Lower bounds on the number of edges in edge-chromatic-critical graphs with fixed maximum degrees

Xuechao Li ${ }^{\mathrm{a}, *}$, Bing Wei ${ }^{\text {b }}$
${ }^{\text {a }}$ The University of Georgia, Athens, GA 30602, United States
${ }^{\mathrm{b}}$ Department of Mathematics, The University of Mississippi, University, MS 38677, United States

ARTICLE INFO

Article history:

Received 20 December 2013
Received in revised form 16 June 2014
Accepted 18 June 2014
Available online 4 July 2014

Keywords:
Edge chromatic number
Critical graph

Abstract

In this article, we provide new lower bounds for the size of edge chromatic critical graphs with maximum degrees of $10,11,12,13,14$, furthermore we characterize their class one properties.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let V and E be the vertex set and edge set of a graph G, while $|V|$ and $|E|$ represent the cardinality of V and E of G, respectively. For a vertex x, set $N(x)=\{v: x v \in E(G)\}$ and $d(x)=|N(x)|$, the degree of x in G. We use Δ and δ to denote the maximum and the minimum degrees of G, respectively. For a vertex set S of G, set $N(S)=\cup_{x \in S} N(x)$. A k-edge-coloring of a graph G is a function $\phi: E(G) \mapsto\{1, \ldots, k\}$ such that any two adjacent edges receive different colors. The edge chromatic number, denoted by $\chi_{e}(G)$, of a graph G is the smallest integer k such that G has a k-edge-coloring. Vizing's Theorem [13] states that the edge chromatic number of a simple graph G is either Δ or $\Delta+1$. A graph G is class one if $\chi_{e}(G)=\Delta$ and is class two otherwise. A class two graph G is critical if $\chi_{e}(G-e)<\chi_{e}(G)$ for each edge e of G. A critical graph G is Δ-critical if it has maximum degree Δ.

The following conjecture was proposed by Vizing [13] concerning the sizes of critical graphs.
Conjecture 1.1. If $G=(V, E)$ is a critical simple graph, then $|E| \geq \frac{1}{2}(|V|(\Delta-1)+3)$.
Some best known lower bounds of size of critical graphs are listed below [7,5,16,15,10]. Let G be a Δ-critical graph with average degree q, where $q=\frac{\sum_{v \in V(G)} d(v)}{|V|}$.

$$
\begin{array}{lllll}
\text { If } \Delta=7, & q \geq 6 . & \text { If } \Delta=8, & q \geq \frac{20}{3} . & \text { If } \Delta=9, \\
\text { If } \Delta=10, & q \geq 8 . & \text { If } \Delta=11, & q \geq 8.6 . & \text { If } \Delta=12, \\
\text { If } 8 \leq \Delta \leq 17, & q \geq \frac{4}{7}(\Delta+3) . & \text { If } \Delta \geq 8, & q \geq \frac{2}{3}(\Delta+1) . &
\end{array}
$$

We improve some of the earlier results in the following theorem: main theorem.

[^0]Theorem 1.2. Let G be a Δ-critical graph with $\Delta \geq 8$. Then $|E(G)| \geq \frac{|V(G)|}{2} q$ where $q=8.25,9, \frac{126}{13}, \frac{134}{13}, \frac{142}{13}$ for $\Delta=10,11$, 12, 13, 14 respectively.

We show some lemmas in Section 2, and then provide our proof of the main theorem in Section 3.

2. Adjacency lemmas

Throughout this paper, G is a Δ-critical graph with $\Delta \geq 10$. A k-vertex (or, ($\leq k$)-vertex, ($\geq k$)-vertex) is a vertex of degree k (or $\leq k, \geq k$, respectively). A vertex w is a k-neighbor of x if $w \in N(x)$ and $d(w)=k$. Let V_{k} (or $V_{\leq k}$) be the set of vertices with degree k (or $\leq k$). Let $d_{\leq k}(x)$ denote the number of $(\leq k)$-vertices adjacent to x. Similarly define $d_{\geq k}(x)$. Let ϕ be the Δ-edge coloring of $G-x w, \phi(v)$ be the set of colors of the edges adjacent to the vertex v under edge coloring ϕ. A vertex v sees color j if v is adjacent to an edge colored by j. Denote by $P_{j, k}(v)_{\phi}$ the (j, k)-bi-colored path starting at v under edge coloring ϕ, or by $P_{j, k}(v)$ if there is no confusion. The following one belongs to Vizing [14], which will be abbreviated as VAL in this article.
VAL: If $x w$ is an edge of a Δ-critical graph G, then x has at least $(\Delta-d(w)+1) \Delta$-neighbors. Any vertex of G has at least two Δ-neighbors.
Adjacency Condition [17,11]: Let G be Δ-critical, $x w \in E(G)$ and $d(x)+d(w)=\Delta+2$. The following hold: (1) every vertex of $N(x, w) \backslash\{x, w\}$ is a Δ-vertex; (2) every vertex of $N(N(x, w)) \backslash\{x, w\}$ is of degree at least $\Delta-1$; and (3) if $d(x), d(w)<\Delta$, then every vertex of $N(N(x, w)) \backslash\{x, w\}$ is a Δ-vertex.

Through this paper, without loss of generality, under coloring ϕ, edges incident with x in $G-x w$ are colored by $1,2, \ldots$, $d-1$, while those incident with w are colored by $\Delta-k+2, \ldots \Delta$ where $d=d(x), k=d(w)$.

Let C_{1} be the set of colors present at only one of x, w and C_{2} be the set of colors present at both. Further let C_{11} be the set of colors present only at x, and C_{12} be the set of colors present only at w. We may assume that $C_{1}=C_{11} \cup C_{12}=\{1, \ldots, \Delta-k+$ $1\} \cup\{d, d+1, \ldots, \Delta\}$ and $C_{2}=\{\Delta-k+2, \ldots, d-1\}$, where $C_{2}=\emptyset$ if $d+k=\Delta+2 .\left|C_{1}\right|=2 \Delta-d-k+2,\left|C_{2}\right|=d+k-$ $\Delta-2$. Let $C_{v}=\{i$: vertex v misses color $i\}$.

Lemma 2.1 ([8]). Let $x w$ be an edge of G with $d(x)+d(w)=\Delta+2$ and $d(x), d(w)<\Delta$. Then every vertex of $N(N(N(x, w))) \backslash$ $\{x, w, N(x, w), N(N(x, w))\}$ (assume that it is not empty) is adjacent to all Δ-vertices.

In order to give improved adjacency properties on the i-vertex, we provide some claims. First two claims are equivalent to Facts 1 and 2 in [9], and for the purpose of convenience of uniform discussion, we re-write them as Claims A and B.

Claim A. For each neighbor w_{j} of w in $G-x w$ where $\phi\left(w w_{j}\right)=j$ present only at w, then w_{j} must see each color in C_{1}.
Claim A will be often used in the discussion through this paper without notifying.
Claim B. For each neighbor x^{i} of x where $\phi\left(x x^{i}\right)=i$ present only at x, then x^{i} must see each color in C_{1}. Note that x has at least $\Delta-k+1$ such x^{i}.

Due to Claim B, we call a swapping (i, j) a nice swapping if it does not change the set of colors of edges incident with x and w in $G-x w$.

Claim C. For a neighbor w_{b} of w where $b \in C_{2}$, if one of such w_{b}^{\prime} s misses a color in C_{1}, then we could assume that one of those $w_{b}^{\prime} s$ misses color 1 . Note that we can only assure there is one such vertex w_{b}.

We assume, without loss of generality, that w_{b} misses Δ but sees 1 , then we swap color 1 with the missing color along the path starting at w_{b}, by Claim B, this swapping is a nice one because it does not affect the colors of edges that are incident with x, w. So w_{b} misses color 1 .

Claim D which follows is similar to Fact 4 in [9] but it is slightly stronger. So the proof is provided in the appendix.
Claim D. Let x and w be adjacent in Δ-critical graph G with $d(x)=d, d(w)=k$. $G-x w$ has a Δ-edge coloring ϕ. Let $x x^{a} y$ be a path in $G-x w$ where $\phi\left(x x^{a}\right)=a \in C_{11}$ and $y \neq w$ such that $\phi\left(x^{a} y\right) \in C_{1}$. Then y must see each color in C_{1}, that is, $d(y) \geq$ $2 \Delta-d-k+2$. Note that there are $2 \Delta-d-k+1$ such $y^{\prime} s$, and some of them may be adjacent to vertices in $N(x)$.

Lemma 2.2. For a Δ-edge coloring ϕ of $G-x w$ with $d(x)=d, d(w)=k$ (see Fig. 1), let $x x^{\alpha} y$ and $x x^{r} u$ be paths that start at x, where $\phi\left(x x^{\alpha}\right)=\alpha$ present only at x and $\phi\left(x x^{r}\right)=r$ is a color in C_{2}. If there is a vertex $w_{j} \in N(w)$, where $\phi\left(w w_{j}\right)=j \in C_{12}$, and w_{j} misses $r \in C_{2}$, or if there is a $w_{r} \in N(w)$ with $\phi\left(w w_{r}\right)=r \in C_{2}$, and w_{r} misses a color in C_{1}, then we have the following:
(i) x^{α} must see $r \in C_{2}$. (ii) y sees each color in C_{1} and r; further, if $\phi\left(x^{\alpha} y\right)=r \in C_{2}$, then y sees each color in C_{1} and color $r^{\prime}(\neq r)$ if there is a $w_{j^{\prime}} \in N(w)\left(j^{\prime} \in C_{12}\right)$ missing $r^{\prime} \in C_{2}$, or there is a $w_{r^{\prime}} \in N(w)$ with $\phi\left(w w_{r}^{\prime}\right)=r^{\prime}$ and $w_{r^{\prime}}$ misses a color in C_{1}. (iii) x^{r} must see each color in C_{1} and also color r^{\prime} as described in (ii). (iv) u sees each color in C_{1} and also sees r^{\prime} as described in (ii).

Proof. The proof consists of two parts: Part I and Part II. Part I: If there is a vertex $w_{j} \in N(w)$, where $\phi\left(w w_{j}\right)=j \in C_{12}$, and w_{j} misses a color $r \in C_{2}$, then our results hold. Part II: If there is a $w_{r} \in N(w)$ with $\phi\left(w w_{r}\right)=r \in C_{2}$, and w_{r} misses a color in C_{1}, then our results hold.

Fig. 1. Δ-edge coloring ϕ of $G-x w$ exhibited at $N(x) \cup N(w)$.

Proof of Part I. Note that $w_{j}(j \geq d)$ must see each color in C_{1}. Initially, we form two observations.
Observation 1. $P_{\alpha, r}\left(w_{j}\right)$ must end at w where $\alpha\left(\in C_{11}\right)$ present only at x.
Otherwise, we assume that $P_{\alpha, r}\left(w_{j}\right)$ does not end at w, so we swap (α, r) along the path starting at w_{j} because w_{j} sees α by Claim A. And note that the swapping does not affect colors of edges that are incident with x, so we recolor $w w_{j}$, $x w$ with α, j respectively, which leads us a Δ-edge coloring of G, a contradiction.

