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1. Introduction

All graphs considered in this paper are finite and simple. Let V(G) and E(G) denote the vertex set and the edge set of a
graph G, respectively. Let N¢(v) denote the set of neighbors of a vertex v in G and dg(v) = |Ng(v)| denote the degree of v in
G. The vertex v is called a k-vertex if dc(v) = k. Let A(G) and §(G) denote the maximum degree and the minimum degree of
a vertex in G, respectively. For a vertex v € V(G) and an integer i > 1, let d;(v) denote the number of i-vertices adjacent to
v. An edge-partition of a graph G is a decomposition of G into subgraphs Gy, G,, ..., Gy, such that E(G) = Ul'"=1 E(G;) with
E(G) NE(Gj) = W foralli # j.

An edge k-coloring of a graph Gis a function ¢ : E(G) — {1, 2, ..., k} such that any two adjacent edges receive different
colors. The chromatic index, denoted by x’(G), of a graph G is the smallest integer k such that G has an edge k-coloring.
Given an edge k-coloring ¢ of G, we use Cy(v) to denote the set of colors assigned to those edges incident to a vertex v.
The coloring ¢ is called a neighbor-distinguishing edge coloring (an NDE-coloring for short) if C4(u) # C4(v) for any pair of
adjacent vertices u and v. The neighbor-distinguishing index x,(G) of a graph G is the smallest integer k such that G has a
k-NDE-coloring. A graph G is normal if it contains no isolated edges. Clearly, G has an NDE-coloring if and only if G is normal.
Thus, we always assume that G is normal in the following discussion.

By definition, it is easy to see that x,(G) > x'(G) > A(G) for any graph G. On the other hand, Zhang, Liu and
Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs
and complete bipartite graphs.

Conjecture 1. Every connected graph G with |V (G)| > 6 has x,(G) < A(G) + 2.

* Corresponding author.
E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

http://dx.doi.org/10.1016/j.disc.2015.05.007
0012-365X/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.disc.2015.05.007
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.05.007&domain=pdf
mailto:yqwang@bucm.edu.cn
mailto:wwf@zjnu.cn
http://dx.doi.org/10.1016/j.disc.2015.05.007

Y. Wang et al. / Discrete Mathematics 338 (2015) 2006-2013 2007

Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with A(G) = 3. They also proved that
Xo(G) < A(G) + 0(log x (G)), where x (G) is the vertex chromatic number of the graph G. This result and Brooks’ Theorem
imply immediately that x/(G) < 2A(G) if A(G) is sufficiently large. Using probabilistic method, Hatami [4] showed that
every graph G with A(G) > 10% has x/(G) < A(G) + 300. Akbari, Bidkhori and Nosrati [1] proved that every graph G
satisfies x,(G) < 3A(G). Zhang, Wang and Lih [14] improved this bound to that x,(G) < 2.5A(G) + 5 for any graph G.
For planar graphs G, Horfidk, Huang and Wang [6] showed that x/(G) < A(G) + 2 if A(G) > 12. More recently, Wang and
Huang [9] further verified that if G is a planar graph with A(G) > 16, then x,(G) < A(G)+1,and moreover x,(G) = A(G)+1
if and only if G contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says
that if G is a planar bipartite graph with A(G) > 12, then x,(G) < A(G) + 1. The reader is referred to [5,10-12] for other
results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum
degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing
index on general graphs. Here a graph G is called semi-regular if each edge of G is incident to at least one vertex of maximum
degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with A =4
This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.

Lemma 2.1 ([7]). If Gis a 2k-regular graph with k > 1, then G is 2-factorizable.

It is well-known that, given a graph G, there exists a A(G)-regular graph H such that G € H. This fact, together with
Lemma 2.1, implies that every graph G with A(G) = 4 can be edge-partitioned into two subgraphs G; and G, such that
A(G) <2fori=1,2.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:

Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G, and G, then x,(G) < x,(G1) +
Xa(G2).

Theorem 2.3 ([13]). If P is a path of length at least two, then x/(P) < 3.

Theorem 2.4 ([2]).If Gis a graph with A(G) < 3, then x,(G) < 5.

Suppose that ¢ is a partial NDE-coloring of a graph G using a color set C. We call two adjacent vertices u and v conflict
under ¢ (or simply conflict) if Cg(u) = Cy(v). An edge uv is said to be legally colored if its color is different from that of its
neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with A(G) < 4, then x,(G) < 8.

Proof. We prove the theorem by induction on the edge number |E(G)|. If [E(G)| < 8, the theorem holds trivially. Let G be
a graph with A(G) < 4 and |[E(G)| = 9.1f A(G) < 3, then the result follows from Theorem 2.4. So suppose that A(G) = 4.
The proof is split into the following cases, depending on the size of (G).

