
Discrete Mathematics 338 (2015) 2006–2013

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Some bounds on the neighbor-distinguishing index of graphs
Yiqiao Wang a,∗, Weifan Wang b, Jingjing Huo c

a School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
c Department of Mathematics, Hebei University of Engineering, Handan 056038, China

a r t i c l e i n f o

Article history:
Received 19 March 2015
Received in revised form 3 May 2015
Accepted 4 May 2015
Available online 5 June 2015

Keywords:
Neighbor-distinguishing edge coloring
Maximum degree
Edge-partition

a b s t r a c t

A proper edge coloring of a graph G is neighbor-distinguishing if any two adjacent vertices
have distinct sets consisting of colors of their incident edges. The neighbor-distinguishing
index of G is the minimum number χ ′

a(G) of colors in a neighbor-distinguishing edge
coloring of G.

Let G be a graph with maximum degree ∆ and without isolated edges. In this paper, we
prove that χ ′

a(G) ≤ 2∆ if 4 ≤ ∆ ≤ 5, and χ ′
a(G) ≤ 2.5∆ if∆ ≥ 6. This improves a result in

Zhang et al. (2014), which states that χ ′
a(G) ≤ 2.5∆ + 5 for any graph G without isolated

edges. Moreover, we prove that if G is a semi-regular graph (i.e., each edge of G is incident
to at least one ∆-vertex), then χ ′

a(G) ≤
5
3∆ +

13
3 .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let V (G) and E(G) denote the vertex set and the edge set of a
graph G, respectively. Let NG(v) denote the set of neighbors of a vertex v in G and dG(v) = |NG(v)| denote the degree of v in
G. The vertex v is called a k-vertex if dG(v) = k. Let ∆(G) and δ(G) denote the maximum degree and the minimum degree of
a vertex in G, respectively. For a vertex v ∈ V (G) and an integer i ≥ 1, let di(v) denote the number of i-vertices adjacent to
v. An edge-partition of a graph G is a decomposition of G into subgraphs G1,G2, . . . ,Gm such that E(G) =

m
i=1 E(Gi) with

E(Gi) ∩ E(Gj) = ∅ for all i ≠ j.
An edge k-coloring of a graph G is a function φ : E(G) → {1, 2, . . . , k} such that any two adjacent edges receive different

colors. The chromatic index, denoted by χ ′(G), of a graph G is the smallest integer k such that G has an edge k-coloring.
Given an edge k-coloring φ of G, we use Cφ(v) to denote the set of colors assigned to those edges incident to a vertex v.
The coloring φ is called a neighbor-distinguishing edge coloring (an NDE-coloring for short) if Cφ(u) ≠ Cφ(v) for any pair of
adjacent vertices u and v. The neighbor-distinguishing index χ ′

a(G) of a graph G is the smallest integer k such that G has a
k-NDE-coloring. A graph G is normal if it contains no isolated edges. Clearly, G has an NDE-coloring if and only if G is normal.
Thus, we always assume that G is normal in the following discussion.

By definition, it is easy to see that χ ′
a(G) ≥ χ ′(G) ≥ ∆(G) for any graph G. On the other hand, Zhang, Liu and

Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs
and complete bipartite graphs.

Conjecture 1. Every connected graph G with |V (G)| ≥ 6 has χ ′
a(G) ≤ ∆(G) + 2.
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Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with ∆(G) = 3. They also proved that
χ ′
a(G) ≤ ∆(G) + O(logχ(G)), where χ(G) is the vertex chromatic number of the graph G. This result and Brooks’ Theorem

imply immediately that χ ′
a(G) ≤ 2∆(G) if ∆(G) is sufficiently large. Using probabilistic method, Hatami [4] showed that

every graph G with ∆(G) > 1020 has χ ′
a(G) ≤ ∆(G) + 300. Akbari, Bidkhori and Nosrati [1] proved that every graph G

satisfies χ ′
a(G) ≤ 3∆(G). Zhang, Wang and Lih [14] improved this bound to that χ ′

a(G) ≤ 2.5∆(G) + 5 for any graph G.
For planar graphs G, Horňák, Huang and Wang [6] showed that χ ′

a(G) ≤ ∆(G) + 2 if ∆(G) ≥ 12. More recently, Wang and
Huang [9] further verified that ifG is a planar graphwith∆(G) ≥ 16, thenχ ′

a(G) ≤ ∆(G)+1, andmoreoverχ ′
a(G) = ∆(G)+1

if and only if G contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says
that if G is a planar bipartite graph with ∆(G) ≥ 12, then χ ′

a(G) ≤ ∆(G) + 1. The reader is referred to [5,10–12] for other
results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum
degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing
index on general graphs. Here a graph G is called semi-regular if each edge of G is incident to at least one vertex of maximum
degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with ∆ = 4

This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.

Lemma 2.1 ([7]). If G is a 2k-regular graph with k ≥ 1, then G is 2-factorizable.

It is well-known that, given a graph G, there exists a ∆(G)-regular graph H such that G ⊆ H . This fact, together with
Lemma 2.1, implies that every graph G with ∆(G) = 4 can be edge-partitioned into two subgraphs G1 and G2 such that
∆(Gi) ≤ 2 for i = 1, 2.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:

Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G1 and G2, then χ ′
a(G) ≤ χ ′

a(G1) +

χ ′
a(G2).

