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a b s t r a c t 

Simple shear deformation is prevailing in geotechnical problems. One of its salient features is the rota- 

tion of the principal stress axes. Early numerical modelling of soil simple shear behaviour usually neglects 

the plastic deformation induced by principal stress rotation. Recent attempts at accurately modelling the 

sand simple shear behaviour have accounted for this loading mechanism, but those for the clay simple 

shear modelling are rare. To fill the gap, this paper presents a simple constitutive model for the sim- 

ulation of clay simple shear behaviour with consideration of the effect of the principal stress rotation. 

The model uses a non-associative flow rule and incorporates an additional mechanism associated with 

the principal stress rotation. The new mechanism caters for the soil non-coaxiality and plastic volumetric 

response under pure rotation of principal stress axes. Stress–strain incremental linearity is maintained in 

the proposed model. Comparisons of simulations with clay simple shear test data justify the importance 

of the principal stress rotation. The model satisfactorily captures the undrained shear strength. The soil 

non-coaxial behaviour is also well reproduced. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The simple shear type of deformation exists in many geotechni-

al engineering applications. For example, soils adjacent to a fric-

ion pile or underneath an offshore foundation, deform essentially

n the simple shear mode. In the laboratory, the simple shear de-

ormation is duplicated, in general, using the direct simple shear

pparatus. Criticisms against the simple shear test are mainly for

wo reasons: the non-uniform stress and strain distribution within

he soil specimen, and the lack of lateral stress measurement in

he routine simple shear tests. Despite these drawbacks, the sim-

le shear test has apparent advantages such as the ease of setting

p and rapid consolidation [1] , the ability to apply some rotation

f principal stress axes [2] , and most importantly, the relevance to

n situ conditions. 

Early numerical modelling of soil simple shear behaviour was

ocused on the stress and strain non-uniformity and the influence

f boundary conditions [3 –5] . The effect of the principal stress ro-

ation is usually neglected for simplicity. However, it has been long

ecognized through experiments that the principal stress directions
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ave strong impacts on the soil strength and deformation char-

cteristics [6 –9] . Roscoe [2] reported that the principal directions

f stress and plastic strain rate are non-coaxial (known as non-

oaxiality) in the presence of the principal stress rotation in the

imple shear. A few attempts at modelling the effect of the stress

otation in the simple shear were made recently. Osinov and Wu

10] and Yang and Yu [11] numerically evaluated the influence of

he principal stress rotation on the soil stress–strain response and

on-coaxiality in the simple shear. Gutierrez et al. [12] proposed

 two-dimensional sand model which incorporates a non-coaxial

tress-dilatancy relation and an anisotropic strength criterion. Jef-

eries et al. [13] idealized the influence of the principal stress rota-

ion as the ‘shrink’ of the yield surface and simulated the cyclic

imple shear tests of sand. Nevertheless, most of these models

ere dedicated to the sand modelling, whilst those for the clay

imple shear behaviour are rare. Responses of sand and clay are

ery different and usually require different types of yield surfaces

nd flow rules. 

Therefore, the objective of this paper is to develop a con-

titutive model for the clay behaviour during monotonic simple

hearing with specific consideration of the principal stress rotation.

he model is based on a non-associative version of the classical

odified Cam-Clay (MCC) model [14] . The effect of principal stress

https://doi.org/10.1016/j.mechrescom.2020.103474
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Fig. 1. Schematic illustration of the non-associative clay plasticity model in the p–q plane. 
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rotation is considered by including an additional plastic loading

mechanism. The proposed model is validated by comparing the

simulation results with those from the associative and non-

associative MCC models (i.e., without considering the principal

stress rotation), and with the clay simple shear experimental date. 

