Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Neighbor sum distinguishing index of planar graphs

Guanghui Wang^{a,*}, Zhumin Chen^b, Jihui Wang^c

^a School of Mathematics, Shandong University, 250100, Jinan, Shandong, PR China^b School of Computer Science, Shandong University, 250100, Jinan, Shandong, PR China

^c School of Mathematical Sciences, Jinan University, 250100, Jinan, Shandong, PR China

² School of Mathematical Sciences, Jinan University, 250022, Jinan, Shahaong, PK Chin

ARTICLE INFO

Article history: Received 2 August 2012 Received in revised form 28 June 2014 Accepted 28 June 2014 Available online 19 July 2014

Keywords: Neighbor sum distinguishing index Planar graph Adjacent vertex distinguishing coloring

ABSTRACT

A proper [k]-edge coloring of a graph *G* is a proper edge coloring of *G* using colors from $[k] = \{1, 2, ..., k\}$. A neighbor sum distinguishing [k]-edge coloring of *G* is a proper [k]-edge coloring of *G* such that for each edge $uv \in E(G)$, the sum of colors taken on the edges incident to *u* is different from the sum of colors taken on the edges incident to *v*. By nsdi(*G*), we denote the smallest value *k* in such a coloring of *G*. It was conjectured by Flandrin et al. that if *G* is a connected graph without isolated edges and $G \neq C_5$, then $nsdi(G) \leq \Delta(G) + 2$. In this paper, we show that if *G* is a planar graph without isolated edges, then $nsdi(G) \leq max\{\Delta(G) + 10, 25\}$, which improves the previous bound $(max\{2\Delta(G) + 1, 25\})$ due to Dong and Wang.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [3]. Let G = (V, E) be a simple, undirected graph. Let C be a set of colors where $C = [k] = \{1, 2, ..., k\}$ and let $\phi : E(G) \to C$ be a proper [k]-edge coloring of G. By $m_{\phi}(v)$ ($C_{\phi}(v)$), we denote the sum (set) of colors taken on the edges incident to v, i.e. $m_{\phi}(v) = \sum_{u \in N(v)} \phi(uv)$ ($C_{\phi}(v) = \{\phi(uv) \mid u \in N(v)\}$). If the coloring ϕ satisfies that $C_{\phi}(u) \neq C_{\phi}(v)$ for each edge $uv \in E(G)$, then we call such coloring a *neighbor distinguishing* [k]-edge coloring of G. We use ndi(G) to denote the smallest value k such that G has a neighbor distinguishing edge coloring is named an *adjacent vertex distinguishing edge coloring* [18,19]. If the coloring ϕ satisfies that $m_{\phi}(v) \neq m_{\phi}(u)$ for each edge $uv \in E(G)$, then we call such coloring a *neighbor sum distinguishing* [k]-edge coloring of G. By nsdi(G), we denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G. By nsdi(G), we denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G. By nsdi(G), we denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G. By nsdi(G), we denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G. By nsdi(G), we denote the smallest value k such that G has a neighbor sum distinguishing [k]-edge coloring of G and we call it the *neighbor sum distinguishing* [k]-edge coloring of G.

It is known that to have a neighbor distinguishing or a neighbor sum distinguishing coloring, *G* cannot have an isolated edge (we call such graphs normal). If a normal graph *G* has connected components G_1, \ldots, G_k , then $\operatorname{ndi}(G) = \max{\operatorname{ndi}(G_i) | i = 1, \ldots, k}$ and $\operatorname{nsdi}(G) = \max{\operatorname{nsdi}(G_i) | i = 1, \ldots, k}$. Therefore, when analyzing the neighbor distinguishing index or the neighbor sum distinguishing index, we can restrict our attention to connected normal graphs. Apparently, for any normal graph *G*, $\Delta(G) \leq \chi'(G) \leq \operatorname{ndi}(G) \leq \operatorname{nsdi}(G)$, where $\chi'(G)$ is the chromatic index of *G*.

For neighbor distinguishing colorings, we have the following conjecture due to Zhang et al. [23].

