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1. Introduction

Let V and E be the vertex set and edge set of a graph G, while |V | and |E| represent the cardinality of V and E of G, re-
spectively. For a vertex x, set N(x) = {v : xv ∈ E(G)} and d(x) = |N(x)|, the degree of x in G. We use ∆ and δ to denote the
maximum and the minimum degrees of G, respectively. For a vertex set S of G, set N(S) = ∪x∈S N(x). A k-edge-coloring of a
graph G is a function φ : E(G) → {1, . . . , k} such that any two adjacent edges receive different colors. The edge chromatic
number, denoted by χe(G), of a graph G is the smallest integer k such that G has a k-edge-coloring. Vizing’s Theorem [13]
states that the edge chromatic number of a simple graph G is either ∆ or ∆ + 1. A graph G is class one if χe(G) = ∆ and is
class two otherwise. A class two graph G is critical if χe(G − e) < χe(G) for each edge e of G. A critical graph G is ∆-critical if
it has maximum degree ∆.

The following conjecture was proposed by Vizing [13] concerning the sizes of critical graphs.

Conjecture 1.1. If G = (V , E) is a critical simple graph, then |E| ≥
1
2 (|V |(∆ − 1) + 3).

Some best known lower bounds of size of critical graphs are listed below [7,5,16,15,10]. Let G be a ∆-critical graph with
average degree q, where q =


v∈V (G) d(v)

|V |
.

If ∆ = 7, q ≥ 6. If ∆ = 8, q ≥
20
3

. If ∆ = 9, q ≥ 7.3.

If ∆ = 10, q ≥ 8. If ∆ = 11, q ≥ 8.6. If ∆ = 12, q ≥ 9.25.

If 8 ≤ ∆ ≤ 17, q ≥
4
7
(∆ + 3). If ∆ ≥ 8, q ≥

2
3
(∆ + 1).

We improve some of the earlier results in the following theorem: main theorem.
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Theorem 1.2. Let G be a ∆-critical graph with ∆ ≥ 8. Then |E(G)| ≥
|V (G)|

2 q where q = 8.25, 9, 126
13 , 134

13 , 142
13 for ∆ = 10, 11,

12, 13, 14 respectively.

We show some lemmas in Section 2, and then provide our proof of the main theorem in Section 3.

2. Adjacency lemmas

Throughout this paper,G is a∆-critical graphwith∆ ≥ 10. A k-vertex (or, (≤k)-vertex, (≥k)-vertex) is a vertex of degree
k (or ≤k, ≥k, respectively). A vertex w is a k-neighbor of x if w ∈ N(x) and d(w) = k. Let Vk (or V≤k) be the set of vertices
with degree k (or ≤k). Let d≤k(x) denote the number of (≤k)-vertices adjacent to x. Similarly define d≥k(x). Let φ be the
∆-edge coloring of G − xw, φ(v) be the set of colors of the edges adjacent to the vertex v under edge coloring φ. A vertex
v sees color j if v is adjacent to an edge colored by j. Denote by Pj,k(v)φ the (j, k)-bi-colored path starting at v under edge
coloring φ, or by Pj,k(v) if there is no confusion. The following one belongs to Vizing [14], which will be abbreviated as VAL
in this article.
VAL: If xw is an edge of a ∆-critical graph G, then x has at least (∆− d(w)+ 1)∆-neighbors. Any vertex of G has at least two
∆-neighbors.
Adjacency Condition [17,11]: Let G be ∆-critical, xw ∈ E(G) and d(x)+d(w) = ∆+2. The following hold: (1) every vertex
ofN(x, w)\{x, w} is a∆-vertex; (2) every vertex ofN(N(x, w))\{x, w} is of degree at least∆−1; and (3) if d(x), d(w) < ∆,
then every vertex of N(N(x, w)) \ {x, w} is a ∆-vertex.

Through this paper, without loss of generality, under coloring φ, edges incident with x in G− xw are colored by 1, 2, . . . ,
d − 1, while those incident with w are colored by ∆ − k + 2, . . . ∆ where d = d(x), k = d(w).

Let C1 be the set of colors present at only one of x, w and C2 be the set of colors present at both. Further let C11 be the set of
colors present only at x, and C12 be the set of colors present only atw. Wemay assume that C1 = C11∪C12 = {1, . . . , ∆−k+

1}∪{d, d+1, . . . , ∆} and C2 = {∆−k+2, . . . , d−1}, where C2 = ∅ if d+k = ∆+2. |C1| = 2∆−d−k+2, |C2| = d+k−

∆ − 2. Let Cv = {i : vertex v misses color i}.

Lemma 2.1 ([8]). Let xw be an edge of G with d(x)+d(w) = ∆+2 and d(x), d(w) < ∆. Then every vertex of N(N(N(x, w)))\
{x, w,N(x, w),N(N(x, w))} (assume that it is not empty) is adjacent to all ∆-vertices.

In order to give improved adjacency properties on the i-vertex, we provide some claims. First two claims are equivalent
to Facts 1 and 2 in [9], and for the purpose of convenience of uniform discussion, we re-write them as Claims A and B.

Claim A. For each neighbor wj of w in G − xw where φ(wwj) = j present only at w, then wj must see each color in C1.

Claim A will be often used in the discussion through this paper without notifying.

Claim B. For each neighbor xi of x where φ(xxi) = i present only at x, then xi must see each color in C1. Note that x has at least
∆ − k + 1 such xi.

Due to Claim B, we call a swapping (i, j) a nice swapping if it does not change the set of colors of edges incident with x
and w in G − xw.

Claim C. For a neighbor wb of w where b ∈ C2, if one of such w′

bs misses a color in C1, then we could assume that one of those
w′

bs misses color 1. Note that we can only assure there is one such vertex wb.

We assume, without loss of generality, that wb misses ∆ but sees 1, then we swap color 1 with the missing color along
the path starting at wb, by Claim B, this swapping is a nice one because it does not affect the colors of edges that are incident
with x, w. So wb misses color 1.

Claim D which follows is similar to Fact 4 in [9] but it is slightly stronger. So the proof is provided in the appendix.

Claim D. Let x and w be adjacent in ∆-critical graph G with d(x) = d, d(w) = k. G − xw has a ∆-edge coloring φ. Let xxay be
a path in G − xw where φ(xxa) = a ∈ C11 and y ≠ w such that φ(xay) ∈ C1. Then y must see each color in C1, that is, d(y) ≥

2∆ − d − k + 2. Note that there are 2∆ − d − k + 1 such y′s, and some of them may be adjacent to vertices in N(x).

Lemma 2.2. For a ∆-edge coloring φ of G − xw with d(x) = d, d(w) = k (see Fig. 1), let xxαy and xxru be paths that start at
x, where φ(xxα) = α present only at x and φ(xxr) = r is a color in C2. If there is a vertex wj ∈ N(w), where φ(wwj) = j ∈ C12,
and wj misses r ∈ C2, or if there is a wr ∈ N(w) with φ(wwr) = r ∈ C2, and wr misses a color in C1, then we have the following:

(i) xα must see r ∈ C2. (ii) y sees each color in C1 and r; further, if φ(xαy) = r ∈ C2, then y sees each color in C1 and color
r ′(≠r) if there is a wj′ ∈ N(w) (j′ ∈ C12) missing r ′

∈ C2, or there is a wr ′ ∈ N(w) with φ(ww′
r) = r ′ and wr ′ misses a color in

C1. (iii) xr must see each color in C1 and also color r ′ as described in (ii). (iv) u sees each color in C1 and also sees r ′ as described
in (ii).

Proof. The proof consists of two parts: Part I and Part II. Part I: If there is a vertex wj ∈ N(w), where φ(wwj) = j ∈ C12, and
wj misses a color r ∈ C2, then our results hold. Part II: If there is a wr ∈ N(w) with φ(wwr) = r ∈ C2, and wr misses a color
in C1, then our results hold.
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Fig. 1. ∆-edge coloring φ of G − xw exhibited at N(x) ∪ N(w).

Proof of Part I. Note that wj(j ≥ d) must see each color in C1. Initially, we form two observations.

Observation 1. Pα,r(wj) must end at w where α (∈ C11) present only at x.

Otherwise, we assume that Pα,r(wj) does not end at w, so we swap (α, r) along the path starting at wj because wj sees α
by Claim A. And note that the swapping does not affect colors of edges that are incident with x, so we recolor wwj, xw with
α, j respectively, which leads us a ∆-edge coloring of G, a contradiction.

Observation 2. Pβ,r(wj) must end at x where β (∈ C12) present only at w.

Otherwise, swapping (β, r) along Pβ,r(wj) does not affect colors of edges incidentwith x andw (Pβ,r(wj)may pass though
w). Under the current coloring, wj sees r but not β . Note that β present only at w, and wj should see β; thus we have a
contradiction.