Theorem 2.3 ([13]). If P is a path of length at least two, then χ ′
a(P) ≤ 3.

Theorem 2.4 ([2]). If G is a graph with ∆(G) ≤ 3, then χ ′
a(G) ≤ 5.

Suppose that φ is a partial NDE-coloring of a graph G using a color set C . We call two adjacent vertices u and v conflict
under φ (or simply conflict) if Cφ(u) = Cφ(v). An edge uv is said to be legally colored if its color is different from that of its
neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with ∆(G) ≤ 4, then χ ′
a(G) ≤ 8.

Proof. We prove the theorem by induction on the edge number |E(G)|. If |E(G)| ≤ 8, the theorem holds trivially. Let G be
a graph with ∆(G) ≤ 4 and |E(G)| ≥ 9. If ∆(G) ≤ 3, then the result follows from Theorem 2.4. So suppose that ∆(G) = 4.
The proof is split into the following cases, depending on the size of δ(G).

Case 1 δ(G) = 1.

Let x be a 1-vertex adjacent to a vertex y. Let H = G− xy. Then H is a normal graph with ∆(H) ≤ 4 and |E(H)| < |E(G)|.
By the induction hypothesis, H has an 8-NDE-coloring φ using the color set C = {1, 2, . . . , 8}. Note that |Cφ(y)| = dH(y) =

dG(y)−1 ≤ 3 and y has atmost dG(y)−1 ≤ 3 possible conflict vertices. Thus, xy has atmost |Cφ(y)|+3 ≤ 6 forbidden colors
when colored, we can color xywith a color in C \Cφ(y) such that y does not conflict with its neighbors. So an 8-NDE-coloring
of G is constructed.

Case 2 δ(G) = 2.

Let x be a 2-vertex with neighbors y and z. Without loss of generality, assume that 2 ≤ dG(y) ≤ dG(z) ≤ 4. There are two
possibilities to be handled.

Case 2.1 dG(y) = 2.

Let w denote the neighbor of y other than x. Without loss of generality, we assume that dG(w) ≥ 3, for otherwise we
may further consider the neighbor of w other than y until a desired vertex is found. Let H = G − wy. Then H is a normal
graph with ∆(H) ≤ 4 and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring φ with the color set
C = {1, 2, . . . , 8}. We first remove the color of xy. Since w has at most three conflict vertices and y has at most one conflict
vertex, we can color yw with a color a ∈ C \ (Cφ(w) ∪ {φ(xz)}) and xy with a color in C \ {a, φ(xz)} such that neither of
x, y, w conflicts with its neighbors.
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Case 2.2 dG(y) ≥ 3.

Then dG(z) ≥ 3. Let H = G − xy. Then H is a normal graph with ∆(H) ≤ 4 and |E(H)| < |E(G)|. By the induction
hypothesis, H has an 8-NDE-coloring φ with the color set C = {1, 2, . . . , 8}. Since y is incident to at most three edges in H
and has at most three conflict vertices, x is incident to exactly one edge in H and has no conflict vertex, we color xy with a
color in C \ (Cφ(y) ∪ {φ(xz)}) such that y does not conflict with its neighbors.

Case 3 δ(G) ≥ 3.

We need to deal with the following two subcases.

Case 3.1 There is an edge uv such that dG(u) = dG(v) = 3.

Let u1, u2 denote the neighbors of u other than v, and v1, v2 the neighbors of v other than u. Then dG(ui), dG(vi) ≥ 3 for
i = 1, 2.

First, assume that uv does not lie on any 3-cycle. Let H denote the graph obtained from G by contracting the edge
uv. Let z denote the new vertex formed by identifying u and v. Then H is a simple and normal graph with ∆(H) ≤ 4
and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring φ using the color set C = {1, 2, . . . , 8}.
Let φ(zu1) = 1, φ(zu2) = 2, φ(zv1) = 3, and φ(zv2) = 4. In G, we first color uu1, uu2, vv1, vv2 with 1, 2, 3, 4,
respectively. If uv can be legally colored, we are done. Otherwise, wemay assume that Cφ(u1) = {1, 2, 5}, Cφ(u2) = {1, 2, 6},
Cφ(v1) = {3, 4, 7}, and Cφ(v2) = {3, 4, 8}. This means that dG(u1) = dG(u2) = dG(v1) = dG(v2) = 3. Let u′

1 and u′′

1 denote
the neighbors of u1 other than u. Similarly, we define u′

2 and u′′

2 for u2, v′

1 and v′′

1 for v1, and v′

2 and v′′

2 for v2. If there exists
a ∈ {3, 4} such that {2, 5, a} ∉ {Cφ(u′

1), Cφ(u′′

1)}, we recolor uu1 with a and color uv with 1. So assume that Cφ(u′

1) = {2, 3, 5}
and Cφ(u′′

1) = {2, 4, 5}. Similarly, Cφ(u′

2) = {1, 3, 6} and Cφ(u′′

2) = {1, 4, 6}. Recolor uu1 with 7, uu2 with 8, and color uv
with 1.

