On the vertices of a 3-partite tournament not in triangles ${ }^{\star}$

Ana Paulina Figueroa ${ }^{\text {a,* }}$, Mika Olsen ${ }^{\text {b }}$, Rita Zuazua ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Matemáticas, ITAM, Mexico
${ }^{\text {b }}$ Departamento de Matemáticas Aplicadas y Sistemas, UAM-Cuajimalpa, Mexico
${ }^{\text {c }}$ Facultad de Ciencias, UNAM, Mexico

ARTICLE INFO

Article history:

Received 30 November 2013
Received in revised form 29 April 2015
Accepted 2 May 2015
Available online 6 June 2015

Keywords:

Tripartite tournaments
$\overrightarrow{C_{3}}$-free vertices
Global irregularity

Abstract

Let T be a 3-partite tournament and $F_{3}(T)$ be the set of vertices of T not in triangles. We prove that, if the global irregularity of $T, i_{g}(T)$, is one and $\left|F_{3}(T)\right|>3$, then $F_{3}(T)$ must be contained in one of the partite sets of T and $\left|F_{3}(T)\right| \leq\left\lfloor\frac{k+1}{4}\right\rfloor+1$, which implies $\left|F_{3}(T)\right| \leq$ $\left\lfloor\frac{n+5}{12}\right\rfloor+1$, where k is the size of the largest partite set and n the number of vertices of T. Moreover, we give some upper bounds on the number, as well as results on the structure of said vertices within the digraph, depending on its global irregularity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let c be a nonnegative integer. A c-partite or multipartite tournament is a digraph obtained from a complete c-partite graph orienting each edge. Let $N^{+}(x), N^{-}(x), d^{+}(x)$ and $d^{-}(x)$ denote the out-neighborhood, in-neighborhood, out-degree and the in-degree of x, respectively. A digraph D is r-regular if $d^{+}(x)=d^{-}(x)=r$ for every $x \in V(D)$.

Let T be a c-partite tournament. We say that a vertex v is $\overrightarrow{C_{3}}$-free if v does not lie on any directed triangle of T. Let $F_{3}(T)$ be the set of the $\overrightarrow{C_{3}}$-free vertices in a c-partite tournament and let $f_{3}(T)$ be its cardinality.

The structure of cycles in multipartite tournaments has been extensively studied, see for example [6,5]. In 1998, Zhou et al. [8] has proved that, if T is a regular c-partite tournament with $c \geq 4$, then T does not have $\overrightarrow{C_{3}}$-free vertices. In 2002, Volkmann [5] provided an infinite family of 4p-regular 3-partite tournaments with \vec{C}_{3}-free vertices.

In 2010, Figueroa et al. [2] proved that, if T is a regular 3-partite tournament, then $F_{3}(T)$ must be contained in one of the partite sets of T and that $f_{3}(T) \leq\left\lfloor\frac{n}{9}\right\rfloor$. In 2012, Figueroa and Olsen [3] proved that $f_{3}(T) \leq\left\lfloor\frac{n}{12}\right\rfloor$ and showed that this bound is tight, generalizing the family of Volkmann to an infinite family of r-regular 3-partite tournaments.

A natural problem is to study the structure and cardinality of $\overrightarrow{C_{3}}$-free vertices in 3-partite tournaments. In order to do this, we use the notion of global irregularity of a digraph. The global irregularity of a digraph D is defined as $i_{g}(D)=\max _{x, y \in V(D)}$ $\left\{\max \left\{d^{+}(x), d^{-}(x)\right\}-\min \left\{d^{+}(y), d^{-}(y)\right\}\right\}$. A digraph D is regular (almost regular, resp.) if $i_{g}(D)=0\left(i_{g}(D) \leq 1\right.$, resp.).

The analogue of Zhou et al.'s result for almost regular multipartite tournaments was proved by Tewes et al. [4] and states that, if T is an almost regular c-partite tournament with $c \geq 5$, then T does not have $\overrightarrow{C_{3}}$-free vertices.

In [2] there is an example of a family of strongly connected 3-partite tournaments of order n with $i_{g}(T)=2 k-2$, where k is the cardinality of the largest partite set of T, and $f_{3}(T)=n-4$ such that every partite set has \vec{C}_{3}-free vertices. In this

[^0]paper, we give partial results for the structure and size of $F_{3}(T)$ in 3-partite tournaments in terms of the global irregularity. We use those results to prove that, if T is an almost regular 3-partite tournament with at least three $\overrightarrow{C_{3}}$-free vertices, then $F_{3}(T)$ is an independent set and $f_{3}(T) \leq\left\lfloor\frac{n+5}{12}\right\rfloor+1$.

2. Preliminaries

For general concepts we refer the reader to [1].
Throughout this article, we will use the following definitions and results. Let $X, Y \subseteq V(D), X$ dominates Y, denoted by $X \rightarrow Y$, if $x y \in A(D)$ for every $x \in X$ and $y \in Y$. The number of arcs from X to Y is denoted by $d(X, Y)$. Let T be a multipartite tournament and $x \in V(T)$. The partite set of T that contains x is denoted by $P(x)$.

Lemma 1 (Lemma 2.1 [4]). If T is a c-partite tournament with partite sets $P_{0}, P_{1}, \ldots, P_{c-1}$, then $\left\|P_{i}|-| P_{j}\right\| \leq 2 i_{g}(T)$ for $0 \leq i, j \leq c-1$.

