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a b s t r a c t

LetG be a graph on n vertices, which is an edge-disjoint union ofms-factors, that is, s regular
spanning subgraphs. Alspach first posed the problem that if there exists a matching M of
m edges with exactly one edge from each 2-factor. Such a matching is called orthogonal
because of applications in design theory. For s = 2, so far the best known result is due to
Stong in 2002,which states that if n ≥ 3m−2, then there is an orthogonalmatching. Anstee
and Caccetta also asked if there is amatchingM ofm edgeswith exactly one edge from each
s-factor? They answered yes for s ≥ 3. In this paper, we get a better bound and prove that if
s = 2 and n ≥ 2

√
2m+4.5 (note that 2

√
2 ≤ 2.825), then there is an orthogonalmatching.

We also prove that if s = 1 and n ≥ 3.2m−1, then there is an orthogonal matching, which
improves the previous bound (3.79m).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and notation

We use [4] for terminology and notations not defined here and consider simple undirected graphs only. Let G = (V , E)
be a graph. For a subgraph H of G, let |H| denote the order of H , i.e. the number of vertices of H and let ∥H∥ denote the size
of H , that is, the number of edges of H . If a vertex u is an end vertex of an edge e, we write u ∈ e.

LetG be a graph on n vertices, which is an edge-disjoint union ofms-factors, that is, s regular spanning subgraphs. In 1988,
Alspach [1] first posed the problem that if there exists a matching M of m edges with exactly one edge from each 2-factor.
Such a matching is called orthogonal because of applications in design theory. A matching M is suborthogonal if there is at
most one edge from each s-factor. Alspach, Heinrich and Liu [2] proved that the answer is affirmative if n ≥ 4m−5. Kouider
and Sotteau improved this bound to 3.23m. In 2002, Stong [17] further improved this bound and proved the following result.

Theorem 1.1 ([17]). Let G be a 2m-regular graph with n ≥ 3m − 2. Then for any decomposition of E(G) into m 2-factors
F1, F2, . . . , Fm, there is an orthogonal matching.

The problem with s = 2 and all the 2-factors being hamiltonian cycles was raised by Caccetta and Mardiyono [5] and
Chung (referred to in [12]) but apparently the extra condition is no help.

In 1998, Anstee and Caccetta [3] asked if there is a matching M of m edges with exactly one edge from each s-factor in
the cases of s = 1 and s ≥ 3? For s ≥ 3, the answer is yes (see [3]).

For s = 1, the answer is negative: let G be a complete graph Km+1 (m is even) which is an edge disjoint union of m
1-factors, however, the size of maximum matching is at most m

2 . Indeed, it is best possible, see [11]. But how about when
we restrict ourselves to large graph? Wang, Liu and Liu [20] proved the following result.
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Theorem 1.2 ([20]). Let G be an m-regular graph with n ≥ 3.79m. Then for any decomposition of E(G) into m 1-factors
F1, F2, . . . , Fm, there is an orthogonal matching.

In particular, if G is Km,m and is a union of m 1-factors F1, F2, . . . , Fm, then G corresponds to a Latin square, where entry
aij is l if edge (ui, vj) ∈ Fl. Now our desired matching corresponds to a transversal. Hatami and Shor [9] proved that if Km,m
is a union ofm 1-factors F1, F2, . . . , Fm, then there is a matchingM of p edges with at most one edge from any 1-factor with
p = m − O(logm)2.

IfG is assigned an arbitrary edge-coloring (not necessarily proper), thenwe say thatG is an edge-colored graph. A subgraph
H of an edge-colored graph G is called rainbow (also heterochromatic, multicolored, polychromatic) if its edges have distinct
colors. The minimum color degree of G is the smallest number of distinct colors on the edges incident with a vertex over
all vertices. Recently, the study of rainbow paths and cycles under minimum color degree condition has received much
attention, see [6,15]. For rainbow matchings under minimum color degree condition, see [11,10,16,13,14,19].

In any decomposition of E(G) into ms-factors, we can construct an edge-colored graph by giving each s-factor a color.
Then a rainbow matching of G corresponds to a suborthogonal matching of G. In particular, when s = 1, the edge-colored
graph obtained above is properly edge-colored. For rainbow matchings in properly edge-colored graphs, see [7,8,18,21].

In this paper, we improve the bounds in Theorems 1.1 and 1.2 and get the following results.

