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a b s t r a c t

Let G be a connected non-bipartite graph on n vertices with domination number γ ≤
n+1
3 .

We present a lower bound for the least eigenvalue of the signless Laplacian of G in terms
of the domination number.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

LetG = (V (G), E(G)) be a simple graphwith vertex setV (G) = {v1, v2, . . . , vn} and edge set E(G). The adjacencymatrix of
G is defined to be the (0, 1)-matrix A(G) = [aij], where aij = 1 if vi is adjacent to vj, and aij = 0 otherwise. The degree matrix
of G is defined by D(G) = diag(dG(v1), dG(v2), . . . , dG(vn)), where dG(v) or simply d(v) is the degree of a vertex v in G. The
matrix Q (G) = D(G) + A(G) is called the signless Laplacian matrix (or Q-matrix) of G. It is known that Q (G) is nonnegative,
symmetric and positive semidefinite, so its eigenvalues are real and can be arranged as: q1(G) ≥ q2(G) ≥ · · · ≥ qn(G) ≥ 0.
We call the eigenvalues ofQ (G) theQ-eigenvalues of G and refer the readers to [3–7] for the survey on this topic. The leastQ -
eigenvalue qn(G) is denoted by qmin(G), and the eigenvectors corresponding to qmin(G) are called the first Q -eigenvectors ofG.

If G is connected, then qmin(G) = 0 if and only if G is bipartite. So, here we are concerned with the least eigenvalue of
connected non-bipartite graph. Desai and Rao [9] use the least Q -eigenvalue to characterize the bipartiteness of graphs.
As a consequence of this work, Shaun and Fan [10] establish the relationship between the least Q -eigenvalue and some
parameters such as vertex or edge bipartiteness. In [11] they present upper bounds for the least Q -eigenvalue in terms of
the edge bipartiteness and lower bounds for the signless Laplacian spread. Cardoso et al. [2] give a lower bound for the least
Q -eigenvalue of non-bipartite graphs. Liu et al. [17] investigate the minimum least Q -eigenvalue of non-bipartite unicyclic
graphs with fixed number of pendant vertices. Lima et al. [8] survey the known results and present some new ones for the
leastQ -eigenvalues of graphs. Our research group investigate how the leastQ -eigenvalue changeswhen relocating bipartite
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branches [22], which provides an easier way to get some known results on this topic, and characterize the unique graph
whose least Q -eigenvalue attains the minimum among all non-bipartite graphs with fixed number of pendant vertices [13].
In a more general setting, the least eigenvalue of the Laplacian of mixed graphs has been discussed in [12,21].

Recall that a set S ⊂ V (G) of a graph G is called a dominating set if every vertex of V (G)\S is adjacent to at least one
vertex of S. The domination number of G, denoted by γ (G), is the minimum of the cardinalities of all domination sets of
G. Surely, if G has no isolated vertices then γ (G) ≤

|V (G)|

2 . With respect to the adjacency matrix, Stevanović et al. [20]
determine the unique graph with maximal spectral radius among all graphs with no isolated vertices and fixed domination
number; Zhu [23] characterize the unique graphwhose least eigenvalue achieves theminimum among all graphs with fixed
domination number. With respect to the Laplacian matrix, Brand and Seifter [1] give an upper bound for the spectral radius
in terms of the domination number. Lu et al. [18], Nikiforov et al. [19] and Feng [15] give some bounds for the second least
eigenvalue and the spectral radius of graphs, respectively. In addition, Feng et al. [14] characterize the minimum Laplacian
spectral radius of trees with given domination number.

But few work appeared on the relation between the signless Laplacian eigenvalue and the domination number, except
that He and Zhou [16] use the domination number to give an upper bound for the least signless Laplacian eigenvalue. In this
paper, we will investigate the lower bound for the least Q -eigenvalue of a non-bipartite graph in terms of the domination
number. For convenience, a graph is calledminimizing in a certain non-bipartite graph class if its least Q -eigenvalue attains
the minimum among all graphs in the class. Denote by G

γ
n the set of all connected non-bipartite graphs of order n with the

domination number γ , and by G
γ
n (g) (g < n) the set of graphs in G

γ
n for which theminimum length of odd cycles is g . When

γ ≤
n+1
3 , we characterize the unique minimizing graph among all graphs in G

γ
n , and hence provide a lower bound for the

least Q -eigenvalue in terms of the domination number.