Lemma 2 (Lemma 2.1 [7]). If T is a multipartite tournament and x a vertex of T with $|P(x)|=p$, then
$\frac{|V(T)|-p-i_{g}(T)}{2} \leq \min \left\{d^{+}(x), d^{-}(x)\right\} \leq \max \left\{d^{+}(x), d^{-}(x)\right\} \leq \frac{|V(T)|-p+i_{g}(T)}{2}$.
Let T be a 3-partite tournament with partite sets P_{0}, P_{1}, P_{2} and let $A \subseteq V(T)$ and $x \in V(T)$. For $i \in\{0,1,2\}$, we will use the following notation.

- $P_{i}^{\epsilon}(A)=\bigcap_{a \in A} N^{\epsilon}(a) \cap P_{i}$ with $\epsilon \in\{+,-\}$.
- $P_{i}^{*}(A)=P_{i} \backslash\left(P_{i}^{+}(A) \cup P_{i}^{-}(A)\right)$.
- $P_{i}^{\epsilon}(x)=P_{i}^{\epsilon}(\{x\}), \epsilon \in\{+,-\}$.
- $P_{i}^{\epsilon, \delta}(A, x)=P_{i}^{\epsilon}(A) \cap P_{i}^{\delta}(x), \epsilon \in\{+,-, *\}, \delta \in\{+,-\}$.

Definition 1. Let T be a 3-partite tournament with partite sets P_{0}, P_{1}, and P_{2}. Suppose that $A \subseteq V(T)$ is an independent set. We say that T has an A-partition if $P_{i}=P_{i}^{+}(A) \cup P_{i}^{-}(A)$ for some partite set P_{i}.

3. Tripartite tournaments with arbitrary global irregularity

In this section, we give sufficient conditions to assure that all $\overrightarrow{C_{3}}$-free vertices of a 3-partite tournament with arbitrary global irregularity are contained in the same partite set. We also prove an upper bound on the number of $\overrightarrow{C_{3}}$-free vertices under these conditions.

Remark 1. Let T be a 3-partite tournament with partite sets P_{0}, P_{1} and P_{2}. Suppose that $A \subseteq F_{3}(T) \cap P_{0}$ and $x \in F_{3}(T) \cap$ $\left(P_{1}^{+}(A) \cup P_{1}^{*}(A)\right)$. If $P_{1}^{*}(A)=\emptyset$ or $P_{2}^{*+}(A, x)=\emptyset$, then T has the following structure.
(i) $P_{1}=P_{1}^{+}(A) \cup P_{1}^{*}(A) \cup P_{1}^{-}(A)$, and
(ii) $P_{2}=P_{2}^{++}(A, x) \cup P_{2}^{+-}(A, x) \cup P_{2}^{*-}(A, x) \cup P_{2}^{--}(A, x)$.

Proof. It is enough to prove that $P_{2}^{*+}(A, x) \cup P_{2}^{-+}(A, x)=\emptyset$.
If $P_{1}^{*}(A)=\emptyset$, then by definition, for each $z \in P_{2}^{*+}(A, x) \cup P_{2}^{-+}(A, x)$ there exists a vertex $y \in\left(A \cap N^{+}(z)\right)$. Since $x \in P_{1}^{+}(A)$, we have a directed triangle $z \rightarrow y \rightarrow x$, which is a contradiction. Hence, $P_{2}^{*+}(A, x) \cup P_{2}^{-+}(A, x)=\emptyset$.

If $P_{2}^{*+}(A, x)=\emptyset$, it remains to prove that $P_{2}^{-+}(A, x)=\emptyset$.
Let $z \in P_{2}^{-+}(A, x)$. By definition, $A \subseteq N^{+}(z)$. For $y \in\left(A \cap N^{-}(x)\right)$ we have a directed triangle $z \rightarrow y \rightarrow x$, which is a contradiction.

The next theorem is our main result about the structure of the set $F_{3}(T)$ for a 3-partite tournament with arbitrary global irregularity.

Theorem 1. Let T be a 3-partite tournament with global irregularity $i_{g}(T) \geq 1$ and partite sets P_{0}, P_{1} and P_{2}. Suppose that $A=$ $F_{3}(T) \cap P_{0}$ and T has an A-partition. If $|A|>\frac{3}{2} i_{g}(T)$, then $A=F_{3}(T)$.

Proof. Suppose that $A \neq F_{3}(T)$. Without loss of generality, we can assume that there exists an $x \in F_{3}(T) \cap\left(P_{1}^{+}(A) \cup P_{1}^{*}(A)\right)$. Since T has an A-partition, we have the following two cases.

Case 1. The partite set $P_{1}=P_{1}^{+}(A) \cup P_{1}^{-}(A)$.
In this case, $x \in P_{1}^{+}(A)$. By Remark $1, P_{2}=P_{2}^{++}(A, x) \cup P_{2}^{+-}(A, x) \cup P_{2}^{*-}(A, x) \cup P_{2}^{--}(A, x)$. We claim that $P_{1}^{-}(A) \neq \emptyset$. Suppose to the contrary that $P_{1}^{-}(A)=\emptyset$, then $P_{1}=P_{1}^{+}(A)$. For every $y \in A$, we have $N^{-}(y) \subseteq P_{2}$ and thus, as $N^{-}(y) \rightarrow y \rightarrow x$ does not have any directed triangle, $N^{-}(y) \subseteq N^{-}(x)$. Therefore, $d^{-}(x) \geq d^{-}(y)+|A|>d^{-}(y)+\frac{3}{2} i_{g}(T)$. By definition of global irregularity, $i_{g}(T) \geq d^{-}(x)-d^{-}(y)>\frac{3}{2} i_{g}(T)$, which is a contradiction.

