Orthogonal matchings revisited

Cunquan Qu^{a}, Guanghui Wang ${ }^{\mathrm{a}, *}$, Guiying Yan ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Mathematics, Shandong University, 250100, Jinan, Shandong, PR China
${ }^{\mathrm{b}}$ Academy of Mathematics and System Sciences, Chinese Academy of Sciences, 10080, Beijing, PR China

A R T I C L E I N F O

Article history:

Received 8 August 2014
Received in revised form 14 February 2015
Accepted 5 May 2015
Available online 6 June 2015

Keywords:

Regular graphs
Orthogonal matchings
Rainbow matchings
Factors

Abstract

Let G be a graph on n vertices, which is an edge-disjoint union of $m s$-factors, that is, s regular spanning subgraphs. Alspach first posed the problem that if there exists a matching M of m edges with exactly one edge from each 2 -factor. Such a matching is called orthogonal because of applications in design theory. For $s=2$, so far the best known result is due to Stong in 2002, which states that if $n \geq 3 m-2$, then there is an orthogonal matching. Anstee and Caccetta also asked if there is a matching M of m edges with exactly one edge from each s-factor? They answered yes for $s \geq 3$. In this paper, we get a better bound and prove that if $s=2$ and $n \geq 2 \sqrt{2} m+4.5$ (note that $2 \sqrt{2} \leq 2.825$), then there is an orthogonal matching. We also prove that if $s=1$ and $n \geq 3.2 m-1$, then there is an orthogonal matching, which improves the previous bound (3.79 m).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and notation

We use [4] for terminology and notations not defined here and consider simple undirected graphs only. Let $G=(V, E)$ be a graph. For a subgraph H of G, let $|H|$ denote the order of H, i.e. the number of vertices of H and let $\|H\|$ denote the size of H, that is, the number of edges of H. If a vertex u is an end vertex of an edge e, we write $u \in e$.

Let G be a graph on n vertices, which is an edge-disjoint union of $m s$-factors, that is, s regular spanning subgraphs. In 1988 , Alspach [1] first posed the problem that if there exists a matching M of m edges with exactly one edge from each 2-factor. Such a matching is called orthogonal because of applications in design theory. A matching M is suborthogonal if there is at most one edge from each s-factor. Alspach, Heinrich and Liu [2] proved that the answer is affirmative if $n \geq 4 m-5$. Kouider and Sotteau improved this bound to 3.23 m . In 2002, Stong [17] further improved this bound and proved the following result.

Theorem 1.1 ([17]). Let G be a $2 m$-regular graph with $n \geq 3 m-2$. Then for any decomposition of $E(G)$ into m 2-factors $F_{1}, F_{2}, \ldots, F_{m}$, there is an orthogonal matching.

The problem with $s=2$ and all the 2-factors being hamiltonian cycles was raised by Caccetta and Mardiyono [5] and Chung (referred to in [12]) but apparently the extra condition is no help.

In 1998, Anstee and Caccetta [3] asked if there is a matching M of m edges with exactly one edge from each s-factor in the cases of $s=1$ and $s \geq 3$? For $s \geq 3$, the answer is yes (see [3]).

For $s=1$, the answer is negative: let G be a complete graph K_{m+1} (m is even) which is an edge disjoint union of m 1 -factors, however, the size of maximum matching is at most $\frac{m}{2}$. Indeed, it is best possible, see [11]. But how about when we restrict ourselves to large graph? Wang, Liu and Liu [20] proved the following result.

[^0]Theorem 1.2 ([20]). Let G be an m-regular graph with $n \geq 3.79$ m. Then for any decomposition of $E(G)$ into $m 1$-factors $F_{1}, F_{2}, \ldots, F_{m}$, there is an orthogonal matching.

In particular, if G is $K_{m, m}$ and is a union of m 1-factors $F_{1}, F_{2}, \ldots, F_{m}$, then G corresponds to a Latin square, where entry $a_{i j}$ is l if edge $\left(u_{i}, v_{j}\right) \in F_{l}$. Now our desired matching corresponds to a transversal. Hatami and Shor [9] proved that if $K_{m, m}$ is a union of $m 1$-factors $F_{1}, F_{2}, \ldots, F_{m}$, then there is a matching M of p edges with at most one edge from any 1-factor with $p=m-O(\log m)^{2}$.

If G is assigned an arbitrary edge-coloring (not necessarily proper), then we say that G is an edge-colored graph. A subgraph H of an edge-colored graph G is called rainbow (also heterochromatic, multicolored, polychromatic) if its edges have distinct colors. The minimum color degree of G is the smallest number of distinct colors on the edges incident with a vertex over all vertices. Recently, the study of rainbow paths and cycles under minimum color degree condition has received much attention, see $[6,15]$. For rainbow matchings under minimum color degree condition, see [11,10,16,13,14,19].

In any decomposition of $E(G)$ into $m s$-factors, we can construct an edge-colored graph by giving each s-factor a color. Then a rainbow matching of G corresponds to a suborthogonal matching of G. In particular, when $s=1$, the edge-colored graph obtained above is properly edge-colored. For rainbow matchings in properly edge-colored graphs, see $[7,8,18,21]$.

In this paper, we improve the bounds in Theorems 1.1 and 1.2 and get the following results.
Theorem 1.3. Let G be an m-regular graph with $n \geq 3.2 m-1$. Then for any decomposition of $E(G)$ into m 1-factors F_{1}, F_{2}, \ldots, F_{m}, there is an orthogonal matching.

Theorem 1.4. Let G be a $2 m$-regular graph with $n \geq 2 \sqrt{2} m+4.5$. Then for any decomposition of $E(G)$ into m 2-factors $F_{1}, F_{2}, \ldots, F_{m}$, there is an orthogonal matching.