Case145(G) = 1.

Let x be a 1-vertex adjacent to a vertex y. Let H = G — xy. Then H is a normal graph with A(H) < 4 and |[E(H)| < |E(G)|.
By the induction hypothesis, H has an 8-NDE-coloring ¢ using the color set C = {1, 2, ..., 8}. Note that |C4(¥)| = dy(¥) =
dg(y)—1 < 3andy has at most dg(y) — 1 < 3 possible conflict vertices. Thus, xy has at most |C (y)|+3 < 6 forbidden colors
when colored, we can color xy with a color in C \ C4 (y) such that y does not conflict with its neighbors. So an 8-NDE-coloring
of G is constructed.

Case24(G) = 2.

Let x be a 2-vertex with neighbors y and z. Without loss of generality, assume that 2 < ds(y) < dg(z) < 4.There are two
possibilities to be handled.

Case2.1ds(y) = 2.

Let w denote the neighbor of y other than x. Without loss of generality, we assume that dg(w) > 3, for otherwise we
may further consider the neighbor of w other than y until a desired vertex is found. Let H = G — wy. Then H is a normal
graph with A(H) < 4 and |[E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring ¢ with the color set
C=1{1,2,...,8}. We first remove the color of xy. Since w has at most three conflict vertices and y has at most one conflict
vertex, we can color yw with a colora € C \ (Cyp(w) U {¢(x2)}) and xy with a color in C \ {a, ¢(xz)} such that neither of
X, y, w conflicts with its neighbors.
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Case 2.2ds(y) > 3.

Then dg(z) > 3.Let H = G — xy. Then H is a normal graph with A(H) < 4 and |[E(H)| < |E(G)|. By the induction
hypothesis, H has an 8-NDE-coloring ¢ with the color set C = {1, 2, ..., 8}. Since y is incident to at most three edges in H
and has at most three conflict vertices, x is incident to exactly one edge in H and has no conflict vertex, we color xy with a
colorin C \ (C4(¥) U {¢(x2)}) such that y does not conflict with its neighbors.

Case 346(G) > 3.
We need to deal with the following two subcases.
Case 3.1 There is an edge uv such that dg(u) = dg(v) = 3.

Let uq, u, denote the neighbors of u other than v, and vy, v, the neighbors of v other than u. Then dg(u;), dg(v;) > 3 for
i=1,2.

First, assume that uv does not lie on any 3-cycle. Let H denote the graph obtained from G by contracting the edge
uv. Let z denote the new vertex formed by identifying u and v. Then H is a simple and normal graph with A(H) < 4
and |[E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring ¢ using the color set C = {1,2,...,8}.
Let ¢p(zuy) = 1, ¢p(zuy) = 2, ¢(zvy) = 3, and ¢(zv,) = 4. In G, we first color uuy, uu,, vvy, vv, with 1,2, 3, 4,
respectively. If uv can be legally colored, we are done. Otherwise, we may assume that C, (u1) = {1, 2, 5}, G4 (u2) = {1, 2, 6},
Cy(v1) = {3,4, 7}, and C4(v2) = {3, 4, 8}. This means that d¢(u;) = dc(u) = dg(v1) = dg(v2) = 3. Let u} and uff denote
the neighbors of u; other than u. Similarly, we define u/, and u} for u,, v} and v{ for v4, and v/, and v} for v,. If there exists
a € {3, 4} suchthat{2, 5, a} & {C,(u}), Cp(u7)}, we recolor uu; with a and color uv with 1. So assume that C, (u}) = {2, 3, 5}
and C,(u}) = {2, 4, 5}. Similarly, C,(u,) = {1, 3, 6} and Cy(uj) = {1, 4, 6}. Recolor uu; with 7, uu, with 8, and color uv
with 1.

Next, assume that uv lies on a 3-cycle uvuqu, where v{ = uy. Let H = G — uv. By the induction hypothesis, H has an
8-NDE-coloring ¢ using the color set C = {1, 2, ..., 8}. Assume that ¢(uu;) = 1 and ¢(uu,) = 2. Note that the number
of 3-vertices that conflict with u or v is at most three. If ¢(vuy) # 2 or ¢(vv,) # 1, then we color uv with a color in
C \ (C4(u) U Cy(v)) such that both u and v do not conflict with their neighbors. Otherwise, assume that ¢(vu;) = 2 and
¢(vv,) = 1. Recolor uuy with a color a € C \ Cg(uy) such that u; does not conflict with its neighbors. Since u; has at most
four incident edges and two conflict vertices except u and v, such color a exists. Afterward, we legally color uv as above.

