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a b s t r a c t 

The granular soils are pressure dependent materials and substantial volume change occurs during load- 

ing. Some granular soils contract (volume decrease) when sheared and some dilate (volume increase), 

depending on their initial state. Owing to the plastic volume change that accompanied plastic deforma- 

tion, the lack of normality rule arises and the granular soil exhibits a non-associated flow rule. As known 

the non normality has destabilizing effect on the soil behavior in the hardening regime (loss of positive 

definiteness of the second order work). The unstable behavior usually develops in association with dila- 

tion. A contracting soil displaying hardening and stable material behavior under drained conditions, may 

succumb to unstable flow type when its behavior becomes dilating. This paper deals with the extension 

of the static shakedown theorem to dilative granular soils in drained conditions, exhibiting pre-failure 

instability in the hardening regime, in the framework of non associated plasticity. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The soils in the subgrade underneath railways, road pavements

r offshore structures are subjected to a large number of loads,

raffic or propagation of water waves, during the life span of their

ervice. This type of loading is characterized by the number of

epetitions being formidably large and therefore, even though

he intensity is trivial, its accumulated effects could be of engi-

eering significance. A number of models have been constructed

pecifically to describe the behavior of soils under cyclic load-

ng. However the nature of these models requires that in actual

pplication, for traffic or wave loading analysis, a stress-strain

alculation performed for each individual cycle. This makes the

rocedure cumbersome and computationally expensive when a

arge numbers of cycles are involved. 

Shakedown theory is an alternative for the study of the long-

ime behavior of soils, subjected to a set of loads fluctuating

rbitrarily within given bounds. It gives a safe criterion against

ailure caused by the unlimited accumulation of plastic strains

uring loading, leading to either incremental collapse or alter-

ating plasticity. If, on the contrary, plastic strains cease to de-

elop further after some time and the soil responds purely elas-

ically for subsequent load cycles, one says that the soil shakes

own. 
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The static and kinematic shakedown theorems were derived by

1 , 2] for materials obeying to the concept of normality which have

n associated flow rule. Since these theorems are extended to

over various class of material behaviors and applications [3–12] .

mong them the soils and frictional materials which have non-

ssociated flow rule [3–6] . In the same spirit numerical procedures

n conjunction with finite element technique have been developed

or the prediction of shakedown or lack of it [9–12] . 

The lack of normality owing the plastic volume change has a

estabilizing effect on the soil behavior in the hardening regime,

ell before failure conditions are reached [13 , 21 , 22] . Since non-

ssociativeness implies non-symmetry of elastoplastic stiffness ma-

rix. In turn this implies that the loss of positive definiteness of

lastoplastic stiffness matrix occurs when its determinant is still

ositive [14] . In other terms the loss of its positive definiteness oc-

urs in the hardening regime and coincides with the loss of the

ositive definiteness of the second order work [14] . The unstable

ehavior of the granular soil in drained conditions develops usually

n association with dilation (volume increase). A contracting sand

isplaying hardening and stable material behavior, may succumb to

nstable flow type when its behavior becomes dilating [15 , 16] . Ex-

ept if the hardening modulus H > H cr , where H cr being a thresh-

ld which marks the limits between stability and instability. 

The hardening considered herein is assumed to be isotropic

epending on the plastic volumetric strains. It is introduced solely

o compensate for the destabilizing effect of the non normality.

https://doi.org/10.1016/j.mechrescom.2020.103473
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2020.103473&domain=pdf
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However, to cover both alternating plasticity and incremental

collapse a limited kinematic hardening is more appropriate [8] . 

This paper deals with the extension of the static shakedown

theorem to dilative granular soils in drained conditions, exhibiting

pre-failure instability in the hardening regime, in the framework

of non associated plasticity. 

2. Basic equations 

Let consider a solid occupying volume V bounded by surface S .

The solid is subjected to surface tractions and body forces, which

vary so slowly with time that inertia effects may be disregarded.

The surface tractions T i are prescribed on the part S T of the surface

S , while the displacement U i are prescribed on the remainder part

S u of this surface. The body forces F i are prescribed throughout V .

The precise manner in which T i and F i vary with time need not

to be known, but at any point of S T a range of variation must be

specified for each component of T i , and at any point of V a range

of variation must be assigned to each component of F i . 

