
Probabilistic Engineering Mechanics 59 (2020) 103036

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

Efficient calculation of the response statistics of two-dimensional fractional
diffusive systems
Giovanni Malara a, Pol D. Spanos b, Yiyu Jiao c,∗

a Natural Ocean Engineering Laboratory, DICEAM Department, Mediterranea University of Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
b L. B. Ryon Chair in Engrg., George R. Brown School of Engrg., Department of Mechanical Engrg., Rice University, Houston, TX 77005, United States of America
c Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, 710072, PR China

A R T I C L E I N F O

Keywords:
Fractional Laplacian
Statistical linearization
Boundary element method
Fractional diffusion equation

A B S T R A C T

Various natural phenomena are described by anomalous diffusion processes. Notable examples relate to the
study of diffusion of tracers in particles in turbulent flows, or in the propagation of acoustic waves. In
this context, the governing equations involve a fractional Laplacian operator, which replaces the classical
Laplacian, and may involve nonlinear terms. This leads to problems described by fractional nonlinear diffusion
equations. In general, no analytical solutions are available for determining the response of these systems. Thus,
the development of approximate approaches circumventing the use of computationally demanding numerical
techniques is desirable. This paper proposes a statistical linearization based approach, which allows calculating
approximately, albeit iteratively, the response statistics. The method is developed using a recently proposed
representation of the fractional Laplacian in conjunction with a mode expansion of the system response. It
is implemented by introducing non-orthogonal eigenfunctions of the fractional Laplacian of the response,
which are obtained from the linear modes of the classical diffusion equation. Such a representation allows
deriving a system of nonlinear ordinary differential equations, which is linearized in a stochastic mean square
sense. Then, the response statistics and power spectral density are determined by an iterative procedure.
Numerical results pertaining to a system with white noise excitation demonstrate the efficiency of the proposed
approximate approach. Further, comparisons with data from relevant Monte Carlo results assess the reliability
of the estimated response.

1. Introduction

Anomalous diffusion is a phenomenon observed in several theoreti-
cal and experimental studies. Examples can be found in conduction [1–
3], or in the propagation of waves in scattered media [4–6] where, for
instance, it has been observed in the propagation of acoustic fields [7–
10]. Most experimental evidence of anomalous diffusion has been re-
ported in case of random or disordered media. For example, Barthelemy
et al. [11] showed that light waves perform Lévy flights in adequately
designed optical materials; Asatryan et al. [12] reported an exam-
ple of anomalous diffusion of electromagnetic waves in disordered
two-dimensional photonic crystals; and Burresi et al. [13] reported
experimental observations of interference effects in transport based
on Lévy statistics in super-diffusive materials. Nevertheless, recently,
Buonocore et al. [14] demonstrated, theoretically and numerically, that
anomalous diffusion occurs also in periodic media with no disorder.
Their analysis pertains to acoustic wave fields, but the results can be
generalized in other domains.
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From a modelling perspective, the critical feature of this phe-
nomenon is that the associated field variables have a power-law dis-
tribution. This fact leads to models generalizing the classical diffusion
equation by a fractional diffusion equation. That is, equations involving
the use of a fractional Laplacian operator generalizing the classical
Laplace operator. Notable applications of this concept were proposed
by Benson et al. [15,16] and Mainardi [17].

The fractional Laplacian operator is an integro-differential opera-
tor used in nonlocal models, such as nonlocal wave equations [18]
and phase transitions [19], as well as for modelling the anomalous
diffusion, as mentioned previously. Since the hyper-singular integral
definition [20] of the fractional Laplacian was introduced, a number of
representations were proposed [21] which share the common feature
of generalizing the classical Laplace operator. However, limited results
are available relating to solutions of the equations involving such an
operator. In this regard, Huang and Oberman [22] derived a finite
difference method for solving equations involving the fractional Lapla-
cian in one dimension. Varlamov [23] investigated the existence and
uniqueness of a global-in-time solution in a nonlinear heat equation.
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Chen and Pang [21] introduced an implicit definition of the fractional
Laplacian, and applied the singular boundary method to a fractional
Laplacian equation.

