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a b s t r a c t

If G is a k-chromatic graph of order n then it is known that the chromatic polynomial of G,
π(G, x), is at most x(x − 1) · · · (x − (k − 1))xn−k

= (x)↓kxn−k for every x ∈ N. We improve
here this bound by showing that

π(G, x) ≤ (x)↓k(x − 1)∆(G)−k+1xn−1−∆(G)

for every x ∈ N, where ∆(G) is the maximum degree of G. Secondly, we show that if G is a
connected k-chromatic graph of order nwhere k ≥ 4 thenπ(G, x) is atmost (x)↓k(x−1)n−k

for every real x ≥ n− 2+

 n
2


−


k
2


− n + k

2
(it had been previously conjectured that

this inequality holds for all x ≥ k). Finally, we provide an upper bound on the moduli of
the chromatic roots that is an improvement over known bounds for dense graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G) (the order and size of the graph are, respectively, |V (G)| and
|E(G)|). For a nonnegative integer x, an x-colouring of G is a function f : V (G) → {1, . . . , x} such that f (u) ≠ f (v) for every
uv ∈ E(G). The chromatic number χ(G) is smallest x for which G has an x-colouring.We say that G is k-chromatic ifχ(G) = k.
The well known chromatic polynomial π(G, x) is the polynomial whose values at nonnegative integral values of x count the
number of x-colourings ofG. The fact thatπ(G, x) is a polynomial in x follows from thewell-known edge addition–contraction
formula:

π(G, x) = π(G + uv, x) + π(G · uv, x)

if u and v are nonadjacent vertices ofG. An i-colour partition ofG is a partition of the vertices ofG into inonempty independent
sets. Let ai(G) denote the number of i-colour partitions of G. It is easy to see that

π(G, x) =

n
i=χ(G)

ai(G) (x)↓i

where (x)↓i = x(x − 1) . . . (x − i + 1) is the ith falling factorial of x and n is the order of G. Moreover, ai(G) also satisfies
an edge addition–contraction formula, namely, ai(G) = ai(G + uv) + ai(G · uv). We refer the reader to [1] for a general
discussion of graph colourings and chromatic polynomials.

Let Gk(n) be the family of all k-chromatic graphs of order n. Given a natural number x ≥ k, it is natural to enquire about
the maximum number of x-colourings among k-chromatic graphs of order n, that is, among graphs in Gk(n). Tomescu [7]
studied this problem and showed the following:
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Theorem 1.1 ([7, pg. 239]). Let G be a graph in Gk(n). Then for every x ∈ N,

π(G, x) ≤ (x)↓k xn−k.

Moreover, when x ≥ k, the equality is achieved if and only if G ∼= Kk∪· (n − k)K1 (the graph consisting of a k-clique plus n − k
isolated vertices).

The next natural problem is to maximize the number of x-colourings of a graph over the family of connected k-chromatic
graphs of order n (we denote this family by Ck(n)). Interestingly, the problem becomes much more complicated when the
connectedness condition is imposed. The answer is trivialwhen x = k = 2, as any2-chromatic connected graphhas precisely
two 2-colourings. It is well known that (see, for example, [1]) if G is a connected graph of order n then π(G, x) ≤ x(x−1)n−1

for every x ∈ N and furthermore, when x ≥ 3 the equality is achieved if and only if G is a tree. Therefore, for k = 2 and
x ≥ 3, the maximum number of x-colourings of a graph in C2(n) is equal to x(x − 1)n−1 and extremal graphs are trees.

Tomescu settled the problem for x = k = 3 in [6] and later extended it for x ≥ k = 3 in [9] by showing that if G is a
graph in C3(n) then

π(G, x) ≤ (x − 1)n − (x − 1) for odd n

and

π(G, x) ≤ (x − 1)n − (x − 1)2 for even n

for every integer x ≥ 3 and furthermore the extremal graph is the odd cycle Cn when n is odd and odd cycle with a vertex
of degree 1 attached to the cycle (denoted C1

n−1) when n is even.
Onemight subsequently think thatmaximizing thenumber of x-colourings of a graph inCk(n) should dependon the value

of k. Let C∗

k (n) be the set of all graphs in Ck(n) which have size


k
2


+ n − k and clique number k (that is, C∗

k (n) consists
of graphs which are obtained from a k-clique by recursively attaching leaves). In [5] Tomescu considered the problem for
x = k ≥ 4 and conjectured the following (see also [8,9]):

Conjecture 1.2 ([5]). Let G be a graph in Ck(n) where k ≥ 4. Then

π(G, k) ≤ k! (k − 1)n−k,

or, equivalently, ak(G) ≤ (k − 1)n−k, with the extremal graphs belong to C∗

k (n).

