v)=5$. Then $\mu(v)=d(v)-6=-1$, and $v$ does not give charge to any other vertex, except that, by R3-R5, $v$ may give back some charge to a bad 11-vertex $w$; note, however, that a bad 11-vertex gives $\frac{2}{5}+\frac{1}{10}=\frac{1}{2}$ to each of its neighbors by R1c and R2, and so $v$ does not "give back" more charge to $w$ than $w$ has already given to $v$.
Subcase 2.1. $v$ is simplicial. The amounts of charge received by $v$ from its neighbors by Rules 1 and 2 are summarized in Table 1.

Suppose Rule 3(a) applies to $v$, so that $v$ 's neighbors $v_{1}, \ldots, v_{5}$ have degrees $(5, \geq 9, \geq 9,5,11)$. Then $v$ is a semiweak neighbor of each of $v_{2}$ and $v_{3}$ and a weak neighbor of $v_{5}$, so that it receives at least $\frac{1}{2}$ from each of them by Table 1 , and gives back exactly $\frac{1}{2}$ to $v_{5}$ by Rule 3 (a) and nothing to $v_{2}$ or $v_{3}$. Hence $\mu^{\prime}(v) \geq-1+\frac{3}{2}-\frac{1}{2}=0$.

(a)

(b)




(c)
R1

(a)

(a)

(b)

(b)

(c)

R2


R5


Fig. 2. Discharging rules.
Suppose now that Rule 3(b) applies. By (SP3), $v$ 's neighbors have degrees ( $5,8, \geq 8,5,11$ ). Now $v$ receives at least $\frac{3}{8}$ from each of $v_{2}$ and $v_{3}$ and at least $\frac{1}{2}$ from $v_{5}$ by Table 1 , and gives back exactly $\frac{1}{4}$ to $v_{5}$ by Rule $3(\mathrm{~b})$ and nothing to $v_{2}$ or $v_{3}$. Hence $\mu^{\prime}(v) \geq-1+\frac{3}{8}+\frac{3}{8}+\frac{1}{2}-\frac{1}{4}=0$.

So we may assume that Rule 3 does not apply to $v$ at all, and the amount that $v$ receives from its neighbors is at least that given in Table 1. By (SP3), if three neighbors of $v$ have degree-sum at most 16 then the remaining two neighbors each have degree at least 10 and so each gives $v$ at least $\frac{1}{2}$ by Table 1 . We may assume this does not happen; in particular, $v$ has at most two 5-neighbors. If it has exactly two, then two of $v$ 's $6^{+}$-neighbors are semiweak donors and the third, say $w$, is either a strong or a weak donor, according as the two 5-neighbors are adjacent or not; for the present purpose we may assume $w$ is a weak donor to $v$. If $v$ has exactly one 5 -neighbor then $v$ has two semiweak donors and two strong donors. If $v$ has no 5-neighbors then it has five strong donors.

By these remarks, the degree-sequence of $v$ 's neighbors, in nondecreasing order, must be one of the following. In each case, we use Table 1 to check that $v$ receives at least 1 in total from its neighbors.
$(5,5,7, \geq 9, \geq 9): v$ receives at least $0+\frac{1}{2}+\frac{1}{2}=1$ (if its weak donor has degree 7 ) or $\frac{1}{6}+\frac{1}{3}+\frac{1}{2}=1$ (if its weak donor has degree 9 ).
$(5,5, \geq 8, \geq 8, \geq 8): v$ receives at least $\frac{1}{4}+\frac{3}{8}+\frac{3}{8}=1$.
$(5,6,6, \geq 9, \geq 9): v$ receives at least $\frac{1}{2}+\frac{1}{2}=1$.
$(5,6, \geq 7, \geq 8, \geq 8): v$ receives at least $\frac{1}{3}+\frac{3}{8}+\frac{3}{8}>1$ (if a strong donor has degree 7 ) or $\frac{1}{6}+\frac{1}{2}+\frac{3}{8}>1$ (if a strong donor has degree $\geq 8$ ).
( $5, \geq 7, \geq 7, \geq 7, \geq 7): v$ receives at least $\frac{1}{6}+\frac{1}{6}+\frac{1}{3}+\frac{1}{3}=1$.
$(6,6,6, \geq 8, \geq 8): v$ receives at least $\frac{1}{2}+\frac{1}{2}=1$.
$(\geq 6, \geq 6, \geq 7, \geq 7, \geq 7): v$ receives at least $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.
Subcase 2.2. $v$ is special. Suppose $v$ is surrounded by faces $f=v v_{1} x v_{2}, v v_{2} v_{3}, v v_{3} v_{4}, v v_{4} v_{5}$, and $v v_{5} v_{1}$, where $v_{3}$ is a bad 11-vertex (so that $d\left(v_{2}\right)=5$ ), and at least one of $v_{1}$ and $x$ is a 5 -vertex; then the other of these vertices is a $9^{-}$-vertex, by (SP2). Note that $v$ receives $\frac{2}{5}+\frac{1}{10}=\frac{1}{2}$ from $v_{3}$ by R1c and R2, and may give back $\frac{1}{4}$ to $v_{3}$ by R4, so that $v$ retains at least $\frac{1}{4}$ from $v_{3}$.