2. Proof of main results

We prove our conclusions by contradiction. Firstly, when $m=1$ and $m=2$, the proof is trivial. If Theorems 1.3 and 1.4 are false, then there exists a minimal m, such that there is no a rainbow matching of size m for G. We construct an edge-colored graph by giving each 1 -factor (in Theorem 1.3), 2 -factor (in Theorem 1.4) a color from $\{1,2, \ldots, m\}$. For an edge $e \in E(G)$, let $c(e)$ denote the color of e. For a subgraph H of G, let $C(H)=\{c(e) \mid e \in E(H)\}$. By the minimality of m, G has a rainbow matching of size $m-1$. For simplicity, let $p=m-1$ and $n=|G|$. We define a good configuration $H_{p}=M_{1} \cup M_{2} \cup M_{3} \cup F$ as follows (see Fig. 1). Note that the blue edges in the figure are colored m.
(a) For some integer $k \geq 0, M_{1}=\left\{e_{i}\left(e_{i}=u_{i} v_{i}\right): i=1,2, \ldots, k\right\}$ and $M_{2}=\left\{f_{i}: i=1,2, \ldots, k\right\}$ are two vertex-disjoint rainbow matchings of G with $c\left(e_{i}\right)=c\left(f_{i}\right)$.
(b) $M_{3}=\left\{g_{i}\left(g_{i}=u_{i} v_{i}\right): i=k+1, \ldots, p\right\}$ is a rainbow matching, which is vertex-disjoint from $M_{1} \cup M_{2}$ and $c\left(g_{i}\right) \neq c\left(e_{j}\right)$ for $1 \leq j \leq k<i \leq p$.

For abbreviation, let G_{1} denote the subgraph induced by $V(G) \backslash V\left(M_{1} \cup M_{2} \cup M_{3}\right)$. Without loss of generality, we assume that $C\left(M_{1} \cup M_{3}\right)=\{1,2, \ldots, m-1\}$.
(c) $F=\left\{h_{i}\left(h_{i}=v_{i} z_{i}\right): i=k+1, \ldots, k+t\right\}$ is a matching, vertex-disjoint from $M_{1} \cup M_{2}, h_{i} \cap M_{3}=\left\{v_{i}\right\} \in g_{i}$, and $c\left(h_{i}\right)=m$.
We choose a good configuration $H_{p}=M_{1} \cup M_{2} \cup M_{3} \cup F$ satisfying the following conditions:
(1) $k=\left\|M_{1}\right\|$ is maximum;
(2) subject to (1), F is maximal, that is, F covers the maximum number of vertices of M_{3}.

Claim 2.1. If $u \in V\left(G_{1}\right)$ and $c(u v)=m$, then $v \in V\left(M_{3}\right)$.
Proof. By symmetry, we may assume that $v \notin V\left(M_{2}\right)$. If $v \notin V\left(M_{3}\right)$, then $M_{2} \cup M_{3} \cup u v$ is an orthogonal matching of G, which is a contradiction.

Claim 2.2. If $u \in V\left(e_{i} \cup f_{i}\right)$ and $c(u v)=m$, where $v \notin V\left(M_{3}\right)$, then $v \in V\left(e_{i} \cup f_{i}\right)$.
Proof. Suppose to the contrary that $v \notin V\left(e_{i} \cup f_{i}\right)$. By symmetry and without loss of generality, we may assume that $u, v \notin V\left(M_{2}\right)$. Since $c(u v)=m, M_{2} \cup M_{3} \cup u v$ is an orthogonal matching, which is a contradiction.

If there is an edge $u v$ such that $u, v \in V\left(e_{i} \cup f_{i}\right)$ and $c(u v)=m$, then we call $e_{i} \cup f_{i}$ a nice pair. Let q denote the number of nice pairs in $M_{1} \cup M_{2}$. Without loss of generality, we assume that the nice pairs are $\left\{e_{1} \cup f_{1}, \ldots, e_{q} \cup f_{q}\right\}$ and we call $c\left(e_{i}\right)$ a nice color, for $i=1,2, \ldots, q$. Let n_{1} be the number of edges $u v$ such that $u \in V\left(M_{3}\right), v \in V(G) \backslash V\left(M_{3}\right)$ and $c(u v)=m$. Note that each vertex is incident with at least one edge with color m since each color induces a 1 -factor (in Theorem 1.3) or 2-factor (in Theorem 1.4).

Claim 2.3. We have that $V\left(H_{p}\right)=V(G)$.

Fig. 1. A good configuration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Proof. First we will prove this claim in Theorem 1.3. Since color m induces a 1-factor, we have a monochromatic matching $M^{\prime}=\left\{z_{i} w_{i} \mid c\left(z_{i} w_{i}\right)=m, z_{i} \in V\left(G_{1}\right)\right\}$, which saturates each vertex of G_{1}. Note that there exists no edge in M_{3} such that both of its ends are in M^{\prime}, otherwise, without loss of generality, we assume that $w_{1}=v_{k+1}$ and $w_{2}=u_{k+1}$. Then we add $z_{1} w_{1}$ to M_{1}, add $z_{2} w_{2}$ to M_{2} and delete $u_{k+1} v_{k+1}$ from M_{3}. Thus we get a new good configuration with bigger k, which is a contradiction. By Claims 2.1 and $2.2, w_{i} \notin V\left(M_{1} \cup M_{2}\right)$. Hence F saturates each vertex in G_{1}. So $V\left(H_{p}\right)=V(G)$.

Next, we will prove this claim in Theorem 1.4. Define M^{\prime} as before.
For each edge $g_{i}=u_{i} v_{i}$ in M_{3}, let $d_{m}\left(u_{i}\right)$ denote the number of edges $u_{i} v$ such that $c\left(u_{i} v\right)=m, v \in V\left(G_{1}\right)$ and let $d_{m}\left(v_{i}\right)$ denote the number of edges $v_{i} v$ such that $c\left(v_{i} v\right)=m, v \in V\left(G_{1}\right)$. Then for each edge $g_{i}=u_{i} v_{i} \in E\left(M_{3}\right), d_{m}\left(u_{i}\right)+$ $d_{m}\left(v_{i}\right) \leq 2$. Otherwise we can choose a matching of size two, say $\left\{u_{i} z, v_{i} z^{\prime}\right\}$, which saturates u_{i} and v_{i}. Then after adding $u_{i} z$ to M_{1}, adding $v_{i} z^{\prime}$ to M_{2} and deleting $u_{i} v_{i}$ in M_{3}, we get a new good configuration with bigger k, which is a contradiction. So $d_{m}\left(u_{i}\right)+d_{m}\left(v_{i}\right) \leq 2$, for each edge $g_{i}=u_{i} v_{i} \in E\left(M_{3}\right)$. Let $d_{m}\left(z_{i}\right)$ denote the number of edges $u z_{i}$ such that $c\left(z_{i} u\right)=m, z_{i} \in V\left(G_{1}\right)$. We have $d_{m}\left(z_{i}\right)=2$, for $z_{i} \in V\left(G_{1}\right)$. Recall that $u \in V\left(M_{3}\right)$ by Claim 2.1. Then we can get a monochromatic matching $M^{\prime \prime}=\left\{z_{i} w_{i} \mid z_{i} \in V\left(G_{1}\right), w_{i} \in V\left(M_{3}\right)\right\}$ with color m, which saturates each vertex of G_{1}. So we have that $V\left(H_{p}\right)=V(G)$.