2. Preliminaries

Let Cn, Pn and S1,n−1 denote a cycle, a path and a star, all on n vertices, respectively. A graph G is called trivial if it contains
only one vertex; otherwise, it is called nontrivial. A graphG is called unicyclic if it is connected and contains exactly one cycle.
Theminimum length of all cycles in G is called the girth of G. A pendant vertex of G is a vertex of degree 1 and a quasi-pendant
vertex is one adjacent to a pendant vertex.

Let x = (x1, x2, . . . , xn) ∈ Rn. Denote |x| = (|x1|, |x2|, . . . , |xn|). Let G be a graph on vertices v1, v2, . . . , vn. The vector
x can be considered as a function defined on V (G), which maps each vertex vi of G to the value xi, i.e. x(vi) = xi. If x is an
eigenvector of Q (G), then it defines on G naturally, i.e. x(v) denotes the entry of x corresponding to v. Also, the quadratic
form xTQ (G)x can be written as

xTQ (G)x =


uv∈E(G)

[x(u) + x(v)]2. (2.1)

The eigenvector equation Q (G)x = λx can be interpreted as

[λ − d(v)]x(v) =


u∈NG(v)

x(u) for each v ∈ V (G), (2.2)

where NG(v) denotes the neighborhood of v in G. In addition, for an arbitrary unit vector x ∈ Rn,

qmin(G) ≤ xTQ (G)x, (2.3)

with equality if and only if x is a first Q -eigenvector of G.
Let G1, G2 be two vertex-disjoint graphs, and let v ∈ V (G1), u ∈ V (G2). The coalescence of G1 and G2 with respect to v and

u, denoted by G1(v) � G2(u), is obtained from G1 and G2 by identifying v with u, thus giving rise to a new vertex p, which is
also denoted as G1(p) �G2(p). If a connected graph G can be expressed as G = G1(p) �G2(p), where G1 and G2 are nontrivial
subgraphs of G both containing p, then G1 (or G2) is called a branch of G with root p. Given a vector x defined on G, a branch
G1 of G is called a zero branchwith respect to x if x(v) = 0 for all v ∈ V (G1). Let G = G1(v2)�G2(u) and G∗

= G1(v1)�G2(u),
where v1 and v2 are two distinct vertices of G1 and u is a vertex of G2. We say that G∗ is obtained from G by relocating G2
from v2 to v1.

Lemma 2.1 ([22]). Let H be a bipartite branch of a connected graph G with root u. Let x be a first Q -eigenvector of G.
(1) If x(u) = 0, then H is a zero branch of G with respect to x.
(2) If x(u) ≠ 0, then x(p) ≠ 0 for every vertex p of H. Furthermore, for every vertex p of H, x(p)x(u) is positive or negative,

depending onwhether p is or is not in the same part of bipartite graphH as u; consequently, x(p)x(q) < 0 for each edge pq ∈ E(H).

The following result is a supplement of [22, Lemma 2.5]. For completeness we will restate some discussion as used in its
proof.

Lemma 2.2. Let G1 be a connected graph containing at least two vertices v1, v2, and let G2 be a connected bipartite graph
containing a vertex u. Let G = G1(v2) � G2(u) and G∗

= G1(v1) � G2(u). If there exists a first Q -eigenvector x of G such
that |x(v1)| ≥ |x(v2)|, then qmin(G∗) ≤ qmin(G), with equality only if |x(v1)| = |x(v2)|, dG2(u)x(u) = −Σv∈NG2 (u)x(v), and G∗

has a first Q -eigenvectorx such that |x| = |x|.
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Fig. 3.1. The graph Uk
n (g) with g < n.