Next, assume that uv lies on a 3-cycle uvu1u, where v1 = u1. Let H = G − uv. By the induction hypothesis, H has an
8-NDE-coloring φ using the color set C = {1, 2, . . . , 8}. Assume that φ(uu1) = 1 and φ(uu2) = 2. Note that the number
of 3-vertices that conflict with u or v is at most three. If φ(vu1) ≠ 2 or φ(vv2) ≠ 1, then we color uv with a color in
C \ (Cφ(u) ∪ Cφ(v)) such that both u and v do not conflict with their neighbors. Otherwise, assume that φ(vu1) = 2 and
φ(vv2) = 1. Recolor uu1 with a color a ∈ C \ Cφ(u1) such that u1 does not conflict with its neighbors. Since u1 has at most
four incident edges and two conflict vertices except u and v, such color a exists. Afterward, we legally color uv as above.

Case 3.2 For any edge uv ∈ E(G), max{dG(u), dG(v)} = 4.

It follows from Lemma 2.1 that G can be edge-partitioned into subgraphs G1 and G2 such that ∆(Gi) ≤ 2 for i = 1, 2.
Since δ(G) ≥ 3, we further deduce that δ(Gi) ≥ 1 for i = 1, 2. Let xy be an arbitrary edge of G1. Then xy ∈ E(G) with
max{dG(x), dG(y)} = 4, say dG(y) = 4. Then dG1(x) ≥ dG(x) − 2 ≥ 3 − 2 = 1 and dG1(y) ≥ dG(y) − 2 = 4 − 2 = 2. This
implies that xy is not an isolated edge of G1. That is, G1 is normal. Similarly, we can prove that G2 is normal.

Note that Gi is the union of vertex-disjoint cycles and paths. For each cycle B in G1, we pick out an edge eB ∈ E(B). Then
we set

E∗
= {eB | B is a cycle of G1},

H1 = G1 − E∗,
H2 = G2 ∪ E∗.
Then H1 ∪ H2 is an edge-partition of G. It is easy to affirm the following three assertions (a), (b) and (c):

(a) H1 and H2 are normal;
(b) H1 is acyclic and ∆(H1) ≤ 2;
(c) ∆(H2) ≤ 3 (since ∆(G2) ≤ 2 and E∗ is a matching of G).

Now, combining Theorems 2.2–2.4, we easily obtain:

χ ′

a(G) = χ ′

a(H1 ∪ H2) ≤ χ ′

a(H1) + χ ′

a(H2) ≤ 3 + 5 = 8.

This completes the proof. �

3. Semi-regular graphs

The following is Vizing’s celebrated result on the edge coloring [8]:

Theorem 3.1. Every simple graph G has χ ′(G) ≤ ∆(G) + 1.

Lemma 3.2. Let G be a semi-regular graph with ∆(G) = ∆ ≥ 5. Then there is an edge-partition of G into normal subgraphs
G1,G2, . . . ,Gk such that one of the following conditions holds.

(1) If ∆ ≡ 2 (mod 3), then k =
1
3 (∆ + 1) and ∆(Gi) ≤ 3 for 1 ≤ i ≤ k.

(2) If ∆ ≡ 1 (mod 3), then k =
1
3 (∆ − 1), ∆(Gi) ≤ 4 for 1 ≤ i ≤ 2 and ∆(Gi) ≤ 3 for 3 ≤ i ≤ k.

(3) If ∆ ≡ 0 (mod 3), then k =
1
3∆, ∆(G1) ≤ 4 and ∆(Gi) ≤ 3 for 2 ≤ i ≤ k.



Y. Wang et al. / Discrete Mathematics 338 (2015) 2006–2013 2009

Proof. By Theorem 3.1, E(G) can be partitioned into ∆ + 1 disjoint color classes E1, E2, . . . , E∆+1 such that each Ei is a
matching of G. Let H be a subgraph of G edge-induced by s, 3 ≤ s ≤ ∆, of these color classes. Obviously, ∆(H) ≤ s. Let uv
be an arbitrary edge of H . Then uv ∈ E(G), assuming dG(v) ≤ dG(u). Then dG(u) = ∆ as G is semi-regular. Note that exactly
one color is not used on any edge incident to u. Therefore, dH(u) ≥ s − 1 ≥ 3 − 1 = 2, and hence uv is not an isolated edge
of H . This shows that H is a normal graph.

In the following, we simply write Ei,i+1,...,j = Ei ∪ Ei+1 ∪ · · · ∪ Ej, where i < j.
If ∆ ≡ 2 (mod 3), let k =

1
3 (∆ + 1). We define G1 = G[E1,2,3], G2 = G[E4,5,6], . . ., Gk = G[E∆−1,∆,∆+1]. Then

G1,G2, . . . ,Gk form an edge-partition of G satisfying the condition (1).
If∆ ≡ 1 (mod 3), let k =

1
3 (∆−1). We defineG1 = G[E1,2,3.4],G2 = G[E5,6,7,8],G3 = [E9,10,11], . . . ,Gk = G[E∆−1,∆,∆+1].