Case 3.2 For any edge uv € E(G), max{dg(u), dc(v)} = 4.

It follows from Lemma 2.1 that G can be edge-partitioned into subgraphs G; and G, such that A(G;) < 2 fori = 1, 2.
Since §(G) > 3, we further deduce that §(G;) > 1fori = 1, 2. Let xy be an arbitrary edge of G;. Then xy € E(G) with
max{d¢(x), d(¥)} = 4,say dg(y) = 4. Thendg, (x) > dg(x) —2 >3 —2 = Tlanddg, (y) > dg(y) —2 =4 — 2 = 2.This
implies that xy is not an isolated edge of G;. That is, G; is normal. Similarly, we can prove that G, is normal.

Note that G; is the union of vertex-disjoint cycles and paths. For each cycle B in G;, we pick out an edge ez € E(B). Then
we set

E* = {ep | Bis a cycle of G},

H, = G, — E*,

H, = G, UE*.

Then H, U H; is an edge-partition of G. It is easy to affirm the following three assertions (a), (b) and (c):

(a) Hy and H, are normal;
(b) Hy is acyclicand A(Hy) < 2;
(c) A(Hy) < 3(since A(G,) < 2 and E* is a matching of G).

Now, combining Theorems 2.2-2.4, we easily obtain:
Xo(G) = xo(Hi UHy) < xo(Hy) + x,(Hy) <3+5=38.

This completes the proof. B
3. Semi-regular graphs

The following is Vizing’s celebrated result on the edge coloring [8]:
Theorem 3.1. Every simple graph G has x'(G) < A(G) + 1.
Lemma 3.2. Let G be a semi-regular graph with A(G) = A > 5. Then there is an edge-partition of G into normal subgraphs
G1, Gy, ..., Gy such that one of the following conditions holds.

(1) If A =2 (mod 3), thenk = 3(A+ 1) and A(Gy) <3for 1 <i <k

2)If A =1 (mod 3), thenk = %(A —1),AG) <4for1 <i<2and A(G;)) <3for3<i<k
(3)If A =0 (mod 3), thenk = 34, A(Gy) < 4and A(G) <3for2 <i<k
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Proof. By Theorem 3.1, E(G) can be partitioned into A + 1 disjoint color classes Eq, E3, . .., Ex41 such that each E; is a
matching of G. Let H be a subgraph of G edge-induced by s, 3 < s < A, of these color classes. Obviously, A(H) < s. Let uv
be an arbitrary edge of H. Then uv € E(G), assuming d¢(v) < dg(u). Then dg(u) = A as G is semi-regular. Note that exactly
one color is not used on any edge incident to u. Therefore, dy (1) > s — 1> 3 — 1 = 2, and hence uv is not an isolated edge
of H. This shows that H is a normal graph.

In the following, we simply write E; i1, j = E; U Ejyq U - - - UE;, wherei < j.

fA=2 (mod 3), let k = %(A + 1) We define G] = G[E1’2,3], G2 = G[E4’5,5], ey Gk = G[EA—I,A,A—H]- Then

G1, Ga, ..., Gy form an edge-partition of G satisfying the condition (1).

fAaA=1 (mod 3), letk = %(A — 1)We define Gl = 6[5142,3.4], Gz = 6[5545,7’8], G3 = [E9,10,11]- ey Gk = G[EA—I,A,A+1]'
Then G, Ga, ..., G form an edge-partition of G satisfying the condition (2).

fAaA=0 (mod 3), letk = %A We define G] = G[E1’2,3,4], Gz = G[E5,6’7], G3 = [E8,9.10]v e Gk = G[EA—l,A,A+l]- Then
G1, Ga, ..., Gy form an edge-partition of G satisfying the condition (3). ®

Theorem 3.3. If G is a semi-regular graph with A(G) = A > 2, then x/(G) < 3A + ¢, wherec = 2 if A = 2 (mod 3),
c=2if A=1(mod 3),andc = 3if A =0 (mod 3).
Proof. If 2 < A < 4, the result follows from Theorems 2.4 and 2.5. Assume that A > 5. By Lemma 3.2, there is an edge-

partition of G into normal subgraphs G1, G, ..., Gy such that one of the stated conditions (1), (2) or (3) holds.
If (1) holds, by Theorems 2.2, 2.4 and 2.5, we have

k
! / 5
Xi(6) = Y xa(G) = 5k= (A +1).
i=1

If (2) holds, then

k

X6 < x4(G) + %) + ) x(G)
i=3

8+8+5(k—2)

A

IA

S(A 1)+6
3
5 13

=-A4+ —.
3 +3

If (3) holds, then

k
Xe(6) = xaGD+ Y xa(G)
i=2

<
<8+5k—-1)
=5k+3
= 5A+3 [ ]
=3 .