Theorem 1.3. Let G be an m-regular graph with n ≥ 3.2m − 1. Then for any decomposition of E(G) into m 1-factors F1, F2,
. . . , Fm, there is an orthogonal matching.

Theorem 1.4. Let G be a 2m-regular graph with n ≥ 2
√
2m + 4.5. Then for any decomposition of E(G) into m 2-factors

F1, F2, . . . , Fm, there is an orthogonal matching.

2. Proof of main results

Weprove our conclusions by contradiction. Firstly,whenm = 1 andm = 2, the proof is trivial. If Theorems 1.3 and 1.4 are
false, then there exists a minimalm, such that there is no a rainbowmatching of sizem for G. We construct an edge-colored
graph by giving each 1-factor (in Theorem 1.3), 2-factor (in Theorem 1.4) a color from {1, 2, . . . ,m}. For an edge e ∈ E(G),
let c(e) denote the color of e. For a subgraph H of G, let C(H) = {c(e) | e ∈ E(H)}. By the minimality of m, G has a rainbow
matching of size m − 1. For simplicity, let p = m − 1 and n = |G|. We define a good configuration Hp = M1 ∪ M2 ∪ M3 ∪ F
as follows (see Fig. 1) . Note that the blue edges in the figure are coloredm.

(a) For some integer k ≥ 0, M1 = {ei (ei = uivi) : i = 1, 2, . . . , k} and M2 = {fi : i = 1, 2, . . . , k} are two vertex-disjoint
rainbow matchings of Gwith c(ei) = c(fi).

(b) M3 = {gi (gi = uivi) : i = k + 1, . . . , p} is a rainbowmatching, which is vertex-disjoint fromM1 ∪ M2 and c(gi) ≠ c(ej)
for 1 ≤ j ≤ k < i ≤ p.

For abbreviation, let G1 denote the subgraph induced by V (G)\V (M1 ∪ M2 ∪ M3). Without loss of generality, we
assume that C(M1 ∪ M3) = {1, 2, . . . ,m − 1}.

(c) F = {hi (hi = vizi) : i = k + 1, . . . , k + t} is a matching, vertex-disjoint from M1 ∪ M2, hi ∩ M3 = {vi} ∈ gi, and
c(hi) = m.

We choose a good configuration Hp = M1 ∪ M2 ∪ M3 ∪ F satisfying the following conditions:

(1) k = ∥M1∥ is maximum;
(2) subject to (1), F is maximal, that is, F covers the maximum number of vertices ofM3.

Claim 2.1. If u ∈ V (G1) and c(uv) = m, then v ∈ V (M3).

Proof. By symmetry, we may assume that v ∉ V (M2). If v ∉ V (M3), then M2 ∪ M3 ∪ uv is an orthogonal matching of G,
which is a contradiction. �

Claim 2.2. If u ∈ V (ei ∪ fi) and c(uv) = m, where v ∉ V (M3), then v ∈ V (ei ∪ fi).

Proof. Suppose to the contrary that v ∉ V (ei ∪ fi). By symmetry and without loss of generality, we may assume that
u, v ∉ V (M2). Since c(uv) = m,M2 ∪ M3 ∪ uv is an orthogonal matching, which is a contradiction. �

If there is an edge uv such that u, v ∈ V (ei ∪ fi) and c(uv) = m, then we call ei ∪ fi a nice pair. Let q denote the number
of nice pairs inM1 ∪M2. Without loss of generality, we assume that the nice pairs are {e1 ∪ f1, . . . , eq ∪ fq} and we call c(ei)
a nice color, for i = 1, 2, . . . , q. Let n1 be the number of edges uv such that u ∈ V (M3), v ∈ V (G)\V (M3) and c(uv) = m.
Note that each vertex is incident with at least one edge with colorm since each color induces a 1-factor (in Theorem 1.3) or
2-factor (in Theorem 1.4).

Claim 2.3. We have that V (Hp) = V (G).
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Fig. 1. A good configuration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Proof. First we will prove this claim in Theorem 1.3. Since colorm induces a 1-factor, we have a monochromatic matching
M ′

= {ziwi | c(ziwi) = m, zi ∈ V (G1)}, which saturates each vertex of G1. Note that there exists no edge in M3 such that
both of its ends are in M ′, otherwise, without loss of generality, we assume that w1 = vk+1 and w2 = uk+1. Then we add
z1w1 to M1, add z2w2 to M2 and delete uk+1vk+1 from M3. Thus we get a new good configuration with bigger k, which is a
contradiction. By Claims 2.1 and 2.2, wi ∉ V (M1 ∪ M2). Hence F saturates each vertex in G1. So V (Hp) = V (G).

