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a b s t r a c t

In a graph G, we say a cycle C : v1, v2, . . . , vk, v1 is chorded if its vertices induce an
additional edge (chord) which is not an edge of the cycle. The cycle C is doubly chorded
if there are at least two such chords. In this paper we show a sharp degree sum condition
that implies the existence of k vertex disjoint doubly chorded cycles in a graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider only simple graphs. LetG be a graph and Pt be a path on t vertices. For S ⊆ V (G), letG[S] denote the subgraph
of G induced by S. Let A and B be subgraphs of a graph G, then e(A, B) denotes the number of edges that have one end in A
and the other end in B, so e(G) denotes the number of edges in G. Given a vertex setW , we say that a cycle C is a proper cycle
if C does not spanW . Let N(u) denote the set of neighbors of the vertex u, that is, the vertices adjacent to u in the graph. For
a noncomplete graph G, we define

σ2(G) = min {deg(u) + deg(v) | u and v are nonadjacent},

with the convention that for the complete graph σ2(G) = ∞. We say an edge that joins two vertices of a cycle C is a chord
of C if the edge is not itself an edge of the cycle. We then say that C is a chorded cycle. We denote the adjacency of vertices u
and v as u ∼ v and nonadjacency as u ≁ v. A k-degenerate graph is one in which every induced subgraph contains a vertex
of degree at most k. We denote by K−

4 the graph obtained from K4 by removing one edge. For terms not defined here see [2].
The study of cycles and systems of vertex disjoint cycles in graphs iswell established. Recently, there have been numerous

papers considering cycles with additional properties such as containing a specific set of vertices, or containing a specific set
of vertices in a specific order (see the survey [7]). Another natural additional property for cycles is that of containing at least
one chord or at least some number t ≥ 1 of chords.

In 1961 Pósa [12] suggested the problem of finding, in a graph G, degree conditions that imply the existence of a cycle
with at least one chord. J. Czipzer proved (see Lovász [10], problem 10.2) that any graph G with minimum degree δ(G) ≥ 3
contains a chorded cycle, that is, a cycle with an additional edge. Corrádi and Hajnal [4] proved that any graph G with
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|V (G)| ≥ 3r and δ(G) ≥ 2r contains r vertex disjoint cycles. Finkel [6] showed that if G is a graph with |V (G)| ≥ 4r and
δ(G) ≥ 3r , then G contains r vertex disjoint chorded cycles.

Bialostocki, Finkel and Gyárfás [1] made the following conjecture and verified it for the cases r = 0, s = 2 and for s = 1.
Let r, s be nonnegative integers and let G be a graph with |V (G)| ≥ 3r + 4s and δ(G) ≥ 2r + 3s. Then G contains a collection
of r + s vertex disjoint cycles with s of these cycles chorded. This conjecture was settled completely in [3] where a slightly
stronger σ2 condition was used.

Theorem 1 ([3]). Let r and s be integers with r + s ≥ 1, and let G be a graph of order at least 3r + 4s. If σ2(G) ≥ 4r + 6s − 1,
then G contains a collection of r + s vertex disjoint cycles such that s of them are chorded.

More recently it was shown in [8] that a graph on at least 4k vertices such that |N(u) ∪ N(v)| ≥ 4k + 1 for any pair of
non-adjacent vertices u and v, contains k vertex disjoint chorded cycles.

Note that it is only slightly more difficult to show that δ(G) ≥ 3 implies a cycle with at least two chords exist in G. Thus,
in some sense, it is more natural to consider conditions implying the existence of such cycles (which we call doubly chorded
cycles or DCC’s for short). Since a spanning cycle of K4 has two chords, we are in some sense, seeking versions of K4 where
the spanning cycle has been loosened. This point of view was taken in [9].

In [13] the following was shown.

Theorem 2. If G is a graph of order n ≥ 4k and minimum degree at least ⌊7k/2⌋, then the graph G contains k vertex disjoint
doubly chorded cycles.

The goal of this paper is to show the following stronger result.

Theorem 3. If G is a graph on n ≥ 6k vertices with σ2(G) ≥ 6k − 1, then G contains k vertex disjoint doubly chorded cycles.

Theorem 3 is sharp in the sense that the degree sum cannot be lowered. The condition n ≥ 6k is needed for the proof. The
complete bipartite graph K3k−1,n−3k+1 has degree sum 6k − 2 and fails to contain k vertex disjoint doubly chorded cycles,
since any such cycle in this graph must contain at least three vertices from each partite set.

2. Proof of Theorem 3

In this sectionweprove themain result, Theorem3. Along thewaywe state several lemmas that are needed.Wepostpone
the proofs of some of these lemmas until the next section.

Proof. Suppose k = 1. If δ(G) ≥ 3, the result follows for k = 1 from Theorem 2. If δ(G) = 1, say the vertex x is adjacent
only to y. Now all other vertices have degree at least 4 in order to satisfy the degree condition. Deleting x and y leaves a
subgraph with minimum degree at least 3, and again we apply Theorem 2. If δ(G) = 2, say x is adjacent to y and z. Now all
other vertices have degree at least 3 by our degree condition. If y and z each have degree at least 3, then take a second copy
of G, say G′ and join x to its corresponding vertex in G′ by an edge. The new graph has minimum degree 3 and so contains
a doubly chorded cycle. Clearly, this cycle sits in one copy of G. Next suppose that one of y or z also has degree 2 (as both
cannot), say y. Contract the edge xy and call the resulting vertexw and the resulting graph G′′. Take two copies of G′′ and join
the corresponding copies of w by an edge. This new graph has minimum degree 3 (unless x, y and z form a triangle) and as
before, contains a doubly chorded cycle. Note that upon expanding the vertex w back to an edge, it is easy to see we do not
hurt our doubly chorded cycle. If x, y and z form a triangle, then remove x and y, leaving z of degree at least one. Now take
3 copies of G− {x, y} and join each of the copies of z, forming a triangle. This new graph has minimum degree at least three
(since deg(z) ≥ 3) and clearly the doubly chorded cycle must reside in one copy of G − {x, y}. So we may assume k ≥ 2.

Our proof proceeds by contradiction. Let G be an edge maximal counterexample to the result. Thus, the addition of any
edge to G will produce the desired system of k doubly chorded cycles. Hence, G must contain k − 1 vertex disjoint doubly
chorded cycles. Over all such possible collections of doubly chorded cycles, we choose one, say, C: C1, . . . , Ck−1, subject to
the constraint that |

k−1
i=1 V (Ci)| is minimum. We assume that |C1| ≥ · · · ≥ |Ck−1|. Let H = G \

k−1
i=1 Ci


.

The key to this proof is the following lemma, whose proof is rather involved and will be deferred until the next section.

Lemma 1. Suppose C and C ′ are two vertex disjoint doubly chorded cycles with ℓ = |C | ≥ |C ′
| and ℓ ≥ 7. If e(C, C ′) ≥ 3ℓ + 1,

then the graph induced by C ∪ C ′ contains two vertex disjoint doubly chorded cycles whose union is smaller than |C | + |C ′
|.

The following will also be useful.

Lemma 2. Let C be a cycle with at least 5 chords. Then C contains a proper doubly chorded cycle.

Proof. Suppose C is a cyclewith at least 5 chords and suppose it has a clockwise ordering of vertices. Suppose e is aminimum
length chord of C , and order the vertices of C = {v1, v2, . . . , v|C |} so that e connects v1 and vi so that i is as small as possible.
If there are no chords incident to vk for 1 < k < i, then clearly v1, vi, vi+1, . . . , v1 is a shorter doubly chorded cycle, so
choose 1 < k < i minimum so that vk is incident to a chord, e′. Since e is a shortest chord, the chord e′ is of the form vkvj
where j > i.
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Consider the three segments S1 = [vk, vi], S2 = [vi, vj] and S3 = [vj, v1]. First suppose that k > 2. We have three proper
cycles which are constructed from these segments: S1, S2, e′; S2, S3, e and S3, e, S−

1 , e′. Since there are no edges incident to
the segment (v1, vk), all of the at least three remaining chords are contained within or between these segments. Further
note that none of the above three cycles contain two or more chords or, since they are proper, we are done.

We have three chords remaining. If one chord lies within a segment, then no other chord can enter that segment or a
DCC is formed. This implies that the other two chords lie between segments or one lies in each of the other two segments.
But in each case, a shorter DCC exists, since each segment lies in a cycle with one of the other two segments. Thus, there is
exactly one chord joining each pair of segments. In each case, however, we can still find a shorter doubly chorded cycle, as
we now exhibit. Let x = x1x2 denote the chord from S1 to S2 (so that x1 ∈ [vk, vi] and x2 ∈ [vi, vj]). Likewise, let y = y1y2
denote the chord from S1 to S3 and z = z1z2 denote the chord from S2 to S3.

We now look at possibilities for how x, y and z intersect:
Case 1. Suppose x2 ≤ z1.

Consider the cycle: x1, x, x2, C, x1. This contains the chords z and e′, and is proper since vi is not included.
Case 2. Suppose z2 ≤ y2.

The cycle z1, z, z2, C, z1 contains the chords y and e, and is proper as vj is not included.
Case 3. Suppose y1 ≤ x1.

The cycle x1, x, x2, C, x1 contains the chords y and e′, and is proper as vi is not included.
Case 4. Suppose x1 < y1, z1 < x2, and y2 < z2.
Then the cycle y2, C−, z1, z2, C, y1, y2 has e′ and x as chords and avoids vi unless y1 = vi or z1 = vi. If y1 = vi then the cycle
v1, C, x1, x2, C−, vi, y2, C, v1 has e and z as chords and avoids vj, so is proper. Note this still works if z1 = y1 = vi. Finally, if
z1 = vi and y1 < vi, then the cycle v1, C, y1, y2, C−, vi, v1 has e′ and x as chords and avoids z2, so it is proper. This completes
the k > 2 case.

Next suppose k = 2 (and j = i + 1). Now the cycle S3, e, S−

1 , e′ is not proper, so the above argument does not hold.
However, we can consider e′ as the shortest chord and repeat the above argument. This works unless the minimum chord
is of the form e′′

= v3vi+2. Then, we can consider e′′ as the shortest chord and try to repeat the original argument. Again
this works unless the minimum chord is of the form e′′′

= v4vi+3. But now, the cycle v1, v2, v3, v4, vi+3, vi+2, vi+1, vi, v1
is proper (unless the cycle has order exactly 8) and has chords e′ and e′′. In this case, the fifth chord lies between [v1, v4]

and [v5, v8] and no matter how it is placed, a proper doubly chorded cycle is easy to find. This completes the proof of the
Lemma. �

One additional lemmawill be useful, as when it applies it will allow us to transfer our σ2 condition into amore applicable
degree condition.

Lemma 3. Suppose that C is a doubly chorded cycle with |C | ≥ 7 and containing no proper doubly chorded cycle. Then the
complement C of C can be covered by a collection of connected vertex-disjoint regular subgraphs (not necessarily induced and
not necessarily of the same degree of regularity for different subgraphs) of order at least two.

Proof. Note that C has at most four chords by Lemma 2. In C , the degree of any vertex is at most four, since any vertex
with at least three chords out of it produces a proper doubly chorded cycle. Therefore, δ(C) is at least |V (C)| − 5. Hence, if
|V (C)| = n ≥ 10, then by Dirac’s Theorem, C is Hamiltonian and therefore covered by a 2-regular graph.

For the remaining cases (n = 7, 8, 9)weuse the above observations to note thatwemay assume that C is notHamiltonian
(or we are done), and has minimum degree δ(C) ≥ n − 5 and maximum degree ∆(C) ≤ n − 3.

Suppose then that n = 9. Then δ(C) ≥ 4 and ∆(C) ≤ 6. Then the graph C is traceable by Ore’s Theorem [11]. Let
P : v1, v2, . . . , v9 be such a path. We note that if v1 is adjacent to vi, then v9 is not adjacent to vi−1, or else C is Hamiltonian.
Further, if v1 is adjacent to any of v3, v5 or v7, then an odd cycle and amatching (or single edge) cover V (C) and we are again
done. Thus, we may assume these adjacencies do not occur. Similarly, we may assume v9 is not adjacent to v3, v5 or v7.

As v1 has three adjacencies on P besides v2, these adjacencies must be to v4, v6 and v8. Similarly, v9 must be adjacent to
v2, v4 and v6. Now v7 has degree at least 4 and is not adjacent to either v1 or v9. If v7 is adjacent to v5, then v1, v2, v3, v4, v1
and v5, v7, v8, v9, v6, v5 are two cycles covering the graph. A similar argument applies if v7 is adjacent to v3. Thus, v7 must
be adjacent to v2 and v4. A similar argument shows that v5 must be adjacent to v2 and v8. Finally, a similar argument shows
v3 is adjacent to v6 and v8, or we have the components we seek. But the graph we now have is K4,5 which cannot be C as its
complement is disconnected, not a cycle. Hence, a contradiction is reached completing the case when n = 9.

Next suppose n = 8 with δ(C) ≥ 3 and ∆(C) ≤ 5. If C is not connected, then the graph is K4 ∪ K4 and these two
components suffice. So assume C is connected. If C is traceable, then an argument similar to the n = 9 case shows the
regular components exist. Thus, we may assume that C is not traceable.

Let P be a longest path in C . Suppose |P| = 7, say P : v1, v2, . . . , v7. Then v8 is not on this path but has at least three
adjacencies on this path, and clearly, these must be v2, v4 and v6. Now v1 must have two more adjacencies on P and these
are not v3, v5 or v7 or a longer path would exist. Thus, v1 is adjacent to v4 and v6. By symmetry, v7 is adjacent to v2 and v4.

Now consider v3 and v5, each having an additional adjacency on P . If they are themselves adjacent, then the cycle
v1, v2, v8, v6, v7, v4, v1 and the edge v3v5 form the two regular components. Otherwise, we already know v1v3, v3v7, v1v5
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and v7v5 do not exist, thus, v3v6 and v2v5 are edges of G. But the graph thus formed cannot be C as it implies C is not
connected. Thus, the longest path cannot contain seven vertices. If the longest path P has six vertices, then the two vertices
off this path cannot be adjacent or C would contain a perfect matching. But then, each of the vertices off the path would
be adjacent to three of v2, v3, v4, v5 and thus have consecutive adjacencies on P . But then P is not the longest path. Similar
arguments show |P| cannot be five or less. Thus, this case is completed.

If n = 7 and δ(C) ≥ 2 and ∆(C) ≤ 4 we note that the graph must contain at least 10 edges. This follows since if C
had at most 9 edges, then C would have at least 12 edges and hence be a cycle with at least 5 chords. But then a proper
doubly chorded cycle would exist by Lemma 2. By inspection of the list of graphs of order 7 and size 10 or more contained
in [14], either the graph admits the components we seek or cannot be the complement of C for one of the several reasons
for contradictions given in earlier cases of this proof. Thus, we conclude that such a cover always exists. �

Lemma 4. There is no vertex x ∈ H and cycle C ∈ C so that degC (x) ≥ 5.

