Some bounds on the neighbor-distinguishing index of graphs

Yiqiao Wang ${ }^{\text {a,*, }}$, Weifan Wang ${ }^{\text {b }}$, Jingjing Huo ${ }^{\text {c }}$
a School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
${ }^{\mathrm{b}}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\text {c }}$ Department of Mathematics, Hebei University of Engineering, Handan 056038, China

A R T I CLE INFO

Article history:

Received 19 March 2015
Received in revised form 3 May 2015
Accepted 4 May 2015
Available online 5 June 2015

Keywords:

Neighbor-distinguishing edge coloring
Maximum degree
Edge-partition

Abstract

A proper edge coloring of a graph G is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor-distinguishing index of G is the minimum number $\chi_{a}^{\prime}(G)$ of colors in a neighbor-distinguishing edge coloring of G.

Let G be a graph with maximum degree Δ and without isolated edges. In this paper, we prove that $\chi_{a}^{\prime}(G) \leq 2 \Delta$ if $4 \leq \Delta \leq 5$, and $\chi_{a}^{\prime}(G) \leq 2.5 \Delta$ if $\Delta \geq 6$. This improves a result in Zhang et al. (2014), which states that $\chi_{a}^{\prime}(G) \leq 2.5 \Delta+5$ for any graph G without isolated edges. Moreover, we prove that if G is a semi-regular graph (i.e., each edge of G is incident to at least one Δ-vertex), then $\chi_{a}^{\prime}(G) \leq \frac{5}{3} \Delta+\frac{13}{3}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let $V(G)$ and $E(G)$ denote the vertex set and the edge set of a graph G, respectively. Let $N_{G}(v)$ denote the set of neighbors of a vertex v in G and $d_{G}(v)=\left|N_{G}(v)\right|$ denote the degree of v in G. The vertex v is called a k-vertex if $d_{G}(v)=k$. Let $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of a vertex in G, respectively. For a vertex $v \in V(G)$ and an integer $i \geq 1$, let $d_{i}(v)$ denote the number of i-vertices adjacent to v. An edge-partition of a graph G is a decomposition of G into subgraphs $G_{1}, G_{2}, \ldots, G_{m}$ such that $E(G)=\bigcup_{i=1}^{m} E\left(G_{i}\right)$ with $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$ for all $i \neq j$.

An edge k-coloring of a graph G is a function $\phi: E(G) \rightarrow\{1,2, \ldots, k\}$ such that any two adjacent edges receive different colors. The chromatic index, denoted by $\chi^{\prime}(G)$, of a graph G is the smallest integer k such that G has an edge k-coloring. Given an edge k-coloring ϕ of G, we use $C_{\phi}(v)$ to denote the set of colors assigned to those edges incident to a vertex v. The coloring ϕ is called a neighbor-distinguishing edge coloring (an NDE-coloring for short) if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices u and v. The neighbor-distinguishing index $\chi_{a}^{\prime}(G)$ of a graph G is the smallest integer k such that G has a k-NDE-coloring. A graph G is normal if it contains no isolated edges. Clearly, G has an NDE-coloring if and only if G is normal. Thus, we always assume that G is normal in the following discussion.

By definition, it is easy to see that $\chi_{a}^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta(G)$ for any graph G. On the other hand, Zhang, Liu and Wang [13] proposed the following challenging conjecture, and confirmed its truth for paths, cycles, trees, complete graphs and complete bipartite graphs.

Conjecture 1. Every connected graph G with $|V(G)| \geq 6$ has $\chi_{a}^{\prime}(G) \leq \Delta(G)+2$.

[^0]Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and all graphs with $\Delta(G)=3$. They also proved that $\chi_{a}^{\prime}(G) \leq \Delta(G)+O(\log \chi(G))$, where $\chi(G)$ is the vertex chromatic number of the graph G. This result and Brooks' Theorem imply immediately that $\chi_{a}^{\prime}(G) \leq 2 \Delta(G)$ if $\Delta(G)$ is sufficiently large. Using probabilistic method, Hatami [4] showed that every graph G with $\Delta(G)>10^{20}$ has $\chi_{a}^{\prime}(G) \leq \Delta(G)+300$. Akbari, Bidkhori and Nosrati [1] proved that every graph G satisfies $\chi_{a}^{\prime}(G) \leq 3 \Delta(G)$. Zhang, Wang and Lih [14] improved this bound to that $\chi_{a}^{\prime}(G) \leq 2.5 \Delta(G)+5$ for any graph G. For planar graphs G, Horňák, Huang and Wang [6] showed that $\chi_{a}^{\prime}(G) \leq \Delta(G)+2$ if $\Delta(G) \geq 12$. More recently, Wang and Huang [9] further verified that if G is a planar graph with $\Delta(G) \geq 16$, then $\chi_{a}^{\prime}(G) \leq \Delta(G)+1$, and moreover $\chi_{a}^{\prime}(G)=\Delta(G)+1$ if and only if G contains two adjacent vertices of maximum degree. This result is an extension to the result in [3], which says that if G is a planar bipartite graph with $\Delta(G) \geq 12$, then $\chi_{a}^{\prime}(G) \leq \Delta(G)+1$. The reader is referred to [5,10-12] for other results on this direction.

In this paper, we investigate the neighbor-distinguishing index of some special graphs such as graphs with maximum degree 4 or 5 and semi-regular graphs. These results are applied to improve the upper bound of the neighbor-distinguishing index on general graphs. Here a graph G is called semi-regular if each edge of G is incident to at least one vertex of maximum degree. Clearly, a regular graph is a semi-regular graph, and not vice versa.

2. Graphs with $\Delta=4$

This section is devoted to the study of the neighbor-distinguishing index of graphs with maximum degree 4.
Lemma 2.1 ([7]). If G is a $2 k$-regular graph with $k \geq 1$, then G is 2-factorizable.
It is well-known that, given a graph G, there exists a $\Delta(G)$-regular graph H such that $G \subseteq H$. This fact, together with Lemma 2.1, implies that every graph G with $\Delta(G)=4$ can be edge-partitioned into two subgraphs G_{1} and G_{2} such that $\Delta\left(G_{i}\right) \leq 2$ for $i=1,2$.

In order to prove the main result in this section, i.e., Theorem 2.5, we need the following three useful consequences:
Theorem 2.2 ([14]). If a normal graph G has an edge-partition into two normal subgraphs G_{1} and G_{2}, then $\chi_{a}^{\prime}(G) \leq \chi_{a}^{\prime}\left(G_{1}\right)+$ $\chi_{a}^{\prime}\left(G_{2}\right)$.