2. Model formulation 

By applying the additive decomposition of the total strain rate,

one has 

˙ ε i j = ˙ ε e i j + ˙ ε p 
i j 

(1)

where the superscripts e and p denote elastic and plastic compo-

nents, respectively. The elastic relation is the same as that in the

MCC model, which is expressed in terms of the bulk and shear

moduli defined as follows 

K = 

1 + e 

κ
p; G = 

3(1 − 2 ν) 

2(1 + ν) 
K (2)

where e is the void ratio, κ is the slope of the swelling line in

the e- ln p space, and ν is the Poisson’s ratio. The plastic strain rate,

˙ ε p 
i j 

, consists of two components. The first component, denoted by

˙ ε pc 
i j 

, is associated with the conventional plastic loading (superscript

c ). The second part, denoted by ˙ ε pr 
i j 

, is associated with the loading

mechanism of principal stress rotation (superscript r ). The devel-

opment of ˙ ε pc 
i j 

and ˙ ε pr 
i j 

is described below. 

2.1. Non-associative clay plasticity model 

The proposed model uses the MCC type ellipse for the yield

and plastic potential surfaces. Following Jiang et al. [15] , the critical

state stress ratio M is used to configure the plastic potential, and

another parameter N is used to configure the yield surface. Thus,

the plastic potential reads as 

g = 

q 2 

M 

2 
− p( p g − p) = 0 (3)

and the yield surface reads as 

f = 

q 2 

N 

2 
− p( p 0 − p) = 0 (4)

where p = ( 1 / 3 ) σkk and q = 

√ 

( 3 / 2 ) s i j s i j with s ij being the devia-

toric stress tensor; p g is the value of p at the intersection between

the plastic potential surface and the p -axis, and p 0 is the hardening

parameter. As the soil is saturated in the paper, the effective stress

principle is used, in which the total stress is the summation of the

effective stress and excess pore pressure. The stress symbol denote
he effective stress in the paper, or specified otherwise. Fig. 1 gives

 schematic illustration of the two surfaces in the p–q space. The

gure also shows the conventional loading direction l c 
i j 

= ∂ f / ∂ σi j 

nd flow direction R c 
i j 

= ∂g / ∂ σi j . The value of p g is determined by

ubstituting the current stress into Eq. (3) , and the value of p 0 is

rescribed by a hardening rule the same as that in the MCC model,

eads as 

˙ p 0 = 

(1 + e ) p 0 
λ − κ

˙ ε pc 

kk 
(5)

here λ is the slope of the normal compression line in the e- ln p

pace. The parameters M and N are defined to be functions of the

ode angle θ , reads as 

 = M c 

[
2 c 4 

(1 + c 4 ) − (1 − c 4 ) sin 3 θ

]1 / 4 

(6a)

 = N c 

[
2 c 4 

(1 + c 4 ) − (1 − c 4 ) sin 3 θ

]1 / 4 

(6b)

nd 

π

6 

≤ θ = 

1 

3 

sin 

−1 
(

27 

2 

J 3 
q 3 

)
≤ π

6 

(7)

here c = M e / M c with M e and M c being the values of M at triax-

al extension and compression, respectively, N c is the value of N

t triaxial compression, and J 3 = ( 1 / 3 ) s i j s jk s ki . The plastic potential

nd yield surfaces are always convex provided c ≥ 0.6 [16] . Note

hat the parameters M and N have the same interpolation rule (the

ame ratio c enters both Eqs. (6a) and ( 6b )), indicating an associa-

ive flow rule in the π-plane. It will be shown later that such a

hoice simplifies the model formulation. The N is in general (but

ot necessarily) smaller than M . For the special case of N = M , the

ssociative MCC model is retrieved. Jiang et al. [15] showed that

he non-associative model can better capture the shear strength of

lays in the triaxial test, but its performance in the simple shear

as not been investigated. 

.2. Loading mechanism of principal stress rotation 

This section deals with the additional plastic loading mecha-

ism associated with the principal stress rotation. This mechanism

s defined by 

l r i j ˙ σi j − K 

r 
p L 

r = 0 (8a)

 = 

〈
1 − ( η/M ) 

m 

〉
(8b)
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Fig. 2. Schematic illustration of the definition of the loading direction l r 
i j 

in the 

plane of ( ( σx − σy ) / 2 , σxy ) . 
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here η = q/p is the stress ratio, and l r 
i j 

, K 

r 
p and L r are the loading

irection, plastic modulus and loading index in the new mecha-

ism, respectively, and 〈 〉 is the Macaulay bracket that prevents a

alue from being negative. The m is a large positive number which

ill render w ≈ 1 when η< M , and w = 0 when η> M . A default

alue of m = 50 is selected in this work. The function of w is

dopted to freeze this mechanism when soils yield on the ‘dry’

ide of the yield surface. This simplification is because the influ-

nce of pure principal stress rotation on soils with η> M is not

nown up to date as no experimental investigation has been con-

ucted under this condition. A similar concept was firstly used by

ao and Zhao [17] . 