Recall that $t=\|F\|$. Then

$$
\begin{equation*}
n=4 k+3 t+2(p-k-t)=2 k+t+2 p . \tag{2.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
k=\frac{n-2 p-t}{2} \tag{2.2}
\end{equation*}
$$

Without loss of generality, we assume that $M_{3} \cap F=\left\{v_{k+1}, v_{k+2}, \ldots, v_{k+t}\right\}$ and $F=\bigcup_{i=k+1}^{k+t} h_{i}=\bigcup_{i=k+1}^{k+t} v_{i} z_{i}$. For abbreviation, let T denote the subgraph induced by $V\left(\bigcup_{i=k+1}^{k+t} z_{i} \cup M_{1} \cup M_{2}\right)$. Each color in $\left\{c\left(u_{i} v_{i}\right) \mid i=k+1, \ldots, k+t\right\}$ is called a kind color. We have the following claim.

Claim 2.4. Let $e=u v$ be an edge with a kind color, where $u, v \in V(T)$. Recall that $c(u v)=c\left(g_{k+i_{0}}\right)$ for some $1 \leq i_{0} \leq t$. Then one of the following is true:
(a) $u, v \in V\left(e_{i} \cup f_{i}\right)$ for $i=1,2, \ldots, k$;
(b) $u=z_{k+i_{0}}$ and $v \in V\left(M_{1} \cup M_{2}\right)$;
(c) $v=z_{k+i_{0}}$ and $u \in V\left(M_{1} \cup M_{2}\right)$.

Proof. If the claim would not hold, by symmetry and without loss of generality, then we may assume that $u, v \notin V\left(M_{2}\right)$. If $u v \cap z_{k+i_{0}}=\emptyset$, then $M_{2} \cup M_{3} \cup\left\{u v, h_{k+i_{0}}\right\}-g_{k+i_{0}}$ is an orthogonal matching for G, which is a contradiction. If $u, v \in V\left(G_{1}\right)$ and $u v \cap z_{k+i_{0}} \neq \emptyset$, then after adding $g_{k+i_{0}}$ to M_{1}, adding $u v$ to M_{2} and deleting $g_{k+i_{0}}$ in M_{3}, we get a good configuration with bigger k, which is a contradiction.

2.1. Proof of Theorem 1.3

Claim 2.5. If $u \in V\left(G_{1}\right)$ and $c(u v)$ is a nice color, then $v \in V\left(M_{3}\right)$.
Proof. By symmetry, we may assume that $v \notin V\left(M_{2}\right)$. If $v \notin V\left(M_{3}\right)$, then we may assume that $c(u v)=c\left(e_{1}\right)$. Let e denote the edge in $e_{1} \cup f_{1}$ and $c(e)=m$. Then $M_{2} \cup M_{3} \cup\{u v, e\}-f_{1}$ is an orthogonal matching of G, which is a contradiction.

Claim 2.6. If $u \in V\left(e_{i} \cup f_{i}\right)$ and $c(u v)$ is a nice color, where $v \notin V\left(M_{3}\right)$, then $v \in V\left(e_{i} \cup f_{i}\right)$.
Proof. If $v \notin V\left(e_{i} \cup f_{i}\right)$, by symmetry and without loss of generality, we may assume that $u, v \notin V\left(M_{2}\right)$. Since $c(u v)$ is nice, we may assume that $c(u v)=c\left(e_{1}\right)$. Let e denote an edge with vertices in $V\left(e_{1} \cup f_{1}\right)$ and $c(e)=m$, then $M_{2} \cup M_{3} \cup\{u v, e\}-f_{1}$ is an orthogonal matching in G, which is a contradiction.

By Claim 2.3, we conclude that $n \leq 4 k+3(p-k)=3 p+k$. Hence

$$
\begin{equation*}
k \geq n-3 p \tag{2.3}
\end{equation*}
$$

By (2.2) and (2.3), we get the following claim.
Claim 2.7. We have $n \leq 4 p-t$.
Recall that q denotes the number of nice pairs in $M_{1} \cup M_{2}$ and n_{1} is the number of edges $u v$ such that $u \in V\left(M_{3}\right)$, $v \in V(G) \backslash V\left(M_{3}\right)$ and $c(u v)=m$. We will prove that $q \geq 3$. Because $n_{1} \geq|T|-4 q=4 k+t-4 q$ and $n_{1} \leq\left|M_{3}\right|=2(p-k)$, it follows that $6 k+5 t-4 t-2 p \leq 4 q$. Note that $k+t \leq p$, which implies that $10 k+5 t-6 p \leq 4 q$. By (2.2), it follows that $5 n-16 p \leq 4 q$. By assumption $n \geq 3.2 m-1=3.2 p+2.2$, so we finally arrive at $\frac{11}{4} \leq q$. Since q is an integer, we have $q \geq 3$.

Let n_{2} be the number of edges $u v$ such that $u \in V\left(M_{3}\right), v \in V(G) \backslash V\left(M_{3}\right)$ and $c(u v)$ is nice or $c(u v)=m$, that is, $c(u v) \in$ $\left\{c\left(e_{1}\right), \ldots, c\left(e_{q}\right), m\right\}$. By Claims 2.2 and 2.6, each vertex $v^{\prime} \in V\left(e_{i} \cup f_{i}\right)$ for some $i \in\{1,2, \ldots, q\}$, is incident with at most 3 edges $u^{\prime} v^{\prime}$ such $c\left(u^{\prime} v^{\prime}\right)$ is nice or $c\left(u^{\prime} v^{\prime}\right)=m$ and $u^{\prime} \notin V\left(M_{3}\right)$. Similarly, each $v^{\prime} \in V\left(e_{i} \cup f_{i}\right)$, where $i \in\{q+1, q+2, \ldots, k\}$, is incident with at most 2 edges $u^{\prime} v^{\prime}$ such that $c\left(u^{\prime} v^{\prime}\right)$ is nice and $u^{\prime} \notin V\left(M_{3}\right)$. So we have $n_{2} \geq(1+q)|T|-12 q-8(k-q)=(1+q)(4 k+t)-8 k-4 q$.