We will prove that $P_{2}^{--}(A, x) \neq \emptyset$. If $P_{2}^{--}(A, x)=\emptyset$, then by Remark $1, P_{2}=P_{2}^{++}(A, x) \cup P_{2}^{+-}(A, x) \cup P_{2}^{*-}(A, x)$. Thus, for every $u \in P_{2}$ there exists a $y \in A$ such that $y \in N^{-}(u)$. Let $z \in P_{1}^{-}(A)$. Since $z \rightarrow y \rightarrow u$ is not a directed triangle, $u \in N^{+}(z)$. Therefore, $d^{+}(z) \geq|A|+\left|P_{2}\right|$ and $d^{-}(z) \leq\left|P_{0}\right|-|A|$. So, $i_{g}(T) \geq d^{+}(z)-d^{-}(z) \geq\left|P_{2}\right|-\left|P_{0}\right|+2|A|>$ $-\left\|P_{2}|-| P_{0}\right\|+3 i_{g}(T) \geq i_{g}(T)$, by Lemma 1, a contradiction.

We claim that $P_{2}^{++}(A, x) \neq \emptyset$. Otherwise, by Remark $1, P_{2}=P_{2}^{+-}(A, x) \cup P_{2}^{*-}(A, x) \cup P_{2}^{--}(A, x)$ and we reach the similar contradiction $i_{g}(T) \geq d^{-}(x)-d^{+}(x) \geq\left|P_{2}\right|-\left|P_{0}\right|+2|A|>i_{g}(T)$.

Let $u \in P_{2}^{++}(A, \bar{x})$ and $v \in P_{2}^{--}(\bar{A}, x)$. Since $P_{0}^{-}(x) \rightarrow x \rightarrow u$ does not have any directed triangle, $P_{0}^{-}(x) \subseteq N^{-}(u)$. Similarly, $P_{1}^{-}(A) \rightarrow A \rightarrow u$ does not have any directed triangle, so $P_{1}^{-}(A) \subseteq N^{-}(u)$. Which implies that $d^{-}(u) \geq\left|P_{1}^{-}(A)\right|+$ $\left|P_{0}^{-}(x)\right|+1$. Analogously, $P_{1}^{+}(A) \subseteq N^{+}(v), P_{0}^{+}(x) \subseteq N^{+}(v)$ and $d^{+}(u) \geq\left|P_{1}^{+}(A)\right|+\left|P_{0}^{+}(x)\right|+|A|$. By those inequalities and Lemma 2, $\left|P_{0}\right|+\left|P_{1}\right|+i_{g}(T) \geq d^{-}(u)+d^{+}(v) \geq\left|P_{0}\right|+\left|P_{1}\right|+\frac{3}{2} i_{g}(T)+1$, a contradiction.

Case 2. The partite set $P_{2}=P_{2}^{+}(A) \cup P_{2}^{-}(A)$.
By definition, $\emptyset=P_{2}^{*}(A)=P_{2}^{*+}(A, x) \cup P_{2}^{*-}(A, x)$ and by Remark $1, P_{2}=P_{2}^{++}(A, x) \cup P_{2}^{+-}(A, x) \cup P_{2}^{--}(A, x)$. Define $A^{+}=A \cap N^{+}(x), A^{-}=A \cap N^{-}(x)$.

Claim 1. The set of vertices $P_{2}^{++}(A, x)=\emptyset$ or $P_{2}^{--}(A, x)=\emptyset$.
Let $u \in P_{2}^{++}(A, x)$ then $P_{0}^{-}(x) \subseteq N^{-}(u)$ because $x \in F_{3}(T)$. For every $z \in P_{1} \backslash P_{1}^{+}(A)$, there exists a $y \in A \cap N^{+}(z)$. Since $z \rightarrow y \rightarrow u$ is not a directed triangle, $P_{1} \backslash P_{1}^{+}(A) \subseteq N^{-}(u)$. Therefore, $d^{-}(u) \geq\left|P_{0}^{-}(x)\right|+\left|P_{1}\right|-\left|P_{1}^{+}(A)\right|+\left|A^{+}\right|+1$. Analogously, if $v \in P_{2}^{--}(A, x)$, then $d^{+}(v) \geq\left|P_{0}^{+}(x)\right|+\left|P_{1}^{+}(A)\right|+\left|A^{-}\right|+1$. Which implies that $\left|P_{0}\right|+\left|P_{1}\right|+i_{g}(T) \geq d^{-}(u)+d^{+}(v)$ $\geq\left|P_{0}\right|+\left|P_{1}\right|+\frac{3}{2} i_{g}(T)+2$, which is a contradiction. Hence, Claim 1 has been proved.
Subcase 2.1 Suppose that $A^{+} \neq \emptyset$ and $A^{-} \neq \emptyset$.
The set $P_{2}^{+-}(A, x)=\emptyset$. Otherwise, $A^{+} \rightarrow P_{2}^{+-}(A, x) \rightarrow x$ would imply a directed triangle. Therefore, $P_{2}=$ $P_{2}^{++}(A, x) \cup P_{2}^{--}(A, x)$ and by Claim 1, we have to consider two cases: $P_{2}=P_{2}^{--}(A, x)$ or $P_{2}=P_{2}^{++}(A, x)$.
If $P_{2}=P_{2}^{--}(A, x)$, then for every $y \in A^{-}$and $v \in P_{2}$, we have $v \rightarrow y \rightarrow N^{+}(y)$. Thus $N^{+}(y) \subseteq N^{+}(v)$, since $N^{+}(y) \subseteq P_{1}$ and $y \in F_{3}(T)$, which implies the contradiction $i_{g}(T) \geq d^{+}(v)-d^{+}(y) \geq|A|>\frac{3}{2} i_{g}(T)$.
Let $P_{2}=P_{2}^{++}(A, x)$. If $y \in A^{-}$and $u \in P_{2}$, we can conclude that $i_{g}(T) \geq d^{-}(u)-d^{-}(y) \geq|A|>\frac{3}{2} i_{g}(T)$, another contradiction.
Subcase 2.2 Suppose that $A^{+}=\emptyset$ or $A^{-}=\emptyset$.
Without loss of generality, we can assume that $A=A^{-}$.
If the partite set $P_{2}=P_{2}^{--}(A, x)$, then $i_{g}(T) \geq d^{-}(x)-d^{+}(x) \geq\left|P_{2}\right|-\left|P_{0}\right|+2|A|>i_{g}(T)$, which is a contradiction.
Thus, we may assume that $P_{2}=P_{2}^{++}(A, x)$. For every $y \in A$ and $u \in P_{2}, N^{-}(y) \subseteq N^{-}(u)$, which implies the contradiction $i_{g}(T) \geq d^{-}(u)-d^{-}(y)>\frac{3}{2} i_{g}(T)$.
In the proof of the next theorem, we use the structure of 3-partite tournaments having an $F_{3}(T)$-partition.
Remark 2. Let T be a 3-partite tournament with partite sets P_{0}, P_{1} and P_{2}. If $F_{3}(T)$ is independent, and T has an $F_{3}(T)$ partition, then
(i) There exists a partite set P_{0} such that $F_{3}(T) \subseteq P_{0}$, a partite set P_{1} such that $P_{1}=P_{1}^{+}\left(F_{3}(T)\right) \cup P_{1}^{-}\left(F_{3}(T)\right)$, and a partite set P_{2} such that $P_{2}=P_{2}^{+}\left(F_{3}(T)\right) \cup P_{2}^{*}\left(F_{3}(T)\right) \cup P_{2}^{-}\left(F_{3}(T)\right)$.
(ii) $P_{1}^{-}\left(F_{3}(T)\right) \rightarrow P_{2}^{+}\left(F_{3}(T)\right) \cup P_{2}^{*}\left(F_{3}(T)\right)$ and $\left(P_{2}^{*}\left(F_{3}(T)\right) \cup P_{2}^{-}\left(F_{3}(T)\right)\right) \rightarrow P_{1}^{+}\left(F_{3}(T)\right)$.