It is assumed that the loading direction l r 
i j 

follows the direc-

ion of the principal stress rotation (i.e., the direction orthogo-

al to the current principal stress directions). For a stress vector

ij = ( σ x , σ y , σ z , σ xy , σ yz , σ zx ), consider the simple case where the

ntermediate principal stress direction is fixed at the Z -direction.

n this case, the principal stress rotation takes place in the plane

f ( ( σx − σy ) / 2 , σxy ) . Then, the l r 
i j 

is defined as follows 

 

r 
i j = 

(
−a, a, 0 , b 

)
(9a) 

 = 

l c xy √ (
l c x − l c y 

)2 
/ 4 + 

(
l c xy 

)2 
; b = 

(
l c x − l c y 

)
/ 2 √ (

l c x − l c y 

)2 
/ 4 + 

(
l c xy 

)2 
(9b) 

A schematic illustration of the definition of l r 
i j 

is shown in

ig. 2 . Note that Eq. (9) are not exactly the direction of the prin-

ipal stress rotation because the l c 
i j 

, instead of σ ij , is used to

efine l r 
i j 

. This selection is based on the theoretical considera-

ion that l r 
i j 

should be orthogonal to l c 
i j 

. Nevertheless, Eq. (9) can

pproximate the direction of stress rotation satisfactorily. Like-

ise, if the principal stress rotation takes place in the planes of

( ( σy − σz ) / 2 , σyz ) and of ( ( σz − σx ) / 2 , σzx ) , the corresponding load-

ng directions can also be defined. Combing them altogether, a

omplete l r 
i j 

is obtained. 

The plastic modulus, K 

r 
p , is proposed as 

 

r 
p = h r 

(
M 

2 − η2 

2 η

)0 . 2 

(10) 

here h r is a new material parameter. The power relation in

q. (10) is to make this loading mechanism less sensitive when

pproaching the critical state, where the principal stress rotation
s about to cease in the simple shear. It is seen from Eq. (10) that

or a hydrostatic stress state ( η= 0), K 

r 
p = ∞ , indicating the physi-

al meaning that no rotation of principal stress axes at hydrostatic

tate. 

To complete the mechanism, a flow rule is proposed for soils

ubjected to pure principal stress rotation, reads as 

˙  pr 
i j 

= L r l r i j + | L r | 
√ 

2 

3 

D 

r δi j (11) 

here || is the symbol of absolute value, D 

r is the dilatancy ratio in

his mechanism, and δij is the Kronecker delta. A subtle point here

s that no Macaulay bracket is used to prevent the loading index

 

r from being negative. The reason behind it is because Eq. (9) im-

licitly assumed a direction of anticlockwise rotation in the plane

f ( ( σx − σy ) / 2 , σxy ) , which can either be along or opposite to the

orrect direction of stress rotation. For the latter case, a negative

 

r is obtained from Eq. (8a) . However, it does not affect the results

ecause the L r l r 
i j 

in Eq. (11) always gives the correct deviatoric flow

irected along, and not opposite to, the direction of principal stress

otation. Meanwhile, the absolute value symbol on the L r in front

f D 

r in Eq. (11) ensures that the contraction or dilation is by all

eans determined by the sign of D 

r . According to Eqs. (11) and (9) ,

he deviatoric plastic strain in the z -direction is always zero in this

echanism, which can be inaccurate. A remedying approach is to

se N 

t 
i jkl 

l r 
kl 

/ ‖ N 

t 
i jkl 

l r 
kl 
‖ as the deviatoric flow direction, where || ||de-

ote the norm and N 

t 
i jkl 

is the deviatoric tangential projection tensor

18] . A recent study [19] showed that in the simple shear, these

wo deviatoric flow rules produce almost identical results. There-

ore, the simpler choice of Eq. (11) is kept. Now the last variable to

e defined is the dilatancy ratio, D 

r . Experimental results showed

hat various soils subjected to pure principal stress rotation tend

o be contractive [20 , 21 , 9] . Thus, the following expression is pro-

osed 

 

