
Discrete Mathematics 338 (2015) 2037–2041

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

On the non-negativity of the complete cd-index
Neil J.Y. Fan, Liao He ∗

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China

a r t i c l e i n f o

Article history:
Received 16 September 2014
Received in revised form 30 April 2015
Accepted 2 May 2015
Available online 6 June 2015

Keywords:
Complete cd-index
Coxeter group
Bruhat order

a b s t r a c t

The complete cd-index of a Bruhat interval is a non-commutative polynomial in the
variables c and d, which was introduced by Billera and Brenti and conjectured to have
non-negative coefficients. For a cd-monomial M containing at most one d, i.e., M = ci or
M = cidcj (i, j ≥ 0), Karu showed that the coefficient of M is non-negative. In this paper,
we show that whenM = dcidcj (i, j ≥ 0), the coefficient ofM is non-negative.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let (W , S) be a Coxeter system and u, v ∈ W such that u < v in the Bruhat order. Billera and Brenti [2] associated the
interval [u, v] with a non-commutative polynomial φ̃u,v(a, b) in the variables a and b. They further proved that φ̃u,v(a, b)
can be written as a polynomial in the variables c and d, where c = a + b, d = ab + ba. This new polynomial ψ̃u,v(c, d) is
called the complete cd-index of [u, v], which is a generalization of the cd-index of [u, v] in the sense that the cd-index of
[u, v] is the highest degree terms of the complete cd-index of [u, v].

The cd-index of an Eulerian poset is well studied, see, e.g., Billera [1] and the references therein. In particular, since a
Bruhat interval is Eulerian and shellable, hence Gorenstein∗, the coefficients of the cd-index of a Bruhat interval are non-
negative, see Karu [6]. As an analogue, Billera and Brenti [2] conjectured that the complete cd-index still has non-negative
coefficients, see also Billera [1, Conjecture 2].

Let the variables a, b, c have degree 1, and the variable d have degree 2. Blanco [3] showed that the monomials of lowest
degree in the complete cd-index have non-negative coefficients. Suppose thatM is a cd-monomial of degree n. IfM contains
at most one d, then Karu [7] showed that the coefficient of M is non-negative. Let us describe briefly Karu’s construction.
Denote by Bn(u, v) the set of Bruhat paths of length n + 1 in the Bruhat graph of [u, v]. For a Bruhat path x ∈ Bn(u, v), Karu
assigned a weight sM(x) to the path x, which can be −1, 0 or 1. If there exists a flip on [u, v] which is compatible with the
given reflection order, then the coefficient ofM is equal to the sum of weights of all the Bruhat paths in Bn(u, v).

Moreover, Karu conjectured that sM(x) ≠ −1 for all intervals and all monomials M , which he called the flip condition.
If such a condition holds, then we can construct a compatible flip, and so the non-negativity conjecture of the complete
cd-index is true. When the cd-monomial M contains at most one d, Karu proved that the flip condition holds by using a
result of Dyer [4]. Hence in this case the coefficient ofM in the complete cd-index of [u, v] is non-negative.

In this paper, we show that the coefficient of the cd-monomial M = dcidcj (i, j ≥ 0) is non-negative. Based on Karu’s
construction, we shall show that the number of paths with weight −1 is less than or equal to the number of paths with
weight 1. To this end, we divide the involving paths into four disjoint sets according to their weights and ascent–descent
sequences, and then establish two injections among these four sets of paths.
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2. Preliminary

For a Coxeter system (W , S), denote by ℓ(w) the length of w ∈ W . The set T = {wsw−1
| w ∈ W , s ∈ S} is called the

set of reflections of W . Let u, v ∈ W , we say that u ≺ v if there exists t ∈ T , such that v = ut and ℓ(v) > ℓ(u), and we say
that u < v if there exists a sequence of elements u1, u2, . . . , ur ∈ W such that u ≺ u1 ≺ u2 ≺ · · · ≺ ur ≺ v. The partial
order ‘‘<’’ is called the Bruhat order of (W , S). The Bruhat graph of (W , S) is a directed graph with vertex set W and there
is a directed edge from u to v if u ≺ v.