Proof. Assume that x is a unit vector with x(v1) ≥ 0. Let U,W be the two parts of the bipartite graph G2, where u ∈ U .
Letx be the vector defined on G∗ given byx(v) = x(v) if v ∈ V (G1),x(v) = |x(v)| + [x(v1) − |x(v2)|] if v ∈ U\{u}, andx(v) = −|x(v)| − [x(v1) − |x(v2)|] if v ∈ W . By (2.1) and Lemma 2.1, one can verify thatxTQ (G∗)x = xTQ (G)x, and since
x(v1) = |x(v1)| ≥ |x(v2)|,

∥x∥2
=


v∈V (G1)

x(v)2 +


v∈V (G2)\{u}

[|x(v)| + x(v1) − |x(v2)|]
2

≥


v∈V (G)

x(v)2 = ∥x∥2
= 1.

So

qmin(G∗) ≤ ∥x∥−2xTQ (G∗)x ≤xTQ (G∗)x = xTQ (G)x = qmin(G).

If qmin(G∗) = qmin(G), then ∥x∥2
= ∥x∥2, andx is also a first Q -eigenvector of G∗. The former condition implies that

x(v1) = |x(v1)| = |x(v2)| and hence |x| = |x|, while the latter implies that dG2(u)x(u) = −


v∈NG2 (u) x(v) by the eigenvector
equations of x andx both at v2. �

Lemma 2.3 ([22]). Let G be a connected non-bipartite graph, and let x be a first Q -eigenvector of G. Let T be a tree, which is a
nonzero branch of G with respect to x and with root u. Then |x(q)| < |x(p)| whenever p, q are vertices of T such that q lies on
the unique path from u to p.

3. Minimizing the least Q -eigenvalue among all graphs in G
γ
n

Denote by Uk
n(g) the unicyclic graph of order n, which is obtained from an odd cycle Cg (g < n) and a star S1,k by adding

a path Pl connecting (or identifying) one vertex of the cycle and the center of the star (if l = 1), where l = n + 1 − g − k;
see Fig. 3.1. Surely, if k ≥ 2, then

γ (Uk
n(g)) ≤ γ (Uk−1

n (g)) ≤ · · · ≤ γ (U1
n (g)) =: γn,g .

Fixed n and odd g ∈ [3, n− 1], for each γ ∈ [⌈
g
3⌉, γn,g ], there exists one or more graphs Uk

n(g) with domination number
γ ; the unique one with minimum k among those graphs is denoted by V γ

n (g).

Lemma 3.1 ([13]). Let Uk
n(g) be the graph with some vertices labeled as in Fig. 3.1, where v1, v2, . . . , vg are the vertices of the

unique cycle Cg labeled in an anticlockwise way. Let x be a first Q -eigenvector of Uk
n(g). Then

(1) x(vi) = x(vg−i) for i = 1, 2, . . . , g−1
2 ;

(2) x(v g−1
2

)x(v g+1
2

) > 0, and x(v)x(w) < 0 for other edges vw of Uk
n(g) except v g−1

2
v g+1

2
;

(3) |x(vg)| > |x(v1)| > |x(v2)| > · · · > |x(v g−1
2

)| > 0.

Denote by U k
n (g) the set of unicyclic graphs of order nwith odd girth g and k ≥ 1 pendant vertices.

Lemma 3.2 ([13]). Among all graphs in U k
n (g), Uk

n(g) is the unique minimizing graph.

Lemma 3.3 ([13]). The least Q -eigenvalue of Uk
n(g) is strictly increasing with respect to k ≥ 1 and odd g ≥ 3, respectively.

Corollary 3.4. The least Q -eigenvalue of V γ
n (g) is strictly decreasing with respect to γ .

