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1. Introduction and notation

We use [4] for terminology and notations not defined here and consider simple undirected graphs only. Let G = (V, E)
be a graph. For a subgraph H of G, let |H| denote the order of H, i.e. the number of vertices of H and let ||[H|| denote the size
of H, that is, the number of edges of H. If a vertex u is an end vertex of an edge e, we write u € e.

Let G be a graph on n vertices, which is an edge-disjoint union of ms-factors, that is, s regular spanning subgraphs. In 1988,
Alspach [1] first posed the problem that if there exists a matching M of m edges with exactly one edge from each 2-factor.
Such a matching is called orthogonal because of applications in design theory. A matching M is suborthogonal if there is at
most one edge from each s-factor. Alspach, Heinrich and Liu [2] proved that the answer is affirmative if n > 4m — 5. Kouider
and Sotteau improved this bound to 3.23m.In 2002, Stong [ 17] further improved this bound and proved the following result.

Theorem 1.1 ([17]). Let G be a 2m-regular graph with n > 3m — 2. Then for any decomposition of E(G) into m 2-factors
Fi,F,, ..., Fy, there is an orthogonal matching.

The problem with s = 2 and all the 2-factors being hamiltonian cycles was raised by Caccetta and Mardiyono [5] and
Chung (referred to in [ 12]) but apparently the extra condition is no help.

In 1998, Anstee and Caccetta [3] asked if there is a matching M of m edges with exactly one edge from each s-factor in
the cases of s = 1and s > 3? For s > 3, the answer is yes (see [3]).

For s = 1, the answer is negative: let G be a complete graph K;;,;1 (m is even) which is an edge disjoint union of m
1-factors, however, the size of maximum matching is at most 3. Indeed, it is best possible, see [11]. But how about when
we restrict ourselves to large graph? Wang, Liu and Liu [20] proved the following result.

* Corresponding author.
E-mail address: ghwang@sdu.edu.cn (G. Wang).

http://dx.doi.org/10.1016/j.disc.2015.05.009
0012-365X/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.disc.2015.05.009
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.05.009&domain=pdf
mailto:ghwang@sdu.edu.cn
http://dx.doi.org/10.1016/j.disc.2015.05.009

C. Qu et al. / Discrete Mathematics 338 (2015) 2080-2088 2081

Theorem 1.2 ([20]). Let G be an m-regular graph with n > 3.79m. Then for any decomposition of E(G) into m 1-factors
F1, F, ..., Fp, there is an orthogonal matching.

In particular, if G is K;, , and is a union of m 1-factors Fy, F,, . . ., Fy, then G corresponds to a Latin square, where entry
a; is lif edge (u;, vj) € F;. Now our desired matching corresponds to a transversal. Hatami and Shor [9] proved that if Ki
is a union of m 1-factors Fy, F,, . . ., Fy, then there is a matching M of p edges with at most one edge from any 1-factor with
p =m — O(logm)?.

If G is assigned an arbitrary edge-coloring (not necessarily proper), then we say that G is an edge-colored graph. A subgraph
H of an edge-colored graph G is called rainbow (also heterochromatic, multicolored, polychromatic) if its edges have distinct
colors. The minimum color degree of G is the smallest number of distinct colors on the edges incident with a vertex over
all vertices. Recently, the study of rainbow paths and cycles under minimum color degree condition has received much
attention, see [6,15]. For rainbow matchings under minimum color degree condition, see [11,10,16,13,14,19].

In any decomposition of E(G) into ms-factors, we can construct an edge-colored graph by giving each s-factor a color.
Then a rainbow matching of G corresponds to a suborthogonal matching of G. In particular, when s = 1, the edge-colored
graph obtained above is properly edge-colored. For rainbow matchings in properly edge-colored graphs, see [7,8,18,21].

In this paper, we improve the bounds in Theorems 1.1 and 1.2 and get the following results.

