Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Some bounds on the neighbor-distinguishing index of graphs

Yiqiao Wang^{a,*}, Weifan Wang^b, Jingjing Huo^c

^a School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

^b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

^c Department of Mathematics, Hebei University of Engineering, Handan 056038, China

ARTICLE INFO

Article history: Received 19 March 2015 Received in revised form 3 May 2015 Accepted 4 May 2015 Available online 5 June 2015

Keywords: Neighbor-distinguishing edge coloring Maximum degree Edge-partition

ABSTRACT

A proper edge coloring of a graph *G* is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor-distinguishing index of *G* is the minimum number $\chi'_a(G)$ of colors in a neighbor-distinguishing edge coloring of *G*.

Let *G* be a graph with maximum degree Δ and without isolated edges. In this paper, we prove that $\chi'_a(G) \leq 2\Delta$ if $4 \leq \Delta \leq 5$, and $\chi'_a(G) \leq 2.5\Delta$ if $\Delta \geq 6$. This improves a result in Zhang et al. (2014), which states that $\chi'_a(G) \leq 2.5\Delta + 5$ for any graph *G* without isolated edges. Moreover, we prove that if *G* is a semi-regular graph (i.e., each edge of *G* is incident to at least one Δ -vertex), then $\chi'_a(G) \leq \frac{5}{3}\Delta + \frac{13}{3}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let V(G) and E(G) denote the vertex set and the edge set of a graph G, respectively. Let $N_G(v)$ denote the set of neighbors of a vertex v in G and $d_G(v) = |N_G(v)|$ denote the degree of v in G. The vertex v is called a k-vertex if $d_G(v) = k$. Let $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of a vertex in G, respectively. For a vertex $v \in V(G)$ and an integer $i \ge 1$, let $d_i(v)$ denote the number of i-vertices adjacent to v. An *edge-partition* of a graph G is a decomposition of G into subgraphs G_1, G_2, \ldots, G_m such that $E(G) = \bigcup_{i=1}^m E(G_i)$ with $E(G_i) \cap E(G_j) = \emptyset$ for all $i \neq j$.

An *edge k-coloring* of a graph *G* is a function $\phi : E(G) \to \{1, 2, ..., k\}$ such that any two adjacent edges receive different colors. The *chromatic index*, denoted by $\chi'(G)$, of a graph *G* is the smallest integer *k* such that *G* has an edge *k*-coloring. Given an edge *k*-coloring ϕ of *G*, we use $C_{\phi}(v)$ to denote the set of colors assigned to those edges incident to a vertex *v*. The coloring ϕ is called a *neighbor-distinguishing edge coloring* (an NDE-coloring for short) if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices *u* and *v*. The *neighbor-distinguishing index* $\chi'_{a}(G)$ of a graph *G* is the smallest integer *k* such that *G* has a *k*-NDE-coloring. A graph *G* is normal if it contains no isolated edges. Clearly, *G* has an NDE-coloring if and only if *G* is normal. Thus, we always assume that *G* is normal in the following discussion.

By definition, it is easy to see that $\chi'_a(G) \geq \chi'(G) \geq \Delta(G)$ for any graph *G*. On the other hand, Zhang, Liu and Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs and complete bipartite graphs.

Conjecture 1. Every connected graph *G* with $|V(G)| \ge 6$ has $\chi'_a(G) \le \Delta(G) + 2$.

* Corresponding author. E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

http://dx.doi.org/10.1016/j.disc.2015.05.007 0012-365X/© 2015 Elsevier B.V. All rights reserved.

Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with $\Delta(G) = 3$. They also proved that $\chi'_a(G) \leq \Delta(G) + O(\log \chi(G))$, where $\chi(G)$ is the vertex chromatic number of the graph *G*. This result and Brooks' Theorem imply immediately that $\chi'_a(G) \leq 2\Delta(G)$ if $\Delta(G)$ is sufficiently large. Using probabilistic method, Hatami [4] showed that every graph *G* with $\Delta(G) > 10^{20}$ has $\chi'_a(G) \leq \Delta(G) + 300$. Akbari, Bidkhori and Nosrati [1] proved that every graph *G* satisfies $\chi'_a(G) \leq 3\Delta(G)$. Zhang, Wang and Lih [14] improved this bound to that $\chi'_a(G) \leq 2.5\Delta(G) + 5$ for any graph *G*. For planar graphs *G*, Horňák, Huang and Wang [6] showed that $\chi'_a(G) \leq \Delta(G) + 2$ if $\Delta(G) \geq 12$. More recently, Wang and Huang [9] further verified that if *G* is a planar graph with $\Delta(G) \geq 16$, then $\chi'_a(G) \leq \Delta(G) + 1$, and moreover $\chi'_a(G) = \Delta(G) + 1$ if and only if *G* contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says that if *G* is a planar bipartite graph with $\Delta(G) \geq 12$, then $\chi'_a(G) \leq \Delta(G) + 1$. The reader is referred to [5,10–12] for other results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing index on general graphs. Here a graph *G* is called *semi-regular* if each edge of *G* is incident to at least one vertex of maximum degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with $\Delta = 4$

This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.

Lemma 2.1 ([7]). If G is a 2k-regular graph with $k \ge 1$, then G is 2-factorizable.

It is well-known that, given a graph *G*, there exists a $\Delta(G)$ -regular graph *H* such that $G \subseteq H$. This fact, together with Lemma 2.1, implies that every graph *G* with $\Delta(G) = 4$ can be edge-partitioned into two subgraphs G_1 and G_2 such that $\Delta(G_i) \leq 2$ for i = 1, 2.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:

Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G_1 and G_2 , then $\chi'_a(G) \leq \chi'_a(G_1) + \chi'_a(G_2)$.

Theorem 2.3 ([13]). If *P* is a path of length at least two, then $\chi'_a(P) \leq 3$.

Theorem 2.4 ([2]). If G is a graph with $\Delta(G) \leq 3$, then $\chi'_a(G) \leq 5$.

