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a b s t r a c t

A doubly resolvable packing design with block size k, index λ, replication number r , and v
elements is called a generalized Kirkman square and denoted by GKSk(v; 1, λ; r). Existence
of GKS3(4u; 1, 1; 2(u−1))s and GKS3(6u; 1, 1; 3(u−1))s is implied by existence of doubly
resolvable group divisible designswith block size 3, index 1, and types 4u and 6u (i.e., (3, 1)-
DRGDDs of types 4u and 6u). In this paper, we establish the spectra of (3, 1)-DRGDDs
of types 4u and 6u with 15 and 31 possible exceptions, respectively. As applications, we
get some new classes of permutation codes and doubly constant weight codes. We also
construct 5 new resolvable GDDs with block size 4 and index 1.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a set of positive integers and λ be a positive integer. A (K , λ) group divisible design (GDD) is a triple (X, G , B)
where X is a set of points, G is a partition of X into subsets (called groups) and B is a collection of subsets of X with sizes in
K (called blocks) such that (1) no two points in the same group lie in any block, and (2) any two points in different groups
appear together in exactly λ blocks. If G contains ti groups of size hi for i = 1, 2, . . . , n, then the GDD is said to have type
ht1
1 ht2

2 . . . htn
n . If K = {k}, we more commonly write k instead of {k}.

A (v, K , λ)-PBD or pairwise balanced design is a (K , λ)-GDD of type 1v; the parameter λ is sometimes omitted if λ = 1.
Also, a (v, k, λ)-BIBD or balanced incomplete block design is a (k, λ)-GDD of type 1v , and a (k, 1)-GDD of type hk is usually
called a transversal design, denoted as TD(k, h). It is well known that existence of a TD(k, v) is equivalent to existence of k−2
mutually orthogonal Latin squares (or MOLS) of order v. For known information on existence of TDs and MOLS, see [3].

A design D is called resolvable if it is possible to partition its blocks into classes R1, R2, . . . , Rt (called parallel classes or
resolution classes) such that each point of the design lies in exactly one block of each class. The classes R1, R2, . . . , Rt are said
to form a resolution of D. We use the notation RGDD for a resolvable group divisible design.

A design D is called doubly resolvable if it possesses two resolutions, with the extra property that each parallel class in the
first resolution contains at most one block in commonwith each parallel class in the second resolution. We use the notation
DRGDD for a doubly resolvable GDD.

Several authors have looked at RGDDsof typehu. For k = 3 andλ = 1, existence of these designs has nowbeen completely
solved:

∗ Corresponding author.
E-mail addresses: djalarm@ntu.edu.cn (J. Du), r.j.abel@unsw.edu.au (R.J.R. Abel), jhwang@ntu.edu.cn (J. Wang).

http://dx.doi.org/10.1016/j.disc.2015.05.008
0012-365X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2015.05.008
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.05.008&domain=pdf
mailto:djalarm@ntu.edu.cn
mailto:r.j.abel@unsw.edu.au
mailto:jhwang@ntu.edu.cn
http://dx.doi.org/10.1016/j.disc.2015.05.008


2106 J. Du et al. / Discrete Mathematics 338 (2015) 2105–2118

Table 1
Values of v ≥ 18 for which there is no known DRNKTS(v).

144 150 156 168 174 180 186 192 204 216 222 228 234 240 246 252
264 270 276 294 300 312 318 324 330 336 342 348 360 372 378 384
390 396 408 414 426 432 438 456 462 468 474 480 504 510 516 528
540 558 564 570 576 582 588 606 612 624 630 636 654 660 666 672

Theorem 1.1 ([21,22]). There exists a (3, 1)-RGDD of type hu if and only if u ≥ 3, hu ≡ 0 (mod 3), h(u − 1) is even, and
(h, u) ∉ {(2, 3), (2, 6), (6, 3)}.

Recent progress has been made on existence of (4, 1)-RGDDs, but work still has to be done. The current state of affairs
regarding these designs is summarized in the following theorem:

Theorem 1.2 ([24]). Necessary conditions for existence of a (4, 1)-RGDD of type hu are u ≥ 4, hu ≡ 0 (mod 4), h(u − 1) ≡

0 (mod 3) and (h, u) ∉ {(2, 4), (2, 10), (3, 4), (6, 4)}. The conditions are sufficient, except possibly in the following cases:
(1) h ≡ 2 or 10 (mod 12): Either (1a) h = 2 and u ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 178, 202, 214, 238, 250, 334},
(1b) h = 10 and u ∈ {4, 34, 52, 94}, (1c) h = 26 and u ∈ {10, 70, 82}, or (1d) h ∈ {38, 58, 74, 82, 86, 94, 106} and u = 10.
(2) h ≡ 6 (mod 12): (h, u) ∈ {(6, 6), (6, 68), (18, 38), (18, 62)}.
(3) h ≡ 0 (mod 12): h = 36 and u ∈ {14, 15, 18, 23}.

Much less is known about existence of doubly resolvable (k, 1)-GDDs of type hu. For k ≥ 4, there is almost no information
at all available on these designs. In this paper, we examine the existence of such designs for k = 3 and h = 4 or 6. The cases
h = 1 and 2 have already been examined in earlier papers. These DRGDDs are commonly called doubly resolvable Kirkman
triple systems (denoted DRKTS(u)) when h = 1, or doubly resolvable nearly Kirkman triple systems (denoted DRNKTS(2u))
when h = 2. The following two theorems summarize the known results for these two types of design:

Theorem 1.3 ([2,4,9]). There exists a doubly resolvable (v, 3, 1)-BIBD (or a DRKTS(v)) for all v ≡ 3 (mod 6) except for
v ∈ {3, 9, 15} and possibly for v ∈ {21, 141, 153, 165, 177, 189, 231, 249, 261, 285, 357}.

Theorem 1.4 ([2]). Let V be the set of 64 numbers listed in Table 1. There exists a (3, 1)-DRGDD of type 2v/2 (or DRNKTS(v))
whenever v ≡ 0 (mod 6) and v ≥ 18, except possibly for v ∈ V . There is no DRNKTS(v) when v = 6 or 12.

Let k, λ, r , and v be positive integers. A doubly resolvable packing design or generalized Kirkman squarewith block size k, index
λ, replication number r , and v elements, GKSk(v; 1, λ; r), is an r × r array S defined on a v-set X such that

(1) each cell of S is either empty or contains a k-set of X ,
(2) every element of X occurs once in each row and column of S,
(3) each 2-subset of X is contained in at most λ k-element sets of S.

By simple argument, a necessary condition for the existence of a generalized Kirkman square GKSk(v; 1, λ; r) is v/k ≤ r ≤

λ(v−1)/(k−1).When r = λ(v−1)/(k−1), a generalizedKirkman square is aKirkman square, and denoted byKSk(v; 1, λ). It
iswell known that existence of a doubly resolvable (v, k, λ)-BIBD is equivalent to existence of a Kirkman square KSk(v; 1, λ),
see for instance [9,16,17]. There are tight connections between generalized Kirkman squares and doubly resolvable group
divisible designs. It is clear that doubly resolvable group divisible designs are one kind of generalized Kirkman squares. A lot
ofwork has been done on existence of generalized Kirkman squareswith k ∈ {2, 3}. For k = 2, a generalized Kirkman square,
GKS2(v; 1, 1; r), is more commonly known as a Howell design, and is denoted as H(r, v). A Howell design with r = v − 1,
i.e. a GKS2(v; 1, 1; v − 1) is called a Room square of order v − 1, or RS(v − 1). Thus a Howell design is a generalization of
a Room square, and a generalized Kirkman square is a generalization of a Howell design. In 1975, Mullin and Wallis [19]
established the spectrum of Room squares. The existence of Howell designs has been completely determined by Stinson
[23] in 1982 and Anderson et al. [6] in 1984. For k = 3, Lamken [16] established the spectrum for KS3(v; 1, 2)s with six
possible exceptions which were later solved in [4]. In [9], Colbourn et al. established the spectrum for KS3(v; 1, 1)s with 23
of possible exceptions; later 11 of these were removed in [4] and one (v = 351) was removed in [2]. A summary of these
exceptions was given earlier in Theorem 1.3. Also, in [2], the problem for the existence of doubly resolvable nearly Kirkman
triple systems (or doubly resolvable (3, 1)-GDDs of type 2v/2, denoted as DRNKTS(v)) was studied. These are equivalent to
GKS3(v; 1, 1; (v − 2)/2)s, and a summary of the 64 unknown cases is given in Theorem 1.4.

In this paper, we are mainly interested in the construction of generalized Kirkman squares with k = 3; a few
new resolvable GDDs with k = 4 are also given. We will discuss the existence of GKS3(4u; 1, 1, 2(u − 1))s and
GKS3(6u; 1, 1, 3(u − 1))s; these will be obtained from (3, 1)-DRGDDs of types 4u and 6u.

The material in this paper is organized as follows. First in Section 2, we improve Theorem 1.2, giving 5 new resolvable
(4, 1)-GDDs. In Section 3, we describe some new direct constructions for (3, 1)-DRGDDs of types 4u and 6u. These are
obtained by methods using starters and adders, and are of a similar nature to those in [2]. Our main recursive constructions
use frames. In Section 4 we summarize the known existence results for (1, 1; 3)-frames of types 2u, 4u and 6u. We also give
some new (1, 1; 3)-frames of type 4u and some general recursive constructions for (1, 1; 3)-frames and (3, 1)-DRGDDs.
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In Sections 5 and 6, we establish the spectra of (3, 1)-DRGDDs of types 4u and 6u with 15 and 31 possible exceptions,
respectively. Some of the recursive methods used in these sections are of a similar nature to those in [2], in particular,
Lemmas 5.3 and 6.1 are quite similar to Theorem 4.6 in [2]. Finally, Section 7 gives their applications to permutation codes
and doubly constant weight codes, and Section 8 gives a summary of our results.