Conjecture 1 ([23]). If *G* is a connected normal graph with at least 6 vertices, then $ndi(G) \le \Delta(G) + 2$.

* Corresponding author. E-mail address: ghwang@sdu.edu.cn (G. Wang).

http://dx.doi.org/10.1016/j.disc.2014.06.027 0012-365X/© 2014 Elsevier B.V. All rights reserved.

Akbari et al. [1] proved that $ndi(G) \le 3\Delta(G)$ for any normal graph *G*. Hatami [10] has shown that if *G* is normal and $\Delta(G) > 10^{20}$, then $ndi(G) \le \Delta(G) + 300$. For more references, see [2,4,7,18,19,11].

Recently, colorings and labelings related to sums of the colors have received much attention. The family of such problems includes e.g. vertex-coloring [k]-edge-weightings [13], total weight choosability [21,17], magic and antimagic labelings [12,22] and the irregularity strength [14,15]. As for neighbor sum distinguishing edge colorings, Flandrin et al. [8] completely determined the neighbor sum distinguishing indices for paths, cycles, trees, complete graphs and complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 2 ([8]). If *G* is a connected normal graph and $G \neq C_5$, then $nsdi(G) \leq \Delta(G) + 2$.

In the same paper, Flandrin et al. [8] gave an upper bound: $\lceil \frac{7\Delta(G)-4}{2} \rceil$. In [20], Wang and Yan improved it to $\lceil \frac{10\Delta(G)+2}{3} \rceil$. In [16], Przybyło proved that $nsdi(G) \le 2\Delta(G) + col(G) - 1$, where col(G) is the coloring number of *G*. Dong et al. [6] studied neighbor sum distinguishing colorings of sparse graphs and proved that if *G* is a normal graph with maximum average degree at most $\frac{5}{2}$ and $\Delta(G) \ge 5$, then $nsdi(G) \le \Delta(G) + 1$. Dong and Wang [5] also considered the neighbor sum distinguishing colorings of planar graphs and proved the following result.

Theorem 1.1 ([5]). If G is a connected normal planar graph, then $nsdi(G) \le max\{2\Delta(G) + 1, 25\}$.

In this paper, we improve the result above and obtain the following result.

Theorem 1.2. If *G* is a connected normal planar graph, then $nsdi(G) \le max\{\Delta(G) + 10, 25\}$.

2. Preliminaries

First we will introduce some notations. Let *G* be a graph. For a vertex $v \in V(G)$, let N(v) denote the set of vertices adjacent to v and d(v) = |N(v)| denote the degree of v. A vertex of degree k is called k-vertex. We write k^+ -vertex for a vertex of degree at least k, and k^- -vertex for that of degree at most k. Let $N_{k^-}(v) = \{x \in N(v) \mid d(x) \le k\}$ and $n_{k^-}(v) = |N_{k^-}(v)|$. Similarly, $N_{k^+}(v) = \{x \in N(v) \mid d(x) \ge k\}$ and $n_{k^+}(v) = |N_{k^+}(v)|$.

Next we introduce a structural lemma about planar graphs, which was used in [9].

Lemma 2.1 ([9]). Let G be a planar graph. Then there exists a vertex v in G with exactly d(v) = t neighbors $v_1, v_2, ..., v_t$ where $d(v_1) \le d(v_2) \le \cdots \le d(v_t)$ such that at least one of the following is true:

(A) $t \le 2$, (B) t = 3 and $d(v_1) \le 11$, (C) t = 4 and $d(v_1) \le 7$, $d(v_2) \le 9$, (D) t = 5 and $d(v_1) \le 6$, $d(v_2) \le 7$.

Finally, we give a simple lemma, which will also be used in our proof.

Lemma 2.2 ([8]). Let z be an integer. For any two sets of integers X, Y, each of size at least 2, there exist (at least) |X| + |Y| - 3 pairs $(x_i, y_i) \in X \times Y$ with $x_i \neq y_i$, i = 1, 2, ..., |X| + |Y| - 3, such that all the sums $x_i + y_i$ are pairwise distinct and among them there are at most two pairs satisfying $x_i - y_i = z$.