Theorem 2.3 ([13]). If P is a path of length at least two, then $\chi_{a}^{\prime}(P) \leq 3$.
Theorem 2.4 ([2]). If G is a graph with $\Delta(G) \leq 3$, then $\chi_{a}^{\prime}(G) \leq 5$.
Suppose that ϕ is a partial NDE-coloring of a graph G using a color set C. We call two adjacent vertices u and v conflict under ϕ (or simply conflict) if $C_{\phi}(u)=C_{\phi}(v)$. An edge $u v$ is said to be legally colored if its color is different from that of its neighbors and no pair of conflict vertices is produced.

Theorem 2.5. If G is a graph with $\Delta(G) \leq 4$, then $\chi_{a}^{\prime}(G) \leq 8$.
Proof. We prove the theorem by induction on the edge number $|E(G)|$. If $|E(G)| \leq 8$, the theorem holds trivially. Let G be a graph with $\Delta(G) \leq 4$ and $|E(G)| \geq 9$. If $\Delta(G) \leq 3$, then the result follows from Theorem 2.4. So suppose that $\Delta(G)=4$. The proof is split into the following cases, depending on the size of $\delta(G)$.

Case $1 \delta(G)=1$.
Let x be a 1-vertex adjacent to a vertex y. Let $H=G-x y$. Then H is a normal graph with $\Delta(H) \leq 4$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has an 8-NDE-coloring ϕ using the color set $C=\{1,2, \ldots, 8\}$. Note that $\left|C_{\phi}(y)\right|=d_{H}(y)=$ $d_{G}(y)-1 \leq 3$ and y has at most $d_{G}(y)-1 \leq 3$ possible conflict vertices. Thus, $x y$ has at most $\left|C_{\phi}(y)\right|+3 \leq 6$ forbidden colors when colored, we can color $x y$ with a color in $C \backslash C_{\phi}(y)$ such that y does not conflict with its neighbors. So an 8-NDE-coloring of G is constructed.

Case $2 \delta(G)=2$.
Let x be a 2-vertex with neighbors y and z. Without loss of generality, assume that $2 \leq d_{G}(y) \leq d_{G}(z) \leq 4$. There are two possibilities to be handled.

Case 2.1 $d_{G}(y)=2$.
Let w denote the neighbor of y other than x. Without loss of generality, we assume that $d_{G}(w) \geq 3$, for otherwise we may further consider the neighbor of w other than y until a desired vertex is found. Let $H=G-w y$. Then H is a normal graph with $\Delta(H) \leq 4$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has an 8-NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 8\}$. We first remove the color of $x y$. Since w has at most three conflict vertices and y has at most one conflict vertex, we can color $y w$ with a color $a \in C \backslash\left(C_{\phi}(w) \cup\{\phi(x z)\}\right)$ and $x y$ with a color in $C \backslash\{a, \phi(x z)\}$ such that neither of x, y, w conflicts with its neighbors.

Case $2.2 d_{G}(y) \geq 3$.
Then $d_{G}(z) \geq 3$. Let $H=G-x y$. Then H is a normal graph with $\Delta(H) \leq 4$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has an 8 -NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 8\}$. Since y is incident to at most three edges in H and has at most three conflict vertices, x is incident to exactly one edge in H and has no conflict vertex, we color $x y$ with a color in $C \backslash\left(C_{\phi}(y) \cup\{\phi(x z)\}\right)$ such that y does not conflict with its neighbors.

Case $3 \delta(G) \geq 3$.
We need to deal with the following two subcases.
Case 3.1 There is an edge $u v$ such that $d_{G}(u)=d_{G}(v)=3$.
Let u_{1}, u_{2} denote the neighbors of u other than v, and v_{1}, v_{2} the neighbors of v other than u. Then $d_{G}\left(u_{i}\right), d_{G}\left(v_{i}\right) \geq 3$ for $i=1$, 2 .

First, assume that $u v$ does not lie on any 3-cycle. Let H denote the graph obtained from G by contracting the edge $u v$. Let z denote the new vertex formed by identifying u and v. Then H is a simple and normal graph with $\Delta(H) \leq 4$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has an 8 -NDE-coloring ϕ using the color set $C=\{1,2, \ldots, 8\}$. Let $\phi\left(z u_{1}\right)=1, \phi\left(z u_{2}\right)=2, \phi\left(z v_{1}\right)=3$, and $\phi\left(z v_{2}\right)=4$. In G, we first color $u u_{1}, u u_{2}, v v_{1}, v v_{2}$ with $1,2,3,4$, respectively. If $u v$ can be legally colored, we are done. Otherwise, we may assume that $C_{\phi}\left(u_{1}\right)=\{1,2,5\}, C_{\phi}\left(u_{2}\right)=\{1,2,6\}$, $C_{\phi}\left(v_{1}\right)=\{3,4,7\}$, and $C_{\phi}\left(v_{2}\right)=\{3,4,8\}$. This means that $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=3$. Let u_{1}^{\prime} and $u_{1}^{\prime \prime}$ denote the neighbors of u_{1} other than u. Similarly, we define u_{2}^{\prime} and $u_{2}^{\prime \prime}$ for u_{2}, v_{1}^{\prime} and $v_{1}^{\prime \prime}$ for v_{1}, and v_{2}^{\prime} and $v_{2}^{\prime \prime}$ for v_{2}. If there exists $a \in\{3,4\}$ such that $\{2,5, a\} \notin\left\{C_{\phi}\left(u_{1}^{\prime}\right), C_{\phi}\left(u_{1}^{\prime \prime}\right)\right\}$, we recolor $u u_{1}$ with a and color $u v$ with 1 . So assume that $C_{\phi}\left(u_{1}^{\prime}\right)=\{2,3,5\}$ and $C_{\phi}\left(u_{1}^{\prime \prime}\right)=\{2,4,5\}$. Similarly, $C_{\phi}\left(u_{2}^{\prime}\right)=\{1,3,6\}$ and $C_{\phi}\left(u_{2}^{\prime \prime}\right)=\{1,4,6\}$. Recolor $u u_{1}$ with $7, u u_{2}$ with 8 , and color $u v$ with 1 .

Next, assume that $u v$ lies on a 3-cycle $u v u_{1} u$, where $v_{1}=u_{1}$. Let $H=G-u v$. By the induction hypothesis, H has an 8 -NDE-coloring ϕ using the color set $C=\{1,2, \ldots, 8\}$. Assume that $\phi\left(u u_{1}\right)=1$ and $\phi\left(u u_{2}\right)=2$. Note that the number of 3-vertices that conflict with u or v is at most three. If $\phi\left(v u_{1}\right) \neq 2$ or $\phi\left(v v_{2}\right) \neq 1$, then we color $u v$ with a color in $C \backslash\left(C_{\phi}(u) \cup C_{\phi}(v)\right)$ such that both u and v do not conflict with their neighbors. Otherwise, assume that $\phi\left(v u_{1}\right)=2$ and $\phi\left(v v_{2}\right)=1$. Recolor $u u_{1}$ with a color $a \in C \backslash C_{\phi}\left(u_{1}\right)$ such that u_{1} does not conflict with its neighbors. Since u_{1} has at most four incident edges and two conflict vertices except u and v, such color a exists. Afterward, we legally color $u v$ as above.