Soils are compressible materials which display plastic volu-

metric strains under loading. To include this feature the plasticity

criterion is that of Drucker-Prager with the yield function given by

[20] 

F ( σi j , R ) = − αI 1 + 

√ 

J 2 − k ( R ) ≤ 0 (1)

in which α is material parameter, I 1 and J 2 denote the first in-

variant of the stress tensor σ ij and the second invariant of the

deviatoric stress tensor S ij . The positive increasing function k ( R ) of

the hardening variable R represents a measure of the current size

of the yield surface. The changes of the yield surface ensue from

the development of the plastic volumetric deformations. A suitable

plastic potential can be derived from the Drucker-Prager criterion

such that 

g 
(
σi j 

)
= −βI 1 + 

√ 

J 2 (2)

where β denotes the dilatancy factor. The plastic flow occurs with

the plastic strain rate ˙ ε p 
i j 

directed along the gradient vector of the

plastic potential g( σ ij ): 

˙ ε p 
ij 

= 

˙ λ
∂g 

∂σij 

= 

˙ λ

[ 

−β δij + 

S ij 

2 

√ 

J 2 

] 

(3)

while ˙ λ is a positive scalar which is non zero only when plastic

deformation occur, and δij is the Kronecker symbol. If the function

F and g coincide, the flow rule (3) is called associated. 

For an elastoplastic isotropic strain hardening material with

non associated flow rule, the evolution law of the hardening

variable R (an increasing function of time) is given by 

˙ R = 

[ 
2 

3 

˙ ε P ij ˙ ε 
P 
ij 

] 1/2 
= 

˙ λ
[ 

2 β2 + 

1 

3 

] 1/2 
= R 

˙ λ (4)

During plastic flow, the stress state must remain on the yield

surface, and the consistency condition 

∂F 

∂ σi j 

˙ σi j + 

∂F 

∂R 

˙ R = 

∂F 

∂ σi j 

˙ σi j − H · � · ˙ λ = 0 (5)

must be satisfied. The yield surface evolves as the plastic flow

continues. This is reflected by the term − H � 

˙ λ in Eq. (5) . Note

that H is the strain hardening modulus which is positive, zero,

or negative for strain hardening, perfect, and strain softening

plasticity, respectively. 

By substituting Eqs. (3) , (4) and the elastic stress-strain law

whose terms are defined below by Eqs. (13) , (20) and (24) 

˙ σi j = ˙ σ e 
i j + ˙ ρi j = E e i jkl 

(
˙ ε e kl + ˙ ε er 

kl = ˙ ε kl − ˙ ε p 
kl 

)
(6)
nto the consistency condition Eq. (5) one gets the value of the

lastic multiplier ˙ λ. Replacing this value of ˙ λ into Eqs. (3) , (6) and

sing again Eq. (5) , one obtains the elastoplastic stiffness tensor

23] 

 

ep 

ijkl 
= E e ijkl −

E e 
ijmn ( ∂ F /∂ σmn ) ( ∂ g/∂ σrs ) E e rskl 

H R + ( ∂ F /∂ σmn ) E e mnrs ( ∂ g/∂ σrs ) 
(7)

Herein E e 
i jkl 

denotes the isotropic linear elastic stiffness tensor

iven by 

 

e 
i jkl = 

(
K − 2 

3 

G 

)
δi j δkl + G 

(
δik δ jl + δil δ jk 

)
(8)

here K is the Bulk modulus and G the shear modulus for the

lastic material. 

The gradient of the yield function is obtained simply by re-

lacing the dilatancy coefficient β by the friction coefficient α in

q. (3) . The value of � is given by Eq. (4) . Because δij δij = 3, S ij
 ij = 2 J 2 and δij S ij = 0. Substituting into the general formula

7) and using the relation 

 

e 
i jkl δi j = 3 K δi j (9)

 

e 
i jkl S i j = 2 G S i j (10)

ne obtains the explicit expression 

 

ep 

ijkl 
= E ep 

ijkl 

−
9 K 2 αβ δij � δkl + 3 KG / 

√ 

J 2 
[
α S ij � δkl + β δij � S kl 

]
+ 

[
G 

2 /J 2 
]

S ij � S k

9 Kαβ + G + H 

[
2 β2 + 

1 
3 

]1 / 2 

(11

The elastoplastic compliance tensor C 
ep 

i jkl 
, the inverse of E 

ep 

i jkl 
, is

iven by 

 

ep 

i jkl 
= 

[ 

1 − 9 Kαβ + G 

H 

[
2 β2 + 

1 
3 

]1 / 2 

] 

C e i jkl (12)

here C 
ep 

i jkl 
is the isotropic linear elastic compliance tensor. 

