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1. Introduction

Let ¢ be a nonnegative integer. A c-partite or multipartite tournament is a digraph obtained from a complete c-partite
graph orienting each edge. Let N* (x), N~ (x), d* (x) and d~ (x) denote the out-neighborhood, in-neighborhood, out-degree and
the in-degree of x, respectively. A digraph D is r-regular if d* (x) = d~(x) = r for every x € V(D).

Let T be a c-partite tournament. We say that a vertex v is C3-free if v does not lie on any directed triangle of T. Let F5(T)

9
be the set of the C3-free vertices in a c-partite tournament and let f3(T) be its cardinality.
The structure of cycles in multipartite tournaments has been extensively studied, see for example [6,5]. In 1998, Zhou

et al. [8] has proved that, if T is a regular c-partite tournament with ¢ > 4, then T does not have C3-free vertices. In 2002,

Volkmann [5] provided an infinite family of 4p-regular 3-partite tournaments with a—free vertices.

In 2010, Figueroa et al. [2] proved that, if T is a regular 3-partite tournament, then F3(T) must be contained in one of the
partite sets of T and that f5(T) < LgJ In 2012, Figueroa and Olsen [3] proved that f3(T) < L%J and showed that this bound
is tight, generalizing the family of Volkmann to an infinite family of r-regular 3-partite tournaments.

A natural problem is to study the structure and cardinality of E; -free vertices in 3-partite tournaments. In order to do this,
we use the notion of global irregularity of a digraph. The global irregularity of a digraph D is defined as i (D) = maxy yev(p)
{max{d*(x),d”(x)} — min{d* (), d~(y)}}. A digraph D is regular (almost regular, resp.) if iy (D) = 0 (ig(D) < 1, resp.).

The analogue of Zhou et al.’s result for almost regular multipartite tournaments was proved by Tewes et al. [4] and states
that, if T is an almost regular c-partite tournament with ¢ > 5, then T does not have C;-free vertices.

In [2] there is an example of a family of strongly connected 3-partite tournaments of order n with iz (T) = 2k — 2, where

k is the cardinality of the largest partite set of T, and f3(T) = n — 4 such that every partite set has Eg)—free vertices. In this
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paper, we give partial results for the structure and size of F3(T) in 3-partite tournaments in terms of the global irregularity.

—
We use those results to prove that, if T is an almost regular 3-partite tournament with at least three C;-free vertices, then
F5(T) is an independent set and f5(T) < [%2| + 1.

2. Preliminaries

For general concepts we refer the reader to [1].

Throughout this article, we will use the following definitions and results. Let X, Y C V(D), X dominates Y, denoted by
X — Y,ifxy € A(D) foreveryx € X andy € Y.The number of arcs from X to Y is denoted by d(X, Y). Let T be a multipartite
tournament and x € V(T). The partite set of T that contains x is denoted by P (x).

Lemma 1 (Lemma 2.1 [4]). If T is a c-partite tournament with partite sets Py, Py, ..., Pc_1, then ||Pi| — |Pj|| < 2ig(T) for
0<i,j<c—1

Lemma 2 (Lemma 2.1 [7]).If T is a multipartite tournament and x a vertex of T with [P(x)| = p, then
FOED < min(d* (0, () < max(d* (), d~ () < HEFHEO,
Let T be a 3-partite tournament with partite sets Py, P, P, and let A C V(T) and x € V(T). Fori € {0, 1, 2}, we will use
the following notation.
o Pf(A) = (\yen N (@) NPy withe € {+, —}.
e PX(A) = P;\ (P, (A) UP (A)).
o Pi(x) =P ({x}), e € {+, -}
o PIP(AX) =PFA)NPY(X), € € {+, —, %}, 8 € {+, —).

Definition 1. Let T be a 3-partite tournament with partite sets Py, P, and P,. Suppose that A C V(T) is an independent set.
We say that T has an A-partition if P; = Pl.+ (A) U P{ (A) for some partite set P;.