Suppose that ϕ is a partial NDE-coloring of a graph *G* using a color set *C*. We call two adjacent vertices *u* and *v* conflict under ϕ (or simply conflict) if $C_{\phi}(u) = C_{\phi}(v)$. An edge *uv* is said to be *legally* colored if its color is different from that of its neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with $\Delta(G) \leq 4$, then $\chi'_a(G) \leq 8$.

Proof. We prove the theorem by induction on the edge number |E(G)|. If $|E(G)| \le 8$, the theorem holds trivially. Let *G* be a graph with $\Delta(G) \le 4$ and $|E(G)| \ge 9$. If $\Delta(G) \le 3$, then the result follows from Theorem 2.4. So suppose that $\Delta(G) = 4$. The proof is split into the following cases, depending on the size of $\delta(G)$.

Case 1 $\delta(G) = 1$.

Let *x* be a 1-vertex adjacent to a vertex *y*. Let H = G - xy. Then *H* is a normal graph with $\Delta(H) \le 4$ and |E(H)| < |E(G)|. By the induction hypothesis, *H* has an 8-NDE-coloring ϕ using the color set $C = \{1, 2, ..., 8\}$. Note that $|C_{\phi}(y)| = d_H(y) = d_G(y) - 1 \le 3$ and *y* has at most $d_G(y) - 1 \le 3$ possible conflict vertices. Thus, *xy* has at most $|C_{\phi}(y)| + 3 \le 6$ forbidden colors when colored, we can color *xy* with a color in $C \setminus C_{\phi}(y)$ such that *y* does not conflict with its neighbors. So an 8-NDE-coloring of *G* is constructed.

Case 2
$$\delta(G) = 2$$
.

Let *x* be a 2-vertex with neighbors *y* and *z*. Without loss of generality, assume that $2 \le d_G(y) \le d_G(z) \le 4$. There are two possibilities to be handled.

Case 2.1 $d_G(y) = 2$.

Let w denote the neighbor of y other than x. Without loss of generality, we assume that $d_G(w) \ge 3$, for otherwise we may further consider the neighbor of w other than y until a desired vertex is found. Let H = G - wy. Then H is a normal graph with $\Delta(H) \le 4$ and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 8\}$. We first remove the color of xy. Since w has at most three conflict vertices and y has at most one conflict vertex, we can color yw with a color $a \in C \setminus (C_{\phi}(w) \cup \{\phi(xz)\})$ and xy with a color in $C \setminus \{a, \phi(xz)\}$ such that neither of x, y, w conflicts with its neighbors.

Case 2.2 $d_G(y) \ge 3$.

Then $d_G(z) \ge 3$. Let H = G - xy. Then H is a normal graph with $\Delta(H) \le 4$ and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 8\}$. Since y is incident to at most three edges in H and has at most three conflict vertices, x is incident to exactly one edge in H and has no conflict vertex, we color xy with a color in $C \setminus (C_{\phi}(y) \cup \{\phi(xz)\})$ such that y does not conflict with its neighbors.

Case 3 $\delta(G) \geq 3$.

We need to deal with the following two subcases.

Case 3.1 There is an edge uv such that $d_G(u) = d_G(v) = 3$.

Let u_1 , u_2 denote the neighbors of u other than v, and v_1 , v_2 the neighbors of v other than u. Then $d_G(u_i)$, $d_G(v_i) \ge 3$ for i = 1, 2.

First, assume that uv does not lie on any 3-cycle. Let H denote the graph obtained from G by contracting the edge uv. Let z denote the new vertex formed by identifying u and v. Then H is a simple and normal graph with $\Delta(H) \leq 4$ and |E(H)| < |E(G)|. By the induction hypothesis, H has an 8-NDE-coloring ϕ using the color set $C = \{1, 2, \ldots, 8\}$. Let $\phi(zu_1) = 1$, $\phi(zu_2) = 2$, $\phi(zv_1) = 3$, and $\phi(zv_2) = 4$. In G, we first color uu_1, uu_2, vv_1, vv_2 with 1, 2, 3, 4, respectively. If uv can be legally colored, we are done. Otherwise, we may assume that $C_{\phi}(u_1) = \{1, 2, 5\}, C_{\phi}(u_2) = \{1, 2, 6\}, C_{\phi}(v_1) = \{3, 4, 7\}, \text{ and } C_{\phi}(v_2) = \{3, 4, 8\}$. This means that $d_G(u_1) = d_G(u_2) = d_G(v_1) = d_G(v_2) = 3$. Let u'_1 and u''_1 denote the neighbors of u_1 other than u. Similarly, we define u'_2 and u''_2 for u_2, v'_1 and v''_1 for v_1 , and v''_2 and v''_2 for v_2 . If there exists $a \in \{3, 4\}$ such that $\{2, 5, a\} \notin \{C_{\phi}(u'_1), C_{\phi}(u''_1)\}$, we recolor uu_1 with a and color uv with 1. So assume that $C_{\phi}(u'_1) = \{2, 3, 5\}$ and $C_{\phi}(u''_1) = \{2, 4, 5\}$. Similarly, $C_{\phi}(u'_2) = \{1, 3, 6\}$ and $C_{\phi}(u''_2) = \{1, 4, 6\}$. Recolor uu_1 with 7, uu_2 with 8, and color uv with 1.

Next, assume that uv lies on a 3-cycle uvu_1u , where $v_1 = u_1$. Let H = G - uv. By the induction hypothesis, H has an 8-NDE-coloring ϕ using the color set $C = \{1, 2, ..., 8\}$. Assume that $\phi(uu_1) = 1$ and $\phi(uu_2) = 2$. Note that the number of 3-vertices that conflict with u or v is at most three. If $\phi(vu_1) \neq 2$ or $\phi(vv_2) \neq 1$, then we color uv with a color in $C \setminus (C_{\phi}(u) \cup C_{\phi}(v))$ such that both u and v do not conflict with their neighbors. Otherwise, assume that $\phi(vu_1) = 2$ and $\phi(vv_2) = 1$. Recolor uu_1 with a color $a \in C \setminus C_{\phi}(u_1)$ such that u_1 does not conflict with its neighbors. Since u_1 has at most four incident edges and two conflict vertices except u and v, such color a exists. Afterward, we legally color uv as above.