Theorem 1.3. Let G be an m-regular graph with n > 3.2m — 1. Then for any decomposition of E(G) into m 1-factors Fy, F5,
..., Fp, there is an orthogonal matching.

Theorem 1.4. Let G be a 2m-regular graph with n > 2v/2m + 4.5. Then for any decomposition of E(G) into m 2-factors
F1, Fy, ..., Ep, there is an orthogonal matching.

2. Proof of main results

We prove our conclusions by contradiction. Firstly, whenm = 1and m = 2, the proofis trivial. If Theorems 1.3 and 1.4 are
false, then there exists a minimal m, such that there is no a rainbow matching of size m for G. We construct an edge-colored
graph by giving each 1-factor (in Theorem 1.3), 2-factor (in Theorem 1.4) a color from {1, 2, ..., m}. For an edge e € E(G),
let c(e) denote the color of e. For a subgraph H of G, let C(H) = {c(e) | e € E(H)}. By the minimality of m, G has a rainbow
matching of size m — 1. For simplicity, let p = m — 1 and n = |G|. We define a good configuration H, = M; UM, U M3 U F
as follows (see Fig. 1) . Note that the blue edges in the figure are colored m.

(a) For some integer k > 0,M; = {e; (e; = ujv;) :i=1,2,...,k}and M, = {f; : i = 1,2, ..., k} are two vertex-disjoint
rainbow matchings of G with c(e;) = c(f;).

(b) M3 = {g; (g = ujvy) : i =k+1,..., p}isarainbow matching, which is vertex-disjoint from M; U M, and c(g;) # c(e;)
fori<j<k<i<p.

For abbreviation, let G; denote the subgraph induced by V(G)\V(M; U M, U M3). Without loss of generality, we

assume that C((M; UM3) = {1,2,...,m— 1}.

(c)F ={hij(hy = vizy) : i = k+ 1,...,k+ t} is a matching, vertex-disjoint from M; U M,, h; N M3 = {v;} € g, and
c(h)) =m.

We choose a good configuration H, = My U M, U M3 U F satisfying the following conditions:
(1) k = ||M¢]| is maximum;
(2) subject to (1), F is maximal, that is, F covers the maximum number of vertices of Ms.
Claim 2.1. If u € V(Gy) and c(uv) = m, then v € V(M3).

Proof. By symmetry, we may assume that v & V(M,). If v &€ V(Ms), then M, U M3 U uv is an orthogonal matching of G,
which is a contradiction. O

Claim 2.2. If u € V(e; U f;) and c(uv) = m, where v & V(Ms), then v € V(e; U f;).

Proof. Suppose to the contrary that v ¢ V(e; U f;). By symmetry and without loss of generality, we may assume that
u, v & V(M3). Since c(uv) = m, M, U M3 U uv is an orthogonal matching, which is a contradiction. O

If there is an edge uv such that u, v € V(e; U f;) and c(uv) = m, then we call e; U f; a nice pair. Let g denote the number
of nice pairs in M; U M,. Without loss of generality, we assume that the nice pairs are {e; Ufi, ..., e, U f;} and we call c(e;)
a nice color, fori = 1,2, ..., q. Let ny be the number of edges uv such that u € V(Ms), v € V(G)\V(M3) and c(uv) = m.
Note that each vertex is incident with at least one edge with color m since each color induces a 1-factor (in Theorem 1.3) or
2-factor (in Theorem 1.4).

Claim 2.3. We have that V (Hp) = V(G).
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Fig. 1. A good configuration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Proof. First we will prove this claim in Theorem 1.3. Since color m induces a 1-factor, we have a monochromatic matching
M’ = {zw; | c(zzw;) = m, z; € V(Gy)}, which saturates each vertex of G;. Note that there exists no edge in M3 such that
both of its ends are in M’, otherwise, without loss of generality, we assume that w; = v, and w; = uy,¢. Then we add
zyw1 to My, add z,w, to M, and delete w4 v from Ms. Thus we get a new good configuration with bigger k, which is a
contradiction. By Claims 2.1 and 2.2, w; ¢ V(M; U M,). Hence F saturates each vertex in Gy. So V(Hp) = V(G).