Now we are ready to show our results. Without loss of generality, we assume that w∆ misses a color r ∈ C2.
Proof of (i). We claim that xα sees r .

By Claim A xα sees each color in C1. xα also sees r if xα is on one of the paths Pα,r(w∆) and Pβ,r(w∆). As a result, we assume
that xα is not on either one of them. Hence a nice swapping (β, r) along the path starting at xα shows that xα misses β , which
is a contradiction.
Proof of (ii). We claim that y sees each color in C1 and r .
(ii-1) We assume that φ(xαy)(=s) ∈ C1.

Through Claims A and D, y sees all colors in C1. As a result, we only need to show that y sees r . If s ∈ C11, we consider
the Pβ,r(y) (β ≠ ∆). By Observation 2, Pβ,r(w∆) ends at x, so Pβ,r(y) cannot end at x because two (β, r) paths cannot share
a common ending edge. So a nice swapping (β, r) along Pβ,r(y) shows us that y sees r but not β , a contradiction. If s ∈ C12,
we consider the Pα,r(y) where α present only at x. By Observation 1, Pα,r(w∆) ends at w, so the path Pα,r(y) cannot end at
w. Thus, a nice swapping (α, r) along Pα,r(y) providing us that y sees r but not α, a contradiction.
(ii-2) We assume that φ(xαy) = r ∈ C2 which is missed by w∆.

Note that first we need to show y sees each color in C1.
(ii-2-1) We claim that y must see each color β(β≠∆) present only at w.
Otherwise, we consider Pr,β(y). Since Pβ,r(w∆) ends at x through Observation 2, so Pr,β(y) does not end at x. A nice

swapping (r, β) along Pr,β(y) gives us that the edge xαy is colored by β which brings us to the case (ii-1).
(ii-2-2) We claim that y sees each color present only at x.

Otherwise, ymisses a color a ∈ C11, then a nice swapping (β, a) along Pβ,a(y) causes y tomiss β , which is a contradiction.
(ii-2-3) We claim that y sees ∆.

Otherwise, a nice swapping (α, ∆) along Pα,β(y) causes y to miss α, which contradicts (ii-2-2).
(ii-2-4) We claim that y sees r ′ if there is a wj′ ∈ N(w)(j′ ≥ d) missing a color r ′

∈ C2.
Note that Pβ,r ′(w∆) ends at x. If r ′

∈ Cy, Pβ,r ′(y) cannot end at x. A nice swapping (β, r ′) along Pβ,r ′(y) causes y to see r ′,
but not β , which contradicts (ii-2-1).
Proof of (iii). Consider that φ(xxr) = r ∈ C2 where r ∈ Cw∆

. We show that xr sees each color in C1 and r ′
∈ C2(r ′

≠ r) if
there is any r ′

∈ C2 ∩ Cwj′
where w′

j ∈ N(w), j′ ∈ C2.
First, xr sees each β(≠∆) in C12 through Observation 2. Second, xr sees each α ∈ C11 through Claim A and nice swapping

(β, α) argument. Third, xr sees ∆ by nice swapping (α, ∆) argument. Last, xr sees r ′
∈ C2 other than r if there is any, where

r ′
∈ Cwj and j ∈ C12. Otherwise, by Observation 2, xr is not on the path Pβ,r ′(wj), so a nice swapping (β, r ′) starting at xr

results in a contradiction.
(iv) We claim that u sees each color in C1 and color r , where u ∈ N(xr).
(iv-1) We assume that φ(xru) present at w, for example β .

Using Observation 2, u sees r because xrumust be on the path Pβ,r(w∆).



4 X. Li, B. Wei / Discrete Mathematics 334 (2014) 1–12

First, u sees color β ′
∈ C12 (β ′

≠ β). Otherwise, by Observation 2, u is not on the path Pβ ′,r(w∆), so a nice swapping
(r, β ′) along Pr,β ′(u) causes u to see β ′ but not r , a contradiction to that u must see r . Second, u sees each color a ∈ C11.
Otherwise, a nice swapping (β ′, a) along Pβ ′,a(u) will result in u missing a color β ′

∈ C12, which is a contradiction. Third, u
sees r ′

∈ C2 which is described in proof of (iii). Otherwise, apply Observation 2 and swapping argument similar to that in
the proof of (iii), we will have a contradiction.
(iv-2) We assume that φ(xru) = α ∈ C11.

Applying Observation 1 and swapping argument similar to (iv-1), we have that u sees each color in C1 and color r ′
∈ Cw∆

.
The proof is omitted here.
(iv-3) We assume that φ(xru) = r ′

∈ C2 missed by wj(j ≥ d) which is described in (ii).
First, u sees each color a ∈ C11. Otherwise, u is not on the path Pa,r ′(wj) through Observation 1. On the other hand, a nice

swapping (r ′, a) along the path starting at u causes that edge xru is colored by awhich is the case of (ii). That is, u sees all col-
ors in C1 and all colors missed by wj, which is a contradiction. Second, u sees each color β ∈ C12. Otherwise, a nice swapping
(a, β) results u to miss color a ∈ C11, which is a contradiction. Third, u sees each color r ′′

∈ C2(≠ r) missed by wj′′ where
wj′′ ∈ N(w) with j′′ ≥ d if one exists. Otherwise, by Observation 2, a nice swapping (β, r ′′) along the path starts at uwould
result in a contradiction.
Proof of Part II. Recall that if φ(xαy) ∈ C1, through Claims B and D, y must see each color in C1. The proof consists of two
parts; Part A: wr misses a color in C11, and Part B: wr misses a color in C12.
Proof of Part A. We assume that wr misses a color a ∈ C11.
Case (A-1) a ≠ α.

We re-colorwwr by a, and denote the current coloring byφ∗. Now r ∈ C11. Hence, (i) xα sees r and (ii) y sees r . Further, (iii)
xr sees all color in C1 except a. Nowwe show that xr must see a. Otherwise, a nice (∆, a) swapping along the path that starts
at xr which causes xr to miss ∆, a contradiction. Next, consider φ(xαy) = r . Under coloring φ∗, r present only at x, so y sees
all colors in C1 except a. Now uncolor edge wwr and color it with its original color r . If ymisses a, we could do a nice (∆, a)
swapping along the path that starts at y, which causes y to miss ∆, which is a contradiction. Last, we consider φ(xru) ∈ C1.
Under coloring φ∗, r present only at x. So xr and u play the same roles as that of xα and y earlier. Hence, u sees all colors in C2.
Nowwe show that xr sees r ′ if there exists a wr ′ ∈ N(w) with r ′

∈ C2 and wr ′ missing a color present only at x, say, s. We re-
colorwwr ′ by s. Then r ′ present only at x under current coloring. If xr misses r ′, a nice swapping (∆, r ′) along the path starting
at xr causes xr to miss ∆. Now we re-color wwr ′ by its original color r ′. But then xr misses ∆ which contradicts the previous
result that xr sees∆. Finally, considerφ(xru) = r ′

∈ C2, andwe show that u sees each color in C1 and r .We re-colorwwr by a,
then r present only at x, and xr anduplay the same roles as that of xα and ybefore, respectively. So the results hold for xr andu.
Case (A-2) a = α.

If φ(xay) ∈ C1, under φ∗, by nice (∆, r) swapping arguments for y, xa respectively, then clearly both y and xa see r . Next,
we show that u sees each color in C1 where xxau is a pathwithφ(xau) = r . Underφ∗, r present only at x, if umisses a β which
present only atw, then by Claim D, we could do a nice (r, β) swapping starting at u, which causes xau to be colored by β; we
then re-color wwr by r , so now u plays the same role as y did before; that is, u sees all colors in C1, which is a contradiction.
So u sees each color in C12. By a similar swapping argument, u sees each color present only at x and color r ′

∈ C2 if there
exists a wr ′ ∈ N(w) missing a color present only at x. In order to avoid repetition, we omit the proof.
Proof of Part B. We assume that wr misses a color b ∈ C11.

We provide an observation first.

Observation 3. Pr,b(wr) must end at x.

Otherwise, a swapping (r, b) along the path starting at wr does not affect colors of edges incident with x, wwr is colored
by b under current coloring and misses the color r ∈ C2. By Part I, our result holds.
(B-1) We claim that y sees r where φ(xαy) ∈ C1.