In an elastic-plastic body under given loads T i , F i , the stress

eld σ ij can be written as 

i j = σ e 
i j + ρi j (13)

here σ e 
i j 

is the elastic stress field corresponding to the given

oads, and ρ ij is the residual stress field. Such a field is in equilib-

ium with zero body forces and zero prescribed surface tractions 

i j, j = 0 in V (14)

i j n j = 0 on S T (15)

here n is the unit vector along the outer normal of S , a comma

enotes partial derivative with respect to the space variable x i . In

urn the elastic stress field must satisfy the following equations 

e 
i j, j + F i = 0 in V (16)

e 
ij n j = T i on S T (17)

Accordingly the strain field can be written as 

 i j = ε e i j + ε r i j (18)

 

r 
i j = ε er 

i j + ε p 
i j 

(19)

The term ε e 
i j 

represents the elastic strain field in the hypothet-

cal elastic solid under the prescribed loads, whereas ε er 
i j 

denotes

he residual elastic strain field generated by the non compatible

lastic strain distribution ε p 
i j 

. 

The total strain field εij is compatible with the displacement

led u i = u e 
i 

+ u r 
i 
. Thus the elastic strain field ε e 

i j 
is derivable from

he elastic displacement field u e 
i 
, 

 

e 
i j = ( 1 / 2 ) 

(
u 

e 
i, j + u 

e 
j,i 

)
in V (20)
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e 
i j = C e i jkl σ

e 
kl (21) 

 

e 
i = U i on S u (22) 

nd the residual strain field ε r 
ij 

is derivable from the residual

isplacement field u 

r 
i 
, 

 

r 
i j = ( 1 / 2 ) 

(
u 

r 
i, j + u 

r 
j,i 

)
in V (23) 

 

er 
i j = C e i jkl ρkl (24) 

 

r 
i = 0 on S u (25) 

. Material stability 

According to Hill’s stability criterion [17] , a sufficient condition

or stability is the positive definiteness of the second order work: 

 d 2 W = ˙ σij ˙ ε ij = ˙ σij ˙ ε e ij + ˙ σij ˙ ε p 
ij 

> 0 , ∀ ̇ ε ij (26) 

here ˙ σi j represents the stress rate tensor and ˙ ε i j the correspond-

ng strain rate tensor. On the basis of this stability criterion it was

hown in [13] that a material obeying to non associated flow is

table if and only if H ≥ H cr , H cr ≥ 0 represents a critical value of

he hardening modulus defined as [13] : 

 cr = 

1 

2 

[
∂g 

∂ σi j 

E e i jkl 

∂g 

∂ σkl 

]1 

/ 2 

[
∂F 

∂ σrs 
E e rsmn 

∂F 

∂ σmn 

]1 

/ 2 

− 1 

2 

[
∂g 

∂ σi j 

E e i jkl 

∂F 

∂ σkl 

]
> 0 (27) 

Due to the positive definiteness of E e 
i jkl 

, one has ˙ σij ˙ ε e 
ij 

> 0.

t follows that ˙ σij ˙ ε p 
ij 

> 0 for H > H cr , referred as the stability

n the small [18] . In the large it is equivalent to the postulate of

aximum plastic dissipation [19] 

σij − σ̄ij 

)
˙ ε p 
ij 

> 0 (28) 

or any stress state σ ij generating a nonzero plastic strain rate

˙  
p 
i j 

, and for any stress state σ̄i j such that F ( ̄σi j , R ) < 0. Note that

he stress state σ̄i j may be inside or outside the convex plastic

otential surface g ( σ ij ) = 0 which is strictly included inside the

ield surface F ( σ ij , R ) = 0. Since the only requirement to be met

or the fulfillment of the stability condition (28) is that H > H cr . 