Proof. Suppose that degC (x) ≥ 5. Then if |V (C)| ≥ 6, it is easy to find a shorter doubly chorded cycle, contradicting our
choice of C. If |V (C)| = 5, then a K4 would be formed using x, again contradicting our choice of C. �

Lemma 5. Suppose some vertex x ∈ H has degC (x) = 4 for some C ∈ C. Then |C | ≤ 5.

Proof. Suppose |V (C)| ≥ 9. Then it is easy to find a shorter doubly chorded cycle using x and omitting a segment of C with
at least two vertices.

Next suppose |V (C)| = 8, say V (C) = {v1, v2, . . . , v8}. Then, without loss of generality, NC (x) = {v1, v3, v5, v7} or a
shorter doubly chorded cycle can again be found. Now note that if any chord of C is contained within v1, v2, . . . , v5, then a
shorter doubly chorded cycle exists using these vertices and x. Similarly, if a chord exists within the vertices v3, v4, . . . , v7
or within v5, v6, v7, v8, v1 or v7, v8, v1, v2, v3 we can again find a shorter doubly chorded cycle. Thus, the two chords of C
must be v2v6 and v4v8. But now, x, v3, v4, v5, v6, v2, v1, x is a 7-cycle with chords xv5 and v2v3, contradicting our choice
of C.

Next assume |V (C)| = 7. Let V (C) = {v1, v2, . . . , v7} and, without loss of generality, assume NC (x) = {v1, v3, v5, v7}.
As before, a chord in any of the segments v1 − v5, v3 − v7, v5 − v1, or v7 − v3 produces a shorter doubly chorded cycle. But
now, the only possible chord which does not produce such a cycle is v2v6. Hence, this case also cannot happen.

Now suppose |V (C)| = 6, say V (C) = {v1, v2, . . . , v6}. Note that no vertex off C can be adjacent to four consecutive
vertices of C , or a shorter doubly chorded cycle would exist. First assume NC (x) = {v1, v3, v5, v6}. Note that no chord can be
contained within the vertices v3 − v6 or within the vertices v6 − v3 or a shorter doubly chorded cycle is immediate. Thus,
the only possible chords are v1v5, v1v4, v2v4 and v2v5. If v1v5 is a chord, then a K4 exists, again a contradiction. If v1v4 is a
chord, then x, v1, v4, v5, v6, x is a 5-cycle with chords v1v6 and xv5, a contradiction. Thus, there are no chords from v1. If the
chords are v2v4 and v2v5, then x, v5, v4, v2, v3, x is a 5-cycle with chords v3v4 and v2v5, a contradiction.

Next assume that NC (x) = {v1, v2, v4, v5}. Note that this is the only other case we must consider. Now there can be no
chords within the vertices v1 − v4, or within v2 − v5 or v4 − v1 or v5 − v2 or a shorter doubly chorded cycle exists. Thus,
the only possible chord is v3v6, a contradiction completing this case. �

Lemma 6. If C contains a cycle of length at least 7, then |H| ≥ 9.

Proof. Recall,H = G−(C1∪C2∪· · ·∪Ck−1) is the remainder after aminimal set of k−1 vertex disjoint cycles,C is removed
from G. Order the cycles Ci ∈ C so that |C1| ≥ |C2| ≥ · · · |Ck−1|. Suppose |C1| ≥ 7 and |H| ≤ 8. We show that a shorter cycle
system exists, proving the claim.

By Lemma 3, C1 can be covered by a collection Ri, each a di-regular subgraph of the complement of C1 and for each such
subgraph

e=xy∈Ri

(deg x + deg y) = di


deg x ≥ σ2(G)di|Ri|/2.

Thus,


x∈V (C1)
deg x ≥ σ2(G)


|Ri|/2 = σ2(G)|C1|/2.

By Lemma 2 and minimality, e(C1) ≤ |V (C1)| + 4, so

e(C1,G − C1) ≥ |V (C1)|(σ2(G)/2 − 1) − 4 ≥ 3|C1|(k − 2) + 4.5|C1| − 4.

By Lemma 5, if any vertex of H has 4 or more adjacencies on C1, then a doubly chorded cycle smaller than C1 exists, a
contradiction. Now

e(C1,G − (C1 ∪ H)) ≥ 3|C1|(k − 2) + 4.5|C1| − 4 − 3|H|.

Combining with our assumptions that |C1| ≥ 7 and |H| ≤ 8 implies that e(C1,G − (C1 ∪ H)) > 3|C1|(k − 2).
Therefore, C1 sends more than 3|C1| + 1 edges to another cycle in C. Now, by Lemma 1, we obtain two smaller cycles,

replacing two cycles of C, contradicting our choice of C. �
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Table 1
Cycles for chords v2v5 and v3v5 .

N z ∈ XN Cycle on (C − z) ∪ {y} Chords Satisfies

v1, v2, v3 v4 y, v1, v2, v5, v3, y yv2, v2v3 2(b)
v1 y, v2, v5, v4, v3, y v2v3, v3v5 Edge: v2v3

v1, v2, v4 v4 y, v1, v5, v3, v2, y v2v1, v2v5 2(a)
v3 y, v4, v5, v1, v2, y yv1, v2v5
v1 y, v2, v3, v5, v4, y v2v5, v3v4

v1, v3, v4 v1 y, v3, v2, v5, v4, y v3v5, v3v4 2(b)
v2 y, v1, v5, v4, v3, y yv4, v3v5 Edge: v3v4

v1, v3, v5 v4 y, v1, v2, v3, v5, y yv3, v2v5 2(b)
v2 y, v1, v5, v4, v3, y yv5, v3v5 Edge: v1v5

v1, v4, v5 v2 y, v1, v5, v3, v4, y yv5 , v4v5 2(a)
v3 y, v1, v2, v5, v4, y yv5, v1v5
v4 y, v1, v2, v3, v5, y v1v5, v2v5
v1 y, v4, v3, v2, v5, y v3v5, v4v5

v2, v3, v4 v1 y, v2, v5, v4, v3, y v2v3, v3v5 2(b)
v4 y, v2, v1, v5, v3, y v2v3, v2v5 Edge: v2v3

Corollary 1. Without loss of generality, |H| ≥ 6. Furthermore, if C contains at least one 5-cycle then |H| ≥ 7, and if C contains
a 4-cycle or two 5-cycles then |H| ≥ 8.

Proof. This follows as |H| = |V (G)| −


Ci∈C |Ci| and |V (G)| ≥ 6k by assumption. Under the assumption that |H| < 9, then
the maximum cycle length is 6. �

Beyond this basic control over |H|, we require some additional lemmas describing when and how we may perform
exchanges that preserve |H|, allowing us to assert further control over the properties of H . A simple fact, following
immediately from the preceding lemmas is the following.

Lemma 7. Suppose x, y ∈ V (H) are such that degC (x) + degC (y) ≥ 7 for some cycle C ∈ C. Then, without loss of generality
degC (x) = 4 and degC (y) ≥ 3.

A more complicated version is the following. While the ultimate statement is quite technical, it is set up in a way to
conveniently use later. On an initial reading one might ignore the conditions 2(a), 2(b) and 2(c) which the lemma asserts,
instead focusing on the first condition. A number of immediate consequences are described below, and are also easier on
the reader.

Lemma 8. Suppose C ∈ C is such that there is some vertex x ∈ H with four neighbors in C. Suppose y ∈ H is incident to N ⊆ C
with |N| = 3. Let XN = {z : (C − z) ∪ {y}} is a DCC.

1. (NC (x) \ N) ⊆ XN
2. Also, with a single exception, the following occurs: |NC (x) ∩ XN | ≥ 2 and at least one of

(a) |NC (x) ∩ XN | > 2
(b) |NC (x) ∩ XN | = 2 and N \ (NC (x) ∩ XN) spans an edge of C (this edge may be a chord)
(c) C \ (N ∪ (C \ (NC (x)∩XN))) = {r}, and there exists an s ∈ (C \ (NC (x)∩XN))with r ∼ s and if x ≠ y, {x, y}∪ (C \{r, s})

induces a DCC.
Furthermore, in the exceptional case it is still the case that XN = C \ N.

Remark. One may take x = y in the application of this lemma—in which case N can be any three vertices of NC (x).

Proof. Suppose |V (C)| = 5, say V (C) = {v1, v2, v3, v4, v5}. Without loss of generality assume NC (x) = {v1, v2, v3, v4}.
Then v1v3 and v2v4 cannot be chords of C or a K4 would exist, contradicting our choice of cycles. Thus the two (or more)
chords of C must come from v1v4, v2v5, and v3v5. To complete the proof of the lemma, we illustrate for all possible N , and
z ∈ (C \N) the DCC formed on (C−z)∪{y}. Note that we do not includeN which induces a triangle in C , as then therewould
be a K4 which contradicts minimality of C. For each N , we exhibit sufficient vertices in XN to verify that one of 2(a), 2(b), or
2(c) holds. We label which of these it holds, and in case (b) we list the edge, in case (c) we list v1, v2.

First we consider the case where the chords are v2v5 and v3v5, in Table 1.
Next we consider the case where the chords are v1v4 and v3v5 in Table 2.
Note that the singular case referenced in the statement is the case where N = v1, v3, v4.
The case with chords v1v4 and v2v5 is completely symmetric.
If |C | = 4, the statement is completely clear as {y} ∪ N induces a DCC, and hence the singular z ∈ (C \ N) is the

desired N . �

Two immediate consequences are exchange Lemmas which state instances in which a vertex can be swapped from H
into a cycle.
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Table 2
Cycles for chords v1v4 and v3v5 .

N z Cycle on (C − z) ∪ {y} Chords Satisfies

v1, v2, v3 v2 y, v1, v5, v4, v3, y v1v4, v3v5 2(c)
v4 y, v1, v5, v3, v2, y v1v2, yv3 r = v4 , s = v5
v5 y, v1, v4, v3, v2, y yv3, v2v1

v1, v2, v4 v2 y, v1, v5, v3, v4, y v1v4, v4v5 2(b)
v3 y, v2, v1, v5, v4, y yv1, v1v4 Edge: v1v4
v5 y, v1, v2, v3, v4, y yv2, v1v4

v1, v2, v5 v4 y, v1, v2, v3, v5, y yv2, v1v5 2(a)
v3 y, v2, v1, v4, v5, y yv1, v1v5
v2 y, v1, v4, v3, v5, y v1v5, v4v5

v1, v3, v4 v2 y, v1, v5, v4, v3, y v1v4, yv4 Exception
v5 y, v1, v2, v3, v4, y yv3, v1v4

v1, v3, v5 v2 y, v1, v5, v4, v3, y v1v4, v3v5 2(b)
v4 y, v1, v2, v3, v5, y v1v5, yv3 Edge: v1v5

v2, v3, v4 v1 y, v2, v3, v5, v4, y yv3, v3v4 2(b)
v2 y, v3, v5, v1, v4, y v3v4, v4v5 Edge: v3v4
v5 y, v2, v1, v4, v3, y yv4, v2v3

v2, v3, v5 v1 y, v2, v3, v4, v5, y yv3, v3v5 2(a)
v2 y, v3, v4, v1, v5, y v3v5, v4v5
v4 y, v2, v1, v5, v3, y yv5, v2v3

v2, v4, v5 v1 y, v2, v3, v4, v5, y yv4, v3v5 2(b)
v3 y, v2, v1, v5, v4, y yv5, v1v4 Edge: v4v5

Lemma 9 (Single Bypass Lemma). Suppose x ∈ V (H) and C ∈ C satisfy degC (x) ≥ 4. Then for any vertex z ∈ C, (C − z) ∪ {x}
is a doubly chorded cycle.

Proof. This follows immediately from Lemma 8. For z ∈ NC (x), applying the lemma with N = (NC (x) \ {z}) yields the
conclusion by the first bulleted conclusion. In the case where |C | = 5, and z ∉ NC (x) a DCC is clear where both chords are
incident to x. �

Lemma 10. Suppose x, y ∈ V (H) are nonadjacent vertices with degC (x) = 4 and degC (y) = 3 for some C ∈ C. Then there exist
vertices zx, zy ∈ V (C) such that zx is adjacent to x and zy is adjacent to y and both (C − zx)∪{y} and (C − zy)∪{x} induce doubly
chorded cycles.

Proof. This follows almost immediately from Lemma 8. Note that for N = NC (y), that some vertex in NC (x) is always one
of the admissible z—this is zx. It is easily seen that any vertex in NC (y) can serve as zy by Lemma 9. �

In some instances in the main part of the proof, more complicated exchanges are necessary as well. Our main tool is the
following lemma which gives conditions on when two vertices in H may be exchanged for two vertices in a cycle.

Lemma 11 (Double Bypass Lemma). Suppose C is a doubly chorded 5 cycle. Further suppose that there are vertices x, y, z, w ∉ C
with degC (x) = 4 degC (y) = degC (z) = 2 and degC (w) = 3. Suppose that NC (y) ∩ NC (w) = ∅ and NC (z) ⊆ NC (w). Further
suppose that neither NC (x) nor NC (w) spans a triangle in C, and neither NC (z) nor NC (y)∩NC (x) spans an edge of C. Then there
exist two vertices u, v ∈ C so that u ∼ y, v ∼ z, u ∼ v and so that (C \ {u, v}) ∪ {x, w} is a DCC.

Proof. Let V (C) = {c1, c2, c3, c4, c5} and NC (x) = {c1, c2, c3, c4}. Then, without loss of generality, the chords are either
(c1c4, c3c5) or (c2c5, c3c5). Note that the facts that NC (z) ⊆ NC (w) and NC (z) cannot span an edge of C mean that if NC (w)
consists of three consecutive vertices, thenNC (z) contains the first vertex and the third vertex inNC (w), and ifNC (w) consists
of two consecutive vertices plus a third, nonconsecutive vertex, then the third vertex must be in NC (z). We present Table 3
displayingu and v for variousNC (w). Note thatNC (w) cannot span a triangle. Also, asmanyNC (w) are the sameby symmetry,
we only include one representative from each symmetry class. �

We finally reach the true crux of the proof: In this lemmawe build on the exchange lemmas established above, resulting
in a strong conclusion about the structure that we can assume on H .

Lemma 12. Without loss of generality H contains a Hamiltonian path, on v1, . . . , v|H|. Furthermore, this can be chosen so that
either v1 ∼ v|H| or v2 ∼ v|H|.

Proof. Claim 0. Wemay assume, without loss of generality, that H is connected.

Proof of Claim 0. If not, then as long as H is disconnected, there exist nonadjacent vertices x and y in different components
and with at least 7 edges to one cycle of C by Lemma 7, and by repeated application of the Exchange Lemma (Lemma 10), H
can be made connected. �
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Table 3
Two vertices (u, v) and cycles for chords (c1c4, c3c5) or (c2c5, c3c5).