Theorem 2. Let T be a 3-partite tournament, and $F_{3}(T)$ be an independent subset of T with $\left|F_{3}(T)\right|>\frac{3}{2} i_{g}(T)$. If T has an $F_{3}(T)$-partition, then $f_{3}(T) \leq\left\lfloor\frac{s}{4}+\frac{9 i_{g}(T)^{2}}{2 s}+\frac{29 i_{g}(T)}{8}\right\rfloor$, where s is the size of the smallest partite set of T.
Proof. Let T be a 3-partite tournament with partite sets P_{0}, P_{1} and P_{2}. Since $F_{3}(T)$ is independent, we can assume $F_{3}(T) \subseteq P_{0}$. Since T has an $F_{3}(T)$ partition, without loss of generality, we may assume that $P_{1}=P_{1}^{+}\left(F_{3}(T)\right) \cup P_{1}^{-}\left(F_{3}(T)\right)$.

Claim 2. $P_{1}^{+}\left(F_{3}(T)\right) \neq \emptyset$.
If $P_{1}^{+}\left(F_{3}(T)\right)=\emptyset$, then consider a vertex $x \in F_{3}(T)$ and $y \in P_{1}^{-}\left(F_{3}(T)\right)$. Notice that $N^{+}(x) \subset N^{+}(y)$ and $d^{+}(y) \geq d^{+}(x)+$ $f_{3}(T)$. Hence, $i_{g}(T) \geq d^{+}(y)-d^{+}(x) \geq f_{3}(T) \geq \frac{3}{2} i_{g}(T)$, a contradiction.

Claim 3. $P_{2}^{+}\left(F_{3}(T)\right) \neq \emptyset$.
Suppose to the contrary that $P_{2}^{+}\left(F_{3}(T)\right)=\emptyset$. Let $w \in P_{1}^{+}\left(F_{3}(T)\right)$ and $v \in P_{2}^{*}\left(F_{3}(T)\right) \cup P_{2}^{-}\left(F_{3}(T)\right)$. By Remark 2, we then have $d^{-}(w) \geq\left|P_{2}\right|+f_{3}(T)$. Lemma 2 now implies $\frac{\left|P_{0}\right|+\left|P_{2}\right|+i_{g}(T)}{2} \geq d^{-}(w)$. Thus, $\left|P_{0}\right|-\left|P_{2}\right| \geq 2 f_{3}(T)-i_{g}(T)>2 i_{g}(T)$, which contradicts Lemma 1.

Define T^{*} as $T\left[P_{1}^{+}\left(F_{3}(T)\right) \cup P_{2}^{+}\left(F_{3}(T)\right)\right]$. The proof is based on counting the arcs of T^{*}.

Notice that

$$
\begin{align*}
\left|A\left(T^{*}\right)\right| & =\left|P_{1}^{+}\left(F_{3}(T)\right)\right|\left|P_{2}^{+}\left(F_{3}(T)\right)\right| \\
& =d\left(P_{1}^{+}\left(F_{3}(T), P_{2}^{+}\left(F_{3}(T)\right)\right)\right)+d\left(P_{2}^{+}\left(F_{3}(T), P_{1}^{+}\left(F_{3}(T)\right)\right)\right) \tag{1}
\end{align*}
$$

We can bound the number of arcs from $P_{1}^{+}\left(F_{3}(T)\right)$ to $P_{2}^{+}\left(F_{3}(T)\right)$ as follows

$$
d\left(P_{1}^{+}\left(F_{3}(T)\right), P_{2}^{+}\left(F_{3}(T)\right)\right) \leq\left|P_{2}^{+}\left(F_{3}(T)\right)\right| \max _{w \in P_{2}^{+}\left(F_{3}(T)\right)} d_{T^{*}}^{-}(w)
$$

