Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the vertices of a 3-partite tournament not in triangles*

Ana Paulina Figueroa^{a,*}, Mika Olsen^b, Rita Zuazua^c

^a Departamento de Matemáticas, ITAM, Mexico

^b Departamento de Matemáticas Aplicadas y Sistemas, UAM-Cuajimalpa, Mexico

^c Facultad de Ciencias, UNAM, Mexico

ARTICLE INFO

Article history: Received 30 November 2013 Received in revised form 29 April 2015 Accepted 2 May 2015 Available online 6 June 2015

Keywords: Tripartite tournaments $\overrightarrow{C_3}$ -free vertices Global irregularity

ABSTRACT

Let *T* be a 3-partite tournament and $F_3(T)$ be the set of vertices of *T* not in triangles. We prove that, if the global irregularity of *T*, $i_g(T)$, is one and $|F_3(T)| > 3$, then $F_3(T)$ must be contained in one of the partite sets of *T* and $|F_3(T)| \le \lfloor \frac{k+1}{4} \rfloor + 1$, which implies $|F_3(T)| \le \lfloor \frac{n+5}{12} \rfloor + 1$, where *k* is the size of the largest partite set and *n* the number of vertices of *T*. Moreover, we give some upper bounds on the number, as well as results on the structure of said vertices within the digraph, depending on its global irregularity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let *c* be a nonnegative integer. A *c*-partite or multipartite tournament is a digraph obtained from a complete *c*-partite graph orienting each edge. Let $N^+(x)$, $N^-(x)$, $d^+(x)$ and $d^-(x)$ denote the *out-neighborhood*, *in-neighborhood*, *out-degree* and the *in-degree* of *x*, respectively. A digraph *D* is *r*-regular if $d^+(x) = d^-(x) = r$ for every $x \in V(D)$.

Let *T* be a *c*-partite tournament. We say that a vertex *v* is $\overrightarrow{C_3}$ -free if *v* does not lie on any directed triangle of *T*. Let $F_3(T)$ be the set of the $\overrightarrow{C_3}$ -free vertices in a *c*-partite tournament and let $f_3(T)$ be its cardinality.

The structure of cycles in multipartite tournaments has been extensively studied, see for example [6,5]. In 1998, Zhou et al. [8] has proved that, if *T* is a regular *c*-partite tournament with $c \ge 4$, then *T* does not have $\overrightarrow{C_3}$ -free vertices. In 2002, Volkmann [5] provided an infinite family of 4*p*-regular 3-partite tournaments with $\overrightarrow{C_3}$ -free vertices.

In 2010, Figueroa et al. [2] proved that, if T is a regular 3-partite tournament, then $F_3(T)$ must be contained in one of the partite sets of T and that $f_3(T) \le \lfloor \frac{n}{9} \rfloor$. In 2012, Figueroa and Olsen [3] proved that $f_3(T) \le \lfloor \frac{n}{12} \rfloor$ and showed that this bound is tight, generalizing the family of Volkmann to an infinite family of r-regular 3-partite tournaments.

A natural problem is to study the structure and cardinality of $\overrightarrow{C_3}$ -free vertices in 3-partite tournaments. In order to do this, we use the notion of global irregularity of a digraph. The global irregularity of a digraph D is defined as $i_g(D) = \max_{x,y \in V(D)} \{\max\{d^+(x), d^-(x)\} - \min\{d^+(y), d^-(y)\}\}$. A digraph D is regular (almost regular, resp.) if $i_g(D) = 0$ ($i_g(D) \le 1$, resp.).

The analogue of Zhou et al.'s result for almost regular multipartite tournaments was proved by Tewes et al. [4] and states that, if *T* is an almost regular *c*-partite tournament with $c \ge 5$, then *T* does not have $\overrightarrow{C_3}$ -free vertices. In [2] there is an example of a family of strongly connected 3-partite tournaments of order *n* with $i_g(T) = 2k - 2$, where

In [2] there is an example of a family of strongly connected 3-partite tournaments of order *n* with $i_g(T) = 2k - 2$, where *k* is the cardinality of the largest partite set of *T*, and $f_3(T) = n - 4$ such that every partite set has $\overrightarrow{C_3}$ -free vertices. In this

☆ This work was supported by CONACyT, México 169407 and 183210 and PAPIIT-UNAM-IN117812.

* Corresponding author.

E-mail addresses: ana.figueroa@itam.mx (A.P. Figueroa), olsen.mika@gmail.com (M. Olsen), ritazuazua@ciencias.unam.mx (R. Zuazua).

paper, we give partial results for the structure and size of $F_3(T)$ in 3-partite tournaments in terms of the global irregularity. We use those results to prove that, if *T* is an almost regular 3-partite tournament with at least three $\overrightarrow{C_3}$ -free vertices, then $F_3(T)$ is an independent set and $f_3(T) \leq \lfloor \frac{n+5}{12} \rfloor + 1$.