We also have $n_{2} \leq(1+q)\left|M_{3}\right|=2(1+q)(p-k)$. Hence

$$
(1+q)(4 k+t)-8 k-4 q \leq 2(1+q)(p-k)
$$

Thus

$$
\begin{equation*}
k \leq \frac{(1+q)(2 p-t)}{6 q-2}+\frac{4 q}{6 q-2} \tag{2.4}
\end{equation*}
$$

By (2.2), we have

$$
\frac{n-2 p-t}{2} \leq \frac{(1+q)(2 p-t)}{6 q-2}+\frac{4 q}{6 q-2}
$$

It follows that

$$
\begin{aligned}
t & \geq \frac{(3 q-1) n-8 q p-4 q}{2 q-2} \\
& \geq \frac{(3 q-1)(3.2 p+2.2)-8 q p-4 q}{2 q-2} \\
& =0.8 p-\frac{0.8 p}{q-1}+\frac{1.3 q-1.1}{q-1} \\
& \geq 0.4 p+\frac{1.3 q-1.1}{q-1}
\end{aligned}
$$

as $q \geq 3$. Hence, inequality (2.4) becomes

$$
k \leq \frac{0.8(1+q) p}{3 q-1}+\frac{2.7 q^{2}-4.2 q+1.1}{(6 q-2)(q-1)}
$$

We have that $\frac{k}{t} \leq \frac{2(1+q)}{3 q-1}+\frac{2.7 q^{2}-4.2 q+1.1}{7.8 q^{2}-9.2 q+2.2} \leq 1+\frac{9}{26}=\frac{35}{26}$.
Now we choose a kind color, say $c\left(g_{k+1}\right)$, such that the edges with this kind color in T is minimum among all kind colors. By Claim 2.4, we know that the number of edges with color $c\left(g_{k+1}\right)$ is at most $\frac{4 k}{t}+1$ in T. Let n_{3} be the number of edges $u v$
such $u \in v\left(M_{3}\right), v \in v(T)$ and $c(u v)=c\left(g_{k+1}\right)$. By Claim 2.4, $n_{3} \geq|T|-2\left(\frac{4 k}{t}+1\right)=(4 k+t)-2\left(\frac{4 k}{t}+1\right)$. We also have $n_{3} \leq\left|M_{3}\right|-2=2(p-k)-2$. Hence

$$
(4 k+t)-2\left(\frac{4 k}{t}+1\right) \leq 2(p-k)-2
$$

Recall that $\frac{k}{t} \leq \frac{35}{26}$ as $q \geq 3$. Hence

$$
4 k+t-\frac{140}{13} \leq 2(p-k)
$$

By (2.2), we have

$$
3(n-2 p-t) \leq 2 p-t+\frac{140}{13}
$$

It follows that

$$
\begin{aligned}
t & \geq 1.5 n-4 p-\frac{70}{13} \\
& \geq 1.5 \times(3.2 p+2.2)-4 p-\frac{70}{13} \\
& \geq 0.8 p-\frac{271}{130}
\end{aligned}
$$

By Claim 2.7, we have that

$$
3.2 p+2.2=3.2 m-1 \leq n \leq 4 p-t<3.2 p+\frac{271}{130}
$$

which is a contradiction. This completes the proof of Theorem 1.3.

2.2. Proof of Theorem 1.4

Claim 2.8. Let $c\left(z_{i} u_{j}\right)$ be a kind color or $c\left(z_{i} u_{j}\right)=m$, where $k+1 \leq i, j \leq k+t$. Then $i=j$.
Proof. Otherwise, without loss of generality, we may assume that $i=k+1$ and $j=k+2$. If $c\left(z_{k+1} u_{k+2}\right)=m$, then we add $z_{k+1} u_{k+2}$ to M_{1}, add h_{k+2} to M_{2} and delete g_{k+2} from M_{3}. Hence we get another good configuration with bigger k, which is a contradiction. If $c\left(z_{k+1} u_{k+2}\right)=c\left(g_{k+2}\right)$, then we get an orthogonal matching $M_{1} \cup M_{3} \cup\left\{z_{k+1} u_{k+2}, h_{k+2}\right\}-g_{k+2}$, a contradiction. So we conclude that $c\left(z_{k+1} u_{k+2}\right)=c\left(g_{k+i}\right), i \neq 2$. Then we replace M_{3} by $M_{3} \cup h_{k+2}-\left\{g_{k+2}, g_{k+i}\right\}$, add g_{k+i} to M_{1} and add $z_{k+1} u_{k+2}$ to M_{2}, and thus we get a new good configuration with bigger k, a contradiction. This completes the proof.

Let $M_{3}^{1}=M_{3} \backslash\left\{g_{k+1}, g_{k+2}, \ldots, g_{k+t}\right\}$. For $i=\{k+1, \ldots, k+t\}$, edge $v z_{i}$ is called a special edge if $v \in V\left(M_{3}^{1}\right), c\left(v z_{i}\right) \neq c\left(g_{i}\right)$ and either $c\left(v z_{i}\right)$ is kind or $c\left(v z_{i}\right)=m$. For a vertex $v \in M_{3}^{1}$, let $d_{s}(v)$ denote the number of special edges $v x$ where $x \in \bigcup_{i=k+1}^{k+t} z_{i}$.

Claim 2.9. For an edge $e=u v \in E\left(M_{3}^{1}\right)$, if $d_{s}(u)+d_{s}(v) \geq 3$, then $d_{s}(u) d_{s}(v)=0$.
Proof. Otherwise there exist two independent special edges, say $u z_{k+1}, v z_{k+2}$. We divide our proof into the following cases. Case 1: $c\left(u z_{k+1}\right)=c\left(v z_{k+2}\right)$.
First suppose that $c\left(u z_{k+1}\right)=m$. Then we add $u z_{k+1}$ to M_{1}, add $v z_{k+2}$ to M_{2} and delete $u v$ from M_{3}, hence we get another good configuration with bigger k, which is a contradiction. Now we assume that $c\left(u z_{k+1}\right)$ is kind. By the definition of special edges, without loss of generality, we may assume that $c\left(u z_{k+1}\right)=c\left(g_{k+3}\right)$. Then we add $u z_{k+1}$ to M_{1}, add $v z_{k+2}$ to M_{2} and replace M_{3} by $M_{3} \cup h_{k+3}-\left\{u v, g_{k+3}\right\}$. Thus we get a good configuration with bigger k, which is also a contradiction.