Next, we will prove this claim in Theorem 1.4. DefineM ′ as before.
For each edge gi = uivi in M3, let dm(ui) denote the number of edges uiv such that c(uiv) = m, v ∈ V (G1) and let

dm(vi) denote the number of edges viv such that c(viv) = m, v ∈ V (G1). Then for each edge gi = uivi ∈ E(M3), dm(ui) +

dm(vi) ≤ 2. Otherwise we can choose a matching of size two, say {uiz, viz ′
}, which saturates ui and vi. Then after adding uiz

to M1, adding viz ′ to M2 and deleting uivi in M3, we get a new good configuration with bigger k, which is a contradiction.
So dm(ui) + dm(vi) ≤ 2, for each edge gi = uivi ∈ E(M3). Let dm(zi) denote the number of edges uzi such that
c(ziu) = m, zi ∈ V (G1). We have dm(zi) = 2, for zi ∈ V (G1). Recall that u ∈ V (M3) by Claim 2.1. Then we can get a
monochromatic matching M ′′

= {ziwi | zi ∈ V (G1), wi ∈ V (M3)} with color m, which saturates each vertex of G1. So we
have that V (Hp) = V (G). �

Recall that t = ∥F∥. Then

n = 4k + 3t + 2(p − k − t) = 2k + t + 2p. (2.1)

Thus

k =
n − 2p − t

2
. (2.2)

Without loss of generality, we assume that M3 ∩ F = {vk+1, vk+2, . . . , vk+t} and F =
k+t

i=k+1 hi =
k+t

i=k+1 vizi. For
abbreviation, let T denote the subgraph induced by V (

k+t
i=k+1 zi ∪M1 ∪M2). Each color in {c(uivi) | i = k+ 1, . . . , k+ t} is

called a kind color. We have the following claim.

Claim 2.4. Let e = uv be an edge with a kind color, where u, v ∈ V (T ). Recall that c(uv) = c(gk+i0) for some 1 ≤ i0 ≤ t. Then
one of the following is true:

(a) u, v ∈ V (ei ∪ fi) for i = 1, 2, . . . , k;
(b) u = zk+i0 and v ∈ V (M1 ∪ M2);
(c) v = zk+i0 and u ∈ V (M1 ∪ M2).

Proof. If the claim would not hold, by symmetry and without loss of generality, then we may assume that u, v ∉ V (M2). If
uv ∩ zk+i0 = ∅, thenM2 ∪M3 ∪ {uv, hk+i0} − gk+i0 is an orthogonal matching for G, which is a contradiction. If u, v ∈ V (G1)
and uv ∩ zk+i0 ≠ ∅, then after adding gk+i0 toM1, adding uv toM2 and deleting gk+i0 inM3, we get a good configuration with
bigger k, which is a contradiction. �
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2.1. Proof of Theorem 1.3

Claim 2.5. If u ∈ V (G1) and c(uv) is a nice color, then v ∈ V (M3).

Proof. By symmetry, we may assume that v ∉ V (M2). If v ∉ V (M3), then we may assume that c(uv) = c(e1). Let e denote
the edge in e1 ∪ f1 and c(e) = m. ThenM2 ∪ M3 ∪ {uv, e} − f1 is an orthogonal matching of G, which is a contradiction. �

Claim 2.6. If u ∈ V (ei ∪ fi) and c(uv) is a nice color, where v ∉ V (M3), then v ∈ V (ei ∪ fi).

Proof. If v ∉ V (ei ∪ fi), by symmetry and without loss of generality, we may assume that u, v ∉ V (M2). Since c(uv) is nice,
wemay assume that c(uv) = c(e1). Let e denote an edgewith vertices in V (e1∪ f1) and c(e) = m, thenM2∪M3∪{uv, e}− f1
is an orthogonal matching in G, which is a contradiction. �

By Claim 2.3, we conclude that n ≤ 4k + 3(p − k) = 3p + k. Hence

k ≥ n − 3p. (2.3)

By (2.2) and (2.3), we get the following claim.

Claim 2.7. We have n ≤ 4p − t.