2. Some new (4, 1)-RGDDs

In this section, we obtain five improvements on Theorem 1.2. Two of these are obtained directly, and three are obtained
by a direct product construction and a filling holes construction. The direct constructions for types 234 and 252 in the next
lemma are starter constructions, similar to those of types 222, 228 and 240 in [14].

Lemma 2.1. There exists a (4, 1)-RGDD of type 2u for u ∈ {34, 52}.

Proof. For u = 34, the point set is Z66 ∪ (S = {∞1, ∞2}) and the groups are S and {x, x + 33} for 0 ≤ x ≤ 32. The base
blocks given form a parallel class. Other parallel classes are obtained by developing the base parallel class by the repeated
addition of 3 (mod 66).

{0, 9, 63, 1}, {46, 49, 55, 47}, {5, 8, 20, 6}, {15, 33, 60, 22},
{7, 19, 43, 29}, {11, 35, 41, 48}, {24, 54, 10, 37}, {16, 31, 44, 65},
{17, 26, 21, 45}, {51, 57, 25, 2}, {40, 61, 56, 30}, {32, 50, 42, 13},
{3, 18, 64, 38}, {4, 52, 59, 27}, {23, 62, 39, 58}, {12, 28, 53, ∞1},
{36, 34, 14, ∞2}.

Foru = 52, the point set is Z104 and the groups are {x, x+52} for 0 ≤ x ≤ 51. The blocks of the RGDDare obtained bydevelop-
ing the following 17 base blocks by the repeated addition of 2 (mod 104). Adding either 0, 4, 8, . . . , 100 or 2, 6, 10, . . . , 102
to any one of the four blocks in the first row produces a parallel class. Also, adding 0 and 52 (mod 104) to the last 13 blocks
produces another parallel class; the remaining parallel classes are obtained by adding 2, 4, 6, . . . , 50 to this last one.

{0, 14, 61, 71}, {0, 46, 43, 65}, {0, 18, 27, 53}, {0, 38, 7, 49},
{0, 24, 72, 75}, {78, 5, 33, 53}, {4, 27, 29, 93}, {2, 94, 98, 89},
{14, 48, 64, 92}, {13, 25, 43, 59}, {16, 84, 97, 101}, {34, 36, 35, 103},
{38, 44, 17, 31}, {22, 11, 55, 61}, {6, 70, 80, 21}, {8, 30, 50, 71},
{10, 15, 39, 47}.

Lemma 2.2. There exist (4, 1)-RGDDs of types 1034, 1052 and 2238.

Proof. It is well known that existence of a (k, 1)-RGDD of type gu and a resolvable TD(k, s) implies existence of a (k, 1)-
RGDD of type (gs)u. See for instance, Corollary 3.4.6 in [13]. Applying this corollarywith k = 4, g = 2, s = 5 and u ∈ {34, 52}
gives (4, 1)-RGDDs of types 1034 and 1052. For type 2238, start with a (4, 1)-RGDD of type 687 which exists by Theorem 1.2.
Filling in the groups of size 68 with (4, 1)-RGDDs of type 234 now gives the required RGDD. �

With these new results, Theorem 1.2 can now be updated as follows:

Theorem 2.3. Necessary conditions for existence of a (4, 1)-RGDD of type hu are u ≥ 4, hu ≡ 0 (mod 4), h(u− 1) ≡ 0 (mod 3)
and (h, u) ∉ {(2, 4), (2, 10), (3, 4), (6, 4)}. The conditions are sufficient, except possibly in the following cases:
(1) h ≡ 2 or 10 (mod 12): Either (1a) h = 2 and u ∈ {46, 70, 82, 94, 100, 118, 130, 178, 202, 214, 250, 334}, (1b) h = 10
and u ∈ {4, 94}, (1c) h = 26 and u ∈ {10, 70, 82}, or (1d) h ∈ {38, 58, 74, 82, 86, 94, 106} and u = 10.
(2) h ≡ 6 (mod 12): (h, u) ∈ {(6, 6), (6, 68), (18, 38), (18, 62)}.
(3) h ≡ 0 (mod 12): h = 36 and u ∈ {14, 15, 18, 23}.

3. Direct constructions for (3, 1)-DRGDDs of types 4u and 6u

In this section,wewill apply standard ‘‘starter–adder’’method to construct some (3, 1)-DRGDDswith small orders,which
will be used as input designs in recursive constructions of Section 4. Instead of listing all the blocks and the parallel classes
of the desired designs, we only list the starters and adders of the first resolution class and its orthogonal resolution class.
For more information on the ‘‘starter–adder’’ method, the reader is referred to [2,4,7,9,15].

Lemma 3.1. There exist (3, 1)-DRGDDs of type 4u for u ≡ 0 (mod 3) and 3 ≤ u ≤ 30.

Proof. For u = 3, the required design comes from a TD(5, 4) [3]. The points in the last two groups can be deleted and used
to define parallel classes for the two resolutions, giving a doubly resolvable TD(3, 4). For u = 27, a construction will be
obtained later (using Lemma 5.2 with n = 4). For other u, the given designs are over Z4u−4 ∪ (S = {∞1, . . . ,∞4}). Groups
for these DRGDDs are S and {i, i + (u − 1), i + 2(u − 1), i + 3(u − 1)} for 0 ≤ i ≤ u − 2. An initial parallel class for the
first resolution (consisting of a number of starter blocks) is given in the Appendix, Table 8; for the orthogonal resolution,
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Fig. 1. A (1, 3; 4)-frame of type 113 .

the initial parallel class is obtained by adding the given adders (mod 4u− 4) to the starter blocks, while keeping the infinite
points fixed. For both the first resolution and its orthogonal resolution, the remaining 2u − 3 parallel classes are obtained
by developing the initial parallel class by the repeated addition of 2 (mod 4u − 4) to the non-infinite points, while keeping
the infinite points fixed. �

Lemma 3.2. There exists a (3, 1)-DRGDD of type 6u for 6 ≤ u ≤ 20.

Proof. These are constructed in a similar manner to those for u ≥ 4 in the previous lemma. Here the given designs are
over Z6u−6 ∪ (S = {∞1, . . . ,∞6}), and groups for the DRGDD are S and {i, i + (u − 1), i + 2(u − 1), i + 3(u − 1), i +

4(u − 1), i + 5(u − 1)} for 0 ≤ i ≤ u − 2. An initial parallel class of starter blocks (or starter blocks plus their adders for
the orthogonal resolution) is given in the Appendix, Table 9. The remaining 3u − 4 parallel classes for both the first and
orthogonal resolutions are obtained by repeated addition of 2 (mod 6u − 6) to the blocks in the initial parallel class. �

4. Frames

Let V be a set of v elements. Let G1,G2, . . . ,Gm be a partition of V into m sets. For each Gi, i = 1, 2, . . . ,m, let gi = |Gi|,
let Ti be a set of size ti = (λgi)/(µ(k − 1)), and let t =

m
i=1 ti. A {G1,G2, . . . ,Gm}-frame F with block size k, index λ, and

latinicity µ is a square array A of side t = (λv)/(µ(k − 1)) which satisfies the properties listed below.

(1) Each cell is either empty or contains a k-subset of V .
(2) The rows and columns of A are indexed by the elements of ∪m

i=1 Ti.
(3) For each i = 1, 2, . . . ,m, the subsquare with row and column indices from Ti is empty (i.e. the main diagonal of A

consists of empty subsquares of sides ti × ti for i = 1, 2, . . . ,m). Each row of Awith index from Ti contains each element
of V − Gi µ times. So does each column of Awith index from Ti.

(4) The blocks obtained from the nonempty cells of F form a (k, λ)-GDD of type (g1, g2, . . . , gm).

Such a square array is usually called a (µ, λ; k)-frame of type (g1, g2, . . . , gm). As with GDDs, when several groups have
identical sizes, exponential notation is usually used to describe the type; thus a (µ, λ; k)-frame is said to have type
su11 su22 . . . suℓ

ℓ if there are ui Gj’s of cardinality si, 1 ≤ i ≤ ℓ. In this paper, most (µ, λ; k)-frames will have all Gi’s of the
same size; in this case, if there are u Gi’s and |Gi| = h for all i, the array A is usually called a (µ, λ; k)-frame of type hu.

As an example, a (1, 3; 4)-frame of type 113 from [1] is displayed in Fig. 1. The underlying (13, 4, 3)-BIBD is cyclic over
Z13, and the values 1, 2...12, 0 are relabelled as a, b, c, . . . ,m.

The frames of most use to us in this paper are (1, 1; 3)-frames of types 2u, 4u and 6u. Here (or whenever µ = 1), the
blocks in any row or columnwith index from Ti form a partial parallel class missing just the points in group Gi. When giving
direct constructions for these frames, we indicate how to obtain these partial parallel classes in the appropriate GDDs, and
indicate how to obtain the corresponding square arrays A, but will not display these large square arrays.
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We frequently use (1, 1; 3)-frames of types 2u, 4u and 6u to obtain (1, 1; 3)-frameswith groups of larger sizes. (Existence
of a (1, 1; 3)-frame of type 23n+1 is equivalent to that of a doubly resolvable (6n + 3, 3, 1)-BIBD; see for instance, Theorem
4.4 in [9]. As a result Theorem 4.1 can be considered a corollary of Theorem 1.3.) The next three theorems give the known
existence results for frames of these three types.

Theorem 4.1 ([2,4,9]). Necessary conditions for existence of a (1, 1; 3) frame of type 2u are u ≥ 10 and u ≡ 1 (mod 3). These
conditions are sufficient, except possibly for u ∈ {10, 70, 76, 82, 88, 94, 115, 124, 130, 142, 178}.

Theorem 4.2 ([2,4,9]). There exists a (1, 1; 3)-frame of type 6u for 7 ≤ u ≤ 14, for u ∈ {19, 31, 49, 50, 56, 57, 58}, and for all
u ≥ 63.

The frames of type 4u in the next theorem are obtained by the starter–adder method which was also used in [2,4,7,9,15].
Those of types 47 and 410 can also be found in [7].

Theorem 4.3. There exists a (1, 1; 3)-frame of type 4u for u ∈ {7, 10, 13, 16, 19, 22, 25, 31}.