Case 2: $c\left(u z_{k+1}\right) \neq c\left(v z_{k+2}\right)$.
First we suppose that $c\left(u z_{k+1}\right)=m$ or $c\left(v z_{k+2}\right)=m$. Without loss of generality, we may assume that $c\left(u z_{k+1}\right)=m$ and $c\left(v z_{k+2}\right)=c\left(g_{k+i}\right), i \neq 2$. Then we add g_{k+i} to M_{1}, add $v z_{k+2}$ to M_{2} and replace M_{3} by $M_{3} \cup u z_{k+1}-\left\{u v, g_{k+i}\right\}$. Hence we get a good configuration with bigger k, which is a contradiction. So now we assume that $c\left(u z_{k+1}\right)=c\left(g_{k+i}\right)$ and $c\left(v z_{k+2}\right)=c\left(g_{k+j}\right)$, where $i \neq j$. Recall that by the definition of the special edges, $i \neq 1$ and $j \neq 2$. Then we add g_{k+i} to M_{1}, add $u z_{k+1}$ to M_{2}, and replace M_{3} by $M_{3} \cup h_{k+j}-\left\{u v, g_{k+j}\right\}$. Thus we obtain another good configuration with bigger k, which is a contradiction.
Each vertex v in M_{3}^{1} is called special if $d_{s}(v) \geq 7$. By Claim 2.9, we assume that $\left\{u_{k+t+1}, u_{k+t+2}, \ldots, u_{k+t+r}\right\}$ is the set of special vertices. A color in $\left\{c\left(g_{k+t+1}\right), \ldots, c\left(g_{k+t+r}\right)\right\}$ is called a popular color. An edge with popular color is called a popular edge.

Claim 2.10. Let $u v$ be a popular edge such that $v \in \bigcup_{i=k+1}^{k+t} z_{i}$. Then $u \notin V(T)$.
Proof. Suppose, on the contrary, there exists an edge $u v$ such that $c(u v)$ is popular, $v \in \bigcup_{i=k+1}^{k+t} z_{i}$ and $u \in V(T)$. Without loss of generality, we assume that $v=z_{k+1}$ and $c(u v)=c\left(g_{k+t+1}\right)$. Further, if $u \in \cup_{i=k+1}^{k+t} z_{i}$, then we assume that $u=z_{k+2}$ and if $u \in V\left(M_{1} \cup M_{2}\right)$, then we assume that $u \in M_{2}$. Now we can choose a special edge $u_{k+t+1} w$, which is not incident with u, v such that $c\left(u_{k+t+1} w\right) \notin\left\{c\left(g_{k+1}\right), c\left(g_{k+2}\right)\right\}$. If $c\left(u_{k+t+1} w\right)$ is kind, we may assume that $c\left(u_{k+t+1} w\right)=c\left(g_{k+i}\right)$, where $i \in\{3, \ldots, t\}$. Obviously, $w \neq z_{k+i}$. Then $M_{1} \cup M_{3} \cup\left\{u v, u_{k+t+1} w, h_{k+i}\right\}-\left\{g_{k+i}, g_{k+t+1}\right\}$ is an orthogonal matching for G, which is a contradiction. So now we assume that $c\left(u_{k+t+1} w\right)=m$. Then $M_{1} \cup M_{3} \cup\left\{u v, u_{k+t+1} w\right\}-g_{k+t+1}$ is an orthogonal matching for G, which is also a contradiction.

Claim 2.11. Let $z_{i} u_{j}$ be a popular edge where $k+1 \leq i, j \leq k+t$. Then $i=j$.
Proof. Otherwise, without loss of generality, we may assume that $i=k+1, j=k+2$ and $c\left(z_{i} u_{j}\right)=c\left(g_{k+t+1}\right)$. Since vertex u_{k+t+1} is special, we choose a special edge $u_{k+t+1} w$ such that $u_{k+t+1} w$ is not incident with z_{i}, z_{j} and $c\left(u_{k+t+1} w\right) \notin$ $\left\{c\left(g_{i}\right), c\left(g_{j}\right)\right\}$. If $c\left(u_{k+t+1} w\right)=m$, then we add h_{j} to M_{1}, add $u_{k+t+1} w$ to M_{2} and replace M_{3} by $M_{3} \cup\left\{z_{i} u_{j}\right\}-\left\{g_{j}, g_{k+t+1}\right\}$, and we get a new good configuration with bigger k, a contradiction. So now we assume that $c\left(u_{k+t+1} w\right)=c\left(g_{k+i_{0}}\right), i_{0} \notin\{1,2\}$. Then we add $g_{k+i_{0}}$ to M_{1}, add $u_{k+t+1} w$ to M_{2}, replace M_{3} by $M_{3} \cup\left\{z_{i} u_{j}, h_{j}\right\}-\left\{g_{j}, g_{k+t+1}, g_{k+i_{0}}\right\}$. Hence we find a good configuration with bigger k, which is also a contradiction.

Claim 2.12. There is no popular edge between $\left\{z_{k+1}, z_{k+2}, \ldots, z_{k+t}\right\}$ and $\left\{v_{k+t+1}, v_{k+t+2}, \ldots, v_{k+t+r}\right\}$.
Proof. Otherwise without loss of generality, we may assume that there exists an edge, say $z_{k+1} v_{k+t+1}$, which has a popular color. Since $d_{s}\left(u_{k+t+1}\right) \geq 7$, we can choose a special edge $u_{k+t+1} z$ such that $z \in \bigcup_{i=k+1}^{k+t} z_{i}, z \neq z_{k+1}$ and $c\left(u_{k+t+1} z\right) \neq$ $c\left(g_{k+1}\right)$.

Case 1: $c\left(z_{k+1} v_{k+t+1}\right)=c\left(g_{k+t+1}\right)$.
First suppose that $c\left(u_{k+t+1} z\right)=m$. Then $M_{1} \cup M_{3} \cup\left\{z_{k+1} v_{k+t+1}, u_{k+t+1} z\right\}-g_{k+t+1}$ is an orthogonal matching for G, which is a contradiction. Now we assume that $c\left(u_{k+t+1} z\right)$ is kind. Without loss of generality, we may assume that $c\left(u_{k+t+1} z\right)=c\left(g_{k+2}\right)$. Then we add g_{k+2} to M_{1}, add $u_{k+t+1} z$ to M_{2} and replace M_{3} by $M_{3} \cup z_{k+1} v_{k+t+1}-\left\{g_{k+t+1}, g_{k+2}\right\}$. Thus we get a good configuration with bigger k, which is also a contradiction.

