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a b s t r a c t

We completely determine the complexity status of the 3-colorability problem for heredi-
tary graph classes defined by two forbidden induced subgraphs with at most five vertices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The coloring problem is one of classical problems on graphs. Its formulation is as follows. A coloring is an arbitrary
mapping of colors to vertices of some graph. A graph coloring is said to be proper if no pair of adjacent vertices have the
same color. The chromatic number χ(G) of a graph G is the minimal number of colors in proper colorings of G. The coloring
problem for a given graph and a number k is to determinewhether its chromatic number is atmost k or not. The k-colorability
problem is to verify whether vertices of a given graph can be properly colored with at most k colors.

A graph H is an induced subgraph of G if H is obtained from G by deletion of vertices. A class is a set of simple unlabeled
graphs. A class of graphs is hereditary if it is closed under deletion of vertices. It is well known that any hereditary (and only
hereditary) graph class X can be defined by a set of its forbidden induced subgraphs Y. We write X = Free(Y) in this case,
and the graphs in X are said to be Y-free. If Y = {G}, then we will write ‘‘G-free’’ instead of ‘‘{G}-free’’. If a hereditary class
can be defined by a finite set of the forbidden induced subgraphs, then it is said to be finitely defined.

The coloring problem for G-free graphs is polynomial-time solvable if G is an induced subgraph of P4 or P3 + K1, and it
is NP-complete in all other cases [13]. The situation for the k-colorability problem is not clear, even when only one induced
subgraph is forbidden. The complexity of the 3-colorability problem is known for all classes of the form Free({G}) with
|V (G)| ≤ 6 [4]. A similar result for G-free graphs with |V (G)| ≤ 5 was recently obtained for the 4-colorability problem [9].
On the other hand, for fixed k, the complexity status of the k-colorability problem is open for P7-free graphs (k = 3), for
P6-free graphs (k = 4), and for P2 + P3-free graphs (k = 5).

When we forbid two induced subgraphs, the situation becomes more difficult. For the coloring problem, a complete
classification for pairs is open, even if forbidden induced subgraphs have at most four vertices. Although, the complexity is
known for some such pairs [8,15,17,18,21]. The same is true for the 3-colorability problem and the five-vertex barrier. We
determine here its complexity status for all classes defined by two forbidden induced subgraphs with at most five vertices.
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2. Notation

For a vertex x of a graph, deg(x) means its degree, N(x) is its neighborhood, N[x] denotes its closed neighborhood (i.e. the
set N(x) ∪ {x}), Nk(x) is the set of vertices lying at distance k from x. The formula ∆(G) is the maximum degree of vertices
in G.

As usual, Pn, Cn, Kn,On, and Kp,q stand respectively for the simple pathwith n vertices, the chordless cycle with n vertices,
the complete graph with n vertices, the empty graph with n vertices, and the complete bipartite graph with p vertices in the
first part and q vertices in the second. The graph paw is obtained from a triangle by adding a vertex and an edge incident to
the new vertex and a vertex of the triangle. The graphs fork, bull, butterfly have the vertex set {x1, x2, x3, x4, x5}. The edge
set for fork is {x1x2, x1x3, x1x4, x4x5}, for bull is {x1x2, x1x3, x2x3, x1x4, x2x5}, for butterfly is {x1x2, x1x3, x2x3, x1x4, x1x5, x4x5}.
The graph hammerk has the vertex set {x1, x2, x3, y1, y2, . . . , yk} and the edges x1x2, x1x3, x2x3, x1y1, y1y2, . . . , yk−1yk. Note
that paw = hammer1.

The complement graph G of G is a graph on the same set of vertices, and two vertices of G are adjacent if and only if they
are not adjacent in G. The sum G1 +G2 is the disjoint union of G1 and G2. The disjoint union of k copies of a graph G is denoted
by kG. For a graph G and a set V ′

⊆ V (G), the formula G \ V ′ denotes the subgraph of G obtained by deleting all vertices
in V ′.