Recall that q denotes the number of nice pairs in M1 ∪ M2 and n1 is the number of edges uv such that u ∈ V (M3),
v ∈ V (G)\V (M3) and c(uv) = m. We will prove that q ≥ 3. Because n1 ≥ |T |−4q = 4k+ t −4q and n1 ≤ |M3| = 2(p− k),
it follows that 6k+ 5t − 4t − 2p ≤ 4q. Note that k + t ≤ p, which implies that 10k+ 5t − 6p ≤ 4q. By (2.2), it follows that
5n − 16p ≤ 4q. By assumption n ≥ 3.2m − 1 = 3.2p + 2.2, so we finally arrive at 11

4 ≤ q. Since q is an integer, we have
q ≥ 3.

Let n2 be the number of edges uv such that u ∈ V (M3), v ∈ V (G)\V (M3) and c(uv) is nice or c(uv) = m, that is, c(uv) ∈

{c(e1), . . . , c(eq),m}. By Claims 2.2 and 2.6, each vertex v′
∈ V (ei ∪ fi) for some i ∈ {1, 2, . . . , q}, is incident with

at most 3 edges u′v′ such c(u′v′) is nice or c(u′v′) = m and u′
∉ V (M3). Similarly, each v′

∈ V (ei ∪ fi), where
i ∈ {q + 1, q + 2, . . . , k}, is incident with at most 2 edges u′v′ such that c(u′v′) is nice and u′

∉ V (M3). So we have
n2 ≥ (1 + q)|T | − 12q − 8(k − q) = (1 + q)(4k + t) − 8k − 4q.

We also have n2 ≤ (1 + q)|M3| = 2(1 + q)(p − k). Hence

(1 + q)(4k + t) − 8k − 4q ≤ 2(1 + q)(p − k).

Thus

k ≤
(1 + q)(2p − t)

6q − 2
+

4q
6q − 2

. (2.4)

By (2.2), we have

n − 2p − t
2

≤
(1 + q)(2p − t)

6q − 2
+

4q
6q − 2

.

It follows that

t ≥
(3q − 1)n − 8qp − 4q

2q − 2

≥
(3q − 1)(3.2p + 2.2) − 8qp − 4q

2q − 2

= 0.8p −
0.8p
q − 1

+
1.3q − 1.1

q − 1

≥ 0.4p +
1.3q − 1.1

q − 1

as q ≥ 3. Hence, inequality (2.4) becomes

k ≤
0.8(1 + q)p

3q − 1
+

2.7q2 − 4.2q + 1.1
(6q − 2)(q − 1)

.

We have that k
t ≤

2(1+q)
3q−1 +

2.7q2−4.2q+1.1
7.8q2−9.2q+2.2

≤ 1 +
9
26 =

35
26 .

Nowwe choose a kind color, say c(gk+1), such that the edges with this kind color in T is minimum among all kind colors.
By Claim 2.4, we know that the number of edges with color c(gk+1) is at most 4k

t + 1 in T . Let n3 be the number of edges uv
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such u ∈ v(M3), v ∈ v(T ) and c(uv) = c(gk+1). By Claim 2.4, n3 ≥ |T | − 2( 4k
t + 1) = (4k + t) − 2( 4k

t + 1). We also have
n3 ≤ |M3| − 2 = 2(p − k) − 2. Hence

(4k + t) − 2

4k
t

+ 1


≤ 2(p − k) − 2.

Recall that k
t ≤

35
26 as q ≥ 3. Hence

4k + t −
140
13

≤ 2(p − k).

By (2.2), we have

3(n − 2p − t) ≤ 2p − t +
140
13

.

It follows that

t ≥ 1.5n − 4p −
70
13

≥ 1.5 × (3.2p + 2.2) − 4p −
70
13

≥ 0.8p −
271
130

.

By Claim 2.7, we have that

3.2p + 2.2 = 3.2m − 1 ≤ n ≤ 4p − t < 3.2p +
271
130

,

which is a contradiction. This completes the proof of Theorem 1.3.

2.2. Proof of Theorem 1.4

Claim 2.8. Let c(ziuj) be a kind color or c(ziuj) = m, where k + 1 ≤ i, j ≤ k + t. Then i = j.

