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a b s t r a c t

In 2012 Jan Saxl conjectured that all irreducible representations of the symmetric
group occur in the decomposition of the tensor square of the irreducible representation
corresponding to the staircase partition. We make progress on this conjecture by proving
the occurrence of all those irreducibles which correspond to partitions that are comparable
to the staircase partition in the dominance order. Moreover, we use our result to show the
occurrence of all irreducibles corresponding to hook partitions. This generalizes results by
Pak et al. (2013).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In their recent work [18] (see also [19]) Pak, Panova, and Vallejo study the tensor square conjecture for symmetric groups
and the related Saxl conjecture. The tensor square conjecture states that for all natural numbers d besides 2, 4 and 9 there
exists an irreducible representation [λ] of the symmetric group Sd on d letters such that every irreducible representation of
Sd is a constituent of the tensor square of [λ]. Jan Saxl conjectured in 2012 that in the case of d being a triangle number the
isomorphy type λ can be chosen to be the staircase partition ϱ. Wemake progress on the Saxl conjecture by showing that all
those partitionswhich are comparable to the staircase partition in the dominance order actually appear in the decomposition
of the tensor square of [ϱ], see Theorem2.1. As a corollary, we also proof that all hook partitions appear in the decomposition
of the tensor square of [ϱ], see Corollary 6.1, which can also be derived from [18, Thm. 4.12] using the same ideas that we
use in Section 6. Besides hooks, the recent paper [18] contains partial results about two-row partitions, certain three-row-
partitions, and the case of a two-row partition with an additional column. Our work generalizes the first two of these three
cases. Other work on the Saxl conjecture can be found in [20].

The aforementioned conjectures are questions about the positivity of certain Kronecker coefficients. Recently the study
of these coefficients has intensified, as they arise prominently in geometric complexity theory (see e.g. [15,16,1–3,12,17] to
name a few) and in quantum information theory (see e.g. [6,4,8,13,7,5] and references therein).

Our proof of Theorem 2.1 uses the interpretation of the Kronecker coefficient as the dimension of the space of
homogeneous highest weight polynomials on the triple tensor product space. Using polarization, a standard method from
multilinear algebra, we show that these polynomials do not vanish.

2. Preliminaries

A partition λ is defined to be a finite sequence of nonincreasing nonnegative integers λ = (λ1, λ2, . . . , λn). A pictorial
description of partitions are Young diagrams, which are upper-left-justified arrays havingλi boxes in the ith row, for example
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the partition (5, 3, 1, 1) can be depicted as follows:

The transposed Young diagram of λ is obtained by flipping the Young diagram of λ at the main diagonal. The corresponding
partition is denoted as tλ. For example t(5, 3, 1, 1) = (4, 2, 2, 1, 1). The length of the ith row of λ is given by λi and the
length of the ith column of λ is given by tλi. We call |λ| :=

n
i=1 λi the number of boxes of λ. If the number of boxes of λ is d,

then we say that λ is a partition of d. A partition λ dominates another partition ϱ if for all kwe have
k

i=1 λi ≥
k

i=1 ϱi. If λ
dominates ϱ or ϱ dominates λ, we say that λ and ϱ are comparable in the dominance order. Let ϱ(n) := (n, n−1, n−2, . . . , 1)
denote the so-called staircase partitionwith d := n(n + 1)/2 boxes.

Our base field are the complex numbers. Every partition λ with d boxes corresponds to an isomorphy type [λ] of
irreducible representations of the symmetric group Sd. For two partitions λ and µ of d we have that the group Sd also
acts naturally on the tensor product [λ] ⊗ [µ] by diagonally embedding Sd ↩→ Sd × Sd, π → (π, π) and this tensor
product decomposes into irreducibles. Our main result is the following theorem.

Theorem 2.1. For every partition ν with n(n + 1)/2 boxes that is comparable in the dominance order to the staircase partition
ϱ(n) we have that the tensor square representation [ϱ(n)] ⊗ [ϱ(n)] contains the irreducible representation [ν] as an irreducible
constituent.

