Neighbor sum distinguishing index of planar graphs

Guanghui Wang ${ }^{\text {a,*, }}$, Zhumin Chen ${ }^{\text {b }}$, Jihui Wang ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics, Shandong University, 250100, Jinan, Shandong, PR China
b School of Computer Science, Shandong University, 250100, Jinan, Shandong, PR China
c School of Mathematical Sciences, Jinan University, 250022, Jinan, Shandong, PR China

ARTICLE INFO

Article history:

Received 2 August 2012
Received in revised form 28 June 2014
Accepted 28 June 2014
Available online 19 July 2014

Keywords:

Neighbor sum distinguishing index
Planar graph
Adjacent vertex distinguishing coloring

Abstract

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors from $[k]=\{1,2, \ldots, k\}$. A neighbor sum distinguishing $[k]$-edge coloring of G is a proper $[k]-$ edge coloring of G such that for each edge $u v \in E(G)$, the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. By nsdi (G), we denote the smallest value k in such a coloring of G. It was conjectured by Flandrin et al. that if G is a connected graph without isolated edges and $G \neq C_{5}$, then nsdi $(G) \leq \Delta(G)+2$. In this paper, we show that if G is a planar graph without isolated edges, then nsdi $(G) \leq$ $\max \{\Delta(G)+10,25\}$, which improves the previous bound $(\max \{2 \Delta(G)+1,25\})$ due to Dong and Wang.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [3]. Let $G=(V, E)$ be a simple, undirected graph. Let C be a set of colors where $C=[k]=\{1,2, \ldots, k\}$ and let $\phi: E(G) \rightarrow C$ be a proper [k]-edge coloring of G. By $m_{\phi}(v)\left(C_{\phi}(v)\right)$, we denote the sum (set) of colors taken on the edges incident to v, i.e. $m_{\phi}(v)=\sum_{u \in N(v)} \phi(u v)\left(C_{\phi}(v)=\right.$ $\{\phi(u v) \mid u \in N(v)\})$. If the coloring ϕ satisfies that $C_{\phi}(u) \neq C_{\phi}(v)$ for each edge $u v \in E(G)$, then we call such coloring a neighbor distinguishing $[k]$-edge coloring of G. We use $\operatorname{ndi}(G)$ to denote the smallest value k such that G has a neighbor distinguishing [k]-edge coloring of G and we call it the neighbor distinguishing index of G. Sometimes, a neighbor distinguishing edge coloring is named an adjacent vertex distinguishing edge coloring [18,19]. If the coloring ϕ satisfies that $m_{\phi}(v) \neq m_{\phi}(u)$ for each edge $u v \in E(G)$, then we call such coloring a neighbor sum distinguishing [k]-edge coloring of G. By nsdi (G), we denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G and we call it the neighbor sum distinguishing index of G.

It is known that to have a neighbor distinguishing or a neighbor sum distinguishing coloring, G cannot have an isolated edge (we call such graphs normal). If a normal graph G has connected components G_{1}, \ldots, G_{k}, then $\operatorname{ndi}(G)=\max \left\{n d i\left(G_{i}\right) \mid\right.$ $i=1, \ldots, k\}$ and $\operatorname{nsdi}(G)=\max \left\{\operatorname{nsdi}\left(G_{i}\right) \mid i=1, \ldots, k\right\}$. Therefore, when analyzing the neighbor distinguishing index or the neighbor sum distinguishing index, we can restrict our attention to connected normal graphs. Apparently, for any normal graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \operatorname{ndi}(G) \leq \operatorname{nsdi}(G)$, where $\chi^{\prime}(G)$ is the chromatic index of G.

For neighbor distinguishing colorings, we have the following conjecture due to Zhang et al. [23].
Conjecture 1 ([23]). If G is a connected normal graph with at least 6 vertices, then $\operatorname{ndi}(G) \leq \Delta(G)+2$.

[^0]Akbari et al. [1] proved that $\operatorname{ndi}(G) \leq 3 \Delta(G)$ for any normal graph G. Hatami [10] has shown that if G is normal and $\Delta(G)>10^{20}$, then $\operatorname{ndi}(G) \leq \Delta(G)+300$. For more references, see $[2,4,7,18,19,11]$.