The problem of estimating the response of systems governed by
equations involving a fractional Laplacian is quite challenging espe-
cially when the governing equations include also nonlinear terms.
Indeed, in these context, no analytical solutions are available. Thus,
it is desirable to develop approximate analytical solutions which may
be used as an alternative to time consuming numerical methods. The
open literature addresses the use of approximate approaches for sys-
tems endowed with fractional elements, especially in situations where
the fractional derivative operates in the time domain. For instance,
approximate response statistics were derived by Spanos and Evan-
gelatos [24] by statistical linearization for nonlinear oscillators with
fractional derivative elements. In this context, other techniques were
proposed by Huang and Jin [25], by stochastic averaging, Cottone
et al. [26], by the Fokker–Plank–Kolmogorov equation, and by Di
Matteo et al. [27] by Wiener Path Integrals. Further contributions on
this subject were made by Kougioumtzoglou and Spanos [28] who
proposed a harmonic wavelets based approximate analytical technique
for calculating the response of both linear and non-linear time-variant
oscillators; and by Spanos et al. [29], who used a Hilbert transform
based stochastic averaging technique. Approximate approaches were
used for estimating the response of nonlinear continua, as well. In
this context, Li [30] and Li et al. [31] investigated the behaviour of
Timoshenko beams with fractional derivative constitutive equation by
the Galerkin method. The response statistics of nonlinear beams and
plates were determined approximately by statistical linearization by
Spanos and Malara [32] and Malara and Spanos [33], respectively.
Analytical solutions for the vibration problem of a linear beam involv-
ing fractional derivatives were derived by Agrawal [34], by a Laplace
transform technique; by Di Lorenzo et al. [35] in the frequency domain;
and by Liaskos et al. [36] in an implicit form.

This paper considers the problem of determining the response statis-
tics of a system governed by a nonlinear fractional diffusion equation.
This subject was analysed by Jiao [37], that developed a numeri-
cal approach for estimating the system response in the time domain.
Herein, an approximate approach based on the statistical linearization
technique is developed. The approach is implemented by introducing
non-orthogonal eigenfunctions of the fractional Laplacian of the re-
sponse, which are derived from the linear modes of a classical linear
diffusion equation. In this manner, the response can be represented by
a modal expansion, which is used for deriving a system of nonlinear
ordinary differential equations determining the mode amplitudes. It is
shown that the approach can be implemented in an iterative manner,
and comparisons with relevant Monte Carlo data assess the reliability
of the method.

2. Preliminary concepts on fractional Laplacian

This section establishes the fundamental concepts leading to the
formulation of a fractional Laplacian operator, and describes general
results that will be applied in the development of the statistical lin-
earization based approach. A detailed mathematical background is
provided in the monograph by Samko et al. [20].

A natural framework for the definition of the fractional Laplacian is
the Fourier transform theory. In this context, denoting by (−𝛥)𝛼∕2𝑢(𝒙)
the fractional Laplacian of order 𝛼 of a scalar function 𝑢(𝒙), with the
vector 𝒙 ∈ R𝑑 , this operator is defined by the equation,

(−𝛥)𝛼∕2 𝑢 (𝒙) = F −1
|𝒙|𝛼 F 𝑢(𝒙), (1)

Where the vector 𝝎 ∈ R𝑑 is the Fourier variable vector; the Fourier
transform is given by the equation

F {𝑢(𝒙)} = ∫R𝑑
𝑢(𝒙)𝑒𝑖𝝎⋅𝒙𝑑𝒙, (2)

and F −1{⋅} renders the inverse Fourier transform by the equation

F −1{𝑔(𝝎)} = 1
(2𝜋)𝑑 ∫R𝑑

𝑔(𝝎)𝑒−𝑖𝝎⋅𝒙𝑑𝝎. (3)

While constructing such an operator, it is seen that the negative powers
lead to the so-called Riesz potentials,

