On the interval chromatic number of proper interval graphs

Mordechai Shalom ${ }^{1}$
TelHai Academic College, Upper Galilee, 12210, Israel

A R TICLE INFO

Article history:

Received 13 March 2014
Received in revised form 1 January 2015
Accepted 13 April 2015
Available online 6 June 2015

Keywords:

Proper interval graphs
Unit interval graphs
Superperfect graphs

Abstract

A perfect graph is a graph every subgraph of which has a chromatic number equal to its clique number (Berge, 1963; Lovász, 1972). A (vertex) weighted graph is a graph with a weight function w on its vertices. An interval coloring of a weighted graph maps each vertex v to an interval of size $w(v)$ such that the intervals corresponding to adjacent vertices do not intersect. The size of a coloring is the total size of the union of these intervals. The minimum possible size of an interval coloring of a given weighted graph is its interval chromatic number. The clique number of a weighted graph is the maximum weight of a clique in it. Clearly, the interval chromatic number of a weighted graph is at least its clique number. A graph is superperfect if for every weight function on its vertices, the chromatic number of the weighted graph is equal to its clique number (Hoffman, 1974). It is known that determining the interval chromatic number of a given interval graph is Np-Complete, implying that interval graphs are not included in the family of superperfect graphs (Golumbic, 2004). The question whether these results hold for simple graph families is open since then. We answer this question affirmatively for proper interval graphs for which most investigated problems are polynomial (http://www.graphclasses.org/classes/gc_298.html). Specifically, we show that determining the interval chromatic number of a proper interval graph is Np-Complete in the strong sense. We present a simple 2-approximation algorithm for this special case, whereas the best known approximation algorithm for interval graphs is a $(2+\epsilon)$-approximation (Buchsbaum et al., 2004).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

The notion of perfect graphs was introduced by Berge in the early 1960s [2]. A graph is perfect if every induced subgraph of it satisfies two properties: (a) its chromatic number is equal to its clique number, and (b) its clique cover number is equal to its independence number. Berge presented the famous perfect graph conjecture that was later proven by Lovász [16], according to which these two properties are equivalent. Therefore, we use only the first property and say that a graph is perfect if every induced subgraph of it has a chromatic number equal to its clique number. Several important graph families are included in the family of perfect graphs. A chord of a cycle C in a graph is an edge of the graph connecting two vertices that are non-adjacent in C. A graph is chordal (or triangulated) if every cycle of it with at least 4 vertices has a chord. Chordal graphs are perfect [12,1]. An interval graph is a graph whose vertices correspond to open intervals on the real line and two vertices are adjacent if their corresponding intervals intersect. It is easy to see that interval graphs are chordal, therefore

[^0]perfect. A proper interval graph is an interval graph where none of the intervals corresponding to the vertices is properly contained in another.

The notions of coloring and perfect graphs are extended as follows. Consider a graph with a weight function w on its vertices. An interval coloring c of a weighed graph maps each vertex v to an interval $c(v)$ of size $w(v)$ such that $c(u)$ and $c(v)$ do not intersect whenever u and v are adjacent in the graph. Interval coloring extends the classical notion of vertex coloring. The size of an interval coloring is the size of the union of the intervals. The interval chromatic number of a weighted graph is the minimum possible size of an interval coloring of it. The clique number of a weighted graph is the maximum total weight of a clique of it. The interval chromatic number of a weighted graph is at least its clique number. Indeed, given a clique K of weight equal to the clique number of the weighted graph, the vertices of K have to be assigned pairwise disjoint intervals. A graph is superperfect if for every weight function w, the chromatic number of the corresponding weighted graph is equal to its clique number [14].

1.2. Related work

The problem of determining the interval chromatic number of an interval graph is known also as the shipbuilding problem (see [10]). It is also mentioned in the literature as the dynamic storage allocation problem. (see problem (SR2) in [6]). The problem can be described as coloring of floating rectangles that are free to move along one axis. Another rectangle coloring variant discussed in the literature is the berth allocation problem, in which the rectangles can move along both axes, though not completely freely [18].

Many problems that are Np-Hard in general graphs, such as maximum independent set, maximum clique, chromatic number, can be solved in polynomial time for interval graphs. In particular, for proper interval graphs most investigated problems are polynomial [11]. Larry Stockmeyer showed in 1976 that determining the interval chromatic number of a weighted interval graph is Np-Complete. In fact he showed that the question whether the interval chromatic number of a weighted interval graph is equal to its clique number poses an Np-Complete problem (for a proof see [3]). This implies that some interval graphs are not superperfect, because the problem of determining the clique number of a weighted interval graph is clearly polynomial.

A 6-approximation algorithm for the problem of determining the interval chromatic number of a weighted interval graph was presented in [15]. In [7] and [8] this ratio was improved to 5 and 4, respectively. The best approximation ratio for this problem is $(2+\epsilon)$ [4].

To develop our positive results we use tools introduced in [17], that investigates a related problem.
It was noted by Alan Hoffman that comparability graphs are superperfect. An infinite family of non-comparability superperfect graphs is demonstrated in [9]. In [5] a forbidden subgraph characterization of comparability split graphs is provided. Since these forbidden subgraphs are not superperfect and comparability graphs are superperfect, this implies a characterization of superperfect graphs within the family of split graphs.

1.3. Our contribution

In this work we consider proper interval graphs. In Section 2 we introduce definitions and notation with some preliminary results. In Section 3 we show that determining whether the interval chromatic number of a given weighted proper interval graph is equal to its clique number is Np-Complete in the strong sense. This implies that the family of proper interval graphs is not included in the family of superperfect graphs, and an infinite family of non-superperfect proper interval graphs can be constructed from our proofs. In Section 4 we initiate the study of approximation algorithms for the interval coloring problem of proper interval graphs by presenting a simple 2-approximation algorithm for it. We conclude with a summary and open questions in Section 5.