Observation 2. $P_{\beta, r}\left(w_{j}\right)$ must end at x where $\beta\left(\in C_{12}\right)$ present only at w.
Otherwise, swapping (β, r) along $P_{\beta, r}\left(w_{j}\right)$ does not affect colors of edges incident with x and $w\left(P_{\beta, r}\left(w_{j}\right)\right.$ may pass though $w)$. Under the current coloring, w_{j} sees r but not β. Note that β present only at w, and w_{j} should see β; thus we have a contradiction.

Now we are ready to show our results. Without loss of generality, we assume that w_{Δ} misses a color $r \in C_{2}$.
Proof of (i). We claim that χ^{α} sees r.
By Claim A χ^{α} sees each color in $C_{1} . \chi^{\alpha}$ also sees r if χ^{α} is on one of the paths $P_{\alpha, r}\left(w_{\Delta}\right)$ and $P_{\beta, r}\left(w_{\Delta}\right)$. As a result, we assume that x^{α} is not on either one of them. Hence a nice swapping (β, r) along the path starting at x^{α} shows that x^{α} misses β, which is a contradiction.

Proof of (ii). We claim that y sees each color in C_{1} and r.
(ii-1) We assume that $\phi\left(x^{\alpha} y\right)(=s) \in C_{1}$.
Through Claims A and D, y sees all colors in C_{1}. As a result, we only need to show that y sees r. If $s \in C_{11}$, we consider the $P_{\beta, r}(y)(\beta \neq \Delta)$. By Observation 2, $P_{\beta, r}\left(w_{\Delta}\right)$ ends at x, so $P_{\beta, r}(y)$ cannot end at x because two (β, r) paths cannot share a common ending edge. So a nice swapping (β, r) along $P_{\beta, r}(y)$ shows us that y sees r but not β, a contradiction. If $s \in C_{12}$, we consider the $P_{\alpha, r}(y)$ where α present only at x. By Observation 1, $P_{\alpha, r}\left(w_{\Delta}\right)$ ends at w, so the path $P_{\alpha, r}(y)$ cannot end at w. Thus, a nice swapping (α, r) along $P_{\alpha, r}(y)$ providing us that y sees r but not α, a contradiction.
(ii-2) We assume that $\phi\left(x^{\alpha} y\right)=r \in C_{2}$ which is missed by w_{Δ}.
Note that first we need to show y sees each color in C_{1}.
(ii-2-1) We claim that y must see each color $\beta(\beta \neq \Delta)$ present only at w.
Otherwise, we consider $P_{r, \beta}(y)$. Since $P_{\beta, r}\left(w_{\Delta}\right)$ ends at x through Observation 2 , so $P_{r, \beta}(y)$ does not end at x. A nice swapping (r, β) along $P_{r, \beta}(y)$ gives us that the edge $\chi^{\alpha} y$ is colored by β which brings us to the case (ii- 1).
(ii-2-2) We claim that y sees each color present only at x.
Otherwise, y misses a color $a \in C_{11}$, then a nice swapping (β, a) along $P_{\beta, a}(y)$ causes y to miss β, which is a contradiction.
(ii-2-3) We claim that y sees Δ.
Otherwise, a nice swapping (α, Δ) along $P_{\alpha, \beta}(y)$ causes y to miss α, which contradicts (ii-2-2).
(ii-2-4) We claim that y sees r^{\prime} if there is a $w_{j^{\prime}} \in N(w)\left(j^{\prime} \geq d\right)$ missing a color $r^{\prime} \in C_{2}$.
Note that $P_{\beta, r^{\prime}}\left(w_{\Delta}\right)$ ends at x. If $r^{\prime} \in C_{y}, P_{\beta, r^{\prime}}(y)$ cannot end at x. A nice swapping (β, r^{\prime}) along $P_{\beta, r^{\prime}}(y)$ causes y to see r^{\prime}, but not β, which contradicts (ii-2-1).

Proof of (iii). Consider that $\phi\left(x x^{r}\right)=r \in C_{2}$ where $r \in C_{w_{\Delta}}$. We show that x^{r} sees each color in C_{1} and $r^{\prime} \in C_{2}\left(r^{\prime} \neq r\right)$ if there is any $r^{\prime} \in C_{2} \cap C_{w_{j^{\prime}}}$ where $w_{j}^{\prime} \in N(w), j^{\prime} \in C_{2}$.

First, x^{r} sees each $\beta(\neq \Delta)$ in C_{12} through Observation 2. Second, x^{r} sees each $\alpha \in C_{11}$ through Claim A and nice swapping (β, α) argument. Third, x^{r} sees Δ by nice swapping (α, Δ) argument. Last, x^{r} sees $r^{\prime} \in C_{2}$ other than r if there is any, where $r^{\prime} \in C_{w_{j}}$ and $j \in C_{12}$. Otherwise, by Observation $2, x^{r}$ is not on the path $P_{\beta, r^{\prime}}\left(w_{j}\right)$, so a nice swapping (β, r^{\prime}) starting at χ^{r} results in a contradiction.
(iv) We claim that u sees each color in C_{1} and color r, where $u \in N\left(x^{r}\right)$.
(iv-1) We assume that $\phi\left(x^{r} u\right)$ present at w, for example β.
Using Observation $2, u$ sees r because $x^{r} u$ must be on the path $P_{\beta, r}\left(w_{\Delta}\right)$.

First, u sees color $\beta^{\prime} \in C_{12}\left(\beta^{\prime} \neq \beta\right)$. Otherwise, by Observation $2, u$ is not on the path $P_{\beta^{\prime}, r}\left(w_{\Delta}\right)$, so a nice swapping $\left(r, \beta^{\prime}\right)$ along $P_{r, \beta^{\prime}}(u)$ causes u to see β^{\prime} but not r, a contradiction to that u must see r. Second, u sees each color $a \in C_{11}$. Otherwise, a nice swapping $\left(\beta^{\prime}, a\right)$ along $P_{\beta^{\prime}, a}(u)$ will result in u missing a color $\beta^{\prime} \in C_{12}$, which is a contradiction. Third, u sees $r^{\prime} \in C_{2}$ which is described in proof of (iii). Otherwise, apply Observation 2 and swapping argument similar to that in the proof of (iii), we will have a contradiction.
(iv-2) We assume that $\phi\left(x^{r} u\right)=\alpha \in C_{11}$.
Applying Observation 1 and swapping argument similar to (iv-1), we have that u sees each color in C_{1} and color $r^{\prime} \in C_{w_{\Delta}}$. The proof is omitted here.
(iv-3) We assume that $\phi\left(x^{r} u\right)=r^{\prime} \in C_{2}$ missed by $w_{j}(j \geq d)$ which is described in (ii).
First, u sees each color $a \in C_{11}$. Otherwise, u is not on the path $P_{a, r^{\prime}}\left(w_{j}\right)$ through Observation 1 . On the other hand, a nice swapping (r^{\prime}, a) along the path starting at u causes that edge $x^{r} u$ is colored by a which is the case of (ii). That is, u sees all colors in C_{1} and all colors missed by w_{j}, which is a contradiction. Second, u sees each color $\beta \in C_{12}$. Otherwise, a nice swapping (a, β) results u to miss color $a \in C_{11}$, which is a contradiction. Third, u sees each color $r^{\prime \prime} \in C_{2}(\neq r)$ missed by $w_{j^{\prime \prime}}$ where $w_{j^{\prime \prime}} \in N(w)$ with $j^{\prime \prime} \geq d$ if one exists. Otherwise, by Observation 2 , a nice swapping ($\beta, r^{\prime \prime}$) along the path starts at u would result in a contradiction.
Proof of Part II. Recall that if $\phi\left(x^{\alpha} y\right) \in C_{1}$, through Claims B and D, y must see each color in C_{1}. The proof consists of two parts; Part A: w_{r} misses a color in C_{11}, and Part B: w_{r} misses a color in C_{12}.
Proof of Part A. We assume that w_{r} misses a color $a \in C_{11}$.
Case (A-1) $a \neq \alpha$.
We re-color $w w_{r}$ by a, and denote the current coloring by ϕ^{*}. Now $r \in C_{11}$. Hence, (i) χ^{α} sees r and (ii) y sees r. Further, (iii) x^{r} sees all color in C_{1} except a. Now we show that x^{r} must see a. Otherwise, a nice ($\left.\Delta, a\right)$ swapping along the path that starts at χ^{r} which causes x^{r} to miss Δ, a contradiction. Next, consider $\phi\left(x^{\alpha} y\right)=r$. Under coloring ϕ^{*}, r present only at x, so y sees all colors in C_{1} except a. Now uncolor edge $w w_{r}$ and color it with its original color r. If y misses a, we could do a nice (Δ, a) swapping along the path that starts at y, which causes y to miss Δ, which is a contradiction. Last, we consider $\phi\left(x^{r} u\right) \in C_{1}$. Under coloring ϕ^{*}, r present only at x. So x^{r} and u play the same roles as that of χ^{α} and y earlier. Hence, u sees all colors in C_{2}. Now we show that x^{r} sees r^{\prime} if there exists a $w_{r^{\prime}} \in N(w)$ with $r^{\prime} \in C_{2}$ and $w_{r^{\prime}}$ missing a color present only at x, say, s. We recolor $w w_{r^{\prime}}$ by s. Then r^{\prime} present only at x under current coloring. If x^{r} misses r^{\prime}, a nice swapping (Δ, r^{\prime}) along the path starting at x^{r} causes χ^{r} to miss Δ. Now we re-color $w w_{r^{\prime}}$ by its original color r^{\prime}. But then χ^{r} misses Δ which contradicts the previous result that x^{r} sees Δ. Finally, consider $\phi\left(x^{r} u\right)=r^{\prime} \in C_{2}$, and we show that u sees each color in C_{1} and r. We re-color $w w_{r}$ by a, then r present only at x, and x^{r} and u play the same roles as that of x^{α} and y before, respectively. So the results hold for x^{r} and u. Case (A-2) $a=\alpha$.

If $\phi\left(x^{a} y\right) \in C_{1}$, under ϕ^{*}, by nice (Δ, r) swapping arguments for y, x^{a} respectively, then clearly both y and x^{a} see r. Next, we show that u sees each color in C_{1} where $x x^{a} u$ is a path with $\phi\left(x^{a} u\right)=r$. Under ϕ^{*}, r present only at x, if u misses a β which present only at w, then by Claim D , we could do a nice (r, β) swapping starting at u, which causes $x^{a} u$ to be colored by β; we then re-color $w w_{r}$ by r, so now u plays the same role as y did before; that is, u sees all colors in C_{1}, which is a contradiction. So u sees each color in C_{12}. By a similar swapping argument, u sees each color present only at x and color $r^{\prime} \in C_{2}$ if there exists a $w_{r^{\prime}} \in N(w)$ missing a color present only at x. In order to avoid repetition, we omit the proof.
Proof of Part B. We assume that w_{r} misses a color $b \in C_{11}$.
We provide an observation first.
Observation 3. $P_{r, b}\left(w_{r}\right)$ must end at x.
Otherwise, a swapping (r, b) along the path starting at w_{r} does not affect colors of edges incident with $x, w w_{r}$ is colored by b under current coloring and misses the color $r \in C_{2}$. By Part I, our result holds.
(B-1) We claim that y sees r where $\phi\left(x^{\alpha} y\right) \in C_{1}$.
Note that y sees all colors in C_{1}. If y misses r, then $P_{\Delta, r}(y)$ will not end at either x or w_{r} by Observation 3 . So we do a nice swapping (b, r) along the path starting at y, it shows that y misses b, which is a contradiction.
(B-2) We claim that χ^{α} sees r. Consider the path $P_{b, r}\left(x^{\alpha}\right)$, using similar argument as that for path $P_{b, r}(y)$ in (B-1), clearly χ^{α} sees r.
(B-3) Let $\phi\left(x^{\alpha} v\right)=r \in C_{2}$, where $v \in N\left(x^{\alpha}\right)$. We claim that v sees all colors in C_{1}. Further, v sees $r^{\prime} \in C_{2}$ if there exists a $w_{r^{\prime}} \in N(w)\left(r^{\prime} \neq r\right)$ that misses a color in C_{1}.