Proof. Otherwise, without loss of generality, we may assume that i = k + 1 and j = k + 2. If c(zk+1uk+2) = m, then
we add zk+1uk+2 to M1, add hk+2 to M2 and delete gk+2 from M3. Hence we get another good configuration with bigger k,
which is a contradiction. If c(zk+1uk+2) = c(gk+2), then we get an orthogonal matchingM1 ∪ M3 ∪ {zk+1uk+2, hk+2} − gk+2,
a contradiction. So we conclude that c(zk+1uk+2) = c(gk+i), i ≠ 2. Then we replaceM3 byM3 ∪ hk+2 − {gk+2, gk+i}, add gk+i
to M1 and add zk+1uk+2 to M2, and thus we get a new good configuration with bigger k, a contradiction. This completes the
proof. �

LetM1
3 = M3\{gk+1, gk+2, . . . , gk+t}. For i = {k+1, . . . , k+t}, edge vzi is called a special edge if v ∈ V (M1

3 ), c(vzi) ≠ c(gi)
and either c(vzi) is kind or c(vzi) = m. For a vertex v ∈ M1

3 , let ds(v) denote the number of special edges vx where
x ∈

k+t
i=k+1 zi.

Claim 2.9. For an edge e = uv ∈ E(M1
3 ), if ds(u) + ds(v) ≥ 3, then ds(u)ds(v) = 0.

Proof. Otherwise there exist two independent special edges, say uzk+1, vzk+2. We divide our proof into the following cases.
Case 1: c(uzk+1) = c(vzk+2).
First suppose that c(uzk+1) = m. Then we add uzk+1 toM1, add vzk+2 toM2 and delete uv fromM3, hence we get another

good configuration with bigger k, which is a contradiction. Nowwe assume that c(uzk+1) is kind. By the definition of special
edges, without loss of generality, we may assume that c(uzk+1) = c(gk+3). Then we add uzk+1 to M1, add vzk+2 to M2 and
replace M3 by M3 ∪ hk+3 − {uv, gk+3}. Thus we get a good configuration with bigger k, which is also a contradiction.

Case 2: c(uzk+1) ≠ c(vzk+2).
First we suppose that c(uzk+1) = m or c(vzk+2) = m. Without loss of generality, we may assume that c(uzk+1) = m

and c(vzk+2) = c(gk+i), i ≠ 2. Then we add gk+i to M1, add vzk+2 to M2 and replace M3 by M3 ∪ uzk+1 − {uv, gk+i}.
Hence we get a good configuration with bigger k, which is a contradiction. So now we assume that c(uzk+1) = c(gk+i) and
c(vzk+2) = c(gk+j), where i ≠ j. Recall that by the definition of the special edges, i ≠ 1 and j ≠ 2. Then we add gk+i to M1,
add uzk+1 toM2, and replaceM3 byM3 ∪ hk+j − {uv, gk+j}. Thus we obtain another good configuration with bigger k, which
is a contradiction. �

Each vertex v in M1
3 is called special if ds(v) ≥ 7. By Claim 2.9, we assume that {uk+t+1, uk+t+2, . . . , uk+t+r} is the set of

special vertices. A color in {c(gk+t+1), . . . , c(gk+t+r)} is called a popular color. An edge with popular color is called a popular
edge.
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Claim 2.10. Let uv be a popular edge such that v ∈
k+t

i=k+1 zi. Then u ∉ V (T ).

Proof. Suppose, on the contrary, there exists an edge uv such that c(uv) is popular, v ∈
k+t

i=k+1 zi and u ∈ V (T ). Without
loss of generality, we assume that v = zk+1 and c(uv) = c(gk+t+1). Further, if u ∈ ∪

k+t
i=k+1 zi, then we assume that u = zk+2

and if u ∈ V (M1 ∪M2), then we assume that u ∈ M2. Nowwe can choose a special edge uk+t+1w, which is not incident with
u, v such that c(uk+t+1w) ∉ {c(gk+1), c(gk+2)}. If c(uk+t+1w) is kind, we may assume that c(uk+t+1w) = c(gk+i), where
i ∈ {3, . . . , t}. Obviously, w ≠ zk+i. Then M1 ∪ M3 ∪ {uv, uk+t+1w, hk+i} − {gk+i, gk+t+1} is an orthogonal matching for G,
which is a contradiction. So nowwe assume that c(uk+t+1w) = m. ThenM1 ∪M3 ∪ {uv, uk+t+1w}− gk+t+1 is an orthogonal
matching for G, which is also a contradiction. �

Claim 2.11. Let ziuj be a popular edge where k + 1 ≤ i, j ≤ k + t. Then i = j.