If $\max \left\{d\left(v_{1}\right), d(x)\right\} \leq 8$, then $d\left(v_{5}\right) \geq 8$, for otherwise we have a 4 -cycle of weight at most 23 and 5 -cycle of weight at most 30 and $G$ is not a counterexample to Theorem 4 , which is a contradiction. Hence $v_{5}$ gives at least $\frac{1}{4}$ to $v$ by Table 1 . Also $v$ receives at least $\frac{1}{2}$ from $f$ by R0c and retains at least $\frac{1}{4}$ from $v_{3}$, as remarked above. So $\mu^{\prime}(v) \geq 0$, as desired.

Now suppose $\max \left\{d\left(v_{1}\right), d(x)\right\}=9$. If $d\left(v_{1}\right)=9$, then $v$ receives at least $\frac{1}{3}$ from $v_{1}$ by R1b and $\frac{5}{12}$ from $f$ by the exception to ROc, a total of at least $\frac{3}{4}$; otherwise, if $d(x)=9, v$ receives $\frac{3}{4}$ from $f$ by the exception to R0c. In each case, adding in the $\frac{1}{4}$ retained from $v_{3}$ shows that $\mu^{\prime}(v) \geq 0$.
Subcase 2.3. $v$ is good. Then $v$ receives 1 by R0a from a $6^{+}$-face, or by R0b from a 5 -face that is incident with at least one $6^{+}$-vertex, or by R0c from a 4 -face that is incident with at least two $6^{+}$-vertices, or else $v$ receives at least two donations of at least $\frac{1}{2}$ from 4- or 5-faces by R0b and R0c. Thus $\mu^{\prime}(v) \geq-1+1=-1+\frac{1}{2}+\frac{1}{2}=0$, as desired.

Table 1
Donations to a 5-vertex by Rules 1 and 2, using (SP4).

| Donor: | Strong | Semiweak | Weak |
| :--- | :--- | :--- | :--- |
| $7:$ | $1 / 3$ | $1 / 6$ | 0 |
| $8:$ | $1 / 2$ | $3 / 8$ | $1 / 4$ |
| $9:$ | $2 / 3$ | $1 / 2$ | $1 / 3$ |
| $10 \vee 11:$ | $\geq 3 / 5$ | $\geq 1 / 2$ | $\geq 1 / 2$ |
| $\geq 12:$ | $\geq 1$ | $\geq 3 / 4$ | $\geq 1 / 2$ |