Proof. For u ∈ {7, 10, 13, 16, 22, 25}, a (1, 1; 3)-frame of type 4u is given in Table 2 with point set Z4u and groups of the
form {2i, 2i + 1, 2i + 2u, 2i + 2u + 1} for i = 0, 1, 2, . . . , u − 1. In each case, 4(u − 1)/3 starter blocks and their adders
∉ {0, 2u} are listed in Table 2. These 4(u − 1)/3 starter blocks (or starter block plus their adders for the orthogonal partial
resolution) form an initial partial parallel class missing the group {0, 1, 2u, 2u + 1}. The remaining 2u − 1 partial parallel
classes are obtained by adding 2, 4, 6, . . . , 4u − 2 (mod 4u) to the initial one.

For u = 19 and 31, (1, 1; 3)-frames of type 4u over Z4u are constructed similarly, but here, groups are of the form
{2i, 2i + u, 2i + 2u, 2i + 3u} for i = 0, 1, 2, . . . , u − 1 (mod 4u). In each case, 8 initial starter blocks and their adders are
listed in Table 3. The remaining starter blocks and their corresponding adders are obtained bymultiplying each of the 8 initial
starter blocks (and their adders) by 45 and 49 (mod 76) when u = 19, or by 33, 97, 101 and 109 (mod 124) when u = 31.

Finally, to obtain the square array A for each frame of type 4u, let T = {0, 2, 4, . . . , 4u − 2}, and Ti = {2i, 2i + 2u} for
i = 0, 1, 2, . . . , u− 1. The square array A of side 2uwill have row and column indices from T , and each starter block Bj with
adder aj will be placed in the (0, 4u−aj) cell of A. With the arithmetic done (mod 4u), any block of the form Bj +2x (2x ∈ T )
will be placed in the (2x, 4u− aj +2x) cell of A. In particular, the blocks Bj + aj will all lie in the first column of A (with index
0). We also note that the reason we cannot use aj = 0 or 2u as an adder for any base block Bj is that the blocks Bj and Bj + aj
would then lie in the subsquare with row and column indices from T0 = {0, 2u}, which is not allowed. �

To obtain existence results for (1, 1; 3)-frames with group sizes larger than 6, we use two standard recursive construc-
tions. The first is a ‘Direct Product Construction’ and is obtained by inflating a (1, 1; 3)-frame with a doubly resolvable
TD(3, s) (whose existence is equivalent to that of a TD(5, s)). The second is the ‘Fundamental Construction’ for frames, and
is obtained by inflating a GDD with (1, 1; 3)-frames. The proofs are like those for similar constructions in [7,15,25].

Theorem 4.4. Suppose there exist a TD(5, s) and a (1, 1; 3)-frame of type t11 t
1
2 . . . t1m. Then there exists a (1, 1; 3)-frame of type

(st1)1(st2)1 . . . (stm)1.

Theorem 4.5. Let (X, G , B) be a GDD, and let w : X → Z+
∪ {0} be a weight function on X. Suppose that for each block B ∈ B

there exists a (1, 1; 3)-frame of type (w(x) | x ∈ B). Then there exists a (1, 1; 3)-frame of type (


x∈Gi
w(x) | Gi ∈ G ).

Finally, we give a construction which is frequently used to obtain (3, 1)-DRGDDs from a frame by filling in the holes of the
frame with smaller (3, 1)-DRGDDs. Its proof is similar to that of Theorem 3.6 in [16].

Theorem 4.6. Suppose there exists a (1, 1; 3)-frame of type (ht1)(ht2)....(htj). Suppose t > 0, and for all i = 1, 2, . . . , j − 1,
there exists a (3, 1)-DRGDD of type hti+t (which contains a sub-(3, 1)-DRGDD of type ht if t > 1). Then if a (3, 1)-DRGDD of
type htj+t exists, there also exists a (3, 1)-DRGDD of type hu, where u = (

j
i=1 ti) + t. Furthermore, if the (3, 1)-DRGDD of type

htj+t contains a sub-(3, 1)-DRGDD of type ht , then so does the final (3, 1)-DRGDD of type hu.

5. Existence of (3, 1)-DRGDDs of type 4u

In this section, we use the recursive constructions in the previous section to determine the existence of (3, 1)-DRGDDs
of type 4u with at most 15 possible exceptions. We first take care of some values of u ≤ 168.

Lemma 5.1. There exists a (3, 1)-DRGDD of type 4u for u ∈ {36, 66, 78, 96, 120, 126, 141, 144, 153, 156, 162}.

Proof. For u = 36, 78, 120, 141, 162, start with a (1, 1; 3)-frame of type 47 from Theorem 4.3, and apply Theorem 4.4
with s = 5, 11, 17, 20, 23 to obtain a (1, 1; 3)-frame of type (4s)7. Since the required (3, 1)-DRGDDs of type 4s+1 ex-
ist by Lemma 3.1, Theorem 4.6 with h = 4, t = 1 can now be applied to obtain the desired designs. Similarly, for
u = 66, 96, 126, 144, 153, 156, we start with (1, 1; 3)-frames of types 413, 419, 425, 413, 419, 431 from Theorem 4.3, and
apply Theorem 4.4 with s = 5, 5, 5, 11, 8 and 5 respectively, to obtain (1, 1; 3)-frames of types 2013, 2019, 2025, 4413, 3219,
2031. The required fill in designs, i.e. (3, 1)-DRGDDs of types 46, 412 and 49 all exist by Lemma 3.1, so we can again apply
Theorem 4.6 with h = 4, t = 1 to obtain the desired designs. �
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Table 2
Starter blocks and adders for (1, 1; 3)-frames of types 47 , 410 , 413 , 416 , 422 , 425 .

u Starter Adder Starter Adder Starter Adder Starter Adder

7 {2, 4, 26} 4 {12, 24, 7} 26 {13, 17, 19} 18 {8, 25, 5} 16
{10, 18, 23} 2 {22, 21, 3} 24 {6, 16, 9} 10 {20, 27, 11} 12

10 {2, 8, 18} 10 {6, 11, 13} 16 {12, 16, 38} 34 {34, 29, 33} 30
{7, 17, 31} 18 {32, 19, 25} 12 {28, 30, 3} 8 {14, 37, 5} 2
{36, 4, 15} 38 {26, 23, 35} 22 {10, 22, 39} 4 {24, 9, 27} 6

13 {2, 4, 18} 18 {38, 6, 41} 24 {12, 16, 46} 44 {10, 34, 7} 32
{29, 33, 45} 12 {44, 13, 15} 36 {3, 11, 21} 4 {50, 43, 49} 20
{14, 20, 31} 30 {24, 5, 19} 16 {22, 30, 35} 46 {28, 17, 37} 6
{32, 42, 9} 22 {40, 25, 47} 8 {48, 8, 39} 50 {36, 51, 23} 48

16 {52, 54, 2} 54 {56, 22, 63} 24 {6, 10, 26} 12 {40, 27, 29} 30
{16, 24, 62} 38 {60, 5, 9} 8 {7, 17, 47} 2 {50, 35, 41} 10
{53, 3, 25} 50 {38, 13, 21} 14 {28, 34, 51} 44 {30, 49, 61} 58
{8, 18, 23} 40 {14, 43, 59} 26 {20, 42, 45} 56 {58, 37, 55} 34
{44, 4, 15} 46 {46, 19, 39} 28 {48, 12, 11} 18 {36, 31, 57} 48

22 {10, 12, 48} 74 {74, 14, 27} 34 {42, 50, 60} 60 {26, 56, 87} 56
{22, 34, 54} 46 {86, 32, 17} 58 {53, 57, 83} 62 {84, 36, 59} 78
{3, 9, 43} 84 {66, 20, 37} 10 {5, 13, 25} 8 {58, 65, 67} 12
{15, 33, 61} 80 {82, 31, 41} 66 {24, 28, 21} 30 {78, 55, 69} 16
{40, 46, 29} 6 {62, 7, 23} 36 {76, 2, 71} 40 {72, 77, 11} 52
{80, 8, 47} 70 {6, 49, 73} 32 {30, 52, 81} 76 {16, 19, 51} 48
{68, 4, 79} 4 {18, 39, 75} 86 {38, 64, 63} 28 {70, 85, 35} 68

25 {52, 54, 96} 30 {30, 64, 67} 44 {34, 38, 60} 78 {90, 26, 47} 68
{6, 36, 74} 4 {86, 32, 63} 36 {28, 40, 68} 2 {8, 56, 41} 90
{31, 37, 65} 48 {48, 21, 23} 18 {79, 87, 25} 8 {62, 45, 49} 14
{81, 91, 7} 38 {58, 39, 53} 22 {83, 95, 19} 98 {66, 75, 93} 62
{14, 20, 55} 34 {10, 89, 9} 82 {16, 24, 13} 40 {70, 77, 99} 66
{92, 2, 61} 60 {82, 5, 35} 42 {84, 98, 3} 20 {12, 27, 59} 76
{72, 88, 33} 72 {46, 71, 11} 86 {76, 94, 43} 26 {44, 15, 57} 52
{22, 42, 85} 64 {18, 29, 73} 54 {80, 4, 97} 10 {78, 69, 17} 56

Table 3
8 initial starter blocks and adders for (1, 1; 3)-frames of types 419 , 431 .

u Starter Adder Starter Adder Starter Adder Starter Adder

19 {36, 42, 62} 4 {30, 34, 69} 2 {3, 23, 9} 46 {4, 33, 73} 30
{48, 12, 45} 8 {2, 29, 11} 72 {46, 68, 15} 52 {40, 31, 35} 62

31 {40, 70, 74} 44 {106, 18, 53} 46 {47, 103, 117} 22 {64, 97, 45} 18
{84, 28, 41} 8 {122, 85, 3} 56 {14, 116, 91} 20 {12, 7, 11} 66

Our main construction makes use of sub-designs. Before using it, we require a class of (3, 1)-DRGDDs of type 4u which
contain a sub-(3, 1)-DRGDD of type 43.