2. Preliminaries

For general concepts we refer the reader to [1].

Throughout this article, we will use the following definitions and results. Let $X, Y \subseteq V(D)$, X dominates Y, denoted by $X \to Y$, if $xy \in A(D)$ for every $x \in X$ and $y \in Y$. The number of arcs from X to Y is denoted by d(X, Y). Let T be a multipartite tournament and $x \in V(T)$. The partite set of T that contains x is denoted by P(x).

Lemma 1 (Lemma 2.1 [4]). If T is a c-partite tournament with partite sets $P_0, P_1, \ldots, P_{c-1}$, then $||P_i|| \le 2i_g(T)$ for $0 \leq i, j \leq c - 1.$

Lemma 2 (Lemma 2.1 [7]). If T is a multipartite tournament and x a vertex of T with |P(x)| = p, then $\frac{|V(T)| - p - i_g(T)}{2} \le \min\{d^+(x), d^-(x)\} \le \max\{d^+(x), d^-(x)\} \le \frac{|V(T)| - p + i_g(T)}{2}.$

Let *T* be a 3-partite tournament with partite sets P_0 , P_1 , P_2 and let $A \subseteq V(T)$ and $x \in V(T)$. For $i \in \{0, 1, 2\}$, we will use the following notation.

- $P_i^{\epsilon}(A) = \bigcap_{a \in A} N^{\epsilon}(a) \cap P_i \text{ with } \epsilon \in \{+, -\}.$

- $\begin{array}{l} \bullet P_i^*(A) = P_i \setminus (P_i^+(A) \cup P_i^-(A)). \\ \bullet P_i^\epsilon(x) = P_i^\epsilon(\{x\}), \epsilon \in \{+, -\}. \\ \bullet P_i^{\epsilon,\delta}(A, x) = P_i^\epsilon(A) \cap P_i^\delta(x), \epsilon \in \{+, -, *\}, \delta \in \{+, -\}. \end{array}$

Definition 1. Let *T* be a 3-partite tournament with partite sets P_0 , P_1 , and P_2 . Suppose that $A \subseteq V(T)$ is an independent set. We say that *T* has an *A*-partition if $P_i = P_i^+(A) \cup P_i^-(A)$ for some partite set P_i .

3. Tripartite tournaments with arbitrary global irregularity

In this section, we give sufficient conditions to assure that all \vec{C}_3 -free vertices of a 3-partite tournament with arbitrary global irregularity are contained in the same partite set. We also prove an upper bound on the number of $\vec{C_3}$ -free vertices under these conditions.

Remark 1. Let T be a 3-partite tournament with partite sets P_0 , P_1 and P_2 . Suppose that $A \subseteq F_3(T) \cap P_0$ and $x \in F_3(T) \cap P_0$ $(P_1^+(A) \cup P_1^*(A))$. If $P_1^*(A) = \emptyset$ or $P_2^{*+}(A, x) = \emptyset$, then T has the following structure.

- (i) $P_1 = P_1^+(A) \cup P_1^*(A) \cup P_1^-(A)$, and (ii) $P_2 = P_2^{++}(A, x) \cup P_2^{+-}(A, x) \cup P_2^{*-}(A, x) \cup P_2^{--}(A, x)$.

Proof. It is enough to prove that $P_2^{*+}(A, x) \cup P_2^{-+}(A, x) = \emptyset$.

If $P_1^*(A) = \emptyset$, then by definition, for each $z \in P_2^{*+}(A, x) \cup P_2^{-+}(A, x)$ there exists a vertex $y \in (A \cap N^+(z))$. Since $x \in P_1^+(A)$, we have a directed triangle $z \to y \to x$, which is a contradiction. Hence, $P_2^{*+}(A, x) \cup P_2^{-+}(A, x) = \emptyset$.

If $P_2^{*+}(A, x) = \emptyset$, it remains to prove that $P_2^{-+}(A, x) = \emptyset$. Let $z \in P_2^{-+}(A, x)$. By definition, $A \subseteq N^+(z)$. For $y \in (A \cap N^-(x))$ we have a directed triangle $z \to y \to x$, which is a contradiction.

The next theorem is our main result about the structure of the set $F_3(T)$ for a 3-partite tournament with arbitrary global irregularity.

Theorem 1. Let T be a 3-partite tournament with global irregularity $i_g(T) \ge 1$ and partite sets P_0 , P_1 and P_2 . Suppose that A = $F_3(T) \cap P_0$ and T has an A-partition. If $|A| > \frac{3}{2}i_g(T)$, then $A = F_3(T)$.

Proof. Suppose that $A \neq F_3(T)$. Without loss of generality, we can assume that there exists an $x \in F_3(T) \cap (P_1^+(A) \cup P_1^*(A))$. Since *T* has an *A*-partition, we have the following two cases.