Next, we will prove this claim in Theorem 1.4. Define M’ as before.

For each edge g; = u;v; in M3, let d;,(u;) denote the number of edges u;v such that c(ujv) = m, v € V(Gy) and let
dm(v;) denote the number of edges v;v such that c(vjv) = m, v € V(Gy). Then for each edge g; = u;jv; € E(M3), diy(u;) +
d.,(v;) < 2.0therwise we can choose a matching of size two, say {u;z, v;z'}, which saturates u; and v;. Then after adding u;z
to My, adding v;z’ to M, and deleting u;v; in M3, we get a new good configuration with bigger k, which is a contradiction.
So dp(u;) + dn(v;)) < 2, for each edge gg = ujv; € E(Mj3). Let d,;,(z;) denote the number of edges uz; such that
c(ziu) = m,z; € V(Gy). We have d,,(z;)) = 2, for z; € V(Gy). Recall that u € V(M3) by Claim 2.1. Then we can get a
monochromatic matching M” = {zyw; | z; € V(Gy), w; € V(M3)} with color m, which saturates each vertex of G;. So we
have that V(Hp) = V(G). O

Recall that t = ||F||. Then

n=4k+3t+2(p—k—t)=2k+t+ 2p. (2.1)
Thus
n—2p—t
k= ———. 2.2
> (2.2)
Without loss of generality, we assume that M3 N F = {vgy1, Vg2, ..., Vkse} and F = Ufjktﬂ h; = Ufiktﬂ v;z;. For

abbreviation, let T denote the subgraph induced by V(Uf"i,f+1 z;UM; UM;).Eachcolorin {c(ujv;) |i=k+1,...,k+t}is
called a kind color. We have the following claim.

Claim 2.4. Let e = uv be an edge with a kind color, where u, v € V(T). Recall that c(uv) = c(g+i,) for some 1 < iy < t. Then
one of the following is true:

(Qu,veVEUf)fori=1,2,...,k
(b) u = zyqj, and v € V(M U My);
(€) v =2x4j, andu € V(M U My).

Proof. If the claim would not hold, by symmetry and without loss of generality, then we may assume thatu, v ¢ V(M,). If
uv N zppj, = ¥, then My U M3 U {uv, hepi,} — 8k+i, is an orthogonal matching for G, which is a contradiction. If u, v € V(Gy)
and uv Nz, # ¥, then after adding gy, to My, adding uv to M, and deleting gy, in M3, we get a good configuration with
bigger k, which is a contradiction. O
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2.1. Proof of Theorem 1.3

Claim 2.5. If u € V(Gy) and c(uv) is a nice color, then v € V(M3).

Proof. By symmetry, we may assume that v & V(M,). If v & V(M3), then we may assume that c(uv) = c(e;). Let e denote
the edge in e; U f; and c(e) = m. Then M, U M3 U {uv, e} — f is an orthogonal matching of G, which is a contradiction. O
Claim 2.6. If u € V(e; U f;) and c(uv) is a nice color, where v & V(Ms), then v € V(e; U f)).

Proof. If v ¢ V(e; U f;), by symmetry and without loss of generality, we may assume that u, v € V(Ms). Since c(uv) is nice,
we may assume that c(uv) = c(e;). Let e denote an edge with vertices in V(e Uf;) and c(e) = m, then M, UM3 U {uv, e} —f;
is an orthogonal matching in G, which is a contradiction. O

By Claim 2.3, we conclude that n < 4k + 3(p — k) = 3p + k. Hence
k>n—3p. (2.3)
By (2.2) and (2.3), we get the following claim.

Claim 2.7. We haven < 4p — t.