Through Observation $3, P_{r, b}(v)$ does not end at x, so v sees the color b. And applying Claims A and B, v sees each color in C_{1}. Further, if $w_{r^{\prime}}$ misses a color $a \in C_{11}$ (where $w_{r^{\prime}} \in N(w)$ and $\phi\left(w w_{r}^{\prime}\right)=r^{\prime} \in C_{2}$), then we re-color $w w_{r^{\prime}}$ by a, so v sees r^{\prime}. If $w_{r^{\prime}}$ misses a color $b^{\prime} \in C_{12}$, by Observation $3, P_{r^{\prime}, b^{\prime}}\left(w_{r^{\prime}}\right)$ ends at x. Then $P_{b^{\prime}, r^{\prime}}(v)$ will not end at either x or $w_{r^{\prime}}$. Thus, we can perform a nice swapping $\left(b^{\prime}, r^{\prime}\right)$ along the path that starts at v, which causes v to miss b^{\prime}, which is a contradiction.
(B-4) Let $\phi\left(x x^{r}\right)=r$, we claim that x^{r} sees all colors in C_{1}; further, if there is a $w_{r^{\prime}}\left(r^{\prime} \neq r\right)$ that misses a color in C_{1}, x^{r} also sees r^{\prime}.

If x^{r} misses $b \in C_{12}$, by Observation $3, P_{r, b}\left(x^{r}\right)$ does not end at x, so a nice swapping brings us that x^{r} sees each color in C_{12}. Then, through Claim A, Claim B and swapping method, x^{r} first sees all colors in C_{11}. Finally, by applying the same argument as that in (B-3), we have that x^{r} sees $r^{\prime} \in C_{2}$.
(B-5) Let $x x^{r} u$ be a path where $\phi\left(x x^{r}\right)=r \in C_{2}$. We claim that u sees all colors in C_{1} and color $r^{\prime} \in C_{2}$ if there exists a $w_{r^{\prime}} \in$ $N(w)\left(r^{\prime}<d\right)$ that misses a color in C_{1}.

First, let $\phi\left(x^{r} u\right)=\beta \in C_{12}$. By Claim B and the swapping method, clearly we see that (1) u sees all colors in C_{11}; (2) u sees all colors in C_{12}. Now we show that u sees $r \in C_{2}$. If $\beta=b$ where b is missing by w_{r}, applying Observation $3, u$ sees r. If $\beta \neq b$, since u sees b, applying Observation 3 again, $P_{b, r}(u)$ does not end at either x or w_{r}. Hence, a nice swapping (b, r) along the path that starts at u causes u to miss b, a contradiction. Second, we assume that $\phi\left(x^{r} u\right) \in C_{11}$. By Claim B and similar swapping methods as seen in the previous paragraph for the path $P_{b, r}(u)$, clearly we have that (1) u sees all colors in C_{12}; (2) u sees all colors in C_{11}; and (3) u must see $r \in C_{2}$. Third, we assume that $\phi\left(x^{r} u\right)=r^{\prime}\left(r^{\prime} \in C_{2}\right.$ where $\phi\left(w w_{r^{\prime}}\right)=r^{\prime}$ and $w_{r^{\prime}}$ misses a color in C_{1}). If $w_{r^{\prime}}$ misses $a \in C_{11}$, we simply re-color $w w_{r^{\prime}}$ with $a ; r^{\prime}$ now present only at x. u sees each color in C_{1}, and sees r by similar discussion in the previous discussion. If $w_{r^{\prime}}$ misses b^{\prime} which present at w only, applying Observation 3, $P_{r^{\prime}, b^{\prime}}\left(w_{r^{\prime}}\right)$ must end at x, a contradiction. If u misses $b \in C_{12}$, note that x^{r} sees b, so we can perform a nice swapping $\left(r^{\prime}, b\right)$ along the path that starts at u, using discussion from the first two lines of (B-5), we have a contradiction. Now we show that u sees r. Otherwise, we consider $P_{b, r}(u)$. Applying Observation 3, the path will not end either at x or at w_{r}. So a nice swapping (b, r) could be performed along the path starting at u, which shows that u misses b, which is a contradiction.

Hence we finish the proof of Lemma 2.2.
The following lemma uses vertex sequence rotation method to generalize the adjacency lemma by Sanders and Zhao [12].
Lemma 2.3. For a Δ-edge coloring ϕ of G-xw (see Fig. 1), $d(x)=d, d(w)=k$ and $\left|C_{2}\right|=d+k-\Delta-2$. If the number of $\left(\leq \Delta-\frac{\left|C_{2}\right|}{2}\right)$-neighbors of w is $\left|C_{2}\right|-1$ or $\left|C_{2}\right|$, then there are $\Delta-k+1+\left\lfloor\frac{1}{2}\left|C_{2}\right|\right\rfloor$ neighbors χ^{α} of x satisfying: $x^{\alpha} \neq w ; x^{\alpha}$ is adjacent to at least $2 \Delta-d-k+1+\left\lfloor\frac{1}{2}\left|C_{2}\right|\right\rfloor$ vertices y different from x with degree at least $2 \Delta-d-k+2+\left\lfloor\frac{1}{2}\left|C_{2}\right|\right\rfloor$.

Proof. The set of $\left(\leq \Delta-\frac{\left|C_{2}\right|}{2}\right)$-neighbor of w could be categorized as below. Let

$$
R^{1}=\left\{w_{j}: \phi\left(w w_{j}\right)=j \in C_{2}, d\left(w_{j}\right) \leq \Delta-\frac{1}{2}\left|C_{2}\right|, \mathcal{C}_{w_{j}} \cap[\phi(w) \Delta \phi(x)] \neq \emptyset\right\}
$$

where $\phi(w) \Delta \phi(x)$ is symmetrical difference of $\phi(x)$ and $\phi(w)$. In other words, each vertex w_{j} in R^{1} misses at least $\frac{1}{2}\left|C_{2}\right|$ colors including at least one color in C_{1}. Let

$$
R^{2}=\left\{w_{j}: \phi\left(w w_{j}\right)=j \in C_{12}, d\left(w_{j}\right) \leq \Delta-\frac{1}{2}\left|C_{2}\right|, \mathcal{C}_{w_{j}} \cap[\phi(w) \Delta \phi(x)]=\emptyset\right\}
$$

In other words, each vertex $w_{j}\left(j \in C_{12}\right)$ in R^{2} misses at least $\frac{1}{2}\left|C_{2}\right|$ colors in C_{2}. Let

$$
R^{*}=\left\{w_{j}: \phi\left(w w_{j}\right)=j \in C_{2}, d\left(w_{j}\right) \leq \Delta-\frac{1}{2}\left|C_{2}\right|, \mathcal{C}_{w_{j}} \subseteq[\phi(x) \cap \phi(w)]\right\}
$$

In other words, each vertex $w_{j} \in C_{2}$ in R^{*} misses at least $\frac{1}{2}\left|C_{2}\right|$ colors in C_{2}. Note that R^{1}, R^{2}, R^{*} are vertex pairwise disjointed and $\left|R^{1} \cup R^{2} \cup R^{*}\right|=\left|C_{2}\right|-1$ or $\left|C_{2}\right|$.

Let $x x^{\alpha} y$ and $x x^{r} u$ be two paths that starts at x, where $\phi\left(x x^{\alpha}\right)=\alpha \in C_{11}$, and $\phi\left(x x^{r}\right)=r$, where $r \in C_{2} \cap C_{w_{j}}$ if $w_{j} \in R^{2}$ or $w_{r} \in R^{1} \cup R^{*}$. In order to prove the results, we need to prove following equivalent results:
(i) If $\phi\left(x^{\alpha} y\right) \in C_{1}$, then y sees each color in C_{1} and also sees r. (ii) x^{α} must see color $r \in C_{2}$, and let $\phi\left(x^{\alpha} y\right)=r$, then y sees each color in C_{1} and also sees r^{\prime} if there exists one $w_{r^{\prime}} \in R^{1} \cup R^{2} \cup R^{*}$ with $\phi\left(w w_{r}^{\prime}\right)=r^{\prime}$. (iii) x^{r} must see each color in C_{1} and $r^{\prime} \in C_{2}$ described in (ii). (iv) u sees each color in C_{1} and $r^{\prime} \in C_{2}$ described in (ii).

By Lemma 2.2, if $\left|R^{1} \cup R^{2}\right| \geq\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor$, then our results hold. Now we assume that $\left|R^{1} \cup R^{2}\right|<\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor$, so that $\left|R^{*}\right| \geq \frac{\left|C_{2}\right|}{2}$. Without loss of generality, let $w_{r}\left(\in R^{*}\right)$ miss at least $\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor$ colors in C_{2}.
Proof of (i). We consider the path $x x^{\alpha} y$ where $\phi\left(x^{\alpha} y\right)=s$, and $s \in C_{1}$.
Note that y sees each color in C_{1}. We show that y sees color r. We prove it by contradiction. We assume that y misses color r. The procedure showed below is called vertex sequence rotation method. Be aware that w_{r} misses at least $\frac{1}{2}\left|C_{2}\right|$ colors in C_{2}. So we can find a color $r_{1} \in C_{2}$ that is free at vertex w_{r} such that the corresponding vertex $w_{r_{1}}$ is also in R^{*}. Since $w_{r_{1}} \in R^{*}$, and surely, $w_{r_{1}}$ misses at least $\frac{1}{2}\left|C_{2}\right|$ colors in C_{2}, then there is a color of C_{2}, for example, r_{2}, which is free at vertex $w_{r_{1}}$ such that the corresponding vertex $w_{r_{2}}$ is still in R^{*}. By repeating this procedure up to $\left|R^{*}\right|$ times, we obtain a vertex sequence [$w_{r}, w_{r_{1}}, w_{r_{2}}, \ldots, w_{r_{s}}$] of R^{*} where $w_{r_{i}}$ misses color r_{i+1}, and $w_{r_{s}}$ misses color r. We claim that the $P_{\Delta, r}(y)$ passes through w and ends at x. That is, three vertices y, w, and x must be in the same (Δ, r) component of $G-x w$. Otherwise, if $P_{\Delta, r}$ does not pass w, we swap (r, Δ) on an (r, Δ)-bi-colored component of $G-x w$ containing w which shows edge $w w_{r}$ is colored by Δ, by the proof of Lemma 2.2(ii), y sees r, which is a contradiction. If $P_{\Delta, r}(y)$ does not end at x, we swap (r, Δ) along the path starting at x which causes y to see color r by Claim D under current coloring, which is contradiction. Thus the claim holds.