Note that y sees all colors in C1. If ymisses r , then P∆,r(y) will not end at either x or wr by Observation 3. So we do a nice
swapping (b, r) along the path starting at y, it shows that y misses b, which is a contradiction.
(B-2) We claim that xα sees r . Consider the path Pb,r(xα), using similar argument as that for path Pb,r(y) in (B-1), clearly xα

sees r .
(B-3) Let φ(xαv) = r ∈ C2, where v ∈ N(xα). We claim that v sees all colors in C1. Further, v sees r ′

∈ C2 if there exists a
wr ′ ∈ N(w)(r ′

≠ r) that misses a color in C1.
Through Observation 3, Pr,b(v) does not end at x, so v sees the color b. And applying Claims A and B, v sees each color in

C1. Further, if wr ′ misses a color a ∈ C11 (where wr ′ ∈ N(w) and φ(ww′
r) = r ′

∈ C2), then we re-color wwr ′ by a, so v sees
r ′. If wr ′ misses a color b′

∈ C12, by Observation 3, Pr ′,b′(wr ′) ends at x. Then Pb′,r ′(v) will not end at either x or wr ′ . Thus, we
can perform a nice swapping (b′, r ′) along the path that starts at v, which causes v to miss b′, which is a contradiction.
(B-4) Let φ(xxr) = r , we claim that xr sees all colors in C1; further, if there is a wr ′ (r ′

≠ r) that misses a color in C1, xr also
sees r ′.



X. Li, B. Wei / Discrete Mathematics 334 (2014) 1–12 5

If xr misses b ∈ C12, by Observation 3, Pr,b(xr) does not end at x, so a nice swapping brings us that xr sees each color in C12.
Then, through Claim A, Claim B and swapping method, xr first sees all colors in C11. Finally, by applying the same argument
as that in (B-3), we have that xr sees r ′

∈ C2.
(B-5) Let xxru be a path where φ(xxr) = r ∈ C2. We claim that u sees all colors in C1 and color r ′

∈ C2 if there exists a wr ′ ∈

N(w)(r ′ < d) that misses a color in C1.
First, let φ(xru) = β ∈ C12. By Claim B and the swapping method, clearly we see that (1) u sees all colors in C11; (2) u

sees all colors in C12. Now we show that u sees r ∈ C2. If β = bwhere b is missing by wr , applying Observation 3, u sees r . If
β ≠ b, since u sees b, applying Observation 3 again, Pb,r(u) does not end at either x orwr . Hence, a nice swapping (b, r) along
the path that starts at u causes u to miss b, a contradiction. Second, we assume that φ(xru) ∈ C11. By Claim B and similar
swapping methods as seen in the previous paragraph for the path Pb,r(u), clearly we have that (1) u sees all colors in C12;
(2) u sees all colors in C11; and (3) umust see r ∈ C2. Third, we assume that φ(xru) = r ′ (r ′

∈ C2 where φ(wwr ′) = r ′ andwr ′

misses a color in C1). If wr ′ misses a ∈ C11, we simply re-color wwr ′ with a; r ′ now present only at x. u sees each color in C1,
and sees r by similar discussion in the previous discussion. If wr ′ misses b′ which present at w only, applying Observation 3,
Pr ′,b′(wr ′) must end at x, a contradiction. If u misses b ∈ C12, note that xr sees b, so we can perform a nice swapping (r ′, b)
along the path that starts at u, using discussion from the first two lines of (B-5), we have a contradiction. Nowwe show that
u sees r . Otherwise, we consider Pb,r(u). Applying Observation 3, the pathwill not end either at x or atwr . So a nice swapping
(b, r) could be performed along the path starting at u, which shows that umisses b, which is a contradiction.

Hence we finish the proof of Lemma 2.2. �

The following lemmauses vertex sequence rotationmethod to generalize the adjacency lemma by Sanders and Zhao [12].

Lemma 2.3. For a ∆-edge coloring φ of G-xw (see Fig. 1), d(x) = d, d(w) = k and |C2| = d + k − ∆ − 2. If the number of
(≤∆ −

|C2|
2 )-neighbors of w is |C2| − 1 or |C2|, then there are ∆ − k + 1 + ⌊

1
2 |C2|⌋ neighbors xα of x satisfying: xα

≠ w; xα is
adjacent to at least 2∆ − d − k + 1 + ⌊

1
2 |C2|⌋ vertices y different from x with degree at least 2∆ − d − k + 2 + ⌊

1
2 |C2|⌋.

Proof. The set of (≤∆ −
|C2|
2 )-neighbor of w could be categorized as below. Let

R1
=


wj : φ(wwj) = j ∈ C2, d(wj) ≤ ∆ −

1
2
|C2|, Cwj ∩ [φ(w)∆φ(x)] ≠ ∅


where φ(w)∆φ(x) is symmetrical difference of φ(x) and φ(w). In other words, each vertex wj in R1 misses at least 1

2 |C2|

colors including at least one color in C1. Let

R2
=


wj : φ(wwj) = j ∈ C12, d(wj) ≤ ∆ −

1
2
|C2|, Cwj ∩ [φ(w)∆φ(x)] = ∅


.

In other words, each vertex wj (j ∈ C12) in R2 misses at least 1
2 |C2| colors in C2. Let

R∗
=


wj : φ(wwj) = j ∈ C2, d(wj) ≤ ∆ −

1
2
|C2|, Cwj ⊆ [φ(x) ∩ φ(w)]


.

In other words, each vertexwj ∈ C2 in R∗ misses at least 1
2 |C2| colors in C2. Note that R1, R2, R∗ are vertex pairwise disjointed

and |R1
∪ R2

∪ R∗
| = |C2| − 1 or |C2|.

Let xxαy and xxru be two paths that starts at x, where φ(xxα) = α ∈ C11, and φ(xxr) = r , where r ∈ C2 ∩ Cwj if wj ∈ R2

or wr ∈ R1
∪ R∗. In order to prove the results, we need to prove following equivalent results:

(i) If φ(xαy) ∈ C1, then y sees each color in C1 and also sees r . (ii) xα must see color r ∈ C2, and let φ(xαy) = r , then y sees
each color in C1 and also sees r ′ if there exists one wr ′ ∈ R1

∪ R2
∪ R∗ with φ(ww′

r) = r ′. (iii) xr must see each color in C1
and r ′

∈ C2 described in (ii). (iv) u sees each color in C1 and r ′
∈ C2 described in (ii).

By Lemma 2.2, if |R1
∪ R2

| ≥ ⌊
|C2|
2 ⌋, then our results hold. Now we assume that |R1

∪ R2
| < ⌊

|C2|
2 ⌋, so that |R∗

| ≥
|C2|
2 .

Without loss of generality, let wr(∈ R∗) miss at least ⌊
|C2|
2 ⌋ colors in C2.

Proof of (i). We consider the path xxαy where φ(xαy) = s, and s ∈ C1.
Note that y sees each color in C1.We show that y sees color r . We prove it by contradiction. We assume that ymisses color

r . The procedure showed below is called vertex sequence rotation method. Be aware that wr misses at least 1
2 |C2| colors in C2.

So we can find a color r1 ∈ C2 that is free at vertex wr such that the corresponding vertex wr1 is also in R∗. Since wr1 ∈ R∗,
and surely, wr1 misses at least 1

2 |C2| colors in C2, then there is a color of C2, for example, r2, which is free at vertex wr1 such
that the corresponding vertex wr2 is still in R∗. By repeating this procedure up to |R∗

| times, we obtain a vertex sequence
[wr , wr1 , wr2 , . . . , wrs ] of R

∗ where wri misses color ri+1, and wrs misses color r . We claim that the P∆,r(y) passes through w
and ends at x. That is, three vertices y, w, and xmust be in the same (∆, r) component of G− xw. Otherwise, if P∆,r does not
pass w, we swap (r, ∆) on an (r, ∆)-bi-colored component of G− xw containing w which shows edge wwr is colored by ∆,
by the proof of Lemma 2.2(ii), y sees r , which is a contradiction. If P∆,r(y) does not end at x, we swap (r, ∆) along the path
starting at x which causes y to see color r by Claim D under current coloring, which is contradiction. Thus the claim holds.
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Since the path P∆,r(y) passes w and ends at x, first, we assume wr is a successor of w on the path P∆,r(y), that is, P∆,r(y) =

yz1z2 . . . w∆wwr . . . x. We re-color wwr , wwr1 , wwr2 , . . . , wws−1, wwrs by r1, r2, r3, . . . , rs, r respectively. We denote the
current coloring by φ∗. Under φ∗, P∆,r(x) must end at wr1 because wr sees r1 but not r . Then swapping (r, ∆) along the
path that starts at x does not affect colors of edges incident with y, w under φ∗, so ymust see r , as r present only at w under
φ∗, which is a contradiction. Next, we assume wr is a predecessor of w, that is, P∆,r(y) = yz1 . . . wrww∆ . . . x. Under φ∗, so
P∆,r(y) must end at wr . We perform a nice swap (r, ∆) along Pr,∆(y), then y misses ∆ under φ∗, which is a contradiction.
Thus d(y) ≥ 2∆ − d − k + 2 + |R∗

| ≥ 2∆ − d − k + 2 + ⌊
1
2 |C2|⌋.