NC (w) (u, v) Cycle on (C \ {u, v}) ∪ {x, w} Chords

c1, c2, c3 (c5, c1) x, c2, w, c3, c4, x xc3, c2c3
c1, c2, c4 (c5, c4) x, c1, w, c2, c3, x xc2, c1c2
c1, c2, c5 (c4, c5) x, c1, w, c2, c3, x xc2, c1c2
c1, c3, c5 (c2, c3) if chords c1c4 and c3c5 x, c1, w, c5, c4, x c1c4, c1c5

(c4, c3) if chords c2c5 and c3c5 x, c1, w, c5, c2, x c1c2, c1c5
c1, c4, c5 (c2, c1) x, c3, c5, w, c4, x c3c4, c4c5
c2, c3, c5 (c4, c5) x, c1, c2, w, c3, x xc2, c2c3

Suppose, of all connected H with minimal cycle system size, we choose the one with the longest path. Let P be a longest
path in H . If such exists, we choose P so that the first vertex is incident to one of the last two vertices—in which case we will
be done.

Claim 1. Wemay assume, without loss of generality, that the first and last vertices of P are of degree at most 2.

Proof of Claim 1. Let P = v1, v2, . . . , vt . There are possibly many spanning paths on this vertex set; we choose P so the
degree of v1 and vt is at most 2 if possible. Suppose it is not possible that the degree of v1 is 2. Then every vertex which can
start the path (we call these start vertices) has degree at least 3. Of all such paths, choose v1 so that its neighbors are vi and
vj with j as large as possible. Then vi−1 is a potential start to the path. By our assumption deg(vi−1) ≥ 3 and the maximality
of P , it must send a chord into the path and by our assumption that vj is as large as possible, it must send the chord into the
cycle v1, . . . , vj, which is now easily seen to be a DCC with the other chord being v1vi. Thus if H does not contain a DCC, we
may assume that deg(v1) ≤ 2.

Arguing similarly, taking P to be the arrangement of v1, . . . , vt with v1 to be the fixed vertex of degree 2, and looking at
potential end vertices of the path we observe we may assume that vt has degree at most 2 as well. �

Claim 2. Wemay assume that if deg(v1) = 2 and deg(v2) = 4, and vq is the highest indexed neighbor of v2, then there is a
vertex vr of degree 2 with 1 < r < q.

Proof of Claim 2. We build on the proof of Claim 1, to observe that there are at least two start vertices of degree 2 unless
the first four vertices induce a K−

4 where v1 and v4 are the non adjacent vertices of the K−

4 . Let v′

1, v
′

2, . . . , v
′
t be the path P

on vertex set v1, . . . , vt so that vt = v′
t , but v′

1’s neighbor is v′

i for i as large as possible.
If degP(v′

1) = 3, then v′

1 has neighbors v′

i and v′

j where j < i. Then both v′

i−1 and v′

j−1 are start vertices. If j ≠ i− 1, either
of these vertices having degree 3 would create at DCC, so we have two start vertices of degree 2 as claimed. Hence j = i− 1.
But then v′

2 is a start vertex, as one can take v′

2, v
′

3 . . . , v′

j , v
′

1, v
′

i , v
′

i+1, . . .. Here, both v′

2 and v′

i−1 must have degree 2 or we
have a DCC. Thus we are done unless 2 = i − 1, that is unless i = 3. In this case v′

1, v
′

2, v
′

3, v
′

4 are a K−

4 . Since v1, . . . , vt is
obtained by taking the same path with v′

2 as v1, we have the purported structure in this case.
If degP(v′

1) = 2, then v′

1 has neighbor v′

i . If degP(v
′

i−1) = 2, we are done. Otherwise, v′

i−1 has another neighbor on
P , v′

j . Note that j < i by the maximality of i. Then v′

j+1 is also a start vertex as witnessed by the path v′

j+1, v
′

j+2, . . . ,

v′

i−1, v
′

j , v
′

j−1, . . . , v
′

1, v
′

i , v
′

i+1, . . .. Hence v′

j+1 cannot have any neighbors other than v′

j and v′

j+2 in v′

1, . . . , v
′

i without
creating a DCC and none in v′

i+1, v
′

i+2, . . . by the maximality of i. Thus v′

j+1 has degree 2 and v′

1 and v′

j+1 are the two degree
2 vertices.

If the initial four vertices give the purported K−

4 in such away, note that v2 cannot have any additional neighbors without
creating a DCC, so if deg(v2) = 4 we are not in this case.

Note that {v1, . . . , vi} = {v′

1, . . . , v
′

i} and thus the two exhibited vertices of degree 2 are v1 and vs for some s < i. If vt ,
the highest indexed neighbor of v2 has t ≤ i, then v′

1, . . . , v
′

i contains both of the chords from v2 and is hence a DCC. Thus
s < i < t and we have the conclusion of the claim. �

Now we turn to proving that the path is Hamiltonian. Our first step is to rule out the existence of small degree vertices
off of the path.

Claim 3. degH(v) ≥ 4 for all v ∈ (H \ P).

Proof of Claim 3. We may assume that the vertices in P do not span a cycle, or we are done by maximality of P . Thus v1 is
not incident to vt . Suppose v ∉ P . Note v ≁ v1 and v ≁ vt . If degH(v) ≤ 3, then consider the three pairs {v1, vt}, {v1, v},
{vt , v}. All three of these pairs are of pairwise non-adjacent vertices. Applying our σ2 condition to v1 and v yields

deg(v1) + deg(v) ≥ (6k − 1) = 6(k − 1) + 5. (1)

If degC (v1) + degC (v) ≥ 7 for any C ∈ C the exchange lemma implies that the path can be lengthened; exchanging v for a
vertex incident to v1. That fact, along with (1) imply that v1 and v together have exactly 6 incidences into every C ∈ C. The
same holds for vt and v.
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Now applying the σ2 condition to v1 and vt , and noting that degH(v1) + degH(vt) ≤ 4, we observe that there is some
cycle C with degC (v1) + degC (vt) ≥ 7. The fact that v1 along with v and also v2 along with v have the same number of
edges into every cycle imply that degC (v1) = degC (vt) = 4 and degC (v) = 2, and |C | ≤ 5. Note that vt and v must have a
common neighbor in C , and the Single Bypass Lemma implies that we may exchange v1 for some zv1 ∈ C with zv1 ∼ vt and
zv1 ∼ v. This contradicts the maximality of the path. �

Claim 4. Every component of H \ P has cardinality at least 4.

Proof of Claim 4. By Claim 3, degH(v) ≥ 4 for every vertex not on P . Suppose X is a connected component of H \ P . If
|X | = 1, then the single vertex has four neighbors on the path yielding a DCC. If |X | = 2 then the pair of vertices in X each
have 3 neighbors on the path and this is settled by the (3, 3) ↩→ P case of Lemma 14. The |X | = 3 case is similarly settled
by the (2, 2, 2) ↩→ P case of Lemma 14. Thus every component outside of H \ P , if any, is of cardinality at least 4. �

Claim 5. Wemay assume that one of the edges v1 ∼ vt , v2 ∼ vt or v1 ∼ vt−1 is present.

Note that Claim 5 completes the Lemma, as it along with the maximality of P rule out any components in H \ P .
We say that P is set up if either v1, v2, v3, v4 or vt−3, vt−2, vt−1, vt induces a K−

4 so that v1 (or vt ) is a vertex of degree 2.
We assume that the P meets all the assumed qualifications:

(Ď) P is of maximum length, has end vertices of degree 2, and all components of H \ P have cardinality at least 4 and that
subject to these, if possible, P is set up.

Proof of Claim 5. Suppose none of the purported edges are present.
Note that degH(v1), degH(vt) ≤ 2 by assumption and degH(v2), degH(vt−1) ≤ 4 as otherwise there would be a doubly

chorded cycle. Since v1 ≁ vt−1 and v2 ≁ vt , we may apply our σ2 condition to see that

deg(v1) + deg(v2) + deg(vt−1) + deg(vt) ≥ 2(6k − 1) = 12(k − 1) + 10. (2)

Case 1: degH(v1) + degH(v2) + degH(vt−1) + degH(vt) < 10.
In this case, combining with (2) and averaging over cycles implies that there are at least 13 edges between v1, v2, vt−1

and vt and some C ∈ C. Note this means that degC (vi) ≥ 4 for some vi and hence |C | ≤ 5. Without loss of generality, we
may assume degC (v1) + degC (v2) ≥ degC (vt−1) + degC (vt). This means that degC (v1) + degC (v2) ≥ 7 and hence either
degC (v1) = 4 or degC (v2) = 4, while the other vertex must have degree at least 3.

Suppose first that degC (v1) = 4. If degC (v2) + degC (vt) > 5 or degC (v2) + degC (vt−1) > 5 we are done. Indeed, this
implies that for some i ∈ {t −1, t}, v2 and vi have a common neighbor z ∈ C . By the Single Bypass Lemma, we can exchange
v1 for that z, obtaining the desired path structure. One of these always occurs however, as one of degC (vt) or degC (vt−1) is
at least

13 − 4 − degC (v2)

2
=

9 − degC (v2)

2
.

Now assume degC (v1) = 3 but degC (v2) = 4. If |C | = 4, and one of vt or vt−1 is incident to the vertex in C which is
not incident to v1 may finish by exchanging v1 for that vertex (which is also incident to v2). Thus, designating the vertices
on C to be c1, c2, c3, c4 we may assume that the neighbors of v1, vt−1 and vt are all {c1, c2, c3}. If either end is set up, then
we are done. Indeed, suppose v1, v2, v3, v4 is set up: Depending on the configuration of the K−

4 , either v1, c1, v2, v3, v4, v1
is a cycle with chords v1v2 and v2v4 or v1, c1, v2, v4, v3, v1 is a cycle with chords v1v2 and v2v3. Similar cycles exist if the
other end is set up. Otherwise, we may exchange vt−1 and vt for c1 and c4, with c4, c1, v1, v2 as the new initial vertices of
the path—which now has a set-up end.

In order to see this yields a set-up pathmatching the conditions (Ď), wemust verify that it can be chosen with end degree
2 while maintaining the K−

4 at the end. Note that it is clear c4 has degree 2 already, as if it had another adjacency in H , there
would clearly be a doubly chorded cycle or longer path. We only need to verify that we can find an ordering that ends with
a vertex of degree 2 but that still has the initial K−

4 . We run the argument of Claim 1, taking the ordering of the path starting
with c4, c1, v1, v2 and so that the vertex ending the path has its neighbor as close to the start as possible. If the argument
does not run smoothly preserving the K−

4 , there would have to be a potential start vertex for the end of the path that sent a
chord into c4, c1, or v1. The vertex c1 here is the only actual option as if v1 had another neighbor on P it would form a DCC.
But if c1 were incident to a start vertex we would have a structure that satisfies the conclusion of the claim.

The case |C | = 5 remains. Without loss of generality, v2 is incident to c1, c2, c3, c4 and v1 is incident to c5, c1 and one of c3
or c4—if v1 is incident to c4 then the chords of C are c5c2 and c5c3. In any case, note that there is a DCC including v1 and C \ ci
for any ci not incident to v1. That implies that the neighbors of vt and vt−1 must match those of v1 as otherwise an exchange
can be done—v1 for a common neighbor of both v2 and one of vt or vt−1. But then a K4 is formed from vt , vt−1 along with c1
and c5, contradicting the minimality of C.

Case 2: degH(v1) + degH(v2) + degH(vt−1) + degH(vt) ∈ {10, 11}.
In this case, either v1, v2, vt−1, and vt cumulatively send 13 edges to some cycle C ∈ C or they cumulatively send 12 edges

into every cycle C ∈ C except for perhaps one where they send 11 edges. The prior case, where they send at least 13 into
one cycle is handled in Case 1. Thus we focus on the second possibility. We note that v1 ≁ vt and applying the σ2 condition
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there we find some cycle C so that v1 and vt cumulatively send at least 7 edges. Hence we may assume degC (v1) = 4 and
|C | ≤ 5. The vertices together send at least 11 edges to C , and this is what we handle in this case.

First assume that degC (vt) = 4 as well. Then without loss of generality degC (v2) ≥ 2. Thus v2 and vt have a common
neighbor in C , and exchanging v1 for the common neighbor finishes this case. Thus we may assume that degC (vt) = 3,
whence degC (v2) + degC (vt−1) ≥ 4. If degC (v2) > 2 then we may exchange v1 for a common neighbor of v2 and vt . If
|C | = 4, then this covers the case where degC (v2) = 2 as well.

If |C | = 4 and degC (v2) = 1, then degC (vt−1) ≥ 3. We fail an immediate exchange only if the neighbors of vt−1 in C are
the same as those of vt and different than the neighbor of v2. In this case, either one end is set up or we can set up one of
the ends as in Case 2.

If |C | = 5 and degC (v2) = 1 then again degC (vt−1) ≥ 3. Let N = NC (vt) and we apply Lemma 8 with this choice, where
x = v1 and y = vt in this application. Let XN be as in the statement of Lemma 8.

If vt−1 and v1 have a common neighbor, say z, in XN , then by replacing C with the DCC (C − z)∪ {vt} gives a Hamiltonian
H along with a cycle system of the same size. This is exactly what happens when 2(a) or 2(b) occurs. If N satisfies 2(a), the
facts that |XN ∩ NC (v1)| ≥ 3, degC (vt−1) ≥ 3, and |C | = 5 immediately yields a common neighbor of v1 and vt−1 in XN .

If N satisfies 2(b) or 2(c), it is theoretically possible that v1 and vt−1 have no common neighbor. In this case since
|XN ∩ NC (x)| ≥ 2 this is enough to determine NC (vt−1). It must be the case that NC (vt−1) = N \ (NC (x) ∩ XN). In case 2(b),
this spans an edge of C (this edge may possibly be a chord of C). This means that vt and vt−1 span a K4, which contradicts
the minimality of C.

If N satisfies 2(c), note that if v2 is incident to any neighbor of either vt or vt−1 on C then we may exchange v1 for that
vertex and obtain an H as the lemma hypothesizes. Since NC (vt−1) = N \ (NC (x) ∩ XN), this means that the neighbor of v2
is the vertex ‘r ′ of condition 2(c). In this case, the conclusion of the Lemma is exactly that we may exchange v1 and v2 for
the {r, s} in C and we obtain a Hamiltonian H .

There is a single remaining case, the exceptional case, when NC (vt) = {c1, c3, c4}. As already discussed, vt−1 cannot be
incident to any vertex in XN ∩ NC (v1) = {c2} and v2 cannot be incident to any vertex in NC (vt−1) ∪ NC (vt). Note that it also
cannot be the case that both {c3, c4} or {c1, c4} are in NC (vt−1) as otherwise vt and vt−1 will span a K4. This restricts the case
to NC (vt−1) = {c1, c3, c5} and NC (v2) = {c2}.