Then G1,G2, . . . ,Gk form an edge-partition of G satisfying the condition (2).
If ∆ ≡ 0 (mod 3), let k =

1
3∆. We define G1 = G[E1,2,3,4], G2 = G[E5,6,7], G3 = [E8,9,10], . . . , Gk = G[E∆−1,∆,∆+1]. Then

G1,G2, . . . ,Gk form an edge-partition of G satisfying the condition (3). �

Theorem 3.3. If G is a semi-regular graph with ∆(G) = ∆ ≥ 2, then χ ′
a(G) ≤

5
3∆ + c, where c =

5
3 if ∆ ≡ 2 (mod 3),

c =
13
3 if ∆ ≡ 1 (mod 3), and c = 3 if ∆ ≡ 0 (mod 3).

Proof. If 2 ≤ ∆ ≤ 4, the result follows from Theorems 2.4 and 2.5. Assume that ∆ ≥ 5. By Lemma 3.2, there is an edge-
partition of G into normal subgraphs G1,G2, . . . ,Gk such that one of the stated conditions (1), (2) or (3) holds.

If (1) holds, by Theorems 2.2, 2.4 and 2.5, we have

χ ′

a(G) ≤

k
i=1

χ ′

a(Gi) ≤ 5k =
5
3
(∆ + 1).

If (2) holds, then

χ ′

a(G) ≤ χ ′

a(G1) + χ ′

a(G2) +

k
i=3

χ ′

a(Gi)

≤ 8 + 8 + 5(k − 2)

=
5
3
(∆ − 1) + 6

=
5
3
∆ +

13
3

.

If (3) holds, then

χ ′

a(G) ≤ χ ′

a(G1) +

k
i=2

χ ′

a(Gi)

≤ 8 + 5(k − 1)
= 5k + 3

=
5
3
∆ + 3. �

Corollary 3.1. If G is a semi-regular graph with ∆(G) = 5, then χ ′
a(G) ≤ 10.

4. Graphs with ∆ = 5

This section focuses on studying the neighbor-distinguishing edge coloring of graphs with maximum degree 5. The main
purpose is to show that if G is a graph with ∆(G) ≤ 5, then χ ′

a(G) ≤ 10. As an application, we give a new upper bound for
the neighbor-distinguishing index of a general graph.

Lemma 4.1. Let G be a connected graph with ∆(G) = 5 that is not semi-regular. Then G contains one of the following
configurations:

(A1) An edge xy with dG(x) ≤ 3 and dG(y) ≤ 4.
(A2) A 4-vertex v satisfies one of the following conditions:
(A2.1) d4(v) = 3 and d5(v) = 1;
(A2.2) d4(v) = 2 and d5(v) = 2.
(A3) An edge vu with dG(v) = dG(u) = 4 satisfies one of the following conditions:
(A3.1) d4(v) = d4(u) = 1 and d5(v) = d5(u) = 3;
(A3.2) d4(v) = 1, d5(v) = 3, and d4(u) = 4.
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Proof. Since G is not semi-regular, there exists an edge uv such that dG(u) ≤ 4 and dG(v) ≤ 4. If either u or v is of degree
at most 3, then G contains (A1). So assume that dG(u) = dG(v) = 4. If u or v is adjacent to other vertex of degree at most 3
(different from v or u), then G contains (A1). Otherwise, d4(u) + d5(u) = 4 and d4(v) + d5(v) = 4. Note that d4(u) ≥ 1 and
d4(v) ≥ 1.

If d4(u) = 3, then G contains (A2.1). If d4(u) = 2, then G contains (A2.2). Thus, assume that d4(u) = 1. If d4(v) = 1,
then G contains (A3.1). If d4(v) = 4, then G contains (A3.2). The similar argument works for the vertex v. Hence we further
suppose that d4(u) = d4(v) = 4, i.e., both u and v are only adjacent to 4-vertices. Since ∆(G) = 5, G contains a 5-vertex
x. As G is connected, there exists a shortest path P = y0y1y2 · · · ymym+1 connecting u and x, where u = y0, x = ym+1, with
m ≥ 1. Let ys be the first 5-vertex occurring on P along the direction from u to x. So dG(yj) ≤ 4 for all 0 ≤ j ≤ s − 1 and
dG(ys) = 5. If dG(y1) ≤ 3, then G contains (A1). Therefore dG(y1) = 4. We can recur to conclude that dG(vj) = 4 for all
j = 2, 3, . . . , s − 1. Now, we find a 4-vertex ys−1 adjacent to a 5-vertex ys. Repeating the above process, the proof of the
lemma is complete. �

Theorem 4.2. If G is a graph with ∆(G) ≤ 5, then χ ′
a(G) ≤ 10.

Proof. Weprove the result by induction on |E(G)|. If |E(G)| ≤ 10, the theoremholds trivially. LetG be a graphwith∆(G) ≤ 5
and |E(G)| ≥ 11. If ∆(G) ≤ 4, then the theorem holds automatically from Theorems 2.4 and 2.5. So suppose that ∆(G) = 5.
If G is semi-regular, then χ ′

a(G) ≤ 10 by Corollary 3.1. Thus, assume that G is not semi-regular. By Lemma 4.1, G contains
one of the configurations (A1)–(A3). In the sequel, the proof is split into several cases.

Case 1 G contains (A1): an edge xy with dG(x) ≤ 3 and dG(y) ≤ 4.

We need to consider the following subcases, depending on the size of dG(x).

Case 1.1 dG(x) = 1.