Proof. Suppose that γ ≥ ⌈
g
3⌉ + 1, V γ

n (g) =: Uk
n(g), V

γ−1
n (g) =: Uk′

n (g). Clearly, k < k′, and the result follows by
Lemma 3.3. �

Corollary 3.5. Let γ (Uk
n(g)) = γ . If Uk

n(g) ≠ V γ
n (g), then qmin(Uk

n(g)) > qmin(V
γ
n (g)).
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Proof. Suppose that V γ
n (g) = Uk′

n (g). If Uk
n(g) ≠ V γ

n (g), then k > k′ by the choice of V γ
n (g). The result follows by

Lemma 3.3. �

Corollary 3.6. The least Q -eigenvalue of V γ
n (g) is strictly increasing with respect to odd g.

Proof. Suppose that g ≥ 5. For the graph V γ
n (g) =: Uk

n(g) in Fig. 3.1, replacing the edge vg−2vg−1 by vg−2v1, we obtain a
graph G′

∈ U k+1
n (g − 2). Let x be a unit first Q -eigenvector of V γ

n (g). Then

qmin(V γ
n (g)) = xTQ (V γ

n (g))x = xTQ (G′)x ≥ qmin(G′) ≥ qmin(Uk+1
n (g − 2)),

where the second equality holds as x(v1) = x(vg−1) by Lemma 3.1, and the last inequality holds by Lemma 3.2. Furthermore,
qmin(V

γ
n (g)) > qmin(G′); otherwise, x is also a first Q -eigenvector of G′, and by considering the eigenvector equations of

V γ
n (g) and G′ on the vertex vg−1 both associated with x, we will have x(vg−1) = −x(vg−2); a contradiction to Lemma 3.1.
Note that γ (Uk+1

n (g − 2)) =: γ ′
≤ γ (Uk

n(g)) = γ . So, by Corollaries 3.5 and 3.4,

qmin(V γ
n (g)) > qmin(G′) ≥ qmin(Uk+1

n (g − 2)) ≥ qmin(V γ ′

n (g − 2)) ≥ qmin(V γ
n (g − 2)). �

Lemma 3.7. Let G ∈ G
γ
n . Then G contains a non-bipartite spanning unicyclic subgraph with domination number γ .

Proof. If γ = 1, the result is easily verified. So we assume that γ ≥ 2. Let U = {u1, u2, . . . , uγ } be a dominating set of G of
size γ , letW = V (G)\U . Let B be a bipartite spanning subgraph of G, which is obtained by deleting all edges within U orW .
Case 1: Suppose that B is connected. Thus, there exist two vertices inU , say u1 and u2, such thatNB(u1)∩NB(u2) ≠ ∅. Assume
that w1 ∈ NB(u1) ∩NB(u2). Deleting all edges between u2 and the vertices of (NB(u1) ∩NB(u2))\{w1} (if it is nonempty), we
get a subgraph B1 of B such that u2 shares exactly one neighbor with u1. If U\{u1, u2} ≠ ∅, noting that B1 is also connected,
there exists one vertex w2 ∈ NB(u1) ∪ NB(u2) such that w2 is adjacent to one vertex, say u3 in U\{u1, u2}. Deleting all edges
between u3 and the vertices of (NB1(u3)\{w2}) ∩ (NB(u1) ∪ NB(u2)), we get a subgraph B2 of B1 such that u3 shares exactly
one neighbor with exactly one of u1 and u2. Repeating the above process, we will arrive at a subgraph Bγ−1 of B such that for
each i = 2, 3, . . . , γ , ui shares exactly one neighbor with exactly one of u1, u2, . . . , ui−1. So Bγ−1 is a tree with domination
number γ . Since G is non-bipartite, there exists at least one edge e within U or W . Adding the edge e to Bγ−1, the resulting
graph is as desired.
Case 2: Suppose that B is not connected. Let B1, B2, . . . , Bk be the components of B with bipartitions
(U1,W1), (U2,W2), . . . , (Uk,Wk) respectively. Since G is connected, there exists a spanning tree B1 of G obtained from B
by adding k − 1 edges between sets Ui and Uj or sets Wi and Wj. As G is non-bipartite, adding the edges of E(G)\E(B1) to
B1 such that the first odd cycle C appears, we arrive at a graph B2. If B2 contains only one cycle (i.e. the cycle C), the result
follows. Otherwise, B2 contains some even cycles, each of which must contain an edge with endpoints both within Uis or
Wjs. Deleting one of such edges will break an even cycle and preserve an odd cycle despite the deleted edge shared by C
or not. Repeating the process of breaking even cycles, we finally arrive at a connected subgraph containing exactly one odd
cycle (not necessarily being C), as desired. �

Denote by V
γ
n (g) the set of unicyclic graphs of order nwith odd girth g < n and domination number γ .