Case 3.2 For any edge $u v \in E(G), \max \left\{d_{G}(u), d_{G}(v)\right\}=4$.
It follows from Lemma 2.1 that G can be edge-partitioned into subgraphs G_{1} and G_{2} such that $\Delta\left(G_{i}\right) \leq 2$ for $i=1$, 2 . Since $\delta(G) \geq 3$, we further deduce that $\delta\left(G_{i}\right) \geq 1$ for $i=1$, 2 . Let $x y$ be an arbitrary edge of G_{1}. Then $x y \in E(G)$ with $\max \left\{d_{G}(x), d_{G}(y)\right\}=4$, say $d_{G}(y)=4$. Then $d_{G_{1}}(x) \geq d_{G}(x)-2 \geq 3-2=1$ and $d_{G_{1}}(y) \geq d_{G}(y)-2=4-2=2$. This implies that $x y$ is not an isolated edge of G_{1}. That is, G_{1} is normal. Similarly, we can prove that G_{2} is normal.

Note that G_{i} is the union of vertex-disjoint cycles and paths. For each cycle B in G_{1}, we pick out an edge $e_{B} \in E(B)$. Then we set
$E^{*}=\left\{e_{B} \mid B\right.$ is a cycle of $\left.G_{1}\right\}$,
$H_{1}=G_{1}-E^{*}$,
$H_{2}=G_{2} \cup E^{*}$.
Then $H_{1} \cup H_{2}$ is an edge-partition of G. It is easy to affirm the following three assertions (a), (b) and (c):
(a) H_{1} and H_{2} are normal;
(b) H_{1} is acyclic and $\Delta\left(H_{1}\right) \leq 2$;
(c) $\Delta\left(H_{2}\right) \leq 3$ (since $\Delta\left(G_{2}\right) \leq 2$ and E^{*} is a matching of G).

Now, combining Theorems 2.2-2.4, we easily obtain:

$$
\chi_{a}^{\prime}(G)=\chi_{a}^{\prime}\left(H_{1} \cup H_{2}\right) \leq \chi_{a}^{\prime}\left(H_{1}\right)+\chi_{a}^{\prime}\left(H_{2}\right) \leq 3+5=8 .
$$

This completes the proof.

3. Semi-regular graphs

The following is Vizing's celebrated result on the edge coloring [8]:
Theorem 3.1. Every simple graph G has $\chi^{\prime}(G) \leq \Delta(G)+1$.
Lemma 3.2. Let G be a semi-regular graph with $\Delta(G)=\Delta \geq 5$. Then there is an edge-partition of G into normal subgraphs $G_{1}, G_{2}, \ldots, G_{k}$ such that one of the following conditions holds.
(1) If $\Delta \equiv 2(\bmod 3)$, then $k=\frac{1}{3}(\Delta+1)$ and $\Delta\left(G_{i}\right) \leq 3$ for $1 \leq i \leq k$.
(2) If $\Delta \equiv 1(\bmod 3)$, then $k=\frac{1}{3}(\Delta-1), \Delta\left(G_{i}\right) \leq 4$ for $1 \leq i \leq 2$ and $\Delta\left(G_{i}\right) \leq 3$ for $3 \leq i \leq k$.
(3) If $\Delta \equiv 0(\bmod 3)$, then $k=\frac{1}{3} \Delta, \Delta\left(G_{1}\right) \leq 4$ and $\Delta\left(G_{i}\right) \leq 3$ for $2 \leq i \leq k$.

Proof. By Theorem 3.1, $E(G)$ can be partitioned into $\Delta+1$ disjoint color classes $E_{1}, E_{2}, \ldots, E_{\Delta+1}$ such that each E_{i} is a matching of G. Let H be a subgraph of G edge-induced by $s, 3 \leq s \leq \Delta$, of these color classes. Obviously, $\Delta(H) \leq s$. Let $u v$ be an arbitrary edge of H. Then $u v \in E(G)$, assuming $d_{G}(v) \leq d_{G}(u)$. Then $d_{G}(u)=\Delta$ as G is semi-regular. Note that exactly one color is not used on any edge incident to u. Therefore, $d_{H}(u) \geq s-1 \geq 3-1=2$, and hence $u v$ is not an isolated edge of H. This shows that H is a normal graph.

In the following, we simply write $E_{i, i+1, \ldots, j}=E_{i} \cup E_{i+1} \cup \cdots \cup E_{j}$, where $i<j$.
If $\Delta \equiv 2(\bmod 3)$, let $k=\frac{1}{3}(\Delta+1)$. We define $G_{1}=G\left[E_{1,2,3}\right], G_{2}=G\left[E_{4,5,6}\right], \ldots, G_{k}=G\left[E_{\Delta-1, \Delta, \Delta+1}\right]$. Then $G_{1}, G_{2}, \ldots, G_{k}$ form an edge-partition of G satisfying the condition (1).

If $\Delta \equiv 1(\bmod 3)$, let $k=\frac{1}{3}(\Delta-1)$. We define $G_{1}=G\left[E_{1,2,3.4}\right], G_{2}=G\left[E_{5,6,7,8}\right], G_{3}=\left[E_{9,10,11}\right], \ldots, G_{k}=G\left[E_{\Delta-1, \Delta, \Delta+1}\right]$. Then $G_{1}, G_{2}, \ldots, G_{k}$ form an edge-partition of G satisfying the condition (2).

If $\Delta \equiv 0(\bmod 3)$, let $k=\frac{1}{3} \Delta$. We define $G_{1}=G\left[E_{1,2,3,4}\right], G_{2}=G\left[E_{5,6,7}\right], G_{3}=\left[E_{8,9,10}\right], \ldots, G_{k}=G\left[E_{\Delta-1, \Delta, \Delta+1}\right]$. Then $G_{1}, G_{2}, \ldots, G_{k}$ form an edge-partition of G satisfying the condition (3).

Theorem 3.3. If G is a semi-regular graph with $\Delta(G)=\Delta \geq 2$, then $\chi_{a}^{\prime}(G) \leq \frac{5}{3} \Delta+c$, where $c=\frac{5}{3}$ if $\Delta \equiv 2(\bmod 3)$, $c=\frac{13}{3}$ if $\Delta \equiv 1(\bmod 3)$, and $c=3$ if $\Delta \equiv 0(\bmod 3)$.
Proof. If $2 \leq \Delta \leq 4$, the result follows from Theorems 2.4 and 2.5. Assume that $\Delta \geq 5$. By Lemma 3.2, there is an edgepartition of G into normal subgraphs $G_{1}, G_{2}, \ldots, G_{k}$ such that one of the stated conditions (1), (2) or (3) holds.