Recall that q denotes the number of nice pairs in M; U M, and n; is the number of edges uv such that u € V(Ms),
v € V(G)\V(M3) and c(uv) = m. We will prove that q > 3.Becausen; > |T| —4q = 4k+t —4qgandn; < |[M3| = 2(p —k),
it follows that 6k 4+ 5t — 4t — 2p < 4q. Note that k +t < p, which implies that 10k 4+ 5t — 6p < 4q. By (2.2), it follows that
5n — 16p < 4q. By assumptionn > 3.2m — 1 = 3.2p + 2.2, so we finally arrive at % < q. Since g is an integer, we have
q=3.

Let n, be the number of edges uv such thatu € V(Ms), v € V(G)\V (M3) and c(uv) is nice or c(uv) = m, thatis, c(uv) €

{c(e1), ..., c(eq), m}. By Claims 2.2 and 2.6, each vertex v' € V(e; U f;) for some i € {1,2,...,q}, is incident with
at most 3 edges u'v’ such c(u'v’) is nice or c(W'v') = mand v ¢ V(Ms). Similarly, each v" € V(e; U f;), where
i€ f{q+1,9+2,...,k} is incident with at most 2 edges u'v’ such that c(u'v’) is nice and v’ ¢ V(Ms). So we have

ny > (1+q)|T| —12q — 8(k — q) = (1 + q)(4k + t) — 8k — 4q.
We also have n, < (1+ q)|M3| = 2(1+ q)(p — k). Hence

A+ q)(dk+1t) —8k—4q <2(1+q)(p — k).
Thus

_0+9Cp—0 4q
- 6q —2 6g—2°
By (2.2), we have
n—2p—t<(1+q)(2p—t) 4q
2 - 6q —2 6q—2
It follows that
> 84— Dn—8qp—4q

k

- 2q—2
- (B3q—1)(3.2p+2.2) —8qp — 4q
- 2q—2

0.8 1.3g—1.1
=0.38p— P d

qg—1 q—1

1.3¢—-1.1
>04p+ —

qg—1

as q > 3. Hence, inequality (2.4) becomes
L < 08(1+qp 2.7¢>—42q+1.1
T 3g-1 6q-2)@q—1) °

k _ 2(1+q) |, 2.7¢°—4.2q+1.1 9 35
K < < 56 = 52
We have that | < 575 4 Z55=09 59 < T+ 55 = %-

Now we choose a kind color, say c(gi+1), such that the edges with this kind color in T is minimum among all kind colors.
By Claim 2.4, we know that the number of edges with color c(gi,1) is at most 47" + 1inT. Let n3 be the number of edges uv
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suchu € v(M3), v € v(T) and c(uv) = c(gk+1)- By Claim 2.4, n3 > |T| — 2(47" +1) = @k+t) — 2(47" + 1). We also have
nsy < |[Ms| —2 =2(p — k) — 2. Hence

4k
k+0)-2(=+1) =20k -2
Recall that ¥ < 25 as g > 3. Hence
a4k + ¢ 140 <2(p—k)
K+t — — — k).
13 — b
By (2.2), we have
140
3(n—2p—t)§2p—t+§.

It follows that

70
t>15n—4p— —
13
70
>15x%x(3.2p+2.2) —4p — e
~08 271
=P 300
By Claim 2.7, we have that
271
32p+22=32m—-1<n<4p—-t< 3,2p—|—ﬁ,

which is a contradiction. This completes the proof of Theorem 1.3.

2.2. Proof of Theorem 1.4

Claim 2.8. Let c(ziu;) be a kind color or c(z;u;) = m, wherek+ 1 <1i,j < k+t. Theni =j.