3. Boundary graph classes

The notion of a boundary graph class is a helpful tool for the analysis of the computational complexity of graph problems
in the family of hereditary graph classes. This notion was originally introduced by V.E. Alekseev for the independent set
problem [1]. It was later applied for the dominating set problem [3]. A study of boundary graph classes for some graph
problems was extended in the paper of Alekseev et al. [2], where the notion was formulated in its most general form. We
will give the necessary definitions.

Let Π be an NP-complete graph problem. A hereditary graph class is said to be Π-easy if Π is polynomial-time solvable
for its graphs. If the problemΠ is NP-complete for graphs in a hereditary class, then this class is said to beΠ-hard. A class of
graphs is said to be Π-limit if this class is the limit of an infinite monotonically decreasing chain of Π-hard classes. In other
words, X is Π-limit if there is an infinite sequence X1 ⊇ X2 ⊇ · · · of Π-hard classes, such that X =


∞

k=1 Xk. A Π-limit
class that is minimal under inclusion is said to be Π-boundary.

The following theorem certifies the significance of the notion of a boundary class.

Theorem 1 ([1]). A finitely defined class is Π-hard if and only if it contains some Π-boundary class.

This theorem shows that knowledge of allΠ-boundary classes leads to a complete classification of finitely defined graph
classes with respect to the complexity of Π . Two concrete classes of graphs are known to be boundary for several graph
problems. The first of them is S. It constitutes all forests with atmost three leaves in each connected component. The second
one is T , which is the set of line graphs of graphs in S. The paper [2] is a good survey about graph problems, for which either
S or T is boundary.

Some classes are known to be limit and boundary for the 3-colorability problem. The set F of all forests and the set T ′

of line graphs of forests with degrees at most three are limit classes for it [14]. Some continuum set of boundary classes for
the k-colorability problem is known for any fixed k ≥ 3 [12,19,20].

The main result of this paper can be briefly formulated by means of F and T ′. Namely, if G1 and G2 have at most
five vertices, then the 3-colorability problem is tractable for X = Free({G1,G2}) if F ⊈ X, T ′

⊈ X, {G1,G2} ≠

{K1,4, bull}, {G1,G2} ≠ {K1,4, butterfly}, and the problem is NP-complete for all other choices of G1 and G2 on at most five
vertices.

4. NP-completeness of the 3-colorability problem for some graph classes

The results listed above on limit classes for the 3-colorability problem together with Theorem 1 allow us to prove
NP-completeness of the problem for some finitely defined classes. Namely, if Y is a finite set of graphs, and Y ∩ F = ∅

or Y ∩ T ′
= ∅, then the problem is NP-complete for Free(Y). But, this idea cannot be applied to Free({K1,4, bull, butterfly}),

because K1,4 ∈ F , bull ∈ T ′, and butterfly ∈ T ′. Nevertheless, the 3-colorability problem is NP-complete for this class. To
show this, we use a graph operation called diamond implantation.

Let G be a graph with a non-leaf vertex x. Applying a diamond implantation to x implies:

• an arbitrary splitting N(x) into two nonempty parts A and B
• deletion of x and addition of new vertices y1, y2, y3, y4
• addition of all edges of the form y1a, a ∈ A and of the form y4b, b ∈ B
• addition of the edges y1y2, y1y3, y2y3, y2y4, y3y4

Clearly, for every graph G and every non-leaf vertex in G, applying the diamond implantation preserves 3-colorability.
This property and the paper [11] give the key idea of the proof of Lemma 1.
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Lemma 1. The 3-colorability problem is NP-complete in the class Free({K1,4, bull, butterfly}).