r = d r 
M 

2 − η2 

2 η
[ 1 − exp (−V γ r ) ] (12) 

here d r is a new material parameter, and γ r is the cumulativeness

f the plastic strain induced by this mechanism. The V is another

arge positive constant and has a default value of V = 100 in this

ork. The terms in the brackets render D 

r ≈0 when γ r ≈0. They are

ntroduced for computational stability at the initiation of simple

hear loading as a strong rotation of stress may bring the updated

tress point inside the yield surface and causing numerical prob-

ems. 

.3. Incremental elastoplastic relation 

Since the deviatoric flow is associative for the conventional

oading, and note that the l r 
i j 

is deviatoric and orthogonal to the l c 
i j 

,

ne obtains l r 
i j 

R c 
i j 

= 0 . Then, using this relation in conjunction with

q. (8a) and the conventional consistency condition 

˙ f = 0 , the two

oading indices for conventional loading and principal stress rota-

ion can be respectively derived as 

 

c = 

l c 
i j 

E i jkl ˙ ε kl − ˜ K l c mm 

L r 

K 

c 
p + l c st E st pq R 

c 
pq 

; L r = 

2 Gw 

K 

r 
p + 2 Gw 

l r kl ˙ ε kl (13) 

nd 

˜ 
 = sign ( L r ) 

√ 

2 

3 

K D 

r (14) 

here K 

c 
p is the plastic hardening (or softening) modulus, E ijkl 

s the elastic stiffness tensor and sign ( L r )denotes the sign of L r .

q. (13) shows that with the inclusion of the additional mechanism

or principal stress rotation, the L c is coupled with the L r provided



4 N. Lu, Y. Yang and H.-S. Yu et al. / Mechanics Research Communications 103 (2020) 103474 

Table 1 

Model parameters for Kaolin and Boston blue clay. 

Parameters Kaolin Boston blue clay 

Traditional λ 0.14 0.184 

κ 0.05 0.034 

ν 0.3 0.227 

M c 1.05 1.39 

M e 0.78 1.12 

Non-associative N c 0.7 0.95 

Principal stress 

rotation 

h r (kPa) 20,000 25,000 

d r 6 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Validation of the non-associative flow rule against undrained triaxial com- 

pression test data of isotopically normally consolidated Kaolin (experimental data 

from [24] ). 
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r 
 = 0. Finally, using Eqs. (1) and (13) , the rate formed elastoplas-

tic stress–strain relation becomes 

˙ σi j = E ep 

i jkl 
˙ ε kl 

= 

[
E i jkl −

E i jab R 

c 
ab 

l c 
cd 

E cdkl 

K 

c 
p + l c st E st pq R 

c 
pq 

]
˙ ε kl 

− 2 Gw 

K 

r 
p + 2 Gw 

[
(2 Gl r i j + 

˜ K δi j ) l 
r 
kl −

˜ K l c mm 

E i jab R 

c 
ab 

l r 
kl 

K 

c 
p + l c st E st pq R 

c 
pq 

]
˙ ε kl (15)

In the above equation, the terms in the first pair of brackets

represent the contributions from conventional elastoplasticity the-

ory, and the rest terms represent the contributions from the prin-

cipal stress rotation. The elastoplastic stiffness tensor E 
ep 

i jkl 
does not

depend on the direction of ˙ σi j , indicating an incrementally linear

stress–strain relation in the proposed model. 

3. Simulation results 

The proposed model requires eight material parameters, namely

five traditional parameters λ, κ , ν , M c and M e , one non-associative

flow rule parameter N c , and two principal stress rotation parame-

ters h r and d r . In general, the traditional and flow rule parameters

should be calibrated against data from triaxial tests, where the

other two parameters h r and d r are not operational. Table 1

presents the parameters used in this paper. The traditional pa-

rameters are from Banerjee and Yousif [22] for Kaolin and from

Whittle [23] for Boston blue clay. The non-associative flow rule

parameters are from Jiang et al. [15] for both clays. 
Fig. 4. Comparison of measured and predicted stress–strain responses and stress paths fo

[25] ). 
A validation of the non-associative flow rule using the

ndrained triaxial compression data of isotopically normally con-

olidated Kaolin (data from Fannin [24] ) is firstly made in Fig. 3 .

he conclusion is consistent with Jiang et al. [15] , in that the non-

ssociative model can better capture the shear strength of clay

han the associative model. 