2. Preliminaries

Interval Notation: We denote an open (resp. closed) interval I on the real line as ($s(I), t(I)$) (resp. [$s(I), t(I)]$) where $s(I)<t(I)$. For two intervals I, I^{\prime}, we denote by $I<I^{\prime}$ the fact that $t(I) \leq s\left(I^{\prime}\right)$. For a number x and an interval (s, t) we define $x \cdot(s, t) \stackrel{\text { def }}{=}(x \cdot s, x \cdot t)$, and $x+(s, t) \stackrel{\text { def }}{=}(x+s, x+t)$. We extend these definitions to sets of intervals and functions of intervals as expected. Namely, given a set ℓ of intervals and a function $f: D \rightarrow \ell$ over some domain D and a number x we denote $x \cdot \ell \stackrel{\text { def }}{=}\{x \cdot I: I \in \ell\}, x+\ell \stackrel{\text { def }}{=}\{x+I: I \in l\},(x \cdot f)(d)=x \cdot f(d)$ and $(x+f)(d)=x+f(d)$ for every $d \in D$. The size $\operatorname{size}(I)$ of an interval is $t(I)-s(I)$. The size $\operatorname{size}(\ell)$ of a set of pairwise disjoint intervals ℓ is size $(\cup \ell) \stackrel{\text { def }}{=} \sum_{I \in \ell} \operatorname{size}(I)$.
Superperfect Graphs: A clique of a graph $G=(V(G), E(G))$ is a subset $K \subseteq V(G)$ of vertices that are pairwise adjacent in G. A clique is maximal if it is not contained in any other clique, and it is maximum if it contains the biggest number of vertices among all cliques. A clique cover of G is a set \mathcal{K} of cliques of G that covers all the vertices, i.e. $\bigcup \mathcal{K}=V(G)$. The clique number of G is the size of its maximum cliques and is denoted by $\omega(G)$. A stable (or independent) set of a graph is a subset of its vertices that are pairwise non-adjacent. A vertex is called simplicial if all its neighbors constitute a clique. In other words, a vertex is simplicial if it is contained in exactly one maximal clique. A coloring of a graph G is a labeling of its vertices, such
that a set of vertices labeled with the same label constitutes a stable set. The chromatic number of a graph is the minimum possible number of labels used by a coloring, and is denoted by $\chi(G)$. A graph G is perfect if $\chi(G[S])=\omega(G[S])$ for every $S \subseteq V(G)$, where $G[S]$ denotes the subgraph of G induced by S, and $w(S) \stackrel{\text { def }}{=} \sum_{v \in S} w(v)$.
$(G ; w)$ denotes the weighted graph consisting of the graph G and the weight function $w: V(G) \rightarrow \mathbb{N}$ on its vertices. The clique number of $(G ; w)$ is $\omega(G ; w) \stackrel{\text { def }}{=} \max \{w(K): K$ is a clique of $G\}$. We term a clique K that achieves this maximum as a critical clique, i.e. a clique K is critical if $w(K)=\omega(G ; w)$. Clearly, a critical clique is maximal. An interval coloring c of $(G ; w)$ is a labeling of the vertices of G with intervals, such that the intervals $c(u)$ and $c(v)$ corresponding to two adjacent vertices u and v do not intersect. The size size (c) of interval coloring c of $(G ; w)$ is $\operatorname{size}\left(\cup_{v \in V(G)} c(v)\right)$. We denote by $\chi(G ; w)$ the interval chromatic number of $(G ; w)$ which is the minimum size of an interval coloring c of $(G ; w)$. A graph G is superperfect if $\chi(G ; w)=\omega(G ; w)$ for every weight function w on its vertices
Interval Graphs: A graph G is an interval graph if every $v \in V(G)$ corresponds to an interval I_{v} such that $\{u, v\} \in E(G)$ if and only if $I_{u} \cap I_{v} \neq \emptyset$. The set of intervals $\left\{I_{v}: v \in V(G)\right\}$ is termed an interval representation of G. It is known that an interval representation of a given interval graph can be found in polynomial time. Therefore, we assume that an interval graph is given together with an interval representation. We also assume without loss of generality that G is connected, implying that the union of the intervals I_{v} is an interval I. It is well known that intervals have the Helly property, i.e. a clique of an interval graph G is represented by set of intervals that have a common intersection. We say that this intersection $I_{K} \stackrel{\text { def }}{=} \cap_{v \in K} I_{v}$ represents the clique K. The intervals $I_{K}, I_{K^{\prime}}$ representing two maximal cliques K, K^{\prime} do not intersect, because otherwise their intersection implies a clique $K \cup K^{\prime}$, contradicting the maximality of K and K^{\prime}. Therefore, the intervals representing maximal cliques are totally ordered. Such a total order induces a total order on the maximal cliques of an interval graph.

Example 2.1. Fig. 1(b) depicts a possible interval representation of the graph G_{0} in Fig. 1(a). The maximal cliques of the graph are $K_{1}=\{1,2,3\}, K_{2}=\{2,3,4\}, K_{3}=\{3,4,5\}, K_{4}=\{4,5,6\}$, and $K_{5}=\{5,6,7\}$. The intersection of the intervals $I_{1}=(0,1), I_{2}=(0,2), I_{3}=(0,3)$ that represent the vertices of K_{1} is $(0,1)$. In general, for $i \in[1,5]$, the maximal clique K_{i} is represented by the interval $(i-1, i)$. The union of all intervals is $I=(0,7)$.

It is convenient to describe a weighted interval graph $(G ; w)$ as a set of axis-parallel rectangles on the plane. Every vertex v is represented by a floating rectangle $r_{v}=\left(I_{v}, w(v)\right)$ where I_{v} is the projection of r_{v} on the horizontal axis and $w(v)$ is its height, i.e. the length of its projection on the vertical axis. An interval coloring c determines the vertical position of the floating rectangle r_{v}, in other words it assigns to it a (non floating) rectangle $R_{v}=\left(I_{v}, c(v)\right)$ where I_{v} and $c(v)$ are its projections on the horizontal and vertical axes respectively and $\operatorname{size}(c(v))=w(v)$. Note that an interval coloring is valid if and only if the rectangles are pairwise disjoint. The size of the coloring is the size of the projection of all the rectangles on the vertical axis. Without loss of generality we assume that this projection is the interval $\left(0, W_{c}\right)$ for some integer W_{c}.

Example 2.2. For the graph G_{0}, let w_{0} be the following weight function: $w_{0}(1)=2, w_{0}(2)=1, w_{0}(3)=3, w_{0}(4)=1$, $w_{0}(5)=2, w_{0}(6)=2, w_{0}(7)=2$. Fig. 1(c) shows a floating rectangle representation of $\left(G_{0} ; w_{0}\right)$ whose projection on the horizontal axis is the interval representation in Fig. 1(b). We note that $w_{0}\left(K_{1}\right)=w_{0}\left(K_{3}\right)=w_{0}\left(K_{5}\right)=\omega\left(G_{0} ; w_{0}\right)=6$, i.e. K_{1}, K_{3} and K_{5} are critical cliques. The rectangles depicted in Fig. 1(d) correspond to the following coloring c_{0} of $\left(G_{0}, w_{0}\right)$: $c_{0}(1)=(3,5), c_{0}(2)=(5,6), c_{0}(3)=(0,3), c_{0}(4)=(3,4), c_{0}(5)=(4,6), c_{0}(6)=(0,2)$, and $c_{0}(7)=(2,4)$. The size of c_{0} is $\operatorname{size}((0,6))=6$, therefore it is optimal and $\chi\left(G_{0}, w_{0}\right)=6$.

The interval chromatic number of $(G ; w)$ is the smallest number W_{c} such that the rectangles R_{v} can fit within the rectangle $\left(I,\left(0, W_{c}\right)\right)$ without intersecting each other. The dual of a subinterval (s, t) of $\left(0, W_{c}\right)$ is the subinterval $(s, t) \stackrel{\text { def }}{=}$ $\left(W_{c}-t, W_{c}-s\right)$. The dual \bar{c} of a coloring c is the coloring that assigns to every vertex v the interval $\overline{c(v)}$. In terms of rectangles, \bar{c} is obtained by rotating the rectangles of c around the horizontal axis $W_{c} / 2$.

Observation 2.1. (i) $\operatorname{size}(c)=\operatorname{size}(\bar{c})$,
(ii) $\overline{\bar{c}}=c$, and
(iii) c is a valid interval coloring of $(G ; w)$ if and only if $x \cdot c$ is a valid interval coloring of $(G ; x \cdot w)$ for any $x \geq 0$.