The authors in [1] mention the following conjecture which broadly extends Conjecture 1.2 to all nonnegative integers x:

Conjecture 1.3 ([1, pg. 315]). Let G be a graph in Ck(n) where k ≥ 4. Then for every x ∈ N,

π(G, x) ≤ (x)↓k(x − 1)n−k.

Moreover, for x ≥ k, the equality holds if and only if G belongs to C∗

k (n).

It is not hard to see that Conjecture 1.3 implies Theorem 1.1 because the chromatic polynomial of a graph is equal to
the product of chromatic polynomials of its connected components. However, the problem of maximizing the number of
colourings appears more difficult when graphs are connected, since the answer to this problem depends on the value of k
(the structure of extremal graphs seem to be different for k = 2 and 3). As Tomescu points out [7], the difficulty may lie in
the lack of a characterization of k-critical graphs (those minimal with respect to k-chromaticity) when k ≥ 4.

If G ∈ C∗

k (n) then it is known that (see, for example, [9]) π(G, x) = (x)↓k (x − 1)n−k as one can first colour the clique of
order k and then recursively colour the remaining vertices (which have only one coloured neighbour). On the other hand,
one can see that if π(G, x) = (x)↓k (x − 1)n−k then G ∈ C∗

k (n) because the multiplicity of the root 1 of the chromatic
polynomial of a graph G is equal to the number of blocks of G [1, pg. 35] (a block of G is a maximal connected subgraph of
G that has no cut-vertex). Therefore, in Conjecture 1.3, the extremal graphs are automatically determined if one can show
that π(G, x) ≤ (x)↓k (x − 1)n−k.

In this article, we first improve Tomescu’s general upper bound (Theorem 1.1), and show that if G ∈ Gk(n), then

π(G, x) ≤ (x)↓k(x − 1)∆(G)−k+1xn−1−∆(G)

for every x ∈ N (Theorem 2.2). Secondly, we discuss Conjecture 1.3 and show that if G ∈ Ck(n) where k ≥ 4 then π(G, x) is

at most (x)↓k(x − 1)n−k for every real x ≥ n − 2 +

 n
2


−


k
2


− n + k

2
(Theorem 2.5). Finally, we also give a new upper

bound on the moduli of the chromatic roots of a graph (Theorem 2.7); our bound improves previously known bounds for
dense graphs.
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2. Main results

2.1. An improved upper bound for the number of x-colourings

Our goal is to improve Theorem 1.1 by finding an upper bound that is dependent on the maximum degree in the graph.
We start by considering the case where there is a universal vertex, that is one with degree n − 1.

Lemma 2.1. Let G be a graph in Gk(n) having ∆(G) = n − 1. Then for every x ∈ N,

π(G, x) ≤ (x)↓k (x − 1)n−k.

Moreover for x ≥ k, the equality holds if and only if G ∈ C∗

k (n).

Proof. Let u be a vertex of Gwith maximum degree. Since u is a universal vertex, it cannot be in the same colour class with
any other vertex. Therefore, χ(G − u) = k − 1 and π(G, x) = x · π(G − u, x − 1). Now, by Theorem 1.1,

π(G − u, x) ≤ (x)↓k−1 x(n−1)−(k−1)

for every x ∈ N and equality holds for x ≥ k − 1 if and only if G − u ∼= Kk−1∪· (n − k)K1. Replacing x with x − 1 in the latter
inequality yields

π(G − u, x − 1) ≤ (x − 1)↓k−1 (x − 1)n−k

for every integer x ≥ 1 and equality holds for x ≥ k if and only if G − u ∼= Kk−1∪· (n − k)K1. Hence, the result follows as
π(G, x) = x · π(G − u, x − 1) and (x)↓k = x (x − 1)↓k−1. �

Theorem 2.2. Let G be a graph in Gk(n). Then for every natural number x,

π(G, x) ≤ (x)↓k (x − 1)∆(G)−(k−1) xn−1−∆(G).