If (1) holds, by Theorems 2.2, 2.4 and 2.5 , we have

$$
\chi_{a}^{\prime}(G) \leq \sum_{i=1}^{k} \chi_{a}^{\prime}\left(G_{i}\right) \leq 5 k=\frac{5}{3}(\Delta+1)
$$

If (2) holds, then

$$
\begin{aligned}
\chi_{a}^{\prime}(G) & \leq \chi_{a}^{\prime}\left(G_{1}\right)+\chi_{a}^{\prime}\left(G_{2}\right)+\sum_{i=3}^{k} \chi_{a}^{\prime}\left(G_{i}\right) \\
& \leq 8+8+5(k-2) \\
& =\frac{5}{3}(\Delta-1)+6 \\
& =\frac{5}{3} \Delta+\frac{13}{3}
\end{aligned}
$$

If (3) holds, then

$$
\begin{aligned}
\chi_{a}^{\prime}(G) & \leq \chi_{a}^{\prime}\left(G_{1}\right)+\sum_{i=2}^{k} \chi_{a}^{\prime}\left(G_{i}\right) \\
& \leq 8+5(k-1) \\
& =5 k+3 \\
& =\frac{5}{3} \Delta+3
\end{aligned}
$$

Corollary 3.1. If G is a semi-regular graph with $\Delta(G)=5$, then $\chi_{a}^{\prime}(G) \leq 10$.

4. Graphs with $\Delta=5$

This section focuses on studying the neighbor-distinguishing edge coloring of graphs with maximum degree 5 . The main purpose is to show that if G is a graph with $\Delta(G) \leq 5$, then $\chi_{a}^{\prime}(G) \leq 10$. As an application, we give a new upper bound for the neighbor-distinguishing index of a general graph.

Lemma 4.1. Let G be a connected graph with $\Delta(G)=5$ that is not semi-regular. Then G contains one of the following configurations:
(A1) An edge $x y$ with $d_{G}(x) \leq 3$ and $d_{G}(y) \leq 4$.
(A2) A 4-vertex v satisfies one of the following conditions:
$(A 2.1) d_{4}(v)=3$ and $d_{5}(v)=1$;
$(A 2.2) d_{4}(v)=2$ and $d_{5}(v)=2$.
(A3) An edge $v u$ with $d_{G}(v)=d_{G}(u)=4$ satisfies one of the following conditions:
(A3.1) $d_{4}(v)=d_{4}(u)=1$ and $d_{5}(v)=d_{5}(u)=3$;
(A3.2) $d_{4}(v)=1, d_{5}(v)=3$, and $d_{4}(u)=4$.

Proof. Since G is not semi-regular, there exists an edge $u v$ such that $d_{G}(u) \leq 4$ and $d_{G}(v) \leq 4$. If either u or v is of degree at most 3 , then G contains (A1). So assume that $d_{G}(u)=d_{G}(v)=4$. If u or v is adjacent to other vertex of degree at most 3 (different from v or u), then G contains (A1). Otherwise, $d_{4}(u)+d_{5}(u)=4$ and $d_{4}(v)+d_{5}(v)=4$. Note that $d_{4}(u) \geq 1$ and $d_{4}(v) \geq 1$.

If $d_{4}(u)=3$, then G contains (A2.1). If $d_{4}(u)=2$, then G contains (A2.2). Thus, assume that $d_{4}(u)=1$. If $d_{4}(v)=1$, then G contains (A3.1). If $d_{4}(v)=4$, then G contains (A3.2). The similar argument works for the vertex v. Hence we further suppose that $d_{4}(u)=d_{4}(v)=4$, i.e., both u and v are only adjacent to 4 -vertices. Since $\Delta(G)=5, G$ contains a 5 -vertex x. As G is connected, there exists a shortest path $P=y_{0} y_{1} y_{2} \cdots y_{m} y_{m+1}$ connecting u and x, where $u=y_{0}, x=y_{m+1}$, with $m \geq 1$. Let y_{s} be the first 5-vertex occurring on P along the direction from u to x. So $d_{G}\left(y_{j}\right) \leq 4$ for all $0 \leq j \leq s-1$ and $d_{G}\left(y_{s}\right)=5$. If $d_{G}\left(y_{1}\right) \leq 3$, then G contains (A1). Therefore $d_{G}\left(y_{1}\right)=4$. We can recur to conclude that $d_{G}\left(v_{j}\right)=4$ for all $j=2,3, \ldots, s-1$. Now, we find a 4 -vertex y_{s-1} adjacent to a 5 -vertex y_{s}. Repeating the above process, the proof of the lemma is complete.

Theorem 4.2. If G is a graph with $\Delta(G) \leq 5$, then $\chi_{a}^{\prime}(G) \leq 10$.
Proof. We prove the result by induction on $|E(G)|$. If $|E(G)| \leq 10$, the theorem holds trivially. Let G be a graph with $\Delta(G) \leq 5$ and $|E(G)| \geq 11$. If $\Delta(G) \leq 4$, then the theorem holds automatically from Theorems 2.4 and 2.5 . So suppose that $\Delta(G)=5$. If G is semi-regular, then $\chi_{a}^{\prime}(G) \leq 10$ by Corollary 3.1. Thus, assume that G is not semi-regular. By Lemma 4.1, G contains one of the configurations (A1)-(A3). In the sequel, the proof is split into several cases.

Case $1 G$ contains (A1): an edge $x y$ with $d_{G}(x) \leq 3$ and $d_{G}(y) \leq 4$.
We need to consider the following subcases, depending on the size of $d_{G}(x)$.
Case 1.1 $d_{G}(x)=1$.
Let $H=G-x y$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a 10-NDE-coloring ϕ using the color set $C=\{1,2, \ldots, 10\}$. Note that $\left|C_{\phi}(y)\right|=d_{G}(y)-1 \leq 3$ and y has at most three possible conflict vertices. Thus, $x y$ has at most $\left|C_{\phi}(y)\right|+3 \leq 6$ forbidden colors, we can color $x y$ with a color in $C \backslash C_{\phi}(y)$ such that y does not conflict with its neighbors.

Case $1.2 d_{G}(x)=2$.
Let v be the second neighbor of x other than y. By the proof of Case 1.1 , we may assume that $d_{G}(y), d_{G}(v) \geq 2$.
First, assume that $d_{G}(y)=2$. Let w denote the neighbor of y other than x. Without loss of generality, we may assume that $d_{G}(w) \geq 3$. Let $H=G-w y$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a 10 -NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. We first remove the color of $x y$. Since w has at most four conflict vertices and y has at most one conflict vertex, we can legally color $w y$ with a color in $C \backslash\left(C_{\phi}(w) \cup\{\phi(v x)\}\right)$ and then legally color $x y$.