By substituting Eqs. (1) , (2) and (8) into Eq. (27) , one gets the

xplicit expression of the critical hardening modulus 

 cr = 

1 

2 

[
9 Kα2 + G 

]1 / 2 [
9 Kβ2 + G 

]1 / 2 − 1 

2 

[ 9 Kαβ + G ] > 0 (29) 

For α = β one has an associated flow, for β < 0 a non asso-

iated contractive flow, and for β > 0 a non associated dilative

ow. The inspection of Eq. (29) reveals that the granular soil

s completely stable ( H > H cr ) when its behavior is contractive

 β < 0). Since the critical value H cr of the hardening modulus

orresponds to dilative behavior ( β > 0). It is worth noting that

he plastic volumetric strain rate ˙ ε P v ( ̇ ε P v = − 3 ˙ λ β) is negative for

ilation (volume increase) and is positive for contraction (volume

ecrease), following the soil mechanics sign convention. 

On other hand non-associativeness implies non-symmetry of

he stiffness and the compliance matrices. The loss of the positive

efiniteness of matrix E eP (and C eP ) occurs when its determinant

s still positive [14] . In other terms the loss of its positive definite-

ess occurs in the hardening regime and coincides with the loss

f the positive definiteness of the second order work. At the onset

f loss of positive definiteness one has [14] 

et E eP ≥ Det E eP 
s = Det C eP 

s = 0 (30)

here E eP 
s and C eP 

s are the symmetric part of E eP and C eP respec-

ively. Alternatively the positive definiteness of the second order
ork 2 d 

2 W = 

˙ ˜ ε E eP ˙ ε = 

˙ ˜ ε E eP 
s ˙ ε > 0 entails the positive definiteness

f the stiffness matrix E eP . The tilde is used to indicate transpose

n matrix notation. The compliance matrix C eP is also positive defi-

ite. This implies that the value in the square bracket of Eq. (12) is

ositive regardless of the type of the plastic volumetric strains

isplayed by the granular soil which can be either contractive

r dilative. This result is essential for the proof of the extended

hakedown theorem. 

. The extended shakedown theorem 

Shakedown will occur if any time-independent distribution of

esidual stress ρ̄i j and the hardening variable R̄ can be found so

hat the sum of these residual stresses and the elastic stresses σ e 
i j 

 stress based on purely elastic behavior) is a safe state of stress,

.e. 

 

(
σ̄i j = σ e 

i j + ρ̄i j , R̄ 

)
< 0 (31) 

or all possible load combination within the prescribed range of

he loads. 

To prove the theorem, let us consider the non negative quantity

 ( t ) = 

1 

2 

∫ 
V 

C 

ep 

ijkl 

(
ρij − ρ̄ij 

)
( ρkl − ρ̄kl ) dV + 

∫ 
V 

Q 

(
R , ̄R 

)
dV (32) 

here ρ ij denotes the actual time dependent residual stresses, and

 ( R , R̄ ) represents a positive scalar function defined as 

 

(
R, R̄ 

)
= 

∫ R 

R̄ 

M 

(
ϑ, R̄ 

)
dϑ (33) 

The time derivative of Q ( R , R̄ ) is equal to M ( R , R̄ ) ˙ R . In turn the

ime-derivative of Eq. (32) gives 

˙ 
 ( t ) = 

∫ 
V 

C ep 

ijkl 

(
ρij − ρ̄ij 

)
˙ ρkl dV + 

∫ 
V 

M 

(
R, R̄ 

)
˙ R dV (34) 

hich making use of Eqs. (12) and (24) becomes 

˙ 
 ( t ) = 

⎡ 

⎢ ⎣ 

1 − 9 Kαβ + G 

H 

[
2 β2 + 

1 
3 

]1 

/ 2 

⎤ 

⎥ ⎦ 

∫ 
V 

(
ρi j − ρ̄i j 

)
˙ ε er 
i j dV 

+ 

∫ 
V 

M 

(
R, R̄ 

)
˙ R dV (35) 