Case 3.2 For any edge $uv \in E(G)$, max{ $d_G(u), d_G(v)$ } = 4.

It follows from Lemma 2.1 that *G* can be edge-partitioned into subgraphs G_1 and G_2 such that $\Delta(G_i) \leq 2$ for i = 1, 2. Since $\delta(G) \geq 3$, we further deduce that $\delta(G_i) \geq 1$ for i = 1, 2. Let *xy* be an arbitrary edge of G_1 . Then $xy \in E(G)$ with $\max\{d_G(x), d_G(y)\} = 4$, say $d_G(y) = 4$. Then $d_{G_1}(x) \geq d_G(x) - 2 \geq 3 - 2 = 1$ and $d_{G_1}(y) \geq d_G(y) - 2 = 4 - 2 = 2$. This implies that *xy* is not an isolated edge of G_1 . That is, G_1 is normal. Similarly, we can prove that G_2 is normal.

Note that G_i is the union of vertex-disjoint cycles and paths. For each cycle *B* in G_1 , we pick out an edge $e_B \in E(B)$. Then we set

 $E^* = \{e_B \mid B \text{ is a cycle of } G_1\},\$

 $H_1=G_1-E^*,$

 $H_2 = G_2 \cup E^*.$

Then $H_1 \cup H_2$ is an edge-partition of *G*. It is easy to affirm the following three assertions (a), (b) and (c):

(a) H_1 and H_2 are normal; (b) H_1 is acyclic and $\Delta(H_1) \le 2$; (c) $\Delta(H_2) < 3$ (since $\Delta(G_2) < 2$ and E^* is a matching of *G*).

Now, combining Theorems 2.2–2.4, we easily obtain:

$$\chi_{a}'(G) = \chi_{a}'(H_{1} \cup H_{2}) \le \chi_{a}'(H_{1}) + \chi_{a}'(H_{2}) \le 3 + 5 = 8.$$

This completes the proof.

3. Semi-regular graphs

The following is Vizing's celebrated result on the edge coloring [8]:

Theorem 3.1. Every simple graph *G* has $\chi'(G) \leq \Delta(G) + 1$.

Lemma 3.2. Let *G* be a semi-regular graph with $\Delta(G) = \Delta \ge 5$. Then there is an edge-partition of *G* into normal subgraphs G_1, G_2, \ldots, G_k such that one of the following conditions holds.

(1) If $\Delta \equiv 2 \pmod{3}$, then $k = \frac{1}{3}(\Delta + 1)$ and $\Delta(G_i) \leq 3$ for $1 \leq i \leq k$.

(2) If $\Delta \equiv 1 \pmod{3}$, then $k = \frac{1}{3}(\Delta - 1)$, $\Delta(G_i) \leq 4$ for $1 \leq i \leq 2$ and $\Delta(G_i) \leq 3$ for $3 \leq i \leq k$.

(3) If $\Delta \equiv 0 \pmod{3}$, then $k = \frac{1}{3}\Delta$, $\Delta(G_1) \leq 4$ and $\Delta(G_i) \leq 3$ for $2 \leq i \leq k$.

Proof. By Theorem 3.1, E(G) can be partitioned into $\Delta + 1$ disjoint color classes $E_1, E_2, \ldots, E_{\Delta+1}$ such that each E_i is a matching of *G*. Let *H* be a subgraph of *G* edge-induced by *s*, $3 \le s \le \Delta$, of these color classes. Obviously, $\Delta(H) \le s$. Let uv be an arbitrary edge of *H*. Then $uv \in E(G)$, assuming $d_G(v) \le d_G(u)$. Then $d_G(u) = \Delta$ as *G* is semi-regular. Note that exactly one color is not used on any edge incident to *u*. Therefore, $d_H(u) \ge s - 1 \ge 3 - 1 = 2$, and hence uv is not an isolated edge of *H*. This shows that *H* is a normal graph.

In the following, we simply write $E_{i,i+1,...,j} = E_i \cup E_{i+1} \cup \cdots \cup E_j$, where i < j.

If $\Delta \equiv 2 \pmod{3}$, let $k = \frac{1}{3}(\Delta + 1)$. We define $G_1 = G[E_{1,2,3}]$, $G_2 = G[E_{4,5,6}]$, ..., $G_k = G[E_{\Delta-1,\Delta,\Delta+1}]$. Then G_1, G_2, \ldots, G_k form an edge-partition of G satisfying the condition (1).

If $\Delta \equiv 1 \pmod{3}$, let $k = \frac{1}{3}(\Delta - 1)$. We define $G_1 = G[E_{1,2,3,4}], G_2 = G[E_{5,6,7,8}], G_3 = [E_{9,10,11}], \dots, G_k = G[E_{\Delta - 1, \Delta, \Delta + 1}]$. Then G_1, G_2, \dots, G_k form an edge-partition of *G* satisfying the condition (2).

If $\Delta \equiv 0 \pmod{3}$, let $k = \frac{1}{3}\Delta$. We define $G_1 = G[E_{1,2,3,4}]$, $G_2 = G[E_{5,6,7}]$, $G_3 = [E_{8,9,10}]$, ..., $G_k = G[E_{\Delta-1,\Delta,\Delta+1}]$. Then G_1, G_2, \ldots, G_k form an edge-partition of *G* satisfying the condition (3).

Theorem 3.3. If G is a semi-regular graph with $\Delta(G) = \Delta \ge 2$, then $\chi'_a(G) \le \frac{5}{3}\Delta + c$, where $c = \frac{5}{3}$ if $\Delta \equiv 2 \pmod{3}$, $c = \frac{13}{3}$ if $\Delta \equiv 1 \pmod{3}$, and c = 3 if $\Delta \equiv 0 \pmod{3}$.

Proof. If $2 \le \Delta \le 4$, the result follows from Theorems 2.4 and 2.5. Assume that $\Delta \ge 5$. By Lemma 3.2, there is an edgepartition of *G* into normal subgraphs G_1, G_2, \ldots, G_k such that one of the stated conditions (1), (2) or (3) holds.