Proper Interval Graphs: A proper interval graph is an interval graph having an interval representation such that no interval is properly included in another. This implies that $s\left(I_{u}\right) \leq s\left(I_{v}\right)$ if and only if $t\left(I_{u}\right) \leq t\left(I_{v}\right)$. Whenever we use terms such as first path and next path, we implicitly refer to the total order of the paths implied by the total order of their start points. For a subset S of vertices, or a subset I_{S} of intervals, we denote by $\min (S), \max (S), \min \left(I_{S}\right), \max \left(I_{S}\right)$ the minima and maxima in this total order. Note that for a clique K of a proper interval graph we have $I_{K}=(s(\max (K)), t(\min (K)))$. In this work we allow intervals to properly include another as long as they have one endpoint in common. It is easy to see that any such interval representation can be transformed to a representation that intervals do not properly include each other. Indeed, given a representation containing inclusions with common endpoints we can eliminate them using the following procedure and get an equivalent representation: (a) replace the common start (resp. termination) point with an interval, and (b) modify the start (resp. termination) points within this interval according to the order of the termination (resp. start) points. This modification does not change the intersection relationships among the paths. Therefore, the set of intervals obtained in

Fig. 1. Examples 2.1 and 2.2.
this way is a representation of the same graph. Note that the representation in Fig. 1(b) is a set of proper intervals, that constitutes a representation of the (proper interval) graph G_{0} in Fig. 1(a).

We will use the following basic lemma to develop our results.
Lemma 2.1. Let \mathcal{K} be a clique cover of a connected proper interval graph G consisting of maximal cliques. There exists a subset $\mathcal{K}^{\prime}=\left\{K_{1}^{\prime}, K_{2}^{\prime}, \ldots\right\}$ of \mathcal{K}, such that every vertex of G is either an element of exactly one clique from \mathcal{K}^{\prime}, or element of two consecutive cliques $K_{i}^{\prime}, K_{i+1}^{\prime} \in \mathcal{K}^{\prime}$.
Proof. Let ℓ be a proper interval representation of G. We recall that for two distinct cliques $K, K^{\prime} \in \mathcal{K}, I_{K} \cap I_{K^{\prime}}=\emptyset$. Let $\mathcal{K}=$ $\left\{K_{1}, \ldots, K_{k}\right\}$ be a clique cover of G consisting of maximal cliques, where the indices are such that $I_{K_{1}}<\cdots<I_{K_{k}}$. We determine the cliques of \mathcal{K}^{\prime} using Algorithm 1 . We start with $K_{1}^{\prime}=K_{1}$, then we choose as K_{2}^{\prime} the last clique of \mathcal{K} that contains the interval max $\left(K_{1}^{\prime}\right)$, and so on. By the way the cliques are chosen, it is clear that $\mathcal{K}^{\prime} \subseteq \mathcal{K}$. Moreover, no interval is contained in more than two cliques. Indeed, if $I_{v} \in K_{i}^{\prime} \cap K_{i+2}^{\prime}$, then $\max \left(K_{i}^{\prime}\right) \in K_{i+2}^{\prime}$, contradicting the fact that K_{i+1}^{\prime} is chosen by the algorithm to \mathcal{K}^{\prime}. It remains to show that \mathcal{K}^{\prime} is a clique cover. Assume by contradiction that an interval I_{v} is not covered by \mathcal{K}^{\prime}. Let i be the unique number such that $I_{K_{i}^{\prime}}<I_{v}<I_{K_{i+1}^{\prime}}$. Let $u=\max \left(K_{i}^{\prime}\right)$. By the way the algorithm chooses the cliques we have $u \in K_{i+1}^{\prime}$. Then $I_{u} \supseteq I_{K_{i}^{\prime}} \cup I_{K_{i+1}^{\prime}}$, implying that $I_{u} \supseteq I_{v}$ and they do not have a common endpoint. A contradiction to the fact that ℓ is a proper set of intervals.

```
Algorithm 1
Require: \(\mathcal{K}=\left\{K_{1}, \ldots, K_{k}\right\}\) is a clique cover
Require: \(I_{K_{1}}<\cdots<I_{K_{k}}\)
    \(k^{\prime} \leftarrow i \leftarrow 1\)
    \(K_{k^{\prime}}^{\prime} \leftarrow K_{i}\)
    while \(i<k\) do
        \(i \leftarrow \max \left\{j: \max \left(K_{i}\right) \in K_{j}\right\}\)
        \(k^{\prime} \leftarrow k^{\prime}+1\)
        \(K_{k^{\prime}}^{\prime} \leftarrow K_{i}\)
    end while
```

Related Problems We now describe two Np-Complete problems that we use in this work (see [6]).

Partition

Input: A set X of n positive numbers.
Question: Can X be partitioned into two sets X_{1}, X_{2} such that $\sum_{x \in X_{1}} x=\sum_{x \in X_{2}} x$?
Partition is Np-Complete in the weak sense, i.e. the sub-problem in which the numbers of X are bounded from above by some polynomial in n can be solved in polynomial time.

3-Partition
Input: A set X of $3 \cdot m$ numbers, such that $\sum_{x \in X}=m \cdot B$ and $B / 4<x<B / 2$ for every $x \in X$.
Question: Can X be partitioned into m sets X_{1}, \ldots, X_{m}, such that $\left|X_{i}\right|=3$ and $\sum_{x \in X_{i}} x=B$ for every $i \in[1, m]$?
3-Partition is Np-Complete in the strong sense, i.e. it remains Np-Complete even if the numbers are bounded by a polynomial in n.

3. Hardness results

In this section we show that determining the interval chromatic number of a weighted proper interval graph is Np -Complete in the strong sense, implying that the family of proper interval graphs is not included in the family of superperfect graphs. We first give a simple proof that shows that the problem in Np-Complete in the weak sense, and then extend the result to show that it is Np-Complete in the strong sense.

We start by presenting a construction that will serve us as a basic building block in the proofs in this section.
Proposition 3.1. The weighted proper interval graph $\left(G_{0}, w_{0}\right)$ depicted in Fig. 1 (a) has exactly two colorings of size 6. These are (a) the coloring c_{0} shown in Fig. $1(d)$, and (b) its dual $\overline{c_{0}}$.

Proof. Let c be a coloring of size $\omega\left(G_{0} ; w_{0}\right)=6$. We recall that K_{1}, K_{3} and K_{5} are critical cliques of $\left(G_{0} ; w_{0}\right)$. As K_{1} is critical, $c(1), c(2), c(3)$ are three consecutive subintervals of $(0,6)$. As the claim is symmetric on c and its dual \bar{c}, we can assume without loss of generality that $c(1)<c(2)$. We consider the three possible cases.

- $c(1)<c(2)<c(3)$: In this case we have $c(1)=(0,2), c(2)=(2,3)$ and $c(3)=(3,6)$. We now consider the vertices of $K_{3} \backslash K_{1}=\{4,5\}$. The interval available for these vertices is $(0,3)$. We verify that among the two options of coloring 4 and 5 the only valid possibility is $c(4)=(0,1), c(5)=(1,3)$, as otherwise $c(2) \cap c(4)=(2,3) \neq \emptyset$. We proceed with the vertices of $K_{5} \backslash K_{3} \backslash K_{1}$, i.e. 6 and 7. The intervals available for them are $(0,1)$ and $(3,6)$, however they must be colored with two intervals of size 2 each, which is clearly impossible.
- $c(1)<c(3)<c(2)$: In this case we have $c(1)=(0,2), c(3)=(2,5)$ and $c(2)=(5,6)$. We now consider the vertices of $K_{2} \backslash K_{1}=\{4,5\}$. The intervals available for these vertices are $(0,2)$ and $(5,6)$. Then $c(4)=(5,6)$ and $c(5)=(0,2)$. But now $c(4) \cap c(2)=(5,6) \neq \emptyset$ and 2,4 are adjacent in G_{0}. Therefore this case is impossible too.
We conclude that $c(3)<c(1)<c(2)$, i.e., $c(3)=(0,3), c(1)=(3,5)$ and $c(2)=(5,6)$. The interval available for the vertices 4,5 is $(3,6)$. From the two possibilities to color them only one option is valid, namely $c(4)=(3,4)$ and $c(5)=$ $(4,6)$. The interval available for the remaining vertices is $(0,4)$, which leaves only one valid option, i.e. $c(6)=(0,2)$ and $c(7)=(2,4)$. We conclude that $c=c_{0}$.