Let H = G − xy. Then H is a normal graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction hypothesis, H has
a 10-NDE-coloring φ using the color set C = {1, 2, . . . , 10}. Note that |Cφ(y)| = dG(y) − 1 ≤ 3 and y has at most three
possible conflict vertices. Thus, xy has at most |Cφ(y)| + 3 ≤ 6 forbidden colors, we can color xy with a color in C \ Cφ(y)
such that y does not conflict with its neighbors.

Case 1.2 dG(x) = 2.

Let v be the second neighbor of x other than y. By the proof of Case 1.1, we may assume that dG(y), dG(v) ≥ 2.
First, assume that dG(y) = 2. Letw denote the neighbor of y other than x. Without loss of generality, wemay assume that

dG(w) ≥ 3. Let H = G − wy. Then H is a normal graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction hypothesis,
H has a 10-NDE-coloring φ with the color set C = {1, 2, . . . , 10}. We first remove the color of xy. Since w has at most four
conflict vertices and y has at most one conflict vertex, we can legally colorwywith a color in C \ (Cφ(w)∪{φ(vx)}) and then
legally color xy.

Next, assume that dG(y) ≥ 3. Let H = G − xy. Then H is a normal graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the
induction hypothesis, H has a 10-NDE-coloring φ with the color set C = {1, 2, . . . , 10}. Since y is incident to at most three
edges in H and has at most three conflict vertices, x is incident to one edge in H and has at most one conflict vertex, we can
color xywith a color in C \ (Cφ(x) ∪ Cφ(y)) such that both x and y do not conflict with their neighbors.

Case 1.3 dG(x) = 3.

Let s, t be the neighbors of x other than y. By the proof of Cases 1.1 and 1.2, we may assume that dG(s), dG(t) ≥ 3. We
have to consider the following subcases by symmetry.

Case 1.3.1 dG(y) = dG(s) = dG(t) = 3.

Let H = G − {xy, xs, xt}. Then H is a normal graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction hypothesis,
H has a 10-NDE-coloring φ with the color set C = {1, 2, . . . , 10}. For an edge e ∈ E(G) \ E(H), we use L(e) to denote the
subset of colors in C which can be legally assigned to e. Since there exist at most 2 + 2 = 4 forbidden colors, we have
|L(e)| ≥ 10 − 4 = 6 for each e ∈ {xy, xs, xt}. We color xy with a ∈ L(xy) \ Cφ(s), xs with b ∈ L(xs) \ (Cφ(t) ∪ {a}), and xt
with c ∈ L(xt) \ (Cφ(y) ∪ {a, b}). Since |Cφ(y)| = |Cφ(s)| = |Cφ(t)| = 2, the coloring is available.

Case 1.3.2 dG(y) = dG(s) = 3 and dG(t) ≥ 4.

Let H = G−{xy, xs}. By the induction hypothesis, H has a 10-NDE-coloring φ with the color set C = {1, 2, . . . , 10}. Note
that there exist at most five forbidden colors for each of xy and xs. Thus, |L(xy)|, |L(xs)| ≥ 10 − 5 = 5. We color xy with
a ∈ L(xy) \ Cφ(s) and xs with b ∈ L(xs) \ (Cφ(y) ∪ {a}). Analogous to the foregoing analysis, the coloring is feasible.

Case 1.3.3 dG(y) = 3 and dG(s), dG(t) ≥ 4.

Let u, w be the neighbors of y other than x. By the proof of the previous subcases, wemay suppose that dG(u), dG(w) ≥ 4.
If xy is not on a 3-cycle, let H denote the graph obtained from G by contracting the edge xy. Let z∗ denote the new vertex

formed by identifying x and y. Then H is a simple and normal graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction
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hypothesis, H has a 10-NDE-coloring φ with the color set C = {1, 2, . . . , 10}. Suppose that φ(z∗u) = 1, φ(z∗w) = 2,
φ(z∗s) = 3, and φ(z∗t) = 4. In G, it suffices to color yuwith 1, yw with 2, xs with 3, xt with 4, and xywith 5.

Now assume that xy is on a 3-cycle xyux, where t = u. Let H = G − xy. By the induction hypothesis, H has a 10-NDE-
coloring φ with the color set C = {1, 2, . . . , 10}. Assume that φ(xu) = 1 and φ(xs) = 2. If φ(yu) ≠ 2 or φ(yw) ≠ 1, it
suffices to color properly xy in G. Otherwise, φ(yu) = 2 and φ(yw) = 1. In this case, we recolor yuwith a color in C \ Cφ(u)
such that u does not conflict with its neighbors. This is feasible since u has atmost three conflict vertices. Afterwardwe color
properly xy as above.

Case 1.3.4 dG(y) = 4 and dG(s), dG(t) ≥ 4.

Based on a 10-NDE-coloring φ of the graph G− xy, we legally color the edge xy. Since y has at most three conflict vertices
and exactly three incident edges, and x has two incident edges and no conflict vertices, the coloring is available.

Case 2 G contains (A2.1): a 4-vertex v with d4(v) = 3 and d5(v) = 1.