Since the path $P_{\Delta, r}(y)$ passes w and ends at x, first, we assume w_{r} is a successor of w on the path $P_{\Delta, r}(y)$, that is, $P_{\Delta, r}(y)=$ $y z_{1} z_{2} \ldots w_{\Delta} w w_{r} \ldots x$. We re-color $w w_{r}, w w_{r_{1}}, w w_{r_{2}}, \ldots, w w_{s-1}, w w_{r_{s}}$ by $r_{1}, r_{2}, r_{3}, \ldots, r_{s}, r$ respectively. We denote the current coloring by ϕ^{*}. Under $\phi^{*}, P_{\Delta, r}(x)$ must end at $w_{r_{1}}$ because w_{r} sees r_{1} but not r. Then swapping (r, Δ) along the path that starts at x does not affect colors of edges incident with y, w under ϕ^{*}, so y must see r, as r present only at w under ϕ^{*}, which is a contradiction. Next, we assume w_{r} is a predecessor of w, that is, $P_{\Delta, r}(y)=y z_{1} \ldots w_{r} w w_{\Delta} \ldots x$. Under ϕ^{*}, so $P_{\Delta, r}(y)$ must end at w_{r}. We perform a nice swap (r, Δ) along $P_{r, \Delta}(y)$, then y misses Δ under ϕ^{*}, which is a contradiction. Thus $d(y) \geq 2 \Delta-d-k+2+\left|R^{*}\right| \geq 2 \Delta-d-k+2+\left\lfloor\frac{1}{2}\left|C_{2}\right|\right\rfloor$.
Proof of (ii). We claim that x-neighbor x^{α} must see at least $\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor r$ where $w_{r} \in R^{*}$ and $\phi\left(x x^{\alpha}\right)=\alpha$ present only at x.
We assume that χ^{α} misses a color $r \in C_{2}$ where $w_{r} \in R^{*}, \phi\left(w w_{r}\right)=r$. We perform the same vertex sequence rotation operation as that in (i), then applying swapping argument with respect to the path $P_{\Delta, r}\left(x^{\alpha}\right)$ as that in (i), we have a contradiction. In order to avoid repetition, we omit the detail.

Next, let $y \in N\left(x^{\alpha}\right)$ and $\phi\left(x^{\alpha} y\right)=r$. First, y sees each color in C_{12} by using a similar swapping argument on the path $P_{r, \Delta}(y)$ as that of $P_{\Delta, r}(y)$ in (i). Second, y sees each color in C_{11} by applying the same argument as in (i) on path $P_{\Delta, a}(y)$. Finally, y sees $r^{\prime} \in C_{2}\left(r^{\prime} \neq r\right)$ if there exists a $\phi\left(w w_{r^{\prime}}\right)=r^{\prime}$ and $w_{r^{\prime}} \in R^{*}$. Otherwise by using similar argument on $P_{\Delta, r^{\prime}}(y)$ as that of $P_{\Delta, r}(y)$ in (i), we have that y sees r^{\prime}. Hence $d(y) \geq 2 \Delta-d-k+2+\left|R^{*}\right| \geq 2 \Delta-d-k+2+\left\lfloor\frac{1}{2}\left|C_{2}\right|\right\rfloor$.
Proof of (iii). We claim that χ^{r}, where $\phi\left(x x^{r}\right)=r \in C_{2}$ and $w_{r} \in R^{*}$, has the same property as that of χ^{α} in (i) and (ii).
(iii-1) We claim that x^{r} sees each color in C_{1}.
We assume that x^{r} misses a color $a \in C_{11}$. We consider $P_{r, a}\left(x^{r}\right)$. If edge $w_{r} w$ is not on $P_{r, a}\left(x^{r}\right)$, swapping (r, a) along $P_{r, a}\left(x^{r}\right)$ does not affect colors seen by w. Now χ^{r} plays the same role as χ^{α} was in (i), so our results hold. Now we assume that $P_{r, a}\left(x^{r}\right)$ ends at w and passes through edge $w_{r} w$. Note that $w_{r} \in R^{*}$, by applying vertex sequence rotation operation as described in (i), current coloring brings us to the previous case since $P_{r, a}\left(x^{r}\right)$ does not use edge $w_{r} w$ any more. So x^{r} sees each color in C_{11}. If x^{r} misses a color $b \in C_{12}$, by Claim D and swapping (a, b) along the path that starts at x^{r}, this process causes a contradiction because x^{r} misses a.
(iii-2) We claim that x^{r} sees r^{\prime} if there exists a $w_{r^{\prime}} \in R^{*}$ where $w w_{r^{\prime}}=r^{\prime} \in C_{2}$.
The argument is similar to that in the case of y seeing r^{\prime} in (ii), so we omit the proof.
Proof of (iv). Let u be a neighbor of x^{r} other than x, we have that u sees all colors in C_{1} and color r^{\prime} if there is a $w_{r^{\prime}} \in R^{*}$.
(iv-1) If $\phi\left(x^{r} u\right) \in C_{1}$. Then u plays a similar role to that of y in (ii). By similar argument as y in (ii), clearly u sees all colors in C_{1}. Now we claim that u sees r. Otherwise, we consider $P_{\Delta, r}(u)$. Note that the path $P_{\Delta, r}(u)$ plays the same role as the path $P_{\Delta, r}(y)$ in (i), so we perform vertex-sequence rotation operation on w_{r}, by similar argument as that in (i), and we have that u sees r, and furthermore u sees a color $r^{\prime \prime} \in C_{2}\left(r^{\prime \prime} \neq r\right)$ if there exists a $w_{r^{\prime \prime}} \in R^{*}$.
(iv-2) If $\phi\left(x^{r} u\right)=r^{\prime} \in C_{2}$, then by argument used in (iii-2) we have that u sees each color in C_{1} and color $r \in C_{2}$ where $w_{r} \in R^{*}$. Furthermore u also sees $r^{*} \in C_{2}$ if there is $w_{r^{*}} \in R^{*}$ where $\phi\left(w w_{r^{*}}\right)=r^{*}$. Note that vertex u plays the same role as vertex x^{r} in (iii). r^{*} plays same role as r^{\prime} in (iii). The argument is similar, so we omit the proof here.

Thus we complete the proof of Lemma 2.3.
Corollary 2.4. Let x be a 3-vertex of a critical graph G which is adjacent to three Δ-vertices: y, z, w. If one of three Δ-neighbors of x, say w, is adjacent to one $(\leq \Delta-1)$-vertex other than x, then there are at least two Δ-neighbors of x, say y and z, such that $d_{<\Delta}(y)=1, d_{<\Delta}(z)=1$.
Proof. We provide the proof by contradiction. Let w be adjacent to one ($\leq \Delta-1$)-neighbor, say w_{j}. We have that j either present only at w, or present at both x, w (see Fig. 2), so by Lemma 2.3, where $\left|C_{1}\right|=\Delta-1,\left|C_{2}\right|=1$, our result holds.

Denote that $\delta_{1}(x)=\min \{d(y), y \in N(x)\}$.
Lemma 2.5 ([9,7]). Let x be a d-vertex with $4 \leq d \leq 6$ and w be a $\delta_{1}(x)$-neighbor of x.
(i) $d(w)=\Delta$. If w is adjacent to at least $d-2(\leq \Delta-d+2)$-vertices other than x, then each of the rest Δ-neighbors y of x has $d_{\leq \Delta-d+2}(y)=1$.
(ii) $d(w)=\Delta-1$.
(ii-1) If w is adjacent to $(d-3)(\leq \Delta-d+3)$-vertices other than x, the remaining neighbors y of x are all Δ-vertices and $d_{<\Delta-d+4}(y)=1$
(ii-2) If w (where $d(x) \neq 6)$ is adjacent to $(d-4)(\leq \Delta-d+3)$ vertices other than x, then there are $(d-2)(\geq \Delta-d+4)$ neighbors y of x including at least one Δ-neighbor that satisfy the following situations: if y is $a \Delta$-vertex, then $d_{\leq \Delta-1}(y) \leq 2$; if y is $a(\Delta-1)$-vertex, then $d_{\leq \Delta-1}(y)=1$.
(ii-3) For the case of $d(x)=6$, if (ii-1) does not happen, then each $(\Delta-1)$-neighbor y of x has $d_{\leq \Delta-3}(y) \leq 3$.
Lemma 2.6. Let x be a 4-vertex in Δ-critical graph G and w be a $\delta_{1}(x)$-neighbor of x.
(i) [17] If $\left|N(x) \cap V_{\Delta}\right|=2$, then $N\left(N(x) \cap V_{\Delta}\right) \subset V_{\Delta-1} \cup V_{\Delta} \cup\{x\}$.
(ii) [8] If $d(w)=\Delta$ and w is adjacent to two ($\leq \Delta-2$) vertices including x, then x has two Δ-neighbors y that satisfy the following:
(ii-1) y is adjacent to all $(\geq \Delta-1)$-vertices other than x including at least $(\Delta-4) \Delta$-neighbors in $N(y) \backslash N(x)$.
(ii-2) And y has at least $(\Delta-5) \Delta$-neighbors $t(t \notin N(x))$ such that $d_{<\Delta-1}(t)=0$ (see Fig. 3).

Fig. 2. $d(x)=3, d(w)=\Delta$.

Fig. 3. $d(x)=4, d(w)=\Delta$.

Lemma 2.7 ([7]). Let x be a 5-vertex in G which has $(\Delta-2)$-neighbor w. If w is adjacent to only one ($\leq \Delta-2$)-vertex which is x, then there are three $(\geq \Delta-1)$-neighbors of x including at least two Δ-neighbors y satisfying: if it is $a \Delta$-vertex, then $d_{\leq \Delta-2}(y) \leq 2$; if y is $a(\Delta-1)$-vertex, then $d_{\leq \Delta-2}(y)=1$.

Using the same method of Lemma 2.7 in [8], we have following result.
Corollary 2.8. Let x be a 5-vertex having $a(\Delta-2)$-neighbor w and x has at least three Δ-neighbors. Then there exist at least three Δ-neighbors y of x such that each of them has at least $(\Delta-6) \Delta$-neighbors u with $d_{<\Delta-1}(u)=0$.

Next, we consider a special case of 5-vertex.
Lemma 2.9. Let x be a 5-vertex of a critical graph G and x is also adjacent to exactly three ($\Delta-1$)-vertices and two Δ-vertices. Then each of two Δ-neighbors y of x has $d_{\leq \Delta-2}(y)=2$. Furthermore, if there is one $(\Delta-1)$-neighbor, say w, which has $d_{\leq \Delta-2}(w)=2$, then there exists $a(\Delta-1)$-neighbor y of x with $d_{<\Delta-1}(y)=1$.
Proof. The proof is almost the same as that of Lemma 2.10 of [8] except for a restriction on $\Delta=8,9$. But the restriction on the maximum degree Δ does not affect the proof at all. Release the restriction on Δ and the result is still valid for all Δ. In order to avoid repetition, the proof is omitted.

Adjacency Condition gives us some information on two adjacent vertices of a critical graph whose sum of degrees is $\Delta+2$. The following Lemma summarizes adjacency conditions for two adjacent vertices of a critical graph G whose sum of degrees is $\Delta+2+p$ where $p=1,2,3,4$. The following lemma generalizes results of Lemma 2.9 in [6].