Proof of (ii). We claim that x-neighbor xα must see at least ⌊
|C2|
2 ⌋ r where wr ∈ R∗ and φ(xxα) = α present only at x.

We assume that xα misses a color r ∈ C2 where wr ∈ R∗, φ(wwr) = r . We perform the same vertex sequence rota-
tion operation as that in (i), then applying swapping argument with respect to the path P∆,r(xα) as that in (i), we have a
contradiction. In order to avoid repetition, we omit the detail.

Next, let y ∈ N(xα) and φ(xαy) = r . First, y sees each color in C12 by using a similar swapping argument on the path
Pr,∆(y) as that of P∆,r(y) in (i). Second, y sees each color in C11 by applying the same argument as in (i) on path P∆,a(y).
Finally, y sees r ′

∈ C2(r ′
≠ r) if there exists a φ(wwr ′) = r ′ and wr ′ ∈ R∗. Otherwise by using similar argument on P∆,r ′(y)

as that of P∆,r(y) in (i), we have that y sees r ′. Hence d(y) ≥ 2∆ − d − k + 2 + |R∗
| ≥ 2∆ − d − k + 2 + ⌊

1
2 |C2|⌋.

Proof of (iii). We claim that xr , where φ(xxr) = r ∈ C2 and wr ∈ R∗, has the same property as that of xα in (i) and (ii).
(iii-1) We claim that xr sees each color in C1.
We assume that xr misses a color a ∈ C11. We consider Pr,a(xr). If edge wrw is not on Pr,a(xr), swapping (r, a) along

Pr,a(xr) does not affect colors seen by w. Now xr plays the same role as xα was in (i), so our results hold. Now we assume
that Pr,a(xr) ends at w and passes through edge wrw. Note that wr ∈ R∗, by applying vertex sequence rotation operation
as described in (i), current coloring brings us to the previous case since Pr,a(xr) does not use edge wrw any more. So xr sees
each color in C11. If xr misses a color b ∈ C12, by Claim D and swapping (a, b) along the path that starts at xr , this process
causes a contradiction because xr misses a.

(iii-2) We claim that xr sees r ′ if there exists a wr ′ ∈ R∗ where wwr ′ = r ′
∈ C2.

The argument is similar to that in the case of y seeing r ′ in (ii), so we omit the proof.
Proof of (iv). Let u be a neighbor of xr other than x, we have that u sees all colors in C1 and color r ′ if there is a wr ′ ∈ R∗.

(iv-1) If φ(xru) ∈ C1. Then u plays a similar role to that of y in (ii). By similar argument as y in (ii), clearly u sees all colors
in C1. Nowwe claim that u sees r . Otherwise, we consider P∆,r(u). Note that the path P∆,r(u) plays the same role as the path
P∆,r(y) in (i), so we perform vertex-sequence rotation operation on wr , by similar argument as that in (i), and we have that
u sees r , and furthermore u sees a color r ′′

∈ C2(r ′′
≠ r) if there exists a wr ′′ ∈ R∗.

(iv-2) If φ(xru) = r ′
∈ C2, then by argument used in (iii-2) we have that u sees each color in C1 and color r ∈ C2 where

wr ∈ R∗. Furthermore u also sees r∗
∈ C2 if there is wr∗ ∈ R∗ where φ(wwr∗) = r∗. Note that vertex u plays the same role

as vertex xr in (iii). r∗ plays same role as r ′ in (iii). The argument is similar, so we omit the proof here.
Thus we complete the proof of Lemma 2.3. �

Corollary 2.4. Let x be a 3-vertex of a critical graph G which is adjacent to three ∆-vertices: y, z, w. If one of three ∆-neighbors
of x, say w, is adjacent to one (≤∆ − 1)-vertex other than x, then there are at least two ∆-neighbors of x, say y and z, such that
d<∆(y) = 1, d<∆(z) = 1.

Proof. We provide the proof by contradiction. Let w be adjacent to one (≤∆ − 1)-neighbor, say wj. We have that j either
present only at w, or present at both x, w (see Fig. 2), so by Lemma 2.3, where |C1| = ∆ − 1, |C2| = 1, our result holds. �

Denote that δ1(x) = min{d(y), y ∈ N(x)}.

Lemma 2.5 ([9,7]). Let x be a d-vertex with 4 ≤ d ≤ 6 and w be a δ1(x)-neighbor of x.

(i) d(w) = ∆. If w is adjacent to at least d − 2 (≤∆ − d + 2)-vertices other than x, then each of the rest ∆-neighbors y of x
has d≤∆−d+2(y) = 1.

(ii) d(w) = ∆ − 1.
(ii-1) If w is adjacent to (d − 3) (≤∆ − d + 3)-vertices other than x, the remaining neighbors y of x are all ∆-vertices and

d<∆−d+4(y) = 1.
(ii-2) If w (where d(x) ≠ 6) is adjacent to (d−4) (≤∆−d+3) vertices other than x, then there are (d−2) (≥∆−d+4)-

neighbors y of x including at least one ∆-neighbor that satisfy the following situations: if y is a ∆-vertex, then
d≤∆−1(y) ≤ 2; if y is a (∆ − 1)-vertex, then d≤∆−1(y) = 1.

(ii-3) For the case of d(x) = 6, if (ii-1) does not happen, then each (∆ − 1)-neighbor y of x has d≤∆−3(y) ≤ 3.

Lemma 2.6. Let x be a 4-vertex in ∆-critical graph G and w be a δ1(x)-neighbor of x.

(i) [17] If |N(x) ∩ V∆| = 2, then N(N(x) ∩ V∆) ⊂ V∆−1 ∪ V∆ ∪ {x}.
(ii) [8] If d(w) = ∆ and w is adjacent to two (≤∆ − 2) vertices including x, then x has two ∆-neighbors y that satisfy the

following:
(ii-1) y is adjacent to all (≥∆ − 1)-vertices other than x including at least (∆ − 4)∆-neighbors in N(y) \ N(x).
(ii-2) And y has at least (∆ − 5)∆-neighbors t (t ∉ N(x)) such that d<∆−1(t) = 0 (see Fig. 3).
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Fig. 2. d(x) = 3, d(w) = ∆.

Fig. 3. d(x) = 4, d(w) = ∆.

Lemma 2.7 ([7]). Let x be a 5-vertex in G which has (∆ − 2)-neighbor w. If w is adjacent to only one (≤∆ − 2)-vertex which
is x, then there are three (≥∆ − 1)-neighbors of x including at least two ∆-neighbors y satisfying: if it is a ∆-vertex, then
d≤∆−2(y) ≤ 2; if y is a (∆ − 1)-vertex, then d≤∆−2(y) = 1.

Using the same method of Lemma 2.7 in [8], we have following result.

Corollary 2.8. Let x be a 5-vertex having a (∆ − 2)-neighbor w and x has at least three ∆-neighbors. Then there exist at least
three ∆-neighbors y of x such that each of them has at least (∆ − 6) ∆-neighbors u with d<∆−1(u) = 0.

Next, we consider a special case of 5-vertex.

Lemma 2.9. Let x be a 5-vertex of a critical graph G and x is also adjacent to exactly three (∆ − 1)-vertices and two ∆-vertices.
Then each of two ∆-neighbors y of x has d≤∆−2(y) = 2. Furthermore, if there is one (∆ − 1)-neighbor, say w, which has
d≤∆−2(w) = 2, then there exists a (∆ − 1)-neighbor y of x with d<∆−1(y) = 1.
Proof. The proof is almost the same as that of Lemma 2.10 of [8] except for a restriction on ∆ = 8, 9. But the restriction on
the maximum degree ∆ does not affect the proof at all. Release the restriction on ∆ and the result is still valid for all ∆. In
order to avoid repetition, the proof is omitted. �

Adjacency Condition gives us some information on two adjacent vertices of a critical graphwhose sum of degrees is∆+2.
The following Lemma summarizes adjacency conditions for two adjacent vertices of a critical graph Gwhose sum of degrees
is ∆ + 2 + pwhere p = 1, 2, 3, 4. The following lemma generalizes results of Lemma 2.9 in [6].

