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a b s t r a c t

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors from
[k] = {1, 2, . . . , k}. A neighbor sum distinguishing [k]-edge coloring of G is a proper [k]-
edge coloring of G such that for each edge uv ∈ E(G), the sum of colors taken on the edges
incident to u is different from the sumof colors taken on the edges incident to v. By nsdi(G),
we denote the smallest value k in such a coloring of G. It was conjectured by Flandrin et al.
that if G is a connected graphwithout isolated edges and G ≠ C5, then nsdi(G) ≤ ∆(G)+2.
In this paper, we show that if G is a planar graph without isolated edges, then nsdi(G) ≤

max{∆(G) + 10, 25}, which improves the previous bound (max{2∆(G) + 1, 25}) due to
Dong and Wang.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [3]. LetG = (V , E) be a simple, undirected
graph. Let C be a set of colors where C = [k] = {1, 2, . . . , k} and let φ : E(G) → C be a proper [k]-edge coloring of G. By
mφ(v) (Cφ(v)), we denote the sum (set) of colors taken on the edges incident to v, i.e. mφ(v) =


u∈N(v) φ(uv) (Cφ(v) =

{φ(uv) | u ∈ N(v)}). If the coloring φ satisfies that Cφ(u) ≠ Cφ(v) for each edge uv ∈ E(G), then we call such coloring a
neighbor distinguishing [k]-edge coloring of G. We use ndi(G) to denote the smallest value k such that G has a neighbor dis-
tinguishing [k]-edge coloring of G and we call it the neighbor distinguishing index of G. Sometimes, a neighbor distinguishing
edge coloring is named an adjacent vertex distinguishing edge coloring [18,19]. If the coloring φ satisfies thatmφ(v) ≠ mφ(u)
for each edge uv ∈ E(G), then we call such coloring a neighbor sum distinguishing [k]-edge coloring of G. By nsdi(G), we
denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G and we call it the neighbor
sum distinguishing index of G.

It is known that to have a neighbor distinguishing or a neighbor sum distinguishing coloring, G cannot have an isolated
edge (we call such graphs normal). If a normal graph G has connected components G1, . . . ,Gk, then ndi(G) = max{ndi(Gi) |

i = 1, . . . , k} and nsdi(G) = max{nsdi(Gi) | i = 1, . . . , k}. Therefore, when analyzing the neighbor distinguishing index
or the neighbor sum distinguishing index, we can restrict our attention to connected normal graphs. Apparently, for any
normal graph G, ∆(G) ≤ χ ′(G) ≤ ndi(G) ≤ nsdi(G), where χ ′(G) is the chromatic index of G.

For neighbor distinguishing colorings, we have the following conjecture due to Zhang et al. [23].

Conjecture 1 ([23]). If G is a connected normal graph with at least 6 vertices, then ndi(G) ≤ ∆(G) + 2.
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Akbari et al. [1] proved that ndi(G) ≤ 3∆(G) for any normal graph G. Hatami [10] has shown that if G is normal and
∆(G) > 1020, then ndi(G) ≤ ∆(G) + 300. For more references, see [2,4,7,18,19,11].

Recently, colorings and labelings related to sums of the colors have received much attention. The family of such prob-
lems includes e.g. vertex-coloring [k]-edge-weightings [13], total weight choosability [21,17],magic and antimagic labelings
[12,22] and the irregularity strength [14,15]. As for neighbor sumdistinguishing edge colorings, Flandrin et al. [8] completely
determined the neighbor sum distinguishing indices for paths, cycles, trees, complete graphs and complete bipartite graphs.
Based on these examples, they proposed the following conjecture.

Conjecture 2 ([8]). If G is a connected normal graph and G ≠ C5, then nsdi(G) ≤ ∆(G) + 2.

In the same paper, Flandrin et al. [8] gave an upper bound: ⌈
7∆(G)−4

2 ⌉. In [20], Wang and Yan improved it to ⌈
10∆(G)+2

3 ⌉.
In [16], Przybyło proved that nsdi(G) ≤ 2∆(G)+col(G)−1, where col(G) is the coloring number of G. Dong et al. [6] studied
neighbor sumdistinguishing colorings of sparse graphs and proved that ifG is a normal graphwithmaximumaverage degree
at most 5

2 and ∆(G) ≥ 5, then nsdi(G) ≤ ∆(G) + 1. Dong and Wang [5] also considered the neighbor sum distinguishing
colorings of planar graphs and proved the following result.