Let v1, v2, v3, v4 be the neighbors of v with dG(v1) = dG(v2) = dG(v3) = 4 and dG(v4) = 5. Let H = G− {vv1, vv2, vv3}.
ThenH is a normal graphwith∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring φ with
the color set C = {1, 2, . . . , 10}. Assume that φ(vv4) = 1. Since vi, for 1 ≤ i ≤ 3, has at most three conflict vertices and
three incident edges, vvi has at most seven forbidden colors. Hence |L(vvi)| ≥ 10 − 7 = 3. Especially, when 1 ∈ Cφ(vi), we
have |L(vvi)| ≥ 4. By symmetry, we need to consider the following possibilities.

• 1 ∉ Cφ(vi) for all i = 1, 2, 3. It suffices to color vv1 with c1 ∈ L(vv1), vv2 with c2 ∈ L(vv2) \ {c1}, and vv3 with
c3 ∈ L(vv3) \ {c1, c2}.

• 1 ∈ Cφ(vi) for all i = 1, 2, 3. Then |L(vvi)| ≥ 4 for all i = 1, 2, 3. It is easy to see that there exist at least


4
3


= 4

ways to color vv1, vv2 and vv3. Thus, we assign a color ci ∈ L(vvi) to vvi such that c1, c2, c3 are mutually distinct and
{1, c1, c2, c3} ∉ {Cφ(v1), Cφ(v2), Cφ(v3)}.

• 1 ∈ Cφ(vi) for i = 1, 2, and 1 ∉ Cφ(v3). Then |L(vvi)| ≥ 4 for i = 1, 2. We color vv1 with c1 ∈ L(vv1) \ (Cφ(v2) \ {1}),
vv2 with c2 ∈ L(vv2) \ ((Cφ(v1) \ {1}) ∪ {c1}), and vv3 with c3 ∈ L(vv3) \ {c1, c2}. Noting that |Cφ(vi) \ {1}| = 3 − 1 = 2
for i = 1, 2, we get a legal coloring.

• 1 ∈ Cφ(v1), and 1 ∉ Cφ(vi) for i = 2, 3. Then |L(vv1)| ≥ 4. We color vv2 with c2 ∈ L(vv2) \ (Cφ(v1) \ {1}), vv1 with
c1 ∈ L(vv1) \ {c2}, and vv3 with c3 ∈ L(vv3) \ {c1, c2}.

Case 3 G contains (A2.2): a 4-vertex v with d4(v) = d5(v) = 2.

Let v1, v2, v3, v4 be the neighbors of v with dG(v1) = dG(v2) = 4 and dG(v3) = dG(v4) = 5. Let H = G − {vv1, vv2}. By
the induction hypothesis, H has a 10-NDE-coloring φ with the color set C = {1, 2, . . . , 10}. Assume that φ(vv3) = 1 and
φ(vv4) = 2. It is easy to observe that |L(vvi)| ≥ |C |− |Cφ(vi)|−3−2 ≥ 10−3−5 = 2 for i = 1, 2. Moreover, |L(vvi)| ≥ 4
if 1, 2 ∈ Cφ(vi), and |L(vvi)| ≥ 3 if 1 or 2 ∈ Cφ(vi).

If |Cφ(vi) ∩ {1, 2}| ≤ 1 for i = 1, 2, we color vv1 with c1 ∈ L(vv1) and vv2 with c2 ∈ L(vv2) \ {c1}. Otherwise, assume
that 1, 2 ∈ Cφ(v1). So |L(vv1)| ≥ 4. If 1, 2 ∈ Cφ(v2), then |L(vv2)| ≥ 4, we color vv1 with c1 ∈ L(vv1) \ Cφ(v2) and vv2 with
c2 ∈ L(vv2) \ (Cφ(v1) ∪ {c1}). If |Cφ(v2) ∩ {1, 2}| ≤ 1, then we color vv2 with c2 ∈ L(vv2) \ (Cφ(v1) \ {1, 2}) and vv1 with
c1 ∈ L(vv1) \ {c2}.

Case 4 G contains (A3.1): an edge vuwith dG(v) = dG(u) = 4, d4(v) = d4(u) = 1, and d5(v) = d5(u) = 3.

Let x, y, z be the neighbors of v other than u with dG(x) = dG(y) = dG(z) = 5. Let H = G − uv. Then H is a normal
graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring φ with the color set
C = {1, 2, . . . , 10}. Assume that φ(vx) = 1, φ(vy) = 2, and φ(vz) = 3. If Cφ(u) ≠ {1, 2, 3}, then it suffices to color uv with
a color in C \ (Cφ(u) ∪ Cφ(v)). So suppose that Cφ(u) = {1, 2, 3}. Now it remains to recolor vx and then the proof is reduced
to the previous case.

Let x1, x2, x3, x4 be the neighbors of x other than v. If vx can be legally recolored with a color in {4, 5, . . . , 10}, we are
done. Otherwise, it is straightforward to see that at most one of 2 and 3 is in Cφ(x). Consequently, our proof is split into the
following two cases by symmetry.

Case 4.1 2 ∈ Cφ(x) and 3 ∉ Cφ(x).

Because vx cannot be legally recolored, we may suppose that Cφ(x1) = {2, 4, 5, 6, 7} with φ(xx1) = 2, Cφ(x2) =

{2, 4, 5, 6, 8} with φ(xx2) = 4, Cφ(x3) = {2, 4, 5, 6, 9} with φ(xx3) = 5, and Cφ(x4) = {2, 4, 5, 6, 10} with φ(xx4) = 6. This
implies that dG(xi) = 5 for all i = 1, 2, 3, 4. Set

Ω(xi) = {Cφ(t) | t ∈ NH(xi) \ {x}}, i = 1, 2, 3, 4.