In Fig. 4 , the undrained (constant volume) simple shear test on

ormally consolidated Kaolin is simulated, and the comparisons

ith the test data from Airey [25] are made. The static lateral

tress coefficient K 0 is 0.685 [25] . Three sets of simulation results

re presented, respectively made by the associative (i.e. MCC)

nd non-associative clay models (without the principal stress

otation mechanism), and by the non-associative model incorpo-

ating the additional mechanism. It is seen that the associative

odel significantly overpredicts the undrained shear strength. The

on-associative model gives better predictions, and the further

nclusion of the principal stress rotation mechanism provides the
r undrained simple shear on normally consolidated Kaolin (experimental data from 
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Fig. 5. Comparison of measured and predicted normalized stress–strain and ex- 

cess pore pressure responses for undrained simple shear on normally consolidated 

Boston blue clay (experimental data from [26] ). 
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Fig. 6. Predicted non-coaxiality evolution for undrained simple shear on Boston 

blue clay. 
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est match in both the stress–strain response and the stress path.

t is therefore evidenced that it is necessary to account for the

rincipal stress rotation if a reasonable prediction is to be achieved

or the simple shear. In a previous study by Yang and Yu [11] using

 yield-vertex based non-coaxial model, the principal stress rota-

ion affects only the stiffness and not the ultimate shear stress of

he soil. The basic difference of their model from the present one is

he omission of the plastic volumetric strain in the principal stress

otation mechanism. In the present model, a nonzero D 

r enables

he principal stress rotation to weaken the conventional plastic

oading through the presence of L r in L c (see Eq. (14) ). Consequently,

he yield surface expansion is retarded, and the ultimate stress

tate, which must lie at the top of the ellipse in the p–q plane,

s lower. On the other hand, if d r is chosen to be 0 and therefore

 

r = 0, the stress–strain response will be similar to that in [11] . 

Another series of comparisons between the measured and pre-

icted results are presented in Fig. 5 for the normally consoli-

ated Boston blue clay. The experimental data from Malek [26] is

rom a series of undrained simple shear tests under various verti-

al consolidation stresses ranging between 300 and 600 kPa. The

 0 for this soil is 0.533 according to [27] . In the simulation, the

alculation of excess pore pressure follows the method proposed

y Dyvik et al. [28] and is estimated as the changes in vertical

tress required to keep constant volume throughout a simple shear

est. Again, Fig. 5 shows that the undrained shear strength is best

aptured by the non-associative model considering the principal

tress rotation, whilst the initial stiffness is somewhat underpre-

icted by all the simulations, likely due to the ignorance of ma-
erial anisotropy in the models. The pore pressure predictions are

cceptable for all three sets of simulations. As a final investigation,

he non-coaxial behaviour of Boston blue clay is shown in Fig. 6

sing results predicted by the non-associative model incorporat-

ng the stress rotation mechanism. The authors are not aware of

ny detailed experimental analysis on clays’ non-coaxiality during

imple shearing. Such data on sands obtained from experiments

nd DEM simulations (e.g. [2 , 29 , 30] ) showed that during drained

imple shear, whilst the major principal stress direction gradually

otates from 0 ° towards 45 °, the major principal plastic (or total)

train rate direction starts from somewhat below 45 ° and quickly

pproaches that of the principal stress as the shear strain develops.

esults presented in Fig. 6 are in very good qualitative agreement

ith these observations. 