Proof. We proceed by induction on the number of vertices. For the basis step, n = k and G is a complete graph, so
π(G, x) = (x)↓k. Now the result is clear as ∆(Kk) = k − 1.

Now we may assume that G is a k-chromatic graph of order n ≥ k + 1. If ∆(G) = n − 1 then the result follows by
Lemma 2.1. So let us assume that ∆(G) < n − 1. Let u be a vertex of maximum degree. Set t = n − 1 − ∆(G) and let
{v1, . . . , vt} be the set of non-neighbours of u in G, (that is, {v1, . . . , vt} = V (G) \ NG[u]). We set G0 = G and

Gi = Gi−1 + uvi

Hi = Gi · uvi

for i = 1, . . . , t . By repeated use of the edge addition–contraction formula,

π(G, x) = π(Gt , x) +

t
i=1

π(Hi, x).

It is clear that k ≤ χ(Gt) ≤ k + 1 and k ≤ χ(Hi) ≤ k + 1 for i = 1, 2, . . . , t . Also, observe that Gt is a graph of order n
having ∆(Gt) = n − 1 and each Hi is a graph of order n − 1 having ∆(Hi) ≥ ∆(G) + i − 1, and hence

∆(Hi) − ∆(G) − i + 1 ≥ 0.

Claim 1. π(Gt , x) ≤ (x)↓k (x − 1)n−k for every x ∈ N.

Proof of Claim 1. Since ∆(Gt) = n − 1, we obtain by Lemma 2.1 that

π(Gt , x) ≤ (x)↓χ(Gt ) (x − 1)n−χ(Gt ).

Also, (x)↓χ(Gt ) (x − 1)n−χ(Gt ) ≤ (x)↓k (x − 1)n−k as χ(Gt) ≥ k. Hence Claim 1 follows.

Claim 2. π(Hi, x) ≤ (x)↓k (x − 1)∆(G)+i−k xn−i−∆(G)−1 for every x ∈ N.

Proof of Claim 2. By the induction hypothesis on Hi, if χ(Hi) = k then

π(Hi, x) ≤ (x)↓k (x − 1)∆(Hi)−k+1xn−2−∆(Hi)

and if χ(Hi) = k + 1 then

π(Hi, x) ≤ (x)↓k+1 (x − 1)∆(Hi)−(k+1)+1 x(n−1)−1−∆(Hi)

= (x)↓k+1(x − 1)∆(Hi)−kxn−2−∆(Hi)

≤ (x)↓k(x − 1)∆(Hi)−k+1xn−2−∆(Hi)

for every x ∈ N.
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Since ∆(Hi) − ∆(G) − i + 1 ≥ 0, we find that

(x − 1)∆(Hi)−∆(G)−i+1
≤ x∆(Hi)−∆(G)−i+1,

which is equivalent to

(x − 1)∆(Hi)−k+1xn−2−∆(Hi) ≤ (x − 1)∆(G)+i−kxn−i−∆(G)−1.

This completes the proof of Claim 2.

The inequality proven in Claim 2 yields
t

i=1

π(Hi, x) ≤

t
i=1

(x)↓k (x − 1)∆(G)+i−k xn−i−∆(G)−1

= (x)↓k(x − 1)∆(G)−kxn−∆(G)−1
t

i=1


x − 1
x

i

.

Summing the geometric series, we find

t
i=1


x − 1
x

i

=
1 −

 x−1
x

t+1

1 −
 x−1

x

 − 1.

Now, simplifying the expression on the right hand side of the latter equality and then substituting t = n− 1− ∆(G) we get
t

i=1


x − 1
x

i

= (x − 1) −
(x − 1)n−∆(G)

xn−1−∆(G)
.