𝐼𝛼𝑢 (𝒙) = 1
𝛾𝑑 (𝛼) ∫R𝑑

𝑢 (𝒚) 𝑑𝒚
|𝒙 − 𝒚|𝑑−𝛼

, 𝛼 ≠ 𝑑, 𝑑 + 2, 𝑑 + 4,… (4)

in which 𝛾𝑑 (𝛼) is a normalizing constant. Instead, the positive powers
lead to convolution integrals having an order of singularity higher than
the dimension of the space R𝑑 . That is, they are hyper-singular inte-
grals. In this context, to guarantee the convergence of the convolution,
this operation is introduced by utilizing finite differences. Thus, if finite
differences of the function 𝑢 (𝒙) are denoted by the symbol 𝛥ℎ𝑢(𝒙), the
operation (−𝛥)𝛼∕2, for 𝛼 > 0, is given by the equation

𝐷𝛼𝑢 (𝒙) = 1
𝑑𝑛(𝛼) ∫R𝑑

𝛥𝑦𝑢(𝒙)

|𝒚|𝑑+𝛼
𝑑𝒚, (5)

where 𝑑𝑛(𝛼) is a normalizing constant. Eq. (5) is indeed the Riesz
derivative, however, it is necessary to select an appropriate value of the
normalizing constant for making this equation consistent with the fun-
damental relation (1). Thus, the operation leading to a generalization
of the Laplace operator is

(−𝛥)
𝛼
2 𝑢 (𝒙) = F −1

|𝒙|𝛼 F 𝑢 (𝒙) =

{

𝐼−𝛼𝑢 (𝒙) , 𝛼 < 0
𝐷𝛼𝑢 (𝒙) , 𝛼 > 0.

(6)

Various other representations of the fractional Laplacian have been
proposed in the open literature. The representation adopted in the fol-
lowing section was described by Chen and Holm [38]. Specifically, they
proposed the Caputo-type representation of the fractional Laplacian of
a bounded function 𝑢 (𝐱),

(−𝛥)
𝛼
2 𝑢 (𝒙) = 𝐼2−𝛼𝑑 [−𝛥𝑢 (𝒙)] , for 1 < 𝛼 < 2, (7)

where 𝛥𝑢(𝑥) is the classical Laplacian operator. In this case, the Riesz
potential on a bounded convex domain 𝛺 in R𝑑 is defined as

𝐼2−𝛼𝑑 𝜑 (𝒙) = 𝑐(𝛼)∫𝛺
𝜑(𝝃)

|𝒙 − 𝝃|𝑑+𝛼−2
𝑑𝝃, (8)

where 𝝃 is the coordinate vector in the domain 𝛺 and

𝑐 (𝛼) =
𝛤 [ 𝑑−2+𝛼2 ]

𝜋𝑑∕222−𝛼𝛤 [ 2−𝛼2 ]
, (9)

with 𝛤 being the Gamma function [39]. Since such an operator nat-
urally includes the boundary conditions and reduces the singularity of
the integrand, it is commonly used in bounded systems. It can be proved
that, under sufficiently mild conditions on the function 𝑢 (𝐱), the limit
of such an expression [Eq. (7)], when the fractional order tends to 2,
is the classical Laplace operator. That is,

lim
𝛼→2−

(−𝛥)
𝛼
2 𝑢 (𝒙) = −𝛥𝑢(𝒙). (10)

Even in this case, the representation is consistent with Eq. (1). That is,

F {𝐼2−𝛼𝑑 [−𝛥𝑢 (𝒙)]} = |𝝎|𝛼−2 F {−𝛥𝑢(𝒙)} = |𝝎|𝛼 F {𝑢(𝒙)}. (11)

3. Statistical linearization method

In this section the development of the statistical linearization ap-
proach is pursued by considering a system governed by a nonlinear
fractional partial differential equation on a rectangular domain [37].
In the following, the rectangular domain is defined over the region

𝛺 = {(𝑥, 𝑦) ∶ − 𝑎 ≤ 𝑥 ≤ 𝑎,−𝑏 ≤ 𝑦 ≤ 𝑏}, (12)

its boundary is denoted as 𝜕𝛺, and the problem is two-dimensional
(𝑑 = 2). Specifically, the governing equation is