So from now on we will assume that $v$ is neither simplicial nor special nor good, which implies that $v$ gives back no charge to bad 11 -vertices by Rules 3,4 and 5 . It also implies that $v$ is incident with exactly one $4^{+}$-face $f$, which is a 5 -face incident with five 5 -vertices or a 4 -face incident with at most one $6^{+}$-vertex.
Subcase 2.4. $d(f)=5$, say $f=v_{1} v v_{2} x y$, where all five vertices have degree 5. Thus $G$ is not a counterexample to Theorem 4(ii) or (iii), and so must be a counterexample to Theorem $4(\mathrm{i})$. Note that at least one of $v_{3}$ and $v_{4}$ is an $8^{+}$-vertex, because otherwise the 4 -cycle $v v_{2} v_{3} v_{4}$ has weight at most 24 . This vertex gives at least $\frac{1}{4}$ to $v$ by Table 1 , and $v$ receives $\frac{4}{5}$ from $f$, and so $\mu^{\prime}(v) \geq-1+\frac{4}{5}+\frac{1}{4}>0$.
Subcase 2.5. $d(f)=4$, say $f=v_{1} v v_{2} x$, where at most one vertex has degree $\geq 6$, and this vertex has degree at most 9 by (SP2). Here, the boundary of $f$ is a 4 -cycle of weight at most $3 \times 5+9$; thus $G$ must be a counterexample to Theorem 4(ii).

Now we have two cases to consider. First, suppose $d\left(v_{1}\right)=d(v)=d\left(v_{2}\right)=d(x)=5$. Note that $v_{3}$ and $v_{5}$ are $11^{+}$vertices, for otherwise we have a 5-cycle of weight at most 30 and $G$ is not a counterexample to Theorem 4 (ii). So $\mu^{\prime}(v) \geq$ $-1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>0$ by R0c and Table 1 .

So we may suppose by symmetry that $d\left(v_{2}\right)=5$ and either $6 \leq d\left(v_{1}\right) \leq 9$ or $6 \leq d(x) \leq 9$. Note that $v_{3}$ and $v_{5}$ are $7^{+}$-vertices, for otherwise we have a 5 -cycle of weight at most 30 .

If $d\left(v_{4}\right) \geq 6$, then $v_{3}$ and $v_{5}$ are at least semiweak donors to $v$ and $\mu^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{6}+\frac{1}{6}=0$ by R0c and Table 1 . So we may suppose that $d\left(v_{4}\right)=5$, which means that $d\left(v_{3}\right)+d\left(v_{5}\right) \geq 16$ since otherwise the 5-cycle $v v_{2} v_{3} v_{4} v_{5}$ has weight at most 30. Now $v_{3}$ and $v_{5}$ are at least weak donors to $v$. If $d\left(v_{3}\right) \geq 9$ or $d\left(v_{5}\right) \geq 9$, then $\mu^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{3}=0$; otherwise $d\left(v_{3}\right)=d\left(v_{5}\right)=8$, and $\mu^{\prime}(v) \geq-1+\frac{2}{3}+\frac{1}{4}+\frac{1}{4}>0$.
Case 3. $d(v) \notin\{5,11\}$. If $v$ is the vertex $v_{i}$ in the last sentence of Rule $1(\mathrm{~b})$ or $1(\mathrm{c})$, then $v$ may pass on to 5 -neighbors some or all of the charge that $v$ has received from a $6^{+}$-vertex $w$. But since $v$ never passes on more than it receives from $w$, we may ignore these two sentences, provided that we also ignore any charge that $v$ receives from $6^{+}$-vertices.
Subcase 3.1. $d(v)=6$. Then $\mu(v)=d(v)-6=0$, and $\mu^{\prime}(v)=0$ also, since $v$ does not participate in discharging.
Subcase 3.2. $d(v)=7$. Then $\mu(v)=d(v)-6=1$. By R1a, the amount given out by $v$ does not exceed $\frac{1}{3}$ times the number of 5-neighbors of $v$. Also, $v$ does not give more than $\frac{1}{3}$ times the number of $6^{+}$-neighbors of $v$; for, if each 5-neighbor $v_{i}$ that receives $\frac{1}{3}$ from $v$ transfers $\frac{1}{6}$ to each of $v_{i-1}$ and $v_{i+1}$, and each $v_{i}$ that receives $\frac{1}{6}$ from $v$ transfers it to whichever of $v_{i-1}$ and $v_{i+1}$ is a $6^{+}$-vertex, then all the charge given by $v$ now resides with its $6^{+}$-neighbors, and each has received at most $\frac{1}{3}$. But a 7 -vertex must have either at most three 5-neighbors or at most three $6^{+}$-neighbors, and so $\mu^{\prime}(v) \geq \mu(v)-3 \times \frac{1}{3}=0$.
Subcase 3.3. $8 \leq d(v) \leq 10$ or $d(v) \geq 12$. By R1b and R1c, $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{d(v)-6}{d(v)}=0$.
Case 4. $d(v)=11$. Then $\mu(v)=d(v)-6=5$. If $v$ has a $6^{+}$-neighbor $v_{i}$ then none of $v_{i-2}, \ldots, v_{i+2}$ is twice weak and so none of them receives a supplementary $\frac{1}{10}$ from $v$ by Rule 2 ; thus $\mu^{\prime}(v) \geq 5-11 \times \frac{2}{5}-6 \times \frac{1}{10}=0$. So we may assume that all neighbors of $v$ have degree 5, i.e. $v$ is bad, and $v$ gives $\frac{2}{5}+\frac{1}{10}=\frac{1}{2}$ to each neighbor by R1c and R2. Thus $\mu^{\prime}(v) \geq-\frac{1}{2}$. We must find an extra $\frac{1}{2}$ for $v$ in order to show that $\mu^{\prime}(v) \geq 0$.