The distribution of residual stresses ( ρi j − ρ̄i j ) is self-

quilibrating, and the residual strain rate field ( ˙ ε r 
i j 

= ˙ ε er 
i j 

+ ˙ ε p 
i j 

)

orms a compatible strain field. Hence Eq. (35) may be simplified

y means of the virtual work equation into 

˙ 
 ( t ) = −

⎡ 

⎢ ⎣ 

1 − 9 K αβ + G 

H 

[
2 β2 + 

1 
3 

]1 

/ 2 

⎤ 

⎥ ⎦ 

∫ 
V 

(
ρij − ρ̄ij 

)
˙ ε p 
ij 

dV 

+ 

∫ 
V 

M 

(
R , ̄R 

)
˙ R dV (36) 

From the definition above σ ij = σ e 
i j 

+ ρ ij and σ̄i j = σ e 
i j 

+ ρ̄i j ,

q. (36) can be rewritten as 

˙ 
 ( t ) = −

[ 

1 − 9 Kαβ + G 

H 

[
2 β2 + 

1 
3 

]1 / 2 

] ∫ 
v 

(
σij − σ̄ij 

)
˙ ε p 
ij 

dV 

+ 

∫ 
v 

M 

(
R, R̄ 

)
˙ R dV (37) 

The function M ( R , R̄ ) = k ( R ) – k ( ̄R ) < 0 since it has the sign

f ( R − R̄ ). Therefore Q( R , R̄ ) is a positive decreasing function of R
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Fig. 1. Shakedown criterion. 
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(positive for the value of R distinct of R̄ ). By considering the above

definition of M ( R , R̄ ), Eq. (37) becomes 

˙ 
 ( t ) = −

[ 

1 − 9 Kαβ + G 

H 

[
2 β2 + 

1 
3 

]1 / 2 

] ∫ 
v 

(
σij − σ̄ij 

)
˙ ε p 
ij 

dV 

+ 

[ 
2 β2 + 

1 

3 

] ∫ 
v 

[
k ( R ) − k 

(
R̄ 

)] . 

λ dV (38)

In drained conditions, the onset of instability is flagged by the

transition of the volumetric strain from contraction to dilation

[15] . However, if under repeated cyclic loads the behavior of

the granular soil still always contractive ( β < 0), the hardening

modulus H still always greater than H cr and the material is stable.

This implies that ˙ W (t) ≤ 0, where the equality holds only in

the absence of plastic flow ( ̇ ε p 
i j 

= 0). As W ( t ) > 0 by definition,

the condition 

˙ W ( t ) = 0 must eventually be reached, and this

condition corresponds to shakedown. Alternatively if the granular

soil exhibits a dilative behavior ( β > 0), shakedown will occur

only and only if the hardening modulus H > H cr . Otherwise the

granular soil succumbs to unstable flow type. In other terms

dilative volumetric strains displayed by the granular soils have

destabilizing effect. The condition of stability (28) can be violated

even in the hardening regime. 

Therefore the stress domain is separated into two perfectly

distinct regions: 

- The shakedown domain characterized by H > H cr , inside which

one have stabilization of the plastic strains. This domain is

delimited by the shakedown lines (SL) in compression and in

tension as shown in Fig. 1 . These lines are located below the

failure lines (FL) and above the characteristic lines (CL), which

mark the boundary between the contractive behavior and the

dilative behavior. 

- The non-shakedown domain over the range of positive hard-

ening moduli 0 < H < H cr . This domain is located between the

shakedown lines (SL) and the failure lines (FL). 

- For an associated flow rule ( α = β) the limit of the hardening

modulus degenerates to H cr = 0. The unstable behavior occurs

in the post peak softening regime ( H < 0). Unlike non asso-

ciated flow rule, dilation has no effect upon the shakedown

process in the hardening regime. 
- For a granular soil which exhibits a perfectly plastic behavior

( H = 0), shakedown will not occur. Since the lack of normality

generates material instability. 

. Conclusions 

In this paper an extension of the static shakedown theorem is

roposed to granular soils in drained conditions, exhibiting pre-

ailure instability in the hardening regime, in the frame work of

on associated plasticity. It is shown that shakedown is predicted

o always occur if the flow is non associated contractive. However

f the flow is non associated dilative shakedown will occur if the

ardening can compensate for the destabilizing effect of dilation

.e. if H > H cr . Note that H cr ≥ 0 being a threshold of the hardening

odulus which marks the limits between stability and instability.

his peculiarity of the non associated flow law of elastoplasticity

isappears an associated flow law in which the critical hardening

odulus reduces to H cr = 0. 
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