Let ϱ := ϱ(n). The number of occurrences of [ν] in [ϱ] ⊗ [ϱ] is called the Kronecker coefficient kϱϱν . Hence Theorem 2.1
states that kϱϱν is nonzero for all partitions ν of n(n + 1)/2 that are comparable to ϱ in the dominance order. Our proof
uses a different but also well known interpretation of Kronecker coefficients which is also used in [12,2,11]. We explain this
description in Section 3.

For proving Theorem 2.1 without loss of generality we can assume that ν dominates ϱ: Indeed, if ϱ dominates ν, then
tν dominates tϱ = ϱ and we have kϱϱν = kϱ(tϱ)(tν) > 0, because it is well known that the Kronecker coefficient is invariant
under transposition of any two of its parameters. This follows almost immediately from character theory of the symmetric
group (and can be found in [12, Lemma 4.4.7]).

3. Highest weight vectors

Let λ, µ, ν be partitions of d with at most n rows. The group GL3n := GLn × GLn × GLn acts on the third tensor power3 Cn via

(g ′, g ′′, g ′′′)(v′
⊗ v′′

⊗ v′′′) := (g ′v′) ⊗ (g ′′v′′) ⊗ (g ′′′v′′′).

Since GL3n acts on
3 Cn, the symmetric power Symd(

3 Cn) is a finite dimensional GL3n-representation. Indeed,
Symd(

3 Cn) ⊆
d

(
3 Cn) is the subrepresentation of tensors that are invariant under permuting the d tensor factors. For

α ∈ Cn let diag(α1, . . . , αn) denote the diagonalmatrixwithαi on themain diagonal, i.e., an element of themaximal torus of
GL3n (for the standard basis). Given a partition triple (λ, µ, ν)with d boxes each, a vector f ∈ Symd(

3 Cn) is called aweight
vector of type (λ, µ, ν) if for all triples (g ′, g ′′, g ′′′) of diagonal matrices g ′

= diag(g ′

1, g
′

2, . . . , g
′
n), g

′′
= diag(g ′′

1 , g ′′

2 , . . . , g ′′
n ),

g ′′′
= diag(g ′′′

1 , g ′′′

2 , . . . , g ′′′
n ) we have

(g ′, g ′′, g ′′′)f =

n
i=1

(g ′

i )
λi

n
i=1

(g ′′

i )µi
n

i=1

(g ′′′

i )νi f .

Let Un ⊆ GL3n denote the subgroup of triples of upper triangular matrices with 1s on the main diagonals, i.e., the maximal
unipotent group of GL3n. A weight vector is called a highest weight vector if ∀g ∈ Un : gf = f . The set of highest weight
vectors of a given type (λ, µ, ν) in Symd(

3 Cn) forms a vector space which we denote by HWVλ,µ,ν(Symd(
3 Cn)).

Using Schur–Weyl duality, a small calculation can show that the Kronecker coefficient kνµν is the dimension of
HWVλ,µ,ν(Symd(

3 Cn)), see basically [6, eq. (14)]. This is also worked out in [12, Sec. 4.4].
The main idea is to study the dth tensor power instead of the dth symmetric power and project down to the symmetric

power afterward. The tensor power
d

(
3 Cn) is a GL3n-representation and for every partition triple (λ, µ, ν) we know a

generating set (even a basis) of the highest weight vector space HWVλ,µ,ν(
d

(
3 Cn)).

We now construct an element in HWVλ,µ,ν(
d

(
3 Cn)). Let λ, µ, and ν have d boxes each. Let e1, e2, . . . , en denote the

standard basis of Cn. For i ∈ N leti := e1 ∧ e2 ∧ · · · ∧ ei ∈

i
Cn.
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For ν with column lengths tν1,
tν2, . . . we use this notation to define skew symmetric tensorstν1,tν2, . . . and their tensor

product

ν := tν1 ⊗tν2 ⊗ · · · ∈

d
Cn.