Next, assume that $d_{G}(y) \geq 3$. Let $H=G-x y$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a $10-$ NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Since y is incident to at most three edges in H and has at most three conflict vertices, x is incident to one edge in H and has at most one conflict vertex, we can color $x y$ with a color in $C \backslash\left(C_{\phi}(x) \cup C_{\phi}(y)\right)$ such that both x and y do not conflict with their neighbors.

Case $1.3 d_{G}(x)=3$.
Let s, t be the neighbors of x other than y. By the proof of Cases 1.1 and 1.2 , we may assume that $d_{G}(s), d_{G}(t) \geq 3$. We have to consider the following subcases by symmetry.

Case 1.3.1 $d_{G}(y)=d_{G}(s)=d_{G}(t)=3$.
Let $H=G-\{x y, x s, x t\}$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a 10 -NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. For an edge $e \in E(G) \backslash E(H)$, we use $L(e)$ to denote the subset of colors in C which can be legally assigned to e. Since there exist at most $2+2=4$ forbidden colors, we have $|L(e)| \geq 10-4=6$ for each $e \in\{x y, x s, x t\}$. We color $x y$ with $a \in L(x y) \backslash C_{\phi}(s), x s$ with $b \in L(x s) \backslash\left(C_{\phi}(t) \cup\{a\}\right)$, and $x t$ with $c \in L(x t) \backslash\left(C_{\phi}(y) \cup\{a, b\}\right)$. Since $\left|C_{\phi}(y)\right|=\left|C_{\phi}(s)\right|=\left|C_{\phi}(t)\right|=2$, the coloring is available.

Case 1.3.2 $d_{G}(y)=d_{G}(s)=3$ and $d_{G}(t) \geq 4$.
Let $H=G-\{x y, x s\}$. By the induction hypothesis, H has a $10-$ NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Note that there exist at most five forbidden colors for each of $x y$ and x. Thus, $|L(x y)|,|L(x s)| \geq 10-5=5$. We color $x y$ with $a \in L(x y) \backslash C_{\phi}(s)$ and $x s$ with $b \in L(x s) \backslash\left(C_{\phi}(y) \cup\{a\}\right)$. Analogous to the foregoing analysis, the coloring is feasible.

Case 1.3.3 $d_{G}(y)=3$ and $d_{G}(s), d_{G}(t) \geq 4$.
Let u, w be the neighbors of y other than x. By the proof of the previous subcases, we may suppose that $d_{G}(u), d_{G}(w) \geq 4$. If $x y$ is not on a 3 -cycle, let H denote the graph obtained from G by contracting the edge $x y$. Let z^{*} denote the new vertex formed by identifying x and y. Then H is a simple and normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction
hypothesis, H has a 10 -NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Suppose that $\phi\left(z^{*} u\right)=1, \phi\left(z^{*} w\right)=2$, $\phi\left(z^{*} s\right)=3$, and $\phi\left(z^{*} t\right)=4$. In G, it suffices to color $y u$ with $1, y w$ with 2 , x s with $3, x t$ with 4 , and $x y$ with 5 .

Now assume that $x y$ is on a 3-cycle $x y u x$, where $t=u$. Let $H=G-x y$. By the induction hypothesis, H has a 10-NDEcoloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Assume that $\phi(x u)=1$ and $\phi(x s)=2$. If $\phi(y u) \neq 2$ or $\phi(y w) \neq 1$, it suffices to color properly $x y$ in G. Otherwise, $\phi(y u)=2$ and $\phi(y w)=1$. In this case, we recolor $y u$ with a color in $C \backslash C_{\phi}(u)$ such that u does not conflict with its neighbors. This is feasible since u has at most three conflict vertices. Afterward we color properly $x y$ as above.

Case 1.3.4 $d_{G}(y)=4$ and $d_{G}(s), d_{G}(t) \geq 4$.
Based on a 10-NDE-coloring ϕ of the graph $G-x y$, we legally color the edge $x y$. Since y has at most three conflict vertices and exactly three incident edges, and x has two incident edges and no conflict vertices, the coloring is available.

Case $2 G$ contains (A2.1): a 4-vertex v with $d_{4}(v)=3$ and $d_{5}(v)=1$.
Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the neighbors of v with $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=4$ and $d_{G}\left(v_{4}\right)=5$. Let $H=G-\left\{v v_{1}, v v_{2}, v v_{3}\right\}$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Assume that $\phi\left(v v_{4}\right)=1$. Since v_{i}, for $1 \leq i \leq 3$, has at most three conflict vertices and three incident edges, $v v_{i}$ has at most seven forbidden colors. Hence $\left|L\left(v v_{i}\right)\right| \geq 10-7=3$. Especially, when $1 \in C_{\phi}\left(v_{i}\right)$, we have $\left|L\left(v v_{i}\right)\right| \geq 4$. By symmetry, we need to consider the following possibilities.

- $1 \notin C_{\phi}\left(v_{i}\right)$ for all $i=1,2$, 3. It suffices to color $v v_{1}$ with $c_{1} \in L\left(v v_{1}\right), v v_{2}$ with $c_{2} \in L\left(v v_{2}\right) \backslash\left\{c_{1}\right\}$, and $v v_{3}$ with $c_{3} \in L\left(v v_{3}\right) \backslash\left\{c_{1}, c_{2}\right\}$.
- $1 \in C_{\phi}\left(v_{i}\right)$ for all $i=1,2,3$. Then $\left|L\left(v v_{i}\right)\right| \geq 4$ for all $i=1,2,3$. It is easy to see that there exist at least $\binom{4}{3}=4$ ways to color $v v_{1}, v v_{2}$ and $v v_{3}$. Thus, we assign a color $c_{i} \in L\left(v v_{i}\right)$ to $v v_{i}$ such that c_{1}, c_{2}, c_{3} are mutually distinct and $\left\{1, c_{1}, c_{2}, c_{3}\right\} \notin\left\{C_{\phi}\left(v_{1}\right), C_{\phi}\left(v_{2}\right), C_{\phi}\left(v_{3}\right)\right\}$.
$\bullet 1 \in C_{\phi}\left(v_{i}\right)$ for $i=1,2$, and $1 \notin C_{\phi}\left(v_{3}\right)$. Then $\left|L\left(v v_{i}\right)\right| \geq 4$ for $i=1$, 2 . We color $v v_{1}$ with $c_{1} \in L\left(v v_{1}\right) \backslash\left(C_{\phi}\left(v_{2}\right) \backslash\{1\}\right)$, $v v_{2}$ with $c_{2} \in L\left(v v_{2}\right) \backslash\left(\left(C_{\phi}\left(v_{1}\right) \backslash\{1\}\right) \cup\left\{c_{1}\right\}\right)$, and $v v_{3}$ with $c_{3} \in L\left(v v_{3}\right) \backslash\left\{c_{1}, c_{2}\right\}$. Noting that $\left|C_{\phi}\left(v_{i}\right) \backslash\{1\}\right|=3-1=2$ for $i=1$, 2 , we get a legal coloring.
$\bullet 1 \in C_{\phi}\left(v_{1}\right)$, and $1 \notin C_{\phi}\left(v_{i}\right)$ for $i=2$, 3. Then $\left|L\left(v v_{1}\right)\right| \geq 4$. We color $v v_{2}$ with $c_{2} \in L\left(v v_{2}\right) \backslash\left(C_{\phi}\left(v_{1}\right) \backslash\{1\}\right), v v_{1}$ with $c_{1} \in L\left(v v_{1}\right) \backslash\left\{c_{2}\right\}$, and $v v_{3}$ with $c_{3} \in L\left(v v_{3}\right) \backslash\left\{c_{1}, c_{2}\right\}$.