Lemma 2.10. Let x be a d-vertex $(d \geq 5)$ of a critical graph G which is adjacent to a k-vertex w such that $d(x)+d(w)=\Delta+2+p$ where $p=1,2,3$, 4. If $\left|(N(x) \backslash\{w\}) \cap V_{\leq \Delta-s}\right| \geq 1(s \geq 1)$, then there are at least $\Delta-k+1(=d-p-1) \Delta$-vertices $z \in N(x)$ satisfying: $z \neq w ; z$ is adjacent to at least K vertices of degree at least $\Delta-p+1$ where $K=(\Delta-1)-p+s$ if $s<p$ and $K=\Delta-1$ if $s \geq p$.
Proof. The proof is similar to Lemma 2.9 in [6], so we omit the detail of proof here.

3. The proof of main results

In this section, we will prove our main theorem. A vertex x is called small if $d(x)<q$. Suppose to the contrary, the theorem is not true, then $\sum_{x \in V}(d(x)-q)<0$. Note that $\delta_{1}(x)=\min \{d(y): y \in N(x)\}$.

We perform charge-discharge method to obtain a contradiction. We call $C(x)=d(x)-q$ the initial charge of the vertex x and will assign a new charge to each vertex x according to the following rules. Let $C^{\prime}(x)$ be the new charge of each vertex x of G, and $C^{\prime}(x)$ will be calculated for each x-vertex following discharge rules that are described below.
$\mathbf{R 0}$ If $\Delta=10$, each Δ-vertex sends $\frac{1}{8}$ to each of its 8 -neighbor. If $\Delta=13$, each Δ-vertex sends 0.15 to each of its 10 -neighbor. $\mathbf{R 1}$ Let x be a 2-vertex adjacent to u, v. Each of u, v sends $\Delta-q$ to x. By the Adjacency Condition, there are at least ($\Delta-2$) Δ vertices z adjacent to either u or v, and each sends $\frac{\Delta-q}{\Delta}$ to x through u, v. So those z send $2 \times(\Delta-2) \frac{\Delta-q}{\Delta}$ to x. Hence $C^{\prime}(x)=2-q+2(\Delta-q)+2 \times(\Delta-2) \frac{\Delta-q}{\Delta}$. It is straightforward to check that $C^{\prime}(x) \geq 0.05,0.2,0.7,1.6,2.5$ for $\Delta=10,11$, $12,13,14$, respectively.
R2 Let x be a 3-vertex.
(R2-1) If x is adjacent to a ($\Delta-1$)-vertex, by Adjacency Condition and Lemma 2.1, then two Δ-neighbors y of x are adjacent to one $(\leq \Delta-2)$-vertex which is x and there are at least $(\Delta-3) \Delta$-neighbors z of y with $d_{\leq \Delta-2}(z)=0$. Thus each y sends $\Delta-q$ to x and each z sends $\frac{\Delta-q}{\Delta}$ to x by passing through each of two y. Hence $C^{\prime}(x)=(3-q)+2(\Delta-q)+2 \times(\Delta-3) \frac{\Delta-q}{\Delta} \geq$ $0.7,0.9,1.3,2.2,3$ for $\Delta=10,11,12,13,14$, respectively.
(R2-2) If x is adjacent to three Δ-vertices, and one of Δ-neighbors y is adjacent to two ($\Delta-1$)-vertices including x, by VAL and Corollary 2.4, two Δ-neighbors z other than y are adjacent to no small vertices except x, and there are at least $(\Delta-2) \Delta$-vertices $u \in N(z)$ which are adjacent to no small vertices. Hence, y sends $\frac{\Delta-q}{2}$ to x, two Δ-neighbors z send $2(\Delta-q)$ to $x,(\Delta-2) \Delta$-vertices u send $(\Delta-2) \frac{\Delta-q}{\Delta}$ to x through each of two Δ-neighbors z of x. Thus $C^{\prime}(x)=$ $3-q+\frac{\Delta-q}{2}+2(\Delta-q)+2 \times(\Delta-2) \frac{\Delta-q}{\Delta} \geq 1,2,2,3,5$, for $\Delta=10,11,12,13,14$, respectively.
(R2-3) If x is adjacent to three Δ-vertices and each of them is adjacent to only one ($\leq \Delta-1$) vertex x, then each Δ-neighbor sends $(\Delta-q)$ to x. Thus, $C^{\prime}(x)=3-q+3(\Delta-q) \geq 0,0,0.2,0.7,1$ for $\Delta=10,11,12,13,14$, respectively.
R3 Let $d(x)+\delta_{1}(x)=\Delta+2$ and $d(x) \geq 4$. We first consider the case of $d(x) \geq 5$. Note that both x and its $\delta_{1}(x)$-neighbor may be small vertices. By the Adjacency Condition, let $(d(x)-1) \Delta$-neighbors of x send half of $(d(x)-1)(\Delta-q)$ to x if $d(x) \geq 5$. Furthermore, and by Lemma 2.1, there are $(\Delta-4) \Delta$-vertices in $N^{2}(x, w) \backslash\{x, w\}$ send half of $(\Delta-4) \times \frac{\Delta-q}{\Delta}$ to x through each of $(d(x)-1) \Delta$-neighbors of x. So (≥ 5)-vertex x receives $\frac{1}{2}(d(x)-1)(\Delta-q)+(d(x)-1) \frac{1}{2}(\Delta-4) \frac{\Delta-q}{\Delta}$ totally if $d(x) \geq 5$. It is straightforward to check that $C^{\prime}(x) \geq 0$ for $10 \leq \Delta \leq 14$.

Now we consider the case of $d(x)=4$. Let each Δ-neighbor send $\frac{1}{3} \times(0.25)$ to $\delta_{1}(x)(=8)$-neighbor if $d(x)=4$ and $\Delta=10$. Each Δ-neighbor sends $(\Delta-q)$ to x if $\Delta=11,12,13,14$. Hence,

$$
C^{\prime}(x) \geq \begin{cases}(4-8.25)+3 \times\left(1.75-\frac{1}{3} \times 0.25\right)=0.75 & \text { if } d(x)=4, \delta_{1}(x)=8, \Delta=10 \\ (4-9)+3 \times 2=1 & \text { if } d(x)=4, \delta_{1}(x)=9, \Delta=11 \\ \left(4-\frac{126}{13}\right)+3 \times\left(12-\frac{126}{13}\right) \geq 1.2 & \text { if } d(x)=4, \delta_{1}(x)=10, \Delta=12 \\ \left(4-\frac{134}{13}\right)+3 \times\left(13-\frac{134}{13}\right) \geq 1.7 & \text { if } d(x)=4, \delta_{1}(x)=11, \Delta=13 \\ \left(4-\frac{142}{13}\right)+3 \times\left(14-\frac{142}{13}\right)>2.3 & \text { if } d(x)=4, \delta_{1}(x)=12, \Delta=14\end{cases}
$$

From now on we consider $d(x) \geq 4$ and $d(x)+\delta_{1}(x) \geq \Delta+3$.
R4 Let x be a 4-vertex and $d(x)+\delta_{1}(x) \geq \Delta+3$.
(R4-1) If x is adjacent to two ($\Delta-1$)-vertices and two Δ-vertices, by Lemmas 2.5(ii) and 2.6, each Δ-neighbor y of x is adjacent to only one small vertex which is x, thus x receives $2(\Delta-q)$ from its two Δ-neighbors y and $2 \times\left\lfloor\frac{\Delta-4}{2}\right\rfloor \frac{\Delta-q}{\Delta}$ from neighbors of those y. So $C^{\prime}(x) \geq(4-q)+2(\Delta-q)+2\left\lfloor\frac{\Delta-4}{2}\right\rfloor \times \frac{\Delta-q}{\Delta} \geq 0.3,0.09,0.4,0.7,1.42$ for $\Delta=10,11,12,13,14$, respectively.
(R4-2) If x is adjacent to one $(\Delta-1)$-vertex w and three Δ-vertices y, for ($\Delta-1$)-neighbor w may be adjacent to only one ($\leq \Delta-2$)-vertex which is x, we consider Δ-neighbors of x. There are two cases: Either w is adjacent to two ($\leq \Delta-1$)vertices or there is one Δ-neighbor y that is adjacent to three $(\leq q)$-vertices, by Lemma 2.6 and VAL, x receives min $\left\{\frac{\Delta-q}{3}+\right.$ $\left.2(\Delta-q)+2 \times\left\lfloor\frac{\Delta-4}{2}\right\rfloor \times \frac{\Delta-q}{\Delta}, 3 \times(\Delta-q)\right\} \geq 2(\Delta-q)+2\left\lfloor\frac{\Delta-4}{2}\right\rfloor \frac{\Delta-q}{\Delta}$ which is the same charge received in (R4-1), so $C^{\prime}(x)>0$ for $10 \leq \Delta \leq 14$.
(R4-3) 4-vertex x is adjacent to four Δ-vertices y. If there is one Δ-neighbor w that is adjacent to two ($\leq \Delta-2$)-vertices other than x, then by VAL and Lemma 2.6(ii), three remaining Δ-neighbors of x send $3 \times(\Delta-q)$ to x, by straightforward checking, $C^{\prime}(x) \geq(4-q)+3 \times(\Delta-q)>0$ for $10 \leq \Delta \leq 14$. If each Δ-neighbor of x is adjacent to one $(\leq \Delta-2)$-vertex other than x, by Lemma 2.6, four Δ-neighbors of x send $4 \times \frac{\Delta-q}{2}$ to x; furthermore, there are $2 \times\left\lfloor\frac{\Delta-4}{2}\right\rfloor$ vertices in $N(N(x))$, which send $2 \times\left\lfloor\frac{\Delta-4}{2}\right\rfloor \frac{\Delta-q}{\Delta}$ to x by passing through those Δ-neighbors. So x receives charges at least as much as that in (R4-1), hence $C^{\prime}(x)>0$ for $10 \leq \Delta \leq 14$.
R5 Let x be a 5-vertex and $d(x)+\delta_{1}(x) \geq \Delta+3$.
(R5-1) If x is adjacent to $(\Delta-2)$-vertex w, by VAL, x has at least three Δ-neighbors. By Lemmas 2.2, 2.7 and 2.9 and (R0), x receives following charge from its neighbors: $\min \left\{4\left(\Delta-q-\theta_{\Delta}\right), 3\left(\Delta-q-\theta_{\Delta}\right), 3 \times \frac{1}{2}\left(\Delta-q-\theta_{\Delta}\right)\right\}=3 \times \frac{1}{2} \times\left(\Delta-q-\theta_{\Delta}\right)$,
where $\theta_{\Delta}=\frac{1}{8}, 0.15$ if $\Delta=10,13$ otherwise $\theta_{\Delta}=0$. Furthermore, by Corollary 2.8, there are $3 \times\left\lfloor\frac{\Delta-5}{2}\right\rfloor \Delta$-vertices u, which send $3 \times\left\lfloor\frac{\Delta-5}{2}\right\rfloor \frac{\Delta-q}{\Delta}$ to x by passing through its three Δ-neighbors. Hence,

$$
C^{\prime}(x) \geq \begin{cases}(5-8.25)+3 \times \frac{1}{2}\left(\frac{7}{4}-\frac{1}{8}\right)+3 \times 2 \times \frac{\frac{7}{4}}{10}=\frac{17}{40} & \text { if } \Delta=10 \\ (5-9)+3 \times \frac{1}{2}(11-9)+3 \times 3 \times \frac{11-9}{11}=\frac{7}{11} & \text { if } \Delta=11 \\ \left(5-\frac{126}{13}\right)+3 \times \frac{1}{2}\left(12-\frac{126}{13}\right)+3 \times 3 \times \frac{12-\frac{126}{13}}{12}=0.5 & \text { if } \Delta=12 \\ \left(5-\frac{134}{13}\right)+3 \times \frac{1}{2}\left(\left(13-\frac{134}{13}\right)-0.15\right)+3 \times 4 \times \frac{13-\frac{134}{13}}{13}>0.9 & \text { if } \Delta=13 \\ \left(5-\frac{142}{13}\right)+3 \times \frac{1}{2}\left(14-\frac{142}{13}\right)+3 \times 4 \times \frac{14-\frac{142}{13}}{14}>1.3 & \text { if } \Delta=14\end{cases}
$$