It is readily checked thatλ⊗µ⊗ν ∈ HWVλ,µ,ν(
3

(
d Cn)).We define λ, µ, ν ∈ HWVλ,µ,ν(

d
(
3 Cn)) to be the image

ofλ⊗µ⊗ν under the isomorphism HWVλ,µ,ν(
d

(
3 Cn)) ≃ HWVλ,µ,ν(

3
(
d Cn)), which is just reordering the tensor

factors.
We will now study a graphical interpretation of the contraction of λ, µ, ν with other tensors. For a list of vectors

v1, . . . , vm ∈ Cn,m ≤ n, let the evaluation eval(v1, . . . , vm) denote the determinant of them×mmatrix obtained from the
column vectors v1, . . . , vm by taking only the firstm entries of each vi. For example

eval

1 2
0 −1
3 1


= det


1 2
0 −1


= −1.

We now construct a hypergraph H with vertex set {1, 2, . . . , d} as follows. There are three layers of hyperedges
corresponding to λ, µ, and ν, respectively. Every vertex lies in exactly three hyperedges, one from each layer. Every
hyperedge in layer 1 corresponds to a column in λ, analogously for layer 2 and µ and for layer 3 and ν. Filling a Young
tableau of shape λ columnwise from top to bottom gives the hyperedges of the first layer, for example for λ = (4, 3, 2, 1)
we would fill columnwise and obtain

1 5 8 10
2 6 9
3 7
4

,

so the hyperedges of layer 1 are arranged as follows:

1 2 3 4 5 6 7 8 9 10

We do the same for µ and ν. For example, if λ = µ = ϱ(4) and ν = (5, 3, 1, 1) we obtain the following hypergraph:

1 2 3 4 5 6 7 8 9 10

where layer 2 is drawn with dashed lines and layer 3 with dotted lines. Let us call this hypergraph H . Let Ei(H) denote the
set of hyperedges in layer i, 1 ≤ i ≤ 3. For a hyperedge S let S1 denote its smallest entry, S2 denote its second smallest
entry, and so on. Let ℓ(S) denote the number of vertices in the hyperedge S. Let ◦ denote the contraction of tensors. The
main property of λ, µ, ν is the following, which can be readily checked by calculation. For all ai, bi, ci ∈ Cn, 1 ≤ i ≤ n, we
have

λ, µ, ν ◦


(a1 ⊗ b1 ⊗ c1) ⊗ (a2 ⊗ b2 ⊗ c2) ⊗ · · · ⊗ (ad ⊗ bd ⊗ cd)


=


S∈E1(H)

eval(aS1 , aS2 , . . . , aSℓ(S))

·


S∈E2(H)

eval(bS1 , bS2 , . . . , bSℓ(S))

·


S∈E3(H)

eval(cS1 , cS2 , . . . , cSℓ(S)). (3.1)

Let us summarize the key properties of H in the following definition.

Definition 3.2. Let d := |λ| = |µ| = |ν|. A Young hypergraph H of type (λ, µ, ν) is a hypergraph with d vertices such that

• There are three layers of hyperedges corresponding to ν, µ, and ν, respectively.
• Every vertex lies in exactly three hyperedges, one from each layer.
• There is a bijection between the vertices of H and the boxes in λ such that two vertices lie in a common hyperedge in

layer 1 iff the corresponding boxes in λ lie in the same column. Analogously for layer 2 and µ and for layer 3 and ν. �
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The crucial point is the following. The fact that the actions of the groupsGL3n and Sd ×Sd ×Sd on
d

(
3 Cn) commute

implies that we can use any Young hypergraph H instead of the one we just constructed and in this manner we can define a
highest weight vector λ, µ, νH whose tensor contraction works exactly as in Eq. (3.1).

The group Sd acts on
d

(
3 Cn) by rearranging the tensor factors. To prove that HWVλ,µ,ν(Symd(

3 Cn)) ≠ 0 it is
sufficient to create a Young hypergraph H of type (λ, µ, ν) such that the projection of λ, µ, νH to HWVλ,µ,ν(Symd(

3 Cn))

is nonzero. For this, it is sufficient to find a symmetric tensor v ∈ Symd(
3 Cn) such that λ, µ, νH ◦ v ≠ 0. To prove

Theorem 2.1 it remains to construct a Young hypergraph of type (ϱ(n), ϱ(n), ν) and a tensor v ∈ Symd(
3 Cn) with the

property λ, µ, νH ◦ v ≠ 0. We will do so in the next sections.