Proof. Otherwise, without loss of generality, we may assume thati = k + 1andj = k + 2. If c(zx41Uky2) = m, then
we add zy4 Uy to My, add hyy, to M, and delete gi., from Ms. Hence we get another good configuration with bigger k,
which is a contradiction. If c(zj41Ury2) = c(gk+2), then we get an orthogonal matching My U M3 U {zyy k12, hkt2} — Skro,
a contradiction. So we conclude that ¢ (zy41Ukt2) = c(8k+i), i # 2. Then we replace M3 by M3 U hyy5 — {812, 8k+i}, add gy
to M7 and add zy 1uy12 to My, and thus we get a new good configuration with bigger k, a contradiction. This completes the
proof. O

LetM; = M3\ {Zk+1, 8kt2s - - - » Gt }- Fori = {k+1, ..., k+t}, edge vz is called a special edge if v € V(M;),c(vz,-) % c(g)
and either c(vz) is kind or c(vz;) = m. For a vertex v € M31, let ds(v) denote the number of special edges vx where

Xe U:(=+kt+1 Zj.
Claim 2.9. Foranedgee = uv € E(M; ), if ds(u) 4+ ds(v) > 3, then ds(u)ds(v) = 0.

Proof. Otherwise there exist two independent special edges, say uzy 1, vzys2. We divide our proof into the following cases.

Case 1: c(uzgy1) = c(VZky2).

First suppose that c(uzy+1) = m. Then we add uz;1 to My, add vz, to M, and delete uv from M3, hence we get another
good configuration with bigger k, which is a contradiction. Now we assume that c (uz,, 1) is kind. By the definition of special
edges, without loss of generality, we may assume that c(uzyy+1) = c(gk+3). Then we add uzy1 to My, add vz, to M, and
replace M3 by M3 U hy,3 — {uv, g+3}. Thus we get a good configuration with bigger k, which is also a contradiction.

Case 2: c(uzg41) # c(VZky2).

First we suppose that c(uzy,1) = m or c(vz ) = m. Without loss of generality, we may assume that c(uz,1) = m
and c(vzg42) = c(gk+i), i # 2. Then we add g4 to My, add vz, to M, and replace M3 by M3 U uzi 1 — {uv, g+i}-
Hence we get a good configuration with bigger k, which is a contradiction. So now we assume that c(uz;1) = c(gk+) and
€(vZg42) = c(gk4j), where i # j. Recall that by the definition of the special edges, i # 1 andj # 2. Then we add g, to My,
add uzy 1 to M, and replace M3 by M3 U hij — {uv, gk+j}. Thus we obtain another good configuration with bigger k, which
is a contradiction. O

Each vertex v in M31 is called special if d;(v) > 7. By Claim 2.9, we assume that {t1¢11, Ugtt+2, - - - » Ukretr} 1S the set of
special vertices. A color in {c(gk+¢+1), - - - » C(Ekre+r)} is called a popular color. An edge with popular color is called a popular
edge.
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Claim 2.10. Let uv be a popular edge such that v € Uf‘:ktﬂ zi. Thenu & V(T).

Proof. Suppose, on the contrary, there exists an edge uv such that c(uv) is popular, v € Uf:,fﬂ ziand u € V(T). Without
loss of generality, we assume that v = z;,1 and c(uv) = c(gk+r+1)- Further, ifu € Uf‘i,f 1 Zi» then we assume that u =z,
and ifu € V(M; U M,), then we assume that u € M,. Now we can choose a special edge u. 1w, which is not incident with
u, v such that c(ugs¢r1w) € {c(gk+1), c(8ks2)}. If c(Upyer1w) is kind, we may assume that c(Up¢11w) = c(gkri), Where
i€ {3,...,t}.Obviously, w # zc;. Then M; U M3 U {uv, U1 1w, hgri} — {8kri» Skrer1) is an orthogonal matching for G,
which is a contradiction. So now we assume that ¢ (uyyr+1w) = m. Then M; UM; U {uv, ugi¢+qw} — 8k+r+1 1S an orthogonal
matching for G, which is also a contradiction. O

Claim 2.11. Let z;u; be a popular edge wherek 4+ 1 <i,j < k+t. Theni = j.