If (1) holds, by Theorems 2.2, 2.4 and 2.5, we have

$$\chi'_a(G) \leq \sum_{i=1}^k \chi'_a(G_i) \leq 5k = \frac{5}{3}(\Delta+1).$$

If (2) holds, then

$$\begin{split} \chi_a'(G) &\leq \chi_a'(G_1) + \chi_a'(G_2) + \sum_{i=3}^k \chi_a'(G_i) \\ &\leq 8 + 8 + 5(k-2) \\ &= \frac{5}{3}(\Delta - 1) + 6 \\ &= \frac{5}{3}\Delta + \frac{13}{3}. \end{split}$$

If (3) holds, then

$$\chi'_{a}(G) \leq \chi'_{a}(G_{1}) + \sum_{i=2}^{k} \chi'_{a}(G_{i})$$
$$\leq 8 + 5(k-1)$$
$$= 5k + 3$$
$$= \frac{5}{2}\Delta + 3. \quad \blacksquare$$

Corollary 3.1. If G is a semi-regular graph with $\Delta(G) = 5$, then $\chi'_a(G) \leq 10$.

4. Graphs with $\Delta = 5$

This section focuses on studying the neighbor-distinguishing edge coloring of graphs with maximum degree 5. The main purpose is to show that if G is a graph with $\Delta(G) \leq 5$, then $\chi'_a(G) \leq 10$. As an application, we give a new upper bound for the neighbor-distinguishing index of a general graph.

Lemma 4.1. Let G be a connected graph with $\Delta(G) = 5$ that is not semi-regular. Then G contains one of the following configurations:

(A1) An edge xy with $d_G(x) \le 3$ and $d_G(y) \le 4$. (A2) A 4-vertex v satisfies one of the following conditions: (A2.1) $d_4(v) = 3$ and $d_5(v) = 1$; (A2.2) $d_4(v) = 2$ and $d_5(v) = 2$. (A3) An edge vu with $d_G(v) = d_G(u) = 4$ satisfies one of the following conditions: (A3.1) $d_4(v) = d_4(u) = 1$ and $d_5(v) = d_5(u) = 3$; (A3.2) $d_4(v) = 1$, $d_5(v) = 3$, and $d_4(u) = 4$. **Proof.** Since *G* is not semi-regular, there exists an edge uv such that $d_G(u) \le 4$ and $d_G(v) \le 4$. If either *u* or *v* is of degree at most 3, then *G* contains (A1). So assume that $d_G(u) = d_G(v) = 4$. If *u* or *v* is adjacent to other vertex of degree at most 3 (different from *v* or *u*), then *G* contains (A1). Otherwise, $d_4(u) + d_5(u) = 4$ and $d_4(v) + d_5(v) = 4$. Note that $d_4(u) \ge 1$ and $d_4(v) > 1$.

If $d_4(u) = 3$, then *G* contains (A2.1). If $d_4(u) = 2$, then *G* contains (A2.2). Thus, assume that $d_4(u) = 1$. If $d_4(v) = 1$, then *G* contains (A3.1). If $d_4(v) = 4$, then *G* contains (A3.2). The similar argument works for the vertex *v*. Hence we further suppose that $d_4(u) = d_4(v) = 4$, i.e., both *u* and *v* are only adjacent to 4-vertices. Since $\Delta(G) = 5$, *G* contains a 5-vertex *x*. As *G* is connected, there exists a shortest path $P = y_0y_1y_2 \cdots y_my_{m+1}$ connecting *u* and *x*, where $u = y_0, x = y_{m+1}$, with $m \ge 1$. Let y_s be the first 5-vertex occurring on *P* along the direction from *u* to *x*. So $d_G(y_j) \le 4$ for all $0 \le j \le s - 1$ and $d_G(y_s) = 5$. If $d_G(y_1) \le 3$, then *G* contains (A1). Therefore $d_G(y_1) = 4$. We can recur to conclude that $d_G(v_j) = 4$ for all $j = 2, 3, \ldots, s - 1$. Now, we find a 4-vertex y_{s-1} adjacent to a 5-vertex y_s . Repeating the above process, the proof of the lemma is complete.

Theorem 4.2. If G is a graph with $\Delta(G) \leq 5$, then $\chi'_a(G) \leq 10$.

Proof. We prove the result by induction on |E(G)|. If $|E(G)| \le 10$, the theorem holds trivially. Let *G* be a graph with $\Delta(G) \le 5$ and $|E(G)| \ge 11$. If $\Delta(G) \le 4$, then the theorem holds automatically from Theorems 2.4 and 2.5. So suppose that $\Delta(G) = 5$. If *G* is semi-regular, then $\chi'_a(G) \le 10$ by Corollary 3.1. Thus, assume that *G* is not semi-regular. By Lemma 4.1, *G* contains one of the configurations (A1)–(A3). In the sequel, the proof is split into several cases.

Case 1 *G* contains (A1): an edge *xy* with $d_G(x) \le 3$ and $d_G(y) \le 4$.

We need to consider the following subcases, depending on the size of $d_G(x)$.

Case 1.1 $d_G(x) = 1$.

Let H = G - xy. Then H is a normal graph with $\Delta(H) \leq 5$ and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ϕ using the color set $C = \{1, 2, ..., 10\}$. Note that $|C_{\phi}(y)| = d_G(y) - 1 \leq 3$ and y has at most three possible conflict vertices. Thus, xy has at most $|C_{\phi}(y)| + 3 \leq 6$ forbidden colors, we can color xy with a color in $C \setminus C_{\phi}(y)$ such that y does not conflict with its neighbors.

Case 1.2 $d_G(x) = 2$.

Let v be the second neighbor of x other than y. By the proof of Case 1.1, we may assume that $d_G(y), d_G(v) \ge 2$.

First, assume that $d_G(y) = 2$. Let w denote the neighbor of y other than x. Without loss of generality, we may assume that $d_G(w) \ge 3$. Let H = G - wy. Then H is a normal graph with $\Delta(H) \le 5$ and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. We first remove the color of xy. Since w has at most four conflict vertices and y has at most one conflict vertex, we can legally color wy with a color in $C \setminus (C_{\phi}(w) \cup \{\phi(vx)\})$ and then legally color xy.