Proof. The 3-colorability problem is known to be NP-complete for triangle-free graphs with maximum degree at most
four [16]. Let us consider such a graph which is connected and has at least two vertices. We will sequentially apply the
operation described above to those of its vertices with edgeless neighborhoods. In other words, if H is a current graph, then
diamond implantation is applied to an arbitrary vertex of H that does not belong to any triangle. The sets A and B are formed
arbitrarily with the condition ∥A|− |B∥ ≤ 1. The whole process is finite, because the number of its steps is nomore than the
number of vertices in the initial graph. It is easy to see that the resultant graph belongs to Free({K1,4, bull, butterfly}). Thus,
the 3-colorability problem for triangle-free graphs with maximum degree at most four is polynomially reduced to the same
problem for graphs in Free({K1,4, bull, butterfly}). Therefore, it is NP-complete for Free({K1,4, bull, butterfly}). �

5. Some auxiliary results

5.1. Forbidding the hammer as an induced subgraph

Lemma 2. If G is a connected graph in Free({hammerk}) and k ≥ 2, then G is triangle-free or its diameter is at most 2k + 2.

Proof. Let G be a graph containing a triangle constituted by vertices x, y, z. Wewill show that the eccentricity of x is at most
k + 1. This fact and the triangle inequality implies the bound for the diameter. Let P be the shortest induced path between
x and some vertex of G. Suppose that P has at least k + 3 vertices. We enumerate all vertices of P starting from x. None of
the vertices x, y, z can be adjacent to a vertex of P with a number that is greater than three, as P is not shortest otherwise.
Let n be the greatest numbered vertex in P that is adjacent to at least one vertex in {x, y, z}. Note that n ∈ {2, 3}. It is easy
to verify that two or three vertices in {x, y, z} and the vertices of P with numbers in {n, n+ 1, . . . , k+ n} induce a subgraph
isomorphic to a hammerk. We have a contradiction. �

5.2. The notion of quasi-twins and its significance

Recall that two vertices of a graph are said to be twins if they have coinciding neighborhoods. Two vertices are called
quasi-twins if the neighborhood of one of them is included in the neighborhood of the second one. The significance of the
quasi-twins notion is showed by the following lemma (without proof, since it is obvious).

Lemma 3. If G is a graph, x, y ∈ V (G), and N(x) ⊆ N(y), then χ(G) = χ(G \ {x}).

5.3. Forbidding the fork as an induced subgraph

Awheel is a graph formed by connecting a single vertex to all vertices of a cycle. If the cycle has an odd number of vertices,
then the corresponding graph is said to be an odd wheel. A graph is said to be odd-wheel-free if it does not contain induced
oddwheels. This property can be checked in polynomial-time. Since any oddwheel is not 3-colorable, a necessary condition
for a graph to be 3-colorable is to be odd-wheel-free.

Lemma 4. If G is a connected odd-wheel-free graph in Free({fork, bull}) containing an induced odd cycle C of length at least
seven, then the 3-colorability problem for G can be solved in polynomial time on |V (G)|.

Proof. Let x be a vertex outside C having a neighbor on C . The vertex xmust be adjacent to at least two consecutive vertices of
C , sinceG is not fork-free otherwise. AsG is odd-wheel-free, x cannot be adjacent to all vertices of C . Hence, there are pairwise
distinct vertices a, b, c, d ∈ V (C), such that ab, bc, cd, xa, xb are edges of G and xc ∉ E(G). Let e be the neighbor of a in C
that is different from b. The graph Gmust contain the edge xe, since it is bull-free. If there is a vertex y ∈ V (C) \ {a, b, c, d, e}
with xy ∈ E(G), then a, b, x, c, y induce a bull. If x is adjacent to only a, b, d, e, then G ∉ Free({fork}). So, x is adjacent to only
a, b, e.

The connectivity of G and its {fork, bull}-freeness imply that each element of V (G) \ V (C) has a neighbor on C . There
are exactly three such neighbors for any element of the set. Any two vertices in V (G) \ V (C) have at most one common
neighbor on the cycle, and they must be nonadjacent. Indeed, if two vertices in V (G) \ V (C) are adjacent and have at least
two common neighbors on C , thenG contains a K4, which is an oddwheel. If they are adjacent and have atmost one common
neighbor, then G contains an induced bull. If they are nonadjacent and have two or three common neighbors on the cycle,
then G contains an induced bull or fork, respectively. Therefore, any two vertices in V (G) \ V (C) must be nonadjacent and
may have at most one common neighbor on the cycle.