Theorem 3.8. Among all graphs in V
γ
n (g), where ⌈

g
3⌉ ≤ γ ≤ γn,g , V

γ
n (g) is the unique minimizing graph.

Proof. Let G be a minimizing graph in V
γ
n (g), and let x be a unit first Q -eigenvector of G. In order to obtain the result, it

suffices to prove that G contains exactly one pendant star (i.e. the star centered at a quasi-pendant vertex with maximum
possible size). Then G = Uk

n(g) for some k and Uk
n(g) = V γ

n (g) by Corollary 3.5.
Suppose that G contains at least two pendant stars. Among all pendant stars of G, choose two pendant stars attached

at p and q respectively such that one of them has maximum size. Without loss of generality, assume that |x(p)| ≥ |x(q)|.
Relocating the pendant star attached at q to p, we get a graph G1 such that ϱ(G1) > ϱ(G) and γ (G) ≥ γ (G1), where ϱ(G)
denotes the maximum size of the pendant stars of G. By Lemma 2.2, we also have qmin(G1) ≤ qmin(G).

If the graph G1 has more than one pendant stars, repeating the above process of relocating pendant stars, we will
get a sequence of graphs G = G0,G1, . . . ,Gm such that from Gi−1 to Gi the pendant star at qi−1 is relocated to pi−1 for
i = 1, 2, . . . ,m, where p0 := p and q0 := q, and

γ = γ (G) ≥ γ (G1) ≥ · · · ≥ γ (Gm) =: γ ′, qmin(G) ≥ qmin(G1) ≥ · · · ≥ qmin(Gm),

where Gm contains exactly one pendant star, i.e. Gm = Uk
n(g) for some k. This can be done as ϱ(Gi) is strictly increasing and

is bounded by a finite number.
Now by the above discussion and Corollaries 3.4 and 3.5, we have

qmin(G) ≥ qmin(Gm−1) ≥ qmin(Uk
n(g)) ≥ qmin(V γ ′

n (g)) ≥ qmin(V γ
n (g)). (3.1)

Since G is the minimizing graph in V
γ
n (g), all the inequalities in (3.1) become equalities. So by Corollary 3.4 γ = γ ′, and by

Corollary 3.5 Uk
n(g) = V γ

n (g). Let y be the first Q -eigenvector of Gm−1. Then by the equality qmin(Gm−1) = qmin(Uk
n(g)) and
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Lemma 2.2, |y(pm−1)| = |y(qm−1)|, and Uk
n(g) has a first Q -eigenvector z such that |z| = |y|. So, |z(pm−1)| = |z(qm−1)|. Note

that pm−1 is exactly the quasi-pendant vertex of Uk
n(g), and |z(pm−1)| is not equal to the modulus of the z-value of any other

vertex by Lemmas 2.3 and 3.1; a contradiction. �

Theorem 3.9. Among all graphs in G
γ
n (g), where ⌈

g
3⌉ ≤ γ ≤ γn,g , V

γ
n (g) is the unique minimizing graph.

Proof. Let G be a minimizing graph in G
γ
n (g). By Lemma 3.7, G contains a non-bipartite spanning unicyclic subgraph with

domination number γ , which we denoted byG. IfG = Cn and since G ≠ Cn, there exists an edge uv ∈ E(G)\E(G) joining
two vertices of Cn. Then Cn is split into two cycles C1, C2 by the edge uv, where C1 is odd and C2 is even. Noting that

γ = γ (G) ≥ γ (Cn + uv) ≥ γ (Cn) = γ (G) = γ ,

so γ (Cn+uv) = γ (Cn) = γ . Letw1, w2 ∈ V (C2)\V (C1) such thatw1 is adjacent to u andw2 is adjacent tow1 both in Cn+uv.
Without loss of generality, wemay assume that Cn has a dominating set S of size γ such that u ∈ S andw1, w2 ∉ S. Therefore,
S is still a dominating set of Cn + uv − w1w2, and hence γ (Cn + uv − w1w2) ≤ γ . Furthermore, γ (Cn + uv − w1w2) = γ ,
since γ (Cn + uv − w1w2) ≥ γ (Cn − w1w2) = γ (Pn) = γ (Cn) = γ .