4. Construction of the Young hypergraph

For the rest of this paper we fix n, we let ϱ := ϱ(n), d :=
n(n+1)

2 , and we fix ν a partition of d such that ν dominates
ϱ. We construct a Young hypergraph H of type (ϱ, ϱ, ν) with d vertices as follows. We start by defining a finite set
∆n := {(r, c) ∈ N × N | 1 ≤ r, c ≤ n, r + c ≤ n + 1} of d points in the planar grid. For example for n = 4 the
arrangement ∆n can be depicted as follows:

∆4 =

• • • •

• • •

• •

•

The set ∆n forms the vertex set of the Young hypergraph H . We will see that the numbering of the vertex set can be done
in any way, so we omit it. The hyperedges for the first layer of H are formed by the rows and the hyperedges of the second
layer are given by the columns, so for example for n = 4 we have the following picture.

• • • •

• • •

• •

•

Besides a row number r(x) ∈ {1, 2, . . . , n} and a column number c(x) ∈ {1, 2, . . . , n}, each vertex x has a value
β(x) ∈ {1, 2, . . . , n}, which we define as β(x) = n + 2 − r(x) − c(x). The β value can be interpreted as the distance
from the diagonal edge of the triangular array ∆n. For example in the case n = 4 the β values are as follows:

4 3 2 1
3 2 1
2 1
1

Recall that the sizes of the hyperedges of the third layer correspond to the column lengths of ν. We now choose the
hyperedges of the third layer in a way that for each hyperedge the β values of all its vertices are distinct. The key insight is
that this is possible! Indeed, the following lemma says that this can be done iff ν dominates ϱ.

Lemma 4.1. The following two statements are equivalent:

• In ∆n there exists a partition of the vertex set into hyperedges of sizes given by the column lengths of ν such that for each
hyperedge the β values of all vertices in the hyperedge are distinct.

• ν dominates ϱ.

Proof. A filling of shape ν and content γ ∈ Nn is an assignment of numbers to the boxes of ν such that each entry i appears
exactly γi times. A filling is semistandard if the entries are increasing along each column and nondecreasing along each row.
We prove that the following four statements are all equivalent:

(1) In ∆n there exists a partition of the vertex set into hyperedges of sizes given by the column lengths of ν such that for
each hyperedge the β values of all vertices in the hyperedge are distinct.

(2) There exists a filling of ν with content ϱ such that there is no column with two coinciding entries.
(3) There exists a semistandard filling of ν with content ϱ.
(4) ν dominates ϱ.



1974 C. Ikenmeyer / Discrete Mathematics 338 (2015) 1970–1975

The statement that (3) is equivalent to (4) is known as the Gale–Ryser theorem, see e.g. [10, p. 457, Ex. A.11], [9, p. 26, Ex. 2],
or [14, I.7 Exa. 9]. Clearly (3) implies (2). But (2) also implies (3) by straightening the filling, see e.g. [9, p. 110]. It remains
to show that (1) iff (2). From a partition of the vertex set into hyperedges we obtain a filling of shape ν by constructing for
each hyperedge a column whose entries are exactly the β values of the vertices in the hyperedge. On the other hand, from
a filling we get a partition of the vertex set into hyperedges by constructing for each column a hyperedge that has vertices
whose β values are exactly the values in the column. For example, for ν = (5, 3, 1, 1) we can find a filling

1 1 1 1 2
2 2 3
3
4

from which we can construct the third layer such that the β values of the vertices in a hyperedge are exactly the numbers
appearing in a column:

4 3 2 1

3 2 1

2 1

1

�

5. Contraction with the symmetric tensor

Let e1, e2, . . . , en denote the standard basis of Cn. Choose generic vectors c1, . . . , cn ∈ Cn. Let

v̄ := (e1 ⊗ e1 ⊗ c1)⊗n
⊗ (e2 ⊗ e2 ⊗ c2)⊗n−1

⊗ · · · ⊗ (en ⊗ en ⊗ cn)⊗1
∈

d
3

Cn


.