Case 1. The partite set $P_1 = P_1^+(A) \cup P_1^-(A)$.

In this case, $x \in P_1^+(A)$. By Remark 1, $P_2 = P_2^{++}(A, x) \cup P_2^{+-}(A, x) \cup P_2^{*-}(A, x) \cup P_2^{--}(A, x)$. We claim that $P_1^-(A) \neq \emptyset$. Suppose to the contrary that $P_1^-(A) = \emptyset$, then $P_1 = P_1^+(A)$. For every $y \in A$, we have $N^-(y) \subseteq P_2$ and thus, as $N^-(y) \to y \to x$ does not have any directed triangle, $N^{-}(y) \subseteq N^{-}(x)$. Therefore, $d^{-}(x) \geq d^{-}(y) + |A| > d^{-}(y) + \frac{3}{2}i_{g}(T)$. By definition of global irregularity, $i_g(T) \ge d^-(x) - d^-(y) > \frac{3}{2}i_g(T)$, which is a contradiction.

We will prove that $P_2^{--}(A, x) \neq \emptyset$. If $P_2^{--}(A, x) = \emptyset$, then by Remark 1, $P_2 = P_2^{++}(A, x) \cup P_2^{+-}(A, x) \cup P_2^{+-}(A, x)$. Thus, for every $u \in P_2$ there exists a $y \in A$ such that $y \in N^-(u)$. Let $z \in P_1^-(A)$. Since $z \to y \to u$ is not a directed triangle, $u \in N^+(z)$. Therefore, $d^+(z) \ge |A| + |P_2|$ and $d^-(z) \le |P_0| - |A|$. So, $i_g(T) \ge d^+(z) - d^-(z) \ge |P_2| - |P_0| + 2|A| > -\|P_2| - |P_0\| + 3i_g(T) \ge i_g(T)$, by Lemma 1, a contradiction.

We claim that $P_2^{++}(A, x) \neq \emptyset$. Otherwise, by Remark 1, $P_2 = P_2^{+-}(A, x) \cup P_2^{*-}(A, x) \cup P_2^{--}(A, x)$ and we reach the similar contradiction $i_g(T) \ge d^-(x) - d^+(x) \ge |P_2| - |P_0| + 2|A| > i_g(T)$.

Let $u \in P_2^{++}(A, x)$ and $v \in P_2^{--}(A, x)$. Since $P_0^-(x) \to x \to u$ does not have any directed triangle, $P_0^-(x) \subseteq N^-(u)$. Similarly, $P_1^-(A) \to A \to u$ does not have any directed triangle, so $P_1^-(A) \subseteq N^-(u)$. Which implies that $d^-(u) \ge |P_1^-(A)| + |P_0^-(x)| + 1$. Analogously, $P_1^+(A) \subseteq N^+(v)$, $P_0^+(x) \subseteq N^+(v)$ and $d^+(u) \ge |P_1^+(A)| + |P_0^+(x)| + |A|$. By those inequalities and Lemma 2, $|P_0| + |P_1| + i_g(T) \ge d^-(u) + d^+(v) \ge |P_0| + |P_1| + \frac{3}{2}i_g(T) + 1$, a contradiction.

Case 2. The partite set $P_2 = P_2^+(A) \cup P_2^-(A)$.

By definition, $\emptyset = P_2^*(A) = P_2^{*+}(A, x) \cup P_2^{*-}(A, x)$ and by Remark 1, $P_2 = P_2^{++}(A, x) \cup P_2^{+-}(A, x) \cup P_2^{--}(A, x)$. Define $A^+ = A \cap N^+(x), A^- = A \cap N^-(x)$.

Claim 1. The set of vertices $P_2^{++}(A, x) = \emptyset$ or $P_2^{--}(A, x) = \emptyset$.

Let $u \in P_2^{++}(A, x)$ then $P_0^-(x) \subseteq N^-(u)$ because $x \in F_3(T)$. For every $z \in P_1 \setminus P_1^+(A)$, there exists a $y \in A \cap N^+(z)$. Since $z \to y \to u$ is not a directed triangle, $P_1 \setminus P_1^+(A) \subseteq N^-(u)$. Therefore, $d^-(u) \ge |P_0^-(x)| + |P_1| - |P_1^+(A)| + |A^+| + 1$. Analogously, if $v \in P_2^{--}(A, x)$, then $d^+(v) \ge |P_0^+(x)| + |P_1^+(A)| + |A^-| + 1$. Which implies that $|P_0| + |P_1| + i_g(T) \ge d^-(u) + d^+(v) \ge |P_0| + |P_1| + \frac{3}{2}i_g(T) + 2$, which is a contradiction. Hence, Claim 1 has been proved.

Subcase 2.1 Suppose that $A^+ \neq \emptyset$ and $A^- \neq \emptyset$.