Recently, colorings and labelings related to sums of the colors have received much attention. The family of such problems includes e.g. vertex-coloring [k]-edge-weightings [13], total weight choosability [21,17], magic and antimagic labelings [12,22] and the irregularity strength [14,15]. As for neighbor sum distinguishing edge colorings, Flandrin et al. [8] completely determined the neighbor sum distinguishing indices for paths, cycles, trees, complete graphs and complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 2 ([8]). If G is a connected normal graph and $G \neq C_{5}$, then $\operatorname{nsdi}(G) \leq \Delta(G)+2$.
In the same paper, Flandrin et al. [8] gave an upper bound: $\left\lceil\frac{7 \Delta(G)-4}{2}\right\rceil$. In [20], Wang and Yan improved it to $\left\lceil\frac{10 \Delta(G)+2}{3}\right\rceil$. In [16], Przybyło proved that nsdi $(G) \leq 2 \Delta(G)+\operatorname{col}(G)-1$, where $\operatorname{col}(G)$ is the coloring number of G. Dong et al. [6] studied neighbor sum distinguishing colorings of sparse graphs and proved that if G is a normal graph with maximum average degree at most $\frac{5}{2}$ and $\Delta(G) \geq 5$, then $\operatorname{nsdi}(G) \leq \Delta(G)+1$. Dong and Wang [5] also considered the neighbor sum distinguishing colorings of planar graphs and proved the following result.

Theorem 1.1 ([5]). If G is a connected normal planar graph, then $\operatorname{nsdi}(G) \leq \max \{2 \Delta(G)+1,25\}$.
In this paper, we improve the result above and obtain the following result.
Theorem 1.2. If G is a connected normal planar graph, then $\operatorname{nsdi}(G) \leq \max \{\Delta(G)+10,25\}$.

2. Preliminaries

First we will introduce some notations. Let G be a graph. For a vertex $v \in V(G)$, let $N(v)$ denote the set of vertices adjacent to v and $d(v)=|N(v)|$ denote the degree of v. A vertex of degree k is called k-vertex. We write k^{+}-vertex for a vertex of degree at least k, and k^{-}-vertex for that of degree at most k. Let $N_{k^{-}}(v)=\{x \in N(v) \mid d(x) \leq k\}$ and $n_{k^{-}}(v)=\left|N_{k^{-}}(v)\right|$. Similarly, $N_{k^{+}}(v)=\{x \in N(v) \mid d(x) \geq k\}$ and $n_{k^{+}}(v)=\left|N_{k^{+}}(v)\right|$.

Next we introduce a structural lemma about planar graphs, which was used in [9].
Lemma 2.1 ([9]). Let G be a planar graph. Then there exists a vertex v in G with exactly $d(v)=t$ neighbors v_{1}, v_{2}, \ldots, v_{t} where $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{t}\right)$ such that at least one of the following is true:
(A) $t \leq 2$,
(B) $t=3$ and $d\left(v_{1}\right) \leq 11$,
(C) $t=4$ and $d\left(v_{1}\right) \leq 7, d\left(v_{2}\right) \leq 9$,
(D) $t=5$ and $d\left(v_{1}\right) \leq 6, d\left(v_{2}\right) \leq 7$.

Finally, we give a simple lemma, which will also be used in our proof.
Lemma 2.2 ([8]). Let z be an integer. For any two sets of integers X, Y, each of size at least 2, there exist (at least) $|X|+|Y|-3$ pairs $\left(x_{i}, y_{i}\right) \in X \times Y$ with $x_{i} \neq y_{i}, i=1,2, \ldots,|X|+|Y|-3$, such that all the sums $x_{i}+y_{i}$ are pairwise distinct and among them there are at most two pairs satisfying $x_{i}-y_{i}=z$.

This lemma clearly holds. Indeed, it is sufficient to consider e.g. the pairs from the set

$$
(\{x\} \times(Y \backslash\{x\})) \cup((X \backslash(\{x\} \cup\{y\})) \times\{y\})
$$

where $x=\min X$ and $y=\max Y$.