Lemma 3.1. The problem of determining whether $\chi(G ; c)=\omega(G ; w)$ for any weighted proper interval graph $(G ; w)$ is Np-Complete.

Proof. The proof is by reduction from Partition. Given an instance $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of Partition with $B=\sum_{x \in X} x$, we build the following weighted proper interval graph $(G ; w)$. G is obtained by adding to G_{0} a complete graph K_{n} with vertex set $V_{X}=\left\{v_{i}: i \in[1, n]\right\}$ and adding an edge between $7 \in V\left(G_{0}\right)$ and every vertex in V_{X}. Note that $V_{X} \cup 7$ is a clique of G. A possible proper interval representation of G is obtained by adding n identical intervals $(6,7)$ to the interval representation of G_{0} depicted in Fig. 1(b). We proceed with the definition of w. We set $w(v)=w_{0}(v) \cdot B / 4$ for every vertex $v \in V\left(G_{0}\right)$ and $w\left(v_{i}\right)=x_{i}$ for every vertex $v_{i} \in V_{X}$. It is easy to verify that $\omega(G, w)=3 B / 2$. It remains to show that $\chi(G, w)=3 B / 2$ if and only if the Partition instance X is a Yes instance of Partition.

If X is a Yes instance, then there is a partition of X into two sets X_{1}, X_{2} such that $\sum_{x \in X_{1}} x=\sum_{x \in X_{2}} x=B / 2$.c $=\frac{B}{4} c_{0}$ is a coloring of $\left(G_{0}, \frac{B}{4} w_{0}\right)$ of size $\frac{B}{4} 6=3 B / 2$. To complete c to a coloring of G, we note that $c(7)=\frac{B}{4}(2,4)=\left(\frac{B}{2}, B\right)$, and we assign consecutive subintervals of $\left(0, \frac{B}{2}\right)$ (resp. $\left(B, \frac{3 B}{2}\right)$) to the vertices corresponding to the elements of X_{1} (resp. X_{2}). Conversely, assume that there is a coloring c of $(G ; w)$ of size $3 B / 2$. Then c induces a coloring of size at most $3 B / 2$ of $\left(G_{0} ; \frac{B}{4} w_{0}\right)$ that in turn induces a coloring of size at most 6 of $\left(G_{0} ; w_{0}\right)$. By Proposition 3.1, this coloring is either c_{0} or its dual $\overline{c_{0}}$. However, $c_{0}(7)=\overline{c_{0}}(7)=(2,4)$. Therefore, $c(7)=\frac{B}{4}(2,4)=\left(\frac{B}{2}, B\right)$. Then, the intervals available for the vertices of V_{X} are $\left(0, \frac{B}{2}\right)$ and $\left(B, \frac{3 B}{2}\right)$. The set $V_{X 1} \subseteq V_{X}$ of vertices colored with sub-intervals of $\left(0, \frac{B}{2}\right)$, and the set $V_{X 2} \subseteq V_{X}$ of vertices colored with sub-intervals of $\left(B, \frac{3 B}{2}\right)$ induce a partition of X into two sets X_{1} and X_{2} as required.
The following two theorems are corollaries of the above lemma.
Theorem 3.1. It is NP-Complete to determine the interval chromatic number $\chi(G ; w)$ even if G is a proper interval graph.
Theorem 3.2. The family of proper interval graphs is not included in the family of superperfect graphs unless $\mathrm{P}=\mathrm{NP}$.
Proof. Assume by way of contradiction that every proper interval graph G is superperfect. Then, $\chi(G ; w)=\omega(G ; w)$ for every w. As G is an interval graph, $\omega(G ; w)$ can be calculated in polynomial time. Then $\chi(G ; w)$ can be calculated in polynomial time. Together with Theorem 3.1, this implies $\mathrm{P}=\mathrm{NP}$.

We note that Partition is Np-Complete in the weak sense, i.e. it admits an algorithm that runs in time polynomial to the sizes of the numbers. However this running time is exponential in the size of the input which consists of the binary representations of the numbers. In the rest of this section we extend Theorem 3.1 to show that the problem is Np-Complete in the strong sense.

In the sequel we use the weighted graph $\left(G_{0} ; w_{0}\right)$ as a building block to construct an arbitrarily big weighted proper interval graph by combining these building blocks in a tree structure. In Theorem 3.3, we use this proper interval graph to make a reduction (this time from 3-Partition) in a way similar to Theorem 3.1. Our construction is an inductive one that starts from a representation of G_{0}, and at each inductive step we combine a representation of G_{0} with two copies of the representation obtained in the previous step so that each one of these copies intersects only with segments I_{6} and I_{7} of G_{0}. In this process we shift intervals (actually their endpoints) so that the resulting representation is a proper interval representation. For this purpose we introduce the following definitions. Let G be an interval graph, and $\ell=\left\{I_{v}: v \in V(G)\right\}$ an interval representation of it. Let $S T(\ell) \stackrel{\text { def }}{=}\left\{s\left(I_{v}\right), t\left(I_{v}\right): v \in G\right\}$ be the set of endpoints of ℓ. Any real function $f: S T(\ell) \rightarrow$ \mathbb{R} induces a function on ℓ such that $f(I) \stackrel{\text { def }}{=}(f(s(I)), f(t(I)))$, also and $f(\ell) \stackrel{\text { def }}{=}\{f(I): I \in \ell\}$. Such a function is increasing or order preserving if for every pair of endpoints $x, y \in S T(\ell), f(x)<f(y)$ whenever $x<y$. For a positive constant C_{1} and any constant C_{2}, clearly f is order preserving if and only if $C_{1} \cdot f$ is order preserving if and only if $C_{2}+f$ is order preserving.

Observation 3.1. (i) If f is order preserving then $f(\ell)$ is also a representation of G.
(ii) An order preserving partial functionf over $S T(\ell)$ can be extended to an order preserving (non-partial) function by assigning to every endpoint on which f is not defined, an arbitrary value between the values of the neighboring endpoints.

Whenever f is an order preserving partial function, we use f to denote also an arbitrary order preserving extension of it. The following lemma describes the inductive step of our construction.

Lemma 3.2. Let $(G ; w)$ a connected weighted proper interval graph on $n \geq 7$ vertices, such that:
(i) $\chi(G ; w)=\omega(G ; w)$,
(ii) there is a clique cover $\mathcal{K}=\left\{K_{1}, \ldots, K_{k}\right\}$ of G consisting of critical cliques, and
(iii) there is a set $S \subsetneq K_{k}$ of simplicial vertices of G such that in every interval coloring c of (G; w) of size $\omega(G$; w), the set $(0, \omega(G ; w)) \backslash c(S)$ of colors not used by S consists of b disjoint intervals each of which having size x.