The set $P_2^{+-}(A, x) = \emptyset$. Otherwise, $A^+ \to P_2^{+-}(A, x) \to x$ would imply a directed triangle. Therefore, $P_2 = P_2^{++}(A, x) \cup P_2^{--}(A, x)$ and by Claim 1, we have to consider two cases: $P_2 = P_2^{--}(A, x)$ or $P_2 = P_2^{++}(A, x)$. If $P_2 = P_2^{--}(A, x)$, then for every $y \in A^-$ and $v \in P_2$, we have $v \to y \to N^+(y)$. Thus $N^+(y) \subseteq N^+(v)$, since

 $N^+(y) \subseteq P_1$ and $y \in F_3(T)$, which implies the contradiction $i_g(T) \ge d^+(v) - d^+(y) \ge |A| > \frac{3}{2}i_g(T)$.

Let $P_2 = P_2^{++}(A, x)$. If $y \in A^-$ and $u \in P_2$, we can conclude that $i_g(T) \ge d^-(u) - d^-(y) \ge |A| > \frac{3}{2}i_g(T)$, another contradiction.

Subcase 2.2 Suppose that $A^+ = \emptyset$ or $A^- = \emptyset$.

Without loss of generality, we can assume that $A = A^-$. If the partite set $P_2 = P_2^{--}(A, x)$, then $i_g(T) \ge d^-(x) - d^+(x) \ge |P_2| - |P_0| + 2|A| > i_g(T)$, which is a contra-

diction. Thus, we may assume that $P_2 = P_2^{++}(A, x)$. For every $y \in A$ and $u \in P_2$, $N^-(y) \subseteq N^-(u)$, which implies the contradiction $i_g(T) \ge d^-(u) - d^-(y) > \frac{3}{2}i_g(T)$. \Box

In the proof of the next theorem, we use the structure of 3-partite tournaments having an $F_3(T)$ -partition.

Remark 2. Let *T* be a 3-partite tournament with partite sets P_0 , P_1 and P_2 . If $F_3(T)$ is independent, and *T* has an $F_3(T)$ -partition, then

(i) There exists a partite set P_0 such that $F_3(T) \subseteq P_0$, a partite set P_1 such that $P_1 = P_1^+(F_3(T)) \cup P_1^-(F_3(T))$, and a partite set P_2 such that $P_2 = P_2^+(F_3(T)) \cup P_2^-(F_3(T)) \cup P_2^-(F_3(T))$.

(ii) $P_1^-(F_3(T)) \to P_2^+(F_3(T)) \cup P_2^*(F_3(T))$ and $(P_2^*(F_3(T)) \cup P_2^-(F_3(T))) \to P_1^+(F_3(T))$.

Theorem 2. Let *T* be a 3-partite tournament, and $F_3(T)$ be an independent subset of *T* with $|F_3(T)| > \frac{3}{2}i_g(T)$. If *T* has an $F_3(T)$ -partition, then $f_3(T) \le \lfloor \frac{s}{4} + \frac{9i_g(T)^2}{2s} + \frac{29i_g(T)}{8} \rfloor$, where *s* is the size of the smallest partite set of *T*.

Proof. Let *T* be a 3-partite tournament with partite sets P_0 , P_1 and P_2 . Since $F_3(T)$ is independent, we can assume $F_3(T) \subseteq P_0$. Since *T* has an $F_3(T)$ partition, without loss of generality, we may assume that $P_1 = P_1^+(F_3(T)) \cup P_1^-(F_3(T))$.

Claim 2. $P_1^+(F_3(T)) \neq \emptyset$.

If $P_1^+(F_3(T)) = \emptyset$, then consider a vertex $x \in F_3(T)$ and $y \in P_1^-(F_3(T))$. Notice that $N^+(x) \subset N^+(y)$ and $d^+(y) \ge d^+(x) + f_3(T)$. Hence, $i_g(T) \ge d^+(y) - d^+(x) \ge f_3(T) \ge \frac{3}{2}i_g(T)$, a contradiction.

Claim 3. $P_2^+(F_3(T)) \neq \emptyset$.

Suppose to the contrary that $P_2^+(F_3(T)) = \emptyset$. Let $w \in P_1^+(F_3(T))$ and $v \in P_2^*(F_3(T)) \cup P_2^-(F_3(T))$. By Remark 2, we then have $d^-(w) \ge |P_2| + f_3(T)$. Lemma 2 now implies $\frac{|P_0| + |P_2| + i_g(T)}{2} \ge d^-(w)$. Thus, $|P_0| - |P_2| \ge 2f_3(T) - i_g(T) > 2i_g(T)$, which contradicts Lemma 1.

Define T^* as $T[P_1^+(F_3(T)) \cup P_2^+(F_3(T))]$. The proof is based on counting the arcs of T^* .