3. Proof of Theorem 1.2

We prove the theorem by contradiction. Suppose that G is a minimal counterexample with respect to the number of edges. For simplicity, let $\Delta=\Delta(G)$ and $k=\max \{\Delta(G)+10,25\}$. Then $k \geq 25$. In the following, we will often delete two adjacent edges, say $v v_{1}, v v_{2}$ to get a subgraph H of G. If H has an isolated edge $e=w p$, then there must be an edge $w p$ in G such that $d_{G}(w)=3, d_{G}(p)=1$ or $d_{G}(w)=d_{G}(p)=2$ or $d_{G}(w)=2, d_{G}(p)=1$. Then $G-w p$ has a neighbor sum distinguishing [k]-edge coloring ϕ by the minimality of G. We can easily extend ϕ to the graph G, which is a contradiction. So in the following, we assume that the subgraph H obtained by deleting two adjacent edges from G has no isolated edges.

Claim 3.1. Let $v \in V(G)$ and v_{1}, v_{2} be the neighbors of v in G. If $d\left(v_{1}\right) \leq \frac{k+1-d(v)}{2}$ and $d\left(v_{2}\right) \leq \frac{k+1-d(v)}{2}$, then $d(v) \geq$ $\frac{2 k-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5}{3}$.
Proof. Let $H_{1}=G-v v_{1}-v v_{2}$. By the minimality of G, H_{1} has a neighbor sum distinguishing [k]-edge coloring ϕ.
First suppose that v_{1} is not adjacent to v_{2}. For $v v_{1}$, we surely cannot use the colors of its (already colored) at most $d\left(v_{1}\right)-1+d(v)-2$ incident edges. Next, the colors in $\left\{m_{\phi}\left(v_{2}\right)-m_{\phi}(v)\right\} \cup\left\{m_{\phi}(u)-m_{\phi}\left(v_{1}\right) \mid u v_{1} \in E\left(H_{1}\right)\right\}$ are also forbidden. Then we have at least $k-2\left(d\left(v_{1}\right)-1\right)-(d(v)-2)-1 \geq k-2 d\left(v_{1}\right)-d(v)+3 \geq 2$ safe colors for $v v_{1}$. Similarly, we have
at least $k-2 d\left(v_{2}\right)-d(v)+3 \geq 2$ safe colors for $v v_{2}$. Let X, Y denote the sets of safe colors for $v v_{1}$ and $v v_{2}$ respectively. By Lemma 2.2, we have at least

$$
k-2 d\left(v_{1}\right)-d(v)+3+k-2 d\left(v_{2}\right)-d(v)+3-3=2 k-2 d(v)-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+3
$$

distinct pairs $\left(x_{i}, y_{i}\right)$ with $x_{i} \neq y_{i}$ in $X \times Y$ such that all the sums $x_{i}+y_{i}$ are pairwise distinct. So we must have that $2 k-2 d(v)-d\left(v_{1}\right)-d\left(v_{2}\right)+3 \leq d(v)-2$, since otherwise we can choose a pair, say $(x, y) \in X \times Y$ with $x \neq y$, such that $x+y$ is not in $\left\{m_{\phi}(u)-m_{\phi}(v) \mid u v \in E\left(H_{1}\right)\right\}$, and thus we can get a neighbor sum [k]-edge coloring of G, which is a contradiction. Therefore $d(v) \geq \frac{2 k-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5}{3}$.