Here, if either end of P is set up, we have exhibited two DCCs (similar to the previous case, depending on the end set up
and the configuration of the K−

4 ). If neither end is setup, replacing c1c2c3c4c5 with the DCC vtc3c4c5vt−1vt leads to a set up
path starting with c1, c2, v1, v2, . . .. This completes the case where degC (v2) = 1, and degC (vt−1) ≥ 3.

Now suppose degC (v2) = 0, then degC (vt−1) = 4. In this case we exchange vt for a common neighbor of v1 and vt−1 that
this possibly follows from the degrees and Lemma 8.

The final possibility is if |C | = 5 and degC (v2) = 2. Then degC (vt−1) ≥ 2. If v2 shares a neighbor with vt−1 or vt we are
done by the Single Bypass Lemma. Thus vt−1’s neighbors are two of the neighbors of vt−1.

In this case we use the Double Bypass Lemma to exchange v1 and vt for two vertices in C—one of which is incident to v2
and one of which is incident to vt−1. This yields a cycle of the same length as P and completes Case 2.

Case 3: degH(v1) + degH(v2) + degH(vt−1) + degH(vt) = 12.
This is the pessimal case: in this case, wemust have degH(v2) = degH(vt−1) = 4. Note that since all components outside

of H have cardinality at least 3, v2 and vt−1 cannot be incident to them so all neighbors of v2 and vt−1 in H are on P . Let
vs be the highest indexed neighbor for v2 and vt be the lowest indexed neighbor of vt−1. It is easy now to observe that if
t < s, there is a DCC, so s ≤ t . (This DCC depends somewhat on how the neighbors of v2 and vt interlace, but all are formed
according to the following rule: starting at v2 follow P until the highest indexed neighbor of vt−1 with index strictly less
than s. Follow this edge to vt−1, then proceed back to the smallest indexed neighbor of v2 which is not already in use then
follow the edge back to v2.)

By Claim 2, applied to both ends of the path, there are two additional vertices of degree 2, say vq and vr with q < s and
r > t . Note that {v1, vq}, {vr , vt} and {v2, vt−1} are all disjoint pairs of vertices and applying our σ2 condition we see that
these vertices have total degree at least

3 · (6k − 1) ≥ 18(k − 1) + 15.

Furthermore, their degrees in H are 16. Therefore, either these 6 vertices send a total of 19 edges to some C ∈ C or they
send at least 17 edges to every cycle in C ∈ C.

Suppose the latter holds. Applying the σ2 condition to just v1 and vt there is some C ∈ C where degC (v1)+degC (v2) ≥ 7.
To this cycle,

degC (v1) + degC (v2) + degC (vt−1) + degC (vt) < 11

or we are in the situation dealt with in Case 2. Thus degC (vq)+degC (vr) ≥ 7. Without loss of generality degC (v1) = 4. Then
degC (vq) + degC (vt) ≥ 6, so vq and vt have a shared neighbor. Furthermore taking the portion of the path between vq and
vt along with the shared neighbor is a DCC, with two chords incident to vt−1 lie along this path. v1 incident to the rest of C
is also a DCC by the Single Bypass Lemma.

Otherwise, suppose the former holds and consider the cycle C so that these 6 vertices send at least 19 edges to C . If

degC (v1) + degC (v2) + degC (vt−1) + degC (vt) ≥ 13,

the Case 1 argument applies so degC (vq) + degC (vr) ≥ 7.
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Note that if some v ∈ {v1, v2, vt−1, vt} has degC (v) = 4, then a very similar argument to the case we just dealt with—if
v ∈ {v1, v2} one of vt−1 or vt will have a common neighbor with vq.

On the other hand, degC (vq) + degC (vr) ≤ 8 so at least one of {v1, v2} or {vt−1, vt} – say, {v1, v2} – has total degree 6
into the cycle. If this is the case, vq and one of vt−1 or vt have a common neighbor, x. As before x along with P between v1
and vt−1 (or vt ) creates a DCC. Furthermore, {v1, v2} ∪ (C \ x) yields a DCC as the minimum degree of v1 and v2 into (C \ x)
is 2 and (2, 2) ↩→ {P3, P4} yields a DCC by Lemma 14. This is all possibilities, completing Case 3. �

This completes the proof of the lemma. �

The final lemma will complete the proof of Theorem 3 by using the structure of H that we have established to k disjoint
doubly chorded cycles and hence contradicting the fact that we assumed we had a counterexample.

Lemma 13. There exists a cycle C ∈ C so that H ∪ C contains two vertex disjoint DCCs.

Proof. By Lemma 12, H can be assumed to be either a Hamiltonian cycle or a Hamiltonian path with v2 ∼ vt .
In the first case, there can be at most one chord, so H contains at most |H| + 1 edges. In the second case, there can be at

most one chord in the cycle, and v1 can be incident to at most 3 vertices on the cycle. But if v1 has 3 neighbors in the cycle
and there also exists a chord in the cycle, a DCC is easily found—so there are always at most |H| + 2 edges within H . Note
that our observations also imply |H| ≥ 7. Indeed, it is easy to see that there are two non-adjacent vertices of degree 2 in H .
By our degree condition and averaging, we see that there is a vertex of degree 4 into some cycle—this shows that C contains
a 5-cycle and hence |H| ≥ 7 by the Corollary to Lemma 6.

Nowwe consider the total degrees of vertices inH . First note that if two vertices inH have degree less than 3k, theymust
be adjacent by the σ2 condition. Since H does not contain a K4, there are at most 3 such vertices.

Suppose first there are 3 such vertices, and their degrees are 3k−t1, 3k−t2 and 3k−t3, with t1 ≥ t2 ≥ t3. All other vertices
have degree at least 3k+ (t3 − 1) by the fact that H contains no K4. All but at most two have degree at least 3k+ (t1 − 1) as
H has maximum (interior) degree 4. Furthermore, all but at most one has degree at least 3k + (t2 − 1). We can see this as
follows: if two vertices had degree less than 3k+ (t2 − 1), then H would contain a K3,2 with an edge connecting the vertices
in the partite set of size 2. This cannot happen: H is connected, and if it contains two vertices of interior degree 4 then all
other vertices of H have interior degree 2. But since |H| > 5 and H is connected, the K3,2 we have cannot occur as part of
H—no other edge can be connected to it without violating one of our conditions.

Thus the total degree in H is at least

(3k − t1) + (3k − t2) + (3k − t3) + [3k + (t2 − 1)] + [3k + (t3 − 1)] + (|H| − 5)(3k + (t1 − 1))
= 3k|H| − 2 + (|H| − 5)(t1 − 1) − t1
≥ 3k|H| − 3 = 3(k − 1)|H| + 3|H| − 3.

The same count works if there are fewer such vertices (essentially, this follows by setting t3 = 0 or both t2 = 0 and t3 = 0).
Indeed, in these cases a slightly stronger count applies.

Now, if |H| = 7, the degree sum within the cycle is at most 2(|H| + 2) = 2|H| + 4, and hence there are at least

3(k − 1)|H| + 3|H| − 3 − [2(|H| + 2)] = 3(k − 1)|H| + |H| − 7 = 3(k − 1)|H|

edges to the cycles, and hence either 22 edges to some cycle or exactly 21 edges to every cycle.
Suppose there is a Hamiltonian path in H starting at a vertex sending at least 4 edges to some cycle C , and there are at

least 21 edges between C and H . Then |C | ≤ 5 and there is some vertex in C with at least ⌈
(21−4)

|C |
⌉ ≥ 4 other vertices in H .

This gives two doubly chorded cycles—one involving the vertex in the cycle and the remainder of H and the other involving
the start vertex and the remainder of the cycle.

Note that v1 starts a Hamiltonian path, as does any successor or predecessor of neighbor of v1. Thus vt and v3 also start
a Hamiltonian path. If they are connected, note that vt−1 and v4 also start a Hamiltonian path. This, plus the fact that there
is at most one chord in the cycle, is enough to conclude that there are two nonadjacent vertices starting a Hamiltonian path
with degree at most 2 inH . By the σ2 condition, these vertices send at least 7 edges to some cycle, and hence there is a vertex
starting a Hamiltonian path with 4 edges to a single cycle. If H sent at least 21 edges to this path we are done, so we may
assume it sends fewer. Thus there is some different cycle, where H has at least 22 adjacencies. But then there is some vertex
in H sending at least 4 vertices to the cycle. This vertex cannot start a Hamiltonian path and – in particular – this cycle is a
different cycle than the one just considered. Thus there are two vertices h1, h2 ∈ H and two cycles C1, C2 ∈ C so that h1 has
four neighbors in C1 and h2 has four neighbors in C2. This means that |C1| ≤ 5 and |C2| ≤ 5, so |H| ≥ 8 by the Corollary to
Lemma 6.

If |H| ≥ 8, then the degree fromH to the cycles is at least 3(k−1)|H|+1, and hence there are at least 3|H|+1 edges from
H to some particular C ∈ C. Thus there exists some vertex v ∈ H with at least 4 neighbors in C , and so |C | ≥ 4. Likewise
there is some vertex c ∈ C with at least ⌈

(3|H|+1)−4
|C |

⌉ ≥ 5 neighbors in H other than v. If v starts a Hamiltonian path this is
clearly enough by the above. Otherwise, v starts a path of length |H| − 1, not including v1. But then this vertex in the c ∈ C
has 4 neighbors other than v on this path, and this gives two DCCs as desired. �

This immediately implies Theorem 3. �
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Fig. 1. Two exceptions to Lemma 14.

Fig. 2. The inside degree configuration.

3. Proof of Lemma 1

Our next goal is to finally prove Lemma 1, which is fairly involved.
Recall that we have two cycles C and C ′ with ℓ = |C | ≥ |C ′

|, ℓ ≥ 7 and e(C, C ′) ≥ 3|C | + 1, and our objective is to find
two doubly chorded cycles whose union is smaller than |C | + |C ′

|.
The key to the proof is simply observing that many collections of edges between two paths yield (in many cases proper)

doubly chorded cycles. We will require a library of cases in order to complete the proof of Lemma 1. Since these cases are
plentiful, it is helpful to introduce some notation.

We use the notation (d1, d2, . . . , di) ↩→ Pk to indicate a path with consecutive vertices of degree (d1, d2, . . . , di) into a
Pk. We use the symbol ⋆ to indicate a non-empty sequence of arbitrary degrees. We use the notation Pk ↩→d Pj to indicate an
arbitrary d edges from a Pk to Pj. If no length is indicated then P represents a path of arbitrary length. In the following lemma,
we indicate various degree sequences into short paths which always admit doubly chorded cycles and, inmany cases proper
doubly chorded cycles.

Lemma 14. 1. The following ensures a doubly chorded cycle: {(2, 2), (2, ⋆, 2)} ↩→ P3, (2, 2) ↩→ P4, {(3, 2), (3, ⋆, 2)} ↩→ P,
P2 ↩→5 P, (3, 1, 1) ↩→ P, {(2, 1, 2), (2, 1, ⋆, 2)} ↩→ P, P3 ↩→6 P, (2, 2, 1, 1) ↩→ P and {P4, P5} ↩→6 P5.

2. P3 ↩→5 P3 yields a doubly chorded cycle except for the degree sequence (1, 3, 1) and a proper doubly chorded cycle except in
the case (2, 1, 2), as pictured in Fig. 1.

3. The following ensures a proper doubly chorded cycle: (3, ⋆, 2) ↩→ {P3, P4}, P2 ↩→5 P4, P2 ↩→6 P, {(3, 1, 1), (3, ⋆, 1, 1)} ↩→
P3, (3, 1, 1) ↩→ P4, (2, 1, 2) ↩→ P4, P3 ↩→6 P5, {P3} ↩→6{P3, P4}, {P3, P4, P5} ↩→7 P, P6 ↩→8 P, P7 ↩→9 P, P ↩→10 P ′,
(1, 2, 2, 1) ↩→ P5 and (2, 2, 1, 1) ↩→ P5.

4. P3 ↩→5 P4 yields a proper doubly chorded cycle except for (1, 3, 1).
5. P4 ↩→5 P4 yields a doubly chorded cycle except for the degree sequences (1, 3, 1, 0), (1, 3, 0, 1), (1, 2, 1, 1), or an inside

(2, 0, 2, 1) (see Fig. 2).
6. P4 ↩→6 P4 yields a doubly chorded cycle, which is necessarily proper in all cases except for the degree sequence (2, 1, 1, 2).

We defer the proof of Lemma 14, which involves fairly extensive case analysis, to the end of the section.
To restrict cases later, it is useful to bound the maximum degree between C and C ′.

Lemma 15. The maximum degree of any vertex in C or C ′ to the other is at most 5.

Proof. Letm ≥ 6 denote the maximum degree of a vertex in one of C , C ′ to the other, and let v have that degree. We do not
knowwhich of C , C ′ that v lies on, sowe say that v lies on C∗, withm edges to C∗∗. Then there are at least 3ℓ+1−m ≥ 2ℓ+1
edges between C∗∗ and C∗

\ v. By averaging, some adjacent pair of vertices in C∗∗ sends at least 5 edges to C∗
\ v. Ifm ≥ 7,

we are done, as this pair creates a doubly chorded cycle with C∗
\v, by Lemma 14 part (1), and v must be adjacent to at least

5 other vertices of C∗∗, so it is easy to ensure a proper doubly chorded cycle. If m = 6 we are only in trouble if our adjacent
pair of vertices and both of their neighbors on the cycle are adjacent to v. There are at most 3 pairs of this type, which is
achieved only if 6 neighbors of v are consecutive. These pairs may have at most 5 edges to C∗ as otherwise there is a proper
doubly chorded cycle containing them and C∗

\ v (this is the third part of Lemma 14). Each of the other pairs have at most 4
edges. Thus we have an upper bound on the number of edges between C∗∗ and C∗

\v of 1
2 (5×3+4× (ℓ−3)) = 2ℓ+

3
2 . On

the other hand, we have a lower bound of 3ℓ + 1 − 6 = 3ℓ − 5. Since ℓ ≥ 7, and 15.5 < 16, this is a contradiction proving
the lemma; unless |C∗∗

| = 6. In this case if there is an edge of C∗∗ with at least 6 edges to C∗
\ v, the same argument works.

Thus, each edge of C∗∗ must send at most 5 edges to C∗
\ v. But, there are at least 3 × 7 + 1 − 6 = 16 edges to C∗∗, and so

one of the edges must have at least 6 edges to C∗
\ v. �
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Fig. 3. Path partitions of the two cycles with edges sent to each part.

We frequently use the following simple fact.

Lemma 16. Let C ∈ C denote a cycle of length ℓ with maximum degree at most 5 and with deg(C) =


v∈C deg(v). Then C can
be partitioned into two paths P and Q (with degree of any path defined in a manner similar to that of deg(C)) with |P| = ⌈

ℓ
2⌉

and |Q | = ⌊
ℓ
2⌋, and | deg(P) − deg(Q )| ≤ 5.