Case $3 G$ contains (A2.2): a 4-vertex v with $d_{4}(v)=d_{5}(v)=2$.
Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the neighbors of v with $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=4$ and $d_{G}\left(v_{3}\right)=d_{G}\left(v_{4}\right)=5$. Let $H=G-\left\{v v_{1}, v v_{2}\right\}$. By the induction hypothesis, H has a $10-\mathrm{NDE}$-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Assume that $\phi\left(v v_{3}\right)=1$ and $\phi\left(v v_{4}\right)=2$. It is easy to observe that $\left|L\left(v v_{i}\right)\right| \geq|C|-\left|C_{\phi}\left(v_{i}\right)\right|-3-2 \geq 10-3-5=2$ for $i=1$, 2 . Moreover, $\left|L\left(v v_{i}\right)\right| \geq 4$ if $1,2 \in C_{\phi}\left(v_{i}\right)$, and $\left|L\left(v v_{i}\right)\right| \geq 3$ if 1 or $2 \in C_{\phi}\left(v_{i}\right)$.

If $\left|C_{\phi}\left(v_{i}\right) \cap\{1,2\}\right| \leq 1$ for $i=1$, 2 , we color $v v_{1}$ with $c_{1} \in L\left(v v_{1}\right)$ and $v v_{2}$ with $c_{2} \in L\left(v v_{2}\right) \backslash\left\{c_{1}\right\}$. Otherwise, assume that $1,2 \in C_{\phi}\left(v_{1}\right)$. So $\left|L\left(v v_{1}\right)\right| \geq 4$. If $1,2 \in C_{\phi}\left(v_{2}\right)$, then $\left|L\left(v v_{2}\right)\right| \geq 4$, we color $v v_{1}$ with $c_{1} \in L\left(v v_{1}\right) \backslash C_{\phi}\left(v_{2}\right)$ and $v v_{2}$ with $c_{2} \in L\left(v v_{2}\right) \backslash\left(C_{\phi}\left(v_{1}\right) \cup\left\{c_{1}\right\}\right)$. If $\left|C_{\phi}\left(v_{2}\right) \cap\{1,2\}\right| \leq 1$, then we color $v v_{2}$ with $c_{2} \in L\left(v v_{2}\right) \backslash\left(C_{\phi}\left(v_{1}\right) \backslash\{1,2\}\right)$ and $v v_{1}$ with $c_{1} \in L\left(v v_{1}\right) \backslash\left\{c_{2}\right\}$.

Case $4 G$ contains (A3.1): an edge $v u$ with $d_{G}(v)=d_{G}(u)=4, d_{4}(v)=d_{4}(u)=1$, and $d_{5}(v)=d_{5}(u)=3$.
Let x, y, z be the neighbors of v other than u with $d_{G}(x)=d_{G}(y)=d_{G}(z)=5$. Let $H=G-u v$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Assume that $\phi(v x)=1, \phi(v y)=2$, and $\phi(v z)=3$. If $C_{\phi}(u) \neq\{1,2,3\}$, then it suffices to color $u v$ with a color in $C \backslash\left(C_{\phi}(u) \cup C_{\phi}(v)\right)$. So suppose that $C_{\phi}(u)=\{1,2,3\}$. Now it remains to recolor $v x$ and then the proof is reduced to the previous case.

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the neighbors of x other than v. If $v x$ can be legally recolored with a color in $\{4,5, \ldots, 10\}$, we are done. Otherwise, it is straightforward to see that at most one of 2 and 3 is in $C_{\phi}(x)$. Consequently, our proof is split into the following two cases by symmetry.

Case $4.12 \in C_{\phi}(x)$ and $3 \notin C_{\phi}(x)$.
Because $v x$ cannot be legally recolored, we may suppose that $C_{\phi}\left(x_{1}\right)=\{2,4,5,6,7\}$ with $\phi\left(x x_{1}\right)=2, C_{\phi}\left(x_{2}\right)=$ $\{2,4,5,6,8\}$ with $\phi\left(x x_{2}\right)=4, C_{\phi}\left(x_{3}\right)=\{2,4,5,6,9\}$ with $\phi\left(x x_{3}\right)=5$, and $C_{\phi}\left(x_{4}\right)=\{2,4,5,6,10\}$ with $\phi\left(x x_{4}\right)=6$. This implies that $d_{G}\left(x_{i}\right)=5$ for all $i=1,2,3,4$. Set

$$
\Omega\left(x_{i}\right)=\left\{C_{\phi}(t) \mid t \in N_{H}\left(x_{i}\right) \backslash\{x\}\right\}, \quad i=1,2,3,4 .
$$

Then $\left|\Omega\left(x_{i}\right)\right|=d_{H}\left(x_{i}\right)-1=5-1=4$. If $\{1,2,5,6,8\}$ or $\{2,3,5,6,8\} \notin \Omega\left(x_{2}\right)$, then we recolor $x x_{2}$ with 1 or 3 , and $v x$ with 4 . Thus, assume that $\{1,2,5,6,8\},\{2,3,5,6,8\} \in \Omega\left(x_{2}\right)$. Similarly, we may assume that $\{1,2,4,6,9\}$, $\{2,3,4,6,9\} \in \Omega\left(x_{3}\right)$, and $\{1,2,4,5,10\},\{2,3,4,5,10\} \in \Omega\left(x_{4}\right)$. To complete the proof, we need to consider the following two possibilities:

- Assume that $\{2,5,6,7,8\} \notin \Omega\left(x_{2}\right)$. If there is $p \in\{8,10\}$ such that $\{2,4,6,9, p\} \notin \Omega\left(x_{3}\right)$, we recolor $x x_{3}$ with $p, x x_{2}$ with 7 , and $v x$ with 4 . So assume that $\{2,4,6,8,9\},\{2,4,6,9,10\} \in \Omega\left(x_{3}\right)$. Similarly, we can assume that $\{2,4,5,8,10\},\{2,4,5,9,10\} \in \Omega\left(x_{4}\right)$. If there is $q \in\{9,10\}$ such that $\{2,5,6,8, q\} \notin \Omega\left(x_{2}\right)$, we recolor $x x_{2}$ with q and $v x$ with 7 . So assume that $\{2,5,6,8,9\},\{2,5,6,8,10\} \in \Omega\left(x_{2}\right)$. If there is $r \in\{3,8,9,10\}$ such that $\{4,5,6,7, r\} \notin \Omega\left(x_{1}\right)$, we recolor $x x_{1}$ with r and $v x$ with a color in $\{8,9,10\} \backslash\{r\}$. Thus, assume that $\Omega\left(x_{1}\right)=$ $\{\{3,4,5,6,7\},\{4,5,6,7,8\},\{4,5,6,7,9\},\{4,5,6,7,10\}\}$. Now we recolor $x x_{1}$ with 1 and $v x$ with 9 .
\bullet Assume that $\{2,5,6,7,8\} \in \Omega\left(x_{2}\right)$. Since $\left|\Omega\left(x_{2}\right)\right| \leq 4$, at least one of $\{2,5,6,8,9\}$ and $\{2,5,6,8,10\}$ does not belong to $\Omega\left(x_{2}\right)$, say $\{2,5,6,8,9\} \notin \Omega\left(x_{2}\right)$. If there is $p \in\{8,10\}$ such that $\{2,5,6,9, p\} \notin \Omega\left(x_{3}\right)$, we recolor $x x_{2}$ with 9 , $x x_{3}$ with p, and $v x$ with a color in $\{8,10\} \backslash\{p\}$. So assume that $\{2,5,6,8,9\},\{2,5,6,9,10\} \in \Omega\left(x_{3}\right)$. If $\{2,4,5,8,10\} \notin \Omega\left(x_{4}\right)$, we recolor $x x_{4}$ with 8 and $v x$ with 9 . Thus assume that $\{2,4,5,8,10\} \in \Omega\left(x_{4}\right)$. Analogous to the previous proof, we get that $\Omega\left(x_{1}\right)=\{\{3,4,5,6,7\},\{4,5,6,7,8\},\{4,5,6,7,9\},\{4,5,6,7,10\}\}$. It suffices to recolor $x x_{2}$ with $9, x x_{1}$ with 1 , and $v x$ with 10.

Case 4.2 2, $3 \notin C_{\phi}(x)$.
If $v x$ cannot be legally recolored, then we may assume that $\phi\left(x x_{1}\right)=4, \phi\left(x x_{2}\right)=5, \phi\left(x x_{3}\right)=6, \phi\left(x x_{4}\right)=7$, $C_{\phi}\left(x_{1}\right)=\{4,5,6,7,8\}, C_{\phi}\left(x_{2}\right)=\{4,5,6,7,9\}$, and $C_{\phi}\left(x_{3}\right)=\{4,5,6,7,10\}$.

If $\{1,5,6,7,8\} \notin \Omega\left(x_{1}\right)$, then it is enough to switch the colors of $v x$ and $x x_{1}$. Thus, assume that $\{1,5,6,7,8\} \in \Omega\left(x_{1}\right)$, and similarly $\{1,4,6,7,9\} \in \Omega\left(x_{2}\right)$, and $\{1,4,5,7,10\} \in \Omega\left(x_{3}\right)$.

If there is $q \in\{2,3\}$ such that $\{q, 5,6,7,8\} \notin \Omega\left(x_{1}\right)$, we recolor $x x_{1}$ with q, and $v x$ with $a \in\{9,10\}$ such that $C_{\phi}\left(x_{4}\right) \neq\{a, q, 5,6,7\}$. Then the proof is reduced to Case 4.1. Thus, assume that $\{2,5,6,7,8\},\{3,5,6,7,8\} \in \Omega\left(x_{1}\right)$. Similarly, we conclude that $\{2,4,6,7,9\},\{3,4,6,7,9\} \in \Omega\left(x_{2}\right)$ and $\{2,4,5,7,10\},\{3,4,5,7,10\} \in \Omega\left(x_{3}\right)$.

There are two subcases as follows.
Case 4.2.1 $\{5,6,7,8,9\} \notin C_{\phi}\left(x_{1}\right)$.
First, we recolor $x x_{1}$ with 9 . Then we give the following detailed analysis.

- If $C_{\phi}\left(x_{4}\right) \neq\{5,6,7,9,10\}$, we recolor $v x$ with 10 .
- Assume that $C_{\phi}\left(x_{4}\right)=\{5,6,7,9,10\}$. Similar to the previous proof, we derive that $\{1,5,6,9,10\},\{2,5,6,9,10\}$, $\{3,5,6,9,10\} \in \Omega\left(x_{4}\right)$.

If $x x_{2}$ and $x x_{3}$ can be, respectively, recolored legally with 10 and 8 , then we recolor $x x_{2}$ with $10, x x_{3}$ with 8 , and $v x$ with 4 . Otherwise, $\{4,6,7,9,10\} \in \Omega\left(x_{2}\right)$, or $\{4,5,7,8,10\} \in \Omega\left(x_{3}\right)$. By symmetry, we consider the following two possibilities:
(i) $\{4,6,7,9,10\} \in \Omega\left(x_{2}\right)$. If $\{4,5,6,9,10\} \notin \Omega\left(x_{4}\right)$, we recolor $x x_{2}$ with $8, x x_{4}$ with 4 , and $v x$ with 10 . If $\{4,5,6,9,10\} \in$ $\Omega\left(x_{4}\right)$, we recolor $x x_{4}$ with 8 and $v x$ with 4 .
(ii) $\{4,6,7,9,10\} \notin \Omega\left(x_{2}\right)$ and $\{4,5,7,8,10\} \in \Omega\left(x_{3}\right)$. If $\{4,5,6,9,10\} \notin \Omega\left(x_{4}\right)$, we recolor $x x_{2}$ with 10 , $x x_{4}$ with 4 and $v x$ with 8 . Otherwise, we recolor $x x_{2}$ with $10, x x_{4}$ with 8 , and $v x$ with 4.

Case 4.2.2 $\{5,6,7,8,9\} \in C_{\phi}\left(x_{1}\right)$.
First, we recolor $x x_{1}$ with 10 . Then we deal with some subcases below.

- If $C_{\phi}\left(x_{4}\right) \neq\{5,6,7,9,10\}$, we recolor $v x$ with 9 .
- Assume that $C_{\phi}\left(x_{4}\right)=\{5,6,7,9,10\}$. Similar to the previous proof, we derive that $\{i, 5,6,9,10\} \in \Omega\left(x_{4}\right)$ for $i=1,2$, 3 .