�̇� (𝑥, 𝑦, 𝑡) + (−𝛥)
𝛼
2 𝑢 (𝑥, 𝑦, 𝑡) + 𝑘𝑢3(𝑥, 𝑦, 𝑡) = 𝑞(𝑥, 𝑦, 𝑡), 1 < 𝛼 < 2, (13)
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in which t denotes the time variable, the over-dot denotes differenti-
ation with respect to time, and k is a nonlinear parameter accounting
for the relevance of the nonlinear term. This equation describes the
classical diffusion when 𝛼 = 2, while the case 1 < 𝛼 < 2 corresponds
to the anomalous diffusion. A known physical mechanism described
by this equation is the heat propagation, and for this reason it is also
known as fractional heat equation [40]. The source term 𝑞 = 𝑞 (𝑥, 𝑦, 𝑡)
is assumed of a separable form. Thus,

𝑞 (𝑥, 𝑦, 𝑡) = 𝑝 (𝑥, 𝑦) 𝑓 (𝑡), (14)

where 𝑝 (𝑥, 𝑦) is a deterministic function and 𝑓 (𝑡) is a zero mean
stationary Gaussian random process with given power spectral density
function. The boundary condition associated with Eq. (13) is

𝛽1𝑢 + 𝛽2
𝜕𝑢
𝜕𝑛

= 𝛽3, on 𝜕𝛺, (15)

and the initial condition is

𝑢 (𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (16)

where 𝛽1, 𝛽2, 𝛽3 are known functions defined on the boundary, and 𝑢0(x,
y) is a known space dependent function.

To solve Eq. (13) approximately, the system response is represented
by the series expansion

𝑢 (𝑥, 𝑦, 𝑡) =
∞
∑

𝑚=1

∞
∑

𝑛=1
𝑤𝑚𝑛(𝑡)𝑣𝑚𝑛(𝑥, 𝑦), (17)

in which 𝑣𝑚𝑛 (𝑥, 𝑦) are the eigenfunctions of the linear diffusion equa-
tion associated with the boundary condition (15), and 𝑤𝑚𝑛 (t) are time-
dependent amplitudes. The eigenfunctions are selected by utilizing the
equation

−𝛥𝑣𝑚𝑛 (𝑥, 𝑦) = 𝜆𝑚𝑛𝑣𝑚𝑛(𝑥, 𝑦), (18)

where 𝜆𝑚𝑛 are constants, and the orthogonality condition holds. That
is,

∫

𝑏

−𝑏 ∫

𝑎

−𝑎
𝑣𝑠𝑙𝑣𝑚𝑛𝑑𝑥𝑑𝑦 = 𝐶𝑚𝑛𝛿𝑚𝑠𝛿𝑛𝑙 , (19)

with 𝛿𝑚𝑠 being the Kronecker delta, and 𝐶𝑚𝑛 being a constant. Similar
expansions have been used for solving other problems involving frac-
tional operators, such as beam and plate vibration problems [32,33],
but in those problems the fractional operator is operating in the time
domain. Instead, the fractional operator in Eq. (13) is defined in the
space domain. This fact poses the problem of estimating appropriately
the fractional Laplacian of the response represented by Eq. (17). For
this purpose and to adopt the series expansion (17), the Riesz potential
associated with the eigenfunctions 𝑣𝑚𝑛, denoted as 𝑧𝑚𝑛(𝑥, 𝑦), is derived.
Specifically, if 𝑃 =

(

𝑥𝑃 , 𝑦𝑃
)

and 𝑄 =
(

𝑥𝑄, 𝑦𝑄
)

are two points in the
domain 𝛺, the Riez potential is given by the equation

𝑧𝑚𝑛 (𝑃 ) = 𝐼2−𝛼𝑑
(

𝑣𝑚𝑛
)

= 𝑐(𝛼)∫𝛺
𝑣𝑚𝑛 (𝑄)
|𝑃 −𝑄|

𝛼 𝑑𝛺(𝑄), (20)

where the distance between the points is given by the equation

|𝑃 −𝑄| =
√

(

𝑥𝑃 − 𝑥𝑄
)2 +

(

𝑦𝑃 − 𝑦𝑄
)2. (21)