First suppose that some neighbor, say $v_{1}$, is not simplicial. If $v_{1}$ is good, then $v_{1}$ gives back $\frac{1}{2}$ to $v$ by R5, and so $\mu^{\prime}(v) \geq 0$ as desired. Thus we may assume that $v_{1}$ is not good. This means that $v_{1}$ is incident with exactly one $4^{+}$-face $f$, which is either a 5 -face incident with five 5 -vertices or a 4 -face incident with at most one $6^{+}$-vertex. However, if $f$ is a 5 -face incident with five 5 -vertices then $G$ cannot be a counterexample to Theorem 4(ii) or (iii), and it cannot be a counterexample to Theorem 4(i) either as we have a 4 -cycle of weight $5+5+5+11=26$. (Recall that $v$ is simplicial, by (SP2).)

This contradiction shows that $f$ is a 4 -face, say $f=v_{1} x y z$, which is incident with at most one $6^{+}$-vertex, which must have degree at most 9 by (SP2). Thus the boundary of $f$ is a 4 -cycle with weight at most 24 . This means that $G$ cannot now be a counterexample to Theorem 4(i) or (iii), and so it must be a counterexample to Theorem 4(ii).

If $\{x, z\} \cap\left\{v_{2}, v_{11}\right\}=\emptyset$ then we have a 5 -cycle of weight at most $24+5<30$, and $G$ is not a counterexample to Theorem 4(ii), which is a contradiction. So by symmetry we can assume that $x=v_{2}$, which means that both $v_{1}$ and $v_{2}$ are special. Thus $v$ receives $\frac{1}{4}$ from each of them by R4, and $\mu^{\prime}(v) \geq 0$ as desired.

From now on we can assume that all neighbors of $v$ are simplicial. Each edge $v_{i} v_{i+1}$ lies in two triangles, say $v_{i} v_{i+1} v$ and $v_{i} v_{i+1} w_{i}$, and $v_{i} w_{i-1} w_{i}$ is also a triangle since $v_{i}$ is simplicial. For each $i, d\left(w_{i-1}\right)+d\left(w_{i}\right) \geq 16$ by (SP3). If $d\left(w_{i-1}\right) \geq 9$ and $d\left(w_{i}\right) \geq 9$ for some $i$, then $v_{i}$ gives back $\frac{1}{2}$ to $v$ by Rule $3(\mathrm{a})$, and $\mu^{\prime}(v) \geq 0$. If $d\left(w_{i}\right)=8$ for some $i$, then by Rule 3 (b) $v$
receives $\frac{1}{4}$ from each of $v_{i}$ and $v_{i+1}$, and again $\mu^{\prime}(v) \geq 0$. So we may assume that, for each $i$, one of $d\left(w_{i-1}\right)$ and $d\left(w_{i}\right)$ is at most 7 and the other is at least 9 . But this cannot hold for all $i$ modulo 11 , since 11 is odd.