Corollary 3.1. If Gis a semi-regular graph with A(G) = 5, then x/(G) < 10.

4. Graphswith A =5

This section focuses on studying the neighbor-distinguishing edge coloring of graphs with maximum degree 5. The main
purpose is to show that if G is a graph with A(G) < 5, then x/(G) < 10. As an application, we give a new upper bound for
the neighbor-distinguishing index of a general graph.

Lemma 4.1. Let G be a connected graph with A(G) = 5 that is not semi-regular. Then G contains one of the following
configurations:

(A1) An edge xy with d;(x) < 3and ds(y) < 4.

(A2) A 4-vertex v satisfies one of the following conditions:

(A2.1) d4(v) =3 andds(v) = 1;

(A2.2) d4(v) = 2 and ds(v) = 2.

(A3) An edge vu with dg(v) = dg(u) = 4 satisfies one of the following conditions:

(A3.1) d4(v) = d4(u) = 1and ds(v) = ds(u) = 3;

(A3.2) d4(v) = 1,ds5(v) = 3, and d4(u) = 4.
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Proof. Since G is not semi-regular, there exists an edge uv such that dg(u) < 4 and dg(v) < 4. If either u or v is of degree
at most 3, then G contains (A1). So assume that dg(u) = dg(v) = 4. If u or v is adjacent to other vertex of degree at most 3
(different from v or u), then G contains (A1). Otherwise, d4(u) + ds (1) = 4 and d4(v) 4 ds(v) = 4. Note that d4(u) > 1and
ds(v) > 1.

If dy(u) = 3, then G contains (A2.1). If d4(u) = 2, then G contains (A2.2). Thus, assume that d4(u) = 1.If dy(v) = 1,
then G contains (A3.1). If d4(v) = 4, then G contains (A3.2). The similar argument works for the vertex v. Hence we further
suppose that d4(u) = d4(v) = 4, i.e, both u and v are only adjacent to 4-vertices. Since A(G) = 5, G contains a 5-vertex
X. As G is connected, there exists a shortest path P = yoy1y2 - - - YmYm+1 connecting u and x, where u = yg, X = Yju41, With
m > 1. Let y, be the first 5-vertex occurring on P along the direction from u to x. So d¢(y;) < 4forall0 <j <s—1and
de(ys) = 5.1f dg(y1) < 3, then G contains (A1). Therefore dg(y1) = 4. We can recur to conclude that d¢(v;) = 4 for all
j=2,3,...,5 — 1. Now, we find a 4-vertex y;_; adjacent to a 5-vertex y;. Repeating the above process, the proof of the
lemma is complete |

Theorem 4.2. If G is a graph with A(G) < 5, then x,(G) < 10.

Proof. We prove the result by induction on |E(G)|.If|[E(G)| < 10, the theorem holds trivially. Let G be a graph with A(G) <5
and [E(G)| = 11.1f A(G) < 4, then the theorem holds automatically from Theorems 2.4 and 2.5. So suppose that A(G) = 5.
If G is semi-regular, then x/(G) < 10 by Corollary 3.1. Thus, assume that G is not semi-regular. By Lemma 4.1, G contains
one of the configurations (A1)-(A3). In the sequel, the proof is split into several cases.

Case 1 G contains (A1): an edge xy with dg(x) < 3and dg(y) < 4.
We need to consider the following subcases, depending on the size of dg(x).
Case 1.1d¢g(x) = 1.

Let H = G — xy. Then H is a normal graph with A(H) < 5 and |[E(H)| < |E(G)|. By the induction hypothesis, H has
a 10-NDE-coloring ¢ using the color set C = {1, 2, ..., 10}. Note that |C4(y)| = dc(y) — 1 < 3 and y has at most three
possible conflict vertices. Thus, xy has at most |[Cy(y)| + 3 < 6 forbidden colors, we can color xy with a color in C \ Cy(y)
such that y does not conflict with its neighbors.

Case 1.2dg(x) = 2.

Let v be the second neighbor of x other than y. By the proof of Case 1.1, we may assume that ds(y), dg(v) > 2.