In this manner, the fractional Laplacian of the eigenfunctions is derived
from Eq. (18). That is,

(−𝛥)
𝛼
2 𝑣𝑚𝑛 (𝑥, 𝑦) = 𝜆𝑚𝑛𝑧𝑚𝑛(𝑥, 𝑦). (22)

Thus, the fractional Laplacian of the system response is given by the
equation

(−𝛥)𝛼∕2u =
∞
∑

𝑚=1

∞
∑

𝑛=1
𝜆𝑚𝑛𝑤𝑚𝑛(𝑡)𝑧𝑚𝑛(𝑥, 𝑦). (23)

Eq. (23) is used in conjunction with Eq. (17) into Eq. (13). Then, the
resulting residual is projected on the space of modes 𝑣𝑚𝑛. By exploiting
the orthogonality condition (19), the following system of nonlinear

ordinary differential equations governing the evolution of the mode
amplitudes is obtained:

𝐶𝑚𝑛�̇�𝑚𝑛 +
∞
∑

𝑠=1

∞
∑

𝑙=1
𝛽𝑚𝑛,𝑠𝑙𝑤𝑠𝑙 + 𝑘∫𝛺

𝑣𝑚𝑛

( ∞
∑

𝑠=1

∞
∑

𝑙=1
𝑤𝑠𝑙𝑣𝑠𝑙

)3

𝑑𝛺 = 𝑃𝑚𝑛𝑓 (𝑡) ,

for 𝑚, 𝑛 = 1, 2,… ,∞. (24)

The constants in Eq. (24) are given by the equations,

𝛽𝑚𝑛,𝑠𝑙 = 𝜆𝑠𝑙 ∫𝛺
𝑣𝑚𝑛𝑧𝑠𝑙𝑑𝛺, (25)

and

𝑃𝑚𝑛 = ∫𝛺
𝑣𝑚𝑛(𝑥, 𝑦)𝑝 (𝑥, 𝑦) 𝑑𝛺. (26)

The formulation captured in Eq. (24) points out the critical difference
of the case considered herein from the classical heat equation. Indeed,
in the classical heat equation the orthogonality condition requires
determining only the natural frequencies, 𝛽𝑚𝑛,𝑚𝑛. Instead, herein the
influence of the fractional Laplacian relates to the presence of off-
diagonal elements 𝛽𝑚𝑛,𝑠𝑙 associated with the linear terms 𝑤𝑚𝑛. This
relates to the fact that the functions {𝑧𝑚𝑛} are not orthogonal, in
general.

Eq. (24) constitute a system of nonlinear ordinary stochastic differ-
ential equations, which can be recast in a matrix form as

𝐂�̇� +𝐊𝐰 + 𝐠 (𝐰) = 𝐪, (27)

where w is the vector of the mode amplitudes; C is a diagonal matrix
with elements 𝐶𝑚𝑛; and K is a fully populated matrix with elements

𝐾𝑖𝑗 = 𝛽𝑚𝑛,𝑠𝑙 , for 𝑖 = (𝑚, 𝑛) and 𝑗 = (𝑠, 𝑙). (28)

Further, the load vector has elements

𝑞𝑖 = 𝑃𝑚𝑛𝑓 (𝑡), (29)

and g (w) is a vector function capturing all of the associated nonlinear-
ities.

Next, an approximate solution of Eq. (27) is sought by the statistical
linearization scheme. Specifically, the original nonlinear system of
equations is replaced by the surrogate linear system

𝐂�̇� +
(

𝐊 +𝐊𝐞𝐪
)

𝐰 = 𝐪. (30)

In this equation the matrix 𝐊𝐞𝐪 is an equivalent coefficient matrix,
whose elements are determined by minimizing the error 𝜺 between the
linear and the nonlinear system in a mean square sense. Specifically,
seek to satisfy the criterion
⟨

𝜺𝑻 𝜺
⟩

= minimum, (31)

where ⟨⋅⟩ denotes the averaging operator and the error 𝜺 defined

𝜺 = 𝒈 (𝒘) −𝑲𝒆𝒒𝒘. (32)