Lemma 5.2. For all n ≥ 4, there exists a (3, 1)-DRGDD of type 46n+3 containing a sub-(3, 1)-DRGDD of type 43, except possibly
for n ∈ N∗

= {23, 25, 27, 29, 31, 38, 41, 43, 47, 59}. In particular, this DRGDD exists for all integers n ≡ 0 (mod 4), n ≥ 4.

Proof. Apply Theorem 4.4 with s = 4 to a (1, 1; 3)-frame of type 23n+1 from Theorem 4.1. This gives a (1, 1; 3)-frame of
type 83n+1. Apply Theorem 4.6 with t = 1, filling in each hole with 4 extra points, using a (3, 1)-DRGDD of type 43 (which
exists by Lemma 3.1). The resulting design is a (3, 1)-DRGDD of type 46n+3 containing a sub-(3, 1)-DRGDD of type 43. �

Our main construction for (3, 1)-DRGDDs of type 4u is based on the following lemma.

Lemma 5.3. Suppose there exists a TD(7 + j, 4m). Let mi (i = 1, 2, . . . , j) be integers such that 0 ≤ mi ≤ m for
i = 1, 2, . . . , j − 1, and 0 ≤ mj ≤ 2m. Suppose also, there exist
(1) (1, 1; 3)-frames of type 67+i for i = 0, 1, . . . , j,
(2) a (3, 1)-DRGDD of type 46m+3 containing a sub-(3, 1)-DRGDD of type 43,
(3) a (3, 1)-DRGDD of type 46mi+3 containing a sub-(3, 1)-DRGDD of type 43 for i = 1, 2, . . . , j − 1,
(4) a (3, 1)-DRGDD of type 43mj+3.

Then there exists a (3, 1)-DRGDD of type 4u where u = 42m + 6(
j−1

i=1 mi) + 3mj + 3.

Proof. Truncate j groups of a TD(7+ j, 4m) to sizes 4mi (for i = 1, 2, . . . , j−1) and 2mj where 0 ≤ mi ≤ m for 1 ≤ i ≤ j−1
and 0 ≤ mj ≤ 2m. This gives a (K , 1)-GDD of type (4m)7(4m1)

1(4m2)
1
· · · (4mj−1)

1(2mj)
1 where K = {7, 8, . . . , 7+ j}. We

use Theorem 4.5 with w(x) = 6 to obtain a (1, 1; 3)-frame of type (24m)7(24m1)
1 (24m2)

1
· · · (24mj−1)

1(12mj)
1. Now we

apply Theorem 4.6, filling in the holes of this frame with 12 extra points, using the appropriate (3, 1)-DRGDDs. �
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Table 4
Range for u covered by eachm in Lemma 5.4.

m TD(7 + j, 4m) Range for u

4 TD(14, 16) 171 ≤ u ≤ 339
8 TD(14, 32) 339 ≤ u ≤ 651

12 TD(10, 48) 507 ≤ u ≤ 675
16 TD(14, 64) 675 ≤ u ≤ 1275
28 TD(14, 112) 1179 ≤ u ≤ 2211
52 TD(14, 208) 2187 ≤ u ≤ 4083

Table 5
Values of u ≥ 3, u ≡ 0 (mod 3) for which no (3, 1)-DRGDD of type 4u is known.

42 48 54 60 72 84 90 102 108 114 132
138 150 165 168

Lemma 5.4. Suppose m ≥ 4,m ≡ 0 (mod 4), 2 ≤ j ≤ 7 and a TD(7 + j, 4m) exists. Then there exists a (3, 1)-DRGDD of type
4u for u ≡ 0 (mod 3) and 42m + 3 ≤ u ≤ 6(7 + j − 1)m + 27. In particular if a TD(14, 4m) exists, this (3, 1)-DRGDD exists
for 42m + 3 ≤ u ≤ 78m + 27.

Proof. Apply Lemma 5.3. The conditions of the lemma imply that for some integer s in the range [1, j−1], u lies in the range
[42m+ 6(s− 1)m+ 3, 42m+ 6sm+ 27]. If so, write u = 42m+ 6(s− 1)m+ 6a+ 3bwhere 0 ≤ a ≤ m, a ≡ 0 (mod 4), and
0 ≤ b ≤ 8 (≤2m asm ≥ 4). Apply Lemma 5.3, with j = s+ 1,mi = m for i ≤ s− 1,ms = a andms+1 = b. From Lemma 5.2,
since bothm, a ≡ 0 (mod 4), there exist 3-DRGDDs of types 46m+3 and 46a+3, both of which contain a sub-(3, 1)-DRGDD of
type 43. Also since b ≤ 8, a (3, 1)-DRGDD of type 43b+3 exists from Lemma 3.1. �

Table 4 gives some ranges for u for which a (3, 1)-DRGDD of type 4u can be obtained by Lemma 5.4.

Lemma 5.5. There exists a (3, 1)-DRGDD of type 4u for all u ≡ 0 (mod 3), u ≥ 171.

Proof. For 171 ≤ u ≤ 4083, see Table 4. For u > 4083, there exist at least 9 consecutive integers n such that u lies in the
range [42 · 4n+ 3, 78 · 4n+ 27]. At most three of these values of n are divisible by 3, two by 5, two by 7 and one by 11, so at
least one of these 9 values, say n∗, will not be divisible by any of 3, 5, 7 or 11. Hence a TD(14, 16n∗) exists. We can therefore
apply Lemma 5.4 withm = 4n∗ to obtain the desired (3, 1)-DRGDD of type 4u. �

Themain result of this section can now be summarized in Theorem 5.6 which is obtained by combining Lemmas 3.1, 5.1 and
5.5.

Theorem 5.6. Let M be the set of 15 numbers listed in Table 5. There exists a (3, 1)-DRGDD of type 4u for u ≥ 3 and
u ≡ 0 (mod 3), except possibly for u ∈ M.

6. Existence of (3, 1)-DRGDDs of type 6u

In this section we will determine the spectrum of (3, 1)-DRGDDs of type 6u with at most 31 possible exceptions for u.

Lemma 6.1. Let 1 ≤ j ≤ 7, and 7 ≤ n ≤ 19. Suppose there exists a TD(7 + j, n), and either (1) j = 1 or (2) 9 ≤ n ≤ 19. Then
there exists a (3, 1)-DRGDD of type 6u for 7n + 6 ≤ u ≤ (7 + j)n + 1.

Proof. Wecanwrite u = 7n+m1+m2+· · ·+mj+1where eithermi = 0 or 5 ≤ mi ≤ n for i = 1, . . . , j. Truncate j groups of
a TD(7+ j, n) to sizesmi (for i = 1, 2, . . . , j) to get a {7, 8, . . . , 7+ j}-GDD of type n7m1

1m
1
2 · · ·m1

j . By Theorem 4.2, there exist
(1, 1; 3)-frames of type 67+i for i = 0, 1, . . . , 7. Therefore, we can apply Theorem 4.5, giving weight w(x) = 6 to all points
in the resulting GDD to obtain a (1, 1; 3)-frame of type (6n)7(6m1)

1(6m2)
1, . . . , (6mj)

1. Also, there exist (3, 1)-DRGDDs of
types 6n+1 and 6mi+1 by Lemma 3.2, since by assumption, n and mi are either zero or in the range [5, 19]. Therefore we can
apply Theorem 4.6 with h = 6, t = 1 to obtain the required DRGDD. �

Lemma 6.2. If a (v, {7, 8, 9})-PBD exists, then a (3, 1)-DRGDD of type 6v also exists.

Proof. Deleting one point from the PBD gives a {7, 8, 9}-GDD on v − 1 points with group sizes in {6, 7, 8}. Applying
Theorem 4.5, using (1, 1; 3)-frames of types 67, 68, 69, gives a (1, 1; 3) frame on 6(v − 1) points with group sizes in
{36, 42, 48}. Since (3, 1)-DRGDDs of type 6q exist for q = 7, 8, 9, we can apply Theorem 4.6 (with h = 6, t = 1) to
obtain the required (3, 1)-DRGDD of type 6v . �

Lemma 6.3. There exists a (3, 1)-DRGDD of type 6u for u ∈ {36, 41, 43, 46, 49, 50, 51, 58, 61, 66, 67, 68}.

Proof. For u ∈ {49, 58, 66, 67, 68}, we can apply Lemma 6.2, since a (u, {7, 8, 9})-PBD exists [18].
For u = 36, 41, 46, 51 and 61, we use Theorem 4.4 with t = 6, m = (u − 1)/5 ∈ {7, 8, 9, 10, 12} and s = 5 to obtain

a (1, 1; 3)-frame of type 30m. Note the required (1, 1; 3)-frames of type 6m all exist by Theorem 4.2. We can now apply
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Table 6
Range foru coveredby eachn in Lemma6.4.

n TD(7+j, n) Range for u

7 TD(8, 7) 55 ≤ u ≤ 57
8 TD(8, 8) 62 ≤ u ≤ 65
9 TD(10, 9) 69 ≤ u ≤ 91

11 TD(12, 11) 83 ≤ u ≤ 133
16 TD(14, 16) 118 ≤ u ≤ 225

Table 7
Values of u ≥ 4 for which no (3, 1)-DRGDD of type 6u is known.

4 5 21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 37 38 39 40 42 44 45 47 48 52 53 54 59 60

Theorem 4.6 with h = 6, t = 1 to obtain the required (3, 1)-DRGDD of type 6u, since a (3, 1)-DRGDD of type 66 exists by
Lemma 3.2.

Similarly, for u = 43 and 50, we apply Theorem 4.4 with t = 4, m = 7, s = 9, and t = 6, m = 7, s = 7 respectively,
to obtain (1, 1; 3)-frames of types 367 and 427. Now apply Theorem 4.6 to these two frames, filling in their groups with 6
extra points, using (3, 1)-DRGDDs of types 67 and 68. �

Lemma 6.4. There exists a (3, 1)-DRGDD of type 6u for u in the ranges [55, 57], [62, 65], [69, 225].