3. Tripartite tournaments with arbitrary global irregularity

In this section, we give sufficient conditions to assure that all C3-free vertices of a 3-partite tournament with arbitrary

ﬁ
global irregularity are contained in the same partite set. We also prove an upper bound on the number of C;-free vertices
under these conditions.

Remark 1. Let T be a 3-partite tournament with partite sets Py, P; and P,. Suppose that A C F3(T) N Py and x € F3(T) N
(P (A) U P} (A)). If P;(A) = ¥ or Pyt (A, x) = ¢, then T has the following structure.

(i) P; = P (A) U P} (A) UP; (A), and

(ii) P, = Py 1 (A, x) UPS (A, x) UP; ™ (A, x) UP, (A, X).

Proof. It is enough to prove that P;‘Jr (A, x) U P2_+(A, x) = 0.

If P} (A) = #, then by definition, for eachz € P;* (A, x) UP, * (A, x) there exists a vertexy € (ANNT(2)). Since x € P} (A),
we have a directed triangle z — y — x, which is a contradiction. Hence, P;‘Jr (A, x) U P2_+ A, x) = 0.

If P;* (A, x) = ¢, it remains to prove that P, * (A, x) = 0.

Letz € P{*(A, x). By definition, A € N*(z). Fory € (AN N~ (x)) we have a directed triangle z — y — x, which is a
contradiction. O

The next theorem is our main result about the structure of the set F3(T) for a 3-partite tournament with arbitrary global
irregularity.

Theorem 1. Let T be a 3-partite tournament with global irregularity i, (T) > 1 and partite sets Py, Py and P,. Suppose that A =
F3(T) N Py and T has an A-partition. If |A| > %ig (T), then A = F5(T).

Proof. Suppose that A ## F3(T). Without loss of generality, we can assume that there exists anx € F3(T) N (P1+ (A) UP}(A)).
Since T has an A-partition, we have the following two cases.

Case 1. The partite set P; = P} (A) U P; (A).

In this case, x € P} (A). By Remark 1, P, = P, (A, x) U P}~ (A, x) U P, (A, x) UP, (A, x). We claim that P; (A) # ¢.
Suppose to the contrary that P; (A) = ¥,thenP; = P1+ (A).Foreveryy € A,wehave N~ (y) C P, andthus,asN~(y) -y — x
does not have any directed triangle, N~ (y) € N~ (x). Therefore,d” (x) > d~(y) + |A| > d~(¥) + %ig(T). By definition of
global irregularity, i, (T) > d™(x) —d~ (y) > %ig (T), which is a contradiction.
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We will prove that P, ~ (A, x) # ¥.1f P, ~ (A, x) = @, then by Remark 1, P, = P; (A, x) U P~ (A, x) U P;” (A, x). Thus,
for every u € P, there existsay € Asuchthaty € N™(u). Letz € P{ (A).Since z — y — u is not a directed triangle,
u € N*t(2). Therefore, d*(z) > |A| + |P;] and d™(2) < |Pg| — |A|. S0, ig(T) > dT(z) — d~(2) > |P2| — |Po| + 2|A| >
—|IP2| = |Poll + 3ig(T) > iy(T), by Lemma 1, a contradiction.

We claim that P,"" (A, x) # @. Otherwise, by Remark 1, P, = P,"~ (A, x) UP; ™ (A, X) UP; ~ (A, x) and we reach the similar
contradiction ig(T) > d~(x) — d* (x) > |P,| — |Po| + 2|A| > ig(T).

Letu e P2++(A, x) and v € P, (A, x). Since Py (x) — x — u does not have any directed triangle, Py (x) € N~ (u).
Similarly, P;" (A) — A — u does not have any directed triangle, so P; (A) € N~ (u). Which implies that d~ (u) > |P; (A)| +
|Py (x)| + 1. Analogously, P} (A) € N*(v), P/ (x) € N*(v) and d*(u) > |P; (A)| + |Py (x)| + |A|. By those inequalities and
Lemma 2, |Pg| + [P1] 4 ig(T) > d~(u) + dt(v) > |Po| + |P1| + %ig(T) + 1, a contradiction.

