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a b s t r a c t

A total coloring of a simple graph G is a coloring of both the edges and the vertices. A
total coloring is proper if no two adjacent or incident elements receive the same color.
The minimum number of colors required for a proper total coloring of G is called the total
chromatic number of G and denoted by χt(G). The Total Coloring Conjecture (TCC) states
that for every simple graph G, ∆(G) + 1 ≤ χt(G) ≤ ∆(G) + 2. G is called Type 1 (resp.
Type 2) if χt(G) = ∆(G) + 1 (resp. χt(G) = ∆(G) + 2). In this paper, we prove that the
generalizedMycielski graphs satisfy TCC. Furthermore, we get that if∆(G) ≤

|V (G)|−1
2 , then

the generalized Mycielski graph µm(G) is Type 1.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, simple, connected and undirected. Terminology and notation not defined
here are followed [3]. Let G be a graph.We use V (G), E(G) and∆(G) (or simply V , E and∆) to denote the vertex set, the edge
set and the maximum degree of G, respectively.

A k-total coloring h : V ∪ E → {1, 2, . . . , k} of a graph G = (V , E) is an assignment of k colors to both the edges and the
vertices of G. The total coloring h is called a proper k-total coloring if no incident or adjacent elements (vertices or edges)
receive the same color. The total chromatic number of G, χt(G), is the least integer k for which G admits a proper k-total
coloring. Behzad [1] and Vizing [20] proposed independently the following famous conjecture, which is known as the Total
Coloring Conjecture (TCC).

Conjecture 1. For any graph G, ∆(G) + 1 ≤ χt(G) ≤ ∆(G) + 2.

The lower bound of this conjecture is obvious, the upper bound remains to be proved. Sanchez-Arroyo proved that the
problem of determining the total chromatic number is NP-hard [17]. Later, McDiarmid and Sanchez-Arroyo proved that the
problem of deciding the total chromatic number of regular bipartite graphs is also NP-hard [15]. By extending a given vertex
coloring of a graph to a total coloring, McDiarmid and Sanchez-Arroyo [14] proved that 7

5∆ + 3 is an upper bound for the
total chromatic number of graphs. Using probabilistic methods, Molloy and Reed (1998) showed that the total chromatic
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number of a simple graph G is at most ∆(G)+ 1026, provided that ∆(G) is sufficiently large. Hilton and Hind [9] proved that
TCC is correct for those graphs G having ∆(G) ≥

3
4 |V (G)|.

Let G be a graph with vertex set V 0
= {v0

1, v
0
2, . . . , v

0
n} and edge set E0. Given an integer m ≥ 1, the m-Mycielskian of G,

denoted by µm(G), is the graph with vertex set V 0
∪ V 1

∪ V 2
∪ · · · ∪ Vm

∪ {u}, where V i
= {vi

j : v0
j ∈ V 0

} is the ith distinct
copy of V 0 for i = 1, 2, . . . ,m, and edge set E0

∪ (
m−1

i=0 {vi
jv

i+1
j′ : v0

j v
0
j′ ∈ E0

}) ∪ {vm
j u : vm

j ∈ Vm
}. The Mycielskian of G,

µ1(G) will be denoted simply by µ(G). Note that them-Mycielskian graph µm(G) of G contains G itself as a subgraph.
In order to build a graph with a high chromatic number and a small clique number, Mycielski [16] introduced µ(G). It is

not hard to prove that χ(µ(G)) = χ(G) + 1. Thus µk(K2) = µ(µk−1(K2)) has chromatic number k + 2 and clique number
2. In recent years, there have been results on Mycielski graphs in relation to several coloring problems [4,5,10,12,13,18].
In [11], the authors generalized the Mycielskian of G to them-Mycielskian of G, wherem ≥ 1. In this paper, we consider the
total chromatic number of the generalized Mycielski graphs and prove that TCC is true for the generalized Mycielski graphs.
Before presenting the main result, we would like to recall some useful definitions and theorems.