This lemma clearly holds. Indeed, it is sufficient to consider e.g. the pairs from the set

 $(\{x\} \times (Y \setminus \{x\})) \cup ((X \setminus (\{x\} \cup \{y\})) \times \{y\}),$

where $x = \min X$ and $y = \max Y$.

3. Proof of Theorem 1.2

We prove the theorem by contradiction. Suppose that *G* is a minimal counterexample with respect to the number of edges. For simplicity, let $\Delta = \Delta(G)$ and $k = \max{\{\Delta(G) + 10, 25\}}$. Then $k \ge 25$. In the following, we will often delete two adjacent edges, say vv_1 , vv_2 to get a subgraph *H* of *G*. If *H* has an isolated edge e = wp, then there must be an edge wp in *G* such that $d_G(w) = 3$, $d_G(p) = 1$ or $d_G(w) = d_G(p) = 2$ or $d_G(w) = 2$, $d_G(p) = 1$. Then G - wp has a neighbor sum distinguishing [k]-edge coloring ϕ by the minimality of *G*. We can easily extend ϕ to the graph *G*, which is a contradiction. So in the following, we assume that the subgraph *H* obtained by deleting two adjacent edges from *G* has no isolated edges.

Claim 3.1. Let $v \in V(G)$ and v_1, v_2 be the neighbors of v in G. If $d(v_1) \leq \frac{k+1-d(v)}{2}$ and $d(v_2) \leq \frac{k+1-d(v)}{2}$, then $d(v) \geq \frac{2k-2d(v_1)-2d(v_2)+5}{2}$.

Proof. Let $H_1 = G - vv_1 - vv_2$. By the minimality of G, H_1 has a neighbor sum distinguishing [k]-edge coloring ϕ .

First suppose that v_1 is not adjacent to v_2 . For vv_1 , we surely cannot use the colors of its (already colored) at most $d(v_1) - 1 + d(v) - 2$ incident edges. Next, the colors in $\{m_{\phi}(v_2) - m_{\phi}(v)\} \cup \{m_{\phi}(u) - m_{\phi}(v_1) \mid uv_1 \in E(H_1)\}$ are also forbidden. Then we have at least $k - 2(d(v_1) - 1) - (d(v) - 2) - 1 \ge k - 2d(v_1) - d(v) + 3 \ge 2$ safe colors for vv_1 . Similarly, we have

at least $k - 2d(v_2) - d(v) + 3 \ge 2$ safe colors for vv_2 . Let X, Y denote the sets of safe colors for vv_1 and vv_2 respectively. By Lemma 2.2, we have at least

$$k - 2d(v_1) - d(v) + 3 + k - 2d(v_2) - d(v) + 3 - 3 = 2k - 2d(v) - 2d(v_1) - 2d(v_2) + 3$$

distinct pairs (x_i, y_i) with $x_i \neq y_i$ in $X \times Y$ such that all the sums $x_i + y_i$ are pairwise distinct. So we must have that $2k - 2d(v) - d(v_1) - d(v_2) + 3 \le d(v) - 2$, since otherwise we can choose a pair, say $(x, y) \in X \times Y$ with $x \neq y$, such that x + y is not in $\{m_{\phi}(u) - m_{\phi}(v) \mid uv \in E(H_1)\}$, and thus we can get a neighbor sum [k]-edge coloring of G, which is a contradiction. Therefore $d(v) > \frac{2k - 2d(v_1) - 2d(v_2) + 5}{2}$.