Case 2. The partite set P, = P,"(A) U P, (A).

By definition, # = P;(A) = P;*(A,x) UP;™ (A, x) and by Remark 1, P, = P (A, x) UP, (A, x) UP, (A, x). Define
At =ANNT(x),A- =ANN~ ().

Claim 1. The set of vertices P} (A, x) = @ or P; ~ (A, x) = 0.

Letu € Py * (A, x) then Py (x) € N~ (u) because x € F5(T). For every z € P; \ P} (A), there existsay € AN N7 (z). Since
z — y — uis not a directed triangle, P, \P]+ (A) € N~ (u). Therefore, d™ (u) > [Py (X)| + |P1| — |P1Jr (A)| + |AT| + 1. Analo-
gously, if v € P, ~(A, x), thend*t (v) > |P3'(X)| + |P1+(A)| +|A~ |+ 1. Which implies that |Po| + |P1| +ig(T) > d~(u) +d* (v)
> |Po| + |P1| + %ig (T) + 2, which is a contradiction. Hence, Claim 1 has been proved.
Subcase 2.1 Suppose that AT # and A~ # .
The set P2+ (A, Xx) = #. Otherwise, AT — P;L “(A,x) — x would imply a directed triangle. Therefore, P, =
P (A, x) UP, (A, x) and by Claim 1, we have to consider two cases: P, = P, ~ (A, x) or P, = P, (A, x).
If P, = P, " (A, x), then foreveryy € A~ and v € P,, we have v — y — N1 (y). Thus N*(y) € N*(v), since
N*(y) € Py andy € F5(T), which implies the contradiction ig(T) > d*(v) — d* (y) > |A| > %ig(T).
LetP, = P;*(A, x).Ify € A~ and u € P,, we can conclude that ig (T) > d~(u) —d~(y) > |A| > 2ig(T), another
contradiction.
Subcase 2.2 Suppose that AT = JorA™ = 0.
Without loss of generality, we can assume that A = A™.
If the partite set P, = P, ~ (A, x), then ig(T) > d~(x) — d*(x) > |P2| — |Po| + 2|A| > ig(T), which is a contra-
diction.
Thus, we may assume that P, = P;*(A,x). Foreveryy € Aand u € P,, N~ (y) € N~ (u), which implies the
contradiction ig(T) > d~(u) —d~(y) > 3ig(T). O

In the proof of the next theorem, we use the structure of 3-partite tournaments having an F3(T)-partition.

Remark 2. Let T be a 3-partite tournament with partite sets Py, P; and P,. If F3(T) is independent, and T has an F5(T)-

partition, then

(i) There exists a partite set Py such that F3(T) C Py, a partite set P; such that P; = Pl+ (F3(T)) U P; (F3(T)), and a partite
set P, such that P, = Py (F3(T)) U P; (F3(T)) U P, (F3(T)).

(ii) Py (F3(T)) — Py (F5(T)) U P3(F3(T)) and (P; (F5(T)) U P; (F5(T))) — Py (F5(T)).

Theorem 2. Let T be a 3-partite tournament, and F3(T) be an independent subset of T with |F3(T)| > %ig (T). If T has an

. 2 .
F3(T)-partition, then f3(T) < Li + % + %J, where s is the size of the smallest partite set of T.

Proof. Let T be a 3-partite tournament with partite sets Py, P; and P,. Since F5(T) is independent, we can assume F3(T) C Py.
Since T has an F3(T) partition, without loss of generality, we may assume that P; = Pl+ (F3(T)) U Py (F3(T)).

Claim 2. P} (F3(T)) # 0.

If P (F3(T)) = ¥, then consider a vertex x € F5(T) and y € P; (F5(T)). Notice that N*(x) C N*(y) and d*(y) > d* (x) +
f3(T). Hence, ig(T) > d*(y) — d*(x) > f5(T) > 2i,(T), a contradiction.