The necessary conditions for solving this minimization problem are
𝜕

𝜕𝐾𝑒
𝑖𝑗

⟨

𝜺𝑻 𝜺
⟩

= 0, (33)

where 𝐾𝑒
𝑖𝑗 is the (i, j) element of the matrix 𝐊𝐞𝐪. Note that the excitation

q is a Gaussian random vector. Thus, the system response calculated by
the equivalent linear system is Gaussian, as well. In this context, it can
be argued [41] that the equivalent coefficients are calculated directly
by the equation

𝐾𝑒
𝑖𝑗 =

⟨

𝜕𝑔𝑖
𝜕𝑤𝑗

⟩

. (34)

Thus, 𝐊𝐞𝐪 can be determined by the equations

𝐾𝑒
𝑖𝑗 = 3𝑘𝐼𝑖𝑗𝑗𝑗

⟨

𝑤2
𝑗

⟩

+ 6𝑘
∑

𝑙≠𝑗
𝐼𝑖𝑗𝑗𝑙

⟨

𝑤𝑗𝑤𝑙
⟩

+ 3𝑘
∑

𝑙1≠𝑗

∑

𝑙2≠𝑗
𝐼𝑖𝑗𝑙1𝑙2

⟨

𝑤𝑙1𝑤𝑙2

⟩

,

for 𝑖, 𝑗 = 1,… ,∞, (35)
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where

𝐼𝑖𝑙1𝑙2𝑙3 = ∫𝛺
𝑣𝑖𝑣𝑙1𝑣𝑙2𝑣𝑙3𝑑𝛺. (36)

Since f (t) is a stationary Gaussian process with given power spec-
tral density function matrix 𝑺𝒒 (𝜔), the spectral density matrix of
the response w in Eq. (30) is calculated by the classical stochastic
input–output relationship

𝑺𝒘 (𝜔) = 𝑯 (𝑖𝜔)𝑺𝒒(𝜔)𝑯𝑻∗(𝑖𝜔), (37)

where 𝑻 * denotes the conjugate transpose operation, and 𝐇 (𝑖𝜔) is the
frequency response matrix

𝐇 (𝑖𝜔) = [𝑖𝜔𝐂 +
(

𝐊 +𝐊𝐞𝐪
)

]−1. (38)

In this context, the average values involved in Eq. (35) can be readily
calculated once the response power spectral density matrix is known
by the equation

𝐾𝑒
𝑖𝑗 = 3𝑘𝐼𝑖𝑗𝑗𝑗𝑆𝑤𝑗𝑤𝑗

+ 6𝑘
∑

𝑙≠𝑗
𝐼𝑖𝑗𝑗𝑙𝑆𝑤𝑗𝑤𝑙

+ 3𝑘
∑

𝑙1≠𝑗

∑

𝑙2≠𝑗
𝐼𝑖𝑗𝑙1𝑙2𝑆𝑤𝑙1𝑤𝑙2

,

for 𝑖, 𝑗 = 1,… ,∞, (39)

where the quantities 𝑆𝑤𝑖𝑤𝑗
are estimated directly from the elements of

the response power spectral density as

𝑆𝑤𝑖𝑤𝑗
= ∫

+∞

−∞
𝑆𝑤𝑖𝑤𝑗

(𝜔) 𝑑𝜔. (40)

It is seen that the calculation of the equivalent coefficients requires
the a priori knowledge of the response statistics. This fact implies that
the calculation is pursued by an iterative procedure. Specifically, the
algorithm is initiated by assuming an equivalent matrix 𝐊𝐞𝐪 populated
by zeros. Then, the response statistical moments are calculated by
utilizing the stochastic input–output relation (37), and the result is
used for updating the values of the equivalent coefficients by Eq. (39).
This procedure usually converges in a few iterations, relating to the
criterion that the variation in consecutive estimated equivalent stiffness
coefficients becoming lower than a reasonable pre-assigned threshold.