Let x1, . . . , xk be the vertices of C , in order. If there is a vertex in V (G) \ V (C) adjacent to x1, x2, x3, another adjacent to
x3, x4, x5, another adjacent to x5, x6, x7, . . . , another adjacent to xk−2, xk−1, xk, then G has no proper 3-coloring. It is trivial to
verify if this is the case in polynomial time. In any case where G is not isomorphic to such a case, it is easy to see that G has
a valid 3-coloring. �
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Lemma 5. If G is a connected 3-colorable graph in Free({fork, bull}) that contains C5 as an induced subgraph, then the graph G
has at most six vertices or it has a pair of quasi-twins.

Proof. Let G be such a graph. Assume G has no quasi-twins. Each vertex of H = G \ V (C5) having a neighbor in C5 must be
adjacent to three or four consecutive vertices of the cycle, since G is {odd − wheel, fork, bull}-free. Since G is connected and
fork-free, this implies that the cycle dominates all vertices of H . Suppose G have a vertex xwith four neighbors on the cycle.
Wewill show that x and the remaining vertex y of the cycle are quasi-twins. Suppose that there is a vertex z ∈ V (G)\V (C5),
such that xz ∉ E(G) and yz ∈ E(G). It is easy to verify that the subgraph induced by {x, z} ∪ V (C5) is not 3-colorable.
Therefore, we may assume that every element of V (H) has exactly three consecutive neighbors on the cycle. If some two
vertices of H have exactly one common neighbor on the cycle, then G is not 3-colorable. If they have at least two common
neighbors and are adjacent, then the graph contains a K4 and is not 3-colorable. If they have exactly two common neighbors
and are nonadjacent, then the graph contains an induced bull. Therefore, theymust be nonadjacent and have three common
neighbors, i.e. these vertices must be quasi-twins. Hence, H has at most one vertex. Thus, |V (G)| ≤ 6. �

A graph G is said to be perfect if it belongs to the class Free({C5, C7, C7, C9, C9, . . .}) [6].

Lemma 6. The 3-colorability problem for {fork, bull}-free graphs can be polynomially reduced to the same problem for perfect
graphs.

Proof. The 3-colorability problem for a class of graphs can be polynomially reduced to its odd-wheel-free part. Notice that
K4 and C7 are not 3-colorable. Hence, by Lemmas 3 and 4, the problem for Free({fork, bull}) can be reduced in polynomial time
to the same problem for graphs in Free({fork, bull, K4, C7, C7, C9, . . .}) without quasi-twins. Hence, by Lemma 5, any such a
graph that is connected, not C5-free, and has at least seven vertices is not 3-colorable. Thus, the problem can be polynomially
reduced to graphs in Free({K4, C7, C5, C7, C9, . . .}), and they are all perfect by the Strong Perfect Graph Theorem [6]. �

Lemma 7. Let G ∈ Free({fork}) be a 3-colorable graph containing a triangle (x, y, z). Then, for any 3-coloring of G there is a
color c such that the graph H = G \ ((N(x) ∩ N(y)) ∪ (N(x) ∩ N(z)) ∪ (N(y) ∩ N(z))) has at most k+ 6 vertices of the color c,
where k = |V (G) \ (N(x) ∪ N(y) ∪ N(z))|.

Proof. Denote N(x) \ (N(y) ∪ N(z)) by N ′(x), N(y) \ (N(x) ∪ N(z)) by N ′(y), and N(z) \ (N(x) ∪ N(y)) by N ′(z). If at most
one of the sets N ′(x),N ′(y),N ′(z) is nonempty, then there is a color class of H having at most k vertices, since the nonempty
set must induce a bipartite subgraph in G. If there are at least two nonempty sets, then each of them induces a complete
subgraph. Without loss of generality, suppose that there are nonadjacent vertices a, b ∈ N ′(x) and a vertex c ∈ N ′(y). If
ac ∉ E(G) and bc ∉ E(G), then a, b, x, y, c induce a fork. If ac ∈ E(G) and bc ∉ E(G) or vice versa, then a, b, x, z, c induce
a fork. Finally, if ac ∈ E(G) and bc ∈ E(G), then a, b, c, y, z induce a fork. We have a contradiction. Since G is 3-colorable,
max(|N ′(x)|, |N ′(y)|, |N ′(z)|) ≤ 2. Hence, |V (H)| ≤ k + 6. Therefore, each color class of H has at most k + 6 elements. �

Lemma 8. If G ∈ Free({C3 +O2})∪Free({paw+K1})∪Free({hammer2})∪Free({C3 +K2}) is a connected {fork, K4}-free graph
and some its vertices x, y, z, v form an induced copy of a paw with triangle (x, y, z), then |V (G) \ (N(x) ∪ N(y) ∪ N(z))| ≤ 9.

Proof. Denote the set N(x)∪N(y)∪N(z) by N . If G is C3 +O2-free, then |V (G)\N| ≤ 3, since any O2-free graph is complete.
Let G be paw + K1-free. The vertex v must be adjacent to every vertex in V (G) \ N , and this set does not contain two

nonadjacent vertices, otherwise G would not be fork-free. Hence, |V (G) \ N| ≤ 2.
Let G be hammer2-free. Due to this fact and the connectivity of G, each element of V (G) \ N must be adjacent to a vertex

in N . Any two vertices in V (G) \ N cannot have a common neighbor in N , as G is {fork, K4, hammer2}-free. If |V (G) \ N| ≥ 2,
then there are distinct vertices a1, b1 ∈ V (G) \ N and distinct vertices a2, b2 ∈ N \ {x, y, z}, such that a1a2 ∈ E(G) and
b1b2 ∈ E(G). As G is hammer2-free, then a2, b2 ∈ (N(x) ∩ N(y)) ∪ (N(x) ∩ N(z)) ∪ (N(y) ∩ N(z)). If a2, b2 belong to the
same set among N(x) ∩ N(y),N(x) ∩ N(z),N(y) ∩ N(z), then a2b2 ∉ E(G) and G contains fork as an induced subgraph. If
they belong to distinct sets, then a1b1 ∉ E(G) (as G is hammer2-free), a2b2 ∉ E(G) (as G is fork-free), and G has an induced
copy of hammer2. Thus, |V (G) \ N| ≤ 1.

Now let G ∈ Free({C3 + K2}). Any two vertices of V (G) \ N are nonadjacent, since G is C3 + K2-free. Each vertex in
N has at most one neighbor in V (G) \ N , since G is {fork, K4}-free. If a vertex in V (G) \ N has a neighbor in one of the
sets N(x) ∩ N(y),N(x) ∩ N(z),N(y) ∩ N(z), then it must be adjacent to all vertices of this set. Hence, for each of the sets
N(x) ∩ N(y),N(x) ∩ N(z),N(y) ∩ N(z), there is at most one vertex in V (G) \ N with a neighbor in the corresponding
set, since G is {K4, fork}-free. If two vertices belong to one of the sets N ′(x),N ′(y),N ′(z) (see the notation in the proof
of the previous lemma) and have distinct neighbors in V (G) \ N , then they are adjacent, since G is fork-free. Hence,
|V (G)\N| ≤ 9 (otherwise, V (G)\N contains vertices a, b, c and one of the sets N ′(x),N ′(y),N ′(z) contains vertices a′, b′, c ′

with aa′
∈ E(G), bb′

∈ E(G), cc ′
∈ E(G), ab′

∉ E(G), ac ′
∉ E(G), ba′

∉ E(G), bc ′
∉ E(G), ca′

∉ E(G), cb′
∉ E(G); the vertices

a′, b′, c ′ must be pairwise adjacent, and G is not K4-free). �

Lemma 9. If G′
∈ {C3, C3+K1, C3+O2, C3+K2, paw, paw+K1, hammer2}, then the 3-colorability problem for Free({fork,G′

})
can be polynomially reduced to the same problem for {fork, paw}-free graphs.
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Proof. Let G be a connected {fork,G′, K4}-free graph having an induced copy of a paw with triangle (x, y, z), and let H be
the graph from Lemma 7. The graph G is 3-colorable if and only if there is an independent set IS containing N(x) ∩ N(y)
or N(x) ∩ N(z) or N(y) ∩ N(z) plus at most 15 vertices of H , such that G \ IS is bipartite (see Lemmas 7 and 8). The
existence of such a set can be checked in polynomial time. Thus, we have a polynomial-time reduction to the paw-free
part of Free({fork,G′

}). �

Lemma 10. Any connected graph G ∈ Free({fork, butterfly, K4}) is either K1,3-free or 10K2-free.