Next we assume that v_{1}^{3} is adjacent to v_{2}. For $v v_{1}$, we cannot use the colors of its (already colored) at most $d\left(v_{1}\right)-1+$ $d(v)-2$ incident edges. Next, the colors in $\left\{m_{\phi}\left(v_{2}\right)-m_{\phi}(v)\right\} \cup\left\{m_{\phi}(u)-m_{\phi}\left(v_{1}\right) \mid u v_{1} \in E\left(H_{1}\right), u \neq v_{2}\right\}$ are also forbidden. Then we have at least $k-2\left(d\left(v_{1}\right)-1\right)-(d(v)-2) \geq k-2 d\left(v_{1}\right)-d(v)+4$ safe colors for $v v_{1}$. Similarly, for $v v_{2}$, we cannot use the colors of its at most $d\left(v_{2}\right)-1+d(v)-2$ incident edges. In addition, the colors in $\left\{m_{\phi}\left(v_{1}\right)-m_{\phi}(v)\right\} \cup\left\{m_{\phi}(u)-m_{\phi}\left(v_{2}\right) \mid\right.$ $\left.u v_{2} \in E\left(H_{1}\right), u \neq v_{1}\right\}$ are also forbidden. So we have at least $k-2\left(d\left(v_{2}\right)-1\right)-(d(v)-2) \geq k-2 d\left(v_{2}\right)-d(v)+4$ safe colors for $v v_{2}$. Let X, Y denote the sets of safe colors for $v v_{1}$ and $v v_{2}$ respectively. By Lemma 2.2 , we have at least $k-2 d\left(v_{1}\right)-$ $d(v)+4+k-2 d\left(v_{2}\right)-d(v)+4-3=2 k-2 d(v)-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5$ distinct pairs $\left(x_{i}, y_{i}\right)$ with $x_{i} \neq y_{i}$ in $X \times Y$ such that all the sums $x_{i}+y_{i}$ are pairwise distinct. Moreover, among them there are at most two pairs such that $x_{i}-y_{i}=m_{\phi}\left(v_{2}\right)-m_{\phi}\left(v_{1}\right)$. So we must have that $2 k-2 d(v)-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5-2 \leq d(v)-2$, since otherwise we can choose a pair, say $(x, y) \in X \times Y$ with $x \neq y$, such that $x+y$ is not in $\left\{m_{\phi}(u)-m_{\phi}(v) \mid u v \in E\left(H_{1}\right)\right\}$ and $x-y \neq m_{\phi}\left(v_{2}\right)-m_{\phi}\left(v_{1}\right)$, and thus we can get a neighbor sum [k]-edge coloring of G, which is a contradiction. Therefore $d(v) \geq \frac{2 k-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5}{3}$.

Claim 3.2. For each vertex $v \in V(G)$, if $n_{3^{-}}(v) \geq 2$, then $d(v) \geq \frac{2 k-7}{3}$ and $n_{3^{-}}(v) \leq 7-2 k+3 d(v)$.
Proof. Suppose that v_{1} and v_{2} are two neighbors of v such that $d\left(v_{1}\right), d\left(v_{2}\right) \leq 3$. By Claim 3.1, $d(v) \geq \frac{2 k-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5}{3} \geq$ $\frac{2 k-7}{3}$. Since $k \geq 25$,

$$
\frac{d(v)(d(v)-1)}{2} \geq \frac{(k-5)(2 k-7)}{9}>k+(k-1)
$$

So in any proper coloring of G, the sum of the colors of the edges incident with v is different from its 3^{-}neighbors. By the same arguments as in Claim 3.1, we have that $2 k-2 d(v)-d\left(v_{1}\right)-d\left(v_{2}\right)+5 \leq d(v)-n_{3^{-}}(v)$. Thus $n_{3-}(v) \leq 7-2 k+3 d(v)$.

We have the following immediate corollary.
Corollary 3.1. For each vertex $v \in V(G)$, if $n_{3^{-}}(v) \geq 2$, then $n_{4^{+}}(v) \geq 12$.
Claim 3.3. Let v be a vertex with $n_{3^{-}}(v)=1$ and u be a neighbor of v with $d(u) \geq 4$. Then $d(u) \geq \min \left\{\frac{k-d(v)+2}{2}, \frac{2 k-3 d(v)-1}{2}\right\}$.
Proof. We may assume that v_{1} is the neighbor of v with $d\left(v_{1}\right) \leq 3$. If $2 d(u) \leq k+1-d(v)$, then by Claim $3.1, d(v) \geq$ $\frac{2 k-2 d\left(v_{1}\right)-2 d(u)+5}{3} \geq \frac{2 k-2 d(u)-1}{3}$. Thus $3 d(v)+2 d(u) \geq 2 k-1$, which completes our proof.

Next we will show that G contains the configuration (C) or (D). Let H be the graph obtained by deleting all 3^{-}-vertices from G.

Claim 3.4. For each vertex $v \in H, d_{H}(v) \geq 3$. Moreover, if $d_{H}(v)=3$ and u is any neighbor of v in H, then $d_{H}(u) \geq 12$.
Proof. Let v be a vertex in H. By the definition of $H, d_{G}(v) \geq 4$. If $n_{3^{-}}(v) \geq 2$, then by Corollary $3.1, d_{H}(v) \geq n_{4^{+}}(v) \geq 12$. If $n_{3^{-}}(v)=1$, then $d_{H}(v) \geq 3$. So for each vertex $v \in V(H), d_{H}(v) \geq 3$.