Analogously, the number of arcs from $P_{2}^{+}\left(F_{3}(T)\right)$ to $P_{1}^{+}\left(F_{3}(T)\right)$ is bounded by

$$
d\left(P_{2}^{+}\left(F_{3}(T)\right), P_{1}^{+}\left(F_{3}(T)\right)\right) \leq\left|P_{1}^{+}\left(F_{3}(T)\right)\right| \max _{v \in P_{1}^{+}\left(F_{3}(T)\right)} d_{T^{*}}^{-}(v)
$$

By Remark $2, N_{T^{*}}^{-}(w) \cup F_{3}(T) \cup P_{1}^{-}\left(F_{3}(T)\right) \subseteq N_{T}^{-}(w)$ for every $w \in P_{2}^{+}\left(F_{3}(T)\right)$. Therefore, for every $w \in P_{2}^{+}\left(F_{3}(T)\right)$,

$$
\begin{aligned}
d_{T^{*}}^{-}(w) & \leq d_{T}^{-}(w)-\left|F_{3}(T)\right|-\left|P_{1}^{-}\left(F_{3}(T)\right)\right| \\
& =d_{T}^{-}(w)-\left|F_{3}(T)\right|-\left|P_{1}\right|+\left|P_{1}^{+}\left(F_{3}(T)\right)\right|
\end{aligned}
$$

By Remark $2, N_{T^{*}}^{-}(v) \cup F_{3}(T) \cup P_{2}^{*}\left(F_{3}(T)\right) \cup P_{2}^{-}\left(F_{3}(T)\right) \subseteq N_{T}^{-}(v)$ for every $v \in P_{1}^{+}\left(F_{3}(T)\right)$. Thus, for every $v \in P_{1}^{+}\left(F_{3}(T)\right)$,

$$
\begin{aligned}
d_{T^{*}}^{-}(v) & \leq d_{T}^{-}(v)-\left|F_{3}(T)\right|-\left|P_{2}^{-}\left(F_{3}(T)\right)\right|-\left|P_{2}^{*}\left(F_{3}(T)\right)\right| \\
& =d_{T}^{-}(v)-\left|F_{3}(T)\right|-\left|P_{2}\right|+\left|P_{2}^{+}\left(F_{3}(T)\right)\right| .
\end{aligned}
$$

By Eq. (1),

$$
\begin{aligned}
\left|P_{1}^{+}\left(F_{3}(T)\right)\right|\left|P_{2}^{+}\left(F_{3}(T)\right)\right| \leq & \left|P_{2}^{+}\left(F_{3}(T)\right)\right|\left(d_{T}^{-}(w)-f_{3}(T)-\left|P_{1}\right|+\left|P_{1}^{+}\left(F_{3}(T)\right)\right|\right) \\
& +\left|P_{1}^{+}\left(F_{3}(T)\right)\right|\left(d_{T}^{-}(v)-f_{3}(T)-\left|P_{2}\right|+\left|P_{2}^{+}\left(F_{3}(T)\right)\right|\right) .
\end{aligned}
$$

Let $m=\left|P_{1}^{+}\left(F_{3}(T)\right)\right|+\left|P_{2}^{+}\left(F_{3}(T)\right)\right|$ and $p=\left|P_{1}^{+}\left(F_{3}(T)\right)\right|$. From the above inequality we obtain that

$$
\begin{equation*}
0 \leq-p^{2}+p\left(m+\left(\left|P_{1}\right|-\left|P_{2}\right|\right)+\left(d_{T}^{-}(v)-d_{T}^{-}(w)\right)\right)+m\left(d_{T}^{-}(w)-\left|P_{1}\right|-f_{3}(T)\right) \tag{2}
\end{equation*}
$$

Notice that, by Lemmas 1 and $2, d_{T}^{-}(w)-\left|P_{1}\right| \leq \frac{\left|P_{0}\right|+\left|P_{1}\right|+i_{g}(T)}{2}-\left|P_{1}\right| \leq \frac{3 i_{g}(T)}{2}$. Then,

$$
0 \leq-p^{2}+p\left(m+3 i_{g}(T)\right)+m\left(\frac{3 i_{g}(T)}{2}-f_{3}(T)\right)
$$

As a consequence, the discriminant $D=\left(m+3 i_{g}(T)\right)^{2}+4 m\left(\frac{3 i_{g}(T)}{2}-f_{3}(T)\right)$ must be nonnegative. It follows that

$$
f_{3}(T) \leq \frac{m}{4}+\frac{9 i_{g}(T)^{2}}{4 m}+3 i_{g}(T)
$$

By symmetry, we reach the same results for $P_{1}^{-}\left(F_{3}(T)\right)$ and $P_{2}^{-}\left(F_{3}(T)\right)$. Thus, without loss of generality, we may assume that $m \geq\left|P_{1}\right| / 2 \geq s / 2$, where s is the size of the smallest partite set of T. Since $m \leq d^{+}(y)$ for every $y \in F_{3}(T)$, by Lemma 2 , we obtain $m \leq \frac{\overline{\left|P_{1}\right|+\left|P_{2}\right|+i_{g}(T)}}{2} \leq k+\frac{i_{g}(T)}{2}$, where k is the size of the largest partite set of T. Since $k \leq s+2 i_{g}(T)$, we have proved that $f_{3}(T) \leq\left\lfloor\frac{s}{4}+\frac{9 i_{g}(T)^{2}}{2 s}+\frac{29 i_{g}(T)}{8}\right\rfloor$.