Next, assume that $d_G(y) \ge 3$. Let H = G - xy. Then H is a normal graph with $\Delta(H) \le 5$ and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Since y is incident to at most three edges in H and has at most three conflict vertices, x is incident to one edge in H and has at most one conflict vertex, we can color xy with a color in $C \setminus (C_{\phi}(x) \cup C_{\phi}(y))$ such that both x and y do not conflict with their neighbors.

Case 1.3 $d_G(x) = 3$.

Let *s*, *t* be the neighbors of *x* other than *y*. By the proof of Cases 1.1 and 1.2, we may assume that $d_G(s)$, $d_G(t) \ge 3$. We have to consider the following subcases by symmetry.

Case 1.3.1
$$d_G(y) = d_G(s) = d_G(t) = 3$$
.

Let $H = G - \{xy, xs, xt\}$. Then H is a normal graph with $\Delta(H) \leq 5$ and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. For an edge $e \in E(G) \setminus E(H)$, we use L(e) to denote the subset of colors in C which can be legally assigned to e. Since there exist at most 2 + 2 = 4 forbidden colors, we have $|L(e)| \geq 10 - 4 = 6$ for each $e \in \{xy, xs, xt\}$. We color xy with $a \in L(xy) \setminus C_{\phi}(s)$, xs with $b \in L(xs) \setminus (C_{\phi}(t) \cup \{a\})$, and xt with $c \in L(xt) \setminus (C_{\phi}(y) \cup \{a, b\})$. Since $|C_{\phi}(y)| = |C_{\phi}(s)| = |C_{\phi}(t)| = 2$, the coloring is available.

Case 1.3.2 $d_G(y) = d_G(s) = 3$ and $d_G(t) \ge 4$.

Let $H = G - \{xy, xs\}$. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Note that there exist at most five forbidden colors for each of xy and xs. Thus, $|L(xy)|, |L(xs)| \ge 10 - 5 = 5$. We color xy with $a \in L(xy) \setminus C_{\phi}(s)$ and xs with $b \in L(xs) \setminus (C_{\phi}(y) \cup \{a\})$. Analogous to the foregoing analysis, the coloring is feasible.

Case 1.3.3
$$d_G(y) = 3$$
 and $d_G(s), d_G(t) \ge 4$.

Let u, w be the neighbors of y other than x. By the proof of the previous subcases, we may suppose that $d_G(u)$, $d_G(w) \ge 4$. If xy is not on a 3-cycle, let H denote the graph obtained from G by contracting the edge xy. Let z^* denote the new vertex formed by identifying x and y. Then H is a simple and normal graph with $\Delta(H) \le 5$ and |E(H)| < |E(G)|. By the induction hypothesis, *H* has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Suppose that $\phi(z^*u) = 1$, $\phi(z^*w) = 2$, $\phi(z^*s) = 3$, and $\phi(z^*t) = 4$. In *G*, it suffices to color *yu* with 1, *yw* with 2, *xs* with 3, *xt* with 4, and *xy* with 5.

Now assume that *xy* is on a 3-cycle *xyux*, where t = u. Let H = G - xy. By the induction hypothesis, *H* has a 10-NDEcoloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Assume that $\phi(xu) = 1$ and $\phi(xs) = 2$. If $\phi(yu) \neq 2$ or $\phi(yw) \neq 1$, it suffices to color properly *xy* in *G*. Otherwise, $\phi(yu) = 2$ and $\phi(yw) = 1$. In this case, we recolor *yu* with a color in $C \setminus C_{\phi}(u)$ such that *u* does not conflict with its neighbors. This is feasible since *u* has at most three conflict vertices. Afterward we color properly *xy* as above.

Case 1.3.4
$$d_G(y) = 4$$
 and $d_G(s)$, $d_G(t) \ge 4$.

Based on a 10-NDE-coloring ϕ of the graph G - xy, we legally color the edge xy. Since y has at most three conflict vertices and exactly three incident edges, and x has two incident edges and no conflict vertices, the coloring is available.

Case 2 *G* contains (A2.1): a 4-vertex *v* with $d_4(v) = 3$ and $d_5(v) = 1$.

Let v_1, v_2, v_3, v_4 be the neighbors of v with $d_G(v_1) = d_G(v_2) = d_G(v_3) = 4$ and $d_G(v_4) = 5$. Let $H = G - \{vv_1, vv_2, vv_3\}$. Then H is a normal graph with $\Delta(H) \le 5$ and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Assume that $\phi(vv_4) = 1$. Since v_i , for $1 \le i \le 3$, has at most three conflict vertices and three incident edges, vv_i has at most seven forbidden colors. Hence $|L(vv_i)| \ge 10 - 7 = 3$. Especially, when $1 \in C_{\phi}(v_i)$, we have $|L(vv_i)| \ge 4$. By symmetry, we need to consider the following possibilities.

• 1 $\notin C_{\phi}(v_i)$ for all i = 1, 2, 3. It suffices to color vv_1 with $c_1 \in L(vv_1)$, vv_2 with $c_2 \in L(vv_2) \setminus \{c_1\}$, and vv_3 with $c_3 \in L(vv_3) \setminus \{c_1, c_2\}$.

• $1 \in C_{\phi}(v_i)$ for all i = 1, 2, 3. Then $|L(vv_i)| \ge 4$ for all i = 1, 2, 3. It is easy to see that there exist at least $\binom{4}{3} = 4$

ways to color vv_1 , vv_2 and vv_3 . Thus, we assign a color $c_i \in L(vv_i)$ to vv_i such that c_1 , c_2 , c_3 are mutually distinct and $\{1, c_1, c_2, c_3\} \notin \{C_{\phi}(v_1), C_{\phi}(v_2), C_{\phi}(v_3)\}$.