Proof. Otherwise, without loss of generality, we may assume thati = k4 1,j = k + 2 and c(zjttj) = ¢(8k+r+1)- Since
verteXx U441 is special, we choose a special edge uy1w such that w4 w is not incident with z;, z; and ¢ (Ug+1w) &
{c(g), c(g)}. If c(Ugs41w) = m, then we add h; to My, add uy41w to M, and replace M3 by M3 U{zju;} —{gj, 8k+++1}, and we
get a new good configuration with bigger k, a contradiction. So now we assume that ¢ (Ug141w) = ¢(gktip). io € {1, 2}. Then
we add gy, to M1, add uy¢+1w to My, replace M3 by M3 U {z;u;, hj} — {gj, Sk-+t+1, 8k+i, }- Hence we find a good configuration
with bigger k, which is also a contradiction. O

Claim 2.12. There is no popular edge between {zy11, Zk+2, - - - Zirt} AN {Vps1, Vkbtt2s - -+ 5 Ukbttr )

Proof. Otherwise without loss of generality, we may assume that there exists an edge, say z1Vk+¢+1, Which has a popular
color. Since dg(ug4r+1) > 7, we can choose a special edge uy;¢4+1z such thatz € Uf:,fH Zi,Z # Zygy1 and c(Ugye412) F#
C(8k+1)-

Case 1: c(Zp11Vkt41) = C(&rrer1)-

First suppose that c(u4¢+1z) = m. Then My U M3 U {Zy11Vks¢41, Uk+t+1Z2} — Skre+1 1S an orthogonal matching for
G, which is a contradiction. Now we assume that c(uy,¢112) is kind. Without loss of generality, we may assume that
C(Ure+12) = C(gky2)- Then we add gyy» to My, add uyi¢112 to M, and replace Ms by M3 U zgy 1V e41 — {8ktea1, Sk}
Thus we get a good configuration with bigger k, which is also a contradiction.

Case 2: C(Zxy1Vksr41) F C(Gkev1)-

Without loss of generality, we assume that ¢(zx+1Vk+t+1) = €(8k+t+2)- If c(Uks¢+12) = m, then we add z41Vg4¢41 to My,
add gi¢42 to M, and replace M3 by M3 Ut ¢ 112 — {gk+¢+1, 8k+¢+2}- Then we obtain a good configuration with larger k, which
is a contradiction. So now we assume that c (uy4¢+12) is kind. Without loss of generality, we may assume that ¢ (uy4¢1+12) =
€(8k42)- Then we add Ziy 1 Vky 41 to My, add gkyr42 to My and replace Ms by M3 U {uri 1112, hira} — {Ekr2, Skrea1s Skreral)
Thus we get another good configuration with bigger k, which is also a contradiction. This completes our proof. O

An edge between {zy1, Zk+2, - - -, Zkte ) @and V(M3) is called an sop edge if it is a special edge or a popular edge.

Claim 2.13. For an edge uv € E(M3), if u is incident with at least two sop edges, then v can not be incident with sop edges.

Proof. Suppose not, by Claims 2.9 and 2.12, we know that uv = gyy4r+; Withi > 0. So we can choose two independent
sop edges, say uzy1 and vz,,. We divide our proof into the following cases.

Case 1: uz, 4 is a special edge or vz, is a special edge.

Without loss of generality, we assume that uz, is a special edge. By Claim 2.9, we know that c(vzy2) is a popular
color, and we may assume that c(vzyy2) = €(8k+¢+1)- First suppose that c(uzy+;) = m. Then we add gi,¢+1 to My, add
VZk4+2 to M, and replace M3 by M3 U uzyy1 — {gk+c+1, Uv}. Therefore, we get another good configuration with bigger
k, which is a contradiction. Hence now we assume that c(uzx,1) is kind, say c(uzx11) = c¢(gk4j). By the definition of
special edges, j # 1. Since ds(ug4r+1) > 7, we can choose a special edge ugirqw such that w & {Zgi1, Zkt2, Zitj)
and c(Ugpep1w) # C(Zkgy)- Let cUpperiw) = c(8ksip)- If o & {1,2}, then we add gy to My, add uzx 1 to M, and
replace M3 by M3 U {vZxy2, Biqigs Ukye41W} — {Zkrig» UV, Skt Bkte+1)- Thus we get a new good configuration with bigger
k, which is also a contradiction. If iy € {1, 2}, say ip = 1, then we add gi; to My, add uz,; to M, and replace M3 by
M3 U {vzZs2, higjs Ukt W) — {8k41, UV, Sk 8k+1+1)- Hence we also get a new good configuration with bigger k, which is
a contradiction.