A proper k-edge-coloring of a graph G is an assignment of colors from a color set C to each edge of G such that every two
adjacent edges receive different colors, where C is a set of k colors. The edge-chromatic number of a graph G, denoted by
χ ′(G), is the minimum k for which G has a proper k-edge-coloring. In 1964, Vizing [19] showed that every simple graph G
has edge-chromatic number either ∆(G) (known as a Class I graph) or ∆(G) + 1 (known as a Class II graph).

Theorem 2 ([19]). For any graph G, ∆(G) ≤ χ ′(G) ≤ ∆(G) + 1.

We will need the following strengthening of this theorem.

Theorem 3 ([6]). For any graph G, if the subgraph of G induced by the vertices of maximum degree is a forest, then G is Class I.

In list edge-coloring, each edge e of G has a set L(e) of colors, called the list of e. Then, a proper edge-coloring f of G is
called an L-edge-coloring of G if f (e) ∈ L(e) for each edge e, where f (e) denotes the color assigned to e by f . If G admits an
L-edge-coloring, then it is L-edge-colorable. For k ∈ N, the graph is k-edge-choosable if it is L-edge-colorable for every list
assignment Lwith |L(e)| ≥ k for each e ∈ E(G). Galvin established that every bipartitemultigraphG is∆(G)-edge-choosable.

Theorem 4 ([7]). Every bipartite multigraph G is ∆(G)-edge-choosable.

2. Main result

In this section, we consider the total chromatic number of the generalized Mycielski graphs. We begin with some
definitions and a lemma which will be used in the proof of our main result.

Consider µm(G) and let Gi be the bipartite subgraph on the vertex set V i−1
∪ V i and the edges with one end in V i−1 and

the other in V i, where 1 ≤ i ≤ m. By the definition of µm(G), Gi is isomorphic to Gj for any j ≠ i, 1 ≤ j ≤ m. If v0
j v

0
j′ ∈ E0,

then both vi−1
j vi

j′ ∈ E(Gi) and vi−1
j′ vi

j ∈ E(Gi). Clearly, ∆(Gi) = ∆(G) = ∆. In accordance, we also denote G by G0. Let X0

and X1 be the set of vertices in V 0 and V 1 (respectively) of degree ∆ in G1. First, we would like to show that there exists a
matching in G1 which saturates the vertices of both X0 and X1.

Lemma 5. There exists a matching M1 in G1 which saturates the vertices of both X0 and X1.

Proof. Assume ∅ ≠ S ⊆ X0. LetN(S) be the set of all neighbors of S in V 1 and let E1 and E2 be the sets of edges of G1 incident
with S and N(S), respectively. By definition of N(S), we have E1 ⊆ E2. Therefore, ∆|N(S)| ≥ |E2| ≥ |E1| = ∆|S|. We can
obviously assume ∆ ≥ 1, it then follows that |N(S)| ≥ |S| and hence, by Hall’s theorem [8], there exists a matching from
X0 to V 1; denote it by M . Let M ′ be the symmetric matching of M , that is, v0

i v
1
j ∈ M ′ if and only if v0

j v
1
i ∈ M . Thus, M ′ is

a matching from X1 to V 0. M ∪ M ′ together induce a graph in which each connected component is either an even cycle or
a path. There may exist multiple edges which we view them as 2-cycles. In the following, we will select some edges from
M ∪ M ′ to form a matching which saturates the vertices of both X0 and X1.

For a component of M ∪ M ′, if the component is an even cycle C2k, let e1, e2, . . . , e2k be the edge sequence of C2k,
we pick e1, e3, . . . , e2k−1. Then e1, e3, . . . , e2k−1 saturates all the vertices of C2k. If the component is an odd path P2k, let
e1, e2, . . . , e2k−1 be the edge sequence of P2k, we pick e1, e3, . . . , e2k−1. Then e1, e3, . . . , e2k−1 saturates all the vertices of
P2k. If the component is an even path P2k+1, let e1, e2, . . . , e2k be the edge sequence of P2k+1. By symmetry, without loss of
generality, assume that the vertex sequence of P2k+1 is v1