First, assume that d;(y) = 2. Let w denote the neighbor of y other than x. Without loss of generality, we may assume that
dg(w) > 3.Let H = G — wy. Then H is a normal graph with A(H) < 5 and |[E(H)| < |E(G)|. By the induction hypothesis,
H has a 10-NDE-coloring ¢ with the color set C = {1, 2, ..., 10}. We first remove the color of xy. Since w has at most four
conflict vertices and y has at most one conflict vertex, we can legally color wy with a color in C \ (C4(w) U {¢(vx)}) and then
legally color xy.

Next, assume that dg(y) > 3.Let H = G — xy. Then H is a normal graph with A(H) < 5 and |[E(H)| < |E(G)|. By the
induction hypothesis, H has a 10-NDE-coloring ¢ with the color set C = {1, 2, ..., 10}. Since y is incident to at most three
edges in H and has at most three conflict vertices, x is incident to one edge in H and has at most one conflict vertex, we can
color xy with a color in C \ (Cy(x) U Cy(y)) such that both x and y do not conflict with their neighbors.

Case 1.3dg(x) = 3.

Let s, t be the neighbors of x other than y. By the proof of Cases 1.1 and 1.2, we may assume that dg(s), dg(t) > 3. We
have to consider the following subcases by symmetry.

Case 1.3.1d¢(y) = dg(s) = dg(t) = 3.

Let H = G — {xy, xs, xt}. Then H is a normal graph with A(H) < 5 and |E(H)| < |E(G)|. By the induction hypothesis,
H has a 10-NDE-coloring ¢ with the color set C = {1, 2, ..., 10}. For an edge e € E(G) \ E(H), we use L(e) to denote the
subset of colors in C which can be legally assigned to e. Since there exist at most 2 + 2 = 4 forbidden colors, we have
|L(e)| > 10 — 4 = 6 for each e € {xy, xs, xt}. We color xy with a € L(xy) \ C4(s), xs with b € L(xs) \ (C4(t) U {a}), and xt
with ¢ € L(xt) \ (Cy(¥) U {a, b}). Since |Cy (¥)| = |Cy(s)| = |C4(t)| = 2, the coloring is available.

Case 1.3.2d¢(y) = dg(s) = 3and d¢(t) > 4.

Let H = G — {xy, xs}. By the induction hypothesis, H has a 10-NDE-coloring ¢ with the color set C = {1, 2, ..., 10}. Note
that there exist at most five forbidden colors for each of xy and xs. Thus, |L(xy)|, [L(xs)] > 10 — 5 = 5. We color xy with
a € L(xy) \ Cy(s) and xs with b € L(xs) \ (C4(y) U {a}). Analogous to the foregoing analysis, the coloring is feasible.

Case 1.3.3d¢(y) = 3 and dg(s), dg(t) > 4.

Let u, w be the neighbors of y other than x. By the proof of the previous subcases, we may suppose that dg(u), dc(w) > 4.
If xy is not on a 3-cycle, let H denote the graph obtained from G by contracting the edge xy. Let z* denote the new vertex
formed by identifying x and y. Then H is a simple and normal graph with A(H) < 5 and |E(H)| < |E(G)|. By the induction
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hypothesis, H has a 10-NDE-coloring ¢ with the color set C = {1, 2, ..., 10}. Suppose that ¢(z*u) = 1, ¢(z*w) = 2,
¢(z*s) = 3,and ¢(z*t) = 4.In G, it suffices to color yu with 1, yw with 2, xs with 3, xt with 4, and xy with 5.

Now assume that xy is on a 3-cycle xyux, where t = u. Let H = G — xy. By the induction hypothesis, H has a 10-NDE-
coloring ¢ with the color set C = {1, 2, ..., 10}. Assume that ¢(xu) = 1and ¢(xs) = 2. If p(yu) # 2 or p(yw) # 1,it
suffices to color properly xy in G. Otherwise, ¢ (yu) = 2 and ¢ (yw) = 1. In this case, we recolor yu with a color in C \ Cy(u)
such that u does not conflict with its neighbors. This is feasible since u has at most three conflict vertices. Afterward we color
properly xy as above.

Case 1.3.4 dc(y) = 4 and dc(s), de(t) > 4.

Based on a 10-NDE-coloring ¢ of the graph G — xy, we legally color the edge xy. Since y has at most three conflict vertices
and exactly three incident edges, and x has two incident edges and no conflict vertices, the coloring is available.

Case 2 G contains (A2.1): a 4-vertex v with ds(v) = 3and d5(v) = 1.