There is a polynomial-time computable connected weighted proper interval graph (G^{\prime}, w^{\prime}) on at most $4 n$ vertices, such that:
(i) $\chi\left(G^{\prime} ; w^{\prime}\right)=\omega\left(G^{\prime} ; w^{\prime}\right)=3 \cdot \omega(G ; w)$,
(ii) there is a clique cover $\mathcal{K}^{\prime}=\left\{K_{1}^{\prime}, \ldots, K_{k^{\prime}}^{\prime}\right\}$ of G^{\prime} consisting of critical cliques, and
(iii) there is a set $S^{\prime} \subseteq K_{k^{\prime}}^{\prime}$ of simplicial vertices of G^{\prime} such that in every interval coloring c^{\prime} of $\left(G^{\prime} ; w^{\prime}\right)$ of size $\omega\left(G^{\prime} ; w^{\prime}\right)$, the set $\left(0, \omega\left(G^{\prime} ; w^{\prime}\right)\right) \backslash c^{\prime}\left(S^{\prime}\right)$ of colors not used by S^{\prime} consists of $2 b$ disjoint intervals each of which having size x.

Proof. Let ℓ be set of intervals representing G. We construct a set of intervals ℓ^{\prime} representing G^{\prime}. Whenever there is no risk of confusion we refer to a vertex v and the interval I_{v} representing it, interchangeably. By Lemma 2.1, we assume without loss of generality that every vertex is in at most two consecutive cliques K_{i}, K_{i+1}. Also, without loss of generality, all the intervals of K_{1} start at the same point and all the intervals of K_{k} terminate at the same point. Moreover, $K_{i} \cap K_{i+1} \neq \emptyset$ because G is connected.

Let f be the partial function mapping the intervals representing $\left\{\max \left(K_{i}\right): i \in[1, k]\right\}$, so that $f\left(\max \left(K_{i}\right)\right)=(5 i, 5 i+$ 11/2).

Claim 3.1. f is order preserving.
Proof. By definition of $f, f\left(\max \left(K_{i}\right)\right)$ and $f\left(\max \left(K_{j}\right)\right)$ intersect if and only if $|i-j| \leq 1$. It suffices to show that the same holds for the intervals $\max \left(K_{i}\right)$ and $\max \left(K_{j}\right)$, i.e. $\max \left(K_{i}\right)$ and $\max \left(K_{j}\right)$ intersect if and only if $|i-j| \leq 1$. Indeed, $\max \left(K_{i}\right) \cap \max \left(K_{i+1}\right) \neq \emptyset$ because $\max \left(K_{i}\right) \in K_{i+1}$ (otherwise G is not connected) and therefore max $\left(K_{i}\right)$ intersects every element of K_{i+1} and in particular $\max \left(K_{i+1}\right)$. On the other hand for any $k \geq 0, \max \left(K_{i}\right) \cap \max \left(K_{i+2+k}\right)=\emptyset$, because otherwise $\max \left(K_{i}\right)$ intersects every element of K_{i+2}. Then, $\max \left(K_{i}\right) \in K_{i+2}$, contradicting Lemma 2.1.

Let $\bar{K}_{1} \stackrel{\text { def }}{=} K_{1}$, and for every $i \in[2, k]$, let $\bar{K}_{i} \stackrel{\text { def }}{=} K_{i} \backslash K_{i-1}$. Clearly, $\left\{\bar{K}_{1}, \ldots, \bar{K}_{k}\right\}$ is a partition of $V(G)$. Let g be the partial function extending f, such that $g\left(t\left(\min \left(\bar{K}_{i}\right)\right)\right)=5 i+4$ for every $i \in[1, k]$.

Claim 3.2. g is order preserving.
Proof. We verify first that g is an extension of f. We have to show that for every $i, j \in[1, k], \min \left(\bar{K}_{i}\right) \neq \max \left(K_{j}\right)$. Assume by contradiction that for some $i, j \in[1, k]$ we have $\min \left(\bar{K}_{i}\right)=\max \left(K_{j}\right)$. Then, by Lemma $2.1 j=i-1$. However, this contradicts the definition of \bar{K}_{i}.

We now show that g is order preserving. $5 i+4 \in(5 i, 5 i+11 / 2)$, i.e. $g\left(t\left(\min \left(\bar{K}_{i}\right)\right)\right) \in g\left(\max \left(K_{i}\right)\right)$. We have to show that $t\left(\min \left(\bar{K}_{i}\right)\right) \in \max \left(K_{i}\right)$ which is equivalent to $\min \left(\bar{K}_{i}\right) \cap \max \left(K_{i}\right) \neq \emptyset$ as G is a proper interval graph. This condition clearly holds, because both $\min \left(\bar{K}_{i}\right)$ and $\max \left(K_{i}\right)$ are elements of the clique K_{i}.

Fig. 2. The construction of $\left(G^{\prime} ; w^{\prime}\right)$.
We note that in $g(\ell)$, the clique \bar{K}_{i} is represented by $g\left(s\left(\max \left(\bar{K}_{i}\right)\right), t\left(\min \left(\bar{K}_{i}\right)\right)\right)=\left(g\left(s\left(\max \left(K_{i}\right)\right)\right), \$ g\left(t\left(\min \left(\bar{K}_{i}\right)\right)\right)\right)=$ $(5 i, 5 i+4)$. Therefore, for every vertex $v \in \bar{K}_{i},(5 i, 5 i+4) \subseteq g\left(I_{v}\right)$. Moreover, $g\left(I_{v}\right)$ does not intersect the interval ($5 i-5$, $5 i-1)$ representing \bar{K}_{i-1} because otherwise $v \in K_{i-1}$. On the other hand, $t\left(g\left(I_{v}\right)\right) \leq t\left(\max \left(K_{i}\right)\right)=5 i+11 / 2$. We conclude

$$
\begin{align*}
& \forall v \in \bar{K}_{i},(5 i, 5 i+4) \subseteq g\left(I_{v}\right) \subseteq(5 i-1,5 i+11 / 2) \tag{1}\\
& \forall v \in \bar{K}_{i},(5 i+2,5 i+6) \subseteq 2+g\left(I_{v}\right) \subseteq(5 i+1,5 i+15 / 2) \tag{2}
\end{align*}
$$

Let $\ell_{0}^{\prime}=\{(0,1),(0,2),(0,3),(1,4),(2,5),(3,7),(4,8)\}$. We note that ℓ_{0}^{\prime} is a proper interval representation of G_{0}. Let also $\ell_{1}^{\prime}=g(\ell), \ell_{2}^{\prime}=2+g(\ell), \ell_{3}^{\prime}=\{(5 i+3,5 i+8): i \in[1, k]\}$. As g is order preserving, ℓ_{1}^{\prime} and ℓ_{2}^{\prime} are sets of proper intervals, and ℓ_{3}^{\prime} is clearly a set of proper intervals. We leave to the reader to verify that following (1) and (2), $\ell^{\prime} \stackrel{\operatorname{def}}{=} \ell_{0}^{\prime} \cup \ell_{1}^{\prime} \cup$ $\ell_{2}^{\prime} \cup \ell_{3}^{\prime}$ is a set of proper intervals (see Fig. 2(a)). G^{\prime} is the proper interval graph represented by ℓ^{\prime}. For $j \in\{1,2,3\}$, let V_{j}^{\prime} be the vertices represented by the intervals of ℓ_{j}^{\prime}, and G_{j}^{\prime} the subgraph induced by V_{j}^{\prime}. The number of vertices of G^{\prime} is $\left|V_{0}^{\prime}\right|+\left|V_{1}^{\prime}\right|+\left|V_{2}^{\prime}\right|+\left|V_{3}^{\prime}\right|=7+n+n+k \leq 4 n$.