i1
, v0

j1
, v1

i2
, v0

j2
, . . . , v1

ik
, v0

jk
, v1

ik+1
. Then we conclude that it cannot

happen that both v1
i1
and v1

ik+1
belong to X1. Otherwise, suppose that both v1

i1
and v1

ik+1
are maximum degree vertices. Since

P2k+1 is an even path, either e1 or e2k belongs toM , assume e1 ∈ M; then v1
i1
is also saturated byM ′ by the fact that v1

i1
∈ X1,

so P2k+1 can be enlarged, a contradiction. Suppose dG1(v
1
ik+1

) < ∆(G); then we pick e1, e3, . . . , e2k−1. They saturate the
vertices of P2k+1 with maximum degree in G1.

Therefore, the edges we select from every component ofM ∪M ′ form a matching which saturates the maximum degree
vertices in G1. We denote this set of edges byM1. �
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We are now ready to prove the main result of this paper.

Theorem 6. For each integer m ≥ 1, the m-Mycielskian µm(G) of a graph G satisfies χt(µm(G)) ≤ ∆(µm(G)) + 2.

Proof. Let G be a graph with n vertices, note that ∆(µm(G)) = max{2∆(G), n}. Depending on whether ∆(µm(G)) = 2∆(G)
or ∆(µm(G)) = n, we will consider two cases. In both cases we will use an edge-coloring of the following graph. LetG be a
graph obtained from G0 by adding a new vertex w joined to all vertices of G0.

Case 1. n ≥ 2∆(G) + 1. In the case we have ∆(µm(G)) = n. Thus ∆(G) = n and dG(v0
j ) ≤ ∆(G) + 1 < n for every

j. Hence, the subgraph ofG induced by the vertices with maximum degree is just K1. By Theorem 3, there exists a proper
n-edge coloringf : E(G) → {c1, c2, . . . , cn} for G. We will modify and extendf to be a proper (n + 1)-total coloring
f : V (µm(G)) ∪ E(µm(G)) → {c1, . . . , cn, cn+1} for µm(G).

For any v0
j v

0
l ∈ E(G0), let f (v0

j v
0
l ) = f (v0

j v
0
l ), and for any j ∈ {1, . . . , n}, let f (v0

j ) = f (wv0
j ), f (v

m
j u) = cj. Suppose

Mm
⊆ E(Gm) is a matching which is corresponding to the matchingM1 in G1. Let f (Mm) = f (u) = cn+1. For the other edges

and vertices of µm(G) that are not colored yet, we will color them by the order E(G1), V 1, E(G2), V 2, . . . , E(Gm) \ Mm, Vm.
For 1 ≤ i ≤ m− 1, and each edge vi−1

j vi
l ∈ E(Gi), let L(vi−1

j vi
l) = {c1, c2, . . . , cn} \ {f (vi−1

j ), f (vi−1
j x)|vi−1

j x ∈ E(Gi−1)} be
a list of colors for edge vi−1

j vi
l . Since n ≥ 2∆ + 1 and at most ∆ + 1 colors are removed, we have |L(vi−1

j vi
l)| ≥ ∆(G). Since

∆(Gi) = ∆(G), by Theorem4,we can color the edges in E(Gi) properly by the set {c1, c2, . . . , cn}. For vi
j ∈ V i, j = 1, 2, . . . , n,

define F(vi
j) = {c1, c2, . . . , cn} \ {f (vi

jx), f (x)|v
i
jx ∈ E(Gi)}. Clearly, we have |F(vi

j)| ≥ 1. Choose one color from the set F(vi
j)

to color the vertex vi
j .