• $1 \in C_{\phi}(v_i)$ for i = 1, 2, and $1 \notin C_{\phi}(v_3)$. Then $|L(vv_i)| \ge 4$ for i = 1, 2. We color vv_1 with $c_1 \in L(vv_1) \setminus (C_{\phi}(v_2) \setminus \{1\})$, vv_2 with $c_2 \in L(vv_2) \setminus ((C_{\phi}(v_1) \setminus \{1\}) \cup \{c_1\})$, and vv_3 with $c_3 \in L(vv_3) \setminus \{c_1, c_2\}$. Noting that $|C_{\phi}(v_i) \setminus \{1\}| = 3 - 1 = 2$ for i = 1, 2, we get a legal coloring.

• $1 \in C_{\phi}(v_1)$, and $1 \notin C_{\phi}(v_i)$ for i = 2, 3. Then $|L(vv_1)| \ge 4$. We color vv_2 with $c_2 \in L(vv_2) \setminus (C_{\phi}(v_1) \setminus \{1\})$, vv_1 with $c_1 \in L(vv_1) \setminus \{c_2\}$, and vv_3 with $c_3 \in L(vv_3) \setminus \{c_1, c_2\}$.

Case 3 *G* contains (A2.2): a 4-vertex *v* with $d_4(v) = d_5(v) = 2$.

Let v_1 , v_2 , v_3 , v_4 be the neighbors of v with $d_G(v_1) = d_G(v_2) = 4$ and $d_G(v_3) = d_G(v_4) = 5$. Let $H = G - \{vv_1, vv_2\}$. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Assume that $\phi(vv_3) = 1$ and $\phi(vv_4) = 2$. It is easy to observe that $|L(vv_i)| \ge |C| - |C_{\phi}(v_i)| - 3 - 2 \ge 10 - 3 - 5 = 2$ for i = 1, 2. Moreover, $|L(vv_i)| \ge 4$ if $1, 2 \in C_{\phi}(v_i)$, and $|L(vv_i)| \ge 3$ if 1 or $2 \in C_{\phi}(v_i)$.

If $|C_{\phi}(v_i) \cap \{1,2\}| \leq 1$ for i = 1, 2, we color vv_1 with $c_1 \in L(vv_1)$ and vv_2 with $c_2 \in L(vv_2) \setminus \{c_1\}$. Otherwise, assume that $1, 2 \in C_{\phi}(v_1)$. So $|L(vv_1)| \geq 4$. If $1, 2 \in C_{\phi}(v_2)$, then $|L(vv_2)| \geq 4$, we color vv_1 with $c_1 \in L(vv_1) \setminus C_{\phi}(v_2)$ and vv_2 with $c_2 \in L(vv_2) \setminus (C_{\phi}(v_1) \cup \{c_1\})$. If $|C_{\phi}(v_2) \cap \{1,2\}| \leq 1$, then we color vv_2 with $c_2 \in L(vv_2) \setminus (C_{\phi}(v_1) \setminus \{1,2\})$ and vv_1 with $c_1 \in L(vv_1) \setminus \{c_2\}$.

Case 4 *G* contains (A3.1): an edge vu with $d_G(v) = d_G(u) = 4$, $d_4(v) = d_4(u) = 1$, and $d_5(v) = d_5(u) = 3$.

Let x, y, z be the neighbors of v other than u with $d_G(x) = d_G(y) = d_G(z) = 5$. Let H = G - uv. Then H is a normal graph with $\Delta(H) \leq 5$ and |E(H)| < |E(G)|. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Assume that $\phi(vx) = 1, \phi(vy) = 2$, and $\phi(vz) = 3$. If $C_{\phi}(u) \neq \{1, 2, 3\}$, then it suffices to color uv with a color in $C \setminus (C_{\phi}(u) \cup C_{\phi}(v))$. So suppose that $C_{\phi}(u) = \{1, 2, 3\}$. Now it remains to recolor vx and then the proof is reduced to the previous case.

Let x_1, x_2, x_3, x_4 be the neighbors of x other than v. If vx can be legally recolored with a color in $\{4, 5, ..., 10\}$, we are done. Otherwise, it is straightforward to see that at most one of 2 and 3 is in $C_{\phi}(x)$. Consequently, our proof is split into the following two cases by symmetry.

Case 4.1 $2 \in C_{\phi}(x)$ and $3 \notin C_{\phi}(x)$.

Because *vx* cannot be legally recolored, we may suppose that $C_{\phi}(x_1) = \{2, 4, 5, 6, 7\}$ with $\phi(xx_1) = 2$, $C_{\phi}(x_2) = \{2, 4, 5, 6, 8\}$ with $\phi(xx_2) = 4$, $C_{\phi}(x_3) = \{2, 4, 5, 6, 9\}$ with $\phi(xx_3) = 5$, and $C_{\phi}(x_4) = \{2, 4, 5, 6, 10\}$ with $\phi(xx_4) = 6$. This implies that $d_G(x_i) = 5$ for all i = 1, 2, 3, 4. Set

$$\Omega(x_i) = \{ C_{\phi}(t) \mid t \in N_H(x_i) \setminus \{x\} \}, \quad i = 1, 2, 3, 4.$$

Then $|\Omega(x_i)| = d_H(x_i) - 1 = 5 - 1 = 4$. If $\{1, 2, 5, 6, 8\}$ or $\{2, 3, 5, 6, 8\} \notin \Omega(x_2)$, then we recolor xx_2 with 1 or 3, and vx with 4. Thus, assume that $\{1, 2, 5, 6, 8\}, \{2, 3, 5, 6, 8\} \in \Omega(x_2)$. Similarly, we may assume that $\{1, 2, 4, 6, 9\}, \{2, 3, 4, 6, 9\} \in \Omega(x_3)$, and $\{1, 2, 4, 5, 10\}, \{2, 3, 4, 5, 10\} \in \Omega(x_4)$. To complete the proof, we need to consider the following two possibilities:

• Assume that $\{2, 5, 6, 7, 8\} \notin \Omega(x_2)$. If there is $p \in \{8, 10\}$ such that $\{2, 4, 6, 9, p\} \notin \Omega(x_3)$, we recolor xx_3 with p, xx_2 with 7, and vx with 4. So assume that $\{2, 4, 6, 8, 9\}, \{2, 4, 6, 9, 10\} \in \Omega(x_3)$. Similarly, we can assume that $\{2, 4, 5, 8, 10\}, \{2, 4, 5, 9, 10\} \in \Omega(x_4)$. If there is $q \in \{9, 10\}$ such that $\{2, 5, 6, 8, q\} \notin \Omega(x_2)$, we recolor xx_2 with q and vx with 7. So assume that $\{2, 5, 6, 8, 9\}, \{2, 5, 6, 8, 10\} \in \Omega(x_2)$. If there is $r \in \{3, 8, 9, 10\}$ such that $\{4, 5, 6, 7, r\} \notin \Omega(x_1)$, we recolor xx_1 with r and vx with a color in $\{8, 9, 10\} \setminus \{r\}$. Thus, assume that $\Omega(x_1) = \{\{3, 4, 5, 6, 7\}, \{4, 5, 6, 7, 9\}, \{4, 5, 6, 7, 10\}$. Now we recolor xx_1 with 1 and vx with 9.