We proceed with the construction of w^{\prime} :

- Every interval of ℓ_{0}^{\prime} corresponds to a vertex v of G_{0}. For a vertex $v^{\prime} \in V_{0}^{\prime}, w^{\prime}\left(v^{\prime}\right) \stackrel{\text { def }}{=} \omega(G ; w) \cdot w(v) / 2$.
- Every interval in $I^{\prime} \in \ell_{1}^{\prime} \cup \ell_{2}^{\prime}$ corresponds to an interval $I_{v} \in \ell$. For a vertex v^{\prime} corresponding to $I^{\prime} \in \ell_{1} \cup \ell_{2}, w^{\prime}\left(v^{\prime}\right) \stackrel{\text { def }}{=}$ $w(v)$.
- For a vertex $v^{\prime} \in V_{3}^{\prime}, w^{\prime}\left(v^{\prime}\right)=\omega(G ; w)$.

This completes the construction of $\left(G^{\prime} ; w^{\prime}\right)$ that can clearly be computed in polynomial time. We proceed with the proof of the claimed properties:
(i) Clearly, $\chi\left(G^{\prime} ; w^{\prime}\right) \geq \omega\left(G^{\prime} ; w^{\prime}\right) \geq 3 \cdot \omega(G ; w)$ where the second inequality holds because for the clique $K_{1}^{\prime} \stackrel{\text { def }}{=}\{(0,1)$, $(0,2),(0,3)\}$ we have $w^{\prime}\left(K_{1}^{\prime}\right)=\omega(G ; w) \cdot w(K) / 2=3 \cdot \omega(G ; w)$. It remains to show that $\chi\left(G^{\prime} ; w^{\prime}\right) \leq 3 \cdot \omega(G$; $w)$. Consider the coloring $\frac{\omega(G ; w)}{2} \cdot c_{0}$ of the vertices V_{0} (recall that c_{0} is the coloring of G_{0} from Proposition 3.1 depicted in Fig. 1(d)). A coloring c^{\prime} of size $3 \cdot \omega(G ; w)$ of $\left(G^{\prime} ; w^{\prime}\right)$ is obtained by extending $\frac{\omega(G ; w)}{2} \cdot c_{0}$ so that the vertices of V_{1} (resp. V_{2}, V_{3}) are colored using colors from $(2 \cdot \omega(G ; w), 3 \cdot \omega(G ; w)$) (resp. $(0, \omega(G ; w)),(\omega(G ; w), 2 \cdot \omega(G ; w))$) (see Fig. 2(b)).
(ii) The cliques $K_{1}^{\prime}=\{(0,1),(0,2),(0,3)\}, K_{2}^{\prime}=\{(0,3),(1,4),(2,5)\}$ and $K_{3}^{\prime}=\{(2,5),(3,7),(4,8)\}$ are critical and $K_{1}^{\prime} \cup K_{2}^{\prime} \cup K_{3}^{\prime}=V_{0}^{\prime}$. We note that $(5 i+3,5 i+4)$ intersects the intervals $(5 i+3,5 i+8),(5 i, 5 i+4), 2+(5 i, 5 i+4)$. Then, $(5 i+3,5 i+4)$ intersects all the intervals $g\left(K_{i}\right)$ and $2+g\left(K_{i}\right)$. Therefore, $(5 i+3,5 i+4)$ implies a clique $K_{i+3}^{\prime} \stackrel{\text { def }}{=}$ $\{(5 i+3,5 i+8)\} \cup g\left(K_{i}\right) \cup\left(2+g\left(K_{i}\right)\right)$. Furthermore, $w^{\prime}\left(K_{i+3}^{\prime}\right)=w^{\prime}((5 i+3,5 i+8))+w^{\prime}\left(g\left(K_{i}\right)\right)+w^{\prime}\left(2+g\left(K_{i}\right)\right)=$ $\omega(G ; w)+w\left(K_{i}\right)+w\left(K_{i}\right)=3 \cdot \omega(G ; w)=\omega\left(G^{\prime} ; w^{\prime}\right)$. Therefore, K_{i+3}^{\prime} is a critical clique. Moreover $\bigcup_{j=0}^{k-1} K_{i+3+j}^{\prime}=V_{1} \cup V_{2} \cup V_{3}$.
(iii) Consider a coloring c^{\prime} of G^{\prime} of size $\omega\left(G^{\prime} ; w^{\prime}\right)$. This implies a coloring c on $\left(G_{0} ; w^{\prime}\right)$ of size at most $\omega\left(G^{\prime} ; w^{\prime}\right)=$ $\omega\left(G_{0}^{\prime} ; w^{\prime}\right)$. Then, by Proposition 3.1, $c=\frac{\omega(G ; w)}{2} c_{0}$ up to duality. In the sequel we consider only the primal, as the dual is symmetric. Then, $c((3,7))=\omega(G ; w) \cdot(0,1)$ and $c((4,8))=\omega(G ; w) \cdot(1,2)$. Therefore, the interval available for c at $(5,7)$ is $\omega(G ; w) \cdot(2,3)$. We conclude that all the intervals of $\ell_{1}^{\prime} \cap K_{4}^{\prime}$ are colored using sub-intervals of $\omega(G ; w) \cdot(2,3)$. Then, the interval available for c at $(7,8)$ is $\omega(G ; w) \cdot(0,1)$. Therefore, all the intervals of $\ell_{2}^{\prime} \cap K_{4}^{\prime}$ are colored using subintervals of $\omega(G ; w) \cdot(0,1)$. Now, the interval available for c at $(8,9)$ is $\omega(G ; w) \cdot(1,2)$. Therefore, $c(8,13)=\omega(G ; w) \cdot(1,2)$. We can show by induction on k that all the intervals of ℓ_{1}^{\prime} (resp. $\ell_{2}^{\prime}, l_{3}^{\prime}$) are colored with sub-intervals of $\omega(G ; w) \cdot(2,3)$ (resp. $\omega(G ; w) \cdot(0,1), \omega(G ; w) \cdot(1,2)$). Then, there is a set of simplicial vertices $S_{1} \subset K_{k+3}^{\prime} \cap V_{1}^{\prime}\left(\right.$ resp. $\left.S_{2} \subset K_{k+3}^{\prime} \cap V_{2}^{\prime}\right)$ such that $\omega(G ; w) \cdot(2,3) \backslash c\left(S_{1}\right)$ (resp. $\left.\omega(G ; w) \cdot(0,1) \backslash c\left(S_{2}\right)\right)$ consists of b disjoint intervals of size x each. We recall that $c(5 k+3,5 k+8)=\omega(G ; w) \cdot(1,2)$. Therefore, $S^{\prime} \stackrel{\text { def }}{=} S_{1} \cup S_{2} \cup\{(5 k+3,5 k+8)\}$ is a set of simplicial vertices of K_{k+3}^{\prime} such that $\omega(G ; w) \cdot(0,3) \backslash c\left(S^{\prime}\right)$ consists of $2 b$ disjoint intervals of size x each.