Proof. Apply Lemma 6.1. Table 6 gives the range for u that can be handled by each value of n. �

Lemma 6.5. There exists a (3, 1)-DRGDD of type 6u for 225 ≤ u ≤ 350.

Proof. Write u = 217 + (m1 + · · · + m7) + 1 where either mi ∈ {0, 31} or 7 ≤ mi ≤ 14 for all i = 1, 2, . . . , 7. (When
225 ≤ u ≤ 316, we can take mi = 0 or 7 ≤ mi ≤ 14 for 1 ≤ i ≤ 7. When 315 ≤ u ≤ 350, we can take m1 = m2 = 31 and
eithermi = 0 or 7 ≤ mi ≤ 14 for 3 ≤ i ≤ 7.) Start with a TD(14, 31) containing a parallel class, and truncate 7 of its groups
to sizes m1, . . . ,m7. Now take the (truncated) blocks in the parallel class as groups and the groups of sizes 31,m1, . . . ,m7
as blocks. Since {m1,m2, . . . ,m7} ⊂ {0} ∪ S where S = {7, 8, . . . , 14} ∪ {31}, this gives a GDD on u − 1 points with
groups sizes in {7, 8, . . . , 14} and block sizes in S, Since we have (1, 1; 3)-frames of type 6s for all s ∈ S (see Theorem 4.2),
we can apply Theorem 4.5, inflating this design by 6 to obtain a (1, 1; 3)-frame on 6(u − 1) points with groups sizes in
{42, 48, . . . , 84}. Finally apply Theorem 4.6 with t = 1, filling in each group with 6 extra points, using (3, 1)-DRGDDs of
type 6q for 8 ≤ q ≤ 15 (these exist by Lemma 3.2). �

Lemma 6.6. There exists a (3, 1)-DRGDD of type 6u for all u ≥ 343.

Proof. This follows from Lemma 6.2, since a (u, {7, 8, 9})-PBD exists for all u ≥ 343 [18]. �

We are now in a position to give the main result of this section.

Theorem 6.7. Let N be the set of 31 numbers listed in Table 7. There exists a (3, 1)-DRGDD of type 6u for u > 3 except possibly
for u ∈ N. There is no (3, 1)-DRGDD of type 63.

Proof. By Theorem 1.1, there is no (3, 1)-DRGDD of type 63. Combining Lemmas 3.2 and 6.3–6.6 gives the desired
designs. �

7. Applications

7.1. Permutation codes

Let Zq denote the set {0, 1, . . . , q − 1} (alphabet), and let Zn
q be the set of all n-tuples (codewords) over Zq, where q is a

positive integer. An (n,M, d, w)q constant weight code (CWC) is a code C ⊆ Zn
q consisting ofM codewords such that (1) the

Hamming weight of each codeword is exactlyw and (2) theminimumHamming distance between any 2 codewords is d. An
(n,M, d, [w0, w1, . . . , wq−1])q constant composition code (CCC) is a codeC ⊆ Zn

q withM codewords andminimumHamming
distance d between 2 codewords such that in every codeword the element i appears exactly wi times for every i ∈ Zq. An
(n,M, d, [w0, w1, . . . , wq−1])q-CCC is called a permutation code or permutation array, denoted by (n,M, d)-PA if n = q and
wi = 1 for all i. Hence, permutation codes are a special class of CWCs. CCCs are a subclass of CWCs. Permutation arrays
have been applied in the design of block ciphers (see, for instance, [10]) and data transmission over power lines (see, for
example, [20]). In 2004, Colbourn, Kløve, and Ling [8] developed a connection between permutation arrays and generalized
Room square packings. In 2005, Ding and Yin [11] presented a link between CCCs and generalized double resolvable packing
designs. As a direct corollary of their results, we have
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Lemma 7.1. If a GKSk(v; 1, λ; r) exists, then a (r, v, r − λ, [1, 1, . . . , 1])r -CCC (i.e., an (r, v, r − λ)-PA) also exists.

Combining Lemma 7.1 and Theorems 5.6 and 6.7 gives the following two results about permutation codes.

Theorem 7.2. Let M be the set of 15 numbers listed in Table 5. For u ≥ 3, u ≡ 0 (mod 3), and u ∉ M, there exists an
(r, 4u, r − 1)-PA, where r = 2(u − 1).

Theorem 7.3. Let N be the set of 31 numbers listed in Table 7. For u > 3 and u ∉ N, there exists an (r, 6u, r − 1)-PA, where
r = 3(u − 1).

7.2. Doubly constant weight codes

A doubly constant weight code of length n and weight w is a constant weight binary code in which each codeword has
length n and weight w, with the extra property that there are exactly w1 ones in the first n1 positions and w2 ones in the
last n2 positions, where n = n1 + n2 and w = w1 + w2. A (w1, n1, w2, n2, d) code is a doubly constant weight code with
w1 ones in the first n1 positions and w2 ones in the last n2 positions, and minimum distance d between any pair of code-
words. Such codes play an important role in obtaining bounds on the sizes of constant weight codes with given minimum
distance (see, [5]). We can partition the set of coordinates into two subsets A and B such that |A| = w and |B| = n − w.
We say that a word is from configuration (i, j) if it has weight i in the coordinates of A and weight j in the coordinates of B.
A (w1, n1, w2, n2, 2(w1 + w2 − i − j + 1)) code is a perfect (i, j) cover if every word from configuration (i, j) is contained
in exactly one codeword. In 2008, Etzion [12] shown tight connections between optimal doubly constant weight codes and
some known designs such as Howell designs, Kirkman squares, and generalized Kirkman squares.

Lemma 7.4 ([12]). If there exists a generalized Kirkman square GKSk(v; 1, 1; r), there exists a (2, 2r, k, v, 2k + 2) code which
is a perfect (1, 1) cover.

Combining Lemma 7.4 and Theorems 5.6 and 6.7 gives the following two results about doubly constant weight codes.

Theorem 7.5. Let M be the set of 15 numbers listed in Table 5. For u ≥ 3, u ≡ 0 (mod 3), and u ∉ M, there exists a
(2, 4(u − 1), 3, 4u, 8) code which is a perfect (1, 1) cover.

Theorem 7.6. Let N be the set of 31 numbers listed in Table 7. For u > 3 and u ∉ N, there exists a (2, 6(u − 1), 3, 6u, 8) code
which is a perfect (1, 1) cover.

8. Summary

In this paper, we have obtained 5 new (4, 1)-RGDDs, and examined the existence of doubly resolvable (3, 1)-GDDs of
types 4u and 6u. For type 4u, these exist for all u ≥ 3, u ≡ 0 (mod 3) except possibly for 15 values listed in Table 5. For type
6u, no design exists for u = 3, but these designs exist for all u ≥ 4, except possibly for 31 values listed in Table 7.

Doubly resolvable GDDs are a class of generalized Kirkman squares. Generalized Kirkman squares not only have their
own combinatorial significance, but also have close relationships with constant composition codes and doubly constant
weight codes. Therefore, the construction and existence of (3, 1)-DRGDDs or GKS3(v; 1, 1; r)s is worthy of further study.
The general problem of existence of (3, 1)-DRGDDs or GKS3(v; 1, 1; r)s is far from being solved.
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Appendix

Here, using the method described in Lemmas 3.1 and 3.2, we provide starter blocks and adders for (3, 1)-DRGDDs of
types 4u (with u ≡ 0 (mod 3), 6 ≤ u ≤ 30, u ≠ 27) and 6u (with 6 ≤ u ≤ 20).



2114 J. Du et al. / Discrete Mathematics 338 (2015) 2105–2118

Table 8
Starter blocks and adders for (3, 1)-DRGDDs of type 4u with 6 ≤ u ≤ 30, u ≠ 27 and u ≡ 0 (mod 3).

u Starter Adder Starter + Adder Starter Adder Starter+Adder

6 {2, 6, 8} 8 {10, 14, 16} {14, 17, ∞1} 10 {4, 7, ∞1}

{3, 5, 9} 6 {9, 11, 15} {10, 19, ∞2} 18 {8, 17, ∞2}

{4, 12, 11} 14 {18, 6, 5} {16, 7, ∞3} 16 {12, 3, ∞3}

{0, 13, 1} 0 {0, 13, 1} {18, 15, ∞4} 4 {2, 19, ∞4}

9 {24, 30, 10} 12 {4, 10, 22} {12, 21, 27} 4 {16, 25, 31}
{11, 15, 25} 26 {5, 9, 19} {4, 29, 9} 20 {24, 17, 29}
{0, 2, 1} 0 {0, 2, 1} {14, 17, ∞1} 30 {12, 15, ∞1}

{18, 22, 7} 28 {14, 18, 3} {16, 23, ∞2} 22 {6, 13, ∞2}

{28, 6, 19} 24 {20, 30, 11} {20, 31, ∞3} 8 {28, 7, ∞3}

{8, 3, 5} 18 {26, 21, 23} {26, 13, ∞4} 14 {8, 27, ∞4}

12 {8, 10, 26} 18 {26, 28, 0} {6, 41, 5} 8 {14, 5, 13}
{34, 38, 2} 22 {12, 16, 24} {32, 35, 3} 32 {20, 23, 35}
{24, 30, 0} 6 {30, 36, 6} {16, 39, 11} 26 {42, 21, 37}
{7, 17, 37} 2 {9, 19, 39} {18, 27, 1} 16 {34, 43, 17}
{12, 22, 19} 40 {8, 18, 15} {42, 43, ∞1} 42 {40, 41, ∞1}