Finally, the resulting equivalent linear system is used for calculating
the response statistics. Specifically, the variance of the response is
estimated by the equation

𝜎2𝑢 (𝑥, 𝑦) =
∞
∑

𝑖=1

∞
∑

𝑗=1
𝑣𝑖𝑣𝑗𝑆𝑤𝑖𝑤𝑗

, (41)

and the power spectral density function of the response at a certain
point is

𝑆𝑢 (𝑥, 𝑦, 𝜔) =
∞
∑

𝑖=1

∞
∑

𝑗=1
𝑣𝑖𝑣𝑗𝑆𝑤𝑖𝑤𝑗

(𝜔), (42)

𝑆𝑤𝑖𝑤𝑗
(𝜔) being the elements of the response power spectral density

function 𝑺𝒘 (𝜔).

4. Numerical results

This section involves a numerical application of the statistical lin-
earization approach. For assessing the reliability of the method, the
statistical linearization results are compared against relevant Monte
Carlo data. In this regard, the algorithm described by Jiao [37] is
employed for synthesizing a spectrum compatible excitation and solv-
ing numerically the fractional partial differential equation (13) by an
approach based on the Boundary Element Method. So that, the response
statistics are determined directly from the simulated response time
histories.

The implementation of the iterative algorithm described in the
previous section requires the calculation of the coefficients 𝛽𝑚𝑛,𝑠𝑙 given
in Eq. (25). In general, the integral involved in this calculation cannot
be determined analytically. Therefore, its estimation is conducted by
numerical integration. Specifically, the domain 𝛺 is discretized in small

Fig. 1. Power spectral density function of the response u at point (0, 0) calculated by
numerical simulation and statistical linearization in case of fractional derivative order
𝛼 = 1.9. Nonlinear parameter: 𝑘 = 0.1 (left panel); and 𝑘 = 0.5 (right panel).

panels so that 𝑣𝑚𝑛 can be assumed constant over each panel, and the
elements {𝑧𝑚𝑛} of the vector 𝐳𝐦𝐧 involved in the integral are calculated
by the equation

𝐳𝐦𝐧 = 𝐌 ⋅ 𝐯𝐦𝐧. (43)

The elements of the matrix M are derived directly from Eq. (20).
Specifically,

𝑀𝑖𝑗 = 𝑐(𝛼)∫𝛺𝑗

1
|

|

𝑃𝑖 −𝑄|

|

𝛼 𝑑𝛺. (44)

where 𝑃𝑖 is kept constant, and Q varies over the jth element of the
domain. The numerical computation of Eq. (44) requires a note of
caution in the computation of the diagonal elements of the matrix M,
because the integral is singular. In this situation, the numerical method
described by Chen and Pang [21] is utilized.

The numerical application concerns a rectangular plate with sides
𝑎 = 5 and 𝑏 = 2.5 (note that all variables and values are dimensionless).
A Dirichlet boundary condition is posed. That is,

𝑢 = 0 on𝛤 . (45)

The time-dependent part 𝑓 (𝑡) of the excitation is a Gaussian random
process compatible with a white noise spectrum having spectral level
𝑆 (𝜔) = 0.5, while the space dependent part is constant, 𝑝 (𝑥, 𝑦) = 1.
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Fig. 2. Power spectral density function of the response u at point (0, 0) calculated by
numerical simulation and statistical linearization in case of fractional derivative order
𝛼 = 1.5. Nonlinear parameter: 𝑘 = 0.1 (left panel); and 𝑘 = 0.5 (right panel).

In the simulation, the spectral method [42] is utilized to generate
spectrum-compatible time histories of the excitations, with 𝑆 (𝜔) = 0.5
for 0 < 𝜔 ≤ 20𝜋 and 𝑆(𝜔 = 0) = 0.