Theorem 1.1 ([5]). If G is a connected normal planar graph, then nsdi(G) ≤ max{2∆(G) + 1, 25}.

In this paper, we improve the result above and obtain the following result.

Theorem 1.2. If G is a connected normal planar graph, then nsdi(G) ≤ max{∆(G) + 10, 25}.

2. Preliminaries

First wewill introduce some notations. LetG be a graph. For a vertex v ∈ V (G), letN(v) denote the set of vertices adjacent
to v and d(v) = |N(v)| denote the degree of v. A vertex of degree k is called k-vertex. We write k+-vertex for a vertex of
degree at least k, and k−-vertex for that of degree at most k. Let Nk−(v) = {x ∈ N(v) | d(x) ≤ k} and nk−(v) = |Nk−(v)|.
Similarly, Nk+(v) = {x ∈ N(v) | d(x) ≥ k} and nk+(v) = |Nk+(v)|.

Next we introduce a structural lemma about planar graphs, which was used in [9].

Lemma 2.1 ([9]). Let G be a planar graph. Then there exists a vertex v in G with exactly d(v) = t neighbors v1, v2, . . . , vt where
d(v1) ≤ d(v2) ≤ · · · ≤ d(vt) such that at least one of the following is true:
(A) t ≤ 2,
(B) t = 3 and d(v1) ≤ 11,
(C) t = 4 and d(v1) ≤ 7, d(v2) ≤ 9,
(D) t = 5 and d(v1) ≤ 6, d(v2) ≤ 7.

Finally, we give a simple lemma, which will also be used in our proof.

Lemma 2.2 ([8]). Let z be an integer. For any two sets of integers X, Y , each of size at least 2, there exist (at least) |X | + |Y | − 3
pairs (xi, yi) ∈ X × Y with xi ≠ yi, i = 1, 2, . . . , |X | + |Y | − 3, such that all the sums xi + yi are pairwise distinct and among
them there are at most two pairs satisfying xi − yi = z.

This lemma clearly holds. Indeed, it is sufficient to consider e.g. the pairs from the set

({x} × (Y \ {x})) ∪ ((X \ ({x} ∪ {y})) × {y}),

where x = min X and y = max Y .

3. Proof of Theorem 1.2

We prove the theorem by contradiction. Suppose that G is a minimal counterexample with respect to the number of
edges. For simplicity, let ∆ = ∆(G) and k = max{∆(G) + 10, 25}. Then k ≥ 25. In the following, we will often delete two
adjacent edges, say vv1, vv2 to get a subgraph H of G. If H has an isolated edge e = wp, then there must be an edge wp in G
such that dG(w) = 3, dG(p) = 1 or dG(w) = dG(p) = 2 or dG(w) = 2, dG(p) = 1. Then G − wp has a neighbor sum distin-
guishing [k]-edge coloringφ by theminimality ofG. We can easily extendφ to the graphG, which is a contradiction. So in the
following, we assume that the subgraph H obtained by deleting two adjacent edges from G has no isolated edges.

Claim 3.1. Let v ∈ V (G) and v1, v2 be the neighbors of v in G. If d(v1) ≤
k+1−d(v)

2 and d(v2) ≤
k+1−d(v)

2 , then d(v) ≥

2k−2d(v1)−2d(v2)+5
3 .