Then |Ω(xi)| = dH(xi) − 1 = 5 − 1 = 4. If {1, 2, 5, 6, 8} or {2, 3, 5, 6, 8} ∉ Ω(x2), then we recolor xx2 with 1 or
3, and vx with 4. Thus, assume that {1, 2, 5, 6, 8}, {2, 3, 5, 6, 8} ∈ Ω(x2). Similarly, we may assume that {1, 2, 4, 6, 9},
{2, 3, 4, 6, 9} ∈ Ω(x3), and {1, 2, 4, 5, 10}, {2, 3, 4, 5, 10} ∈ Ω(x4). To complete the proof, we need to consider the
following two possibilities:
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• Assume that {2, 5, 6, 7, 8} ∉ Ω(x2). If there is p ∈ {8, 10} such that {2, 4, 6, 9, p} ∉ Ω(x3), we recolor xx3
with p, xx2 with 7, and vx with 4. So assume that {2, 4, 6, 8, 9}, {2, 4, 6, 9, 10} ∈ Ω(x3). Similarly, we can assume
that {2, 4, 5, 8, 10}, {2, 4, 5, 9, 10} ∈ Ω(x4). If there is q ∈ {9, 10} such that {2, 5, 6, 8, q} ∉ Ω(x2), we recolor
xx2 with q and vx with 7. So assume that {2, 5, 6, 8, 9}, {2, 5, 6, 8, 10} ∈ Ω(x2). If there is r ∈ {3, 8, 9, 10} such
that {4, 5, 6, 7, r} ∉ Ω(x1), we recolor xx1 with r and vx with a color in {8, 9, 10}\{r}. Thus, assume that Ω(x1) =

{{3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}, {4, 5, 6, 7, 9}, {4, 5, 6, 7, 10}}. Now we recolor xx1 with 1 and vxwith 9.
• Assume that {2, 5, 6, 7, 8} ∈ Ω(x2). Since |Ω(x2)| ≤ 4, at least one of {2, 5, 6, 8, 9} and {2, 5, 6, 8, 10} does not belong

to Ω(x2), say {2, 5, 6, 8, 9} ∉ Ω(x2). If there is p ∈ {8, 10} such that {2, 5, 6, 9, p} ∉ Ω(x3), we recolor xx2 with 9, xx3 with
p, and vx with a color in {8, 10} \ {p}. So assume that {2, 5, 6, 8, 9}, {2, 5, 6, 9, 10} ∈ Ω(x3). If {2, 4, 5, 8, 10} ∉ Ω(x4), we
recolor xx4 with 8 and vx with 9. Thus assume that {2, 4, 5, 8, 10} ∈ Ω(x4). Analogous to the previous proof, we get that
Ω(x1) = {{3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}, {4, 5, 6, 7, 9}, {4, 5, 6, 7, 10}}. It suffices to recolor xx2 with 9, xx1 with 1, and vx
with 10.

Case 4.2 2, 3 ∉ Cφ(x).

If vx cannot be legally recolored, then we may assume that φ(xx1) = 4, φ(xx2) = 5, φ(xx3) = 6, φ(xx4) = 7,
Cφ(x1) = {4, 5, 6, 7, 8}, Cφ(x2) = {4, 5, 6, 7, 9}, and Cφ(x3) = {4, 5, 6, 7, 10}.

If {1, 5, 6, 7, 8} ∉ Ω(x1), then it is enough to switch the colors of vx and xx1. Thus, assume that {1, 5, 6, 7, 8} ∈ Ω(x1),
and similarly {1, 4, 6, 7, 9} ∈ Ω(x2), and {1, 4, 5, 7, 10} ∈ Ω(x3).

If there is q ∈ {2, 3} such that {q, 5, 6, 7, 8} ∉ Ω(x1), we recolor xx1 with q, and vx with a ∈ {9, 10} such that
Cφ(x4) ≠ {a, q, 5, 6, 7}. Then the proof is reduced to Case 4.1. Thus, assume that {2, 5, 6, 7, 8}, {3, 5, 6, 7, 8} ∈ Ω(x1).
Similarly, we conclude that {2, 4, 6, 7, 9}, {3, 4, 6, 7, 9} ∈ Ω(x2) and {2, 4, 5, 7, 10}, {3, 4, 5, 7, 10} ∈ Ω(x3).

There are two subcases as follows.

Case 4.2.1 {5, 6, 7, 8, 9} ∉ Cφ(x1).

First, we recolor xx1 with 9. Then we give the following detailed analysis.
• If Cφ(x4) ≠ {5, 6, 7, 9, 10}, we recolor vxwith 10.
• Assume that Cφ(x4) = {5, 6, 7, 9, 10}. Similar to the previous proof, we derive that {1, 5, 6, 9, 10}, {2, 5, 6, 9, 10},

{3, 5, 6, 9, 10} ∈ Ω(x4).
If xx2 and xx3 can be, respectively, recolored legally with 10 and 8, then we recolor xx2 with 10, xx3 with 8, and vxwith 4.