As a corollary of Theorems 1 and 2 we have the following.
Corollary 1. Let T be a c-partite tournament. If there is an independent set $A \subseteq F_{3}(T)$ with more than $\frac{3}{2} i_{g}(T)$ vertices and T has an A-partition, then $F_{3}(T)$ is contained in one partite set and $f_{3}(T) \leq\left\lfloor\frac{s}{4}+\frac{9 i_{g}(T)^{2}}{2 s}+\frac{29 i_{g}(T)}{8}\right\rfloor$, where s is the size of the smallest partite set of T.

4. Almost regular 3-partite tournaments

In this section we prove that the sufficient condition of having an $F_{3}(T)$-partition always holds for almost regular 3-partite tournaments and we prove the upper bound of Theorem 2 for this class of 3-partite tournaments.

Lemma 3. If T is an almost regular 3-partite tournament and $u, v \in F_{3}(T)$ two non-adjacent vertices, then T has $a\{u, v\}$ partition.

Fig. 1. 3-partite almost regular tournament with \vec{C}_{3}-vertices in two partite sets.
Proof. Let $u, v \in F_{3}(T) \cap P_{0}$. Without loss of generality, we may assume that $P_{2}^{-+}(u, v) \neq \emptyset$.
If $P_{1}^{+-}(u, v) \neq \emptyset$, then $P_{2}^{-+}(u, v) \rightarrow u \rightarrow P_{1}^{+-}(u, v) \rightarrow v \rightarrow P_{2}^{-+}(u, v)$ is a 4-cycle. Then u or v are in a triangle no matter the direction of the arcs between $P_{2}^{-+}(u, v)$ and $P_{1}^{+-}(u, v)$. Thus, $P_{1}^{+-}(u, v)=\emptyset$.

If $P_{1}^{-+}(u, v) \neq \emptyset$, we can prove analogously that $P_{2}^{+-}(u, v)=\emptyset$. In this case, since both $P_{1}^{-+}(u, v)$ and $P_{2}^{-+}(u, v)$ are empty sets, $d^{-}(u)+d^{+}(v)=|V(T)|-\left|V\left(P_{0}\right)\right|+\sum_{j=0}^{2}\left|P_{j}^{-+}(u, v)\right| \geq|V(T)|-\left|P_{0}\right|+2$, which contradicts Lemma 2. So, $P_{1}^{-+}(u, v)=\emptyset$ and therefore, $P_{1}=P_{1}^{+}(u, v) \cup P_{1}^{-}(u, v)$.

Corollary 2. Let T be a 3-partite almost regular tournament with at least two independent \vec{C}_{3}-free vertices. Then, $F_{3}(T)$ is independent and, there exists at least one partite set P such that $P=P^{+}\left(F_{3}(T)\right) \cup P^{-}\left(F_{3}(T)\right)$.
Proof. Let A be a maximal independent subset of $F_{3}(T)$. We assume without loss of generality that $A=F_{3}(T) \cap P_{0}$.
Claim 1. T has an A-partition.
Suppose to the contrary that $P_{1} \neq P_{1}^{+}(A) \cup P_{1}^{-}(A)$ and $P_{2} \neq P_{2}^{+}(A) \cup P_{2}^{-}(A)$. Then, there exist $u, v \in A$ such that $P_{1}^{+-}(u, v) \neq \emptyset$. By Lemma 3, T has a $\{u, v\}$-partition, therefore $P_{2}=P_{2}^{+}(u, v) \cup P_{2}^{-}(u, v)$. Since $P_{2} \neq P_{2}^{+}(A) \cup P_{2}^{-}(A)$, there exists $w \in A$ such that $P_{2} \neq P_{2}^{+}(u, w) \cup P_{2}^{-}(u, w)$ and $P_{2} \neq P_{2}^{+}(w, v) \cup P_{2}^{-}(w, v)$. Again by Lemma 3, T has a $\{u, w\}-$ partition and a $\{w, v\}$-partition. That is, $P_{1}=P_{1}^{+}(u, w) \cup P_{1}^{-}(u, w)=P_{1}^{+}(w, v) \cup P_{1}^{-}(w, v)$. This implies that $P_{1}^{+-}(u, v) \subseteq$ $P_{1}^{+}(u, w) \cap P_{1}^{-}(v, w) \subseteq N^{+}(w) \cap N^{-}(w)=\emptyset$, which contradicts that $P_{1}^{+-}(u, v) \neq \emptyset$. Thus, Claim 1 is proved.

Since $|A| \geq 2>\frac{3}{2} i_{g}(T)$ and T has an A-partition, by Theorem $1, A=F_{3}(T)$ and therefore independent, and there exists at least one partite set P such that $P=P^{+}\left(F_{3}(T)\right) \cup P^{-}\left(F_{3}(T)\right)$.

The proof of Claim 1 of Corollary 2 is similar to the proof of Corollary 1 in [2].
As a corollary of Remark 2 and Corollary 2 we have the following theorem.
Theorem 3. An almost regular 3-partite tournament T, with $f_{3}(T)>3$ and partite sets P_{0}, P_{1} and P_{2} has the following structure:
(i) $F_{3}(T)$ is entirely contained in one partite set (say P_{0}).
(ii) There exists one partite set (say P_{1}) such that $F_{3}(T) \rightarrow P_{1}^{+}, P_{1}^{-} \rightarrow F_{3}(T)$ and $P_{1}=P_{1}^{+} \cup P_{1}^{-}$, where $P^{+}:=P_{1}^{+}\left(F_{3}(T)\right)$ and $P^{-}:=P_{1}^{-}\left(F_{3}(T)\right)$.
(iii) If $P_{2}^{+}=P_{2}^{+}\left(F_{3}(T)\right), P_{2}^{-}=P_{2}^{-}\left(F_{3}(T)\right)$ and $P_{2}^{*}=P_{2} \backslash\left(P_{2}^{+} \cup P_{2}^{-}\right)$, then $\left(P_{2}^{*} \cup P_{2}^{-}\right) \rightarrow P_{1}^{+}$and $P_{1}^{-} \rightarrow\left(P_{2}^{+} \cup P_{2}^{*}\right)$.