Next we assume that v_1 is adjacent to v_2 . For vv_1 , we cannot use the colors of its (already colored) at most $d(v_1) - 1 + d(v) - 2$ incident edges. Next, the colors in $\{m_{\phi}(v_2) - m_{\phi}(v)\} \cup \{m_{\phi}(u) - m_{\phi}(v_1) \mid uv_1 \in E(H_1), u \neq v_2\}$ are also forbidden. Then we have at least $k - 2(d(v_1) - 1) - (d(v) - 2) \ge k - 2d(v_1) - d(v) + 4$ safe colors for vv_1 . Similarly, for vv_2 , we cannot use the colors of its at most $d(v_2) - 1 + d(v) - 2$ incident edges. In addition, the colors in $\{m_{\phi}(v_1) - m_{\phi}(v)\} \cup \{m_{\phi}(u) - m_{\phi}(v_2) \mid uv_2 \in E(H_1), u \neq v_1\}$ are also forbidden. So we have at least $k - 2(d(v_2) - 1) - (d(v) - 2) \ge k - 2d(v_2) - d(v) + 4$ safe colors for vv_2 . Let X, Y denote the sets of safe colors for vv_1 and vv_2 respectively. By Lemma 2.2, we have at least $k - 2d(v_1) - d(v_1) + 4 + k - 2d(v_2) - d(v) + 4 - 3 = 2k - 2d(v) - 2d(v_1) - 2d(v_2) + 5$ distinct pairs (x_i, y_i) with $x_i \neq y_i$ in $X \times Y$ such that all the sums $x_i + y_i$ are pairwise distinct. Moreover, among them there are at most two pairs such that $x_i - y_i = m_{\phi}(v_2) - m_{\phi}(v_1)$. So we must have that $2k - 2d(v) - 2d(v_1) - 2d(v_2) + 5 - 2 \le d(v) - 2$, since otherwise we can choose a pair, say $(x, y) \in X \times Y$ with $x \neq y$, such that x + y is not in $\{m_{\phi}(u) - m_{\phi}(v) \mid uv \in E(H_1)\}$ and $x - y \neq m_{\phi}(v_2) - m_{\phi}(v_1)$, and thus we can get a neighbor sum [k]-edge coloring of G, which is a contradiction. Therefore $d(v) \ge \frac{2k - 2d(v_1) - 2d(v_2) + 5}{3}$. \Box

Claim 3.2. For each vertex $v \in V(G)$, if $n_{3^-}(v) \ge 2$, then $d(v) \ge \frac{2k-7}{3}$ and $n_{3^-}(v) \le 7 - 2k + 3d(v)$.

Proof. Suppose that v_1 and v_2 are two neighbors of v such that $d(v_1), d(v_2) \le 3$. By Claim 3.1, $d(v) \ge \frac{2k-2d(v_1)-2d(v_2)+5}{3} \ge \frac{2k-7}{2}$. Since k > 25,

$$\frac{d(v)(d(v)-1)}{2} \ge \frac{(k-5)(2k-7)}{9} > k + (k-1).$$

So in any proper coloring of *G*, the sum of the colors of the edges incident with *v* is different from its 3^- neighbors. By the same arguments as in Claim 3.1, we have that $2k - 2d(v) - d(v_1) - d(v_2) + 5 \le d(v) - n_{3^-}(v)$. Thus $n_{3^-}(v) \le 7 - 2k + 3d(v)$.

We have the following immediate corollary.

Corollary 3.1. For each vertex $v \in V(G)$, if $n_{3^{-}}(v) \ge 2$, then $n_{4^{+}}(v) \ge 12$.

Claim 3.3. Let v be a vertex with $n_{3^-}(v) = 1$ and u be a neighbor of v with $d(u) \ge 4$. Then $d(u) \ge \min\{\frac{k-d(v)+2}{2}, \frac{2k-3d(v)-1}{2}\}$. **Proof.** We may assume that v_1 is the neighbor of v with $d(v_1) \le 3$. If $2d(u) \le k + 1 - d(v)$, then by Claim 3.1, $d(v) \ge \frac{2k-2d(v_1)-2d(u)+5}{3} \ge \frac{2k-2d(u)-1}{3}$. Thus $3d(v) + 2d(u) \ge 2k - 1$, which completes our proof. \Box

Next we will show that G contains the configuration (C) or (D). Let H be the graph obtained by deleting all 3^- -vertices from G.