• Assume that $\{2, 5, 6, 7, 8\} \in \Omega(x_2)$. Since $|\Omega(x_2)| \le 4$, at least one of $\{2, 5, 6, 8, 9\}$ and $\{2, 5, 6, 8, 10\}$ does not belong to $\Omega(x_2)$, say $\{2, 5, 6, 8, 9\} \notin \Omega(x_2)$. If there is $p \in \{8, 10\}$ such that $\{2, 5, 6, 9, p\} \notin \Omega(x_3)$, we recolor xx_2 with 9, xx_3 with p, and vx with a color in $\{8, 10\} \setminus \{p\}$. So assume that $\{2, 5, 6, 8, 9\}$, $\{2, 5, 6, 9, 10\} \notin \Omega(x_3)$. If $\{2, 4, 5, 8, 10\} \notin \Omega(x_4)$, we recolor xx_4 with 8 and vx with 9. Thus assume that $\{2, 4, 5, 8, 10\} \in \Omega(x_4)$. Analogous to the previous proof, we get that $\Omega(x_1) = \{\{3, 4, 5, 6, 7\}, \{4, 5, 6, 7, 8\}, \{4, 5, 6, 7, 9\}, \{4, 5, 6, 7, 10\}$. It suffices to recolor xx_2 with 9, xx_1 with 1, and vx with 10.

Case 4.2 2, 3 \notin *C*_{ϕ}(*x*).

If *vx* cannot be legally recolored, then we may assume that $\phi(xx_1) = 4$, $\phi(xx_2) = 5$, $\phi(xx_3) = 6$, $\phi(xx_4) = 7$, $C_{\phi}(x_1) = \{4, 5, 6, 7, 8\}$, $C_{\phi}(x_2) = \{4, 5, 6, 7, 9\}$, and $C_{\phi}(x_3) = \{4, 5, 6, 7, 10\}$.

If $\{1, 5, 6, 7, 8\} \notin \Omega(x_1)$, then it is enough to switch the colors of vx and xx_1 . Thus, assume that $\{1, 5, 6, 7, 8\} \in \Omega(x_1)$, and similarly $\{1, 4, 6, 7, 9\} \in \Omega(x_2)$, and $\{1, 4, 5, 7, 10\} \in \Omega(x_3)$.

If there is $q \in \{2, 3\}$ such that $\{q, 5, 6, 7, 8\} \notin \Omega(x_1)$, we recolor xx_1 with q, and vx with $a \in \{9, 10\}$ such that $C_{\phi}(x_4) \neq \{a, q, 5, 6, 7\}$. Then the proof is reduced to Case 4.1. Thus, assume that $\{2, 5, 6, 7, 8\}, \{3, 5, 6, 7, 8\} \in \Omega(x_1)$. Similarly, we conclude that $\{2, 4, 6, 7, 9\}, \{3, 4, 6, 7, 9\} \in \Omega(x_2)$ and $\{2, 4, 5, 7, 10\}, \{3, 4, 5, 7, 10\} \in \Omega(x_3)$. There are two subcases as follows.

Case 4.2.1 {5, 6, 7, 8, 9} $\notin C_{\phi}(x_1)$.

First, we recolor xx_1 with 9. Then we give the following detailed analysis.

• If $C_{\phi}(x_4) \neq \{5, 6, 7, 9, 10\}$, we recolor vx with 10.

• Assume that $C_{\phi}(x_4) = \{5, 6, 7, 9, 10\}$. Similar to the previous proof, we derive that $\{1, 5, 6, 9, 10\}, \{2, 5, 6, 9, 10\}, \{3, 5, 6, 9, 10\} \in \Omega(x_4)$.

If xx_2 and xx_3 can be, respectively, recolored legally with 10 and 8, then we recolor xx_2 with 10, xx_3 with 8, and vx with 4. Otherwise, $\{4, 6, 7, 9, 10\} \in \Omega(x_2)$, or $\{4, 5, 7, 8, 10\} \in \Omega(x_3)$. By symmetry, we consider the following two possibilities:

(i) $\{4, 6, 7, 9, 10\} \in \Omega(x_2)$. If $\{4, 5, 6, 9, 10\} \notin \Omega(x_4)$, we recolor xx_2 with 8, xx_4 with 4, and vx with 10. If $\{4, 5, 6, 9, 10\} \in \Omega(x_4)$, we recolor xx_4 with 8 and vx with 4.

(ii) $\{4, 6, 7, 9, 10\} \notin \Omega(x_2)$ and $\{4, 5, 7, 8, 10\} \in \Omega(x_3)$. If $\{4, 5, 6, 9, 10\} \notin \Omega(x_4)$, we recolor xx_2 with 10, xx_4 with 4 and vx with 8. Otherwise, we recolor xx_2 with 10, xx_4 with 8, and vx with 4.

Case 4.2.2 $\{5, 6, 7, 8, 9\} \in C_{\phi}(x_1)$.

First, we recolor xx_1 with 10. Then we deal with some subcases below.

• If $C_{\phi}(x_4) \neq \{5, 6, 7, 9, 10\}$, we recolor *vx* with 9.

• Assume that $C_{\phi}(x_4) = \{5, 6, 7, 9, 10\}$. Similar to the previous proof, we derive that $\{i, 5, 6, 9, 10\} \in \Omega(x_4)$ for i = 1, 2, 3.