The digraph in Fig. 1 is a 3-partite tournament T, with $f_{3}(T)=2$ and $F_{3}(T)$ has vertices in two partite sets.
Theorem 4. If T is an almost regular 3-partite tournament with $f_{3}(T)>3$, and k is the cardinality of the largest partite set of T, then $f_{3}(T) \leq\left\lfloor\frac{k+1}{4}\right\rfloor+1 \leq\left\lfloor\frac{n+5}{12}\right\rfloor+1$.
Proof. Let T be an almost regular 3-partite tournament such that $f_{3}(T)>3$. By Corollary $2, T$ has an $F_{3}(T)$-partition. Let $v \in P_{1}^{+}\left(F_{3}(T)\right)$ and $w \in P_{2}^{+}\left(F_{3}(T)\right)$. Following the proof of Theorem 2 and due to inequality (2), we have that

$$
0 \geq p^{2}-p\left(m+\left(\left|P_{1}\right|-\left|P_{2}\right|\right)+\left(d^{-}(v)-d^{-}(w)\right)\right)+m\left(f_{3}(T)+\left|P_{1}\right|-d^{-}(w)\right)
$$

where $m=\left|P_{1}^{+}\left(F_{3}(T)\right)\right|+\left|P_{2}^{+}\left(F_{3}(T)\right)\right|$ and $p=\left|P_{1}^{+}\left(F_{3}(T)\right)\right|$.
Let k be the size of the largest partite set. It is not difficult to see that, if T is an almost regular 3-partite tournament, there are at least two partite sets with the same cardinality. Therefore, we have 12 cases depending on the cardinality of the partite sets P_{0}, P_{1} and P_{2} of T (see Table 1).

In every case, we find bounds x_{1}, x_{2}, x_{3} such that $d^{-}(v) \leq x_{1}$ and $x_{2} \leq d^{-}(w) \leq x_{3}$. Let $b=\left|P_{1}\right|-\left|P_{2}\right|+x_{1}-x_{2}$, $c=\left|P_{1}\right|-x_{3}$ and $g(p)=p^{2}-p(m+b)+m\left(f_{3}(T)+c\right)$. Since $b \geq\left|P_{1}\right|-\left|P_{2}\right|+d^{-}(v)-d^{-}(w)$ and $c \leq\left|P_{1}\right|-d^{-}(w)$,

$$
0 \geq p^{2}-p\left(m+\left(\left|P_{1}\right|-\left|P_{2}\right|\right)+\left(d^{-}(v)-d^{-}(w)\right)\right)+m\left(f_{3}(T)+\left|P_{1}\right|-d^{-}(w)\right) \geq g(p)
$$

Table 1
$f_{3}(T)$ in an almost regular tripartite tournament.

Case	$\left\|P_{0}\right\|$	$\left\|P_{1}\right\|$	$\left\|P_{2}\right\|$	b	c	$g(p)=p^{2}-p(m+b)+m\left(f_{3}+c\right)$	Δ_{P}	$f_{3}(T) \leq\left\lfloor\frac{\Delta_{p}+2 b}{4}\right\rfloor-c$
1	$k-2$	$k-2$	k	-1	0	$p^{2}-p(m-1)+m f_{3}$	$k-1$	$\left\lfloor\frac{k-3}{4}\right\rfloor \leq\left\lfloor\frac{n-5}{12}\right\rfloor$
2	$k-2$	k	$k-2$	1	1	$p^{2}-p(m+1)+m\left(f_{3}+1\right)$	$k-1$	$\left\lfloor\frac{k+1}{4}\right\rfloor-1 \leq\left\lfloor\frac{n+7}{12}\right\rfloor-1$
3	$k-2$	k	k	0	1	$p^{2}-p m+m\left(f_{3}+1\right)$	k	$\left\lfloor\frac{k}{4}\right\rfloor-1 \leq\left\lfloor\frac{n+2}{12}\right\rfloor-1$
4	k-1	$k-1$	k	0	0	$p^{2}-p m+m f_{3}$	k	$\left\lfloor\frac{k}{4}\right\rfloor \leq\left\lfloor\frac{n+2}{12}\right\rfloor$
5	$k-1$	k	$k-1$	1	0	$p^{2}-p(m+1)+m f_{3}$	k	$\left\lfloor\frac{k+2}{4}\right\rfloor \leq\left\lfloor\frac{n+8}{12}\right\rfloor$
6	$k-1$	k	k	1	0	$p^{2}-p(m+1)+m f_{3}$	k	$\left\lfloor\frac{k+2}{4}\right\rfloor \leq\left\lfloor\frac{n+7}{12}\right\rfloor$
7	k	$k-2$	$k-2$	0	-1	$p^{2}-p m+m\left(f_{3}-1\right)$	$k-2$	$\left\lfloor\frac{k-2}{4}\right\rfloor+1 \leq\left\lfloor\frac{n-4}{12}\right\rfloor+1$
8	k	$k-2$	k	-1	-1	$p^{2}-p(m-1)+m\left(f_{3}-1\right)$	$k-1$	$\left\lfloor\frac{k-3}{4}\right\rfloor+1 \leq\left\lfloor\frac{n-7}{12}\right\rfloor+1$
9	k	$k-1$	$k-1$	1	-1	$p^{2}-p(m+1)+m\left(f_{3}-1\right)$	$k-1$	$\left\lfloor\frac{k+1}{4}\right\rfloor+1 \leq\left\lfloor\frac{n+5}{12}\right\rfloor+1$
10	k	$k-1$	k	0	-1	$p^{2}-p m+m\left(f_{3}-1\right)$	k	$\left\lfloor\frac{k}{4}\right\rfloor+1 \leq\left\lfloor\frac{n+1}{12}\right\rfloor+1$
11	k	k	$k-2$	1	0	$p^{2}-p(m+1)+m f_{3}$	$k-1$	$\left\lfloor\frac{k+1}{4}\right\rfloor \leq\left\lfloor\frac{n+5}{12}\right\rfloor$
12	k	k	$k-1$	1	0	$p^{2}-p(m+1)+m f_{3}$	k	$\left\lfloor\frac{k+2}{4}\right\rfloor \leq\left\lfloor\frac{n+7}{12}\right\rfloor$