Proof. Let H1 = G − vv1 − vv2. By the minimality of G,H1 has a neighbor sum distinguishing [k]-edge coloring φ.
First suppose that v1 is not adjacent to v2. For vv1, we surely cannot use the colors of its (already colored) at most

d(v1)−1+d(v)−2 incident edges. Next, the colors in {mφ(v2)−mφ(v)}∪{mφ(u)−mφ(v1) | uv1 ∈ E(H1)} are also forbidden.
Then we have at least k− 2(d(v1)− 1)− (d(v)− 2)− 1 ≥ k− 2d(v1)− d(v)+ 3 ≥ 2 safe colors for vv1. Similarly, we have
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at least k − 2d(v2) − d(v) + 3 ≥ 2 safe colors for vv2. Let X, Y denote the sets of safe colors for vv1 and vv2 respectively.
By Lemma 2.2, we have at least

k − 2d(v1) − d(v) + 3 + k − 2d(v2) − d(v) + 3 − 3 = 2k − 2d(v) − 2d(v1) − 2d(v2) + 3

distinct pairs (xi, yi) with xi ≠ yi in X × Y such that all the sums xi + yi are pairwise distinct. So we must have that
2k−2d(v)−d(v1)−d(v2)+3 ≤ d(v)−2, since otherwisewe can choose a pair, say (x, y) ∈ X×Y with x ≠ y, such that x+y
is not in {mφ(u)−mφ(v) | uv ∈ E(H1)}, and thus we can get a neighbor sum [k]-edge coloring of G, which is a contradiction.
Therefore d(v) ≥

2k−2d(v1)−2d(v2)+5
3 .

Next we assume that v1 is adjacent to v2. For vv1, we cannot use the colors of its (already colored) at most d(v1) − 1 +

d(v)−2 incident edges. Next, the colors in {mφ(v2)−mφ(v)}∪ {mφ(u)−mφ(v1) | uv1 ∈ E(H1), u ≠ v2} are also forbidden.
Thenwe have at least k−2(d(v1)−1)−(d(v)−2) ≥ k−2d(v1)−d(v)+4 safe colors for vv1. Similarly, for vv2, we cannot use
the colors of its at most d(v2)−1+d(v)−2 incident edges. In addition, the colors in {mφ(v1)−mφ(v)}∪{mφ(u)−mφ(v2) |

uv2 ∈ E(H1), u ≠ v1} are also forbidden. Sowe have at least k−2(d(v2)−1)−(d(v)−2) ≥ k−2d(v2)−d(v)+4 safe colors
for vv2. Let X, Y denote the sets of safe colors for vv1 and vv2 respectively. By Lemma 2.2, we have at least k − 2d(v1) −

d(v)+4+k−2d(v2)−d(v)+4−3 = 2k−2d(v)−2d(v1)−2d(v2)+5 distinct pairs (xi, yi)with xi ≠ yi in X×Y such that all
the sums xi+yi are pairwise distinct.Moreover, among them there are atmost two pairs such that xi−yi = mφ(v2)−mφ(v1).
Sowemust have that 2k−2d(v)−2d(v1)−2d(v2)+5−2 ≤ d(v)−2, since otherwisewe can choose a pair, say (x, y) ∈ X×Y
with x ≠ y, such that x + y is not in {mφ(u) − mφ(v) | uv ∈ E(H1)} and x − y ≠ mφ(v2) − mφ(v1), and thus we can get a
neighbor sum [k]-edge coloring of G, which is a contradiction. Therefore d(v) ≥

2k−2d(v1)−2d(v2)+5
3 . �

Claim 3.2. For each vertex v ∈ V (G), if n3−(v) ≥ 2, then d(v) ≥
2k−7
3 and n3−(v) ≤ 7 − 2k + 3d(v).

Proof. Suppose that v1 and v2 are two neighbors of v such that d(v1), d(v2) ≤ 3. By Claim 3.1, d(v) ≥
2k−2d(v1)−2d(v2)+5

3 ≥

2k−7
3 . Since k ≥ 25,

d(v)(d(v) − 1)
2

≥
(k − 5)(2k − 7)

9
> k + (k − 1).

So in anyproper coloring ofG, the sumof the colors of the edges incidentwith v is different from its 3− neighbors. By the same
arguments as in Claim 3.1, we have that 2k−2d(v)−d(v1)−d(v2)+5 ≤ d(v)−n3−(v). Thus n3−(v) ≤ 7−2k+3d(v). �

We have the following immediate corollary.

Corollary 3.1. For each vertex v ∈ V (G), if n3−(v) ≥ 2, then n4+(v) ≥ 12.

Claim 3.3. Let v be a vertex with n3−(v) = 1 and u be a neighbor of v with d(u) ≥ 4. Then d(u) ≥ min{
k−d(v)+2

2 , 2k−3d(v)−1
2 }.