Case 2: uz;.1 and vz, are popular edges.

First we assume that c(uzy11) = c(vzi42). Further without loss of generality we assume that c(uzy1) = c(gk+¢+1). Note
that uv = ggir4r+i 7 kae+1 OF else we can add uzy, 1 to My, add vz, 1 to M, and replace M3 by M3 — uv, hence we obtain a
good configuration with bigger k, which is a contradiction. So uv # gi+¢+1. Then we choose a special edge 11w such that
W & {Zky1, Ziera} and c(Upg e 1w) & {8ka1, Braa}s since ds(Ugye1) = 7, such w exists. If ¢ (U 1w) = m, thenwe add uzy 1 to
My, add vz, to M, and replace M3 by M3 Ut ¢ 11 W — {gk+¢+1, Uv}. So we assume that ¢ (Uy1w) is kind, say, c (U1 w) =
C(&k+iy)- Now we add uzy11 to My, add vziy, to M, and replace M3 by M3 U {ugqr1w, hrqig} — {8k+c+15 Gktig» Uv}. Then we
obtain a new good configuration with bigger k, which is a contradiction.

Next we assume that c(uzy41) # c(vzgqz). Without loss of generality, we assume that c(uzyy1) = c(gk+¢+1) and
c(Vzg+2) = C(8kyry2), further we assume that uv # ggi¢4+2. Then we choose a special edge uy,¢ow such that w ¢
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{Zk+1, Zk2} and c(Upre2w) & {C(8k+1)5 €(8k+2)}- Since ds(Uk+e4+2) > 7, such w exists. Assume that ¢ (Ugtr12W) = C(8k-tig)-
Now we add uzy1 to My, add gi4+1 to M, and replace M3 by M3 U {ugir1ow, hgrig} — {8k+t+2, 8k+iy» Uv}. Then we obtain a
new good configuration with bigger k, which is a contradiction. O

Let ny denote the number of special edges and popular edges between f:,f 414 and V(M31). By Claim 2.4, each z; can send
2 edges colored c(g;) to My U M. By Claim 2.8, c(z;ju;) can be a kind color or equal m. Moreover each z; can send at most t

edges colored m or popular colors to Uf‘:,f 41 Vi- So we have
ng >2(1+r+ )t — 3t — 2.

On the other hand, foreachi € {k+t+1..., k4t 4 r}, u; sends at most t special or popular edges to Uf:,fﬂ z;. By the
definition of special vertices, foreachi € {k+t+r+1..., p}, those vertices in V(g;) send at most 6 special edges to Uf:ktH Zi.
Moreover, each vertexin V((!_, ., &) sends at most r popular edges to U;‘:,EH z;. Combining with Claims 2.12 and 2.13,
we have

ng<rt+6(p—k—t—r)y+2r(p—k—t—r).

Hence
SOt S
ot re3—
b= 2 2r+6
L el S S
[E— r J—
=277 2r +6
n
z§—p+r+ﬁt—3ﬁ—3.
So we have
>n+(ﬁ+1)t 3v2+3 (25)
P=1 2 2 :

Recall that g is the number of nice pairs in M; U M,. We will prove that ¢ > 4. Otherwise g < 3. Recall that n; is the number
of edges uv such thatu € V(M3), v € V(G)\V(Ms) and c(uv) = m.By Claims 2.1and 2.2,ny > 2|T| — 8q > 2(4k +t) — 24.
On the other hand, n; < 2|Ms| = 4(p — k). It follows that 2(4k + t) — 24 < 4(p — k). Thatis, k < 2 — L 4+ 2. By (2.2), we

= 376
have
n—2p—t p t
— < - — =42
2 ~3 6
Itfollowsthattz32—”—4p—6.By(2.5),wehavethat
(3v2+4)n 9(v2+1) 73
pzf—2<«/§+l)p—#2p+3+?,

which is a contradiction. So g > 4.