{36, 21, 23} 10 {2, 31, 33} {28, 33, ∞2} 38 {22, 27, ∞2}

{4, 25, 29} 0 {4, 25, 29} {14, 31, ∞3} 24 {38, 11, ∞3}

{40, 9, 15} 36 {32, 1, 7} {20, 13, ∞4} 34 {10, 3, ∞4}

15 {26, 28, 48} 10 {36, 38, 2} {2, 45, 53} 52 {54, 41, 49}
{16, 24, 34} 54 {14, 22, 32} {36, 7, 17} 44 {24, 51, 5}
{13, 15, 9} 30 {43, 45, 39} {54, 21, 33} 48 {46, 13, 25}
{23, 39, 1} 32 {55, 15, 33} {14, 5, 25} 4 {18, 9, 29}
{52, 0, 41} 16 {12, 16, 1} {12, 27, 51} 36 {48, 7, 31}
{40, 46, 3} 50 {34, 40, 53} {8, 11, 37} 0 {8, 11, 37}
{10, 22, 43} 34 {44, 0, 21} {30, 35, ∞1} 12 {42, 47, ∞1}

{4, 20, 29} 46 {50, 10, 19} {42, 49, ∞2} 42 {28, 35, ∞2}

{38, 6, 55} 24 {6, 30, 23} {50, 47, ∞3} 26 {20, 17, ∞3}

{18, 44, 19} 8 {26, 52, 27} {32, 31, ∞4} 28 {4, 3, ∞4}

18 {46, 48, 6} 24 {2, 4, 30} {66, 63, 9} 14 {12, 9, 23}
{12, 20, 30} 6 {18, 26, 36} {32, 51, 1} 34 {66, 17, 35}
{24, 36, 56} 8 {32, 44, 64} {60, 17, 37} 16 {8, 33, 53}
{14, 28, 52} 0 {14, 28, 52} {62, 53, 7} 22 {16, 7, 29}
{19, 21, 25} 42 {61, 63, 67} {8, 11, 35} 54 {62, 65, 21}
{43, 55, 27} 28 {3, 15, 55} {0, 5, 31} 20 {20, 25, 51}
{38, 42, 23} 4 {42, 46, 27} {34, 67, 29} 58 {24, 57, 19}
{16, 22, 57} 52 {0, 6, 41} {54, 15, 47} 64 {50, 11, 43}
{10, 26, 33} 12 {22, 38, 45} {64, 65, ∞1} 62 {58, 59, ∞1}

{18, 40, 61} 38 {56, 10, 31} {44, 59, ∞2} 10 {54, 1, ∞2}

{2, 41, 49} 32 {34, 5, 13} {58, 45, ∞3} 2 {60, 47, ∞3}

{4, 3, 13} 36 {40, 39, 49} {50, 39, ∞4} 66 {48, 37, ∞4}

21 {24, 28, 10} 58 {2, 6, 68} {22, 50, 41} 22 {44, 72, 63}
{32, 44, 2} 16 {48, 60, 18} {16, 48, 63} 54 {70, 22, 37}
{11, 13, 75} 60 {71, 73, 55} {46, 0, 3} 10 {56, 10, 13}
{21, 27, 65} 64 {5, 11, 49} {62, 18, 39} 18 {0, 36, 57}
{57, 67, 33} 42 {19, 29, 75} {26, 51, 55} 28 {54, 79, 3}
{59, 71, 5} 56 {35, 47, 61} {64, 37, 45} 50 {34, 7, 15}
{38, 40, 1} 68 {26, 28, 69} {12, 77, 19} 12 {24, 9, 31}
{8, 14, 47} 6 {14, 20, 53} {56, 7, 35} 32 {8, 39, 67}
{34, 42, 17} 24 {58, 66, 41} {54, 23, 53} 78 {52, 21, 51}
{66, 76, 9} 8 {74, 4, 17} {74, 29, 61} 4 {78, 33, 65}
{70, 6, 79} 26 {16, 32, 25} {68, 73, ∞1} 52 {40, 45, ∞1}

{78, 20, 15} 44 {42, 64, 59} {58, 69, ∞2} 34 {12, 23, ∞2}

{36, 60, 25} 2 {38, 62, 27} {72, 43, ∞3} 38 {30, 1, ∞3}

{4, 30, 31} 46 {50, 76, 77} {52, 49, ∞4} 74 {46, 43, ∞4}

24 {14, 16, 72} 76 {90, 0, 56} {28, 85, 89} 32 {60, 25, 29}
{18, 22, 36} 8 {26, 30, 44} {46, 57, 67} 36 {82, 1, 11}
{32, 38, 62} 64 {4, 10, 34} {88, 13, 25} 52 {48, 65, 77}
{44, 60, 12} 24 {68, 84, 36} {52, 1, 19} 72 {32, 73, 91}
{0, 26, 64} 78 {78, 12, 50} {24, 51, 73} 34 {58, 85, 15}
{37, 43, 17} 0 {37, 43, 17} {2, 55, 79} 60 {62, 23, 47}
{27, 35, 75} 22 {49, 57, 5} {42, 33, 61} 90 {40, 31, 59}
{45, 59, 29} 42 {87, 9, 71} {56, 71, 11} 88 {52, 67, 7}
{50, 58, 31} 14 {64, 72, 45} {70, 15, 49} 46 {24, 61, 3}
{90, 8, 53} 10 {8, 18, 63} {10, 41, 77} 70 {80, 19, 55}

(continued on next page)
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Table 8 (continued)

u Starter Adder Starter + Adder Starter Adder Starter+Adder

{84, 4, 91} 84 {76, 88, 83} {20, 63, 9} 18 {38, 81, 27}
{66, 86, 7} 28 {2, 22, 35} {40, 23, 65} 66 {14, 89, 39}
{54, 76, 47} 58 {20, 42, 13} {68, 69, ∞1} 6 {74, 75, ∞1}

{34, 74, 21} 12 {46, 86, 33} {78, 81, ∞2} 80 {66, 69, ∞2}

{80, 30, 39} 40 {28, 70, 79} {82, 87, ∞3} 26 {16, 21, ∞3}

{6, 3, 5} 48 {54, 51, 53} {48, 83, ∞4} 50 {6, 41, ∞4}

30 {0, 2, 20} 0 {0, 2, 20} {78, 10, 25} 110 {72, 4, 19}
{86, 90, 6} 108 {78, 82, 114} {58, 110, 53} 92 {34, 86, 29}
{42, 48, 64} 64 {106, 112, 12} {50, 106, 35} 34 {84, 24, 69}
{12, 24, 62} 30 {42, 54, 92} {26, 17, 23} 100 {10, 1, 7}
{70, 84, 8} 38 {108, 6, 46} {108, 71, 83} 76 {68, 31, 43}
{1, 3, 43} 106 {107, 109, 33} {74, 97, 111} 28 {102, 9, 23}
{89, 93, 7} 104 {77, 81, 111} {94, 61, 81} 80 {58, 25, 45}
{5, 13, 59} 46 {51, 59, 105} {76, 79, 101} 78 {38, 41, 63}
{19, 29, 45} 56 {75, 85, 101} {34, 41, 65} 54 {88, 95, 3}
{107, 9, 47} 82 {73, 91, 13} {72, 21, 49} 18 {90, 39, 67}
{28, 36, 77} 16 {44, 52, 93} {100, 37, 69} 96 {80, 17, 49}
{4, 14, 109} 90 {94, 104, 83} {30, 91, 11} 36 {66, 11, 47}
{16, 40, 51} 10 {26, 50, 61} {114, 31, 75} 112 {110, 27, 71}
{18, 44, 87} 12 {30, 56, 99} {102, 67, 115} 114 {100, 65, 113}
{52, 80, 99} 72 {8, 36, 55} {46, 63, 113} 24 {70, 87, 21}
{66, 96, 105} 68 {18, 48, 57} {82, 103, 39} 50 {16, 37, 89}
{54, 88, 27} 8 {62, 96, 35} {32, 33, ∞1} 98 {14, 15, ∞1}

{112, 38, 95} 26 {22, 64, 5} {98, 57, ∞2} 58 {40, 115, ∞2}

{60, 104, 15} 88 {32, 76, 103} {92, 85, ∞3} 84 {60, 53, ∞3}

{22, 68, 73} 6 {28, 74, 79} {56, 55, ∞4} 42 {98, 97, ∞4}

Table 9
Starter blocks and adders for (3, 1)-DRGDDs of type 6u with 6 ≤ u ≤ 20.

u Starter Adder Starter+Adder Starter Adder Starter+Adder

6 {4, 8, 20} 18 {22, 26, 8} {26, 29, ∞1} 24 {20, 23, ∞1}

{3, 5, 11} 10 {13, 15, 21} {14, 23, ∞2} 4 {18, 27, ∞2}

{21, 25, 9} 16 {7, 11, 25} {16, 27, ∞3} 8 {24, 5, ∞3}

{0, 2, 1} 0 {0, 2, 1} {28, 15, ∞4} 14 {12, 29, ∞4}

{6, 12, 19} 28 {4, 10, 17} {22, 13, ∞5} 6 {28, 19, ∞5}

{10, 18, 7} 26 {6, 14, 3} {24, 17, ∞6} 22 {16, 9, ∞6}

7 {4, 8, 18} 10 {14, 18, 28} {30, 9, 19} 0 {30, 9, 19}
{5, 7, 27} 6 {11, 13, 33} {32, 35, ∞1} 28 {24, 27, ∞1}

{0, 2, 1} 20 {20, 22, 21} {16, 23, ∞2} 30 {10, 17, ∞2}

{34, 6, 3} 2 {0, 8, 5} {20, 29, ∞3} 14 {34, 7, ∞3}

{10, 26, 21} 16 {26, 6, 1} {14, 31, ∞4} 34 {12, 29, ∞4}

{28, 11, 15} 24 {16, 35, 3} {22, 13, ∞5} 18 {4, 31, ∞5}

{12, 25, 33} 26 {2, 15, 23} {24, 17, ∞6} 8 {32, 25, ∞6}

8 {12, 16, 24} 12 {24, 28, 36} {30, 39, 3} 16 {4, 13, 19}
{34, 40, 18} 14 {6, 12, 32} {26, 29, 7} 0 {26, 29, 7}
{15, 19, 31} 28 {1, 5, 17} {22, 27, ∞1} 8 {30, 35, ∞1}