Therefore,
t

i=1

π(Hi, x) ≤ (x)↓k(x − 1)∆(G)−kxn−∆(G)−1


(x − 1) −
(x − 1)n−∆(G)

xn−1−∆(G)


= (x)↓k


(x − 1)∆(G)−k+1xn−∆(G)−1

− (x − 1)n−k .
Furthermore, recall that π(Gt , x) ≤ (x)↓k (x − 1)n−k by the inequality proven in Claim 1, so

π(G, x) = π(Gt , x) +

t
i=1

π(Hi, x)

≤ (x)↓k (x − 1)n−k
+ (x)↓k


(x − 1)∆(G)−k+1xn−∆(G)−1

− (x − 1)n−k
= (x)↓k (x − 1)∆(G)−k+1 xn−∆(G)−1

and we are done. �

2.2. Maximizing the number of colourings for connected graphs of fixed order and chromatic number

Conjecture 1.3 is true for many graph families. For example, Tomescu [9] proved it for k = 4 under the additional
restriction of G being also planar. Also, it is easy to see that if the clique number of graph G in Ck(n) is equal to k then G
contains a spanning subgraph which is isomorphic to a graph in C∗

k (n). Therefore, Conjecture 1.3 holds for every graph G in
Ck(n) having ω(G) = k (such graphs include all perfect graphs [11]).

It is known that (see, for example, [5,11]) the minimum number of edges of a graph in Ck(n) is equal to


k
2


+ n − k.

Furthermore, when k = 3, the extremal graphs are unicyclic graphs with an odd cycle, and when k ≠ 3, extremal graphs
belong to C∗

k (n). As chromatic polynomial of a graph of order n with m edges has the form π(G, x) = xn − mxn−1
+ · · ·

it is not difficult to see that Conjecture 1.3 holds for all sufficiently large x. However it becomes quite difficult to find the
smallest such value of x.

We begin with a lemma which gives an upper bound for the number of colour partitions of a graph. Note that an(G) = 1
for every graph G, so in the next lemma we consider ai(G) for i ≤ n − 1.

Lemma 2.3. Let G be a graph of order n and size m. Then for 1 ≤ i ≤ n − 1,

ai(G) ≤
1

(n − i)!

n
2


− m

n−i
.
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Proof. We proceed by induction on
 n
2


− m, the number of non-edges of the graph. For the basis step, suppose that G is a

complete graph. Then, ai(G) = 0 for 1 ≤ i ≤ n− 1 and an(G) = 1. Hence the result is clear. Now wemay assume that G has
at least one pair of nonadjacent vertices, say u and v. The graph G + uv has order n and size m + 1. Also, the graph G · uv
has order n − 1 and size m − |NG(u) ∩ NG(v)|. Thus the number of non-edges of G + uv and G · uv is strictly less than the
number of non-edges of G. Note that if i = n − 1 then the result is clear since an−1(G) =

 n
2


− m, so we may assume that

1 ≤ i ≤ n − 2. Set β =
 n
2


− m. Then by the induction hypothesis,

ai(G + uv) ≤
1

(n − i)!
(β − 1)n−i

and

ai(G · uv) ≤
1

(n − 1 − i)!
(β − 1)n−1−i.

By the edge addition–contraction formula,

ai(G) = ai(G + uv) + ai(G · uv).

Therefore,

ai(G) ≤
1

(n − i)!
(β − 1)n−i

+
1

(n − 1 − i)!
(β − 1)n−1−i

=
1

(n − i)!


(β − 1)n−i

+ (n − i)(β − 1)n−1−i
≤

1
(n − i)!

n−i
j=0


n − i
j


(β − 1)n−i−j

=
1

(n − i)!
βn−i.

Thus, the proof is complete. �

Let f (z) =
d

i=0 ciz
i be a real polynomial of degree d ≥ 1. Then the Cauchy bound of f (see, for example, [3, pg. 243]),

denoted by ρ(f ), is defined as the unique positive root of the equation

|c0| + |c1|x + · · · + |cd−1|xd−1
= |cd|xd

when f is not a monomial, and zero otherwise (the fact that f has a unique positive real root follows from the intermediate
value theorem and Descartes’ rule of signs). It is known that the maximum of the moduli of the roots of f is bounded by
ρ(f ), and the Cauchy bound satisfies (see [3, pg. 247])

ρ(f ) ≤ 2 max

 cicd
1/(d−i)


0≤i≤d−1

. (1)

Let ξ1, ξ2, . . . be a sequence of real numbers. Then the polynomials

P0(z) := 1, Pd(z) :=

d
j=1

(z − ξj) (d = 1, 2, . . .)

are called theNewton baseswith respect to the nodes ξ1, ξ2, . . .; they formabasis for the vector space of all real polynomials [3,
pg. 256].