The modes implemented in this specific numerical example are
given by the equation

𝑣𝑚𝑛 (𝑥, 𝑦) = sin
[

𝑚𝜋(𝑥 + 𝑎)
2𝑎

]

sin
[

𝑛𝜋(𝑦 + 𝑏)
2𝑏

]

. (46)

The numerical results pertain to different fractional derivative orders,
and levels of the nonlinear parameter k. The comparisons are conducted
with the purpose of capturing the impact of these parameters on the
reliability of the statistical linearization. The first comparison is shown
in Figs. 1 and 2. The figures show the power spectral density functions
of the response calculated at the geometrical centre of the domain (0,
0). Each figure shows the response spectrum estimated by statistical
linearization (red line), and the one determined via Monte Carlo data
(blue dotted line). In the application of the statistical linearization
approach a variable number of mode shapes is used. Specifically, 81
modes have been employed for deriving Fig. 1, while 121 modes have
been employed for Fig. 2. Including more modes did not yield further
variations in the estimated power spectrum. It is seen that there is an
excellent agreement between the approximate solution, and the Monte
Carlo data in the case of small nonlinearities (left panels). Indeed, the
approximation is able to estimate the power spectrum behaviour over

Fig. 3. Variance of the response 𝑢 at point (0, 0) calculated by numerical simulation
and by statistical linearization (left panel) and relative error (right panel) under the
assumption of fractional derivative order 𝛼 = 1.9.

the whole frequency domain. The reliability of the approach deterio-
rates slightly for higher values of the nonlinear parameter. Indeed, in
this context (right panels), there are some ‘‘under –estimations’’ in the
lower frequency band. However, it is worth-mentioning that the high
frequency tail is predicted quite well.

The reliability of the approach for estimating the response statistics
is studied in Figs. 3 and 4. The figures show the variance of the response
calculated at the centre of the domain. Specifically, they show the
influence of the nonlinear parameter k on the response variance. In
this regard, note that the figures show variance values normalized by
𝜎20 , which is the response variance associated with the linear system
obtained by neglecting the nonlinear contribution in Eq. (13) (i.e., by
setting 𝑘 = 0). The figures demonstrate that the approximate approach
estimates quite reliably the response statistics even in case of large
nonlinearities. Clearly, the agreement between the approximate solu-
tion and the numerical one is affected by the strength of the nonlinear
term. Indeed, larger discrepancies are observed for larger values of the
nonlinear parameter k. However, the relative error study (right panels)
points out that such an error does not exceed 15%. An interesting
feature of this approximate approach is that it is not affected by the
fractional derivative order. Indeed, it has provided reliable response
estimates both in the case of nearly classical diffusion (Fig. 3), and in
the case of anomalous diffusion (Fig. 4).
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Fig. 4. Variance of the response 𝑢 at point (0, 0) calculated by numerical simulation
and by statistical linearization (left) and relative error (right) under the assumption of
fractional derivative order 𝛼 = 1.5.

5. Concluding remarks

This paper has dealt with the problem of estimating the response
of a system governed by a nonlinear partial differential equation in-
cluding a fractional Laplacian operator. Such a problem is relevant in
a number of practical situations, as in the propagation of waves in
random or disordered media. Specifically, the paper has considered
the nonlinear fractional heat equation. To the authors’ knowledge, no
analytical solution is available for this class of problems. Therefore, an
approximate approach based on the concept of statistical linearization
has been developed. The critical feature of the studied problem is the
treatment of the fractional Laplacian operator. Indeed, it is shown that
a series expansion representation of the response can be sought by
utilizing the linear modes associated with the classical heat equation.
In this manner, by projecting the original equation on the mode space,
a system of nonlinear ordinary differential equations describing the
time variation of the mode amplitudes is obtained. The influence of the
fractional Laplacian is seen in the inclusion of off-diagonal elements
associated with the linear term in the resulting differential equation,
which are null in the case of the classical Laplacian operator. Next,
the equation governing the mode amplitudes has been linearized in a
mean square sense. That is, a surrogate (equivalent) linear system for
the nonlinear one, has been identified by minimizing the mean square

error between the two systems. Then, the equivalent linear system has
been utilized for estimating the nonlinear system response statistics.

Numerical results have been used to assess the reliability of the
method. Specifically, the statistical linearization outputs have been
juxtaposed with relevant Monte Carlo data. It has been shown that
the approach provides a good estimate of the response statistics even
for strongly nonlinear term. Further, note that the numerical studies
have not revealed a significant deteriorations of the reliability of the
estimates when varying the fractional derivative order.
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