Claim 3. P, (F3(T)) # ¢.

Suppose to the contrary that P; (F3(T)) =D.Letw € Pfr (F5(T)) and v € P;(F3(T)) U P, (F5(T)). By Remark 2, we then

have d~(w) > |Py| +f3(T). Lemma 2 now implies P2 @ > 4= () Thus, |Po| — [P,| = 2f3(T) —ig(T) > 2ig(T), which
contradicts Lemma 1.
Define T* as T[P]+ (F3(T)) U P2+ (F3(T))]. The proof is based on counting the arcs of T*.
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Notice that
JA(T)| = P (F3(T))||Py (F5(T))|
= d(P{" (F5(T), P (F3(T)))) + d(Py (F5(T), P} (F5(T)))). (1)
We can bound the number of arcs from Pfr (F3(T)) to P2+ (F3(T)) as follows

d(P (F3(T)), P (F3(T))) < |P; (F3(T))| max dp.(w).
wePy (F3(T))

Analogously, the number of arcs from P2+ (F3(T)) to P1+ (F3(T)) is bounded by

d(P (F3(T)), P (F3(T))) < [P} (F3(T))| max dp.(v).
veP; (F3(T))

By Remark 2, N, (w) U F3(T) U Py (F3(T)) € Ny (w) for every w € P2+(F3(T)). Therefore, for every w € P;—(F3(T)),
dr. (w) < dr (w) — [F3(T)| — [Py (F3(T))]
= dr (w) — |F3(T)| — |Py| + |P{ (F3(T))|.
By Remark 2, Ny (v) U F3(T) U P; (F3(T)) U P, (F5(T)) € Ny (v) for every v € P (F3(T)). Thus, for every v € P} (F5(T)),
dr(v) < dp (v) = [F3(D)| — [P, (F5(T))| — [Py (F5(T))|
= dr (v) = |F3(T)| = |Pa| + [Py (F3(T))!.
By Eq. (1),
P (F3(T))[IPy (F3(T))| < [Py (F3(T))|(dy (w) — f5(T) — |P1| 4 [P (F3(T))))
+ [P (F3(T)|(dy (v) = f5(T) — |Pa| + [Py (F3(T)))).
Let m = [P}/ (F3(T))| + |P,"(F3(T))| and p = |P;" (F3(T))|. From the above inequality we obtain that

0 < —p® + p(m + (|P1| — |P2]) + (df (v) — dy (w))) + m(dy (w) — |P1| — f5(T)). (2)
Notice that, by Lemmas 1 and 2, d; (w) — [P4| < w —|Pq] < @ Then,

3ig(T)

0 < —p”> +p(m+3ig(T)) + m (T —f3(T)> .

3ig(T)

5— — f3(T)) must be nonnegative. It follows that

As a consequence, the discriminant D = (m + 3ig (T)? + 4m(

. 2
B =T+ 9ig (T)

3i,(T).
am =«

By symmetry, we reach the same results for P; (F3(T)) and P, (F3(T)). Thus, without loss of generality, we may assume that
m > |P1|/2 > s/2, where s is the size of the smallest partite set of T. Since m < d* (y) for every y € F3(T), by Lemma 2, we
obtainm < w <k+ @, where k is the size of the largest partite set of T. Since k < s 4 2i,(T), we have proved

2
i 2 .
that f3(T) < L% + gzgz(sr) + 291g8(T)J. -

As a corollary of Theorems 1 and 2 we have the following.

Corollary 1. Let T be a c-partite tournament. If there is an independent set A C F3(T) with more than %ig(T) vertices and T has

. 2 :
an A-partition, then F3(T) is contained in one partite set and f3(T) < L% + % + zg%mj, where s is the size of the smallest

partite set of T.

4. Almost regular 3-partite tournaments

In this section we prove that the sufficient condition of having an F; (T)-partition always holds for almost regular 3-partite
tournaments and we prove the upper bound of Theorem 2 for this class of 3-partite tournaments.