{5, 13, 23} 18 {23, 31, 41} {6, 17, ∞2} 4 {10, 21, ∞2}

{2, 4, 35} 40 {0, 2, 33} {8, 21, ∞3} 6 {14, 27, ∞3}

{10, 20, 37} 30 {40, 8, 25} {28, 11, ∞4} 34 {20, 3, ∞4}

{14, 32, 9} 2 {16, 34, 11} {38, 25, ∞5} 26 {22, 9, ∞5}

{0, 41, 1} 38 {38, 37, 39} {36, 33, ∞6} 24 {18, 15, ∞6}

9 {18, 24, 36} 38 {8, 14, 26} {14, 3, 5} 26 {40, 29, 31}
{19, 33, 39} 32 {3, 17, 23} {20, 37, 47} 8 {28, 45, 7}
{25, 29, 7} 34 {11, 15, 41} {34, 15, 27} 10 {44, 25, 37}
{0, 2, 1} 20 {20, 22, 21} {38, 45, ∞1} 12 {2, 9, ∞1}

{12, 16, 35} 0 {12, 16, 35} {30, 43, ∞2} 6 {36, 1, ∞2}

{42, 4, 9} 44 {38, 0, 5} {40, 13, ∞3} 14 {6, 27, ∞3}

{44, 10, 21} 22 {18, 32, 43} {46, 31, ∞4} 36 {34, 19, ∞4}

{8, 28, 11} 2 {10, 30, 13} {22, 17, ∞5} 30 {4, 47, ∞5}

{32, 6, 41} 40 {24, 46, 33} {26, 23, ∞6} 16 {42, 39, ∞6}

10 {6, 8, 32} 28 {34, 36, 6} {42, 19, 27} 6 {48, 25, 33}
{26, 30, 16} 26 {52, 2, 42} {24, 43, 53} 52 {22, 41, 51}
{36, 48, 14} 2 {38, 50, 16} {18, 29, 41} 36 {0, 11, 23}
{3, 5, 37} 32 {35, 37, 15} {2, 17, 45} 38 {40, 1, 29}

(continued on next page)
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Table 9 (continued)

u Starter Adder Starter+Adder Starter Adder Starter+Adder

{21, 35, 51} 50 {17, 31, 47} {34, 39, ∞1} 34 {14, 19, ∞1}

{4, 10, 7} 14 {18, 24, 21} {40, 47, ∞2} 46 {32, 39, ∞2}

{44, 52, 23} 22 {12, 20, 45} {20, 33, ∞3} 10 {30, 43, ∞3}

{12, 28, 11} 16 {28, 44, 27} {50, 31, ∞4} 30 {26, 7, ∞4}

{46, 9, 13} 0 {46, 9, 13} {38, 25, ∞5} 24 {8, 49, ∞5}

{0, 49, 1} 4 {4, 53, 5} {22, 15, ∞6} 42 {10, 3, ∞6}

11 {16, 30, 54} 40 {56, 10, 34} {4, 7, 11} 34 {38, 41, 45}
{24, 40, 58} 26 {50, 6, 24} {50, 23, 35} 12 {2, 35, 47}
{9, 15, 33} 46 {55, 1, 19} {18, 29, 45} 4 {22, 33, 49}
{19, 27, 41} 2 {21, 29, 43} {32, 21, 47} 44 {16, 5, 31}
{0, 2, 1} 52 {52, 54, 53} {34, 57, 25} 14 {48, 11, 39}
{48, 52, 13} 38 {26, 30, 51} {46, 51, ∞1} 18 {4, 9, ∞1}

{36, 42, 17} 0 {36, 42, 17} {28, 37, ∞2} 30 {58, 7, ∞2}

{6, 14, 43} 54 {0, 8, 37} {26, 39, ∞3} 48 {14, 27, ∞3}

{10, 22, 53} 22 {32, 44, 15} {38, 55, ∞4} 8 {46, 3, ∞4}

{44, 12, 31} 28 {12, 40, 59} {20, 59, ∞5} 58 {18, 57, ∞5}

{8, 3, 5} 20 {28, 23, 25} {56, 49, ∞6} 24 {20, 13, ∞6}

12 {52, 58, 0} 60 {46, 52, 60} {8, 53, 55} 32 {40, 19, 21}
{28, 38, 12} 10 {38, 48, 22} {24, 25, 29} 6 {30, 31, 35}
{18, 36, 64} 56 {8, 26, 54} {2, 39, 45} 12 {14, 51, 57}
{21, 31, 57} 46 {1, 11, 37} {32, 15, 23} 58 {24, 7, 15}
{3, 17, 41} 38 {41, 55, 13} {10, 63, 9} 0 {10, 63, 9}
{33, 49, 1} 16 {49, 65, 17} {30, 51, 5} 48 {12, 33, 53}
{20, 22, 37} 22 {42, 44, 59} {56, 59, ∞1} 2 {58, 61, ∞1}

{50, 54, 11} 18 {2, 6, 29} {40, 47, ∞2} 62 {36, 43, ∞2}

{60, 6, 19} 26 {20, 32, 45} {34, 43, ∞3} 28 {62, 5, ∞3}

{46, 4, 65} 24 {4, 28, 23} {26, 61, ∞4} 30 {56, 25, ∞4}

{14, 44, 7} 20 {34, 64, 27} {62, 35, ∞5} 4 {0, 39, ∞5}

{16, 48, 13} 34 {50, 16, 47} {42, 27, ∞6} 42 {18, 3, ∞6}

13 {66, 70, 28} 60 {54, 58, 16} {52, 8, 7} 58 {38, 66, 65}
{42, 60, 2} 48 {18, 36, 50} {0, 39, 43} 2 {2, 41, 45}
{57, 59, 3} 12 {69, 71, 15} {54, 5, 15} 52 {34, 57, 67}
{19, 25, 65} 18 {37, 43, 11} {62, 67, 9} 38 {28, 33, 47}
{45, 53, 1} 50 {23, 31, 51} {36, 11, 33} 28 {64, 39, 61}
{46, 48, 29} 46 {20, 22, 3} {32, 69, 27} 8 {40, 5, 35}
{6, 12, 13} 66 {0, 6, 7} {30, 55, 17} 0 {30, 55, 17}
{14, 22, 63} 34 {48, 56, 25} {38, 41, ∞1} 44 {10, 13, ∞1}

{10, 20, 31} 42 {52, 62, 1} {40, 49, ∞2} 4 {44, 53, ∞2}

{34, 50, 23} 26 {60, 4, 49} {24, 37, ∞3} 56 {8, 21, ∞3}

{68, 16, 47} 16 {12, 32, 63} {56, 71, ∞4} 30 {14, 29, ∞4}

{4, 26, 61} 20 {24, 46, 9} {64, 21, ∞5} 6 {70, 27, ∞5}

{18, 44, 35} 24 {42, 68, 59} {58, 51, ∞6} 40 {26, 19, ∞6}

14 {52, 54, 6} 70 {44, 46, 76} {10, 38, 11} 56 {66, 16, 67}
{40, 56, 16} 8 {48, 64, 24} {28, 70, 27} 0 {28, 70, 27}
{68, 2, 46} 72 {62, 74, 40} {0, 23, 25} 68 {68, 13, 15}
{1, 5, 51} 24 {25, 29, 75} {26, 21, 31} 16 {42, 37, 47}
{71, 77, 29} 66 {59, 65, 17} {18, 35, 49} 38 {56, 73, 9}
{73, 3, 61} 60 {55, 63, 43} {12, 33, 55} 46 {58, 1, 23}
{37, 53, 19} 32 {69, 7, 51} {32, 69, 15} 20 {52, 11, 35}
{20, 24, 9} 30 {50, 54, 39} {50, 57, 17} 40 {12, 19, 57}
{30, 36, 45} 74 {26, 32, 41} {48, 59, ∞1} 64 {34, 45, ∞1}

{58, 66, 7} 26 {6, 14, 33} {76, 47, ∞2} 62 {60, 31, ∞2}

{72, 4, 75} 6 {0, 10, 3} {64, 43, ∞3} 18 {4, 61, ∞3}

{8, 22, 63} 14 {22, 36, 77} {60, 41, ∞4} 12 {72, 53, ∞4}

{44, 62, 13} 36 {2, 20, 49} {74, 65, ∞5} 34 {30, 21, ∞5}

{14, 34, 67} 4 {18, 38, 71} {42, 39, ∞6} 44 {8, 5, ∞6}

15 {34, 40, 66} 66 {16, 22, 48} {32, 59, 63} 70 {18, 45, 49}
{6, 16, 70} 76 {82, 8, 62} {62, 79, 3} 58 {36, 53, 61}
{22, 38, 4} 36 {58, 74, 40} {14, 35, 55} 30 {44, 65, 1}
{83, 1, 73} 22 {21, 23, 11} {12, 27, 49} 52 {64, 79, 17}
{75, 81, 21} 46 {37, 43, 67} {0, 51, 77} 12 {12, 63, 5}
{29, 45, 11} 2 {31, 47, 13} {60, 9, 41} 78 {54, 3, 35}
{54, 56, 25} 16 {70, 72, 41} {24, 7, 43} 8 {32, 15, 51}
{26, 30, 15} 60 {2, 6, 75} {46, 69, 23} 34 {80, 19, 57}
{36, 44, 47} 24 {60, 68, 71} {72, 31, 71} 38 {26, 69, 25}
{82, 10, 5} 68 {66, 78, 73} {64, 65, ∞1} 48 {28, 29, ∞1}