Theorem 2.4 ([3, pg. 266]). Let f (z) =
d

j=0 cjPj(z) be a polynomial of degree d where Pj’s are the Newton bases with respect
to the nodes ξ1, . . . ξd. Then f has all its roots in the union of the discs

Dj := {z ∈ C : |z − ξj| ≤ ρ} (j = 1, . . . , d)

where ρ is the Cauchy bound of
d

j=0 cjz
j.

Theorem 2.5. Let G be a graph in Ck(n) \ C∗

k (n) where k ≥ 4. Then

1
(x)↓k

π(G, x) < (x − 1)n−k

for every real number x where x > n − 2 +

 n
2


−


k
2


− n + k

2
.
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Proof. Let G∗ be a graph in C∗

k (n). Then π(G∗, x) = (x)↓k(x − 1)n−k. Let

f (x) =
1

(x)↓k


π(G∗, x) − π(G, x)


=

1
(x)↓k

n
r=k


ar(G∗) − ar(G)


(x)↓r .

Now, an(G) = an(G∗) = 1. Also, an−1(G∗) =
 n
2


−


k
2


− (n− k) and an−1(G) =

 n
2


−m. Sincem >


k
2


+ (n− k)we have

an−1(G∗) > an−1(G). Therefore, f (x) is a polynomial of degree n−k−1with the leading coefficient an−1(G∗)−an−1(G) > 0.
As the leading coefficient of the polynomial f is positive, it suffices to show that the largest real root of f is at most

n − 2 +

 n
2


−


k
2


− n + k

2
. Indeed, we shall prove a stronger statement, namely that if z ∈ C is a root of f then

ℜ(z) ≤ n − 2 +

 n
2


−


k
2


− n + k

2
.

Set αr = ar(G∗) − ar(G). Thus αn−1 = an−1(G∗) − an−1(G) > 0 and all αr ’s are integers, and

f (x) = αk + αk+1(x − k) + αk+2(x − k)(x − k − 1) + · · · + αn−1(x − k) · · · (x − n + 2)

that is,

f (x) =

n−1−k
j=0

αk+j Pj(x)

where Pj(x)’s are Newton bases with respect to nodes k, k + 1, . . . , n − 2.
By Theorem 2.4, f has all its roots in the union of the discs centred at

k, k + 1, . . . , n − 3, n − 2

each of radius ρ where ρ is the Cauchy bound of

g = αn−1zn−k−1
+ αn−2zn−k−2

+ αn−3zn−k−3
+ · · · + αk.

By the inequality given in (1), the Cauchy bound of g satisfies

ρ ≤ 2max

αn−r

αn−1

1/(r−1)


2≤r≤n−k

.

Note that as all of the αr ’s are integers with αn−1 > 0,αn−r

αn−1

 ≤ |αn−r | ≤ max{an−r(G), an−r(G∗)}.

Moreover, by Lemma 2.3,

an−r(G) ≤

 n
2


− m

r
r!

and an−r(G∗) ≤

 n
2


−


k
2


− n + k

r
r!

.

Now, sincem >


k
2


+ n − kwe obtain that

max{an−r(G), an−r(G∗)} ≤

 n
2


−


k
2


− n + k

r
r!

.

So,

αn−r

αn−1

1/(r−1)

≤


 n

2


−


k
2


− n + k

r
r!


1/(r−1)

=

 n
2


−


k
2


− n + k

r/(r−1)

(r!)1/(r−1)
.

As r increases,
 n

2


−


k
2


− n + k

r/(r−1)
decreases and (r!)1/(r−1) increases. Hence

 n
2


−


k
2


− n + k

r/(r−1)

(r!)1/(r−1)


2≤r≤n−k
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is a decreasing sequence and therefore,

max

αn−r

αn−1

1/(r−1)


2≤r≤n−k

≤

 n
2


−


k
2


− n + k

2
2

.

Thus, we obtain that ρ ≤

 n
2


−


k
2


− n + k

2
and the result follows. �

2.3. Chromatic roots

A chromatic root is a root of a chromatic polynomial. The chromatic number of G is one more than the largest integer
chromatic root ofG. There has been considerable interest in chromatic roots, particularly on bounding themoduli of the roots
(see, for example, [1, Ch. 14]). In this section, by considering the complete graph expansion of the chromatic polynomial, we
will give a new bound for the moduli of chromatic roots of all graphs. This bound is sharp and the equality is obtained when
the graph is a complete graph.

We will need the following theorem that locates the roots of a polynomial expressed in terms of Newton bases.