We have shown that $\mu^{\prime}(x) \geq 0$ whenever $x \in V \cup F$. This contradiction with (1) completes the proof of Theorem 4.

## Acknowledgments

The first author was supported by grants 12-01-00631 of the Russian Foundation for Basic Research and NSh-1939.2014.1 of the President of Russia's Grants for Leading Scientific Schools of the Russian Federation. The second author was supported by grants 12-01-00448 and 12-01-98510 of the Russian Foundation for Basic Research.

## References

[1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in a planar graph (Russian), Matem. Zametki 46 (5) (1989) 9-12.
[2] O.V. Borodin, Structural properties of plane maps with minimum degree 5, Math. Nachr. 18 (1992) 109-117.
[3] O.V. Borodin, Structural theorem on plane graphs with application to the entire coloring, J. Graph Theory 23 (3) (1996) 233-239.
[4] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (4) (2013) 517-539.
[5] O.V. Borodin, A.O. Ivanova, Describing ( $d-2$ )-stars at $d$-vertices, $d \leq 5$ in normal plane maps, Discrete Math. 313 (17) (2013) 1700-1709.
[6] O.V. Borodin, A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (17) (2013) 1710-1714.
[7] O.V. Borodin, A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (23) (2013) $2841-2847$.
[8] O.V. Borodin, A.O. Ivanova, Every 3-polytope with minimum degree 5 has a 7 -cycle with maximum degree at most 15 (Russian), submitted for publication.
[9] O.V. Borodin, D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (2) (1998) 159-164.
[10] O.V. Borodin, A.O. Ivanova, T.R. Jensen, 5-stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (3) (2014) 539-546.
[11] O.V. Borodin, A.O. Ivanova, T.R. Jensen, A.V. Kostochka, M.P. Yancey, Describing 3-paths in normal plane maps, Discrete Math. 313 (23) (2013) 2702-2711.
[12] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Every 3-polytope with minimum degree 5 has a 6 -cycle with maximum degree at most 11, Discrete Math. 315-316 (2014) 128-134.
[13] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47-61.
[14] B. Ferencová, T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661-1675.
[15] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225-236.
[16] B. Grünbaum, Polytopal graphs, in: D.R. Fulkerson (Ed.), MAA Studies in Mathematics, in: Studies in Graph Theory, 12, 1975, pp. 201-224.
[17] S. Jendrol', T. Madaras, On light subgraphs in plane graphs with minimum degree five, Discuss. Math. Graph Theory 16 (1996) $207-217$.
[18] S. Jendrol', T. Madaras, R. Soták, Z. Tuza, On light cycles in plane triangulations, Discrete Math. 197-198 (1999) 453-467.
[19] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in the plane and in the projective plane-a survey, Preprint, Institute of Algebra MATH-AL-2-2001, TU Dresden.
[20] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in the plane-a survey, Discrete Math. 313 (2013) 406-421.
[21] A. Kotzig, From the theory of Eulerian polyhedra (Russian), Mat. Čas. (Math. Slovaca) 13 (1963) 20-31.
[22] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[23] T. Madaras, R. Škrekovski, H.-J. Voss, The 7-cycle $C_{7}$ is light in the family of planar graphs with minimum degree 5, Discrete Math. 307 (2007) 1430-1435.
[24] T. Madaras, R. Soták, The 10-cycle $C_{10}$ is light in the family of all plane triangulations with minimum degree five, Tatra Mt. Math. Publ. 18 (1999) 35-56.
[25] B. Mohar, R. Škrekovski, H.-J. Voss, Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) $261-295$.
[26] M.D. Plummer, On the cyclic connectivity of planar graph, in: Graph Theory and Application, Springer, Berlin, 1972, pp. 235-242.
[27] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. math. Wiss. (Geometrie) 3AB (12) (1922) 1-139.
[28] P. Wernicke, Über den Kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.


[^0]:    * Corresponding author.

    E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), douglas.woodall@nottingham.ac.uk (D.R. Woodall).