Proof. This is a standard intermediate value theorem proof. Let m = ⌈
ℓ
2⌉, and order the vertices of C , say c1, c2, . . . , cℓ

(with indices mod ℓ). Let P i
= {ci, . . . , ci+m−1} and Q i

= C \ P i. Note that deg(P i) + deg(Q i) = deg(C). Consider
xi = deg(P i) − deg(Q i). In the ℓ even case, x1 = −xm+1. Since |xi − xi+1| ≤ 10 by the maximum degree condition, some
xi has |xi| ≤ 5 and this is our desired partitioning. For ℓ odd, we note that |x1 + xm+1| = 2deg(C) ≤ 10. In particular, if
|x1| > 5, then xm+1 has an opposite sign and again we find our desired partition. Otherwise, |x1| ≤ 5 and already P1,Q 1 is
our desired partition. �

At this point we partition C into two paths with degrees (r, s) to C ′, respectively, and C ′ into two paths with degrees
(t, u) to the paths of C , respectively (see Fig. 3). We choose the balanced partition guaranteed by Lemma 16, except in the
cases when the cycle has length ℓ = 7, 8. If ℓ = 7 or ℓ = 8, we choose the decomposition on the cycle that is most balanced
in terms of | deg(P) − deg(Q )| (which may not be the one guaranteed by the pairs) and we assume that P is as short as
possible. We have the caveat that, if there exists a P2 ∪ Pℓ−2 decomposition so that | deg(P2) − deg(Pℓ−2)| ≤ 5, we take this
even if there is a more balanced partitioning. (Note that we only do this when ℓ = 7, for (9, 13) and ℓ = 8 for (10, 15).)

Claim 1. Assume ℓ = 7. In the case of (9, 13) we may assume that |P| = 2. In the case of (10, 12), if |P| = 4, then we may
assume that the degree of one of the end points of P is at most 1.

Proof. Webegin by noting that if (9, 13) is themost balanced setup and the order of the first path is greater than 2, then only
degrees 4 and 5 (or 0) may be present (or a more balanced partition is easily obtained). Indeed, suppose there is a positive
degree less than 4. Start at this vertex and add the degrees of adjacent vertices, clockwise around the cycle until the degree
sum is larger than 9. Then the degree sum must be at least 13, or it would be a more balanced partition. If it is exactly 13,
moving the vertex of degree less than 4 to the other side yields a more balanced partition. Otherwise, using Lemma 15, the
sum is exactly 14 and this implies that the initial degree is 1 and the last degree is 5. That is, we have (1, d1, . . . , di, 5) withi

t=1 dt = 8. We may further assume that i = 2: if i > 2, then repeating in a counter-clockwise direction around the cycle
yields an identical situation where i = 2—here we strongly use that ℓ = 7. Now, d1 +d2 = 8. If d1 ∈ {4, 5}, then there is the
desired 9 segment of order two or a more balanced partition. Hence d1 = 3, and d2 = 5. Now consider the three vertices
between the vertex of degree 1 and the vertex of degree 5 when transversing the cycle in the other direction. These vertices
have degree sum 5, but also it is easy to check that none of themmay have non-zero degree without violating the balanced
condition. Indeed, consider the vertex closest to the degree 1 vertex with non-zero degree. If this has degree in 1, 2 or 3,
there is a segment with degree sum 10, 11, or 12 respectively starting with the vertex of degree d1 = 3. If this has degree 4
or 5, then there is a segment of degree 10 or 11 starting with the vertex d2 = 5.

Thus the remaining possibility is that all positive degrees are at least 4. Furthermore, each degree 5 vertex must be
surrounded by degree four vertices, not a priori adjacent. However, this says that the degrees of the vertices in the cycle are
5, 4, 5, 4, 4, possibly with some degree zero vertices in between. However, since the order of the cycle is at most 7, a degree
5 and a degree 4 vertex must be adjacent, given |P| = 2.

Next we consider the case |P| = 4. Clearly, then, |Q | = 3, because the maximum degree is 5. Furthermore, the endpoints
of P have positive degree, as otherwise they could be added to Q . The only degree sequence options for Q are (4, 4, 4),
(5, 3, 4) and (5, 2, 5); these are the only (sorted) options because an adjacent (5, 4) would give the preferred (9, 13)
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Table 4
C pair (9, 13) vs. all (t, u) pairs for C ′ .

(9, 13)

9 (4, 5) (≤3, ≥6)
13 (5, 8) (≥6, ≤7)

10 (≥5, ≤ 5) (4, 6) (≤3, ≥7)
12 (≤ 4, ≥8) (5, 7) (≥6, ≤6)

11 (≥5, ≤6) (4, 7) (≤ 3, ≥8)
11 (≤4, ≥7) (5, 6) (≥6, ≤5)

partition and adjacent (5, 5) would give a P of order 2. In the first case, it is clear that the only neighbors of the 4 are
either another 4 or 1, otherwise a P of order 3 would exist, a (5, 4) would exist or a more balanced (11, 11) partition would
exist. However, if a degree 4 vertex is adjacent, one may shift over and repeat the argument and as not every vertex can
have degree 4, one eventually gets a 1 as desired. The other cases are similar. In the (5, 3, 4) case it is clear that the only
positive number allowable incident to the 5 is 1 as others yield a more preferred partition. In the (5, 2, 5) case only 1 or
2 is permissible next to the 5’s. If 2 is present in both fives, there are two remaining spots which must add degree 6. The
options for these are (5, 1) (which would yield the P beginning with 1), (4, 2) or (3, 3) (both of which yield more preferred
partitions). �

Claim 2. Assume ℓ = 8. In the case of a P,Q decomposition of type (10, 15) we may assume that |P| = 2.

Proof. The proof is similar to the (9, 13) case, but easier. We claim that if (10, 15) is the most balanced decomposition then
every vertexwith positive degreemust be of degree 5. Indeed, if there were a vertex of degree less than 5, the strategy above
yields a more balanced decomposition. But then there are five vertices of degree 5 on a cycle of length 8 so two must be
adjacent. This gives the desired (10, 15) decomposition. �

Finally, we are ready to prove Lemma 1.

Proof of Lemma 1. Recall, we have two cycles with ℓ = |C | ≥ |C ′
| and ℓ ≥ 7.We partition C and C ′ into paths with degrees

(r, s) and (t, u), balanced as above.We next note that each of the pairs for the two cycles can further be partitioned into two
parts based on the number of edges sent to each subpath of the other cycle. We consider these pairs as (a1, b1) and (a2, b2)
as shown in Fig. 3. Thus, for C we have r = a1 + b1 and s = a2 + b2. While for cycle C ′ we have t = a1 + a2 and u = b1 + b2.

At this point, there are many cases based on ℓ, and the partitions (a1, b1) and (a2, b2). Our primary tool to handle these
cases is Lemma 14. Recall that in all cases, we wish to show that the graph induced by C ∪ C ′ contains a pair of doubly
chorded cycles with at least one of them proper. We will proceed based on ℓ.
Case 1: Suppose ℓ = 7.

Possible pairs are reflected in the interior parts of the tables. The tables show all the cases based upon the path partitions
for C and C ′. Note that the first column lists the (r, s) pair for C vs. all possible (t, u) pairs for C ′. The interior pairs are the
(a1, a2) and (b1, b2) splits based upon the corresponding (r, s) and (t, u) values for each cycle.

The remainder of the proof is to verify that in each case, one of the splits (a1, b2) and (b1, a2) allows us to find two disjoint
doubly chorded cycles that, in total, use fewer vertices than C and C ′ together.

In most cases, the results of Lemma 14 make this transparent. In the cases where (9, 13) is against other pairs the fact
that P2 ↩→6 P gives a proper doubly chorded cycle, and {P3, P4, P5} ↩→7 P gives proper doubly chorded cyclesmakes finding a
proper doubly chorded cycle easy. In the tables, we indicate these cases by underlining the choices that most easily produce
the desired result, and bolding the segment which guarantees a proper doubly chorded cycle. We will not include all the
details here (see Tables 4–8).

There remains a few more difficult cases where we must argue a bit more.
In the (10, 12) vs. (10, 12) case where we have (4, 6) vs. (6, 6), note that we have two cases, (4, 6) vs. (6, 6) and (4, 6)

vs. (6, 6)—which case occurs depends on which of the segments involved is shorter, but since the total length is 7, at least
one of the segments of the first cycle must have length at most 3. The fact that {P2, P3} ↩→6{P3, P4, P5} yields a proper DCC
is enough to show that the system is proper. Similar reasoning reveals that in the (11, 11) vs (11, 11) case where we have
(6, 5) vs. (5, 6) both ‘6′s guarantee a DCC, and since one of the segments must have length 3 one guarantees a proper DCC.

In the (9, 13) vs. (10, 12) case, where we have (4, 6) vs. (5, 7), if the 10 segment has order 2, so that 4 edges guarantees
a doubly chorded cycle, (4, 6) and (5, 7) gives the desired cycles. Otherwise, we need that the 6 edges from the 10 segment
to the 13 segment of the other cycle gives a proper doubly chorded cycle. If the 10 segment has order 3, then P3 ↩→6 P5
guarantees a proper doubly chorded cycle by Lemma 14. In the case where the 10 segment has order 4, we have that one
end has degree at most 1 into the P5, by Claim 1. If it has degree zero, then we have P3 ↩→6 P5, yielding the proper cycle. If it
has degree 1, excluding that vertex, we have P3 ↩→5 P5, and we are done unless there is no doubly chorded cycle (as we have
already excluded a vertex). Note that (3, 1, 1) ↩→ P yields a doubly chorded cycle by Lemma 14, as does (2, 1, 2) ↩→ P ,
(3, 2) ↩→ P and (3, ⋆, 2) ↩→ P . If the maximum degree is 3, we are left with (1, 3, 1) ↩→ P , which after adding back the
vertex of degree one to the path, gives a (3, 1, 1) ↩→ P and hence the desired proper doubly chorded cycle. In the cases with
maximum degree 2, except for (2, 1, 2), the maximum degree two cases not covered, after adding back the degree 1 vertex,
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Table 5
C pair (10, 12) vs. all (t, u) pairs for C ′ .

(10, 12)

11 (≤4, ≥7) (5, 6) (≥6, ≤5)
11 (≥6, ≤5) (5, 6) (≤4, ≥7)
10 (≤3, ≥7) (4, 6) (5, 5) (≥6, ≤4)
12 (≥7, ≤ 5) (6, 6) (5, 7) (≤4, ≥8)

Table 6
C pair (11, 11) vs. all (t, u) pairs for C ′ .

(11, 11)

11 (≤4, ≥7) (6, 5)
11 (≥7, ≤4) (5, 6)

Table 7
C pair (10, 15) vs. all (t, u) pairs for C ′ .

(10, 15)

10 (≤3, ≥7) (4, 6)
15 (≥7, ≤8) (6, 4)

11 (≥5, ≤ 6) (≤4, ≥7)
14 (≤5, ≥9) (≥6, ≤8)

12 (≥5, ≤7) (≤4, ≥8)
13 (≤5, ≥8) (≥6, ≤7)

Table 8
C pairs (11, 14) and (12, 13) vs. all (t, u) pairs for C ′ .

(11, 14) (12, 13)

11 (≤4, ≥7) (5, 6) (≥6, ≤5) 12 (≤5, ≥7) (≥6, ≤6)
14 (≥6, ≤8) (6, 8) (≤5, ≥9) 13 (≥7,≤6) (≤6, ≥7)
12 (≤5, ≥7) (≥6, ≤6)
13 (≥6, ≤7) (≤5, ≥8)

are (2, 2, 1, 1) ↩→ P5 and (1, 2, 2, 1) ↩→ P5, both of which are shown by Lemma 14 to give a proper doubly chorded cycle,
finishing the case.

By far the most difficult is the (10, 12) vs. (11, 11) case where we have (5, 6) vs. (5, 6). We know by 16 that the 10
segment has order 2, 3 or 4. If the 10 segment has order 2, since then P2 ↩→5{P3, P4} yields a doubly chorded cycle, and
P3 ↩→6 P5 yields a proper doubly chorded cycle by Lemma 14, we find our desired pair of doubly chorded cycles.

If the 10 segment has order 3, by Lemma 14, P3 ↩→5{P3, P4} yields a doubly chorded cycle, except in the case where the P3
has degree sequence (1, 3, 1), and P4 ↩→6{P3, P4} yields a proper doubly chorded cycle except in the case (2, 1, 1, 2) ↩→ P4.
Since the 10 segment of C cannot have degrees (1, 3, 1) into both segments of C ′, we find our desired pair of doubly chorded
cycles except in a singular case—that in which both P and Q are divided into segments of length 3 and 4. If the segments of
length 3 are connected with the degree sequence (1, 3, 1) as we can find the desired DCCs between the segments of length
3 and 4 on opposite sides.

The bad case here is where both length 3 segments are connected with degree sequence (2, 1, 2) and both length 4
segments are connected with degree sequence (2, 1, 1, 2). In this case the P3 segment of the (10, 12) path has degrees
(3, 4, 3). If either of the ends of the P4 on the (10, 12) cycle had degree 3 or 4 we would be done. This gives either a more
balanced partition of the top or a P3 with a (4, 3, 3) degree configuration that does not support this bad case. If either of
the ends of the P4 on the (10, 12) cycle had degree 4, we would also be done. Since this degree 5 vertex sends 2 edges into
the P4 on the (11, 11) side, it must send 3 into the P3 on the (11, 11) side. Combining it with its neighbor on the P3 gives
(3, 2) ↩→ P3, giving a DCC and the remainder gives a P5 ↩→7 P4 which guarantees a proper DCC. Thus both ends of the P4 on
the (10, 12) have degree 2 (both into the P4 on the other side, and in sum). Then combining one of those vertices with the
adjacent two vertices in the P3 give a degree sequence of (2, 1, 3) ↩→ P4, giving a proper DCC. The middle two vertices of
the P4 have a total degree sum of 12 − 2 · 2 = 8 and only send two edges to the P4 which gives a P2 ↩→6 P3 and hence also a
proper DCC. This completes the case of this (10, 12) vs. (11, 11) split where the 10 segment has order 3.