. Conclusions 

This paper presents a simple constitutive model dedicated to

imulating the clay simple shear behaviour by considering the

arely included factor: the principal stress rotation. The model

ses a non-associative flow rule and incorporates an additional

echanism associated with the principal stress rotation. The new

echanism caters for the soil non-coaxiality and plastic volumet-

ic response under pure rotation of principal stress axes. Stress–

train incremental linearity is maintained in the proposed model.

he importance of accounting for the principal stress rotation

as been justified by comparing the simulations of the proposed

odel with those from the base models without considering prin-

ipal stress rotation, and with the clay simple shear experimen-

al data. Whilst the associative model significantly overpredicts the

ndrained shear strength, the non-associative model can provide

etter results, and the further inclusion of the principal stress ro-

ation mechanism captures the undrained shear strength with sat-

sfactory. The soil non-coaxial behaviour is also well reproduced. 

eclaration of Competing Interest 

None. 

cknowledgements 

The authors acknowledge the financial support from the In-

ernational Doctoral Innovation Centre scholarship scheme and

he UK Engineering and Physical Sciences Research Council

EP/G037345/1 and EP/L016362/1]. This work was also supported

y the NSFC [project code 11872219], Zhejiang Natural Science

oundation [project code LY18E090 0 06 ] and Ningbo Natural Sci-

nce Program [project code 2018A610351 ]. These supports are ap-

reciated. 

https://doi.org/10.13039/501100004731


6 N. Lu, Y. Yang and H.-S. Yu et al. / Mechanics Research Communications 103 (2020) 103474 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

 

 

 

 

[  

[  

 

 

 

References 

[1] D. Airey , D. Wood , An evaluation of direct simple shear tests on clay, Géotech-

nique 37 (1) (1987) 25–35 . 

[2] K. Roscoe , The influence of strains in soil mechanics, Geotechnique 20 (2)
(1970) 129–170 . 

[3] M. Budhu , A. Britto , Numerical analysis of soils in simple shear devices, Soils
Found. 27 (2) (1987) 31–41 . 

[4] D. Potts , G. Dounias , P. Vaughan , Finite element analysis of the direct shear box
test, Geotechnique 37 (1) (1987) 11–23 . 

[5] G. Dounias , D. Potts , Numerical analysis of drained direct and simple shear

tests, J. Geotech. Eng. 119 (12) (1993) 1870–1891 . 
[6] M. Gutierrez , K. Ishihara , I. Towhata , Model for the deformation of sand during

rotation of principal stress directions, Soils Found. 33 (3) (1993) 105–117 . 
[7] Y. Cai , H.-.S. Yu , D. Wanatowski , X. Li , Noncoaxial behavior of sand under vari-

ous stress paths, J. Geotech. Geoenviron. Eng. 139 (8) (2013) 1381–1395 . 
[8] S. Nishimura , N. Minh , R. Jardine , Shear strength anisotropy of natural London

Clay, Géotechnique 57 (1) (2007) 49–62 . 
[9] J.-.G. Qian, Z.-.B. Du, Z.-.Y. Yin, Cyclic degradation and non-coaxiality of soft

clay subjected to pure rotation of principal stress directions, Acta Geotech.

(2017) 1–17, doi: 10.1007/s11440- 017- 0567- 8 . 
[10] V.A. Osinov, W. Wu, Simple shear in sand with an anisotropic hy-

poplastic model, Geomech. Geoeng. 1 (1) (2006) 43–50, doi: 10.1080/
17486020600552355 . 

[11] Y. Yang , H.-.S. Yu , Numerical simulations of simple shear with non-coaxial soil
models, Int. J. Numer. Anal. Methods Geomech. 30 (1) (2006) 1–19 . 

[12] M. Gutierrez , J. Wang , M. Yoshimine , Modeling of the simple shear deforma-

tion of sand: effects of principal stress rotation, Acta Geotech. 4 (3) (2009)
193–201 . 

[13] M. Jefferies , D. Shuttle , K. Been , Principal stress rotation as cause of cyclic mo-
bility, Geotech. Res. 2 (2) (2015) 66–96 . 

[14] K.H. Roscoe , J.B. Burland , On the generalized stress-strain behaviour of wet
clay, in: J. Heyman, F.A. Leckie (Eds.), Engineering Plasticity, Cambridge, 1968,

pp. 535–609 . 