(R5-2) If x is adjacent to a ($\Delta-1$)-vertex w, to avoid repetition, we consider the worst case, that is, x is adjacent to two Δ-vertices and three ($\Delta-1$)-vertices. By Lemma 2.9, two Δ-neighbors send $2 \times \frac{\Delta-q}{2}$ to x. By Lemma 2.9 again, either there are two $(\Delta-1)$ neighbors which send $2 \times(\Delta-q-1)$ to x, or there is one $(\Delta-1)$-neighbor which sends $(\Delta-1-q)$ to x and remaining two $(\Delta-1)$-neighbors send $2 \times \frac{1}{2} \times(\Delta-1-q)$ to x. Thus x receives $2 \times \frac{\Delta-q}{2}+\min \{2(\Delta-1-q)+$ $\left.\frac{\Delta-1-q}{3},(\Delta-1-q)+2 \times \frac{\Delta-1-q}{2}\right\}$ totally. So $C^{\prime}(x) \geq(5-q)+2 \times \frac{1}{2}(\Delta-q)+2 \times(\Delta-1-q)=0,0,0.2,0.7,1.3$ for $\Delta=10,11,12,13,14$, respectively.
(R5-3) If x is adjacent to five Δ-vertices, by Lemma 2.5 and VAL, x receives $\min \left\{4(\Delta-q)+\frac{1}{4}(\Delta-q), 3\left(\frac{1}{2}\right)(\Delta-q)+2\left(\frac{1}{3}\right)(\Delta-\right.$ $\left.q), 5\left(\frac{1}{2}\right)(\Delta-q)\right\}=3\left(\frac{1}{2}\right)(\Delta-q)+2\left(\frac{1}{3}\right)(\Delta-q)=\frac{13}{6}(\Delta-q)$. Hence $C^{\prime}(x) \geq(5-q)+\frac{13}{6}(\Delta-q) \geq 0.54,0.33,0.3,0.5,0.7$ if $\Delta=10,11,12,13,14$, respectively.
R6 Let x be a 6 -vertex.
(R6-1) First consider that $6 \leq d(x)<q$ with $d(x)+\delta_{1}(x) \geq \Delta+3$. Let $y \in N(x)$ with $d(x)+d(y)=\Delta+3$. By Lemma 2.10 for $p=1, x$ receives $\min \left\{(d(x)-2) \frac{\Delta-q}{2},(d(x)-1) \frac{\Delta-q}{2},(d(x)-1)(\Delta-q)\right\}=(d(x)-2) \frac{\Delta-q}{2}$ from its neighbors. Thus $C^{\prime}(x) \geq(6-q)+(6-2) \frac{\Delta-q}{2}>1,0.9,0.8,1,1$ for $\Delta=10,11,12,13,14$, respectively.

From now on we consider that $d(x)+\delta_{1}(x) \geq \Delta+4$.
$(\mathbf{R 6} \mathbf{- 2}) \delta_{1}(x)=\Delta-2$.
Let w be the $\delta_{1}(x)$-vertex of $N(x)$. By VAL, x has at least three Δ-neighbors. If x is adjacent to two ($\Delta-2$)-vertices, then by Lemma 2.10 for $p=2, s=2$, there are three Δ-neighbors z such that z is adjacent to $\Delta-1$ vertices with degree $\geq \Delta-1$. That is, z is adjacent to one small vertex x. x receives $3 \times(\Delta-q) . C^{\prime}(x)=(6-q)+3(\Delta-q) \geq 2,2,3,3,4$ for $\Delta=10,11,12,13,14$, respectively. If x is adjacent to one $(\Delta-1)$-vertex other than w and four Δ-vertices, by Lemma 2.10 for $p=2, s=1$, there are three Δ-neighbors z such that z is adjacent to $\Delta-2$ vertices with degree $\geq \Delta-1$. That is, z is adjacent to two small vertices, so each z sends $\frac{\Delta-q}{2}$ to x together with remaining Δ-neighbor sending $\frac{\Delta-q}{5}$ to x and one ($\Delta-1$)-neighbor sending $\frac{\Delta-1}{4}$ to x.
$C^{\prime}(x) \geq(6-q)+3 \times \frac{1}{2} \times(\Delta-q)+\frac{1}{5}(\Delta-q)+\frac{1}{4}(\Delta-1-q)>0.8,0.5,0.1,0.6,0.7$ for $\Delta=10,11,12,13,14$, respectively.

If x is adjacent to two ($\Delta-1$)-vertices other than w and three Δ-vertices, similar to previous discussion, we have that three Δ-neighbors send $3 \times \frac{1}{2} \times(\Delta-q)$ to x and two $(\Delta-1)$-neighbors send $2 \times \frac{1}{4}(\Delta-1-q)$ to x. So $C^{\prime}(x) \geq(6-q)+$ $3 \times \frac{1}{2}(\Delta-q)+\frac{1}{2} \times(\Delta-1-q)>0.6,0.4,0.3,0.5,0.7$ if $\Delta=10,11,12,13,14$, respectively.
$(\mathbf{R 6}-3) \delta_{1}(x)=\Delta-1$.
In order to avoid repetition, we consider that x has at least two ($\Delta-1$)-neighbors.
If each $(\Delta-1)$-neighbor x is adjacent to all $(\geq \Delta-2)$-vertices other than x, then x receives at least $2 \times \frac{1}{3}(\Delta-q)+$ $4\left(\Delta-1-q-3 \theta_{\Delta}\right)$ (note that $\theta_{\Delta}=\frac{1}{8}, 0.15$ if $\Delta=10$, 13 respectively, and $\theta_{\Delta}=0$ otherwise). If there is one $(\Delta-1)-$ neighbor which is adjacent to a $(\leq \Delta-3)$-vertex other than x and two $(\Delta-2)$-vertices, then x receives $3 \times \frac{1}{3}(\Delta-q)$ and $i \times \frac{1}{2}\left(\Delta-1-q-2 \theta_{\Delta}\right)+j(\Delta-1-q-3 \theta)$ where $i+j=3$. If x has a $(\Delta-1)$-neighbor which is adjacent to two ($\left.\leq \Delta-3\right)$-vertices other than x and one $(\geq \Delta-2)$-vertex, then x receives at least $4 \times \frac{1}{2} \times(\Delta-q)+i \times \frac{1}{3}\left(\Delta-1-q-\theta_{\Delta}+j\left(\Delta-1-q-3 \theta_{\Delta}\right)\right)$ where $i+j=2$. If x has a $(\Delta-1)$-neighbor which is adjacent to three $(\leq \Delta-3)$-vertices other than x, then x receives at least $5 \times(\Delta-q)$. For the sake of convenience, let K be the smallest charge that x receives from its neighbors. By straightforward calculation, $K=3 \times \frac{1}{3}(\Delta-q)+3 \times \frac{1}{2}\left(\Delta-1-q-2 \theta_{\Delta}\right) . C^{\prime}(x) \geq(6-q)+K>0.1,1.4,0.4,0.4,1$ for $\Delta=10,11,12,13,14$, respectively.
$(\boldsymbol{R 6}-4) \delta_{1}(x)=\Delta$.
Let w be the Δ-neighbor of x with $\max \left\{t: t=d_{\leq \Delta-2}(y): y \in N(x)\right\}$ which denoted by k. Note that $k \leq 4$. If each Δ-neighbor of x is adjacent to at most three $(\leq \Delta-3)$-vertices, then it is straightforward to check that $C^{\prime}(x) \geq(\overline{6}-q)+6 \times$
$\frac{1}{3}(\Delta-q)>1,1,0.9,1,1$ for $\Delta=10,11,12,13,14$ respectively. Now we assume that one Δ-neighbor, say w, is adjacent to $i(i=4,5)(\leq \Delta-3)$-vertices. By Lemma 2.3, where $\left|C_{2}\right|=4$ and $\left|R^{1} \cup R^{2} \cup R^{*}\right|=3$ or 4 , there are $3\left(=1+\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor\right) \Delta$-neighbors $x^{b} \in N(x)$ and each x^{b} has $2 \Delta-6-\Delta+1+2(=\Delta-3)$ vertices $y \in N\left(x^{b}\right)$ such that $d(y) \geq \Delta-2\left(=2 \Delta-d-\Delta+2+\left\lfloor\frac{C_{2} \mid}{2}\right\rfloor\right)$ which means that x^{b} is adjacent to at most three small vertices. Thus x receives $3 \times \frac{1}{3} \times(\Delta-q)$ from those three Δ neighbors and $3 \times \frac{1}{5}(\Delta-q)$ from rest three Δ-neighbors. So $C^{\prime}(x) \geq(6-q)+3 \times \frac{1}{3}(\Delta-q)+3 \times \frac{1}{5}(\Delta-q) \geq 0.15,0.2$, $0,0,0$ for $\Delta=10,11,12,13,14$, respectively.
R7 Let x be a 7 -vertex.
(R7-1) From (R6-1), we first consider $d(x)+\delta_{1}(x)=\Delta+4$, and let w be the $\delta_{1}(x)$-vertex.
Subcase 1. $\left|\left(N(x) \cap V_{\leq \Delta-s}\right) \backslash\{w\}\right|>1$ where $0<s \leq 2$. Applying Lemma 2.10 for $p=2,0<s \leq p$, there are $(d(x)-2-1) \Delta$ neighbors in $N(x) \backslash\{w\}$, and each of which is adjacent to all $(\geq \Delta-p+1)(\geq q)$-vertices. Thus, x receives at least $\frac{(d-3)}{2}(\Delta-q)$ from those Δ-neighbors. It is straightforward to check that $C^{\prime}(x) \geq(d(x)-q)+(d(x)-3) \frac{1}{2}(\Delta-q) \geq 7-q+(7-3) \frac{1}{2}(\Delta-q) \geq$ $2,1,1.5,2,2$ for $\Delta=10,11,12,13,14$, respectively.
Subcase 2. $\left|\left(N(x) \cap V_{\leq \Delta-1}\right) \backslash\{w\}\right|=1$.
Note that $d(x)+\delta_{1}(x)=\Delta+4$. That is, there are four Δ-neighbors having at most two ($\leq \Delta-2$)-neighbors other than x. Thus x receives $4 \times \frac{1}{3}(\Delta-q)$ from those Δ-vertices and receives $2 \times \frac{1}{6}(\Delta-q)$ from the rest two Δ-neighbors. Hence $C^{\prime}(x) \geq 7-q+4 \frac{\Delta-q}{3}+2 \frac{\Delta-q}{6} \geq 7-q+\frac{5}{3}(\Delta-q) \geq 1,1,1,1,1$ for $\Delta=10,11,12,13,14$, respectively.