The case where the 10 segment of C has order 4 also requires some additional argument. Let us denote by P the segment
of order 4 in C and by Q1 and Q2 the two segments in our partition of C ′. If we can find a DCC between P and either Q1 or Q2
then we are done, as the remaining P3 ↩→6{Q1,Q2} will provide the desired proper doubly chorded cycle. Unfortunately we
are not guaranteed the existence of a DCC between P and either Q1 or Q2. Instead, we will argue as follows: in the event that
no DCC lies between P and either Q1 or Q2, we will use Lemma 14 to assert structural information about the edge set. We
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will then use this information to find a new partition Q ′

1 and Q ′

2 of C ′ so that there exist DCCs both between P and Q ′

1 and
between P and Q ′

2. Then as the remaining P3 of C must send at least 6 edges to one of Q ′

1 and Q ′

2, we will be done.
We proceed as follows. Consider the two partitions Q1 and Q2, both of which send 5 edges into P . If both |Q1| = |Q2| = 3

and neither yields a DCC with P , then by Lemma 14 part (4), the degree sequence of both is (1, 3, 1) so the degree sequence
of the cycle C ′ into P is (1, 3, 1, 1, 3, 1). With such a choice, we repartition according to (1, 3, 1, 1, 3, 1) (taking the bolded
vertices to be Q ′

1 and the non-bolded to be Q ′

2). Both Q ′

1 and Q ′

2 have degrees (3, 1, 1) into P and thus yield DCCs.
Thus we assume |Q1| = 4 and |Q2| = 3. If neither yields a DCCwith P , by Lemma 14 part (4), the degree sequence of Q2 is

(1, 3, 1) and the degree sequence of Q1 is one of (1, 3, 1, 0), (1, 3, 0, 1), or (1, 2, 1, 1) or an ‘inside’ (2, 0, 2, 1). (Technically,
this is up to symmetry, but we orient the cycle so that this is the case and since (1, 3, 1) is symmetric we can do this without
loss of generality.) Below we list all possible cases with our choice for Q ′

1 in bold and Q ′

2 in non-bold.

(1, 3, 1, 0, 1, 3, 1) (1, 3, 0, 1, 1, 3, 1) (1,2,1,1,1,3,1) (2, 0, 2, 1,1, 3, 1)

This yields Q ′

1 and Q ′

2 both of which are guaranteed to yield DCCs with P , completing the argument. One final word of
explanation is warranted: Quite crucially, we note that if the original degree sequence of Q1 involved an ‘inside’ (2, 0, 2, 1)′
the (2, 0, 2, 1) of Q ′

1 is not ‘inside’ and this explains why, in this case, Q ′

1 yields a DCC with P while the original Q1 did not.
In the (10, 12) vs. (10, 12) case where we have (5, 5) vs. (5, 7), we are done if the 5 edges between the two 10 parts

create a doubly chorded cycle, as the 7 edges between the other parts make a proper doubly chorded cycle. If it does not,
then the arguments are similar to (5, 6) vs. (5, 6).

This completes the proof when ℓ = 7. Fortunately, for larger ℓ the number of edges increases so the proofs are mostly
easier.
Case 2: Suppose ℓ = 8.

Recall that we have a (10, 15) decomposition where the 10 edge path has order 2 by Claim 2. We must verify the cases,
but they are easy using Lemma 14. Recall that P2 ↩→5 P and {P4, P5} ↩→6 P5 yield doubly chorded cycles, and P2 ↩→6 P ,
P3 ↩→6 P5, {P3, P4} ↩→6{P3, P4} and {P3, P4, P5} ↩→7 P , yield proper doubly chorded cycles. These cover nearly all of the
possible partitions; again we give tables showing how the partitions are covered.

In the (11, 14) vs. (11, 14) case where we have (5, 6) vs. (6, 8), the argument is somewhat more complicated as well. If
either of the segments supporting 6 is of length 3 (note both segments are of length at least 3) then wemay use the fact that
P3 ↩→6{P3, P4, P5} yields a proper doubly chorded cycle and the fact that {P4, P5} ↩→6{P3, P4, P5} yields a DCC to get a proper
system.

A more complicated scenario occurs when both segments of both cycles have length 4, as P4 ↩→6 P4 guarantees only a
DCC, but not a proper one in the case of (2, 1, 1, 2) ↩→ P4. Here, suppose the first cycle is x1, . . . , x8 and the second cycle is
y1, . . . , y8.

We assume x1, . . . , x4 has a total of 11 edges incident to it and x5, . . . , x8 has 14. Likewise, assume y1, . . . , y4 has 11
edges incident to it, and y5, . . . , y8 has 14. The problem case is when there are 6 edges between x1, . . . , x4 and y5, . . . , y8
and likewise between y1, . . . , y4 and x5, . . . , x8. If neither of the DCC’s from the P4 ↩→6 P4 is proper, the degrees of x1, . . . , x4
into y5, . . . , y8 must be (2, 1, 1, 2) and likewise the degrees of x5, . . . , x8 must be (2, 1, 1, 2).

Now, suppose that either x1, or x4 has degree atmost 1 into y1, . . . , y4. Without loss of generality, say x4 has this property.
Now consider the new partition (x4, x5, x6, x7) and (x8, x1, x2, x3).

(x4, x5, x6, x7) has a total of 2 + (8 − 3) = 7 edges into y5, y6, y7, y8. This follows as there are a total of 2 edges from x4
into this set (by our degree case) and a total of 8 edges from x5, x6, x7, x8 into this set. Since x8 has degree 2 into y1, y2, y3, y4
it has degree at most 3 into x5, x6, x7, x8, giving the count.

On the other hand (x8, x1, x2, x3) has 5 − 1 + 2 = 6 edges into (y1, y2, y3, y4). This is as we already know that x8 has
degree 2 in this set. x1, x2, x3, x4 has degree 5 into this set, and we assume that x4 has degree 1 into this set. Combining gives
the desired bound. Thus we have P4 ↩→6 P4 giving a DCC, and P4 ↩→7 P4 giving a proper DCC.

Thus the degree of both x4, and x1 is at least 2 into y1, y2, y3, y4. Consider the same pairs: (x4, x5, x6, x7) still has 7
neighbors in y5, y6, x7, y, y8 and gives a properDCC. x8, x1 into y1, y2, y3, y4 is (2, 2) ↩→ P4 which gives aDCC. This completes
the case.
Case 3: Suppose ℓ = 9.

Consider that our (r, s) decomposition is into paths of order 4 and 5 by Lemma 16, and we have at least 3ℓ + 1 = 28
edges. Thus, our balanced partite sets are (12, 16), (13, 15) and (14, 14). Recall that {P4, P5} ↩→6 P5 yield doubly chorded
cycles, and {P4, P5} ↩→7 P yield proper doubly chorded cycles by Lemma 1. Thus, it is easy to verify that we always get a pair
that guarantees our proper doubly chorded cycle.
Case 4: Suppose ℓ ≥ 10.

Again, for ℓ = 10, we get parts of order 5, and the same verification as above works. After this point, the verification
gets easier. As above, we consider the balanced partition of both cycles, as guaranteed by Lemma 16. This gives a (P,Q )
decomposition of the C with |P| = ⌈

ℓ
2⌉ and a Q = ⌊

ℓ
2⌋, along with a (P ′,Q ′) decomposition of C ′. The total degree of C into

C ′ is at least 3ℓ + 1. Consider the one of P and Q with the lower degree; it sends at least half of its edges to one of P ′ or Q ′.
Now consider the ‘parallel pair’. By theminimality of P , this must have degree at least as high as the initially considered pair.
For ℓ = 11, these are both at least 8. Since P5 ↩→7 P and P6 ↩→8 P yield DCCs, this completes the proof. For ℓ = 12, these are
both at least 8 as well, and that P6 ↩→8 P yields a DCC as well.
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For ℓ = 13, the minimum degree of the first pair is 9 as the minimum degree in the balanced partition is 18. If the degree
is at least 10 the fact that P ↩→10 P yields a proper DCC. However, if the degree in the first pair is 9, the degree fromwhichever
of P or Q which has minimum degree must be 9 into both P ′ and Q ′. This also implies that the other of P or Q must have
degree at least 9 into both P ′ and Q ′. By pairing up the larger cardinality of P and Q with the smaller cardinality of P ′ and Q ′

and vice versa, we may use the fact that P6 ↩→8 P yields a proper DCC twice to find the desired DCCs. Finally, if ℓ > 14, the
proof is trivial: the minimum pair degree is at least 10 and the fact that P ↩→10 P yields a proper DCC finishes the proof. �

Finally, we turn to give the proof of Lemma 14.

Proof of Lemma 14. Throughout the proof, for a degree sequence (d1, . . . , di) ↩→ Pk we let vj denote the jth vertex, that
is, the vertex of degree dj, and x1 < x2 < · · · < xd1 denote the neighbors of v1, and likewise y1 < y2 < · · · yd2 , and
z1 < z2 < · · · < zd3 , w1 < w2 < · · · wd4 denote the neighbors of the vertices with degrees d2 and d3, d4 in increasing order
with respect to some ordering of the Pk. For sequences with ⋆, the vj, xℓ, yℓ′ , etc. only refer to the neighbors of vertices with
specified degrees. Note that vj is denoted for positive degree dj.

Claim (α): {(2, 2), (2, ⋆, 2)} ↩→ P yields a DCC unless x1 < y1 < y2 < x2 (up to reordering v1 and v2).

Proof. Let Q be a path with degree sequence (2, 2) or (2, ⋆, 2) and vertices v1 < v2, each of degree 2. If y1 ≤ x1 <
y2 ≤ x2 (say), then v1, x2, P−, y1, v2,Q−, v1 is a cycle with chords v2y2 and v1x1. If x1 = y1 < x2 < y2, consider
v1, x1, P, y2, v2,Q−, v1, which is a DCC even when x1 < x2 ≤ y1 < y2. �

This immediately yields that (2, 2) ↩→ P3 and (2, ⋆, 2) ↩→ P3 yield a DCC, and also that (2, 2) ↩→ P4 does as well. If
(2, 2) ↩→ P4, then either there is a clear DCC (as in the proof above) or by Claim (α) because P = P4 we need only consider
the case x1 < y1 < y2 < x2, and v1, x1, y1, v2, y2, x2, v1 is a DCC with chords y1y2 and v1v2.

(2, 0, 2, 1) ↩→ P4 yields a DCC except for an inside (2, 0, 2, 1) by Claim (α).

Claim (β): {(3, 2), (3, ⋆, 2)} ↩→ P yields a DCC.

Proof. Let Q be a path with degree sequence as above and vertices v1 < v2. After removing the edge v1x1, we have either
a DCC or x2 < y1 < y2 < x3 or y1 < x2 < x3 < y2 by Claim (α). Then, in either case, adding x1 yields a DCC. Indeed, in the
first case v1, x1, P, y2, v2,Q−, v1 has chords v1x2 and v2y1 and in the second case it has chords v1x2 and v1x3. �

From here it is easy to see that (3, ⋆, 2) ↩→ {P3, P4} yields a proper DCC. Indeed, for (3, ⋆, 2) ↩→ P3, it is clear that
the resulting cycle is proper if x1 = y1 < x2 = y2 < x3, as x3 is not required for a DCC. Thus, the remaining case is
x1 = y1 < x2 < x3 = y2. This has cycle v1, x1, v2, y2, x2, v1 which has chords x1x2 and v1x3. (Note that this is only proper
because ⋆ is posited to be a non-empty sequence.) Taken into P4, the same argument applies in the first case (replacing
x2 = y2 with x2 ≤ y2). In the second case, note that either x1x2 ∈ E(P4) or x2x3 ∈ E(P4), so the cycle above works. Next,
assume y1 < x1 < x2 < x3. This gives an obvious cycle in which case y1 or x3 can be avoided. The remaining cases are of the
form x1 < x2 = y1 < y2 < x3 (or the mirror with x2 = y2). But these also have obvious cycles avoiding x3.

Since it is easy to see that (4) ↩→ P yields a DCC, this and Claim (β) give that P2 ↩→5 P yields a DCC and both P2 ↩→5 P4
and P2 ↩→6 P yield proper DCCs. Indeed, the only case of P2 ↩→6 P that is not automatic is that (3, 3) ↩→ P . Removing the
edges v1x1 and v2y1 yields either x2 < y2 < y3 < x3 or y2 < x2 < x3 < y3, by Claim (α). Adding back x1 in the first case or
y1 in the second case yields a proper DCC avoiding x3 or y3 respectively.

Claim (γ ): {(3, 1, 1), (3, ⋆, 1, 1)} ↩→ P3, and (3, 1, 1) ↩→ P4 yield proper DCCs.

Proof. Let Q be a path with degree sequence as above and vertices v1 < v2 < v3. First consider the case {(3, 1, 1),
(3, ⋆, 1, 1)} ↩→ P3. Note that the P3 is precisely x1 < x2 < x3 and if y1 ∈ {x1, x3}, then if y1 = x1 then v1, x3, x2, x1, v2,Q−, v1
is a proper DCC avoiding v3 and has chords v1x1 and v1x2; while if y1 = x3 then v1,Q−, v2, x3, x2, x1, v1 is a proper DCC
avoiding v3 and with chords v1x2 and v1x3. Thus y1 = x2. With this, it is easy to check that regardless of whether z1 is x1,
x2 or x3 then there is a proper DCC. In the case (3, 1, 1) ↩→ P4 the argument is similar. Let g denote the vertex not adjacent
to v1 on the P4. Without loss of generality either g < x1 < x2 < x3 or x1 < g < x2 < x3. In the first case, note that (as
before) y1 = x2 or we are done, and similarly, regardless of z1, there is a proper DCC. In the second case, y1 ∈ {g, x2} or we
are done as before. However, regardless of the placement of z1, similar proper DCCs exist. The more difficult case is y1 = g
and z1 = x3. Then v1, x2, g, v2, v3, x3, v1 is a proper DCC avoiding x1 and with chords v1v2 and x2x3. �

Claim (δ): (3, 1, 1) ↩→ P , (3, 1, ⋆, 1) ↩→ P4, and (3, ⋆, 1, 1) ↩→ P4 each yield a DCC.

Proof. If y1 ≤ x1 or y1 ≥ x3, this is clear. If y1 = x2, it is as in Claim (γ ). Thus we may assume that, without loss of
generality x1 < y1 < x2. Now consider z1. Again, x1 < z1 < x3 or we are done. If x2 ≤ z1, then a doubly chorded
cycle v1, x1, P, z1, v3, v2, v1 is clear. Similarly if z1 ≤ y1, then v1, x3, P−, z1, v3, v2, v1 is a DCC. The remaining case is
x1 < y1 < z1 < x2 < x3. But then v1, x1, P, y1, v2, v3, z1, P, x3, v1 has chords v1x2 and v1v2.

For the second part, let Q be a path with degree sequence (3, 1, ⋆, 1) and vertices v1 < v2 < v3. As in Claim (γ ) we have
either g < x1 < x2 < x3 or x1 < g < x2 < x3. In the first case, if y1 or z1 is one of g, x1, x3 there exist DCCs. Thus, y1 = z1 = x2
and v1,Q , v3, x2, x1, v1 is a cycle with chords v1x2 and v2x2. In the second case, we may assume y1, z1 ∈ {g, x2}. Suppose
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y1 = g . If z1 = g , then v1,Q , v3, g, x2, x3, v1 is a cycle with chords v1x2 and v2g . If z1 = x2, then v1,Q , v3, x2, g, x1, v1 is a
cycle with chords v1x2 and v2g . Suppose y1 = x2. Then there exist DCCs regardless of z1 by the same argument as the case
y1 = g .

The proof of the third part is analogous to that of the second part. �

Claim (ϵ): (2, 1, 2), ↩→ P4 yields a proper DCC.