Claim 3.4. For each vertex $v \in H$, $d_H(v) \ge 3$. Moreover, if $d_H(v) = 3$ and u is any neighbor of v in H, then $d_H(u) \ge 12$.

Proof. Let v be a vertex in H. By the definition of H, $d_G(v) \ge 4$. If $n_{3^-}(v) \ge 2$, then by Corollary 3.1, $d_H(v) \ge n_{4^+}(v) \ge 12$. If $n_{3^-}(v) = 1$, then $d_H(v) \ge 3$. So for each vertex $v \in V(H)$, $d_H(v) \ge 3$.

Now suppose that *u* is a neighbor of *v* in *H* and $d_H(v) = 3$. We know that $d_G(v) = 4$ and $n_{3^-}(v) = 1$. If $n_{3^-}(u) \ge 2$, then by Corollary 3.1, $d_H(u) \ge n_{4^+}(u) \ge 12$. If $n_{3^-}(u) = 1$, we claim that $d_G(u) \ge 13$. Otherwise, $d_G(u) \le 12$, and by Claim 3.3, $d_G(v) \ge \min\{\frac{k-d_G(u)+2}{2}, \frac{2k-3d_G(u)-1}{2}\} \ge \min\{\frac{k-10}{2}, \frac{2k-37}{2}\} \ge 5$, which is a contradiction. Hence $d_G(u) \ge 13$ and $d_H(u) = d_G(u) - 1 \ge 12$. If $n_{3^-}(u) = 0$, then $d_G(u) = d_H(u)$. By Claim 3.3, we have $d_H(u) = d_G(u) \ge \min\{\frac{k-d_G(v)+2}{2}, \frac{2k-3d_G(v)-1}{2}\} \ge \min\{\frac{k-2}{2}, \frac{2k-13}{2}\}$. So $d_H(u) \ge 12$. \Box

Claim 3.5. Let u be any neighbor of v in H. If $4 \le d_H(v) \le 5$ and $d_H(v) < d_G(v)$, then $d_H(u) \ge 10$.

Proof. Since $d_H(v) < d_G(v)$, $n_3-(v) \ge 1$. By Corollary 3.1, we may assume that $n_3-(v) = 1$ or else we have $d_H(v) \ge 12$. If $n_3-(u) \ge 2$, then $d_H(u) \ge 12$. If $n_3-(u) = 1$, then $d_H(u) \ge 10$. Otherwise, $d_G(u) = d_H(u) + 1 \le 10$, and by Claim 3.3, $6 \ge d_G(v) \ge \min\{\frac{k-d_G(u)+2}{2}, \frac{2k-3d_G(u)-1}{2}\} \ge \min\{\frac{k-8}{2}, \frac{2k-31}{2}\} \ge 7$, which is a contradiction. If $n_3-(u) = 0$, then $d_H(u) = d_G(u)$. By Claim 3.3, $d_H(u) = d_G(u) \ge \min\{\frac{k-d_G(v)+2}{2}, \frac{2k-3d_G(v)-1}{2}\} \ge \min\{\frac{k-4}{2}, \frac{2k-19}{2}\} \ge 10$. \Box

By Lemma 2.1 and Claim 3.4, there exists a 5⁻-vertex v in H such that v belongs to one of the configurations (B), (C), (D). However, if $d_H(v) = 3$, then by Claim 3.4, each neighbor u of v has $d_H(u) \ge 12$. We must have that $4 \le d_H(v) \le 5$ and H contains the configuration (C) or (D). By Claim 3.5, if $d_H(v) < d_G(v)$, then for any edge $uv \in E(H)$, we have $d_H(u) \ge 10$. So

it must hold that $d_H(v) = d_G(v)$. We claim that v belongs to the configuration (C) or (D) in G. Otherwise, v has a neighbor u in *H* such that $d_H(u) \le 9$ and $d_H(u) < d_G(u)$. Clearly, $n_3 - (u) = 1$ or else $n_3 - (u) \ge 2$, and then $d_H(u) \ge 12$ by Corollary 3.1, a contradiction. Then $d_G(u) \le 10$. By Claim 3.3, $d_G(v) \ge \min\{\frac{k-d_G(u)+2}{2}, \frac{2k-3d_G(u)-1}{2}\} \ge \min\{\frac{k-8}{2}, \frac{2k-31}{2}\} \ge 6$ since $k \ge 25$. This contradiction proves that v belongs to the configuration (C) or (D) in G.