Notice that

$$|A(T^*)| = |P_1^+(F_3(T))||P_2^+(F_3(T))|$$

= $d(P_1^+(F_3(T), P_2^+(F_3(T)))) + d(P_2^+(F_3(T), P_1^+(F_3(T)))).$ (1)

We can bound the number of arcs from $P_1^+(F_3(T))$ to $P_2^+(F_3(T))$ as follows

$$d(P_1^+(F_3(T)), P_2^+(F_3(T))) \le |P_2^+(F_3(T))| \max_{w \in P_2^+(F_3(T))} d_{T^*}^-(w).$$

Analogously, the number of arcs from $P_2^+(F_3(T))$ to $P_1^+(F_3(T))$ is bounded by

$$d(P_2^+(F_3(T)), P_1^+(F_3(T))) \le |P_1^+(F_3(T))| \max_{v \in P_1^+(F_3(T))} d_{T^*}^-(v)$$

By Remark 2, $N_{T^*}^-(w) \cup F_3(T) \cup P_1^-(F_3(T)) \subseteq N_T^-(w)$ for every $w \in P_2^+(F_3(T))$. Therefore, for every $w \in P_2^+(F_3(T))$,

$$\begin{aligned} d_{T^*}^-(w) &\leq d_T^-(w) - |F_3(T)| - |P_1^-(F_3(T))| \\ &= d_T^-(w) - |F_3(T)| - |P_1| + |P_1^+(F_3(T))|. \end{aligned}$$

By Remark 2,
$$N_{T^*}^-(v) \cup F_3(T) \cup P_2^*(F_3(T)) \cup P_2^-(F_3(T)) \subseteq N_T^-(v)$$
 for every $v \in P_1^+(F_3(T))$. Thus, for every $v \in P_1^+(F_3(T))$

$$\begin{aligned} \bar{f}_{T^{*}}(v) &\leq d_{T}^{-}(v) - |F_{3}(T)| - |P_{2}^{-}(F_{3}(T))| - |P_{2}^{*}(F_{3}(T))| \\ &= d_{T}^{-}(v) - |F_{3}(T)| - |P_{2}| + |P_{2}^{+}(F_{3}(T))|. \end{aligned}$$

By Eq. (1),

d

$$\begin{aligned} |P_1^+(F_3(T))||P_2^+(F_3(T))| &\leq |P_2^+(F_3(T))|(d_T^-(w) - f_3(T) - |P_1| + |P_1^+(F_3(T))|) \\ &+ |P_1^+(F_3(T))|(d_T^-(v) - f_3(T) - |P_2| + |P_2^+(F_3(T))|). \end{aligned}$$

Let $m = |P_1^+(F_3(T))| + |P_2^+(F_3(T))|$ and $p = |P_1^+(F_3(T))|$. From the above inequality we obtain that

$$0 \le -p^2 + p(m + (|P_1| - |P_2|) + (d_T^-(v) - d_T^-(w))) + m(d_T^-(w) - |P_1| - f_3(T)).$$
(2)

Notice that, by Lemmas 1 and 2, $d_T^-(w) - |P_1| \le \frac{|P_0| + |P_1| + i_g(T)}{2} - |P_1| \le \frac{3i_g(T)}{2}$. Then,

$$0 \le -p^2 + p(m + 3i_g(T)) + m\left(\frac{3i_g(T)}{2} - f_3(T)\right)$$

As a consequence, the discriminant $D = (m + 3i_g(T))^2 + 4m(\frac{3i_g(T)}{2} - f_3(T))$ must be nonnegative. It follows that

$$f_3(T) \leq \frac{m}{4} + \frac{9i_g(T)^2}{4m} + 3i_g(T).$$

By symmetry, we reach the same results for $P_1^-(F_3(T))$ and $P_2^-(F_3(T))$. Thus, without loss of generality, we may assume that $m \ge |P_1|/2 \ge s/2$, where *s* is the size of the smallest partite set of *T*. Since $m \le d^+(y)$ for every $y \in F_3(T)$, by Lemma 2, we obtain $m \le \frac{|P_1|+|P_2|+i_g(T)}{2} \le k + \frac{i_g(T)}{2}$, where *k* is the size of the largest partite set of *T*. Since $k \le s + 2i_g(T)$, we have proved that $f_3(T) \le \lfloor \frac{s}{4} + \frac{9i_g(T)^2}{2s} + \frac{29i_g(T)}{8} \rfloor$. \Box

As a corollary of Theorems 1 and 2 we have the following.

Corollary 1. Let *T* be a *c*-partite tournament. If there is an independent set $A \subseteq F_3(T)$ with more than $\frac{3}{2}i_g(T)$ vertices and *T* has an *A*-partition, then $F_3(T)$ is contained in one partite set and $f_3(T) \leq \lfloor \frac{s}{4} + \frac{9i_g(T)^2}{2s} + \frac{29i_g(T)}{8} \rfloor$, where *s* is the size of the smallest partite set of *T*.