Proof. Let G contain a vertex x and its pairwise nonadjacent neighbors y1, y2, y3. We will show that if v ∈ N2(x) has a
neighbor u ∈ N3(x), then v is adjacent to at least two elements of Y = {y1, y2, y3}. The fact is clear, when v has a neighbor
in the set Y , as G contains a fork as an induced subgraph otherwise. If vy1 ∉ E(G), vy2 ∉ E(G), vy3 ∉ E(G), then N(x) \ Y
contains a neighbor y of v. To avoid an induced copy of a fork, the vertex ymust be adjacent to at least two vertices in Y . But,
the vertex y, two of its neighbors in Y , v, and u induce a fork. This completes the proof of the claim. It follows that N4(x) = ∅,
since G is fork-free

We will also show that if u, v ∈ N2(x) are adjacent, then v or u has a neighbor among y1, y2, y3. Suppose the opposite.
The vertex v has a neighbor y ∈ N(x) \ Y . The vertex y is adjacent to at least two elements of Y , since G is fork-free. As G
is butterfly-free, yu ∉ E(G). Hence, v, u, y, and two neighbors of y in Y induce a fork. This is a contradiction, completing the
proof of the claim.

Suppose thatN3(x) has an independent set IS with four vertices. No two elements of IS have a common neighbor inN2(x),
since G is fork-free. Hence,N2(x) has four distinct vertices, each of which is a neighbor of some vertex in IS. Since G is K4-free,
there are a1, b1 ∈ IS and a2, b2 ∈ N2(x) with a1a2 ∈ E(G), b1b2 ∈ E(G), a2b2 ∉ E(G). The vertices a2 and b2 have a common
neighbor in Y . Hence, this neighbor, x and a1, a2, b2 induce a fork. Thus, the assumption was false, so the maximum size of
an independent set in N3(x) is at most three.

Let E ′ be a maximum induced matching of G, mi (i ∈ {1, 2, 3}) be the number of its edges with both ends in Ni(x), and
mi,i+1 (i ∈ {0, 1, 2}) be the number of edges incident to a vertex in Ni(x) and to a vertex in Ni+1(x). Clearly, m0,1 + m1 ≤ 1
(since G is butterfly-free), m1,2 ≤ 2 (since G is fork-free), and m3 + m2,3 ≤ 3. If m2 ≥ 4, by the pigeonhole principle, for
some edges a′b′, a′′b′′

∈ E ′ (where a′, a′′, b′, b′′
∈ N2(x)) and a vertex y∗

∈ Y , we have a′y∗
∈ E(G) and a′′y∗

∈ E(G).
As G is fork-free, y∗b′ and y∗b′′ are edges of G. Hence, a′, b′, a′′, b′′, and y∗ induce a butterfly. Thus, m2 ≤ 3 and |E ′

| =

m1 + m2 + m3 + m0,1 + m1,2 + m2,3 ≤ 9, so G is 10K2-free. �

5.4. On some polynomial-time reductions

A graph G is said to be locally k-eliminable if there is a vertex x and an independent set IS ⊆ N(x), such that |N(x)\ IS| ≤ k
and G \ IS is bipartite. For each fixed k, this property can be verified in polynomial time.

Lemma 11. If G is a 3-colorable connected graph in Free({K1,3 + K1}) containing a vertex x, then V (G) \ N(x) is independent or
G is locally 10-eliminable or deg(x) ≤ 15.