From now on, we consider cases of $d(x)+\delta_{1}(x) \geq \Delta+5$, and $d(x) \geq 7$.
$(\mathbf{R 7} 7) \delta_{1}(x)=\Delta-3, \Delta-2$.
Let w be the $\delta_{1}(x)$-neighbor of x. We discuss three cases below.
Subcase 1. $\left|\left(N(x) \cap V_{\Delta-2}\right) \backslash\{w\}\right| \geq 1$. By Lemma 2.10 where $p=3, s=2$, there are 3Δ-neighbors z of x satisfying: $z \neq w$, which are adjacent to $\Delta-2(\geq \Delta-1)$-vertices. So x receives $3 \times \frac{\Delta-q}{2}$ from those three Δ-neighbors, thus we have $C^{\prime}(x) \geq$ $(7-q)+3 \times \frac{\Delta-q}{2} \geq 1,1,0.7,0.7,0.6$ for $\Delta=10,11,12,13,14$ respectively.
Subcase 2. x has no ($\leq \Delta-2$)-neighbor other than w, and x has at least two ($\Delta-1$)-neighbors. By Lemma 2.10 for $p=2$ (if $\delta_{1}(x)=\Delta-3$), there are three Δ-neighbors z satisfying: $z \neq w$, which are adjacent to ($\Delta-2$) ($\geq \Delta-2$)-vertices. Thus x receives at least the same amount charges from its neighbors as the previous case, so $C^{\prime}(x) \geq 0$ for $10 \leq \Delta \leq 14$. For the case of $p=3$ (if $\delta_{1}(x)=\Delta-2$), similarly, x receives at least the same amount of charges as that in subcase 1 (R7-2), we have $C^{\prime}(x) \geq 0$.
Subcase 3. x has no ($\leq \Delta-2$)-neighbor other than w and x has one ($\Delta-1$)-neighbor, for example y. Using the same discharge argument as in Subcase 1 above, there are three Δ-neighbors having at most $3(\leq \Delta-2)$-neighbors. So x receives $3 \times \frac{\Delta-q}{3}$ from those three Δ-neighbors, and by VAL, x also receives $2 \times \frac{\Delta-q}{6}$ from the rest two Δ-neighbors and $\frac{1}{5}(\Delta-1-q)$ from one $(\Delta-1)$-neighbor. So $C^{\prime}(x) \geq(7-q)+3 \times \frac{\Delta-q}{3}+2 \times \frac{\Delta-q}{6}+\frac{\Delta-1-q}{5}=\frac{23}{15}(\Delta-q)+7-q-0.2 \geq 1,0.7,0.5,0.5,0.5$ for $\Delta=10,11,12,13,14$, respectively.
$\left(\right.$ R7-3) $\delta_{1}(x)=\Delta-1$.
In order to avoid repetition, we consider the worst case, that is, x has two Δ-neighbors and five $(\Delta-1)$-neighbors. If each $(\Delta-1)$-neighbor of x is adjacent to at most three $(\leq \Delta-2)$ vertices, then $C^{\prime}(x) \geq(7-q)+5 \times \frac{1}{3}(\Delta-1-q)+2 \times \frac{1}{6}(\Delta-q)=$ $2(\Delta-q)+7-q-\frac{5}{3}>0.5,0.3,0.2,0.3,0.5$ for $\Delta=10,11,12,13,14$, respectively. If there is one $(\Delta-1)$-neighbor w of x is adjacent to at least four $(\leq \Delta-3)$ vertices, through Lemma 2.3 where $\left|C_{2}\right|=4$, there are $2+\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor(=4)(\geq \Delta-1)$ neighbors of x, and each of which is adjacent to $\Delta-7+4(=\Delta-3)$ vertices of degree $\geq \Delta-7+5(=\Delta-2)$. So x receives $\min _{i=0,1,2}\left\{(4-i) \frac{1}{3}(\Delta-1-q)+(2+i) \frac{1}{6}(\Delta-q)+\frac{1}{5}(\Delta-1-q)\right\}$, so $C^{\prime}(x) \geq 7-q+4 \frac{1}{3}(\Delta-1-q)+2 \frac{1}{6}(\Delta-q)+\frac{1}{5}(\Delta-1-q)=$ $\frac{28}{15}(\Delta-q)+7-q-\frac{23}{15} \geq 0.4,0.2,0.08,0.18,0.28$ for $\Delta=10,11,12,13,14$, respectively.
$\left(\right.$ R7-4) $\delta_{1}(x)=\Delta$.
By VAL, we have $C^{\prime}(x) \geq 7-q+7 \frac{1}{6}(\Delta-q) \geq \frac{19}{24}, \frac{1}{3}, 0$ for $\Delta=10,11,12$, respectively.
For the cases of $\Delta=13$ and 14, it needs to be considered more sophisticated. Let w be Δ-neighbor of x with $k=\max \{t$: $\left.t=d_{\leq q}(y), y \in N(x)\right\}$ where $k \leq 5$. If each Δ-neighbor of x is adjacent to at most five ($\leq \Delta-3$)-vertices, then x receives $7 \times \frac{1}{5}(\Delta-q)$, so $C^{\prime}(x) \geq 7-q+\frac{7}{5}(\Delta-q) \geq 0$ for $\Delta=13,14$. Now we assume that one Δ-neighbor of x, say w, is adjacent to $6(\leq \Delta-3)$-vertices including x. Note that $\left|C_{2}\right|=5$. Through Lemma 2.3, where $\left|R^{1} \cup R^{2} \cup R^{*}\right|=5$ or 4 , there are $3\left(1+\left\lfloor\frac{\left|C_{2}\right|}{2}\right\rfloor\right)$ Δ-neighbor x^{b} of x such that x^{b} has at least $\Delta-4(=2 \Delta-7-\Delta+1+2)$ neighbors $y \in N(N(x))$ with $d(y) \geq \Delta-3$. Hence, $C^{\prime}(x) \geq 7-q+3 \times \frac{1}{4}\left(\Delta-q-\theta_{\Delta}\right)+4 \times \frac{1}{6}(\Delta-q) \geq 0.39,0.43$ for $\Delta=13,14$ respectively.
R8 Let x be a 8 -vertex.
In the case of $\Delta=10$, each vertex has at least two Δ-neighbors, and by (R0), each Δ-neighbor sends $\frac{1}{8}$ to x. So $C^{\prime}(x) \geq$ $\left(8-\frac{33}{4}\right)+2 \times \frac{1}{8}=0$.

Next we consider cases of $\Delta=11,12,13,14$. Note that the arguments in previous cases discussion in $\mathbf{R 7}$ could be used for the case of $\delta_{1}(x)=\Delta-3$ here. To avoid repetition, we consider $\delta_{1}(x) \geq \Delta-2$.
$(\mathbf{R 8}-1) \delta_{1}(x)=\Delta-2$.
Note that $d_{\Delta}(x) \geq 3$. Without loss of generality, let $d_{\Delta}(x)=3$ and $N(x) \cap V_{\Delta-2}=5$. By Lemma 2.10 for $p=4$, there are three Δ-neighbors such that each of which is adjacent to at most five $(\leq \Delta-3)$-vertices and each of five ($\Delta-2$)-neighbors is adjacent to at most $5(\leq \Delta-3)$-vertices, so $C^{\prime}(x) \geq 8-q+3 \frac{1}{5}(\Delta-q)+5 \times \frac{1}{5}(\Delta-2-q) \geq 0.5,0.2,0,0,0$ for $\Delta=11,12,13,14$, respectively.
$(\mathbf{R 8}-2) \delta_{1}(x)=\Delta-1$.
Without loss of generality, let $d_{\Delta}(x)=2,\left|N(x) \cap V_{\Delta-1}\right|=6$.
If each of $(\Delta-1)$-neighbors is adjacent to at most five $(\leq \Delta-3)$-vertices, then x receives $6 \frac{1}{5}(\Delta-1-q)+2 \frac{1}{7}(\Delta-q)$. Thus $C^{\prime}(x) \geq 8-q+\left(\frac{2}{7}+\frac{6}{5}\right)(\Delta-q)-1.2>1,0.7,0.5,0.4,0.4$ for $\Delta=11,12,13,14$, respectively.

If there exists a $(\Delta-1)$-neighbor of w which is adjacent to six $(\leq \Delta-3)$-vertices, note that $d(x)=8, d(w)=\Delta-1$ and $\left|C_{2}\right|=5$, then there exist at least one $(\leq \Delta-3)$-neighbor w_{j} of w with $j \in C_{12}$. Applying Lemma 2.2, there are at least $4(\geq \Delta-1)$-neighbors x^{α} of x which are adjacent to at most $2(\leq \Delta-3)$-vertices, so x receives $4 \frac{1}{2}(\Delta-1-q)$ from $4(\geq \Delta-1)$-neighbors, $2 \frac{1}{7}(\Delta-q)$ from two Δ-neighbors, and $2 \frac{1}{6}(\Delta-1-q)$ from the rest three $(\Delta-1)$-neighbors. It is straightforward to check that $C^{\prime}(x) \geq(8-q)+\left(4 \times \frac{1}{2}(\Delta-1-q)+\frac{2}{7}\right)(\Delta-q)+2 \times \frac{1}{6}(\Delta-1-q)>0$ for $11 \leq \Delta \leq 14$. $(\mathbf{R 8}-3) \delta_{1}(x)=\Delta$.

By VAL, eight Δ-neighbors send $8 \frac{1}{7}(\Delta-q)$ to x, it is straightforward to check that $C^{\prime}(x) \geq 0$ for $11 \leq \Delta \leq 14$.
$\mathbf{R 9}$ Let x be a 9-vertex.
(R9-1) For $\Delta=10,11$, we perform the discharge rules from (R1)-(R8), x sends at most $(9-q)$ out, so $C^{\prime}(x) \geq 0$. Now we consider the cases of $\Delta=12,13,14$.
(R9-2) If $\delta_{1}(x) \leq \Delta-3, x$ has at least 4Δ-neighbors. By VAL, x receives st least $4 \frac{1}{8}(\Delta-q)$ from its 4Δ-neighbors, thus $C^{\prime}(x) \geq 9-q+4 \frac{1}{8}(\Delta-q) \geq 0.46,0.03$, for $\Delta=12,13$.