Proof. We may assume that v1 is the neighbor of v with d(v1) ≤ 3. If 2d(u) ≤ k + 1 − d(v), then by Claim 3.1, d(v) ≥
2k−2d(v1)−2d(u)+5

3 ≥
2k−2d(u)−1

3 . Thus 3d(v) + 2d(u) ≥ 2k − 1, which completes our proof. �

Next we will show that G contains the configuration (C) or (D). Let H be the graph obtained by deleting all 3−-vertices
from G.

Claim 3.4. For each vertex v ∈ H, dH(v) ≥ 3. Moreover, if dH(v) = 3 and u is any neighbor of v in H, then dH(u) ≥ 12.

Proof. Let v be a vertex in H . By the definition of H, dG(v) ≥ 4. If n3−(v) ≥ 2, then by Corollary 3.1, dH(v) ≥ n4+(v) ≥ 12.
If n3−(v) = 1, then dH(v) ≥ 3. So for each vertex v ∈ V (H), dH(v) ≥ 3.

Now suppose that u is a neighbor of v in H and dH(v) = 3. We know that dG(v) = 4 and n3−(v) = 1. If n3−(u) ≥ 2, then
by Corollary 3.1, dH(u) ≥ n4+(u) ≥ 12. If n3−(u) = 1, we claim that dG(u) ≥ 13. Otherwise, dG(u) ≤ 12, and by Claim 3.3,
dG(v) ≥ min{

k−dG(u)+2
2 ,

2k−3dG(u)−1
2 } ≥ min{

k−10
2 , 2k−37

2 } ≥ 5, which is a contradiction. Hence dG(u) ≥ 13 and dH(u) =

dG(u) − 1 ≥ 12. If n3−(u) = 0, then dG(u) = dH(u). By Claim 3.3, we have dH(u) = dG(u) ≥ min{
k−dG(v)+2

2 ,
2k−3dG(v)−1

2 } ≥

min{
k−2
2 , 2k−13

2 }. So dH(u) ≥ 12. �

Claim 3.5. Let u be any neighbor of v in H. If 4 ≤ dH(v) ≤ 5 and dH(v) < dG(v), then dH(u) ≥ 10.

Proof. Since dH(v) < dG(v), n3−(v) ≥ 1. By Corollary 3.1, we may assume that n3−(v) = 1 or else we have dH(v) ≥ 12. If
n3−(u) ≥ 2, then dH(u) ≥ 12. If n3−(u) = 1, then dH(u) ≥ 10. Otherwise, dG(u) = dH(u) + 1 ≤ 10, and by Claim 3.3, 6 ≥

dG(v) ≥ min{
k−dG(u)+2

2 ,
2k−3dG(u)−1

2 } ≥ min{
k−8
2 , 2k−31

2 } ≥ 7, which is a contradiction. If n3−(u) = 0, then dH(u) = dG(u).
By Claim 3.3, dH(u) = dG(u) ≥ min{

k−dG(v)+2
2 ,

2k−3dG(v)−1
2 } ≥ min{

k−4
2 , 2k−19

2 } ≥ 10. �

By Lemma 2.1 and Claim 3.4, there exists a 5−-vertex v inH such that v belongs to one of the configurations (B), (C), (D).
However, if dH(v) = 3, then by Claim 3.4, each neighbor u of v has dH(u) ≥ 12. We must have that 4 ≤ dH(v) ≤ 5 and H
contains the configuration (C) or (D). By Claim 3.5, if dH(v) < dG(v), then for any edge uv ∈ E(H), we have dH(u) ≥ 10. So
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it must hold that dH(v) = dG(v). We claim that v belongs to the configuration (C) or (D) in G. Otherwise, v has a neighbor u
in H such that dH(u) ≤ 9 and dH(u) < dG(u). Clearly, n3−(u) = 1 or else n3−(u) ≥ 2, and then dH(u) ≥ 12 by Corollary 3.1,
a contradiction. Then dG(u) ≤ 10. By Claim 3.3, dG(v) ≥ min{

k−dG(u)+2
2 ,

2k−3dG(u)−1
2 } ≥ min{

k−8
2 , 2k−31

2 } ≥ 6 since k ≥ 25.
This contradiction proves that v belongs to the configuration (C) or (D) in G.