For any vm−1
j vm

l ∈ E(Gm) \ Mm, let L(vm−1
j vm

l ) = {c1, c2, . . . , cn} \ {f (vm−1
j ), f (vm

l u), f (v
m−1
j x)|vm−1

j x ∈ E(Gm−1)}; then
|L(vm−1

j vm
l )| ≥ ∆ − 1. Since ∆(Gm \ Mm) = ∆ − 1, by Theorem 4, we can color the edges in E(Gm) \ Mm properly by

the set {c1, c2, . . . , cn}. For vm
j ∈ Vm, j = 1, 2, . . . , n, define F(vm

j ) = {c1, . . . , cn, cn+1}\ {f (vm−1
i vm

j ), f (vm−1
i ), f (vm

j u),
f (u)|vm−1

i vm
j ∈ E(Gm)}. Note that there are at most ∆ colors for f (vm−1

i vm
j ) and at most ∆ colors for f (vm−1

i ) and one color
for each of f (vm

j u) and f (u). Furthermore, if there are exactly∆ colors for f (vm−1
i vm

j )’s, then the color for f (u) is among them.
Thus the set {f (vm−1

i vm
j ), f (vm−1

i ), f (vm
j u), f (u)|v

m−1
i vm

j ∈ E(Gm)} has at most 2∆ + 1 elements. Since n+ 1 ≥ 2∆ + 2, the
set F(vm

j ) is not empty, which implies that |F(vm
j )| ≥ 1. Choose one color from the set F(vm

j ) to color the vertex vm
j . This

forms a proper (n + 1)-total coloring for µm(G). So we get that χt(µm(G)) ≤ n + 1 = ∆(µm(G)) + 1. On the other hand,
χt(µm(G)) ≥ ∆(µm(G)) + 1 = n + 1. Hence, χt(µm(G)) = ∆(µm(G)) + 1 = n + 1 in this case.

Case 2. n ≤ 2∆(G). In the case we have ∆(µm(G)) = 2∆(G). Since ∆(G) = n ≤ 2∆(G), Theorem 2 implies that there
exists a proper (2∆(G) + 1)-edge coloringf : E(G) → {c1, c2, . . . , c2∆(G)+1} forG. We will modify and extendf to be a
proper (2∆(G) + 2)-total coloring f : V (µm(G)) ∪ E(µm(G)) → {c1, . . . , c2∆(G)+1, c2∆(G)+2} for µm(G).

For each edge v0
j v

0
l ∈ E(G0), let f (v0

j v
0
l ) = f (v0

j v
0
l ), and for j = 1, 2, . . . , n, let f (v0

j ) = f (wv0
j ) and f (vm

j u) = cj.
Let f (Mm) = f (u) = c2∆(G)+2. For the other edges and vertices that are not colored yet, we will color them by the order
E(G1), V 1, E(G2), V 2, . . . , E(Gm) \ Mm, Vm.

For 1 ≤ i ≤ m − 1, let vi−1
j vi

l ∈ E(Gi), and L(vi−1
j vi

l) = {c1, . . . , c2∆+1} \ {f (vi−1
j ), f (vi−1

j x)|vi−1
j x ∈ E(Gi−1)} be a list of

colors for edge vi−1
j vi

l ; then we have |L(vi−1
j vi

l)| ≥ ∆(G). Since ∆(Gi) = ∆(G), by Theorem 4, we can color the edges in E(Gi)

properly by the set {c1, . . . , c2∆(G)+1}. For the vertex vi
j ∈ V i, define F(vi

j) = {c1, . . . , c2∆(G)+1} \ {f (vi
jx), f (x)|v

i
jx ∈ E(Gi)}.

Clearly, we have |F(vi
j)| ≥ 1. Choose one color from the set F(vi

j) to color the vertex vi
j .

For each edge vm−1
j vm

l ∈ E(Gm) \ Mm, define the color set L(vm−1
j vm

l ) = {c1, . . . , c2∆(G)+1} \ {f (vm−1
j ), f (vm

l u), f (v
m−1
j

x)|vm−1
j x ∈ E(Gm−1)}; then |L(vm−1

j vm
l )| ≥ ∆(G) − 1. Since ∆(Gm \Mm) = ∆(G) − 1, by Theorem 4, we can color the edges

in E(Gm) \Mm properly by the set {c1, . . . , c2∆(G)+1}. For vm
j ∈ Vm, j = 1, 2, . . . , n, let F(vm