Proof. Otherwise, without loss of generality, we may assume that i = k + 1, j = k + 2 and c(ziuj) = c(gk+t+1). Since
vertex uk+t+1 is special, we choose a special edge uk+t+1w such that uk+t+1w is not incident with zi, zj and c(uk+t+1w) ∉

{c(gi), c(gj)}. If c(uk+t+1w) = m, thenwe add hj toM1, add uk+t+1w toM2 and replaceM3 byM3∪{ziuj}−{gj, gk+t+1}, andwe
get a new good configurationwith bigger k, a contradiction. So nowwe assume that c(uk+t+1w) = c(gk+i0), i0 ∉ {1, 2}. Then
we add gk+i0 toM1, add uk+t+1w toM2, replaceM3 byM3 ∪{ziuj, hj}−{gj, gk+t+1, gk+i0}. Hence we find a good configuration
with bigger k, which is also a contradiction. �

Claim 2.12. There is no popular edge between {zk+1, zk+2, . . . , zk+t} and {vk+t+1, vk+t+2, . . . , vk+t+r}.

Proof. Otherwise without loss of generality, we may assume that there exists an edge, say zk+1vk+t+1, which has a popular
color. Since ds(uk+t+1) ≥ 7, we can choose a special edge uk+t+1z such that z ∈

k+t
i=k+1 zi, z ≠ zk+1 and c(uk+t+1z) ≠

c(gk+1).
Case 1: c(zk+1vk+t+1) = c(gk+t+1).
First suppose that c(uk+t+1z) = m. Then M1 ∪ M3 ∪ {zk+1vk+t+1, uk+t+1z} − gk+t+1 is an orthogonal matching for

G, which is a contradiction. Now we assume that c(uk+t+1z) is kind. Without loss of generality, we may assume that
c(uk+t+1z) = c(gk+2). Then we add gk+2 to M1, add uk+t+1z to M2 and replace M3 by M3 ∪ zk+1vk+t+1 − {gk+t+1, gk+2}.
Thus we get a good configuration with bigger k, which is also a contradiction.

Case 2: c(zk+1vk+t+1) ≠ c(gk+t+1).
Without loss of generality, we assume that c(zk+1vk+t+1) = c(gk+t+2). If c(uk+t+1z) = m, then we add zk+1vk+t+1 toM1,

add gk+t+2 toM2 and replaceM3 byM3∪uk+t+1z−{gk+t+1, gk+t+2}. Thenwe obtain a good configurationwith larger k, which
is a contradiction. So now we assume that c(uk+t+1z) is kind. Without loss of generality, we may assume that c(uk+t+1z) =

c(gk+2). Then we add zk+1vk+t+1 to M1, add gk+t+2 to M2 and replace M3 by M3 ∪ {uk+t+1z, hk+2} − {gk+2, gk+t+1, gk+t+2}.
Thus we get another good configuration with bigger k, which is also a contradiction. This completes our proof. �

An edge between {zk+1, zk+2, . . . , zk+t} and V (M3) is called an sop edge if it is a special edge or a popular edge.

Claim 2.13. For an edge uv ∈ E(M3), if u is incident with at least two sop edges, then v can not be incident with sop edges.

Proof. Suppose not, by Claims 2.9 and 2.12, we know that uv = gk+t+r+i with i > 0. So we can choose two independent
sop edges, say uzk+1 and vzk+2. We divide our proof into the following cases.

Case 1: uzk+1 is a special edge or vzk+2 is a special edge.
Without loss of generality, we assume that uzk+1 is a special edge. By Claim 2.9, we know that c(vzk+2) is a popular

color, and we may assume that c(vzk+2) = c(gk+t+1). First suppose that c(uzk+1) = m. Then we add gk+t+1 to M1, add
vzk+2 to M2 and replace M3 by M3 ∪ uzk+1 − {gk+t+1, uv}. Therefore, we get another good configuration with bigger
k, which is a contradiction. Hence now we assume that c(uzk+1) is kind, say c(uzk+1) = c(gk+j). By the definition of
special edges, j ≠ 1. Since ds(uk+t+1) ≥ 7, we can choose a special edge uk+t+1w such that w ∉ {zk+1, zk+2, zk+j}

and c(uk+t+1w) ≠ c(gk+j). Let c(uk+t+1w) = c(gk+i0). If i0 ∉ {1, 2}, then we add gk+j to M1, add uzk+1 to M2 and
replace M3 by M3 ∪ {vzk+2, hk+i0 , uk+t+1w} − {gk+i0 , uv, gk+j, gk+t+1}. Thus we get a new good configuration with bigger
k, which is also a contradiction. If i0 ∈ {1, 2}, say i0 = 1, then we add gk+j to M1, add uzk+1 to M2 and replace M3 by
M3 ∪ {vzk+2, hk+j, uk+t+1w} − {gk+1, uv, gk+j, gk+t+1}. Hence we also get a new good configuration with bigger k, which is
a contradiction.