Suppose that v has neighbors v1, v2, . . . , vt , where t = 4, 5, with d(v1) ≤ d(v2) ≤ · · · ≤ d(vt). If t = 4, d(v1) ≤ 7 and
d(v2) ≤ 9, then by Claim 3.1, it holds that 4 = d(v) ≥

2k−2d(v1)−2d(v2)+5
3 ≥ 7, which is a contradiction. If t = 5, d(v1) ≤ 6

and d(v2) ≤ 7, by Claim 3.1, it holds that 5 = d(v) ≥
2k−2d(v1)−2d(v2)+5

3 ≥ 9, which is a contradiction. This completes the
whole proof of Theorem 1.2.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11101243, 61103151), the Scientific Re-
search Foundation for the Excellent Middle-Aged and Young Scientists of Shandong Province (BS2012SF016, BS2012DX017)
and Independent Innovation Foundation of Shandong University (IFYT 14012).

References

[1] S. Akbari, H. Bidkhori, N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006) 3005–3010.
[2] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237–250.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[4] Y. Bu, K.W. Lih, W.F. Wang, Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six, Discuss. Math. Graph Theory 31 (3)

(2011) 429–439.
[5] A. Dong, G. Wang, Neighbor sum distinguishing colorings of some graphs, Discrete Math. Algorithms Appl. 4 (3) (2012) 1250047.
[6] A. Dong, G. Wang, J. Zhang, Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree, Discrete Appl. Math. 166

(2014) 86–90.
[7] K. Edwards, M. Horn̆ák, M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341–350.
[8] E. Flandrin, J. Saclé, A. Marczyk, J. Przybyło, M. Woźniak, Neighbor sum distinguishing index, Graphs Combin. 29 (2013) 1329–1336.
[9] Y. Guan, J. Hou, Y. Yang, An improved bound on acyclic chromatic index of planar graphs, Discrete Math. 313 (10) (2013) 1098–1103.

[10] H. Hatami, ∆ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246–256.
[11] M. Horn̆ák, M. Woźniak, On neighbour-distinguishing index of planar graphs, IM Preprint, Series A, No. 9/2011.
[12] P. Huang, T. Wong, X. Zhu, Weighted-1-antimagic graphs of prime power order, Discrete Math. 312 (14) (2012) 2162–2169.
[13] M. Kalkowski, M. Karoński, F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) 347–349.
[14] J. Przybyło, Irregularity strength of regular graphs, Electron. J. Combin. 15 (1) (2008) #R82.
[15] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. DiscreteMath. 23 (1) (2009) 511–516.
[16] J. Przybyło, Neighbor distinguishing edge coloring via the combinatorial nullstellensatz, SIAM J. Discrete Math. 27 (3) (2013) 1313–1322.
[17] J. Przybyło, M. Woźniak, Total weight choosability of graphs, Electron. J. Combin. 18 (2011) #P112.
[18] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010)

471–485. 19.
[19] W. Wang, Y. Wang, Adjacent vertex-distinguishing edge colorings of K4-minor free graphs, Appl. Math. Lett. 24 (12) (2011) 2034–2037.
[20] G. Wang, G. Yan, An improved upper bound for the neighbor sum distinguishing index of graphs, Discrete Appl. Math. 175 (2014) 126–128.
[21] T. Wong, X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011) 198–212.
[22] T. Wong, X. Zhu, Antimagic labelling of vertex weighted graphs, J. Graph Theory 3 (70) (2012) 348–350.
[23] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, J. Appl. Math. Lett. 15 (2002) 623–626.

http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref1
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref2
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref3
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref4
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref5
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref6
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref7
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref8
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref9
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref10
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref12
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref13
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref14
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref15
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref16
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref17
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref18
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref19
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref20
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref21
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref22
http://refhub.elsevier.com/S0012-365X(14)00262-3/sbref23

	Neighbor sum distinguishing index of planar graphs
	Introduction
	Preliminaries
	Proof of Theorem 1.2
	Acknowledgments
	References