4. Almost regular 3-partite tournaments

In this section we prove that the sufficient condition of having an $F_3(T)$ -partition always holds for almost regular 3-partite tournaments and we prove the upper bound of Theorem 2 for this class of 3-partite tournaments.

Lemma 3. If T is an almost regular 3-partite tournament and $u, v \in F_3(T)$ two non-adjacent vertices, then T has a $\{u, v\}$ -partition.

Fig. 1. 3-partite almost regular tournament with \vec{C}_3 -vertices in two partite sets.

Proof. Let $u, v \in F_3(T) \cap P_0$. Without loss of generality, we may assume that $P_2^{-+}(u, v) \neq \emptyset$.

If $P_1^{+-}(u, v) \neq \emptyset$, then $P_2^{-+}(u, v) \rightarrow u \rightarrow P_1^{+-}(u, v) \rightarrow v \rightarrow P_2^{-+}(u, v)$ is a 4-cycle. Then u or v are in a triangle no matter the direction of the arcs between $P_2^{-+}(u, v)$ and $P_1^{+-}(u, v)$. Thus, $P_1^{+-}(u, v) = \emptyset$. If $P_1^{-+}(u, v) \neq \emptyset$, we can prove analogously that $P_2^{+-}(u, v) = \emptyset$. In this case, since both $P_1^{-+}(u, v)$ and $P_2^{-+}(u, v)$ are empty sets, $d^-(u) + d^+(v) = |V(T)| - |V(P_0)| + \sum_{j=0}^2 |P_j^{-+}(u, v)| \ge |V(T)| - |P_0| + 2$, which contradicts Lemma 2. So, $P_1^{-+}(u, v) = \emptyset$ and therefore, $P_1 = P_1^+(u, v) \cup P_1^-(u, v)$.

Corollary 2. Let T be a 3-partite almost regular tournament with at least two independent \vec{C}_3 -free vertices. Then, $F_3(T)$ is independent and, there exists at least one partite set P such that $P = P^+(F_3(T)) \cup P^-(F_3(T))$.

Proof. Let *A* be a maximal independent subset of $F_3(T)$. We assume without loss of generality that $A = F_3(T) \cap P_0$. **Claim 1.** *T* has an *A*-partition.

Suppose to the contrary that $P_1 \neq P_1^+(A) \cup P_1^-(A)$ and $P_2 \neq P_2^+(A) \cup P_2^-(A)$. Then, there exist $u, v \in A$ such that $P_1^{+-}(u, v) \neq \emptyset$. By Lemma 3, T has a $\{u, v\}$ -partition, therefore $P_2 = \tilde{P}_2^+(u, v) \cup \tilde{P}_2^-(u, v)$. Since $P_2 \neq P_2^+(A) \cup P_2^-(A)$, there exists $w \in A$ such that $P_2 \neq P_2^+(u, w) \cup P_2^-(u, w)$ and $P_2 \neq P_2^+(w, v) \cup P_2^-(w, v)$. Again by Lemma 3, T has a $\{u, w\}$ -partition and a $\{w, v\}$ -partition. That is, $P_1 = P_1^+(u, w) \cup P_1^-(u, w) = P_1^+(w, v) \cup P_1^-(w, v)$. This implies that $P_1^{+-}(u, v) \subseteq P_1^+(w, v) \cup P_1^-(w, v)$. $P_1^+(u, w) \cap P_1^-(v, w) \subseteq N^+(w) \cap N^-(w) = \emptyset$, which contradicts that $P_1^{+-}(u, v) \neq \emptyset$. Thus, Claim 1 is proved.

Since $|A| \ge 2 > \frac{3}{2}i_g(T)$ and T has an A-partition, by Theorem 1, $A = F_3(T)$ and therefore independent, and there exists at least one partite set *P* such that $P = P^+(F_3(T)) \cup P^-(F_3(T))$.

The proof of Claim 1 of Corollary 2 is similar to the proof of Corollary 1 in [2]. As a corollary of Remark 2 and Corollary 2 we have the following theorem.

Theorem 3. An almost regular 3-partite tournament T, with $f_3(T) > 3$ and partite sets P_0 , P_1 and P_2 has the following structure: (i) $F_3(T)$ is entirely contained in one partite set (say P_0).

- (ii) There exists one partite set (say P_1) such that $F_3(T) \rightarrow P_1^+$, $P_1^- \rightarrow F_3(T)$ and $P_1 = P_1^+ \cup P_1^-$, where $P^+ := P_1^+(F_3(T))$ and $P^{-} := P_{1}^{-}(F_{3}(T)).$
- (iii) If $P_2^+ = P_2^+(F_3(T))$, $P_2^- = P_2^-(F_3(T))$ and $P_2^* = P_2 \setminus (P_2^+ \cup P_2^-)$, then $(P_2^* \cup P_2^-) \to P_1^+$ and $P_1^- \to (P_2^+ \cup P_2^*)$.