Now suppose that u is a neighbor of v in H and $d_{H}(v)=3$. We know that $d_{G}(v)=4$ and $n_{3}-(v)=1$. If $n_{3}-(u) \geq 2$, then by Corollary 3.1, $d_{H}(u) \geq n_{4^{+}}(u) \geq 12$. If $n_{3^{-}}(u)=1$, we claim that $d_{G}(u) \geq 13$. Otherwise, $d_{G}(u) \leq 12$, and by Claim 3.3, $d_{G}(v) \geq \min \left\{\frac{k-d_{G}(u)+2}{2}, \frac{2 k-3 d_{G}(u)-1}{2}\right\} \geq \min \left\{\frac{k-10}{2}, \frac{2 k-37}{2}\right\} \geq 5$, which is a contradiction. Hence $d_{G}(u) \geq 13$ and $d_{H}(u)=$ $d_{G}(u)-1 \geq 12$. If $n_{3^{-}}(u)=0$, then $d_{G}(u)=d_{H}(u)$. By Claim 3.3, we have $d_{H}(u)=d_{G}(u) \geq \min \left\{\frac{k-d_{G}(v)+2}{2}, \frac{2 k-3 d_{G}(v)-1}{2}\right\} \geq$ $\min \left\{\frac{k-2}{2}, \frac{2 k-13}{2}\right\}$. So $d_{H}(u) \geq 12$.

Claim 3.5. Let u be any neighbor of v in H. If $4 \leq d_{H}(v) \leq 5$ and $d_{H}(v)<d_{G}(v)$, then $d_{H}(u) \geq 10$.
Proof. Since $d_{H}(v)<d_{G}(v), n_{3-}(v) \geq 1$. By Corollary 3.1, we may assume that $n_{3^{-}}(v)=1$ or else we have $d_{H}(v) \geq 12$. If $n_{3^{-}}(u) \geq 2$, then $d_{H}(u) \geq 12$. If $n_{3^{-}}(u)=1$, then $d_{H}(u) \geq 10$. Otherwise, $d_{G}(u)=d_{H}(u)+1 \leq 10$, and by Claim $3.3,6 \geq$ $d_{G}(v) \geq \min \left\{\frac{k-d_{G}(u)+2}{2}, \frac{2 k-3 d_{G}(u)-1}{2}\right\} \geq \min \left\{\frac{k-8}{2}, \frac{2 k-31}{2}\right\} \geq 7$, which is a contradiction. If $n_{3^{-}}(u)=0$, then $d_{H}(u)=d_{G}(u)$. By Claim 3.3, $d_{H}(u)=d_{G}(u) \geq \min \left\{\frac{k-d_{G}(v)+2}{2}, \frac{2 k-3 d_{G}(v)-1}{2}\right\} \geq \min \left\{\frac{k-4}{2}, \frac{2 k-19}{2}\right\} \geq 10$.

By Lemma 2.1 and Claim 3.4, there exists a 5^{-}-vertex v in H such that v belongs to one of the configurations (B), (C), (D). However, if $d_{H}(v)=3$, then by Claim 3.4, each neighbor u of v has $d_{H}(u) \geq 12$. We must have that $4 \leq d_{H}(v) \leq 5$ and H contains the configuration (C) or (D). By Claim 3.5, if $d_{H}(v)<d_{G}(v)$, then for any edge $u v \in E(H)$, we have $d_{H}(u) \geq 10$. So
it must hold that $d_{H}(v)=d_{G}(v)$. We claim that v belongs to the configuration (C) or (D) in G. Otherwise, v has a neighbor u in H such that $d_{H}(u) \leq 9$ and $d_{H}(u)<d_{G}(u)$. Clearly, $n_{3^{-}}(u)=1$ or else $n_{3^{-}}(u) \geq 2$, and then $d_{H}(u) \geq 12$ by Corollary 3.1, a contradiction. Then $d_{G}(u) \leq 10$. By Claim 3.3, $d_{G}(v) \geq \min \left\{\frac{k-d_{G}(u)+2}{2}, \frac{2 k-3 d_{G}(u)-1}{2}\right\} \geq \min \left\{\frac{k-8}{2}, \frac{2 k-31}{2}\right\} \geq 6$ since $k \geq 25$. This contradiction proves that v belongs to the configuration (C) or (D) in G.