Lemma 2.10. Let x be a d-vertex (d ≥ 5) of a critical graph Gwhich is adjacent to a k-vertexw such that d(x)+d(w) = ∆+2+p
where p = 1, 2, 3, 4. If |(N(x) \ {w})∩ V≤∆−s| ≥ 1(s ≥ 1), then there are at least ∆− k+ 1(=d− p− 1) ∆-vertices z ∈ N(x)
satisfying: z ≠ w; z is adjacent to at least K vertices of degree at least ∆ − p + 1 where K = (∆ − 1) − p + s if s < p and
K = ∆ − 1 if s ≥ p.
Proof. The proof is similar to Lemma 2.9 in [6], so we omit the detail of proof here. �

3. The proof of main results

In this section, we will prove our main theorem. A vertex x is called small if d(x) < q. Suppose to the contrary, the
theorem is not true, then


x∈V (d(x) − q) < 0. Note that δ1(x) = min{d(y) : y ∈ N(x)}.

We perform charge–discharge method to obtain a contradiction. We call C(x) = d(x) − q the initial charge of the vertex
x and will assign a new charge to each vertex x according to the following rules. Let C ′(x) be the new charge of each vertex
x of G, and C ′(x) will be calculated for each x-vertex following discharge rules that are described below.
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R0 If∆ = 10, each∆-vertex sends 1
8 to each of its 8-neighbor. If∆ = 13, each∆-vertex sends 0.15 to each of its 10-neighbor.

R1 Let x be a 2-vertex adjacent to u, v. Each of u, v sends∆−q to x. By the Adjacency Condition, there are at least (∆−2) ∆-
vertices z adjacent to either u or v, and each sends ∆−q

∆
to x through u, v. So those z send 2 × (∆ − 2)∆−q

∆
to x. Hence

C ′(x) = 2−q+2(∆−q)+2×(∆−2)∆−q
∆

. It is straightforward to check that C ′(x) ≥ 0.05, 0.2, 0.7, 1.6, 2.5 for∆ = 10, 11,
12, 13, 14, respectively.
R2 Let x be a 3-vertex.
(R2-1) If x is adjacent to a (∆− 1)-vertex, by Adjacency Condition and Lemma 2.1, then two ∆-neighbors y of x are adjacent
to one (≤∆ − 2)-vertex which is x and there are at least (∆ − 3) ∆-neighbors z of ywith d≤∆−2(z) = 0. Thus each y sends
∆−q to x and each z sends ∆−q

∆
to x by passing through each of two y. Hence C ′(x) = (3−q)+2(∆−q)+2×(∆−3)∆−q

∆
≥

0.7, 0.9, 1.3, 2.2, 3 for ∆ = 10, 11, 12, 13, 14, respectively.
(R2-2) If x is adjacent to three ∆-vertices, and one of ∆-neighbors y is adjacent to two (∆ − 1)-vertices including x,
by VAL and Corollary 2.4, two ∆-neighbors z other than y are adjacent to no small vertices except x, and there are at
least (∆ − 2) ∆-vertices u ∈ N(z) which are adjacent to no small vertices. Hence, y sends ∆−q

2 to x, two ∆-neighbors z
send 2(∆ − q) to x, (∆ − 2) ∆-vertices u send (∆ − 2)∆−q

∆
to x through each of two ∆-neighbors z of x. Thus C ′(x) =

3 − q +
∆−q
2 + 2(∆ − q) + 2 × (∆ − 2)∆−q

∆
≥ 1, 2, 2, 3, 5, for ∆ = 10, 11, 12, 13, 14, respectively.

(R2-3) If x is adjacent to three ∆-vertices and each of them is adjacent to only one (≤∆− 1) vertex x, then each ∆-neighbor
sends (∆ − q) to x. Thus, C ′(x) = 3 − q + 3(∆ − q) ≥ 0, 0, 0.2, 0.7, 1 for ∆ = 10, 11, 12, 13, 14, respectively.
R3 Let d(x) + δ1(x) = ∆ + 2 and d(x) ≥ 4. We first consider the case of d(x) ≥ 5. Note that both x and its δ1(x)-neighbor
may be small vertices. By the Adjacency Condition, let (d(x) − 1) ∆-neighbors of x send half of (d(x) − 1)(∆ − q) to x if
d(x) ≥ 5. Furthermore, and by Lemma 2.1, there are (∆ − 4)∆-vertices in N2(x, w) \ {x, w} send half of (∆ − 4) ×

∆−q
∆

to x
through each of (d(x)−1) ∆-neighbors of x. So (≥5)-vertex x receives 1

2 (d(x)−1)(∆− q)+ (d(x)−1) 1
2 (∆−4)∆−q

∆
totally

if d(x) ≥ 5. It is straightforward to check that C ′(x) ≥ 0 for 10 ≤ ∆ ≤ 14.
Now we consider the case of d(x) = 4. Let each ∆-neighbor send 1

3 × (0.25) to δ1(x) (=8)-neighbor if d(x) = 4 and
∆ = 10. Each ∆-neighbor sends (∆ − q) to x if ∆ = 11, 12, 13, 14. Hence,

C ′(x) ≥



(4 − 8.25) + 3 ×


1.75 −

1
3

× 0.25


= 0.75 if d(x) = 4, δ1(x) = 8, ∆ = 10.

(4 − 9) + 3 × 2 = 1 if d(x) = 4, δ1(x) = 9, ∆ = 11.
4 −

126
13


+ 3 ×


12 −

126
13


≥ 1.2 if d(x) = 4, δ1(x) = 10, ∆ = 12.

4 −
134
13


+ 3 ×


13 −

134
13


≥ 1.7 if d(x) = 4, δ1(x) = 11, ∆ = 13.

4 −
142
13


+ 3 ×


14 −

142
13


> 2.3 if d(x) = 4, δ1(x) = 12, ∆ = 14.

From now on we consider d(x) ≥ 4 and d(x) + δ1(x) ≥ ∆ + 3.
R4 Let x be a 4-vertex and d(x) + δ1(x) ≥ ∆ + 3.
(R4-1) If x is adjacent to two (∆ − 1)-vertices and two ∆-vertices, by Lemmas 2.5(ii) and 2.6, each ∆-neighbor y of x is
adjacent to only one small vertex which is x, thus x receives 2(∆ − q) from its two ∆-neighbors y and 2 × ⌊

∆−4
2 ⌋

∆−q
∆

from
neighbors of those y. So C ′(x) ≥ (4− q)+ 2(∆− q)+ 2⌊∆−4

2 ⌋×
∆−q
∆

≥ 0.3, 0.09, 0.4, 0.7, 1.42 for ∆ = 10, 11, 12, 13, 14,
respectively.
(R4-2) If x is adjacent to one (∆ − 1)-vertex w and three ∆-vertices y, for (∆ − 1)-neighbor w may be adjacent to only
one (≤∆ − 2)-vertex which is x, we consider ∆-neighbors of x. There are two cases: Either w is adjacent to two (≤∆ − 1)-
vertices or there is one ∆-neighbor y that is adjacent to three (≤q)-vertices, by Lemma 2.6 and VAL, x receives min{

∆−q
3 +

2(∆ − q) + 2 × ⌊
∆−4
2 ⌋ ×

∆−q
∆

, 3 × (∆ − q)} ≥ 2(∆ − q) + 2⌊∆−4
2 ⌋

∆−q
∆

which is the same charge received in (R4-1), so
C ′(x) > 0 for 10 ≤ ∆ ≤ 14.
(R4-3) 4-vertex x is adjacent to four ∆-vertices y. If there is one ∆-neighbor w that is adjacent to two (≤∆ − 2)-vertices
other than x, then by VAL and Lemma 2.6(ii), three remaining ∆-neighbors of x send 3 × (∆ − q) to x, by straightforward
checking, C ′(x) ≥ (4 − q) + 3 × (∆ − q) > 0 for 10 ≤ ∆ ≤ 14. If each ∆-neighbor of x is adjacent to one (≤∆ − 2)-vertex
other than x, by Lemma 2.6, four ∆-neighbors of x send 4×

∆−q
2 to x; furthermore, there are 2× ⌊

∆−4
2 ⌋ vertices in N(N(x)),

which send 2 × ⌊
∆−4
2 ⌋

∆−q
∆

to x by passing through those ∆-neighbors. So x receives charges at least as much as that in
(R4-1), hence C ′(x) > 0 for 10 ≤ ∆ ≤ 14.
R5 Let x be a 5-vertex and d(x) + δ1(x) ≥ ∆ + 3.
(R5-1) If x is adjacent to (∆ − 2)-vertex w, by VAL, x has at least three ∆-neighbors. By Lemmas 2.2, 2.7 and 2.9 and (R0), x
receives following charge from its neighbors: min{4(∆−q−θ∆), 3(∆−q−θ∆), 3×

1
2 (∆−q−θ∆)} = 3×

1
2 ×(∆−q−θ∆),
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where θ∆ =
1
8 , 0.15 if∆ = 10, 13 otherwise θ∆ = 0. Furthermore, by Corollary 2.8, there are 3×⌊

∆−5
2 ⌋∆-vertices u, which

send 3 × ⌊
∆−5
2 ⌋

∆−q
∆

to x by passing through its three ∆-neighbors. Hence,

C ′(x) ≥



(5 − 8.25) + 3 ×
1
2


7
4

−
1
8


+ 3 × 2 ×

7
4

10
=

17
40

if ∆ = 10.