For $\Delta=14$, more sophisticated discussion is needed. If $\delta_{1}(x) \leq \Delta-4$, then x has at least 5Δ-neighbors, and by VAL x receives at least $5 \frac{1}{8}(\Delta-q)$ from those Δ-neighbors, thus $C^{\prime}(x) \geq 9-\frac{142}{13}+5 \times \frac{1}{8}\left(14-\frac{142}{13}\right)=0$ for $\Delta=14$. Now consider the case of $\delta_{1}(x)=\Delta-3$. x has at least 4Δ-neighbors. To avoid repetition, we provide detail discussion on the worst case, that is, x has four Δ-neighbors and five $(\Delta-3)$-neighbors. Firstly, if there is a $(\Delta-3)$-vertex denoted by w, which has at least $3(\leq \Delta-4)$-neighbors w_{j}, so each of these neighbors either misses at least one x, w-color with $j \leq 8$ or misses 4 trouble colors with $j \geq 9$. Note that there are $4 x$-colors, and by Lemma 2.3 , there exist $7(=4+3)$ neighbors x^{c} of x including at least 2Δ-neighbors of x, such that each of x^{c} is adjacent to at least $\Delta-3(=4+6+1=11)$ vertices y and $d(y) \geq$ $\Delta-1(=4+6+3=13)$, thus, x could receive $\frac{1}{2}(\Delta-q)$ from those two Δ-neighbors, so $C^{\prime}(x) \geq\left(9-\frac{142}{13}\right)+2 \times \frac{1}{3}\left(14-\frac{142}{13}\right)+$ $2 \times \frac{1}{8}\left(14-\frac{142}{13}\right)+5 \times \frac{1}{3}\left(14-3-\frac{142}{13}\right)>0$.

Secondly, we assume that each of $5(\Delta-3)$-neighbors is adjacent to at most $2(\leq \Delta-4)$-vertices including x. If each of four Δ-neighbors have at most $7(\Delta-4)$-vertices, then $C^{\prime}(x) \geq\left(9-\frac{142}{13}\right)+4 \times \frac{14-\frac{142}{13}}{7}+5 \times \frac{11-\frac{142}{13}}{2}>0$. If there is a Δ-neighbor of x, say w, which is adjacent to $8(\leq \Delta-4)$-vertices, note that here $L=7$, there exist at least one $w_{j}(j \geq 9)$ missing all trouble colors. By Lemma 2.3, there are at least $5\left(=\Delta-\Delta+1+\left\lfloor\frac{8}{2}\right\rfloor\right)$ vertices x^{c} of x such that x^{c} has $\Delta-3\left(=2 \Delta-9-\Delta+1+\left\lfloor\frac{8}{2}\right\rfloor\right)$ neighbors y, and $d(y) \geq \Delta-1\left(=2 \Delta-9-\Delta+2+\left\lfloor\frac{8}{2}\right\rfloor\right)$. This information implies that if some of such five vertices x^{c} is ($\Delta-3$)-neighbor of x, then such x^{c} incidents only one $(\leq \Delta-4)$-vertex which is x, or if some of such five vertices is Δ-vertex, say x^{c}, then x^{c} has at most $3(\leq \Delta-4)$-vertices including x. Hence x receives at least $\min _{0 \leq i \leq 4,0 \leq j \leq 5}\left\{i \times \frac{1}{3}(14-\right.$ $\left.\left.\frac{142}{13}\right)+(4-i) \times \frac{1}{8}\left(14-\frac{142}{13}\right)+j \times\left(11-\frac{142}{13}\right)+(5-j) \times \frac{1}{2}\left(11-\frac{142}{13}\right)\right\}$. It is straightforward to check that $C^{\prime}(x) \geq 0$.
(R9-3) If $\delta_{1}(x) \geq \Delta-2$, then x has at least 3Δ-neighbors. By VAL, x receives at least $3 \frac{1}{8}(\Delta-q)$ from its 3Δ-neighbors and at least $6 \frac{1}{6}(\Delta-2-q)$ from six of its $(\geq \Delta-2)$-neighbors. Thus $C^{\prime}(x) \geq 9-q+3 \frac{1}{8}(\Delta-q)+6 \times \frac{1}{6}(\Delta-2-q) \geq 0.4,0.3,0.2$ for $\Delta=12,13,14$, respectively.

If $\delta_{1}(x)=\Delta-1$, or Δ, without loss of generality, we assume that x has two Δ-neighbors and seven $(\Delta-1)$-neighbors, or simply nine Δ-neighbors. By VAL, x receives at least $\min \left\{2 \frac{1}{8}(\Delta-q)+7 \frac{1}{7}(\Delta-1-q), 9 \frac{1}{8}(\Delta-q)\right\}$. $C^{\prime}(x) \geq 9-q+$ $2 \times \frac{1}{8}(\Delta-q)+7 \frac{1}{7}(\Delta-1-q) \geq 1,1,0.8$ for $\Delta=12,13,14$, respectively.
$(\mathbf{R 1 0}) x$ is a 10 -vertex.
Note that charge of x keeps unchanged when $\Delta=12$. So we consider the case of $\Delta=13$, 14 . If $\Delta=13, x$ receives 0.15 from its at least two Δ-neighbors, so $C^{\prime}(x) \geq 0$. Next we consider the case of $\Delta=14$. If $\delta_{1}(x) \leq \Delta-2$, then x has at least three Δ-neighbors by VAL, so $C^{\prime}(x) \geq 10-\frac{142}{13}+3 \frac{1}{9}\left(14-\frac{142}{13}\right)>1$. If $\delta_{1}(x)=\Delta-1$ or Δ, so x receives at least $2 \frac{1}{9}\left(14-\frac{142}{13}\right)+$ $8 \times \frac{1}{8}\left(14-1-\frac{142}{13}\right) \geq 1 . C^{\prime}(x) \geq 0$.
Final step. x is an i-vertex where $i=11,12,13,14$, by the discharge rules (R1)-(R9), it is clear that x sends at most $(d(x)-q)$ out. Hence $C^{\prime}(x) \geq 0$.

From (R1)-(R9), $C^{\prime}(x) \geq 0$ for each vertex x, and therefore, $\sum_{x \in V(G)} C^{\prime}(x) \geq 0$. Since the discharge rules only move charge around and do not change the sum, we have $0 \leq \sum_{x \in V(G)} C^{\prime}(x)=\sum_{x \in V(G)} C(x)<0$. This contradiction completes the proof.

4. Class one graphs with $c_{S}=-4,-5,-6,-7,-8$

Theorem 4.1. Let G be a simple graph that is embeddable in a surface S of characteristic $c_{S}=-4,-5,-6,-7,-8$, then G is class one if $\Delta \geq 10,11,12,13,14$ respectively.

Before we proceed our proof of the Theorem, we need following results on critical graphs with small orders.
Lemma 4.2 (Beineke and Fiorini [1], Brinkmann and Steffen [2,4,3]).
(i) There are no critical graphs of even order up to 14;
(ii) there are only two critical graphs of order 11, both of which are 3-critical;
(iii) Petersen graph minus a vertex is the only non-trivial critical graph on up to 10 vertices, which is 3-critical;
(iv) There are only three critical graphs of order 13, which are 3-critical.

Proof of Theorem 4.1. By Theorem 1.2 and Lemma 4.2, we only need to prove it when $\Delta=10,11,12,13,14$ respectively. Let V and F be vertex set and face set of G respectively. Suppose to the contrary, let G be the smallest counterexample with respect to edges. Then G is Δ-critical where $\Delta=10,11,12,13,14$, respectively. By Euler's Formula, we have

$$
\begin{cases}\sum_{x \in V}(d(x)-6)+\sum_{f \in F}(d(f)-3)=24 & \text { if } c_{S}=-4, \Delta=10 \\ \sum_{x \in V}(d(x)-6)+\sum_{f \in F}(d(f)-3)=30 & \text { if } c_{S}=-5, \Delta=11 \\ \sum_{x \in V}(d(x)-6)+\sum_{f \in F}(d(f)-3)=36 & \text { if } c_{S}=-6, \Delta=12 \\ \sum_{x \in V}(d(x)-6)+\sum_{f \in F}(d(f)-3)=42 & \text { if } c_{S}=-7, \Delta=13 \\ \sum_{x \in V}(d(x)-6)+\sum_{f \in F}(d(f)-3)=48 & \text { if } c_{S}=-8, \Delta=14\end{cases}
$$

By Theorem 1.2, we have

$$
\begin{cases}2.25 \times|V| \leq 24 & \text { if } c_{S}=-4, \Delta=10 \\ 3 \times|V| \leq 30 & \text { if } c_{S}=-5, \Delta=11 \\ \frac{48}{13} \times|V| \leq 36 & \text { if } c_{S}=-6, \Delta=12 \\ \frac{56}{13} \times|V| \leq 42 & \text { if } c_{S}=-7, \Delta=13 \\ \frac{64}{13} \times|V| \leq 48 & \text { if } c_{S}=-8, \Delta=14\end{cases}
$$

Hence, $|V| \leq 10.67$ or $|V| \leq 10$ for $\Delta=10$ or 11 respectively. And $|V| \leq 9.75$ for $\Delta=12,13,14$. By Lemma 4.2, we have contradictions.

References

[1] L.W. Beineke, S. Fiorini, On small graphs critical with respect to edge-colourings, Discrete Math. 16 (1976) 109-121.
[2] D. Bokal, G. Brinkmann, S. Grünewald, Chromatic-index-critical graphs of orders 13 and 14, Discrete Math. 300 (2005) 16-29.
[3] G. Brinkmann, E. Steffen, 3- and 4-critical graphs of small even order, Discrete Math. 169 (1997) 193-197.
[4] G. Brinkmann, E. Steffen, Chromatic-index-critical of orders 11 and 12, European J. Combin. 19 (1998) 889-900.
[5] X. Li, Lower bounds on edge critical graphs with maximum degree of 7, 8 and 9, Adv. Appl. Discrete Math. 5 (2) (2010) 97-113. India.
[6] X. Li, A new lower bound on critical graphs with maximum degree of 8 and 9, Ars Combin. 98 (2011) 241-257.
[7] S. Li, X. Li, Edge coloring of graphs with small maximum degrees, Discrete Math. 309 (2009) 4843-4852.
[8] X. Li, B. Wei, An improved lower bond on edge critical graphs with maximum degree of 8 and 9, Adv. Appl. Discrete Math. 12 (1) (2013) 1-38. India.
[9] R. Luo, L. Miao, Y. Zhao, The size of edge chromatic critical graphs with maximum degree 6, J. Graph Theory 60 (2009) 149-171.
[10] L.-Y. Miao, W.-Y. Song, S.-Y. Pang, Z.-K. Miao, On the size of critical graphs with small maximum degree, Int. J. Comput. Math. (2014) http://dx.doi.org/ 10.1080/00207160.2014.883068. March.
[11] D. Sanders, Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B 83 (2) (2001) 201-212.
[12] D. Sanders, Y. Zhao, Coloring edges of graphs embedded in a surface of characteristic zero, J. Combin. Theory Ser. B 87 (2003) $254-263$.
[13] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Anal. 3 (1964) 25-30.
[14] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134. (in Russian); English translation in Russian Math. Surveys, 23 (1968) 125-141.
[15] D. Woodall, The average degree of an edge-chromatic critical graph. II, J. Graph Theory 56 (3) (2007) 194-218.
[16] D. Woodall, The average degree of an edge-chromatic critical graph, Discrete Math. 308 (5-6) (2008) 803-819.
[17] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs Combin. 16 (4) (2000) 467-495.

[^0]: * Corresponding author.

 E-mail addresses: xcli@uga.edu (X. Li), bwei@olemiss.edu (B. Wei).