Suppose that v has neighbors $v_{1}, v_{2}, \ldots, v_{t}$, where $t=4,5$, with $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{t}\right)$. If $t=4, d\left(v_{1}\right) \leq 7$ and $d\left(v_{2}\right) \leq 9$, then by Claim 3.1, it holds that $4=d(v) \geq \frac{2 k-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5}{3} \geq 7$, which is a contradiction. If $t=5, d\left(v_{1}\right) \leq 6$ and $d\left(v_{2}\right) \leq 7$, by Claim 3.1, it holds that $5=d(v) \geq \frac{2 k-2 d\left(v_{1}\right)-2 d\left(v_{2}\right)+5}{3} \geq 9$, which is a contradiction. This completes the whole proof of Theorem 1.2.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11101243, 61103151), the Scientific Research Foundation for the Excellent Middle-Aged and Young Scientists of Shandong Province (BS2012SF016, BS2012DX017) and Independent Innovation Foundation of Shandong University (IFYT 14012).

References

[1] S. Akbari, H. Bidkhori, N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006) 3005-3010.
[2] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) $237-250$.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[4] Y. Bu, K.W. Lih, W.F. Wang, Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six, Discuss. Math. Graph Theory 31 (3) (2011) 429-439.
[5] A. Dong, G. Wang, Neighbor sum distinguishing colorings of some graphs, Discrete Math. Algorithms Appl. 4 (3) (2012) 1250047.
[6] A. Dong, G. Wang, J. Zhang, Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree, Discrete Appl. Math. 166 (2014) 86-90.
[7] K. Edwards, M. Horňák, M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341-350.
[8] E. Flandrin, J. Saclé, A. Marczyk, J. Przybyło, M. Woźniak, Neighbor sum distinguishing index, Graphs Combin. 29 (2013) 1329-1336.
[9] Y. Guan, J. Hou, Y. Yang, An improved bound on acyclic chromatic index of planar graphs, Discrete Math. 313 (10) (2013) $1098-1103$.
[10] H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) $246-256$.
[11] M. Horñák, M. Woźniak, On neighbour-distinguishing index of planar graphs, IM Preprint, Series A, No. 9/2011.
[12] P. Huang, T. Wong, X. Zhu, Weighted-1-antimagic graphs of prime power order, Discrete Math. 312 (14) (2012) 2162-2169.
[13] M. Kalkowski, M. Karoński, F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) $347-349$.
[14] J. Przybyło, Irregularity strength of regular graphs, Electron. J. Combin. 15 (1) (2008) \#R82.
[15] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (1) (2009) $511-516$.
[16] J. Przybyło, Neighbor distinguishing edge coloring via the combinatorial nullstellensatz, SIAM J. Discrete Math. 27 (3) (2013) 1313-1322.
[17] J. Przybyło, M. Woźniak, Total weight choosability of graphs, Electron. J. Combin. 18 (2011) \#P112.
[18] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010) 471-485. 19.
[19] W. Wang, Y. Wang, Adjacent vertex-distinguishing edge colorings of K_{4}-minor free graphs, Appl. Math. Lett. 24 (12) (2011) $2034-2037$.
[20] G. Wang, G. Yan, An improved upper bound for the neighbor sum distinguishing index of graphs, Discrete Appl. Math. 175 (2014) 126-128.
[21] T. Wong, X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011) 198-212.
[22] T. Wong, X. Zhu, Antimagic labelling of vertex weighted graphs, J. Graph Theory 3 (70) (2012) 348-350.
[23] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, J. Appl. Math. Lett. 15 (2002) 623-626.

[^0]: * Corresponding author.

 E-mail address: ghwang@sdu.edu.cn (G. Wang).
 http://dx.doi.org/10.1016/j.disc.2014.06.027
 0012-365X/© 2014 Elsevier B.V. All rights reserved.