Case 2: $c\left(z_{k+1} v_{k+t+1}\right) \neq c\left(g_{k+t+1}\right)$.
Without loss of generality, we assume that $c\left(z_{k+1} v_{k+t+1}\right)=c\left(g_{k+t+2}\right)$. If $c\left(u_{k+t+1} z\right)=m$, then we add $z_{k+1} v_{k+t+1}$ to M_{1}, add g_{k+t+2} to M_{2} and replace M_{3} by $M_{3} \cup u_{k+t+1} z-\left\{g_{k+t+1}, g_{k+t+2}\right\}$. Then we obtain a good configuration with larger k, which is a contradiction. So now we assume that $c\left(u_{k+t+1} z\right)$ is kind. Without loss of generality, we may assume that $c\left(u_{k+t+1} z\right)=$ $c\left(g_{k+2}\right)$. Then we add $z_{k+1} v_{k+t+1}$ to M_{1}, add g_{k+t+2} to M_{2} and replace M_{3} by $M_{3} \cup\left\{u_{k+t+1} z, h_{k+2}\right\}-\left\{g_{k+2}, g_{k+t+1}, g_{k+t+2}\right\}$. Thus we get another good configuration with bigger k, which is also a contradiction. This completes our proof.

An edge between $\left\{z_{k+1}, z_{k+2}, \ldots, z_{k+t}\right\}$ and $V\left(M_{3}\right)$ is called an sop edge if it is a special edge or a popular edge.
Claim 2.13. For an edge $u v \in E\left(M_{3}\right)$, if u is incident with at least two sop edges, then v can not be incident with sop edges.
Proof. Suppose not, by Claims 2.9 and 2.12 , we know that $u v=g_{k+t+r+i}$ with $i>0$. So we can choose two independent sop edges, say $u z_{k+1}$ and $v z_{k+2}$. We divide our proof into the following cases.

Case 1: $u z_{k+1}$ is a special edge or $v z_{k+2}$ is a special edge.
Without loss of generality, we assume that $u z_{k+1}$ is a special edge. By Claim 2.9, we know that $c\left(v z_{k+2}\right)$ is a popular color, and we may assume that $c\left(v z_{k+2}\right)=c\left(g_{k+t+1}\right)$. First suppose that $c\left(u z_{k+1}\right)=m$. Then we add g_{k+t+1} to M_{1}, add $v z_{k+2}$ to M_{2} and replace M_{3} by $M_{3} \cup u z_{k+1}-\left\{g_{k+t+1}, u v\right\}$. Therefore, we get another good configuration with bigger k, which is a contradiction. Hence now we assume that $c\left(u z_{k+1}\right)$ is kind, say $c\left(u z_{k+1}\right)=c\left(g_{k+j}\right)$. By the definition of special edges, $j \neq 1$. Since $d_{s}\left(u_{k+t+1}\right) \geq 7$, we can choose a special edge $u_{k+t+1} w$ such that $w \notin\left\{z_{k+1}, z_{k+2}, z_{k+j}\right\}$ and $c\left(u_{k+t+1} w\right) \neq c\left(g_{k+j}\right)$. Let $c\left(u_{k+t+1} w\right)=c\left(g_{k+i_{0}}\right)$. If $i_{0} \notin\{1,2\}$, then we add g_{k+j} to M_{1}, add $u z_{k+1}$ to M_{2} and replace M_{3} by $M_{3} \cup\left\{v z_{k+2}, h_{k+i_{0}}, u_{k+t+1} w\right\}-\left\{g_{k+i_{0}}, u v, g_{k+j}, g_{k+t+1}\right\}$. Thus we get a new good configuration with bigger k, which is also a contradiction. If $i_{0} \in\{1,2\}$, say $i_{0}=1$, then we add g_{k+j} to M_{1}, add $u z_{k+1}$ to M_{2} and replace M_{3} by $M_{3} \cup\left\{v z_{k+2}, h_{k+j}, u_{k+t+1} w\right\}-\left\{g_{k+1}, u v, g_{k+j}, g_{k+t+1}\right\}$. Hence we also get a new good configuration with bigger k, which is a contradiction.

Case 2: $u z_{k+1}$ and $v z_{k+2}$ are popular edges.
First we assume that $c\left(u z_{k+1}\right)=c\left(v z_{k+2}\right)$. Further without loss of generality we assume that $c\left(u z_{k+1}\right)=c\left(g_{k+t+1}\right)$. Note that $u v=g_{k+t+r+i} \neq g_{k+t+1}$ or else we can add $u z_{k+1}$ to M_{1}, add $v z_{k+1}$ to M_{2} and replace M_{3} by $M_{3}-u v$, hence we obtain a good configuration with bigger k, which is a contradiction. So $u v \neq g_{k+t+1}$. Then we choose a special edge $u_{k+t+1} w$ such that $w \notin\left\{z_{k+1}, z_{k+2}\right\}$ and $c\left(u_{k+t+1} w\right) \notin\left\{g_{k+1}, g_{k+2}\right\}$, since $d_{s}\left(u_{k+t+1}\right) \geq 7$, such w exists. If $c\left(u_{k+t+1} w\right)=m$, then we add $u z_{k+1}$ to M_{1}, add $v z_{k+2}$ to M_{2} and replace M_{3} by $M_{3} \cup u_{k+t+1} w-\left\{g_{k+t+1}, u v\right\}$. So we assume that $c\left(u_{k+t+1} w\right)$ is kind, say, $c\left(u_{k+t+1} w\right)=$ $c\left(g_{k+i_{0}}\right)$. Now we add $u z_{k+1}$ to M_{1}, add $v z_{k+2}$ to M_{2} and replace M_{3} by $M_{3} \cup\left\{u_{k+t+1} w, h_{k+i_{0}}\right\}-\left\{g_{k+t+1}, g_{k+i_{0}}, u v\right\}$. Then we obtain a new good configuration with bigger k, which is a contradiction.