Let v, vo, v3, V4 be the neighbors of v with dg(v{) = dg(v2) = dg(v3) = 4and dg(v4) = 5.Let H = G — {vvyq, vvy, vvs3}.
Then H is a normal graph with A(H) < 5and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ¢ with
the color set C = {1, 2, ..., 10}. Assume that ¢(vvs) = 1. Since v;, for 1 < i < 3, has at most three conflict vertices and
three incident edges, vv; has at most seven forbidden colors. Hence |[L(vv;)| > 10 — 7 = 3. Especially, when 1 € Cy(v;), we
have |L(vv;)| > 4. By symmetry, we need to consider the following possibilities.

o1 & Cy(vy) foralli = 1,2, 3. It suffices to color vv; with ¢; € L(vvy), vvy with ¢, € L(vvy) \ {c1}, and vvz with
3 € L(vwy) \ {c1, 2}

o1 e Cy(vy) foralli = 1,2,3.Then |L(vv;)| > 4foralli = 1,2, 3. It is easy to see that there exist at least ;‘ =4

ways to color vvy, vv, and vvs. Thus, we assign a color ¢; € L(vv;) to vv; such that cq, ¢;, c3 are mutually distinct and
{1, c1, &2, c3} & {Cp(v1), Cp(v2), Cp(v3)}

o1 e Cy(vy) fori=1,2,and 1 & Cy(v3). Then |[L(vvy)| > 4 fori = 1, 2. We color vvy with ¢; € L(vvy) \ (Cp(v2) \ {1}),
vvy with ¢ € L(vvy) \ ((Cp(v1) \ {1}) U {c1}), and vz with c3 € L(vvs) \ {c1, co}. Noting that [Cs(vi) \ {1} =3 —-1=2
fori = 1, 2, we get a legal coloring.

o1 e Cy(vy),and 1 & Cy(vy) fori = 2, 3. Then |L(vv1)| > 4. We color vv, with ¢; € L(vvy) \ (Cg(v1) \ {1}), vvg with
C € L(UU]) \ {Cz}, and VU3 with C3 € L(UU3) \ {C], Cz}.

Case 3 G contains (A2.2): a 4-vertex v with d4(v) = ds(v) = 2.

Let v1, va, v3, V4 be the neighbors of v with dg(v1) = dg(v;) = 4 and d¢(v3) = dg(v4) = 5.Let H = G — {vvq, vva}. By
the induction hypothesis, H has a 10-NDE-coloring ¢ with the color set C = {1, 2, ..., 10}. Assume that ¢(vv3) = 1 and
¢ (vvy) = 2.1t is easy to observe that [L(vv;)| > |C] — [Cp(v))| =3 —2 > 10—3 -5 = 2fori = 1, 2. Moreover, |[L(vv;)| > 4
if 1,2 € C4(vy), and |[L(vv;)| > 3if 1or 2 € Cy(vy).

If |Cy(vi) N {1,2}] < 1fori =1, 2, we color vvy with ¢; € L(vvy) and vv, with ¢; € L(vvy) \ {c1}. Otherwise, assume
that 1,2 € Cy(v1).So |[L(vvy)| = 4.1f 1, 2 € C4(v2), then [L(vvy)| > 4, we color vvy with ¢; € L(vvy) \ C4(v2) and vv, with
€ € L(vvy) \ (Cg(v1) U {c1}). If |Gy (v2) N {1, 2}| < 1, then we color vv, with ¢; € L(vvy) \ (Cg(v1) \ {1, 2}) and vv; with
¢ € Lvvy) \ {c2}.

Case 4 G contains (A3.1): an edge vu with dg(v) = dg(u) = 4, d4(v) = d4(u) = 1,and ds(v) = ds(u) = 3.

Let x, y, z be the neighbors of v other than u with dg(x) = dg(y) = dg(z) = 5.Let H = G — uv. Then H is a normal
graph with A(H) < 5 and |[E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ¢ with the color set
C=1{1,2,...,10}. Assume that ¢(vx) = 1, ¢(vy) = 2,and ¢(vz) = 3.1f C4(u) # {1, 2, 3}, then it suffices to color uv with
acolorin C\ (Cy(u) UCy(v)). So suppose that Cy(u) = {1, 2, 3}. Now it remains to recolor vx and then the proof is reduced
to the previous case.

Let X1, X2, X3, X4 be the neighbors of x other than v. If vx can be legally recolored with a color in {4, 5, ..., 10}, we are
done. Otherwise, it is straightforward to see that at most one of 2 and 3 is in C4 (x). Consequently, our proof is split into the
following two cases by symmetry.

Case4.12 € Cy(x) and 3 & Cy(x).