Define v :=


σ∈Sd
σ(v̄) ∈ Symd(

3 Cn). As described at the end of Section 3 it remains to show that λ, µ, νH ◦ v ≠ 0. By
linearity we have

λ, µ, νH ◦ v =


σ∈Sd

λ, µ, νH ◦ σ(v̄). (5.1)

Note that stabilizer of v̄ in Sd is the Young subgroup Sn × Sn−1 × · · · × S1 ⊆ Sd, so actually (5.1) is a sum of
d!/(n!(n − 1)! · · · 2!) summands, each with coefficient θ := n!(n − 1)! · · · 2!. Let M denote the set of all mappings
τ : {1, . . . , d} → {1, . . . , n} such that the cardinality |τ−1(i)| of the preimage of i is n + 1 − i for all 1 ≤ i ≤ n. Then
we can rewrite (5.1) as

λ, µ, νH ◦ v = θ

τ∈M

λ, µ, νH ◦ (eτ(1) ⊗ eτ(1) ⊗ cτ(1)) ⊗ · · · ⊗ (eτ(d) ⊗ eτ(d) ⊗ cτ(d)). (5.2)

Themap τ can be thought of as placing numbers 1 up to n on the vertices of∆n, each number i exactly n+1− i times. The key
observation we want to prove is that there is exactly one nonzero summand in (5.2), namely the one where τ = β . We now
give strong restrictions on how τ can look like in the case where the summand corresponding to τ in (5.2) is nonzero. The
main argument we use is that for every hyperedge {x1, x2, . . . , xk} the evaluation eval(eτ(x1), eτ(x2), . . . , eτ(xk)) is nonzero iff
the list (τ (x1), . . . , τ (xk)) is a permutation of (1, 2, . . . , k). We refer to this fact as (∗). The fact that there is only a single
vertex x in the bottom row implies that τ(x) = 1 by (∗), because otherwise this singleton hyperedge in the row contributes
a zero factor in the evaluation of the first layer. For the vertex y directly above x by applying (∗) we see that we cannot set
τ(y) = 1, because the first column is a hyperedge in the second layer. But from (∗) we know that in the row of y the map
τ has to place exactly the numbers 1 and 2, so we must set τ(y) = 2 and τ(y′) = 1 for the right neighbor y′ of y. This
argument continues up through all rows until we see that at any vertex xwe can only place τ(x) = β(x). The determinants
of all hyperedges of the first and second layer are determinants of permutation matrices, so they are either 1 or −1, but
certainly nonzero. Since the hyperedges in the third layer have the property that no hyperedge has two vertices with the
same β value, and since the ci were chosen generically, the determinants of the hyperedges of the third layer are all nonzero.
This finishes the proof of Theorem 2.1.
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6. Hooks

In this section we use Theorem 2.1 to prove the Saxl conjecture for hooks, see Corollary 6.1. Interestingly, the proof of
Corollary 6.1 in [18] uses a very different technique.

Let n× 1 denote the partition with n boxes in a single column and let 1× n denote the partition with n boxes in a single
row. The addition of partitions is defined as the addition of their parts. A partition ν is called a hook if ν can be written as
ν = 1 × n + m × 1 for some n,m ∈ N≥0.

Corollary 6.1. Let d := n(n + 1)/2. For every hook ν with d boxes we have kϱ(n),ϱ(n),ν > 0.

Proof. We use induction on d, where the base case d = 1 is trivial. If ν has at most n columns, then the statement holds by
Theorem 2.1 because ν is dominated by ϱ(n). If ν has more than n columns, then we can obtain a partition ν̄ by removing n
boxes from the first row of ν, so 1× n+ ν̄ = ν. By induction hypothesis kϱ(n−1),ϱ(n−1),ν̄ > 0. Since kn×1,n×1,1×n = 1 > 0 and
n × 1 + ϱ(n − 1) = ϱ(n), the semigroup property (see [6, Thm. 3.1] or [12, Prop. 4.4.10] for a different viewpoint) implies
kϱ(n),ϱ(n),ν > 0. �
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