Next we assume that $c\left(u z_{k+1}\right) \neq c\left(v z_{k+2}\right)$. Without loss of generality, we assume that $c\left(u z_{k+1}\right)=c\left(g_{k+t+1}\right)$ and $c\left(v z_{k+2}\right)=c\left(g_{k+t+2}\right)$, further we assume that $u v \neq g_{k+t+2}$. Then we choose a special edge $u_{k+t+2} w$ such that $w \notin$
$\left\{z_{k+1}, z_{k+2}\right\}$ and $c\left(u_{k+t+2} w\right) \notin\left\{c\left(g_{k+1}\right), c\left(g_{k+2}\right)\right\}$. Since $d_{s}\left(u_{k+t+2}\right) \geq 7$, such w exists. Assume that $c\left(u_{k+t+2} w\right)=c\left(g_{k+i_{0}}\right)$. Now we add $u z_{k+1}$ to M_{1}, add g_{k+t+1} to M_{2} and replace M_{3} by $M_{3} \cup\left\{u_{k+t+2} w, h_{k+i_{0}}\right\}-\left\{g_{k+t+2}, g_{k+i_{0}}, u v\right\}$. Then we obtain a new good configuration with bigger k, which is a contradiction.

Let n_{4} denote the number of special edges and popular edges between $\bigcup_{i=k+1}^{k+t} z_{i}$ and $V\left(M_{3}^{1}\right)$. By Claim 2.4 , each z_{i} can send 2 edges colored $c\left(g_{i}\right)$ to $M_{1} \cup M_{2}$. By Claim 2.8, $c\left(z_{i} u_{i}\right)$ can be a kind color or equal m. Moreover each z_{i} can send at most t edges colored m or popular colors to $\bigcup_{i=k+1}^{k+t} v_{i}$. So we have

$$
n_{4} \geq 2(1+r+t) t-3 t-t^{2}
$$

On the other hand, for each $i \in\{k+t+1 \ldots, k+t+r\}, u_{i}$ sends at most t special or popular edges to $\bigcup_{i=k+1}^{k+t} z_{i}$. By the definition of special vertices, for each $i \in\{k+t+r+1 \ldots, p\}$, those vertices in $V\left(g_{i}\right)$ send at most 6 special edges to $\bigcup_{i=k+1}^{k+t} z_{i}$. Moreover, each vertex in $V\left(\bigcup_{i=k+t+r+1}^{p} g_{i}\right)$ sends at most r popular edges to $\bigcup_{i=k+1}^{k+t} z_{i}$. Combining with Claims 2.12 and 2.13, we have

$$
n_{4} \leq r t+6(p-k-t-r)+2 r(p-k-t-r) .
$$

Hence

$$
\begin{aligned}
p & \geq k+\frac{3 t}{2}+\frac{t^{2}-4 t}{2 r+6}+r+3-3 \\
& \geq \frac{n}{2}-p+t+\frac{t^{2}-4 t}{2 r+6}+r+3-3 \\
& \geq \frac{n}{2}-p+t+\sqrt{2} t-3 \sqrt{2}-3
\end{aligned}
$$

So we have

$$
\begin{equation*}
p \geq \frac{n}{4}+\frac{(\sqrt{2}+1) t}{2}-\frac{3 \sqrt{2}+3}{2} \tag{2.5}
\end{equation*}
$$

Recall that q is the number of nice pairs in $M_{1} \cup M_{2}$. We will prove that $q \geq 4$. Otherwise $q \leq 3$. Recall that n_{1} is the number of edges $u v$ such that $u \in V\left(M_{3}\right), v \in V(G) \backslash V\left(M_{3}\right)$ and $c(u v)=m$. By Claims 2.1 and $2.2, n_{1} \geq 2|T|-8 q \geq 2(4 k+t)-24$. On the other hand, $n_{1} \leq 2\left|M_{3}\right|=4(p-k)$. It follows that $2(4 k+t)-24 \leq 4(p-k)$. That is, $k \leq \frac{p}{3}-\frac{t}{6}+2$. By (2.2), we have

$$
\frac{n-2 p-t}{2} \leq \frac{p}{3}-\frac{t}{6}+2
$$

It follows that $t \geq \frac{3 n}{2}-4 p-6$. By (2.5), we have that

$$
p \geq \frac{(3 \sqrt{2}+4) n}{4}-2(\sqrt{2}+1) p-\frac{9(\sqrt{2}+1)}{2} \geq p+3+\frac{7 \sqrt{2}}{8}
$$

which is a contradiction. So $q \geq 4$.
Claim 2.14. Let $e=u v$ be an edge with a nice color, where $u, v \in V(T)$. Without loss of generality, we assume that $c(u v)=$ $c\left(e_{i_{0}}\right)$ for some $i_{0} \leq q$ and further we assume that $c\left(w_{i_{0}}^{1} w_{i_{0}}^{2}\right)=m$, where $w_{i_{0}}^{1} \in e_{i_{0}}$ and $w_{i_{0}}^{2} \in f_{i_{0}}$. Then one of the following is true:
(a) $u, v \in V\left(e_{i} \cup f_{i}\right)$ for some $i \in\{1,2, \ldots, k\}$;
(b) $u v$ is incident with $w_{i_{0}}^{1}$ or $w_{i_{0}}^{2}$.

Proof. Otherwise, by symmetry and without loss of generality, we may assume that $u, v \notin V\left(M_{2}\right)$. Then $M_{2} \cup M_{3} \cup$ $\left\{u v, w_{i_{0}}^{1} w_{i_{0}}^{2}\right\}-e_{i_{0}}$ is an orthogonal matching, which is a contradiction.

Let n_{5} be the number of edges $u v$ such that $u \in V\left(M_{3}\right), v \in V(T)$ and $c(u v)$ is nice or $c(u v)=m\left(c(u v) \in\left\{c\left(e_{1}\right)\right.\right.$, $\left.\ldots, c\left(e_{q}\right), m\right\}$). Call a color fine if it is nice or equal m. For each $i \in\{1,2, \ldots, q\}$, there are at most 6 edges with fine colors in the subgraph induced by $V\left(e_{i} \cup f_{i}\right)$. For each $i \in\{q+1, q+2, \ldots, k\}$, there are at most 4 edges with fine colors in the subgraph induced by $V\left(e_{i} \cup f_{i}\right)$. By Claim 2.14(b), for each $i \in\{1,2, \ldots, q\}$, the vertices in $V\left(e_{i} \cup f_{i}\right)$ can send at most 2 edges with $c\left(e_{i}\right)$ to $V(T) \backslash V\left(e_{i} \cup f_{i}\right)$. So we have $n_{5} \geq 2(1+q)|T|-12 q-4 q-8(k-q)=2(1+q)(4 k+t)-8 k-8 q$.