Because vx cannot be legally recolored, we may suppose that Cy(x1) = {2,4,5,6,7} with ¢(xx1) = 2, C4(x2) =
{2,4,5,6, 8} with ¢ (xxy) = 4, Cy(x3) = {2, 4, 5,6, 9} with ¢ (xx3) = 5,and Cy(xs) = {2, 4, 5, 6, 10} with ¢(xx4) = 6. This
implies that dg(x;) = 5 foralli = 1, 2, 3, 4. Set

() ={Cp(t) |t e Ngx)\ {x}}, i=1,2,3,4

Then |2(x;)] = dy(x;) — 1 =5—1 = 4.1f{1,2,5,6,8} or {2,3,5,6,8} & £2(x3), then we recolor xx, with 1 or
3, and vx with 4. Thus, assume that {1, 2,5, 6, 8}, {2, 3,5, 6,8} € £2(x,). Similarly, we may assume that {1, 2, 4, 6, 9},
{2,3,4,6,9} € £2(x3), and {1, 2,4,5,10},{2,3,4,5,10} € £2(x4). To complete the proof, we need to consider the
following two possibilities:
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e Assume that {2,5,6,7,8} & $2(xp). If there is p € {8, 10} such that {2,4,6,9,p} & £2(x3), we recolor xx;
with p, xx, with 7, and vx with 4. So assume that {2,4,6,8, 9}, {2,4,6,9, 10} € £(x3). Similarly, we can assume
that {2, 4,5, 8, 10}, {2,4,5,9,10} € £2(x4). If there is q € {9, 10} such that {2,5,6,8,q} ¢ £(xz), we recolor
xx; with g and vx with 7. So assume that {2, 5,6, 8,9}, {2,5,6,8,10} € $£2(x;). If thereisr € {3,8,9, 10} such
that {4,5,6,7,1r} & $£(x1), we recolor xx; with r and vx with a color in {8, 9, 10}\{r}. Thus, assume that £2(x;) =
{{3,4,5,6,7},{4,5,6,7, 8}, {4,5,6,7,9}, {4, 5, 6, 7, 10}}. Now we recolor xx; with 1 and vx with 9.

e Assume that {2, 5, 6, 7, 8} € £2(x,).Since |£2(x,)| < 4, atleastone of {2, 5, 6, 8, 9} and {2, 5, 6, 8, 10} does not belong
to £2(x3),say {2,5,6, 8,9} & £2(x;). If thereis p € {8, 10} such that {2, 5, 6, 9, p} & £2(x3), we recolor xx, with 9, xx3 with
p, and vx with a color in {8, 10} \ {p}. So assume that {2, 5, 6, 8, 9}, {2, 5, 6,9, 10} € £2(x3).1f {2, 4,5, 8, 10} & 2(x4), we
recolor xx4 with 8 and vx with 9. Thus assume that {2, 4, 5, 8, 10} € £2(x4). Analogous to the previous proof, we get that
2(x) = {{3,4,5,6,7},{4,5,6,7,8},{4,5,6,7,9}, {4, 5,6, 7, 10}}. It suffices to recolor xx, with 9, xx; with 1, and vx
with 10.

Case4.22,3 & Cyp(x).

If vx cannot be legally recolored, then we may assume that ¢(xx;) = 4, ¢p(xx3) = 5, p(xx3) = 6, dp(xxq) = 7,
C¢(X]) = {4, 5,6,7, 8}, C¢(X2) = {4, 5,6,7, 9}, and C¢(X3) = {4, 5,6,7, ]0}

If{1,5,6,7, 8} & £2(x1), then it is enough to switch the colors of vx and xx;. Thus, assume that {1, 5, 6, 7, 8} € £2(x1),
and similarly {1, 4, 6, 7,9} € 2(x,),and {1, 4, 5, 7, 10} € £2(x3).

If there is ¢ € {2, 3} such that {q,5,6,7,8} & £(x;1), we recolor xx; with g, and vx with a € {9, 10} such that
Cyp(x4) # {a,q,5,6,7}. Then the proof is reduced to Case 4.1. Thus, assume that {2,5,6,7,8},{3,5,6,7,8} € £2(xy).
Similarly, we conclude that {2, 4,6, 7,9}, {3,4,6,7,9} € 2(x;) and {2, 4, 5,7, 10}, {3, 4, 5,7, 10} € 2(x3).

There are two subcases as follows.

Case4.2.1{5,6,7,8,9} & Cy(x1).

First, we recolor xx; with 9. Then we give the following detailed analysis.

o If Cy(x4) # {5,6,7,9, 10}, we recolor vx with 10.

e Assume that Cy4(x4) = {5,6,7,9, 10}. Similar to the previous proof, we derive that {1, 5, 6,9, 10}, {2, 5, 6, 9, 10},
{3,5,6,9, 10} € £2(xy).