If $x x_{2}$ and $x x_{3}$ can be, respectively, recolored legally with 8 and 9 , then we recolor $x x_{2}$ with $8, x x_{3}$ with 9 , and $v x$ with 4 . Otherwise, $\{4,6,7,8,9\} \in \Omega\left(x_{2}\right)$, or $\{4,5,7,9,10\} \in \Omega\left(x_{3}\right)$. By symmetry, we consider the following two possibilities:
(i) $\{4,5,7,9,10\} \in \Omega\left(x_{3}\right)$. If $\{4,5,6,9,10\} \notin \Omega\left(x_{4}\right)$, we recolor $x x_{3}$ with $8, x x_{4}$ with 4 , and $v x$ with 9 . If $\{4,5,6,9,10\} \in$ $\Omega\left(x_{4}\right)$, we recolor $x x_{4}$ with 8 , and $v x$ with 4 .
(ii) $\{4,5,7,9,10\} \notin \Omega\left(x_{3}\right)$ and $\{4,6,7,8,9\} \in \Omega\left(x_{2}\right)$. If $\{4,5,6,9,10\} \notin \Omega\left(x_{4}\right)$, we recolor $x x_{3}$ with $9, x x_{4}$ with 4 and $v x$ with 8 . Otherwise, we recolor $x x_{3}$ with $9, x x_{4}$ with 8 and $v x$ with 4 .

Case $5 G$ contains (A3.2): an edge $v u$ with $d_{G}(v)=d_{G}(u)=4, d_{4}(v)=1, d_{5}(v)=3$, and $d_{4}(u)=4$.
Let x, y, z be the neighbors of u other than v with $d_{G}(x)=d_{G}(y)=d_{G}(z)=4$. Let $H=G-u v$. Then H is a normal graph with $\Delta(H) \leq 5$ and $|E(H)|<|E(G)|$. By the induction hypothesis, H has a 10-NDE-coloring ϕ with the color set $C=\{1,2, \ldots, 10\}$. Assume that $\phi(u x)=1, \phi(u y)=2$, and $\phi(u z)=3$.

If $C_{\phi}(v) \neq\{1,2,3\}$, then we color $u v$ with a color $a \in C \backslash\left(C_{\phi}(u) \cup C_{\phi}(v)\right)$ such that u does not conflict with its three neighbors (other than v). Since $|C|=10,\left|C_{\phi}(u)\right|=\left|C_{\phi}(v)\right|=3$, the color a exists. Assume that $C_{\phi}(v)=\{1,2,3\}$. We recolor $u x$ with a color in $\{4,5, \ldots, 10\} \backslash C_{\phi}(x)$ such that x does not conflict with its three neighbors (other than u). Then the proof is reduced to the previous case.

Theorem 4.3 ([14]). Let G be a normal graph with $\Delta(G) \geq 4$. Then there is an edge-partition of G into subgraphs $G_{0}, G_{1}, \ldots, G_{k}$, $k \leq\lfloor\Delta(G) / 2\rfloor-2$, such that the following statements hold.
(1) Every G_{i} is a normal subgraph.
(2) $\Delta\left(G_{i}\right) \leq 3$ for $1 \leq i \leq k$.
(3) $\Delta\left(G_{0}\right) \leq 5$.

Theorem 4.4. For a normal graph $G, \chi_{a}^{\prime}(G) \leq 2.5 \Delta(G)$.
Proof. Since G is normal, we assume that $\Delta(G) \geq 2$. If $\Delta(G)=2$, then $\chi_{a}^{\prime}(G) \leq 5=2.5 \Delta(G)$. If $\Delta(G)=3$, then $\chi_{a}^{\prime}(G) \leq 5<2.5 \Delta(G)$ by Theorem 2.4. If $\Delta(G)=4$, then $\chi_{a}^{\prime}(G) \leq 8<2.5 \Delta(G)$ by Theorem 2.5. If $\Delta(G)=5$, then $\chi_{a}^{\prime}(G) \leq 10<2.5 \Delta(G)$ by Theorem 4.2. Now assume that $\Delta(G) \geq 6$. By Theorem 4.3, there is an edge-partition of G into subgraphs $G_{0}, G_{1}, \ldots, G_{k}, k \leq\lfloor\Delta(G) / 2\rfloor-2$, such that the statements (1), (2) and (3) in Theorem 4.3 hold. Applying repeatedly Theorems 2.2, 2.4, 2.5 and 4.3, we have

$$
\begin{aligned}
\chi_{a}^{\prime}(G) & \leq \chi_{a}^{\prime}\left(G_{0}\right)+\chi_{a}^{\prime}\left(G_{1}\right)+\cdots+\chi_{a}^{\prime}\left(G_{k}\right) \\
& \leq \chi_{a}^{\prime}\left(G_{0}\right)+5 k \\
& \leq \chi_{a}^{\prime}\left(G_{0}\right)+5(\lfloor\Delta(G) / 2\rfloor-2) \\
& \leq 10+5(\lfloor\Delta(G) / 2\rfloor-2) \\
& \leq 2.5 \Delta(G) .
\end{aligned}
$$

Acknowledgments

The first author's project is partially supported by NSFC (No. 11301035). The second author's project is partially supported by NSFC (No. 11371328).

References

[1] S. Akbari, H. Bidkhori, N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006) 3005-3010
[2] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250.
[3] K. Edwards, M. Horňák, M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341-350.
[4] H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) 246-256.
[5] H. Hocquard, M. Montassier, Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ, J. Comb. Optim. 26 (2013) $152-160$.
[6] M. Horňák, D. Huang, W. Wang, On neighbor-distinguishing index of planar graphs, J. Graph Theory 76 (2014) 262-278.
[7] J. Petersen, Die Theorie der regulären Graphen, Acta Math. 15 (1891) 193-220.
[8] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25-30 (in Russian).
[9] W. Wang, D. Huang, A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree, (2015) submitted for publication.
[10] W. Wang, Y. Wang, Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree, J. Comb. Optim. 19 (2010) 471-485.
[11] W. Wang, Y. Wang, Adjacent vertex distinguishing edge colorings of K_{4}-minor free graphs, Appl. Math. Lett. 24 (2011) $2034-2037$.
[12] C. Yan, D. Huang, D. Chen, W. Wang, Adjacent vertex distinguishing edge colorings of planar graphs with girth at least five, J. Comb. Optim. 28 (2014) 893-909.
[13] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626.
[14] L. Zhang, W. Wang, K.-W. Lih, An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph, Discrete Appl. Math. 162 (2014) 348-354.

[^0]: * Corresponding author.

 E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).