Let u < v in the Bruhat order, a Bruhat path from u to v of length n + 1 is a sequence

x = (u = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 = v). (1)

We label the edge xi ≺ xi+1 by the reflection ti = x−1
i xi+1 for i = 0, 1, . . . , n. Let Bn(u, v) denote all the Bruhat paths from

u to v of length n + 1. Denote by B(u, v) =


n≥0 Bn(u, v) the set of all Bruhat paths from u to v.
Recall that a reflection order (O, <T ) is a total order defined on the set of reflections T , see [5]. The reverse of the order

O, denoted by O, is also a reflection order. In the sequel, we will always use the reflection order (O, <T ). We say that the
path x in (1) is increasing (resp., decreasing), if t0<T t1<T · · ·<T tn (resp., tn<T tn−1<T · · ·<T t0). The following result is
due to Dyer [4].

Theorem 2.1 ([4]). Let x = (u = x0 ≺ x1 ≺ · · · ≺ xn ≺ xn+1 = v) be an increasing path in Bn(u, v), and y = (u = y0 ≺

y1 ≺ · · · ≺ ym ≺ ym+1 = v) be a decreasing path in Bm(u, v). Then we have

x−1
0 x1<T y−1

0 y1, y−1
m ym+1<T x−1

n xn+1.

For the Bruhat path x ∈ Bn(u, v) in (1), define the ascent–descent sequence of x by

ω(x) = β1β2 · · ·βn,

where

βi =


a, if ti−1<T ti;
b, if ti<T ti−1.

In [2], Billera and Brenti associate each interval [u, v] with a non-homogeneous polynomial φ̃u,v(a, b) in the non-
commutative variables a and b by summing over the ascent–descent sequences of all the Bruhat paths in B(u, v). That is,

φ̃u,v(a, b) =


x∈B(u,v)

ω(x).

It can be shown that φ̃u,v(a, b) is independent of the given reflection order. Moreover, φ̃u,v(a, b) can be rewritten as a
polynomial in the variables c and d, where c = a + b, d = ab + ba. That is,

ψ̃u,v(c, d) = ψ̃u,v(a + b, ab + ba) = φ̃u,v(a, b).

This new polynomial ψ̃u,v(c, d) is called the complete cd-index of [u, v].
Now we proceed to recall some definitions and results in [7].
For an ab-monomial M(a, b), denote by M = M(b, a) the ab-monomial obtained by exchanging a and b in M . This

operator is an involution in the non-commutative ring Z⟨a, b⟩.

Definition 2.2. A flip F = Fu,v on [u, v] is an involution

Fu,v : B(u, v) → B(u, v),

such that ω(F(x)) = ω(x) for all x ∈ B(u, v).

Note that since φ̃u,v(a, b) is independent of the reflection order, when we use the orders O and O to compute φ̃u,v(a, b)
respectively, we obtain φ̃u,v(a, b) = φ̃u,v(b, a). That is to say, any flip Fu,v on [u, v] has no fixed points.

We fix a flip for every interval in advance. Let 1 ≤ m ≤ n and

x = (u = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xm ≺ xm+1 ≺ · · · ≺ xn ≺ xn+1 = v).

After applying the flip Fxm,v to x, we get

y = (u = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xm ≺ ym+1 ≺ · · · ≺ yn ≺ yn+1 = v).

If ω(x) = β1 · · ·βm · · ·βn, then ω(y) = β1 · · ·βm−1αmβm+1 · · ·βn, where αm can be either a or b. Define

sm,a(x) =


1, if βm = a;
0, otherwise.
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sm,b(x) =

1, if βm = b, αm = a;
−1, if βm = a, αm = b;
0, otherwise.