Thus, the discriminant of $g(p)$ is nonnegative, that is $(m+b)^{2}-4 m\left(f_{3}(T)+c\right) \geq 0$. Therefore, $f_{3}(T) \leq \frac{(m+b)^{2}}{4 m}-c$. Since $f_{3}(T)$ is an integer, it follows that

$$
f_{3}(T) \leq\left\lfloor\left\lfloor\frac{m+2 b}{4}\right\rfloor+\frac{3}{4}+\frac{b^{2}}{4 m}-c\right\rfloor=\left\lfloor\frac{m+2 b}{4}\right\rfloor-c,
$$

because $m>1$ and $|b| \leq 1$ (see Table 1). Let $\Delta_{P}=\left\lceil\frac{\left|P_{1}\right|+\left|P_{2}\right|}{2}\right\rceil$. By the definition of $m, m \leq \Delta_{P}$ and therefore,

$$
f_{3}(T) \leq\left\lfloor\frac{\Delta_{P}+2 b}{4}\right\rfloor-c .
$$

We calculate b and c only for two cases, but the calculus of the rest of the cases is similar.
Case 2. $\left|P_{0}\right|=k-2,\left|P_{1}\right|=k$ and $\left|P_{2}\right|=k-2$.
Since T is almost regular, for every $v \in P_{1}$ and $w \in P_{2}, x_{1}=d^{-}(v)=d^{+}(v)=k-2$ and $x_{2}=x_{3}=d^{-}(w)=d^{+}(w)=$ $k-1$. Hence, $b=1, c=1, g(p)=p^{2}-p(m+1)+m\left(f_{3}+1\right)$, and $\Delta_{P}=k-1$. Therefore,

$$
f_{3}(T) \leq\left\lfloor\frac{\Delta_{P}+2 b}{4}\right\rfloor-c=\left\lfloor\frac{k+1}{4}\right\rfloor-1=\left\lfloor\frac{n+7}{12}\right\rfloor-1,
$$

because, in this case, $n=3 k-4$,
Case 9. $\left|P_{0}\right|=k$ and $\left|P_{1}\right|=\left|P_{2}\right|=k-1$.
Since T is almost regular, for every $v \in P_{1}$ and $w \in P_{2}, x_{1}=k \geq d^{-}(v), x_{2}=k-1$ and $x_{3}=k$. Hence, $b=1, c=-1$, $g(p)=p^{2}-p(m+1)+m\left(f_{3}-1\right)$, and $\Delta_{p}=k-1$. In this case, $n=3 k-4$ and therefore,

$$
f_{3}(T) \leq\left\lfloor\frac{\Delta_{P}+2 b}{4}\right\rfloor-c=\left\lfloor\frac{k+1}{4}\right\rfloor+1=\left\lfloor\frac{n+5}{12}\right\rfloor+1 .
$$

In Table 1, we depict the corresponding value of $b=\Delta_{P}+x_{1}-x_{2}, c=\left|P_{1}\right|-x_{3}$, the polynomial $g(p)$ and the bound of $f_{3}(T)$ for each case.

Hence, we obtain that $f_{3}(T) \leq\left\lfloor\frac{k+1}{4}\right\rfloor+1 \leq\left\lfloor\frac{n+5}{12}\right\rfloor+1$ in every case.

Acknowledgments

The authors thank the anonymous referees for their comments, which improved substantially the rewriting of this paper.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
[2] A.P. Figueroa, B. Llano, R. Zuazua, The number of $\overrightarrow{C_{3}}$-free vertices on regular 3-partite tournaments, Discrete Math. 310 (19) (2010) $2482-2488$.
[3] A.P. Figueroa, Mika Olsen, The tight bound on the number of $\overrightarrow{C_{3}}$-free vertices on regular 3-partite tournaments, Australas. J. Combin. 52 (2012) $209-214$.
[4] M. Tewes, L. Volkmann, A. Yeo, Almost all almost regular c-partite tournaments with $c \geq 5$ are vertex pancyclic, Discrete Math. 242 (2002) $201-228$.
[5] L. Volkmann, Cycles in multipartite tournaments: Results and problems, Discrete Math. 245 (1-3) (2002) 19-53.
[6] L. Volkmann, Multipartite tournaments: A survey, Discrete Math. 307 (24) (2007) 3097-3129.
[7] L. Volkmann, A. Yeo, Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments, Discrete Math. 281 (2004) 267-276.
[8] G. Zhou, T. Yao, K.M. Zhang, A note on regular multipartite tournaments, J. Nanjing Univ. Math. Biq 15 (1998) 73-75,

[^0]: This work was supported by CONACyT, México 169407 and 183210 and PAPIIT-UNAM-IN117812.

 * Corresponding author.

 E-mail addresses: ana.figueroa@itam.mx (A.P. Figueroa), olsen.mika@gmail.com (M. Olsen), ritazuazua@ciencias.unam.mx (R. Zuazua).