If xx_2 and xx_3 can be, respectively, recolored legally with 8 and 9, then we recolor xx_2 with 8, xx_3 with 9, and vx with 4. Otherwise, $\{4, 6, 7, 8, 9\} \in \Omega(x_2)$, or $\{4, 5, 7, 9, 10\} \in \Omega(x_3)$. By symmetry, we consider the following two possibilities:

(i) $\{4, 5, 7, 9, 10\} \in \Omega(x_3)$. If $\{4, 5, 6, 9, 10\} \notin \Omega(x_4)$, we recolor xx_3 with $8, xx_4$ with 4, and vx with 9. If $\{4, 5, 6, 9, 10\} \in \Omega(x_4)$, we recolor xx_4 with 8, and vx with 4.

(ii) $\{4, 5, 7, 9, 10\} \notin \Omega(x_3)$ and $\{4, 6, 7, 8, 9\} \in \Omega(x_2)$. If $\{4, 5, 6, 9, 10\} \notin \Omega(x_4)$, we recolor xx_3 with 9, xx_4 with 4 and vx with 8. Otherwise, we recolor xx_3 with 9, xx_4 with 8 and vx with 4.

Case 5 *G* contains (A3.2): an edge *vu* with $d_G(v) = d_G(u) = 4$, $d_4(v) = 1$, $d_5(v) = 3$, and $d_4(u) = 4$.

Let *x*, *y*, *z* be the neighbors of *u* other than *v* with $d_G(x) = d_G(y) = d_G(z) = 4$. Let H = G - uv. Then *H* is a normal graph with $\Delta(H) \leq 5$ and |E(H)| < |E(G)|. By the induction hypothesis, *H* has a 10-NDE-coloring ϕ with the color set $C = \{1, 2, ..., 10\}$. Assume that $\phi(ux) = 1$, $\phi(uy) = 2$, and $\phi(uz) = 3$.

If $C_{\phi}(v) \neq \{1, 2, 3\}$, then we color uv with a color $a \in C \setminus (C_{\phi}(u) \cup C_{\phi}(v))$ such that u does not conflict with its three neighbors (other than v). Since |C| = 10, $|C_{\phi}(u)| = |C_{\phi}(v)| = 3$, the color a exists. Assume that $C_{\phi}(v) = \{1, 2, 3\}$. We recolor ux with a color in $\{4, 5, \ldots, 10\} \setminus C_{\phi}(x)$ such that x does not conflict with its three neighbors (other than u). Then the proof is reduced to the previous case.

Theorem 4.3 ([14]). Let *G* be a normal graph with $\Delta(G) \geq 4$. Then there is an edge-partition of *G* into subgraphs G_0, G_1, \ldots, G_k , $k \leq \lfloor \Delta(G)/2 \rfloor - 2$, such that the following statements hold.

(1) Every G_i is a normal subgraph. (2) $\Delta(G_i) \leq 3$ for $1 \leq i \leq k$.

(3) $\Delta(G_0) \leq 5$.

Theorem 4.4. For a normal graph G, $\chi'_a(G) \leq 2.5 \Delta(G)$.

Proof. Since G is normal, we assume that $\Delta(G) \geq 2$. If $\Delta(G) = 2$, then $\chi'_{\alpha}(G) \leq 5 = 2.5\Delta(G)$. If $\Delta(G) = 3$, then $\chi'_{\alpha}(G) < 5 < 2.5\Delta(G)$ by Theorem 2.4. If $\Delta(G) = 4$, then $\chi'_{\alpha}(G) < 8 < 2.5\Delta(G)$ by Theorem 2.5. If $\Delta(G) = 5$, then $\chi'_a(G) \leq 10 < 2.5\Delta(G)$ by Theorem 4.2. Now assume that $\Delta(G) \geq 6$. By Theorem 4.3, there is an edge-partition of G into subgraphs $G_0, G_1, \ldots, G_k, k \leq \lfloor \Delta(G)/2 \rfloor - 2$, such that the statements (1), (2) and (3) in Theorem 4.3 hold. Applying repeatedly Theorems 2.2, 2.4, 2.5 and 4.3, we have

$$\begin{split} \chi'_a(G) &\leq \chi'_a(G_0) + \chi'_a(G_1) + \dots + \chi'_a(G_k) \\ &\leq \chi'_a(G_0) + 5k \\ &\leq \chi'_a(G_0) + 5(\lfloor \Delta(G)/2 \rfloor - 2) \\ &\leq 10 + 5(\lfloor \Delta(G)/2 \rfloor - 2) \\ &\leq 2.5\Delta(G). \quad \blacksquare \end{split}$$

Acknowledgments

The first author's project is partially supported by NSFC (No. 11301035). The second author's project is partially supported by NSFC (No. 11371328).

References

- [1] S. Akbari, H. Bidkhori, N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006) 3005–3010.
- [2] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237–250.
- [3] K. Edwards, M. Horňák, M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341–350.
- [4] H. Hatami, △ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246–256.
- [5] H. Hocquard, M. Montassier, Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ, J. Comb. Optim. 26 (2013) 152–160.
- [6] M. Horňák, D. Huang, W. Wang, On neighbor-distinguishing index of planar graphs, J. Graph Theory 76 (2014) 262–278.
- [7] J. Petersen, Die Theorie der regulären Graphen, Acta Math. 15 (1891) 193-220.
- [8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25-30 (in Russian).
- [9] W. Wang, D. Huang, A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree, (2015) submitted for publication.
- [10] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010) 471-485
- [11] W. Wang, Y. Wang, Adjacent vertex distinguishing edge colorings of K₄-minor free graphs, Appl. Math. Lett. 24 (2011) 2034–2037.
- [12] C. Yan, D. Huang, D. Chen, W. Wang, Adjacent vertex distinguishing edge colorings of planar graphs with girth at least five, J. Comb. Optim. 28 (2014) 893–909. [13] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623–626.
- [14] L. Zhang, W. Wang, K.-W. Lih, An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph, Discrete Appl. Math. 162 (2014) 348-354.