Theorem 2.6 ([3, pg. 267]). Let f (z) =
d

i=0 ciPi(z) be a polynomial of degree d where Pi(z)’s are Newton bases with respect
to the nodes ξ1, . . . , ξd. Denote by ρ the Cauchy bound of cdzd +

d−2
i=0 ciz i. Then f has all its roots in the union U of the discs

centred at ξ1, . . . ξd−1, ξd −
cd−1
cd

, each of radius ρ .

We are ready to prove our new bound on chromatic roots.

Theorem 2.7. Let G be a k-chromatic graph of order n and size m. Then π(G, z) has all its roots in {0, 1, . . . , k − 1} ∪ U where
U is the union of the discs centred at

k, k + 1, . . . , n − 2, n − 1 −

n
2


+ m,

each of radius
√
2
 n

2


− m


. Thus the moduli of a chromatic root of a graph of order n with m edges is bounded above by

n − 1 +
√
2
 n

2


− m


.

Proof. Recall that π(G, z) =

n
i=k

ai(G) (z)↓i. We write π(G, z) = (z)↓k f (z). Now the roots of π(G, z) are precisely the roots

of (z)↓k union the roots of f (z). Since the roots of (z)↓k are 0, 1, . . . , k − 1, it suffices to show that the roots of f (z) lie in U.
Now,

f (z) = ak
(z)↓k
(z)↓k

+ ak+1
(z)↓k+1

(z)↓k
+ · · · + an

(z)↓n
(z)↓k

= ak + ak+1(z − k) + · · · + an(z − k) · · · (z − n + 1).

Hence,

f (z) =

n−k
j=0

ak+jPj(z)

where Pj(z)’s are Newton bases with respect to the nodes k, k + 1, . . . , n − 1. Therefore, by Theorem 2.6, f (z) has all its
roots in the union of the discs centred at

k, k + 1, . . . , n − 2, n − 1 −

n
2


+ m

each of radius ρ where ρ is the Cauchy bound of the polynomial

g = anzn−k
+ an−2zn−k−2

+ · · · + ak+1z + ak.

Since an = 1, by the inequality given in (1) we obtain

ρ(g) ≤ 2max

an−r(G)1/r


2≤r≤n−k .

Also, by Lemma 2.3, we get

an−r(G)1/r ≤

 n
2


− m

r
r!

1/r

=

 n
2


− m

(r!)1/r
.
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Table 1
Comparison of bounds for the chromatic roots of a graph G of order n and sizemwhose complement G is a cycle, tree, 3-regular graph or theta graph.

Graph G Sokal bound Fernandez–Procacci bound New bound

G is a tree 7.964(n − 2) 6.908(n − 2) 2.414(n − 1)
G is a cycle 7.964(n − 3) 6.908(n − 3) 2.414n − 1
G is a theta graph 7.964(n − 3) 6.908(n − 3) 2.414n + 0.414
G is 3-regular 7.964(n − 4) 6.908(n − 4) 3.121n − 1
G is 4-regular 7.964(n − 5) 6.908(n − 5) 3.828n − 1

Now, (r!)1/r increases as r increases. Therefore, an−r(G)1/r ≤
1

√
2

 n
2


− m


for 2 ≤ r ≤ n − k. Thus, ρ(g) ≤

√
2
 n

2


− m


and the results follow. �

Corollary 2.8. Let G be a graph of order n and size m. If z is a root of π(G, z) then

|ℑ(z)| ≤
√
2
n

2


− m


,

ℜ(z) ≤ n − 1 +
√
2
n

2


− m


.

Sokal [4] proved the moduli of chromatic roots are bounded by 7.964∆, with an improvement in the constant to
6.908 in [2]. Table 1 compares our new bound on the moduli to these, for a variety of dense graphs. Note the significant
improvement in the constant in linear upper bounds. In particular, for any family of r-regular graphs with r ≥ n − 8, our
bounds are asymptotically much better than the others.

3. Concluding remarks

In [1] it was shown that if G is a connected graph of order n, then for every x ∈ N,

π(G, x) ≤ x(x − 1)n−1

where equality holds for x ≥ 3 if and only if G is a tree. From this we can prove that to prove Conjecture 1.3, it is sufficient
to prove it for 2-connected graphs.