We also have $n_{5} \leq 2(1+q)\left|M_{3}\right|=4(1+q)(p-k)$. Hence

$$
2(1+q)(4 k+t)-8 k-8 q \leq 4(1+q)(p-k)
$$

Thus

$$
k \leq \frac{(1+q)(2 p-t)}{6 q+2}+\frac{4 q}{6 q+2}
$$

By (2.2),

$$
\frac{n-2 p-t}{2} \leq \frac{(1+q)(2 p-t)}{6 q+2}+\frac{4 q}{6 q+2}
$$

It follows that

$$
\begin{aligned}
t & \geq \frac{(3 q+1) n-(8 q+4) p-4 q}{2 q} \\
& \geq \frac{(3 q+1)(2 \sqrt{2} p+2 \sqrt{2}+4.5)-(8 q+4) p-4 q}{2 q} \\
& \geq \frac{0.24 p q-0.59 p+8.9 q}{q} \\
& \geq 0.24 p+8.9-\frac{0.59 p}{q} \\
& =0.09 p+8.9
\end{aligned}
$$

as $q \geq 4$. Hence

$$
\begin{aligned}
k & \leq \frac{(1+q)(2 p-t)}{6 q+2}+\frac{4 q}{6 q+2} \\
& \leq \frac{0.955 p q+0.955 p}{3 q+1} \\
& \leq \frac{1.20 p q}{3 q+1}
\end{aligned}
$$

It holds that $\frac{k}{t} \leq \frac{1.20 p q}{0.09 p(3 q+1)} \leq 4.5$.
Now we choose a kind color, say $c\left(g_{k+1}\right)$, such that the number of edges with this kind color in T is minimum among all kind colors. By Claim 2.4, we know that the number of edges with color $c\left(g_{k+1}\right)$ is at most $\frac{4 k}{t}+2$ in T. Let n_{3} be the number of edge $u v$ such that $u \in V\left(M_{3}\right), v \in V(T)$ and $c(u v)=c\left(g_{k+1}\right)$. Thus $n_{3} \geq 2|T|-2\left(\frac{4 k}{t}+2\right)=2(4 k+t)-2\left(\frac{4 k}{t}+2\right)$. We also have $n_{3} \leq 2\left|M_{3}\right|-2=4(p-k)-2$. Hence

$$
2(4 k+t)-2\left(\frac{4 k}{t}+2\right) \leq 4(p-k)-2
$$

Recall that $\frac{k}{t} \leq 4.5$. Hence

$$
4 k+t-19 \leq 2(p-k)
$$

By (2.2),

$$
3(n-2 p-t) \leq 2 p-t+19
$$

It follows that $t \geq 1.5 n-4 p-\frac{19}{2}$. By (2.5), we have that

$$
p \geq \frac{(3 \sqrt{2}+4) n}{4}-2(\sqrt{2}+1) p-\frac{25(\sqrt{2}+1)}{4} \geq p+\frac{10-7 \sqrt{2}}{8}>p+\frac{1}{80}
$$

which is a contradiction. This completes the proof of Theorem 1.4.

Acknowledgments

We would like to thank the referees for their valuable comments. This work was supported by the National Natural Science Foundation of China (11101243 and 11371355), the Scientific Research Foundation for the Excellent MiddleAged and Young Scientists of Shandong Province of China (BS2012SF016), the Fundamental Research Funds of Shandong University and Independent Innovation Foundation of Shandong University (IFYT14012).

References

1] B. Alspach, Problem 89, Discrete Math. 69 (1988) 106
[2] B. Alspach, K. Heinrich, G. Liu, Orthogonal claimorizations of graphs, in: Contemporary Design Theory: A Collection of Surveys, Wiley, New York, 1992.
[3] R.P. Anstee, L. Caccetta, Orthogonal matchings, Discrete Math. 179 (1998) 37-47.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press[M], New York, 1976.
[5] L. Caccetta, S. Mardiyono, Premature sets of one-claimors, Australas. J. Combin. 5 (1992) 229-252.
[6] H. Chen, X. Li, Long heterochromatic paths in edge-colored graphs, Electron. J. Combin. 12 (2005) P33.
[7] J. Diemunsch, M. Ferrara, A. Lo, C. Moffatt, F. Pfender, P.S. Wenger, Rainbow matchings of size $\delta(G)$ in properly edge-colored graphs, Electron. J. Combin. 19 (2) (2012) P52.
[8] A. Gyárfás, G.N. Sárközy, Rainbow matchings and cycle-free partial transversals of Latin squares, Discrete Math. 327 (2014) 96-102.
[9] P. Hatami, P.W. Shor, A lower bound for the length of a partial transversal in a Latin square, revised version, J. Combin. Theory Ser. A 115 (7) (2008) 1103-1113.
[10] A. Kostochka, F. Pfender, M. Yancey, Large Rainbow Matchings in Large graphs, arXiv preprint, arXiv:1204.3193, 2012.
[11] A. Kostochka, M. Yancey, Large rainbow matchings in edge-colored graphs, Combin. Probab. Comput. 21 (2012) $255-263$.
[12] M. Kouider, D. Sotteau, On the existence of a matching orthogonal to a 2-claimorization, Discrete Math. 73 (1989) 301-304.
[13] T.D. LeSaulnier, C. Stocker, P.S. Wenger, D.B. West, Rainbow matching in edge-colored graphs, Electron. J. Combin. 17 (2010) P26.
[14] H. Li, G. Wang, Color degree and heterochromatic matchings in edge-colored bipartite graphs, Util. Math. 77 (2008) 145-154.
[15] H. Li, G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, Electron. J. Combin. 33 (8) (2012) 1958-1964.
[16] A. Lo, T. Tan, A note on large rainbow matchings in edge-coloured graphs, Graphs Combin. 30 (2014) 389-393.
[17] R. Stong, Orthogonal matchings, Discrete Math. 256 (2002) 515-518.
[18] G. Wang, Rainbow matchings in properly edge colored graphs, Electron. J. Combin. 18 (2011) P162.
[19] G. Wang, H. Li, Heterochromatic matchings in edge-colored graphs, Electron. J. Combin. 15 (2008) R138.
[20] G. Wang, B. Liu, G. Liu, A note on rainbow matchings, Discrete Math. Algorithms Appl. 5 (4) (2013) 1350028.
[21] G. Wang, J. Zhang, G. Liu, Existence of rainbow matchings in properly edge-colored graphs, Front. Math. China 7 (3) (2012) 543-550.

[^0]: * Corresponding author.

 E-mail address: ghwang@sdu.edu.cn (G. Wang).