(5 − 9) + 3 ×
1
2
(11 − 9) + 3 × 3 ×

11 − 9
11

=
7
11

if ∆ = 11
5 −

126
13


+ 3 ×

1
2


12 −

126
13


+ 3 × 3 ×

12 −
126
13

12
= 0.5 if ∆ = 12.

5 −
134
13


+ 3 ×

1
2


13 −

134
13


− 0.15


+ 3 × 4 ×

13 −
134
13

13
> 0.9 if ∆ = 13.

5 −
142
13


+ 3 ×

1
2


14 −

142
13


+ 3 × 4 ×

14 −
142
13

14
> 1.3 if ∆ = 14.

(R5-2) If x is adjacent to a (∆ − 1)-vertex w, to avoid repetition, we consider the worst case, that is, x is adjacent to two
∆-vertices and three (∆− 1)-vertices. By Lemma 2.9, two ∆-neighbors send 2×

∆−q
2 to x. By Lemma 2.9 again, either there

are two (∆ − 1) neighbors which send 2 × (∆ − q − 1) to x, or there is one (∆ − 1)-neighbor which sends (∆ − 1 − q) to
x and remaining two (∆ − 1)-neighbors send 2 ×

1
2 × (∆ − 1 − q) to x. Thus x receives 2 ×

∆−q
2 + min{2(∆ − 1 − q) +

∆−1−q
3 , (∆ − 1 − q) + 2 ×

∆−1−q
2 } totally. So C ′(x) ≥ (5 − q) + 2 ×

1
2 (∆ − q) + 2 × (∆ − 1 − q) = 0, 0, 0.2, 0.7, 1.3 for

∆ = 10, 11, 12, 13, 14, respectively.
(R5-3) If x is adjacent to five∆-vertices, by Lemma 2.5 and VAL, x receivesmin{4(∆−q)+ 1

4 (∆−q), 3( 1
2 )(∆−q)+2( 1

3 )(∆−

q), 5( 1
2 )(∆−q)} = 3( 1

2 )(∆−q)+2( 1
3 )(∆−q) =

13
6 (∆−q). Hence C ′(x) ≥ (5−q)+ 13

6 (∆−q) ≥ 0.54, 0.33, 0.3, 0.5, 0.7
if ∆ = 10, 11, 12, 13, 14, respectively.
R6 Let x be a 6-vertex.
(R6-1) First consider that 6 ≤ d(x) < qwith d(x) + δ1(x) ≥ ∆ + 3. Let y ∈ N(x) with d(x) + d(y) = ∆ + 3. By Lemma 2.10
for p = 1, x receives min{(d(x) − 2)∆−q

2 , (d(x) − 1)∆−q
2 , (d(x) − 1)(∆ − q)} = (d(x) − 2)∆−q

2 from its neighbors. Thus
C ′(x) ≥ (6 − q) + (6 − 2)∆−q

2 > 1, 0.9, 0.8, 1, 1 for ∆ = 10, 11, 12, 13, 14, respectively.
From now on we consider that d(x) + δ1(x) ≥ ∆ + 4.

(R6-2) δ1(x) = ∆ − 2.
Let w be the δ1(x)-vertex of N(x). By VAL, x has at least three ∆-neighbors. If x is adjacent to two (∆ − 2)-vertices, then

by Lemma 2.10 for p = 2, s = 2, there are three ∆-neighbors z such that z is adjacent to ∆ − 1 vertices with degree
≥ ∆ − 1. That is, z is adjacent to one small vertex x. x receives 3 × (∆ − q). C ′(x) = (6 − q) + 3(∆ − q) ≥ 2, 2, 3, 3, 4 for
∆ = 10, 11, 12, 13, 14, respectively. If x is adjacent to one (∆−1)-vertex other thanw and four∆-vertices, by Lemma 2.10
for p = 2, s = 1, there are three ∆-neighbors z such that z is adjacent to ∆ − 2 vertices with degree ≥ ∆ − 1. That is, z
is adjacent to two small vertices, so each z sends ∆−q

2 to x together with remaining ∆-neighbor sending ∆−q
5 to x and one

(∆ − 1)-neighbor sending ∆−1
4 to x.

C ′(x) ≥ (6 − q) + 3 ×
1
2 × (∆ − q) +

1
5 (∆ − q) +

1
4 (∆ − 1 − q) > 0.8, 0.5, 0.1, 0.6, 0.7 for ∆ = 10, 11, 12, 13, 14,

respectively.
If x is adjacent to two (∆ − 1)-vertices other than w and three ∆-vertices, similar to previous discussion, we have that

three ∆-neighbors send 3×
1
2 × (∆ − q) to x and two (∆ − 1)-neighbors send 2×

1
4 (∆ − 1− q) to x. So C ′(x) ≥ (6− q) +

3 ×
1
2 (∆ − q) +

1
2 × (∆ − 1 − q) > 0.6, 0.4, 0.3, 0.5, 0.7 if ∆ = 10, 11, 12, 13, 14, respectively.

(R6-3) δ1(x) = ∆ − 1.
In order to avoid repetition, we consider that x has at least two (∆ − 1)-neighbors.
If each (∆ − 1)-neighbor x is adjacent to all (≥∆ − 2)-vertices other than x, then x receives at least 2 ×

1
3 (∆ − q) +

4(∆ − 1 − q − 3θ∆) (note that θ∆ =
1
8 , 0.15 if ∆ = 10, 13 respectively, and θ∆ = 0 otherwise). If there is one (∆ − 1)-

neighbor which is adjacent to a (≤∆ − 3)-vertex other than x and two (∆ − 2)-vertices, then x receives 3 ×
1
3 (∆ − q) and

i× 1
2 (∆−1−q−2θ∆)+j(∆−1−q−3θ)where i+j = 3. If xhas a (∆−1)-neighborwhich is adjacent to two (≤∆−3)-vertices

other than x and one (≥∆−2)-vertex, then x receives at least 4×
1
2 × (∆−q)+ i× 1

3 (∆−1−q− θ∆ + j(∆−1−q−3θ∆))
where i+ j = 2. If x has a (∆−1)-neighbor which is adjacent to three (≤∆−3)-vertices other than x, then x receives at least
5× (∆ − q). For the sake of convenience, let K be the smallest charge that x receives from its neighbors. By straightforward
calculation, K = 3×

1
3 (∆−q)+3×

1
2 (∆−1−q−2θ∆). C ′(x) ≥ (6−q)+K > 0.1, 1.4, 0.4, 0.4, 1 for∆ = 10, 11, 12, 13, 14,

respectively.
(R6-4) δ1(x) = ∆.

Let w be the ∆-neighbor of x with max{t : t = d≤∆−2(y) : y ∈ N(x)} which denoted by k. Note that k ≤ 4. If each
∆-neighbor of x is adjacent to at most three (≤∆−3)-vertices, then it is straightforward to check that C ′(x) ≥ (6−q)+6×
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1
3 (∆−q) > 1, 1, 0.9, 1, 1 for∆ = 10, 11, 12, 13, 14 respectively. Nowwe assume that one∆-neighbor, sayw, is adjacent to
i(i = 4, 5) (≤∆−3)-vertices. By Lemma2.3, where |C2| = 4 and |R1

∪R2
∪R∗

| = 3 or 4, there are 3(=1+⌊
|C2|
2 ⌋)∆-neighbors

xb ∈ N(x) and each xb has 2∆−6−∆+1+2(=∆−3) vertices y ∈ N(xb) such that d(y) ≥ ∆−2 (=2∆−d−∆+2+⌊
|C2|
2 ⌋)

which means that xb is adjacent to at most three small vertices. Thus x receives 3 ×
1
3 × (∆ − q) from those three ∆-

neighbors and 3×
1
5 (∆ − q) from rest three ∆-neighbors. So C ′(x) ≥ (6− q) + 3×

1
3 (∆ − q) + 3×

1
5 (∆ − q) ≥ 0.15, 0.2,

0, 0, 0 for ∆ = 10, 11, 12, 13, 14, respectively.
R7 Let x be a 7-vertex.
(R7-1) From (R6-1), we first consider d(x) + δ1(x) = ∆ + 4, and let w be the δ1(x)-vertex.
Subcase 1. |(N(x)∩V≤∆−s)\{w}| > 1where 0 < s ≤ 2. Applying Lemma2.10 for p = 2, 0 < s ≤ p, there are (d(x)−2−1)∆-
neighbors inN(x)\{w}, and each of which is adjacent to all (≥∆−p+1)(≥q)-vertices. Thus, x receives at least (d−3)

2 (∆−q)
from those∆-neighbors. It is straightforward to check thatC ′(x) ≥ (d(x)−q)+(d(x)−3) 1

2 (∆−q) ≥ 7−q+(7−3) 1
2 (∆−q) ≥

2, 1, 1.5, 2, 2 for ∆ = 10, 11, 12, 13, 14, respectively.
Subcase 2. |(N(x) ∩ V≤∆−1) \ {w}| = 1.