Proof. Let deg(x) > 15. Each vertex in V (G)\N[x] has at least |N(x)|−5 neighbors inN(x), since any graphwith six vertices
contains either a K3 or an O3, and G is a 3-colorable K1,3 +K1-free graph. Any two (three) vertices in V (G)\N[x] have at least
|N(x)| − 10 (|N(x)| − 15) common neighbors in N(x). Hence, if V (G) \ N[x] has adjacent vertices, then for each 3-coloring
of G this set contains elements of exactly two colors, and one of them is the color of x. Hence, there are at least |N(x)| − 10
vertices in N(x) with the third color, and G is locally 10-eliminable. �

The following lemma is easy to prove.

Lemma 12. Any H + K1-free graph G is H-free or it contains at most |V (H)|(∆(G) + 1) vertices.

Lemma 13. The 3-colorability problem for any hereditary subclass of Free({K1,3 +K1}) can be reduced in polynomial time to the
same problem for K1,3-free graphs in this class.

Proof. Let G ∈ Free({K1,3 + K1}) be a connected graph. If G is locally 10-eliminable, then G is 3-colorable. If ∆(G) ≤ 15,
then G is K1,3-free or |V (G)| ≤ 64 by Lemma 12. If G is not 10-eliminable and |V (G)| > 64, then a necessary condition for
3-colorability of G is to have a vertex x with an independent set V (G) \ N(x) by Lemma 11. The existence of such a vertex
can be verified in polynomial time. If it exists, then G is 3-colorable if and only if N(x) induces a bipartite subgraph. Hence,
we have a polynomial-time reduction. �

6. Main result

Recall that F is the class of forests, T ′ is the set of line graphs of forests with degrees at most three.



D.S. Malyshev / Discrete Mathematics 338 (2015) 1860–1865 1865

Theorem 2. Let G1 and G2 be graphs with at most five vertices. The 3-colorability problem is polynomial-time solvable for
X = Free({G1,G2}) if at least one of the graphs G1,G2 is a forest, at least one of them belongs to T ′, and {G1,G2} ≠ {K1,4, bull}
or {K1,4, butterfly}. It is NP-complete for all remaining cases.

Proof. The sets F and T ′ are limit classes for the 3-colorability problem. Hence, if X includes either F or T ′, then
the problem is NP-complete for the class (by Theorem 1). By Lemma 1, the 3-colorability problem is NP-complete for
Free({K1,4, bull}) and Free({K1,4, butterfly}).

If H is a graph with at most five vertices and H ∈ T ′
\ (F ∪ {bull, butterfly}), then H is hammer4-free. The 3-colorability

problem for {K1,4,H}-free graphs can therefore be polynomially reduced to {K1,4, K4, hammer4}-free graphs, i.e. graphs
having degrees of all vertices at most eight, as every graph with nine vertices contains an induced K3 or O4. There is a finite
number of connected graphs having diameter at most 10 and degrees of all vertices at most eight. Hence, by Lemma 2, we
have a polynomial-time reduction to {K1,4, C3}-free graphs. By Brook’s theorem [5], all {K1,4, C3}-free graphs are 3-colorable.
So, the problem is tractable for Free({K1,4,H}).

If H ′ is a linear forest (the disjoint union of simple paths) with |V (H ′)| ≤ 6, then the 3-colorability problem can be solved
in polynomial time for H ′-free graphs [4]. Since F ∩ T ′ is the set of all linear forests, one need only consider the case,
when G1 ∈ F \ (T ′

∪ {K1,4}) (i.e. G1 ∈ {K1,3, K1,3 + K1, fork}) and G2 ∈ T ′
\ F (i.e. G2 ∈ {C3, C3 + K1, C3 + O2, C3 +

K2, paw, paw + K1, bull, hammer2, butterfly}). The classes of perfect, {fork, paw}-free, and {K1,3, butterfly}-free graphs are
easy for the 3-colorability problem [10,8,22]. For each fixed s, the 3-colorability problem is polynomial-time solvable in the
class of sK2-free graphs [7]. Hence, by Lemmas 6, 9, 10 and 13, the problem is polynomial-time solvable for the graph classes
defined by pairs of forbidden induced subgraphs of the form mentioned above. �
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