[15] J. Jiang , H.I. Ling , V.N. Kaliakin , An associative and non-associative anisotropic
bounding surface model for clay, J. Appl. Mech. 79 (3) (2012) 031010 . 
[16] D. Sheng , S.W. Sloan , H.-.S. Yu , Aspects of finite element implementation of
critical state models, Comput. Mech. 26 (2) (20 0 0) 185–196 . 

[17] Z. Gao , J. Zhao , A non-coaxial critical-state model for sand accounting for fabric
anisotropy and fabric evolution, Int. J. Solids Struct. 106 (2017) 200–212 . 

[18] K. Hashiguchi , Elastoplasticity Theory, Springer, Berlin, 2014 . 
[19] N. Lu, Y. Yang, H.-.S. Yu, Comparison of yield-vertex tangential loading and

principal stress rotational loading, Comput. Geotech. 108 (2019) 88–94, doi: 10.
1016/j.compgeo.2018.12.009 . 

[20] K. Miura , S. Miura , S. Toki , Deformation behavior of anisotropic dense sand

under principal stress axes rotation, Soils Found. 26 (1) (1986) 36–52 . 
[21] Z. Yang , X. Li , J. Yang , Undrained anisotropy and rotational shear in granular

soil, Geotechnique 57 (4) (2007) 371–384 . 
[22] P. Banerjee , N. Yousif , A plasticity model for the mechanical behaviour of

anisotropically consolidated clay, Int. J. Numer. Anal. Methods Geomech. 10 (5)
(1986) 521–541 . 

23] A. Whittle , Evaluation of a constitutive model for overconsolidated clays,

Geotechnique 43 (2) (1993) 289–313 . 
[24] R.J. Fannin , Geogrid Reinforcement of Granular Layers on Soft Clay – A Study

at Model and Full Scale Ph.D. thesis, University of Oxford, UK, 1986 . 
25] D.W. Airey , Clays in Circular Simple Shear Apparatus, University of Cambridge,

UK, 1984 . 
26] A.M. Malek , Cyclic Behavior of Clay in Undrained Simple Shearing and Appli-

cation to Offshore Tension Piles, Massachusetts Institute of Technology, USA,

1987 . 
[27] A.G. Papadimitriou, M.T. Manzari, Y.F. Dafalias, Calibration of a simple

anisotropic plasticity model for soft clays, in: Proceedings of the Geo-
Frontiers Congress, Austin, Texas, United States, 2005, pp. 415–424, doi: 10.

1061/40771(169)18 . 
28] R. Dyvik , T. Berre , S. Lacasse , B. Raadim , Comparison of truly undrained and

constant volume direct simple shear tests, Geotechnique 37 (1) (1987) 3–10 . 

29] C. Thornton, L. Zhang, A numerical examination of shear banding and sim-
ple shear non-coaxial flow rules, Philos. Mag. 86 (21–22) (2006) 3425–3452,

doi: 10.1080/14786430500197868 . 
[30] J. Ai , P.A. Langston , H.-.S. Yu , Discrete element modelling of material non-coax-

iality in simple shear flows, Int. J. Numer. Anal. Methods Geomech. 38 (6)
(2014) 615–635 . 

http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0003
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0003
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0003
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0004
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0004
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0004
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0004
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0005
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0005
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0005
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0007
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0008
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0008
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0008
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0008
https://doi.org/10.1007/s11440-017-0567-8
https://doi.org/10.1080/17486020600552355
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0011
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0011
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0011
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0012
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0012
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0012
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0012
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0013
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0014
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0014
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0014
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0015
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0015
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0015
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0015
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0016
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0017
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0017
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0017
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0018
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0018
https://doi.org/10.1016/j.compgeo.2018.12.009
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0020
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0021
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0021
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0021
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0021
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0022
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0023
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0023
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0024
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0024
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0025
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0025
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0026
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0026
https://doi.org/10.1061/40771(169)18
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0028
https://doi.org/10.1080/14786430500197868
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0030
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0030
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0030
http://refhub.elsevier.com/S0093-6413(20)30003-3/sbref0030

	Modelling the simple shear behaviour of clay considering principal stress rotation
	1 Introduction
	2 Model formulation
	2.1 Non-associative clay plasticity model
	2.2 Loading mechanism of principal stress rotation
	2.3 Incremental elastoplastic relation

	3 Simulation results
	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