j ) = {c1, . . . , c2∆(G)+1, c2∆(G)+2}\

{f (vm−1
i vm

j ), f (vm−1
i ), f (vm

j u), f (u)|v
m−1
i vm

j ∈ E(Gm)}. Similar to the previous case, we have |F(vm
j )| ≥ 1. Choose one color

from the set F(vm
j ) to color the vertex vm

j . This forms a proper (2∆(G) + 2)-total coloring for µm(G). Hence χt(µm(G)) ≤

2∆(G) + 2 = ∆(µm(G)) + 2. On the other hand, χt(µm(G)) ≥ ∆(µm(G)) + 1. Therefore, ∆(µm(G)) + 1 ≤ χt(µm(G)) ≤

∆(µm(G)) + 2 in this case. This completes the proof of the theorem. �

By case 1 of Theorem 6, we can get the following corollary immediately.

Corollary 7. If ∆(G) ≤
|V (G)|−1

2 , then µm(G) is Type 1 for any integer m ≥ 1.

Moreover, we would like to show that the bounds in case 2 of Theorem 6 are reachable.

Lemma 8. For integer m ≥ 1, if m ≡ 0 mod 3, then µm(K2) is Type 1. Otherwise, it is Type 2.

Proof. Since µm(K2) ∼= C2m+3, the lemma holds by χt(C2r+1) =


3, if 2r + 1 ≡ 0 mod 3;
4, otherwise. �
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To conclude, we also show that the Mycielski of complete graph is always Type 1.

Theorem 9. For any integer n ≥ 3, µ(Kn) is Type 1.

Proof. It is known that χt(Kn) = n if n is odd and χt(Kn) = n + 1 if n is even [2].
Note that∆(µ(Kn)) = max{2(n−1), n} = 2(n−1). If n is odd, sinceχt(Kn) = n, let f : V (Kn)∪E(Kn) → {1, 2, . . . , n} be

a proper n-total coloring of Kn. It is obvious that every vertex of Kn should be colored differently, without loss of generality,
suppose f (v0

i ) = i, i = 1, 2, . . . , n. Then we can color properly the edges of G1 by n − 1 colors {n + 1, n + 2, . . . , 2n − 1}.
Let f (v1

i ) = i; f (v1
i u) = i + 1 for 1 ≤ i ≤ n − 1 and f (v1

nu) = 1, f (u) = n + 1. This gives a proper (2n − 1)-total coloring of
µ(Kn).

If n is even, consider Kn as a subgraph of Kn+1 where w is the new vertex. Since n+ 1 is odd, let f : V (Kn+1) ∪ E(Kn+1) →

{1, 2, . . . , n + 1} be a proper total coloring of Kn+1. LetM0,M1 be two disjoint perfect matchings of G1. Assume v1
i v

0
j ∈ M0,

v1
i v

0
l ∈ M1, and let f (v1

i v
0
j ) = f (wv0

j ) and f (v1
i u) = f (wv0

l ). Then we can color properly the edges of G1 \M0 by n−2 colors
{n + 2, n + 3, . . . , 2n − 1}. Let f (v1

i ) = f (w), f (u) = n + 2. This gives a proper (2n − 1)-total coloring of µ(Kn). �

3. Remark

Motivated by Case 1 of Theorem 6, we propose the following problem.

Problem. If a graph G has only one vertex of maximum degree and there are at least ∆(G) + 2 vertices in G, then it satisfies
TCC.

A proof of this special case of TCC would provide a strong support for TCC. Indeed if this special case is proven, then we
can prove that for any graph H , the total chromatic number of H is at most ∆(H) + 4. To see this we first add a new vertex
w and connect it with ∆(H) + 2 vertices of H . Denote the resulting graph by H ′. Thus H ′ is a graph with maximum degree
∆(H) + 2 and w is the only vertex attaining the maximum degree. Hence, χt(H ′) ≤ ∆(H ′) + 2 = ∆(H) + 4. Therefore, we
can color the vertices and edges of H properly with at most ∆(H) + 4 colors.
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