So we assume thatG contains pendant vertices and has girthg , where g ≤ g < n. By Theorem 3.8 and Corollary 3.6,

qmin(G) ≥ qmin(G) ≥ qmin(V γ
n (g)) ≥ qmin(V γ

n (g)).

Since G is the minimizing graph in G
γ
n (g), we have qmin(G) = qmin(V

γ
n (g)), which implies thatg = g by Corollary 3.6, andG = V γ

n (g) = V γ
n (g) by Theorem 3.8. We now consider the original graph G, which is obtained fromG = V γ

n (g) possibly by
adding some edges. Assume that E(G)\E(V γ

n (g)) ≠ ∅. Let x be a unit first Q -eigenvector of G. Then

qmin(G) =


uv∈E(G)

[x(u) + x(v)]2

=


uv∈E(Vγ

n (g))

[x(u) + x(v)]2 +


uv∈E(G)\E(Vγ

n (g))

[x(u) + x(v)]2

≥


uv∈E(Vγ

n (g))

[x(u) + x(v)]2 ≥ qmin(V γ
n (g)).

Since qmin(G) = qmin(V
γ
n (g)), x is also the first Q -eigenvector of V γ

n (g), and x(u) + x(v) = 0 for each edge uv ∈

E(G)\E(V γ
n (g)), which cannot hold by Lemmas 3.1 and 2.3. So, G = V γ

n (g) is the unique minimizing graph. �

Corollary 3.10. Among all graphs in G
γ
n , where 1 ≤ γ ≤

n+1
3 , V γ

n (3) is the unique minimizing graph.

Proof. LetG be aminimizing graph inG
γ
n . Assume that theminimum length of odd cycles ofG is g . If g = n, thenG = Cn. Note

that qmin(Cn) = 2(1− cos π
n ); and by a simple verification using (2.2), the following vector x is a corresponding eigenvector

which is defined by

x(vi) = (−1)i cos
jπ
n

, for i = 1, 2, . . . , n,

where v1, v2, . . . , vn are the vertices of Cn labeled in an anticlockwise way. Replacing the edge vn−2vn−1 by vn−2v1, we get
the graph U1

n (n − 2), which has the same domination number as Cn. As x(v1) = x(vn−1), xTQ (Cn)x = xTQ (U1
n (n − 2))x and

then qmin(Cn) ≥ qmin(U1
n (n− 2)). In fact, qmin(Cn) > qmin(U1

n (n− 2)); otherwise x is also a first Q -eigenvector of U1
n (n− 2),

which yields a contradiction by a similar discussion as in the proof of Corollary 3.6. So, we may assume that g < n. By
Theorem 3.9 and Corollary 3.6,

qmin(G) ≥ qmin(V γ
n (g)) ≥ qmin(V γ

n (3)).

Since G is minimizing, all the inequalities become equalities, so G = V γ
n (g) by Theorem 3.9 and g = 3 by Corollary 3.6,

which implies that G = V γ
n (3). �

If n ≥ 3γ + 1, then V γ
n (3) = Un−3γ

n (3). If n = 3γ − 1 or n = 3γ , then V γ
n (3) = U1

n (3), i.e. V
γ
n (3) is obtained from C3 by

appending a path Pn−2.
We finally present the main result of this paper.

Corollary 3.11. Let G be a connected non-bipartite graph of order n with domination number γ ≤
n+1
3 . Then qmin(G) ≥

qmin(V
γ
n (3)), with equality if and only if G = V γ

n (3).
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