The following corollary can be easily shown by induction on i where ($G_{0} ; \frac{B}{2} \cdot w_{0}$) constitutes the base of the induction and the inductive step is by Lemma 3.2.

Corollary 3.1. For every $i \in \mathbb{N}$, and $B \in \mathbb{R}$, there is a weighted proper interval graph $\left(G_{i} ; \frac{B}{2} \cdot w_{i}\right)$ on at most $7 \cdot 4^{i}$ vertices, such that
(i) $\omega\left(G_{i} ; \frac{B}{2} \cdot w_{i}\right)=\chi\left(G_{i} ; \frac{B}{2} \cdot w_{i}\right)=B \cdot 3^{i+1}$, and
(ii) there is a set S_{i} of 2^{i+1} simplicial vertices of G_{i} such that in every coloring c of size $B \cdot 3^{i+1},\left(0, B \cdot 3^{i+1}\right) \backslash c\left(S_{i}\right)$ consists of 2^{i+1} disjoint intervals, each of which having size B.

We are now ready to prove the main result of this section.
Theorem 3.3. It is Np-Complete in the strong sense to determine for a given weighted proper interval graph (G; w), whether $\chi(G ; w)=\omega(G ; w)$.
Proof. The proof is by reduction from 3-Partition. Let $X=\left\{x_{1}, \ldots, x_{3 m}\right\}$ be an instance of 3-Partition with $\sum_{k=1}^{3 m} x_{k}=m \cdot B$. We choose i such that $2^{i}<m \leq 2^{i+1}$, i.e. $i<\log m$. We construct a graph G by adding to G_{i} a clique K on $2^{i+1}+2 m$ vertices and connecting every vertex of K to every vertex of S_{i}. Then, $S_{i} \cup K$ is a maximal clique of G.

The weight function w is the extension of $\frac{B}{2} \cdot w_{i}$ to the vertices of K such that (a) for an arbitrary subset $K^{\prime}=\left\{v_{1}, \ldots, v_{3 m}\right\}$ of $K, w\left(v_{k}\right)=x_{k}$ and (b) $w(v)=B$ for every $v \in K^{\prime \prime} \stackrel{\text { def }}{=} K \backslash K^{\prime}$. Then $w\left(K \cup S_{i}\right)=\sum_{k=1}^{3 m} x_{k}+B \cdot\left(2^{i+1}-m\right)+\frac{B}{2} w_{i}\left(S_{i}\right)=B \cdot 2^{i+1}+$ $\frac{B}{2} w_{i}\left(S_{i}\right)$. We recall that $\left(0, \frac{B}{2} \omega\left(G_{i} ; w_{i}\right)\right) \backslash c_{i}\left(S_{i}\right)$ is a set of 2^{i+1} disjoint intervals of size B, i.e. $\frac{B}{2} w_{i}\left(S_{i}\right)=\frac{B}{2} \omega\left(G_{i} ; w_{i}\right)-B \cdot 2^{i+1}$. Therefore $w\left(K \cup S_{i}\right)=\frac{B}{2} \omega\left(G_{i} ; w_{i}\right)$. As this is the only maximal clique of G that is not in G_{i}, we conclude $\omega(G ; w)=\frac{B}{2} \omega\left(G_{i} ; w_{i}\right)$.

We have $|V(G)|=\left|V\left(G_{i}\right)\right|+|K| \leq 7 \cdot 4^{i}+2^{i+1}+2 m \leq 7 \cdot m^{2}+3 \cdot m$, moreover, $\omega(G ; w)=\omega\left(G_{i} ; \frac{B}{2} w_{i}\right)=B \cdot 3^{i+1}<3 B \cdot m^{\log 3}$. Therefore, the reduction is polynomial and whenever the sizes of the numbers of X are bounded by some polynomial in m, the sizes of the numbers in w are bounded by some polynomial in m too.

It remains to show that $\chi(G ; w)=\omega(G ; w)$ if and only if X is a Yes instance, i.e. it can be partitioned into m triples each of which summing up to B. We show the only if direction. Assume $\chi(G ; w)=\omega(G ; w)$ and let c be a coloring of size $\omega(G ; w)=\frac{B}{2} \omega\left(G_{i} ; w_{i}\right)$ of $(G ; w)$. This induces a coloring c_{i} of size $\frac{B}{2} \omega\left(G_{i} ; w_{i}\right)$ of $\left(G_{i} ; w_{i}\right)$. Then $(0, \omega(G ; w)) \backslash c_{i}\left(S_{i}\right)$ consists of 2^{i+1} disjoint intervals of size B each. Therefore, all the vertices of K are colored with sub-intervals of these intervals. Every vertex of $K^{\prime \prime}$ fills such an interval completely. Then, the vertices of K^{\prime} are colored with sub-intervals of the remaining m intervals. This coloring induces a partition of X into sets $\left\{X_{1}, \ldots, X_{m}\right\}$. The sum of the elements of every set is at most B, as the corresponding vertices are colored with sub-intervals of an interval of size B. As the overall sum is $m \cdot B$, every such sum is exactly B. Therefore X is a Yes instance.

4. Approximation algorithm

In this section we present a simple 2-approximation algorithm for the problem of finding the interval chromatic number of a proper interval graph. We start with definitions of terms used in this section.

For a given number W, we denote a circular interval I modulo W as $(s(I), t(I))_{W}$ where $s(I), t(I) \in[0, W]$. Whenever $s(I)<t(I)$, I is an (ordinary) interval between $s(I)$ and $t(I)$, i.e. $(s(I), t(I))_{W}=(s(I), t(I))$. Otherwise, it is the union of two intervals. More precisely, $(s(I), t(I))_{W}=(s(I), W) \cup(0, t(I)) \cup\{0\}$. Clearly, an interval is a circular interval.

A circular interval coloring of a weighted graph is a coloring c that assigns to every vertex a circular interval modulo W_{c}, so that the circular intervals assigned to two adjacent vertices do not overlap. The circular interval chromatic number of a weighted graph $(G ; w)$ is the minimum size of a circular interval coloring of it, and we denote it by $\chi_{C}(G ; w)$.

A non-contiguous coloring of a weighted graph is a coloring c that assigns to every vertex a set of disjoint intervals, so that the sets assigned to two adjacent vertices do not overlap. The chromatic number of a weighted graph $(G ; w)$ is the minimum size of a coloring of it, and we denote it by $\chi_{N}(G ; w)$.

Clearly, an interval coloring is a circular interval coloring which is in turn a non-contiguous coloring. Moreover, the total size of the intervals assigned to a critical clique K is $w(K)=\omega(G ; w)$. Therefore,

$$
\omega(G ; w) \leq \chi_{N}(G ; w) \leq \chi_{C}(G ; w) \leq \chi(G ; w)
$$

for any weighted graph $(G ; w)$.