The digraph in Fig. 1 is a 3-partite tournament T, with $f_3(T) = 2$ and $F_3(T)$ has vertices in two partite sets.

Theorem 4. If T is an almost regular 3-partite tournament with $f_3(T) > 3$, and k is the cardinality of the largest partite set of T, then $f_3(T) \leq \lfloor \frac{k+1}{4} \rfloor + 1 \leq \lfloor \frac{n+5}{12} \rfloor + 1$.

Proof. Let T be an almost regular 3-partite tournament such that $f_3(T) > 3$. By Corollary 2, T has an $F_3(T)$ -partition. Let $v \in P_1^+(F_3(T))$ and $w \in P_2^+(F_3(T))$. Following the proof of Theorem 2 and due to inequality (2), we have that

$$0 \ge p^2 - p(m + (|P_1| - |P_2|) + (d^-(v) - d^-(w))) + m(f_3(T) + |P_1| - d^-(w)),$$

where $m = |P_1^+(F_3(T))| + |P_2^+(F_3(T))|$ and $p = |P_1^+(F_3(T))|$.

Let k be the size of the largest partite set. It is not difficult to see that, if T is an almost regular 3-partite tournament, there are at least two partite sets with the same cardinality. Therefore, we have 12 cases depending on the cardinality of the partite sets P_0 , P_1 and P_2 of T (see Table 1).

In every case, we find bounds x_1, x_2, x_3 such that $d^-(v) \le x_1$ and $x_2 \le d^-(w) \le x_3$. Let $b = |P_1| - |P_2| + x_1 - x_2$, $c = |P_1| - x_3$ and $g(p) = p^2 - p(m+b) + m(f_3(T) + c)$. Since $b \ge |P_1| - |P_2| + d^-(v) - d^-(w)$ and $c \le |P_1| - d^-(w)$,

$$0 \ge p^2 - p(m + (|P_1| - |P_2|) + (d^-(v) - d^-(w))) + m(f_3(T) + |P_1| - d^-(w)) \ge g(p).$$

Table 1 $f_3(T)$ in an almost regular tripartite tournament.

3.								
Case	$ P_0 $	$ P_1 $	$ P_2 $	b	С	$g(p) = p^2 - p(m+b) + m(f_3 + c)$	Δ_P	$f_3(T) \leq \left\lfloor \frac{\Delta_P + 2b}{4} ight floor - c$
1	<i>k</i> – 2	<i>k</i> – 2	k	-1	0	$p^2 - p(m-1) + mf_3$	k - 1	$\left\lfloor \frac{k-3}{4} \right\rfloor \le \left\lfloor \frac{n-5}{12} \right\rfloor$
2	k-2	k	<i>k</i> – 2	1	1	$p^2 - p(m+1) + m(f_3 + 1)$	k-1	$\left\lfloor \frac{k+1}{4} \right\rfloor - 1 \le \left\lfloor \frac{n+7}{12} \right\rfloor - 1$
3	k-2	k	k	0	1	$p^2 - pm + m(f_3 + 1)$	k	$\left\lfloor \frac{k}{4} \right\rfloor - 1 \le \left\lfloor \frac{n+2}{12} \right\rfloor - 1$
4	k - 1	k - 1	k	0	0	$p^2 - pm + mf_3$	k	$\left\lfloor \frac{k}{4} \right\rfloor \leq \left\lfloor \frac{n+2}{12} \right\rfloor$
5	k - 1	k	k - 1	1	0	$p^2 - p(m+1) + mf_3$	k	$\left\lfloor \frac{k+2}{4} \right\rfloor \le \left\lfloor \frac{n+8}{12} \right\rfloor$
6	k - 1	k	k	1	0	$p^2 - p(m+1) + mf_3$	k	$\left\lfloor \frac{k+2}{4} \right\rfloor \le \left\lfloor \frac{n+7}{12} \right\rfloor$
7	k	<i>k</i> – 2	k-2	0	-1	$p^2 - pm + m(f_3 - 1)$	k-2	$\left\lfloor \frac{k-2}{4} \right\rfloor + 1 \le \left\lfloor \frac{n-4}{12} \right\rfloor + 1$
8	k	k-2	k	-1	-1	$p^2 - p(m-1) + m(f_3 - 1)$	k - 1	$\left\lfloor \frac{k-3}{4} \right\rfloor + 1 \le \left\lfloor \frac{n-7}{12} \right\rfloor + 1$
9	k	k - 1	k - 1	1	-1	$p^2 - p(m+1) + m(f_3 - 1)$	k - 1	$\left\lfloor \frac{k+1}{4} \right\rfloor + 1 \le \left\lfloor \frac{n+5}{12} \right\rfloor + 1$
10	k	k - 1	k	0	-1	$p^2 - pm + m(f_3 - 1)$	k	$\left\lfloor \frac{k}{4} \right\rfloor + 1 \le \left\lfloor \frac{n+1}{12} \right\rfloor + 1$
11	k	k	k-2	1	0	$p^2 - p(m+1) + mf_3$	k-1	$\left\lfloor \frac{k+1}{4} \right\rfloor \le \left\lfloor \frac{n+5}{12} \right\rfloor$
12	k	k	k - 1	1	0	$p^2 - p(m+1) + mf_3$	k	$\left\lfloor \frac{k+2}{4} \right\rfloor \le \left\lfloor \frac{n+7}{12} \right\rfloor$