Otherwise, {4, 6, 7, 9, 10} ∈ Ω(x2), or {4, 5, 7, 8, 10} ∈ Ω(x3). By symmetry, we consider the following two possibilities:
(i) {4, 6, 7, 9, 10} ∈ Ω(x2). If {4, 5, 6, 9, 10} ∉ Ω(x4), we recolor xx2 with 8, xx4 with 4, and vxwith 10. If {4, 5, 6, 9, 10} ∈

Ω(x4), we recolor xx4 with 8 and vx with 4.
(ii) {4, 6, 7, 9, 10} ∉ Ω(x2) and {4, 5, 7, 8, 10} ∈ Ω(x3). If {4, 5, 6, 9, 10} ∉ Ω(x4), we recolor xx2 with 10, xx4 with 4

and vxwith 8. Otherwise, we recolor xx2 with 10, xx4 with 8, and vxwith 4.

Case 4.2.2 {5, 6, 7, 8, 9} ∈ Cφ(x1).

First, we recolor xx1 with 10. Then we deal with some subcases below.
• If Cφ(x4) ≠ {5, 6, 7, 9, 10}, we recolor vxwith 9.
• Assume that Cφ(x4) = {5, 6, 7, 9, 10}. Similar to the previous proof, we derive that {i, 5, 6, 9, 10} ∈ Ω(x4) for

i = 1, 2, 3.
If xx2 and xx3 can be, respectively, recolored legally with 8 and 9, then we recolor xx2 with 8, xx3 with 9, and vx with 4.

Otherwise, {4, 6, 7, 8, 9} ∈ Ω(x2), or {4, 5, 7, 9, 10} ∈ Ω(x3). By symmetry, we consider the following two possibilities:
(i) {4, 5, 7, 9, 10} ∈ Ω(x3). If {4, 5, 6, 9, 10} ∉ Ω(x4), we recolor xx3 with 8, xx4 with 4, and vxwith 9. If {4, 5, 6, 9, 10} ∈

Ω(x4), we recolor xx4 with 8, and vxwith 4.
(ii) {4, 5, 7, 9, 10} ∉ Ω(x3) and {4, 6, 7, 8, 9} ∈ Ω(x2). If {4, 5, 6, 9, 10} ∉ Ω(x4), we recolor xx3 with 9, xx4 with 4 and

vxwith 8. Otherwise, we recolor xx3 with 9, xx4 with 8 and vxwith 4.

Case 5 G contains (A3.2): an edge vuwith dG(v) = dG(u) = 4, d4(v) = 1, d5(v) = 3, and d4(u) = 4.

Let x, y, z be the neighbors of u other than v with dG(x) = dG(y) = dG(z) = 4. Let H = G − uv. Then H is a normal
graph with ∆(H) ≤ 5 and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring φ with the color set
C = {1, 2, . . . , 10}. Assume that φ(ux) = 1, φ(uy) = 2, and φ(uz) = 3.

If Cφ(v) ≠ {1, 2, 3}, then we color uv with a color a ∈ C \ (Cφ(u) ∪ Cφ(v)) such that u does not conflict with its three
neighbors (other than v). Since |C | = 10, |Cφ(u)| = |Cφ(v)| = 3, the color a exists. Assume that Cφ(v) = {1, 2, 3}. We
recolor ux with a color in {4, 5, . . . , 10} \ Cφ(x) such that x does not conflict with its three neighbors (other than u). Then
the proof is reduced to the previous case. �

Theorem 4.3 ([14]). Let G be a normal graphwith∆(G) ≥ 4. Then there is an edge-partition of G into subgraphs G0,G1, . . . ,Gk,
k ≤ ⌊∆(G)/2⌋ − 2, such that the following statements hold.

(1) Every Gi is a normal subgraph.
(2) ∆(Gi) ≤ 3 for 1 ≤ i ≤ k.
(3) ∆(G0) ≤ 5.
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Theorem 4.4. For a normal graph G, χ ′
a(G) ≤ 2.5∆(G).

Proof. Since G is normal, we assume that ∆(G) ≥ 2. If ∆(G) = 2, then χ ′
a(G) ≤ 5 = 2.5∆(G). If ∆(G) = 3, then

χ ′
a(G) ≤ 5 < 2.5∆(G) by Theorem 2.4. If ∆(G) = 4, then χ ′

a(G) ≤ 8 < 2.5∆(G) by Theorem 2.5. If ∆(G) = 5, then
χ ′
a(G) ≤ 10 < 2.5∆(G) by Theorem 4.2. Now assume that ∆(G) ≥ 6. By Theorem 4.3, there is an edge-partition of G

into subgraphs G0,G1, . . . ,Gk, k ≤ ⌊∆(G)/2⌋ − 2, such that the statements (1), (2) and (3) in Theorem 4.3 hold. Applying
repeatedly Theorems 2.2, 2.4, 2.5 and 4.3, we have

χ ′

a(G) ≤ χ ′

a(G0) + χ ′

a(G1) + · · · + χ ′

a(Gk)

≤ χ ′

a(G0) + 5k
≤ χ ′

a(G0) + 5(⌊∆(G)/2⌋ − 2)
≤ 10 + 5(⌊∆(G)/2⌋ − 2)
≤ 2.5∆(G). �
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