Lemma 3. If T is an almost regular 3-partite tournament and u, v € F3(T) two non-adjacent vertices, then T has a {u, v}-
partition.
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>

Fig. 1. 3-partite almost regular tournament with C3-vertices in two partite sets.

Proof. Let u, v € F3(T) N Py. Without loss of generality, we may assume that P2_+(u, v) # 0.

If Py~ (u,v) # @, then P, "(u,v) - u — P~ (u,v) - v — P, T(u,v) is a 4-cycle. Then u or v are in a triangle no
matter the direction of the arcs between P, * (u, v) and P}~ (u, v). Thus, P~ (u, v) = ¢.

If Py (u, v) # ¥, we can prove analogously that P, (u, v) = ¢. In this case, since both P; " (u, v) and P, " (u, v) are
empty sets, d” (u) + d*(v) = |V(T)| — |V(Py)| + ij:O |Pj’+(u, v)| > |V(T)| — |Pg| + 2, which contradicts Lemma 2. So,
P;*(u, v) = ¥ and therefore, P; = P} (u, v) UP; (u,v). O

—
Corollary 2. Let T be a 3-partite almost regular tournament with at least two independent Cs-free vertices. Then, F5(T) is
independent and, there exists at least one partite set P such that P = P™ (F5(T)) U P~ (F3(T)).

Proof. Let A be a maximal independent subset of F3(T). We assume without loss of generality that A = F3(T) N Pg.
Claim 1. T has an A-partition.
Suppose to the contrary that P; # P]Jr (A) UP (A) and P, # P; (A) U Py (A). Then, there exist u, v € A such that

P1+_ (u, v) # ¥.By Lemma 3, T has a {u, v}-partition, therefore P, = P;r (u, v) UP; (u, v). Since P, # P2+ (A) U P, (A), there
exists w € A such that P, # Py (u, w) UP; (u, w) and P, # Py (w,v) UP, (w, v). Again by Lemma 3, T has a {u, w}-
partition and a {w, v}-partition. That is, P; = P, (u, w) U P; (u, w) = P} (w, v) U P; (w, v). This implies that P~ (u, v) €
P;f (u, w) NPy (v, w) € N*(w) NN~ (w) = @, which contradicts that P}~ (u, v) # . Thus, Claim 1 is proved.

Since |A| > 2 > %ig (T) and T has an A-partition, by Theorem 1, A = F3(T) and therefore independent, and there exists
at least one partite set P such that P = P (F3(T)) UP~ (F3(T)). O

The proof of Claim 1 of Corollary 2 is similar to the proof of Corollary 1 in [2].
As a corollary of Remark 2 and Corollary 2 we have the following theorem.

Theorem 3. An almost regular 3-partite tournament T, with f3(T) > 3 and partite sets Py, P; and P, has the following structure:
(i) F5(T) is entirely contained in one partite set (say Pg).
(ii) There exists one partite set (say P1) such that F3(T) — P/, Py — F5(T) and P; = P; U P;, where P* := P} (F3(T)) and
P~ := Py (F5(T)).
(iii) If Py = P, (F5(T)), P, = P, (F3(T)) and Py = P, \ (P;” UPy), then (P; UP;) — Py and P; — (P, UP;).

The digraph in Fig. 1 is a 3-partite tournament T, with f3(T) = 2 and F5(T) has vertices in two partite sets.

Theorem 4. If T is an almost regular 3-partite tournament with f3(T) > 3, and k is the cardinality of the largest partite set of
T thenfy(T) < |51 41 < |22 +1.

Proof. Let T be an almost regular 3-partite tournament such that f3(T) > 3. By Corollary 2, T has an F3(T)-partition. Let
NS P1+ (F3(T))and w € P2+ (F5(T)). Following the proof of Theorem 2 and due to inequality (2), we have that

0> p* —p(m+ (IP1| — |P2]) + (d~ () —d~ (w))) + m(B(T) + |P1| —d~(w)),

where m = |P{ (F3(T))| + P (F3(T))| and p = |P; (F5(T))I.