Given a cd-monomial M(c, d), we can obtain a unique ab-monomial M(a, ba) by substituting a for c and ba for d in
M(c, d). Apparently, this is a one-to-one correspondence between cd-monomials and ab-monomials in which every b is
followed by an a. In the following, we shall use the letterM to denote either the cd-monomialM(c, d) or the ab-monomial
M(a, ba)when the distinction is clear from the context.

Definition 2.3. LetM(c, d) be a cd-monomial withM(a, ba) = γ1γ2 · · · γn. Define

sM(x) =

n
m=1

sm,γm(x).

Clearly the value of sM(x) depends on the given flip.

Definition 2.4. A flip F is said to be compatible with the reflection order O if

sM(x) = sM(F(x))

for any interval [u, v], any cd-monomialM and any path x ∈ B(u, v). Here sM(F(x)) is the value sM(F(x)) computed by using
the reverse reflection order O.

Theorem 2.5 ([7]). Assume that the flip F is compatible with the reflection order O. For any cd-monomial M of degree n, the
coefficient of M in ψ̃u,v(c, d) is equal to

x∈Bn(u,v)

sM(x).

Remark 1. In fact, from the proof of Theorem 2.5 in [7], we see that the flip F needs only to be compatible with the reflection
order O on all the proper sub-intervals [w, v] ( [u, v] such that for a path x ∈ B(w, v), the number of b’s in ω(x) is one less
than the number of b’s in M(a, ba).

If −1 does not appear in the above sum, then the coefficient of M is clearly non-negative. Therefore Karu [7] introduced
the following flip condition.

Definition 2.6. The flip condition holds for the interval [u, v] and monomial M if for every x ∈ B(u, v) the following is
satisfied. If sm,γm(x) = −1 for somem, then there exists l > m such that sl,γl(x) = 0.

Definition 2.7. LetM = γ1γ2 · · · γn be an ab-monomial of length n. Define

TM(u, v) = {x ∈ Bn(u, v) | sm,γm(x) = 1, for all 1 ≤ m ≤ n}.

From Theorem 2.5 we have

Corollary 2.8. If the flip condition holds for the interval [u, v] and monomial M, then the coefficient of M in ψ̃u,v(c, d) is equal
to |TM(u, v)| and hence is non-negative.

Remark 2. If M(c, d) contains at most one d, then the flip condition holds by Theorem 2.1. Therefore, in this case the
coefficient of M is non-negative. Moreover, if the flip condition holds for the interval [u, v], we can construct a compatible
flip on [u, v]. More precisely, by induction on the number of d’s and Remark 1, we can apply Theorem 2.5 to deduce that
|TM(u, v)| = |TM(u, v)|, where TM(u, v) is the set TM(u, v) constructed by using the reverse reflection order O. Nowwe can
obtain a compatible flip on [u, v] by giving a bijection between TM(u, v) and TM(u, v).

3. Main result

In this section, we aim to show that for a cd-monomialM(c, d) containing two d’s and starting with d, the coefficient of
M is non-negative.

Theorem 3.1. Suppose that M = dcidcj (i, j ≥ 0). Then the coefficient of M in the complete cd-index of the Bruhat interval
[u, v] is non-negative.
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Proof. Notice that when a cd-monomial contains at most one d, there exists a compatible flip. According to Remarks 1 and
2, the coefficient ofM in the complete cd-index of [u, v] can be still computed by using Theorem 2.5.

Now we aim to show that the number of paths x ∈ Bn(u, v) with sM(x) = 1 is no less than that of sM(x) = −1, where
n = i + j + 4. Let us first analyze how can sM(x) be equal to 1 or −1. Let

M ′
= ai+1baj+1, i, j ≥ 0.

By Theorem 2.1, sM ′(x) ≠ −1 for any interval and any flip. Then we must have

sM(x) = 1 ⇐⇒ sm,a(x) = sm,b(x) = 1, for all 1 ≤ m ≤ n.

sM(x) = −1 ⇐⇒

sm,a(x) = 1, for all a′s ofM;
sm,b(x) = −1, for the first b ofM;
sm,b(x) = 1, for the second b ofM .