Claim 2.14. Let e = uv be an edge with a nice color, where u, v € V(T). Without loss of generality, we assume that c(uv) =
c(eiy) for some iy < q and further we assume that c(w; wi) = m, where w; € ej, and w; € f;,. Then one of the following is
true:

(a) u,v e V(e; Ufy) forsomei € {1,2,...,k};
1 2

(b) uv is incident with w;  or wj,.
Proof. Otherwise, by symmetry and without loss of generality, we may assume that u,v ¢ V(M;). Then M, U M3 U
{uv, wil0 wizo} — e, is an orthogonal matching, which is a contradiction. O

Let ns be the number of edges uv such that u € V(M3), v € V(T) and c(uv) is nice or c(uv) = m (c(uv) € {c(ey),
..., c(eq), m}). Call a color fine if it is nice or equal m. For eachi € {1, 2, ..., g}, there are at most 6 edges with fine colors
in the subgraph induced by V(e; U f;). For eachi € {q+ 1,q + 2, ..., k}, there are at most 4 edges with fine colors in the
subgraph induced by V (e; Uf;). By Claim 2.14(b), for eachi € {1, 2, ..., g}, the vertices in V (e; Uf;) can send at most 2 edges
with c(e;) to V(T) \ V(e; U f;). So we have ns > 2(1+ q)|T| — 12q — 4q — 8(k — q) = 2(1 4+ q)(4k + t) — 8k — 8q.

We also have ns < 2(1 + q)|M3| = 4(1 + q)(p — k). Hence

201+ q)(4k + t) — 8k — 8q < 4(1+ q)(p — k).
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Thus
L < (1+q@p—t) 4q .
6q + 2 6q + 2
By (2.2),
n—2p—t<(1+q)(2p—t) 4q
2 - 6q +2 6g+2°
It follows that
. (B3g+ DHn—(8q+4)p—4q
> 2
(Bq+ 1)(2v2p +2+/2 4+ 4.5) — (8q + 4)p — 4q
> 2

0.24pq — 0.59p + 8.9q
q

0.59p
>0.24p+89 — ——
q

=0.09p + 8.9,
as ¢ > 4. Hence

k< (1+q9Q@p—1) 4q
6q +2 6q + 2
_ 0.955pq +0.955p
- 3g+1
- 1.20pq.
“3q+1

k 1.20pq
It holds that P =< T09GqiD <45.

Now we choose a kind color, say c(gk+1), such that the number of edges with this kind color in T is minimum among all
kind colors. By Claim 2.4, we know that the number of edges with color c(gi.1) is at most % + 2inT. Let n3 be the number

of edge uv such thatu € V(M3), v € V(T) and c(uv) = c(gk+1). Thusny > 2|T| — 2(471‘ +2) =24k +t) — 2(47" + 2). We
also have n; < 2|M3| — 2 = 4(p — k) — 2. Hence

4k
2(4k+t)—2<t+2) <4(p—k) —2.

Recall that ¥ < 4.5. Hence
a4t —19<2(p—h).
By (2.2),
3n—2p—1t) <2p—t+19.

It follows thatt > 1.5n — 4p — ?. By (2.5), we have that

3v2 4 4)n 25(v/2+ 1 10 — 74/2 1
p= CV2EAN [4 M a2ty - B2ED 2 dopp 0oV L

8 80
which is a contradiction. This completes the proof of Theorem 1.4.
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