If xx, and xx3 can be, respectively, recolored legally with 10 and 8, then we recolor xx, with 10, xx; with 8, and vx with 4.
Otherwise, {4, 6,7, 9, 10} € £2(x;),or {4, 5,7, 8, 10} € £2(x3). By symmetry, we consider the following two possibilities:

(1){4,6,7,9, 10} € £2(x,).1f{4,5, 6, 9, 10} & £2(x4), we recolor xx, with 8, xx, with 4, and vx with 10.1f{4, 5, 6, 9, 10} €
£2(x4), we recolor xx4 with 8 and vx with 4.

(ii) {4,6,7,9, 10} &€ 2(x,) and {4, 5,7, 8,10} € £2(x3).1f{4,5,6,9, 10} & £2(x4), we recolor xx, with 10, xx4 with 4
and vx with 8. Otherwise, we recolor xx, with 10, xx, with 8, and vx with 4.

Case4.2.2{5,6,7,8,9} € Cy(x1).

First, we recolor xx; with 10. Then we deal with some subcases below.

o If Cy(x4) # {5,6,7,9, 10}, we recolor vx with 9.

e Assume that Cy(x4) = {5,6,7,9, 10}. Similar to the previous proof, we derive that {i, 5,6, 9, 10} € £2(x4) for
i=1,2,3.

If xx, and xx3 can be, respectively, recolored legally with 8 and 9, then we recolor xx, with 8, xx3 with 9, and vx with 4.
Otherwise, {4, 6,7, 8,9} € 2(x,),0r {4,5,7,9, 10} € £2(x3). By symmetry, we consider the following two possibilities:

(i){4,5,7,9, 10} € £2(x3).1f{4,5, 6,9, 10} & £2(x4), we recolor xx3 with 8, xx, with 4, and vx with 9.1f {4, 5, 6,9, 10} €
£2(x4), we recolor xx4 with 8, and vx with 4.

(ii) {4,5,7,9, 10} & £22(x3) and {4, 6,7, 8,9} € 2(x,).1f{4,5,6,9, 10} & §2(x4), we recolor xx3 with 9, xx4 with 4 and
vx with 8. Otherwise, we recolor xx; with 9, xx4 with 8 and vx with 4.

Case 5 G contains (A3.2): an edge vu with dg(v) = dg(u) = 4,ds(v) = 1,ds(v) = 3,and d4(u) = 4.

Let x, y, z be the neighbors of u other than v with d¢(x) = dg(y) = dg(z) = 4.Let H = G — uv. Then H is a normal
graph with A(H) < 5 and |[E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ¢ with the color set
C=1{1,2,...,10}. Assume that ¢ (ux) = 1, ¢(uy) = 2, and ¢(uz) = 3.

If C4(v) # {1, 2, 3}, then we color uv with a color a € C\ (Cy(u) U C4(v)) such that u does not conflict with its three
neighbors (other than v). Since |C| = 10, [Cy(u)| = [C4(v)| = 3, the color a exists. Assume that C4(v) = {1, 2, 3}. We
recolor ux with a color in {4, 5, ..., 10} \ C4(x) such that x does not conflict with its three neighbors (other than u). Then
the proof is reduced to the previous case. H

Theorem 4.3 ([14]). Let G be a normal graph with A(G) > 4. Then there is an edge-partition of G into subgraphs Gy, G1, ..., Gy,
k < LA(G)/2] — 2, such that the following statements hold.

(1) Every G; is a normal subgraph.

(2) AG) <3for1<i=<k

(3) A(Go) <5.
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Theorem 4.4. For a normal graph G, x,(G) < 2.5A(G).

Proof. Since G is normal, we assume that A(G) > 2.If A(G) = 2, then x,(G) < 5 = 2.5A(G). If A(G) = 3, then
Xo(G) < 5 < 2.5A(G) by Theorem 2.4. If A(G) = 4, then x,(G) < 8 < 2.5A(G) by Theorem 2.5. If A(G) = 5, then
Xo(G) < 10 < 2.5A(G) by Theorem 4.2. Now assume that A(G) > 6. By Theorem 4.3, there is an edge-partition of G
into subgraphs Gg, Gy, ..., G, k < | A(G)/2] — 2, such that the statements (1), (2) and (3) in Theorem 4.3 hold. Applying
repeatedly Theorems 2.2, 2.4, 2.5 and 4.3, we have

Xa(G) = %q(Go) + xo(G1) + -+ + xo(Gh)

< Xq(Go) + 5k

< Xa(Go) +5(LA(G)/2] - 2)

< 10+ 5(LAG)/2] = 2)

<25AG). =
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