Proof. Let g1 and g2 denote the vertices not adjacent to v1 on P4. Without loss of generality, then, the cases are x1 < x2 <
g1 < g2, and x1 < g1 < x2 < g2, and x1 < g1 < g2 < x2, and g1 < x1 < x2 < g2. In the first two cases note that we
are done unless z2 = g2, (as then we have (2, ⋆, 2) ↩→ P3 of Claim (α) and the cycle is now proper as g2 is not included).
Suppose x1 < x2 < g1 < z2. In the case that z1 ∈ {x2, g1}, then it is easy to find proper DCCs regardless of the placement
of y1, avoiding either x1 or z2. The more difficult case is when x1 = z1 < x2 < g1 < z2. If y1 ∈ {x1, x2} it is easy to build
proper DCCs avoiding {g1, z2}. If y1 = z2, then v1, x2, x1, v3, z2, v2, v1 avoids g1 and has chords v1x1 and v3v2. If y1 = g1,
then v1, x1, v3, v2, g1, x2, v1 avoids z2 and has chords x1x2 and v1v2. Next suppose x1 < g1 < x2 < z2. If z1 ∈ {g1, x2}, we
can find proper DCCs avoiding either x1 or g2, depending on y1. Thus, we may assume z1 = x1. If y1 ∈ {x1, g1, x2}, it is easy
to find a proper DCC avoiding g2. In the case where y1 = g2 = z2, then v1, x1, v3, v2, z2, x2, v1 has chords v3z2 and v1v2 and
avoids g1. Next suppose x1 < g1 < g2 < x2. If x1 = z1 and z2 = g2, or z1 = g1 and z2 = x2, then this is similar to the
cases already examined. If x1 = z1 and x2 = z2, then if y1 = x1 (or symmetrically y1 = x2) the cycle v1, x1, v2, v3, z2, v1
has chords v1v2 and v3z1 and avoids g1, g2. If y1 = g1 (or symmetrically y1 = g2), then v1, x1, g1, v2, v3, x2, v1 has chords
v1v2 and v3x1 and avoids g2 and hence is a proper doubly chorded cycle. If z1 = g1 and z2 = g2 or z1 = x1 and z2 = g1 (or
symmetrically z1 = g2 and z2 = x2), then regardless of the location of y1, it is easy to build a proper DCC. The case when
g1 < x1 < x2 < g2 is similar. �

Claim (ζ ): {(2, 1, 2), (2, 1, ⋆, 2)} ↩→ P yields a DCC.

Proof. Note that as we just require a DCC, and not a proper one, we may assume that we have x1 < z1 < z2 < x2 (or
z1 < x1 < x2 < z2) or we are done by Claim (α). Regardless of y1, we can find a doubly chorded cycle. �

By Claims (β), (γ ) and (ζ ) (resp. (ϵ)), and since (2, 2) ↩→ P3 (resp. P4) yields a DCC by Claim (α) and (3, ⋆, 2) ↩→ P3
(resp. P4) yields a proper DCC by Claim (β), the assertion of Lemma 14 (2) (resp. (4)) holds.
Claim (η): (2, 1, 1, 2) ↩→ P4 yields a DCC.

Proof. This actually follows from Claim (ϵ)’s argument. �

Claim (θ): P3 ↩→6 P yields a DCC.

Proof. Since (4) ↩→ P yields a DCC, we have max degree 3. Since {(3, 2), (3, ⋆, 2)} ↩→ P yields a DCC by Claim (β), the only
remaining case is (2, 2, 2) ↩→ P , which follows from Claim (ζ ). �

Claim (ι): P3 ↩→6 P5 yields a proper DCC.

Proof. If (3, 2) or (4) arises in the degree sequence of the P3 we are done as we do not use all of the P3. Thus, our options
are (3, 1, 2) ↩→ P5, or (3, 0, 3) ↩→ P5, or (2, 2, 2) ↩→ P5. Consider (3, 1, 2) ↩→ P5, which is quite similar to Claim (β). Let
g1, g2 denote the vertices not adjacent to v1. Then without loss of generality, the possibilities are x1 < x2 < x3 < g1 < g2,
x1 < x2 < g1 < x3 < g2, x1 < g1 < x2 < g2 < x3 and x1 < x2 < g1 < g2 < x3 and x1 < g1 < x2 < x3 < g2 and
g1 < x1 < x2 < x3 < g2. In the first two cases it is clear that z2 = g2 (as otherwise we have (3, ⋆, 2) ↩→ P4 of Claim (β)).
It is easy to find proper DCC’s then, regardless of z1. In the case where x1 < g1 < x2 < g2 < x3, it is easy to find proper
DCCs unless z1 = x1 and z2 = x3. In this case, we find our desired DCCs using v2y1 as the second chord, regardless of y1.
The cases for x1 < x2 < g1 < g2 < x3, x1 < g1 < x2 < x3 < g2 and g1 < x1 < x2 < x3 < g2 are straightforward. In the
case (3, 0, 3) ↩→ P5, the argument is similar. It remains to consider (2, 2, 2) ↩→ P5. The case (2, 2) ↩→ P5 already yields the
desired proper DCC unless either x1 < y1 < g < y2 < x2, where g denotes the gap (or similarly x1 < g < y1 < y2 < x2),
or y1 < x1 < g < x2 < y2 (or similarly y1 < g < x1 < x2 < y2 by Claim (α). In the first case z1 = x1 and z2 = x2 or we
are done by Claim (α)). Then v1, x1, y1, v2, v3, z2, v1 is the proper DCC avoiding {g, y2} and with chords v1v2 and v3x1. In the
second case the argument is similar. �

Claim (κ): (2, 2, 1, 1) ↩→ P yields a DCC.

Proof. We may assume that x1 < y1 < y2 < x2 or y1 < x1 < x2 < y2 or the (2, 2) ↩→ P already gives the desired cycle
by Claim (α). In the first case, note that if z1 ≤ y1 or y2 ≤ z1, DCCs are easy to find. A similar argument applies for w1. Thus
y1 < z1 < y2 and y1 < w1 < y2. If z1 ≤ w1, then v1, x1, P, w1, v4, v3, v2, v1 is a DCC with chords v2y1 and v3z1. Otherwise,
if z1 > w1, we use v1, x2, P−, w1, v4, v3, v2, v1. Thus, we are in the case y1 < x1 < x2 < y2. Here we have y1 < z1 < y2 and
y1 < w1 < y2. Note that, possibly by reversing P , we may assume that z1 ≤ w1. We now simply list the cases and cycles
and chords in the table that follows. �
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By Claims (α), (β), (δ), (ζ ) and (σ ), the assertion of Lemma 14 part (5) holds.

Case Cycles Chords

y1 < z1 < x1 < x2 < y2 , z1 < w1 < x2 v4, w1, P, x1, v1, x2, P, y2, v2, y1, P, z1, v3, v4 v1v2, v2v3
(Note: w1, P−, x1 if x1 < w1)

y1 < x1 = z1 < w1 < x2 < y2 v4, w1, P, x2, v1, x1, P−, y1, v2, v3, v4 v1v2 , v3x1
y1 < z1 = w1 ≤ x1 < x2 < y2 v4, w1, P, x1, v1, x2, P, y2, v2, v3, v4 v3z1, v1v2
y1 < z1 ≤ x1 < x2 ≤ w1 < y2 v4, w1, P−, x2, v1, x1, P−, y1, v2, v3, v4 v3z1 , v1v2

y1 < x1 < z1 ≤ x2 < y2 , z1 < w1 < y2 v4, w1, P, x2, v1, v2, y1, P, z1, v3, v4 v1x1 , v2v3
(Note: v4, w1, P−, x1, v1, v2, v3, v4 if x2 < w1) v1x2 , v3z1

y1 < x1 < z1 = w1 ≤ x2 < y2 v4, w1, P, x2, v1, x1, P−, y1, v2, v3, v4 v1v2 , v3z1
y1 < x1 < x2 < z1 ≤ w1 < y2 v4, w1, P−, x2, v1, x1, P−, y1, v2, v3, v4 v1v2 , v3z1

Claim (λ): {P3} ↩→6 {P3, P4} yields a proper DCCwhile P4 ↩→ P4 yields a DCCwhich is proper except in the (2, 1, 1, 2) ↩→ P4
case.

Proof. Consider the case Pk ↩→6 Pj where k ≤ j. Note that (4) ↩→ P4 yields a DCC so the max degree (of either) is 3. Since
(3, 2) ↩→ P3 yields a DCC by Claim (β), and (3, ⋆, 2) ↩→ {P3, P4} and (3, 2) ↩→ P4 yield proper DCCs by Claim (β), if the
maximum degree of Pk is 3, then all other vertices have degree 1 and we have only to consider P4 ↩→6 P4. But (3, 1, 1) ↩→ P4
yields a proper DCC by Claim (γ ). Thus, the maximum degree is 2. Note that (2, 2) ↩→ {P3, P4} yields a DCC by Claim (α), so
if Pk has two adjacent vertices of degree 2 we are done. Thus, we are done unless k = j = 4. Then our options are (2, 1, 2, 1)
or (2, 1, 1, 2). Since we have already shown in Claims (ζ ) and (η) that (2, 1, 2) ↩→ P4 yields a DCC and (2, 1, 1, 2) ↩→ P4
yields a DCC we are done. �

Claim (µ): {P3, P4, P5} ↩→7 P yields a proper DCC.

Proof. Note that it suffices to show that this yields a DCC. If there is such a cycle, there is necessarily a proper one by
Lemma 2. We have already shown that P3 ↩→6 P yields a DCC by Claim (θ), so this case is trivial. In the cases of P4 ↩→7 P or
P5 ↩→7 P , note that (4) ↩→ P yields a DCC and {(3, 2), (3, ⋆, 2), (3, 1, 1)} ↩→ P all yield DCCs by Claims (β) and (δ), and
hence the maximum degree is 2. But {(2, 1, 2), (2, 1, ⋆, 2), (2, 2, 1, 1)} ↩→ P yield DCCs by Claims (ζ ) and (κ) and one of
these must occur as P5 ↩→7 P must have at least 2 vertices of degree 2 (and if there are vertices of degree 0, then there are
additional vertices of degree 2). �

Claim (ν): P6 ↩→8 P yields a proper DCC.

Proof. Again we have that {(4), (3, 2), (3, ⋆, 2), (3, 1, 1)} ↩→ P yield DCCs, so we are done unless the P6 has maximum
degree 2. Note that we then cannot avoid {(2, 1, 2), (2, 1, ⋆, 2), (2, 2, 1, 1)} and hence are guaranteed a DCC (and hence a
proper one by Lemma 2). �

Claim (ξ): P7 ↩→9 P yields a proper DCC.

Proof. Analogous to Claim (ν). �

Claim (o): P ↩→10 P ′ yields a proper DCC.

Proof. As in the Claim (µ) it suffices to show the existence of one DCC. In this case, we order the vertices of P and P ′. Then
the chords give a permutation σ ∈ S10 (the symmetric group) induced by the endpoints of the edges between the paths,
breaking ties arbitrarily. The Erdős–Szekeres Theorem [5] guarantees an increasing or decreasing sequence of length 4which
easily gives the desired DCC. �

Claim (π): (1, 2, 2, 1) ↩→ P5 yields a proper DCC.

Proof. If the (2, 2) ↩→ P5 does not already yield a DCC, then we have, two cases to consider. First, if y1 < z1 < g < z2 < y2,
where g is a gap, it is trivial to find a proper DCC unless w1 = g , so that we have y1 < z1 < w1 < z2 < y2. But then
v2, y1, z1, v3, v4, w1, z2, y2, v2 avoids v1 and has chords z1w1 and v2v3. Next, if y1 < z1 < z2 < g < y2, then it is easy to
find a proper DCC by considering w1. �

Claim (ρ): (2, 2, 1, 1) ↩→ P5 yields a proper DCC.

Proof. If (2, 2) ↩→ P5 does not already yield a DCC, then we have x1 < y1 < g < y2 < x2, or y1 < x1 < g < x2 < y2
where g is a gap. The first case is analogous to Claim (π), and v4 can be avoided. In the second case, if z1 ∈ {y1, g, y2},
DCCs are easy to find; the most difficult being when z1 = g and a proper DCC is v1, x1, y1, v2, v3, z1, x2, v1 with chords
v1v2 and x1z1. Thus we may assume that z1 = x1 (or symmetrically z1 = x2). Likewise it is easy to see that we either have
that w1 = x1 or w1 = x2, or we may omit one of y1, y2 and find a proper DCC. The more difficult case is w1 = g . Then
v1, x1, v3, v4, g, x2, y2, v2, v1 is a cycle with chords v1x2 and v2v3 avoiding y1. In either case it is quite easy to find a proper
DCC avoiding both y1 and y2. �
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Claim (σ ): (2, 1, 1, 1) ↩→ {P3, P4} yields a DCC.

Proof. We begin by noting that (2, 1, 1, 1) ↩→ P3 yields a DCC. Indeed, if there were no DCC, then the P3 would have degree
sequence (1, 3, 1).Wemay assume,without loss of generality, that x1 is the first vertex of the P3. Thenw1, the neighbor of v4,
must be one of the bottom two vertices of the P3. Hence, the cycle containing the paths alongwith v1x1 and v4w1 avoids only
(possibly) the edge incident to the bottom vertex of the P3 and is thus a DCC. Now we consider the case (2, 1, 1, 1) ↩→ P4.
We repeatedly use the fact that if we can find a cycle containing 7 of the 8 vertices, omitting only an end vertex of degree 1,
then the cycle is doubly chorded. This fact follows by counting edges as such a cycle has 5 path edges and 4 cross edges, for a
total of 9 edges induced on a 7 vertex cycle.We denote the ordered vertices on P4 by u1, u2, u3, u4. First we consider the case
where x1 = u1. The vertex u4 has degree at least 1, as otherwise we are in the case (2, 1, 1, 1) ↩→ P3. If u4 = z1 or u4 = w1,
either the resulting graph is Hamiltonian or contains a DCC on 7 vertices. Thus either u4 = x2 or u4 = y1 (or both). If u4 = x2,
then by symmetry,w1 = u3 andwe have a cycle on 7 vertices. Therefore u4 must have degree 2 and hence u4 = y1. But then
v1, u4, v2, v3, v4, u3, u2, u1, v1 is Hamiltonian. Thus, we may assume that u4 ≠ x2 but instead that u4 = y1.