Let k be the size of the largest partite set. It is not difficult to see that, if T is an almost regular 3-partite tournament,
there are at least two partite sets with the same cardinality. Therefore, we have 12 cases depending on the cardinality of the
partite sets Py, P; and P, of T (see Table 1).

In every case, we find bounds x;, Xo, X3 such that d"(v) < xyandx, < d (w) < x3.Letb = |P;| — |P2| + x1 — X2,
¢ =|Pi| —x3and g(p) = p* — p(m + b) + m(f3(T) 4 ¢).Since b > |Py| — |P| +d~(v) —d~(w) and ¢ < |P;| — d~ (w),

0> p® —p(m+ (IP1]| = |P2]) + (d~ (v) — d”(w))) + m(f(T) + |P1] —d~(w)) = g(p).
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Table 1

f3(T) in an almost regular tripartite tournament.
case  |Po| 1Py Pl b c g =P —pm+b+mp+c) A L) s | 22| e
1 k—2 k—2 k -1 0 p* —pm—1) +mfs k—1 L%JSL%J
2 k-2  k k-2 1 1 p? —p(m+ 1)+ m(fs + 1) k-1 [ —1< 5] -1
3 k—2 k k 0 1 p*—pm+m(fs + 1) k 3] -1=["] -1
4 k—1 k—1 k 0 0 p* —pm+mfs k HEES
5 k-1 k k=1 1 0 p? — p(m + 1) + mfs k [42] < |3
6 k=1 & k 1 0 p? —pm+ 1) + mfs k 2] <[5
7 k k-2 k-2 0 —1 P2 —pm+m(f; — 1) k=2 |}l B]+1
8 k k-2  k -1 -1 P> —pm—1) +m(fs — 1) k—1 [P +1< [ ] +1
9 k k=1 k-1 1 -1 p—pm+D+m@—1) k=1 [+ 5] +1
10 k k=1 &k 0 —1 P2 —pm+m(f; — 1) k [i]+1=[%]+1
11 k k k—2 1 0 p? —p(m+ 1) +mfs k—1 |4 <%
12 k k k—1 1 0 p* —p(m+ 1) + mfs k 2] =< [55]

Thus, the discriminant of g (p) is nonnegative, that is (m + b)? — 4m(f3(T) +¢) > 0. Therefore, f5(T) < % — ¢. Since
f3(T) is an integer, it follows that

m+2b 3 p? m+2b
T) < i — 4= N It
f3()_l : J+4+4m CJ L ' J c,

because m > 1and |b| < 1(see Table 1). Let Ap = ’V‘P“zﬂ—‘ By the definition of m, m < Ap and therefore,

f(T) <

Ap+2bJ
— | —c
4

We calculate b and c only for two cases, but the calculus of the rest of the cases is similar.
Case 2. |Py| =k — 2, |P;| = kand |Py| = k — 2.

Since T is almost regular, foreveryv € Prand w € Py, x; =d (v) =dT(v) = k—2andx; = x3 =d " (w) = dT(w) =
k — 1.Hence,b = 1,c = 1,g(p) = p* — p(m + 1) +m(fz + 1), and Ap = k — 1. Therefore,

Ap +2b k+1 n+7
=2

because, in this case, n = 3k — 4,
Case9. |Py| = kand |P;| = |P,| = k — 1.

Since T is almost regular, forevery v € Pyand w € P,,x; = k > d~(v),x, = k— 1and x3 = k. Hence,b = 1,¢c = —1,
g(p) =p?> —p(m+ 1) +m(f; — 1),and Ap = k — 1. In this case, n = 3k — 4 and therefore,

A(T) < LAPTMJ—Cz V‘Z]JH: L":;SJH.

In Table 1, we depict the corresponding value of b = Ap + X1 — X3, ¢ = |P1| — X3, the polynomial g(p) and the bound of
f3(T) for each case.
Hence, we obtain that f3(T) < I_"TT]J +1< L%SJ + lineverycase. O
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