Case 2: uzk+1 and vzk+2 are popular edges.
First we assume that c(uzk+1) = c(vzk+2). Further without loss of generality we assume that c(uzk+1) = c(gk+t+1). Note

that uv = gk+t+r+i ≠ gk+t+1 or else we can add uzk+1 toM1, add vzk+1 toM2 and replaceM3 byM3 − uv, hence we obtain a
good configurationwith bigger k, which is a contradiction. So uv ≠ gk+t+1. Thenwe choose a special edge uk+t+1w such that
w ∉ {zk+1, zk+2} and c(uk+t+1w) ∉ {gk+1, gk+2}, since ds(uk+t+1) ≥ 7, suchw exists. If c(uk+t+1w) = m, thenweadduzk+1 to
M1, add vzk+2 toM2 and replaceM3 byM3∪uk+t+1w−{gk+t+1, uv}. Sowe assume that c(uk+t+1w) is kind, say, c(uk+t+1w) =

c(gk+i0). Now we add uzk+1 to M1, add vzk+2 to M2 and replace M3 by M3 ∪ {uk+t+1w, hk+i0} − {gk+t+1, gk+i0 , uv}. Then we
obtain a new good configuration with bigger k, which is a contradiction.

Next we assume that c(uzk+1) ≠ c(vzk+2). Without loss of generality, we assume that c(uzk+1) = c(gk+t+1) and
c(vzk+2) = c(gk+t+2), further we assume that uv ≠ gk+t+2. Then we choose a special edge uk+t+2w such that w ∉
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{zk+1, zk+2} and c(uk+t+2w) ∉ {c(gk+1), c(gk+2)}. Since ds(uk+t+2) ≥ 7, such w exists. Assume that c(uk+t+2w) = c(gk+i0).
Now we add uzk+1 toM1, add gk+t+1 toM2 and replaceM3 byM3 ∪ {uk+t+2w, hk+i0} − {gk+t+2, gk+i0 , uv}. Then we obtain a
new good configuration with bigger k, which is a contradiction. �

Let n4 denote the number of special edges and popular edges between
k+t

i=k+1 zi and V (M1
3 ). By Claim 2.4, each zi can send

2 edges colored c(gi) to M1 ∪ M2. By Claim 2.8, c(ziui) can be a kind color or equal m. Moreover each zi can send at most t
edges coloredm or popular colors to

k+t
i=k+1 vi. So we have

n4 ≥ 2(1 + r + t)t − 3t − t2.

On the other hand, for each i ∈ {k + t + 1 . . . , k + t + r}, ui sends at most t special or popular edges to
k+t

i=k+1 zi. By the
definition of special vertices, for each i ∈ {k+t+r+1 . . . , p}, those vertices inV (gi) send atmost 6 special edges to

k+t
i=k+1 zi.

Moreover, each vertex in V (
p

i=k+t+r+1 gi) sends atmost r popular edges to
k+t

i=k+1 zi. Combiningwith Claims 2.12 and 2.13,
we have

n4 ≤ rt + 6(p − k − t − r) + 2r(p − k − t − r).

Hence

p ≥ k +
3t
2

+
t2 − 4t
2r + 6

+ r + 3 − 3

≥
n
2

− p + t +
t2 − 4t
2r + 6

+ r + 3 − 3

≥
n
2

− p + t +
√
2t − 3

√
2 − 3.

So we have

p ≥
n
4

+

√
2 + 1


t

2
−

3
√
2 + 3
2

. (2.5)

Recall that q is the number of nice pairs inM1 ∪M2. We will prove that q ≥ 4. Otherwise q ≤ 3. Recall that n1 is the number
of edges uv such that u ∈ V (M3), v ∈ V (G)\V (M3) and c(uv) = m. By Claims 2.1 and 2.2, n1 ≥ 2|T | − 8q ≥ 2(4k+ t) − 24.
On the other hand, n1 ≤ 2|M3| = 4(p − k). It follows that 2(4k + t) − 24 ≤ 4(p − k). That is, k ≤

p
3 −

t
6 + 2. By (2.2), we

have
n − 2p − t

2
≤

p
3

−
t
6

+ 2.