Since then the degree of u4 is 1, we may assume that w1 ≠ u3 (as otherwise there would be a cycle avoiding only
u4). Thus w1 = u1 or w1 = u2. First suppose w1 = u1. If x2 = u2, then v1, u1, v4, v3, v2, u4, u3, u2, v1 is Hamiltonian.
Suppose x2 = u3. Likewise if z1 = u2, then v1, v2, u4, u3, u2, v3, v4, u1, v1 is Hamiltonian. Therefore, u2 has degree 0 across
and by edge counting the cycle v1, u1, v4, v3, v2, u4, u3, v1 which contains every vertex except u2 and induces every cross
edge, is a DCC. If x2 = u4, then v1, v2, v3, v4, u1, u2, u3, u4, v1 is Hamiltonian. Next suppose w1 = u2. Consider the second
neighbor of v1. Suppose x2 = u2. Thenwemay assume z1 = u3, or we can find a DCC easily. Then v1, v2, u4, u3, v3, v4, u2, v1
is a cycle with chords v2v3 and u2u3. Suppose x2 = u3. Then v1, u1, u2, v4, v3, v2, u4, u3, v1 is Hamiltonian. Suppose
x2 = u4. If z1 ∈ {u2, u3, u4}, then v1, v2, v3, v4, u2, u3, u4, v1 is a cycle with chords v2u4 and v3z1. If z1 = u1, then
v1, v2, u4, u3, u2, v4, v3, u1, v1 is Hamiltonian. This completes the case where x1 = u1 (and by symmetry the case where
x2 = u4).

The remaining case is when x1 = u2 and x2 = u3. Again, both u1 and u4 must have positive degree (as otherwise we
reduce to the case where (2, 1, 1, 1) ↩→ P3). If one of u1, u4 has degree 3, we reduce to the case where (2, 1, 1, 1) ↩→ P3.
If one of u1, u4 has degree 2, then we also have the degree sequence (2, 1, 1, 1) within the P4, and (up to symmetry) this
gives y1 = z1 = u1 and w1 = u4. Then v1, u2, u1, v2, v3, v4, u4, u3, v1 is Hamiltonian. Thus, u1 and u4 both have degree
1. If w1 = u4, then this gives a cycle avoiding just u1 (which has degree 1). By symmetry, the case w1 = u1 is the same.
Therefore, y1 = u1 and z1 = u4. Then v1, u2, u1, v2, v3, u4, u3, v1 is a cycle with chords v1v2 and u2u3. This completes the
case. �

Claim (τ ): {P4, P5} ↩→6 P5 yields a DCC.

Proof. As in Claim (λ) cases, we may assume that the maximum degree in the P4 ↩→6 P5 or P5 ↩→6 P5 is 2. The cases not
covered by a combination of Claims (ζ ), (π), (ρ) are (2, 0, 2, 0, 2) ↩→ P5 and (2, 2, 0, 1, 1) ↩→ P5 (or its reverse sequence or
some permutation of the middle three terms of these two sequences), and {(1, 2, 2, 0, 1), (1, 2, 0, 2, 1), (1, 0, 2, 2, 1)} ↩→
P5, and the case where the minimum degree in the P5’s is 1.

For (2, 0, 2, 0, 2) ↩→ P5, the fact that (2, 0, 2) ↩→ P5 yields no DCC implies that (with g the vertex nonadjacent to either
vertex of degree two) we either have x1 < y1 < g < y2 < x2, x1 < y1 < y2 < g < x2 or x1 < y1 < y2 < x2 < g or similar
inequalities with the roles of x and y reversed. If the xi are in the exterior vertices, then the yi and zi are forced to be interior.
But the yi being interior force the zi to be exterior, since, for example in the x1 < y1 < g < y2 < x2 case, if z1 = y1 and
z2 = g , then v1, v2, v3, v4, v5, y1, g, y2, x2, v1 is proper (as x1 is omitted) and has chords v3y1 and v3y2. Similar cycles can
be found in the other cases for the adjacencies of v5. But the xi and zi both exterior implies a DCC exists as shown earlier. If
xi is interior, then yi are exterior, but again there are DCCs once zi is included in either the interior or exterior.

For (2, 2, 0, 1, 1) ↩→ P5, this almost follows the proof of Claim (ρ). As in Claim (ρ) if (2, 2) ↩→ P5 does not already
produce a DCC, then x1 < y1 < g < y2 < x2 or y1 < x1 < g < x2 < y2. In the first case, if z1 = x2, then
v1, v2, v3, v4, x2, y2, g, y1, x1, v1 has chords v2y1 and v2y2. If z1 = y2 then a similar cycle with the same chords is obvious.
If z1 = g , then v1, x1, y1, g, v4, v3, v2, y2, x2, v1 has chords v1v2 and v2y1. If z1 = y1, then v1, x1, y1, v4, v3, v2, y2, x2, v1 has
chords v1v2 and v2y1. Finally, if z1 = x1, then x1, v4, v3, v2, v1, x2, y2, g, y1, x1 has chords v2y1 and v2y2. In the second case,
if z1 = y2, then v1, x1, y1, v2, v3, v4, y2, x2, v1 has chords v1v2 and v2y2. If z1 = y1, then v1, v2, v3, v4, y1, x1, g, x2, v1 has
chords v1x1 and v2y1. If z1 = g , then v1, x1, g, v4, v3, v2, y2, x2, v1 has chords v1v2 and gx2. If z1 = x1 or x2, we can produce
DCCs by considering w1.

The cases of the reverse sequence or where the middle terms are permuted are also all similar, and amount to merely
interchanging the degrees along the path. In each case a DCC is easily found. The cases (1, 2, 2, 0, 1), (1, 2, 0, 2, 1) and
(1, 0, 2, 2, 1) are all similar to Claim (π).

Finally, we consider the case where the minimum degree in the P5’s is 1. Note that there is only one vertex of degree 2
in both P5’s. The proofs of these cases are slightly different than those we have considered before. Let p1, . . . , p5 denote the
ordered vertices of the first P5 and q1, . . . , q5 denote the ordered vertices of the other path. We assume (possibly reordering
the pi, qi or swapping the roles of the two P5’s) that p1’s neighbor is qj for j as small as possible. Note that the two paths and
the edges between them comprise 10 vertices and 14 edges. If a Hamiltonian cycle exists, then there are 4 chords. If a cycle
avoiding only one vertex exists, then if that vertex is an end vertex of one of the paths, (so that it has degree at most 3 in G)
there are at least 2 chords for the cycle. This is also true if an internal vertex of degree at most 3 in G is avoided.
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Case 1: Suppose p1q1 ∈ E.
Then consider neighbors of p5. If p5q5 is an edge, the graph is Hamiltonian, and there is a DCC. If p5q4 is an edge, the cycle

C : p1, q1, q2, q3, q4, p5, p4, p3, p2, p1 avoids q5 and no other vertex and so is a DCC.

Subcase 1.1: Suppose p5q3 ∈ E.
Then consider the pj (max j) adjacent to q5. By symmetry, j ∈ {1, 2, 3} or we would be in an earlier case. Now consider

the cycles C1 : pj, . . . , p5, q3, q4, q5, pj and C2 : p1, p2, . . . , p5, q3, q2, q1, p1 and C3 : p1, q1, . . . , q5, pj, . . . , p1. These
three cycles can be thought of as breaking the paths and edges into path segments S1 = [pj, p5], S2 = [q3, q5] and
S3 = pj, pj−1, . . . , p1, q1, q2, q3. Note that pj and q3 each belong to two of these segments. Now there are three more edges
between the paths. Wewould have a DCC unless these three edges each join a distinct pair of the segments. Note that under
this restriction, pj and q3 cannot be incident to any of these three edges.

If this is the case, consider p4. If p4q4 ∈ E, then p1, . . . , pj, q5, q4, p4, p5, q3, q2, q1, p1 is Hamiltonian if j = 3, or misses
only p3 if j = 2. If p3 sends only one edge to the other path we are done. Otherwise, there are two edges from p3. If p3 sends
an edge to S2, C1 is a DCC. Thus, p3q1 ∈ E and p3q2 ∈ E. Then C2 is a DCC. If j = 1, then each of p2 and p3 are incident to (at
least) one of the remaining edges. If both edges go into S3, then C2 is a DCC. Thus, one of these edges goes into S2 (one of q4
or q5), then C1 is a DCC.

Next suppose p4q3 ∈ E. Now any edge prq2, r ∈ {1, 2, 3, 4, 5} implies that C2 has chords q2pr and p4q3.
Now suppose that p4q2 ∈ E. Then p1, q1, q2, p4, p5, q3, q4, q5, pj, . . . , p1 is Hamiltonian if j = 3. This cycle avoids only p3

if j = 2 and is a DCC if deg(p3) = 3. Thus, suppose that p3 is incident to two edges to the other path. One of these must go to
q4. Now p5, p4, q2, q1, p1, p2, p3, q4, q3, p5 avoids only q5. If j = 1, then note that p2 and p3 must each send at least one edge
to the other path. If either sends an edge to {q1, q2, q3}, then C2 is a DCC using that edge and p4q2. Thus, both edges must go
to q4 and now C1 is a DCC. This completes the p4q2 subcase.

Next suppose that p4q1 ∈ E. Assume j = 3, i.e., that q5p3 is an edge. Then p2 must send at least one edge to the
other path. If this edge goes to any of {q1, q2, q3}, then C2 is clearly a DCC. Thus, p2 has an adjacency in {q4, q5}. Then
p1, q1, p4, p5, q3, q4, q5, p3, p2, p1 has both p2q4 (or p2q5) and p3p4 as chords. Thus we next assume j = 2. Then p3 has
at least one adjacency to the other path. If p3qr ∈ E, r ∈ {1, 2, 3}, then C2 is a DCC with chords p3qr and p4q1. If r = 4, then
p2, q5, q4, p3, p4, p5, q3, q2, q1, p1, p2 is Hamiltonian. Now assume j = 1, i.e., q5p1 ∈ E. If p2 has an adjacency in {q1, q2, q3}
then C2 is a DCC. Thus, p2q4 ∈ E and the cycle p1, q1, q2, q3, p5, . . . , p2, q4, q5, p1 is Hamiltonian. By symmetry these are all
the necessary cases when p1q1 ∈ E. This completes the cases when p4q1 ∈ E and Subcase 1.1.

Subcase 1.2: Suppose p5q2 ∈ E (so by symmetry, q5 is adjacent to p2 or p1).
If q5p1 ∈ E, then p1, . . . , p5, q2, . . . , q5, p1 avoids only q1, so it is a DCC. Now assume instead that q5p2 ∈ E. Note

that each of p3 and p4 needs to send at least one edge to the other path. If two such edges are incident in {q1, q2},
then p1, . . . , p5, q2, q1, p1 is a DCC. If two such edges are incident in {q2, q3, q4} (note q5 not possible in this case) then
p2, . . . , p5, q2, . . . , q5, p2 is a DCC. This implies that each of p3 and p4 sends exactly one edge to the other path into {q1} or
{q3, q4}. If p3q1 ∈ E, then a Hamiltonian cycle is easy to find. Thus p4q1 ∈ E. But then a cycle avoiding only p3 (which must
have degree 3, for otherwise p3q3 and p3q4 are edges and a Hamiltonian cycle is easily found) and we are again done.

Subcase 1.3: Suppose p5q1 ∈ E.

Then by symmetry, q5p1 ∈ E and p1, . . . , p5, q1, . . . , q5, p1 is Hamiltonian. This completes Case 1.

Case 2: Suppose p1q2 ∈ E (and by symmetry, p1q1 and p5q5 are not edges).
Thus, the neighbors of q1 and q5 lie in {p2, p3, p4}.

Subcase 2.1: Suppose q1p2 and q5p4 are in E.
Suppose p5q4 ∈ E. Then p1, p2, . . . , p5, q4, q3, q2, p1 is a DCC unless at least one of the remaining two edges goes to q1

or q5. But, by our symmetry assumptions, that edge is incident to q1. Then q1 must be adjacent to p3 or p4. If p3q1 ∈ E, then
p1, q2, q3, q4, p5, p4, p3, q1, p2, p1 avoids only q5 and hence is a DCC. If p4q1 ∈ E, then p3q3 ∈ E by the assumption on the
degree sequence and hence, p2, p3, p4, q5, q4, q3, q2, q1, p2 is a DCC.

Next suppose that p5q3 ∈ E. Assume that p4q4 ∈ E. Then for any edge p3qr , r ∈ {1, 2, 3, 4, 5}, p2, p3, p4, q5, q4, . . . , qr , p2
has chords p3qr and p4q4. If p3q4 ∈ E, then p5, p4, q5, q4, p3, p2, q1, q2, q3, p5 avoids only p1. If instead, p2q4 ∈ E,
then any edge p3qr , r ∈ {1, 2, 3, 4, 5} gives p2, p3, p4, q5, . . . , q1, p2 as a DCC. Now suppose that p1q4 ∈ E. Then
p1, q4, q5, p4, p5, q3, q2, q1, p2, p1 avoids only p3 which has degree 3, and thus is a DCC.

Next suppose that p5q2 ∈ E. Then each of q3 and q4 sends an edge to {p1, p2, p3, p4}, or we would be in an earlier case,
and so p1, p2, p3, p4, q5, q4, q3, q2, p1 is a DCC. This completes Subcase 2.1.

Subcase 2.2: Suppose q1p2 and q5p3 are in E.
Suppose p5q3 ∈ E. Now consider the adjacency of q4 (which cannot include p5). Suppose q4p4 ∈ E. Then p1, q2, q3,

p5, p4, q4, q5, p3, p2, p1 avoids only q1. Next suppose that q4p3 ∈ E. Now p4 has an adjacency on the other path. Say p4q3 ∈ E.
Then p3, p4, p5, q3, q4, q5, p3 has p3q4 and p4q3 as chords. If p4q2 ∈ E, then p1, q2, p4, p5, q3, q4, q5, p3, p2, p1 has q2q3 and
p3q4 as chords. If p4q1 ∈ E, then p1, q2, q1, p4, p5, q3, q4, q5, p3, p2, p1 is Hamiltonian. Next suppose that q4p2 ∈ E. Then
p1, q2, q3, p5, p4, p3, q5, q4, p2, p1 avoids only q1. Finally, suppose q4p1 ∈ E. Then p1, q4, q5, p3, p4, p5, q3, q2, q1, p2, p1 is
Hamiltonian.
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Finally, if p5q2 ∈ E, a similar argument applies. This completes Subcase 2.2.
Subcase 2.3: Suppose that q1p2 ∈ E and q5p2 ∈ E.

By symmetry, p5 is adjacent to q2. Now p3 and p4 each have at least one edge to the other path, and these edges end in
{q3, q4}. But then, p2, . . . , p5, q2, . . . , q5, p2 is a DCC. This completes Subcase 2.3.

Similar arguments hold for p1q2 when either q1p3 or q1p4 are assumed along with a possible adjacency for q5. By our
symmetry assumptions, this completes Case 2.
Case 3: Suppose p1q3 ∈ E.

By symmetry and our earlier cases, p5q3, q1p3 and q5p3 are also edges. Now p2 and p4 must have their adjacencies in
{q2, q4}. If p2q2 and p4q4 are edges, then p1, p2, q2, q1, p3, q5, q4, p4, p5, q3, p1 is Hamiltonian. While if p2q4 and p4q2 are the
edges, then reverse one of the paths to obtain the previous cycle. This completes Case 3. �

By our symmetry and path reversal assumptions, this completes the proof. �
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