Thus, the discriminant of g(p) is nonnegative, that is $(m + b)^2 - 4m(f_3(T) + c) \ge 0$. Therefore, $f_3(T) \le \frac{(m+b)^2}{4m} - c$. Since $f_3(T)$ is an integer, it follows that

$$f_3(T) \le \left\lfloor \left\lfloor \frac{m+2b}{4} \right\rfloor + \frac{3}{4} + \frac{b^2}{4m} - c \right\rfloor = \left\lfloor \frac{m+2b}{4} \right\rfloor - c$$

because m > 1 and $|b| \le 1$ (see Table 1). Let $\Delta_P = \left\lceil \frac{|P_1| + |P_2|}{2} \right\rceil$. By the definition of $m, m \le \Delta_P$ and therefore,

$$f_3(T) \leq \left\lfloor \frac{\Delta_P + 2b}{4} \right\rfloor - c.$$

We calculate *b* and *c* only for two cases, but the calculus of the rest of the cases is similar.

Case 2. $|P_0| = k - 2$, $|P_1| = k$ and $|P_2| = k - 2$.

Since *T* is almost regular, for every $v \in P_1$ and $w \in P_2$, $x_1 = d^-(v) = d^+(v) = k - 2$ and $x_2 = x_3 = d^-(w) = d^+(w) = d^+(w)$ k - 1. Hence, b = 1, c = 1, $g(p) = p^2 - p(m + 1) + m(f_3 + 1)$, and $\Delta_P = k - 1$. Therefore,

$$f_3(T) \leq \left\lfloor \frac{\Delta_P + 2b}{4}
ight
ceil - c = \left\lfloor \frac{k+1}{4}
ight
ceil - 1 = \left\lfloor \frac{n+7}{12}
ight
ceil - 1,$$

because, in this case, n = 3k - 4,

Case 9. $|P_0| = k$ and $|P_1| = |P_2| = k - 1$.

Since T is almost regular, for every $v \in P_1$ and $w \in P_2$, $x_1 = k \ge d^-(v)$, $x_2 = k - 1$ and $x_3 = k$. Hence, b = 1, c = -1, $g(p) = p^2 - p(m+1) + m(f_3 - 1)$, and $\Delta_P = k - 1$. In this case, n = 3k - 4 and therefore,

$$f_3(T) \leq \left\lfloor \frac{\Delta_P + 2b}{4} \right\rfloor - c = \left\lfloor \frac{k+1}{4} \right\rfloor + 1 = \left\lfloor \frac{n+5}{12} \right\rfloor + 1.$$

In Table 1, we depict the corresponding value of $b = \Delta_P + x_1 - x_2$, $c = |P_1| - x_3$, the polynomial g(p) and the bound of $f_3(T)$ for each case.

Hence, we obtain that $f_3(T) \leq \lfloor \frac{k+1}{4} \rfloor + 1 \leq \lfloor \frac{n+5}{12} \rfloor + 1$ in every case. \Box

Acknowledgments

The authors thank the anonymous referees for their comments, which improved substantially the rewriting of this paper.

References

- [1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
- [2] A.P. Figueroa, B. Llano, R. Zuazua, The number of \vec{c}_3 -free vertices on regular 3-partite tournaments, Discrete Math. 310 (19) (2010) 2482–2488.
- [3] A.P. Figueroa, Mika Olsen, The tight bound on the number of \vec{C}_3 -free vertices on regular 3-partite tournaments, Australas, J. Combin. 52 (2012) 209–214.

^[4] M. Tewes, L. Volkmann, A. Yeo, Almost all almost regular *c*-partite tournaments with $c \ge 5$ are vertex pancyclic, Discrete Math. 242 (2002) 201–228. [5] L. Volkmann, Cycles in multipartite tournaments: Results and problems, Discrete Math. 245 (1–3) (2002) 19–53.

- [6] L. Volkmann, Multipartite tournaments: A survey, Discrete Math. 307 (24) (2007) 3097–3129.
 [7] L. Volkmann, A. Yeo, Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments, Discrete Math. 281 (2004) 267–276.
 [8] G. Zhou, T. Yao, K.M. Zhang, A note on regular multipartite tournaments, J. Nanjing Univ. Math. Biq 15 (1998) 73–75.