Lemma 4.1.

$$
\chi_{C}(G ; w) \leq \chi(G ; w) \leq 2 \cdot \chi_{C}(G ; w)
$$

for every weighted graph $(G ; w)$.
Proof. Given a circular interval coloring c of size $W=\chi_{C}(G ; w)$ of $(G ; w)$, we claim that the coloring c^{\prime} defined as

$$
c^{\prime}(v) \stackrel{\text { def }}{=} \begin{cases}W+c(v) & \text { if } 0 \in c(v) \\ c(v) & \text { otherwise }\end{cases}
$$

is an interval coloring of size at most $2 W$ implying the claim. Indeed, vertices are colored with subintervals of $(0, W)$ or subintervals of $(W, 2 W)$. Assume that for two adjacent vertices v, v^{\prime} of G we have $c^{\prime}(v) \cap c^{\prime}\left(v^{\prime}\right) \neq \emptyset$. Then, either both of
$c^{\prime}(v), c^{\prime}\left(v^{\prime}\right)$ are subintervals of $(0, W)$ or both are subintervals of $(W, 2 W)$. In the first case $c^{\prime}(v)=c(v)$ and $c^{\prime}\left(v^{\prime}\right)=c\left(v^{\prime}\right)$, therefore $c(v) \cap c\left(v^{\prime}\right) \neq \emptyset$, contradicting the fact that c is a circular interval coloring. In the latter case $c^{\prime}(v)=W+c(v)$ and $c^{\prime}\left(v^{\prime}\right)=W+c\left(v^{\prime}\right)$, leading to the same contradiction.

Corollary 4.1. A ρ-approximation algorithm to determine $\chi_{C}(G ; w)$ implies a 2ρ-approximation algorithm to determine $\chi(G ; w)$.

Lemma 4.2. [17]

$$
\chi_{C}(G ; w)=\chi_{N}(G ; w)
$$

whenever G is a proper interval graph.
Proof. Algorithm ProperToCircular presented in [17] converts a non-contiguous coloring of a proper interval graph to a circular interval coloring of the same size, thus proving the claim. We provide here the algorithm for completeness.

```
Algorithm 2 ProperToCircular
Require: \(c\) is a non-contiguous coloring of ( \(G ; w\) ).
Ensure: \(c^{\prime}\) is a circular interval coloring of ( \(G ; w\) ).
Ensure: \(\operatorname{size}\left(c^{\prime}\right)=\operatorname{size}(c)\)
    \(\lambda \leftarrow 0\).
    for all \(v \in V(G)\) ordered by their start vertices of \(I_{v}\) do
        \(c^{\prime}(v) \leftarrow(\lambda, \lambda+\operatorname{size}(c(v))) . \quad \triangleright\) Additions modulo \(W_{c}\)
        \(\lambda \leftarrow \lambda+\operatorname{size}(c(v))\).
    end for
```

Therefore we conclude:
Theorem 4.1. There is a 2-approximation algorithm to determine the interval chromatic number $\chi(G ; w)$ of a weighted proper interval graph $(G ; w)$.

Proof. As G is an interval graph $\chi_{N}(G ; w)$ can be calculated in polynomial-time. Moreover, $\chi_{N}(G ; w)=\chi_{C}(G ; w)$ by Lemma 4.2. Finally, by Corollary 4.1 this optimal algorithm implies a 2-approximation algorithm to determine $\chi(G ; w)$.

5. Summary

In this work we showed that the determination of the interval chromatic number of a weighted proper interval graph is $\mathrm{Np}-$ Complete in the strong sense. This implies that the family of proper interval graphs is not included in the family of superperfect graphs. This strengthens the almost 40 year old result of Larry Stockmeyer that showed strong NP-completeness for interval graphs. A natural question to ask is whether there are sub-families of proper interval graphs where the same result holds.

Our proofs imply an infinite family of non-superperfect proper interval graphs: Let K be a complete graph with at least two vertices, and G_{0} the graph in Fig. 1(a). The 1 -clique-sum of G_{0} and K where the vertex $7 \in V\left(G_{0}\right)$ is identified with any vertex of K is not superperfect. This is because one can assign to the vertices of $V(K) \backslash V\left(G_{0}\right)$ weights from a No instance of Partition and complete the weights of $V\left(G_{0}\right)$ as in the proof of Lemma 3.1.

On the positive side, we have shown that the problem is 2-approximable for proper interval graphs using a simple argument. For interval graphs, the problem is mentioned to be Apx-Hard in [13] (without proof), and the best known approximation algorithm is a $(2+\epsilon)$-approximation. We believe that using similar techniques to [8] and [3] the ratio of 2 can be improved. Besides improving the constant, a natural research direction in this respect is to investigate the complexity class of the problem in proper interval graphs. Namely, is the problem APX-Hard in this graph family, or does it admit a PTAS?

Acknowledgment

The author was supported by TUBITAK 2221 Programme.

References

[1] C. Berge, Les problèmes de colorations en théorie des graphs, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160.
[2] C. Berge, Six Papers on Graph Theory, Research and Training School, Indian Statistical Institute, 1963.
[3] A.L. Buchsbaum, A. Efrat, S. Jain, S. Venkatasubramanian, K. Yi, Restricted strip covering and the sensor cover problem, CoRR (2006).
[4] A.L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, M. Thorup, Opt versus load in dynamic storage allocation, SIAM J. Comput. 33 (3) (2004) 632-646.
[5] S. Földes, P.L. Hammer, Split graphs. in: Proceedings of 8th Southeastern Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium XIX, Winnipeg-Canada, pages 311-315, 1977.
[6] M. Garey, D.S. Johnson, Computers and intractability, in: A Guide to the Theory of NP-Completeness, Freeman, 1979.
[7] J. Gergov, Approximation algorithms for dynamic storage allocation. in: Proceeedings of the Fourth Annual European Symposium on Algorithms, ESA, pages 52-61, 1996.
[8] J. Gergov, Algorithms for compile-time memory optimization. in: Proceeedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 907-908, 1999.
[9] M.C. Golumbic, An infinite class of superperfect noncomparability graphs. Technical Report RC 5064, I.B.M. Research Report, 1974.
[10] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57), North-Holland Publishing Co, Amsterdam, The Netherlands, 2004.
[11] http://www.graphclasses.org/classes/gc_298.html.
[12] A. Hajnal, J. Surányi, Über die auflösung von graphen in vollständige teilgraphen, Ann. Univ. Sci. Budapest Eötrös Sect. Math. 1 (1958) 113-121.
[13] M.M. Halldórson, G. Kortzarz, Multicoloring: Problems and techniques, in: 29th International Symposium on Mathematical Foundations of Computer Science, MFCS, in: LNCS, vol. 3153, Springer-Verlag, 2004, pp. 25-41.
[14] A.J. Hoffman, A generalization of max flow - min cut, Math. Program. 6 (1974) 352-359.
[15] H.A. Kierstead, A polynomial time approximation algorithm for dynamic storage allocation, Discrete Math. 88 (1991) $231-237$.
[16] L. Lovász, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (2) (1972) 95-98.
[17] M. Shalom, P.W.H. Wong, S. Zaks, Profit maximizing colorings in flex-grid optical networks. in: Proceedings of the 20th International Colloquium on Structural Information and Communication Complexity, SIROCCO, Ischia, Italy, pages 249-260, July 2013.
[18] R. Stahlbock, S. Voß, Operations research at container terminals: a literature update, Or Spectrum 30 (1) (2008) 1-52.

[^0]: E-mail address: cmshalom@telhai.ac.il.
 ${ }^{1}$ Currently in the Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey.
 http://dx.doi.org/10.1016/j.disc.2015.04.016
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