{20, 42, 17} 10 {30, 52, 27} {58, 67, ∞2} 26 {0, 9, ∞2}

{78, 18, 57} 20 {14, 38, 77} {48, 61, ∞3} 82 {46, 59, ∞3}

{50, 2, 37} 54 {20, 56, 7} {76, 39, ∞4} 0 {76, 39, ∞4}

{74, 28, 19} 14 {4, 42, 33} {68, 33, ∞5} 50 {34, 83, ∞5}

{52, 8, 13} 42 {10, 50, 55} {80, 53, ∞6} 28 {24, 81, ∞6}

(continued on next page)
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Table 9 (continued)

u Starter Adder Starter+Adder Starter Adder Starter+Adder

16 {40, 42, 74} 64 {14, 16, 48} {12, 36, 31} 66 {78, 12, 7}
{50, 64, 2} 0 {50, 64, 2} {82, 28, 51} 80 {72, 18, 41}
{58, 84, 14} 38 {6, 32, 52} {10, 48, 13} 10 {20, 58, 23}
{39, 41, 19} 8 {47, 49, 27} {26, 66, 37} 34 {60, 10, 71}
{29, 43, 79} 56 {85, 9, 45} {16, 21, 25} 82 {8, 13, 17}
{57, 75, 11} 70 {37, 55, 81} {46, 87, 3} 36 {82, 33, 39}
{49, 65, 17} 26 {75, 1, 43} {54, 89, 7} 58 {22, 57, 65}
{53, 77, 15} 72 {35, 59, 87} {34, 23, 33} 46 {80, 69, 79}
{20, 24, 1} 18 {38, 42, 19} {72, 35, 47} 54 {36, 89, 11}
{0, 6, 63} 88 {88, 4, 61} {68, 61, 5} 16 {84, 77, 21}
{78, 86, 27} 78 {66, 74, 15} {70, 83, ∞1} 74 {54, 67, ∞1}

{8, 18, 9} 22 {30, 40, 31} {56, 73, ∞2} 68 {34, 51, ∞2}

{32, 44, 69} 24 {56, 68, 3} {60, 81, ∞3} 2 {62, 83, ∞3}

{22, 38, 71} 48 {70, 86, 29} {62, 45, ∞4} 28 {0, 73, ∞4}

{76, 4, 55} 40 {26, 44, 5} {80, 67, ∞5} 86 {76, 63, ∞5}

{30, 52, 59} 84 {24, 46, 53} {88, 85, ∞6} 30 {28, 25, ∞6}

17 {36, 38, 30} 32 {68, 70, 62} {32, 75, 87} 40 {72, 19, 31}
{92, 6, 42} 44 {40, 50, 86} {34, 31, 45} 8 {42, 39, 53}
{40, 52, 74} 38 {78, 90, 16} {76, 21, 39} 6 {82, 27, 45}
{4, 22, 60} 4 {8, 26, 64} {26, 53, 73} 84 {14, 41, 61}
{46, 72, 18} 80 {30, 56, 2} {48, 13, 35} 12 {60, 25, 47}
{23, 29, 65} 60 {83, 89, 29} {24, 91, 19} 82 {10, 77, 5}
{57, 85, 27} 24 {81, 13, 51} {50, 25, 51} 42 {92, 67, 93}
{16, 20, 89} 18 {34, 38, 11} {8, 61, 95} 92 {4, 57, 91}
{82, 0, 3} 20 {6, 20, 23} {86, 15, 55} 90 {80, 9, 49}
{88, 12, 69} 0 {88, 12, 69} {44, 63, 11} 10 {54, 73, 21}
{70, 94, 49} 26 {0, 24, 75} {62, 1, 47} 86 {52, 87, 37}
{68, 2, 9} 46 {18, 48, 55} {56, 71, ∞1} 68 {28, 43, ∞1}

{66, 14, 59} 52 {22, 66, 15} {58, 81, ∞2} 16 {74, 1, ∞2}

{10, 41, 43} 22 {32, 63, 65} {54, 83, ∞3} 30 {84, 17, ∞3}

{28, 33, 37} 66 {94, 3, 7} {84, 67, ∞4} 88 {76, 59, ∞4}

{80, 93, 5} 74 {58, 71, 79} {90, 79, ∞5} 50 {44, 33, ∞5}

{64, 7, 17} 78 {46, 85, 95} {78, 77, ∞6} 54 {36, 35, ∞6}

18 {0, 4, 12} 0 {0, 4, 12} {100, 44, 39} 60 {58, 2, 99}
{22, 28, 54} 10 {32, 38, 64} {96, 42, 95} 66 {60, 6, 59}
{30, 40, 68} 22 {52, 62, 90} {48, 98, 1} 90 {36, 86, 91}
{52, 70, 92} 4 {56, 74, 96} {38, 71, 77} 56 {94, 25, 31}
{3, 5, 53} 14 {17, 19, 67} {76, 85, 97} 54 {28, 37, 49}
{31, 35, 75} 34 {65, 69, 7} {20, 79, 93} 80 {100, 57, 71}
{25, 33, 99} 78 {1, 9, 75} {90, 7, 23} 100 {88, 5, 21}
{73, 83, 13} 32 {3, 13, 45} {84, 51, 69} 44 {26, 95, 11}
{9, 29, 55} 6 {15, 35, 61} {24, 27, 49} 24 {48, 51, 73}
{6, 8, 21} 62 {68, 70, 83} {88, 65, 89} 36 {22, 101, 23}
{32, 46, 43} 46 {78, 92, 89} {66, 11, 41} 52 {16, 63, 93}
{18, 34, 61} 16 {34, 50, 77} {78, 101, 37} 42 {18, 41, 79}
{62, 82, 17} 64 {24, 44, 81} {50, 57, ∞1} 30 {80, 87, ∞1}

{80, 2, 67} 18 {98, 20, 85} {58, 87, ∞2} 58 {14, 43, ∞2}

{56, 86, 47} 88 {42, 72, 33} {94, 59, ∞3} 38 {30, 97, ∞3}

{36, 72, 15} 40 {76, 10, 55} {10, 81, ∞4} 74 {84, 53, ∞4}

{74, 14, 63} 68 {40, 82, 29} {64, 45, ∞5} 84 {46, 27, ∞5}

{16, 60, 91} 50 {66, 8, 39} {26, 19, ∞6} 28 {54, 47, ∞6}

19 {0, 2, 42} 0 {0, 2, 42} {92, 36, 43} 86 {70, 14, 21}
{52, 56, 86} 106 {50, 54, 84} {78, 63, 69} 14 {92, 77, 83}
{44, 50, 66} 104 {40, 46, 62} {96, 9, 17} 72 {60, 81, 89}
{46, 54, 74} 98 {36, 44, 64} {62, 93, 103} 24 {86, 9, 19}
{1, 3, 35} 102 {103, 105, 29} {106, 65, 85} 58 {56, 15, 35}
{41, 45, 67} 100 {33, 37, 59} {80, 51, 75} 36 {8, 87, 3}
{37, 49, 89} 70 {107, 11, 51} {102, 107, 27} 94 {88, 93, 13}
{99, 7, 21} 54 {45, 61, 75} {84, 19, 57} 22 {106, 41, 79}
{30, 40, 39} 28 {58, 68, 67} {32, 59, 101} 92 {16, 43, 85}
{6, 18, 91} 4 {10, 22, 95} {38, 77, 13} 56 {94, 25, 69}
{10, 24, 47} 10 {20, 34, 57} {14, 25, 71} 84 {98, 1, 47}
{4, 28, 105} 74 {78, 102, 71} {64, 31, 79} 82 {38, 5, 53}
{8, 34, 97} 66 {74, 100, 55} {94, 33, 83} 32 {18, 65, 7}
{16, 48, 61} 64 {80, 4, 17} {88, 5, ∞1} 68 {48, 73, ∞1}

{60, 98, 95} 6 {66, 104, 101} {68, 11, ∞2} 52 {12, 63, ∞2}

{76, 12, 29} 20 {96, 32, 49} {26, 81, ∞3} 50 {76, 23, ∞3}

{58, 104, 15} 76 {26, 72, 91} {90, 53, ∞4} 46 {28, 99, ∞4}

{82, 22, 23} 8 {90, 30, 31} {72, 55, ∞5} 42 {6, 97, ∞5}

{20, 70, 73} 62 {82, 24, 27} {100, 87, ∞6} 60 {52, 39, ∞6}

(continued on next page)
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Table 9 (continued)

u Starter Adder Starter+Adder Starter Adder Starter+Adder

20 {0, 2, 46} 0 {0, 2, 46} {58, 110, 33} 38 {96, 34, 71}
{24, 28, 78} 112 {22, 26, 76} {44, 100, 13} 68 {112, 54, 81}
{40, 48, 74} 110 {36, 44, 70} {86, 43, 47} 92 {64, 21, 25}
{56, 66, 80} 108 {50, 60, 74} {82, 59, 67} 40 {8, 99, 107}
{26, 38, 68} 104 {16, 28, 58} {96, 101, 111} 10 {106, 111, 7}
{1, 3, 55} 100 {101, 103, 41} {72, 79, 97} 72 {30, 37, 55}
{11, 17, 45} 102 {113, 5, 33} {10, 19, 41} 74 {84, 93, 1}
{61, 73, 93} 106 {53, 65, 85} {8, 51, 75} 82 {90, 19, 43}
{49, 63, 99} 24 {73, 87, 9} {106, 39, 65} 12 {4, 51, 77}
{103, 5, 35} 26 {15, 31, 61} {16, 69, 109} 84 {100, 39, 79}
{30, 36, 25} 32 {62, 68, 57} {88, 29, 71} 20 {108, 49, 91}
{6, 22, 57} 80 {86, 102, 23} {70, 37, 81} 8 {78, 45, 89}
{14, 32, 91} 34 {48, 66, 11} {76, 89, 23} 6 {82, 95, 29}
{34, 54, 27} 70 {104, 10, 97} {112, 21, 77} 54 {52, 75, 17}
{20, 42, 83} 78 {98, 6, 47} {104, 7, ∞1} 98 {88, 105, ∞1}

{64, 92, 113} 64 {14, 42, 63} {94, 9, ∞2} 58 {38, 67, ∞2}

{52, 84, 85} 42 {94, 12, 13} {18, 87, ∞3} 62 {80, 35, ∞3}

{90, 12, 15} 44 {20, 56, 59} {60, 31, ∞4} 86 {32, 3, ∞4}

{62, 102, 53} 30 {92, 18, 83} {4, 105, ∞5} 36 {40, 27, ∞5}

{50, 98, 95} 88 {24, 72, 69} {108, 107, ∞6} 2 {110, 109, ∞6}
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