Note that d(x) + δ1(x) = ∆ + 4. That is, there are four ∆-neighbors having at most two (≤∆ − 2)-neighbors other than
x. Thus x receives 4 ×

1
3 (∆ − q) from those ∆-vertices and receives 2 ×

1
6 (∆ − q) from the rest two ∆-neighbors. Hence

C ′(x) ≥ 7 − q + 4∆−q
3 + 2∆−q

6 ≥ 7 − q +
5
3 (∆ − q) ≥ 1, 1, 1, 1, 1 for ∆ = 10, 11, 12, 13, 14, respectively.

From now on, we consider cases of d(x) + δ1(x) ≥ ∆ + 5, and d(x) ≥ 7.
(R7-2) δ1(x) = ∆ − 3, ∆ − 2.

Let w be the δ1(x)-neighbor of x. We discuss three cases below.
Subcase 1. |(N(x) ∩ V∆−2) \ {w}| ≥ 1. By Lemma 2.10 where p = 3, s = 2, there are 3 ∆-neighbors z of x satisfying: z ≠ w,
which are adjacent to ∆ − 2(≥∆ − 1)-vertices. So x receives 3 ×

∆−q
2 from those three ∆-neighbors, thus we have C ′(x) ≥

(7 − q) + 3 ×
∆−q
2 ≥ 1, 1, 0.7, 0.7, 0.6 for ∆ = 10, 11, 12, 13, 14 respectively.

Subcase 2. x has no (≤∆ − 2)-neighbor other than w, and x has at least two (∆ − 1)-neighbors. By Lemma 2.10 for p = 2
(if δ1(x) = ∆ − 3), there are three ∆-neighbors z satisfying: z ≠ w, which are adjacent to (∆ − 2) (≥∆ − 2)-vertices. Thus
x receives at least the same amount charges from its neighbors as the previous case, so C ′(x) ≥ 0 for 10 ≤ ∆ ≤ 14. For the
case of p = 3 (if δ1(x) = ∆ − 2), similarly, x receives at least the same amount of charges as that in subcase 1 (R7-2), we
have C ′(x) ≥ 0.
Subcase 3. x has no (≤∆−2)-neighbor other thanw and x has one (∆−1)-neighbor, for example y. Using the same discharge
argument as in Subcase 1 above, there are three ∆-neighbors having at most 3 (≤∆ − 2)-neighbors. So x receives 3 ×

∆−q
3

from those three ∆-neighbors, and by VAL, x also receives 2 ×
∆−q
6 from the rest two ∆-neighbors and 1

5 (∆ − 1 − q) from
one (∆ − 1)-neighbor. So C ′(x) ≥ (7− q) + 3×

∆−q
3 + 2×

∆−q
6 +

∆−1−q
5 =

23
15 (∆ − q) + 7− q− 0.2 ≥ 1, 0.7, 0.5, 0.5, 0.5

for ∆ = 10, 11, 12, 13, 14, respectively.
(R7-3) δ1(x) = ∆ − 1.

In order to avoid repetition, we consider theworst case, that is, x has two∆-neighbors and five (∆−1)-neighbors. If each
(∆−1)-neighbor of x is adjacent to atmost three (≤∆−2) vertices, then C ′(x) ≥ (7−q)+5×

1
3 (∆−1−q)+2×

1
6 (∆−q) =

2(∆ − q) + 7 − q −
5
3 > 0.5, 0.3, 0.2, 0.3, 0.5 for ∆ = 10, 11, 12, 13, 14, respectively. If there is one (∆ − 1)-neighbor w

of x is adjacent to at least four (≤∆ − 3) vertices, through Lemma 2.3 where |C2| = 4, there are 2 + ⌊
|C2|
2 ⌋(=4) (≥∆ − 1)

neighbors of x, and each of which is adjacent to ∆− 7+ 4 (=∆− 3) vertices of degree ≥ ∆− 7+ 5 (=∆− 2). So x receives
mini=0,1,2{(4−i) 1

3 (∆−1−q)+(2+i) 1
6 (∆−q)+ 1

5 (∆−1−q)}, so C ′(x) ≥ 7−q+4 1
3 (∆−1−q)+2 1

6 (∆−q)+ 1
5 (∆−1−q) =

28
15 (∆ − q) + 7 − q −

23
15 ≥ 0.4, 0.2, 0.08, 0.18, 0.28 for ∆ = 10, 11, 12, 13, 14, respectively.

(R7-4) δ1(x) = ∆.
By VAL, we have C ′(x) ≥ 7 − q + 7 1

6 (∆ − q) ≥
19
24 ,

1
3 , 0 for ∆ = 10, 11, 12, respectively.

For the cases of ∆ = 13 and 14, it needs to be considered more sophisticated. Letw be ∆-neighbor of xwith k = max{t :

t = d≤q(y), y ∈ N(x)} where k ≤ 5. If each ∆-neighbor of x is adjacent to at most five (≤∆ − 3)-vertices, then x receives
7×

1
5 (∆−q), so C ′(x) ≥ 7−q+

7
5 (∆−q) ≥ 0 for∆ = 13, 14. Nowwe assume that one∆-neighbor of x, sayw, is adjacent to

6 (≤∆−3)-vertices including x. Note that |C2| = 5. Through Lemma 2.3, where |R1
∪R2

∪R∗
| = 5 or 4, there are 3 (1+⌊

|C2|
2 ⌋)

∆-neighbor xb of x such that xb has at least ∆− 4(=2∆− 7−∆+ 1+ 2) neighbors y ∈ N(N(x)) with d(y) ≥ ∆− 3. Hence,
C ′(x) ≥ 7 − q + 3 ×

1
4 (∆ − q − θ∆) + 4 ×

1
6 (∆ − q) ≥ 0.39, 0.43 for ∆ = 13, 14 respectively.

R8 Let x be a 8-vertex.
In the case of ∆ = 10, each vertex has at least two ∆-neighbors, and by (R0), each ∆-neighbor sends 1

8 to x. So C ′(x) ≥

(8 −
33
4 ) + 2 ×

1
8 = 0.

Next we consider cases of ∆ = 11, 12, 13, 14. Note that the arguments in previous cases discussion in R7 could be used
for the case of δ1(x) = ∆ − 3 here. To avoid repetition, we consider δ1(x) ≥ ∆ − 2.
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(R8-1) δ1(x) = ∆ − 2.
Note that d∆(x) ≥ 3. Without loss of generality, let d∆(x) = 3 and N(x) ∩ V∆−2 = 5. By Lemma 2.10 for p = 4, there are

three ∆-neighbors such that each of which is adjacent to at most five (≤∆− 3)-vertices and each of five (∆− 2)-neighbors
is adjacent to at most 5 (≤∆ − 3)-vertices, so C ′(x) ≥ 8 − q + 3 1

5 (∆ − q) + 5 ×
1
5 (∆ − 2 − q) ≥ 0.5, 0.2, 0, 0, 0 for

∆ = 11, 12, 13, 14, respectively.

(R8-2) δ1(x) = ∆ − 1.
Without loss of generality, let d∆(x) = 2, |N(x) ∩ V∆−1| = 6.
If each of (∆ − 1)-neighbors is adjacent to at most five (≤∆ − 3)-vertices, then x receives 6 1

5 (∆ − 1 − q) + 2 1
7 (∆ − q).

Thus C ′(x) ≥ 8 − q + ( 2
7 +

6
5 )(∆ − q) − 1.2 > 1, 0.7, 0.5, 0.4, 0.4 for ∆ = 11, 12, 13, 14, respectively.

If there exists a (∆ − 1)-neighbor of w which is adjacent to six (≤∆ − 3)-vertices, note that d(x) = 8, d(w) = ∆ − 1
and |C2| = 5, then there exist at least one (≤∆ − 3)-neighbor wj of w with j ∈ C12. Applying Lemma 2.2, there are at
least 4 (≥∆ − 1)-neighbors xα of x which are adjacent to at most 2 (≤∆ − 3)-vertices, so x receives 4 1

2 (∆ − 1 − q) from
4 (≥∆ − 1)-neighbors, 2 1

7 (∆ − q) from two ∆-neighbors, and 2 1
6 (∆ − 1 − q) from the rest three (∆ − 1)-neighbors. It is

straightforward to check that C ′(x) ≥ (8− q) + (4×
1
2 (∆ − 1− q) +

2
7 )(∆ − q) + 2×

1
6 (∆ − 1− q) > 0 for 11 ≤ ∆ ≤ 14.