Suppose that v has neighbors v_1, v_2, \ldots, v_t , where t = 4, 5, with $d(v_1) \le d(v_2) \le \cdots \le d(v_t)$. If $t = 4, d(v_1) \le 7$ and $d(v_2) \le 9$, then by Claim 3.1, it holds that $4 = d(v) \ge \frac{2k-2d(v_1)-2d(v_2)+5}{3} \ge 7$, which is a contradiction. If t = 5, $d(v_1) \le 6$ and $d(v_2) \le 7$, by Claim 3.1, it holds that $5 = d(v) \ge \frac{2k-2d(v_1)-2d(v_2)+5}{3} \ge 9$, which is a contradiction. This completes the whole proof of Theorem 1.2.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11101243, 61103151), the Scientific Research Foundation for the Excellent Middle-Aged and Young Scientists of Shandong Province (BS2012SF016, BS2012DX017) and Independent Innovation Foundation of Shandong University (IFYT 14012).

References

- [1] S. Akbari, H. Bidkhori, N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006) 3005–3010.
- [2] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237–250.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [4] Y. Bu, K.W. Lih, W.F. Wang, Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six, Discuss. Math. Graph Theory 31 (3) (2011) 429-439.
- [5] A. Dong, G. Wang, Neighbor sum distinguishing colorings of some graphs, Discrete Math. Algorithms Appl. 4 (3) (2012) 1250047.
- [6] A. Dong, G. Wang, J. Zhang, Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree, Discrete Appl. Math. 166 (2014) 86 - 90.
- [7] K. Edwards, M. Horňák, M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341–350.
- [8] E. Flandrin, J. Saclé, A. Marczyk, J. Przybyło, M. Woźniak, Neighbor sum distinguishing index, Graphs Combin. 29 (2013) 1329–1336.
- 9 Y. Guan, J. Hou, Y. Yang, An improved bound on acyclic chromatic index of planar graphs, Discrete Math. 313 (10) (2013) 1098-1103.
- [10] H. Hatami, Δ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246–256.
- [11] M. Horňák, M. Woźniak, On neighbour-distinguishing index of planar graphs, IM Preprint, Series A, No. 9/2011.
- [12] P. Huang, T. Wong, X. Zhu, Weighted-1-antimagic graphs of prime power order, Discrete Math. 312 (14) (2012) 2162–2169.
- 13] M. Kalkowski, M. Karoński, F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory Ser. B 100 (2010) 347–349.
- [14] J. Przybyło, Irregularity strength of regular graphs, Electron. J. Combin. 15 (1) (2008) #R82.
- [15] J. Przybyło, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (1) (2009) 511–516.
- 16] J. Przybyło, Neighbor distinguishing edge coloring via the combinatorial nullstellensatz, SIAM J. Discrete Math. 27 (3) (2013) 1313–1322.
- [17] J. Przybyło, M. Woźniak, Total weight choosability of graphs, Electron. J. Combin. 18 (2011) #P112.
- [18] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010) 471–485, 19. [19] W. Wang, Y. Wang, Adjacent vertex-distinguishing edge colorings of K₄-minor free graphs, Appl. Math. Lett. 24 (12) (2011) 2034–2037.
- [20] G. Wang, G. Yan, An improved upper bound for the neighbor sum distinguishing index of graphs, Discrete Appl. Math. 175 (2014) 126-128.
- [21] T. Wong, X. Zhu, Total weight choosability of graphs, J. Graph Theory 66 (2011) 198-212.
- [22] T. Wong, X. Zhu, Antimagic labelling of vertex weighted graphs, J. Graph Theory 3 (70) (2012) 348-350.
- [23] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, J. Appl. Math. Lett. 15 (2002) 623–626.