It follows that t ≥
3n
2 − 4p − 6. By (2.5), we have that

p ≥


3
√
2 + 4


n

4
− 2

√
2 + 1


p −

9
√

2 + 1


2
≥ p + 3 +

7
√
2

8
,

which is a contradiction. So q ≥ 4.

Claim 2.14. Let e = uv be an edge with a nice color, where u, v ∈ V (T ). Without loss of generality, we assume that c(uv) =

c(ei0) for some i0 ≤ q and further we assume that c(w1
i0
w2

i0
) = m, where w1

i0
∈ ei0 and w2

i0
∈ fi0 . Then one of the following is

true:

(a) u, v ∈ V (ei ∪ fi) for some i ∈ {1, 2, . . . , k};
(b) uv is incident with w1

i0
or w2

i0
.

Proof. Otherwise, by symmetry and without loss of generality, we may assume that u, v ∉ V (M2). Then M2 ∪ M3 ∪

{uv, w1
i0
w2

i0
} − ei0 is an orthogonal matching, which is a contradiction. �

Let n5 be the number of edges uv such that u ∈ V (M3), v ∈ V (T ) and c(uv) is nice or c(uv) = m (c(uv) ∈ {c(e1),
. . . , c(eq),m}). Call a color fine if it is nice or equal m. For each i ∈ {1, 2, . . . , q}, there are at most 6 edges with fine colors
in the subgraph induced by V (ei ∪ fi). For each i ∈ {q + 1, q + 2, . . . , k}, there are at most 4 edges with fine colors in the
subgraph induced by V (ei ∪ fi). By Claim 2.14(b), for each i ∈ {1, 2, . . . , q}, the vertices in V (ei ∪ fi) can send at most 2 edges
with c(ei) to V (T ) \ V (ei ∪ fi). So we have n5 ≥ 2(1 + q)|T | − 12q − 4q − 8(k − q) = 2(1 + q)(4k + t) − 8k − 8q.

We also have n5 ≤ 2(1 + q)|M3| = 4(1 + q)(p − k). Hence

2(1 + q)(4k + t) − 8k − 8q ≤ 4(1 + q)(p − k).
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Thus

k ≤
(1 + q)(2p − t)

6q + 2
+

4q
6q + 2

.

By (2.2),

n − 2p − t
2

≤
(1 + q)(2p − t)

6q + 2
+

4q
6q + 2

.

It follows that

t ≥
(3q + 1)n − (8q + 4)p − 4q

2q

≥
(3q + 1)(2

√
2p + 2

√
2 + 4.5) − (8q + 4)p − 4q
2q

≥
0.24pq − 0.59p + 8.9q

q

≥ 0.24p + 8.9 −
0.59p

q
= 0.09p + 8.9,

as q ≥ 4. Hence

k ≤
(1 + q)(2p − t)

6q + 2
+

4q
6q + 2

≤
0.955pq + 0.955p

3q + 1

≤
1.20pq
3q + 1

.

It holds that k
t ≤

1.20pq
0.09p(3q+1) ≤ 4.5.

Now we choose a kind color, say c(gk+1), such that the number of edges with this kind color in T is minimum among all
kind colors. By Claim 2.4, we know that the number of edges with color c(gk+1) is at most 4k

t + 2 in T . Let n3 be the number
of edge uv such that u ∈ V (M3), v ∈ V (T ) and c(uv) = c(gk+1). Thus n3 ≥ 2|T | − 2( 4k

t + 2) = 2(4k + t) − 2( 4k
t + 2). We

also have n3 ≤ 2|M3| − 2 = 4(p − k) − 2. Hence

2(4k + t) − 2

4k
t

+ 2


≤ 4(p − k) − 2.

Recall that k
t ≤ 4.5. Hence

4k + t − 19 ≤ 2(p − k).

By (2.2),

3(n − 2p − t) ≤ 2p − t + 19.

It follows that t ≥ 1.5n − 4p −
19
2 . By (2.5), we have that

p ≥
(3

√
2 + 4)n
4

− 2(
√
2 + 1)p −

25(
√
2 + 1)
4

≥ p +
10 − 7

√
2

8
> p +

1
80

,

which is a contradiction. This completes the proof of Theorem 1.4.
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