Lemma 3.1. Let G be a graph in Ck(n) consisting of t blocks B1, . . . , Bt where k ≥ 3 and let ni be the order of Bi. Let also x be a
natural number. Suppose that for some block Bi with χ(Bi) = k, the inequality π(Bi, x) ≤ (x)↓k (x − 1)ni−k holds. Then,

π(G, x) ≤ (x)↓k (x − 1)n−k.

Moreover, for x ≥ k the equality π(G, x) = (x)↓k (x − 1)n−k holds if and only if G has exactly one k-chromatic block, say Bi, and
for this block the equality π(Bi, x) = (x)↓k (x − 1)ni−k holds, and all the rest of the blocks are K2’s.

Proof. Clearly n1 + n2 + · · · nt = n + t − 1. Let B1 be a block of G such that χ(B1) = k and π(B1, x) ≤ (x)↓k (x − 1)n1−k.
Since Bi is a connected graph, π(Bi, x) ≤ x(x − 1)ni−k for each i ≥ 2, as noted earlier. Also, the Complete Cutset Theorem for
chromatic polynomials (see, for example, [1]) states that if G1 and G2 be two graphs that overlap in a clique of size r , then
π(G1 ∪ G2, x) =

π(G1,x) π(G2,x)
(x)↓r

. From this result, we derive that

π(G, x) = π(B1, x)
π(B2, x)

x
. . .

π(Bt , x)
x

≤ (x)↓k (x − 1)n1−k(x − 1)n2−1
· · · (x − 1)nt−1

= (x)↓k (x − 1)n1+n2+···nt−k−(t−1)

= (x)↓k (x − 1)n+t−1−k−(t−1)

= (x)↓k (x − 1)n−k.

Now, π(G, x) = (x)↓k (x − 1)n−k if and only if π(B1, x) = (x)↓k (x − 1)n1−k and π(Bi, x) = x(x − 1)ni−1 for i ≥ 2. The
latter equality holds if and only if Bi is a tree. But since Bi is a block this means that Bi is equal to a K2. �

In [10], the maximum number of x-colourings of a 2-connected 3-chromatic graph of order nwas determined. For k ≥ 4,
from some computations on small graphs, we have noted that the following strengthening of Conjecture 1.3 might hold.
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Fig. 1. Among all 3-connected 3-chromatic graphs of order 8, the graph G has the largest number of 3-colourings whereas the graph H has the largest
number of 4-colourings.

Conjecture 3.2. Let G be a 2-connected k-chromatic graph of order n > k ≥ 4. Then for all x ≥ k,

π(G, x) ≤
(x)↓kπ(Cn−k+2, x)

x(x − 1)
,

with equality holding if G arises by attaching an ear to Kk (an ear is a new path that overlaps an existing graph only in its two
endpoints).

What about for even higher connectivity? We have found that among all 3-connected 3-chromatic graphs of order 8,
the graph G shown at the left of Fig. 1 is the unique 3-connected 3-chromatic graph of order 8 with the largest number of
3-colourings (66), but the graph H on the right (which happens to be a circulant graph) has the most 4-colourings, 2140
(compared to G’s 2060 4-colourings). Of course, for any positive integers l and k, there is always an l-connected k-chromatic
graph of order n with the most x-colourings, provided x is large enough, but our example shows that for some classes, we
cannot start necessarily at x = k.

In another direction, it is straightforward to see that if aj(H) ≤ aj(G) for all j, then π(G, x) ≤ π(H, x) for all x ≥ χ(H).
Thus if some graph in a subclass of k-chromatic graphs has the largest aj sequence (term-wise) among all such graphs, it
necessarily has the largest number of x-colourings in the subclass. It seems reasonable that the extremal graphs in C∗

k (n)
have the largest ⟨ai⟩ sequence, and likewise for the graphs in Conjecture 3.2. If we try to extend to 3-connected graphs,
there are not necessarily largest ⟨ai⟩ sequences; as mentioned above, the graph G shown at the left of Fig. 1 is the unique 3-
connected 3-chromatic graph of order 8with the largest number of 3-colourings among all 3-connected 3-chromatic graphs
of order 8, and its aj sequence, ⟨11, 74, 124, 71, 15, 1⟩, is thus the only candidate for a largest such sequence, but the graph
H on the right has sequence ⟨8, 82, 144, 60, 16, 1⟩, so no optimal sequence exists.
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