Thus nomatter sM(x) = 1 or−1, we have sm,b(x) = 1 for the second b ofM . Therefore we can concentrate only on the paths
x ∈ Bn−1(u, v) such that sM ′(x) = 1, and then extend these paths in Bn−1(u, v) to Bn(u, v).

Choose allw ∈ [u, v] such that there exists a Bruhat path fromw to v of length n − 1. Recall that

TM ′(w, v) = {x ∈ Bn−1(w, v) | sM ′(x) = 1}.

For a path

x = (u = x0 ≺ x1 ≺ · · · ≺ xn ≺ xn+1 = v)

in Bn(u, v), let

x′
= (x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 = v).

Define

A = {x ∈ Bn(u, v) | x′
∈ ∪w TM ′(w, v), ω(x) = bM ′, s1,b(x) = 1},

B = {x ∈ Bn(u, v) | x′
∈ ∪w TM ′(w, v), ω(x) = bM ′, s1,b(x) = 0},

and

C = {x ∈ Bn(u, v) | x′
∈ ∪w TM ′(w, v), ω(x) = aM ′, s1,b(x) = −1},

D = {x ∈ Bn(u, v) | x′
∈ ∪w TM ′(w, v), ω(x) = aM ′, s1,b(x) = 0}.

Then we need to show that |C | ≤ |A|.
Firstly, we claim that

|C | + |D| ≤ |A| + |B|. (2)

To prove (2), we construct an injection

ρ : C ⊎ D → A ⊎ B.

Suppose that

x = (u = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 = v)

is a path in C ⊎ D. Then ω(x) = aM ′
= aai+1baj+1, i, j ≥ 0. So we have t0<T t1<T t2, where tk = x−1

k xk+1, k = 0, 1, 2. Let

ρ(x) = Fu,x2(x) = (u = x0 ≺ x′

1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 = v).

By Theorem2.1,we have t0<T t ′0 and t ′1<T t1<T t2, where t ′0 = x−1
0 x′

1 and t ′1 = (x′

1)
−1x2. It is easy to check thatρ(x) ∈ A ⊎ B.

Since a flip on an interval is an involution without fixed points, we see that ρ is indeed an injection. Hence (2) holds.
Secondly, we claim that

|B| + |C | ≤ |A| + |D|. (3)

To prove (3), we consider the paths in sets A, B, C and D after applying the flip Fu,v on [u, v]. Let

A′
= {y ∈ Bn(u, v) | y = Fu,v(x), x ∈ A}.

Clearly, there is a one to one correspondence between the sets A and A′. Define B′, C ′ and D′ similarly. Note that

ω(y) =


abi+1abj+1, if y ∈ A′

⊎ D′;
bbi+1abj+1, if y ∈ B′

⊎ C ′.
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Now we construct an injection

η : B′
⊎ C ′

→ A′
⊎ D′.

Suppose that

y = (u = y0 ≺ y1 ≺ y2 ≺ · · · ≺ yn ≺ yn+1 = v)

is a Bruhat path in B′
⊎ C ′. Define

η(y) = Fu,y2(y) = (u = y0 ≺ y′

1 ≺ y2 ≺ · · · ≺ yn ≺ yn+1 = v).

Similarly, by Theorem 2.1 again, one can check that η(y) ∈ A′
⊎ D′. Then |B′

| + |C ′
| ≤ |A′

| + |D′
|. Thus (3) follows.

Combining (2) and (3), we obtain |C | ≤ |A|. This completes the proof. �

Remark 3. By using the method in the proof of Theorem 3.1 and Lemma 3.5 in [7], Kalle Karu pointed out to us that when
M(c, d) = cdcidcj (i, j ≥ 0), one can show that the coefficient of M is non-negative. The techniques of this paper can
probably be extended to prove the non-negativity for all monomials containing two d’s.
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