(R8-3) δ1(x) = ∆.
By VAL, eight ∆-neighbors send 8 1

7 (∆ − q) to x, it is straightforward to check that C ′(x) ≥ 0 for 11 ≤ ∆ ≤ 14.

R9 Let x be a 9-vertex.

(R9-1) For ∆ = 10, 11, we perform the discharge rules from (R1)–(R8), x sends at most (9 − q) out, so C ′(x) ≥ 0. Now we
consider the cases of ∆ = 12, 13, 14.

(R9-2) If δ1(x) ≤ ∆ − 3, x has at least 4 ∆-neighbors. By VAL, x receives st least 4 1
8 (∆ − q) from its 4 ∆-neighbors, thus

C ′(x) ≥ 9 − q + 4 1
8 (∆ − q) ≥ 0.46, 0.03, for ∆ = 12, 13.

For ∆ = 14, more sophisticated discussion is needed. If δ1(x) ≤ ∆ − 4, then x has at least 5 ∆-neighbors, and by VAL
x receives at least 5 1

8 (∆ − q) from those ∆-neighbors, thus C ′(x) ≥ 9 −
142
13 + 5 ×

1
8 (14 −

142
13 ) = 0 for ∆ = 14. Now

consider the case of δ1(x) = ∆ − 3. x has at least 4 ∆-neighbors. To avoid repetition, we provide detail discussion on the
worst case, that is, x has four ∆-neighbors and five (∆ − 3)-neighbors. Firstly, if there is a (∆ − 3)-vertex denoted by w,
which has at least 3 (≤∆ − 4)-neighbors wj, so each of these neighbors either misses at least one x, w-color with j ≤ 8 or
misses 4 trouble colors with j ≥ 9. Note that there are 4 x-colors, and by Lemma 2.3, there exist 7(=4+ 3) neighbors xc of x
including at least 2∆-neighbors of x, such that each of xc is adjacent to at least∆−3(=4+6+1 = 11) vertices y and d(y) ≥

∆−1(=4+6+3 = 13), thus, x could receive 1
2 (∆−q) from those two∆-neighbors, so C ′(x) ≥ (9−

142
13 )+2×

1
3 (14−

142
13 )+

2 ×
1
8 (14 −

142
13 ) + 5 ×

1
3 (14 − 3 −

142
13 ) > 0.

Secondly,we assume that each of 5 (∆−3)-neighbors is adjacent to atmost 2 (≤∆−4)-vertices including x. If each of four

∆-neighbors have atmost 7 (∆−4)-vertices, then C ′(x) ≥ (9−
142
13 )+4×

14− 142
13

7 +5×
11− 142

13
2 > 0. If there is a∆-neighbor of

x, sayw, which is adjacent to 8 (≤∆−4)-vertices, note that here L = 7, there exist at least onewj (j ≥ 9)missing all trouble
colors. By Lemma 2.3, there are at least 5(=∆−∆+1+⌊

8
2⌋) vertices x

c of x such that xc has∆−3(=2∆−9−∆+1+⌊
8
2⌋)

neighbors y, and d(y) ≥ ∆ − 1(=2∆ − 9 − ∆ + 2 + ⌊
8
2⌋). This information implies that if some of such five vertices xc

is (∆ − 3)-neighbor of x, then such xc incidents only one (≤∆ − 4)-vertex which is x, or if some of such five vertices is
∆-vertex, say xc , then xc has at most 3 (≤∆ − 4)-vertices including x. Hence x receives at least min0≤i≤4,0≤j≤5{i × 1

3 (14 −

142
13 ) + (4 − i) ×

1
8 (14 −

142
13 ) + j × (11 −

142
13 ) + (5 − j) ×

1
2 (11 −

142
13 )}. It is straightforward to check that C ′(x) ≥ 0.

(R9-3) If δ1(x) ≥ ∆ − 2, then x has at least 3 ∆-neighbors. By VAL, x receives at least 3 1
8 (∆ − q) from its 3 ∆-neighbors and

at least 6 1
6 (∆−2−q) from six of its (≥∆−2)-neighbors. Thus C ′(x) ≥ 9−q+3 1

8 (∆−q)+6×
1
6 (∆−2−q) ≥ 0.4, 0.3, 0.2

for ∆ = 12, 13, 14, respectively.
If δ1(x) = ∆ − 1, or ∆, without loss of generality, we assume that x has two ∆-neighbors and seven (∆ − 1)-neighbors,

or simply nine ∆-neighbors. By VAL, x receives at least min{2 1
8 (∆ − q) + 7 1

7 (∆ − 1 − q), 9 1
8 (∆ − q)}. C ′(x) ≥ 9 − q +

2 ×
1
8 (∆ − q) + 7 1

7 (∆ − 1 − q) ≥ 1, 1, 0.8 for ∆ = 12, 13, 14, respectively.

(R10) x is a 10-vertex.
Note that charge of x keeps unchanged when ∆ = 12. So we consider the case of ∆ = 13, 14. If ∆ = 13, x receives 0.15

from its at least two ∆-neighbors, so C ′(x) ≥ 0. Next we consider the case of ∆ = 14. If δ1(x) ≤ ∆ − 2, then x has at least
three∆-neighbors by VAL, so C ′(x) ≥ 10−

142
13 +3 1

9 (14−
142
13 ) > 1. If δ1(x) = ∆−1 or∆, so x receives at least 2 1

9 (14−
142
13 )+

8 ×
1
8 (14 − 1 −

142
13 ) ≥ 1. C ′(x) ≥ 0.

Final step. x is an i-vertexwhere i = 11, 12, 13, 14, by the discharge rules (R1)–(R9), it is clear that x sends atmost (d(x)−q)
out. Hence C ′(x) ≥ 0.

From (R1)–(R9), C ′(x) ≥ 0 for each vertex x, and therefore,


x∈V (G) C
′(x) ≥ 0. Since the discharge rules onlymove charge

around and do not change the sum, we have 0 ≤


x∈V (G) C
′(x) =


x∈V (G) c(x) < 0. This contradiction completes the proof.
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4. Class one graphs with cS = −4, −5, −6, −7, −8

Theorem 4.1. Let G be a simple graph that is embeddable in a surface S of characteristic cS = −4, −5, −6, −7, −8, then G is
class one if ∆ ≥ 10, 11, 12, 13, 14 respectively.

Before we proceed our proof of the Theorem, we need following results on critical graphs with small orders.

Lemma 4.2 (Beineke and Fiorini [1], Brinkmann and Steffen [2,4,3]).

(i) There are no critical graphs of even order up to 14;
(ii) there are only two critical graphs of order 11, both of which are 3-critical;
(iii) Petersen graph minus a vertex is the only non-trivial critical graph on up to 10 vertices, which is 3-critical;
(iv) There are only three critical graphs of order 13, which are 3-critical.

Proof of Theorem 4.1. By Theorem 1.2 and Lemma 4.2, we only need to prove it when ∆ = 10, 11, 12, 13, 14 respectively.
Let V and F be vertex set and face set of G respectively. Suppose to the contrary, let G be the smallest counterexample with
respect to edges. Then G is ∆-critical where ∆ = 10, 11, 12, 13, 14, respectively. By Euler’s Formula, we have


x∈V

(d(x) − 6) +


f∈F

(d(f ) − 3) = 24 if cS = −4, ∆ = 10.
x∈V

(d(x) − 6) +


f∈F

(d(f ) − 3) = 30 if cS = −5, ∆ = 11.
x∈V

(d(x) − 6) +


f∈F

(d(f ) − 3) = 36 if cS = −6, ∆ = 12.
x∈V

(d(x) − 6) +


f∈F

(d(f ) − 3) = 42 if cS = −7, ∆ = 13.
x∈V

(d(x) − 6) +


f∈F

(d(f ) − 3) = 48 if cS = −8, ∆ = 14.

By Theorem 1.2, we have

2.25 × |V | ≤ 24 if cS = −4, ∆ = 10.
3 × |V | ≤ 30 if cS = −5, ∆ = 11.
48
13

× |V | ≤ 36 if cS = −6, ∆ = 12.

56
13

× |V | ≤ 42 if cS = −7, ∆ = 13.

64
13

× |V | ≤ 48 if cS = −8, ∆ = 14.

Hence, |V | ≤ 10.67 or |V | ≤ 10 for ∆ = 10 or 11 respectively. And |V | ≤ 9.75 for ∆ = 12, 13, 14. By Lemma 4.2, we have
contradictions.
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