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a b s t r a c t 

In the literature of granular micromechanics it is standard to achieve, at the macro scale, non-standard 

enhanced continuum models [1–2]. Among a panoply of exotic behaviors, these models predict that gran- 

ular materials can show chirality for a specific grain-pair interaction. To verify these predictions, a gran- 

ular system with a specific grain-pair interaction has been designed and its mechanical behavior un- 

der different types of loading has been evaluated via numerical simulations. The resulting granular sys- 

tem, which can be referred to as a granular beam, is a linear array of grains connected via the chosen 

grain-pair interaction law [1]. The chiral behavior of such mechanical system has been observed experi- 

mentally during tensile test. To describe the experimental evidence and numerical results, a continuous 

one-dimensional beam model has been defined and the four constitutive parameters, which characterize 

this specific strain energy function, have been identified. The numerical simulations on this granular sys- 

tem, modeled as a 2D deformable-body, have been performed employing the commercial finite element 

software COMSOL Multiphysics to have a reference data set for the identification process. Comparisons 

between the results obtained from this 2D FE model and the predictions of the same system analyzed 

via a specific non standard Timoshenko 1D beam model show an astonishing agreement. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the field of material science, the study of mechanical be-

avior of materials and definition of suitable mathematical mod-

ls faithfully representing reality is still of interest. Specifically, we

efer to the field of metamaterials -materials for which the mi-

rostructure present at a microscopic level has a non-negligible

mpact on macroscopic mechanical behavior- whose analysis has

een facilitated by the continuous progress of additive manufac-

uring and measuring techniques. The research is driven by the

vidence that classical continuum models are not sufficient when

e consider microstructured materials. One significant example

s granular solids. Indeed, a non-standard enhanced continuum

odel based upon granular micromechanics approach is required

or representing the grain-scale deformation modes [2–4] . At the

patial scale in which the continuum description is generally de-

ned, the individual grain motion along with the grain-pair inter-
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ction is latent. However, in all their forms, whether highly consol-

dated dense solids or soft cellular membranes or confined pack-

ngs of non-cohesive particles, the grain pair interactions play a

aramount role in determining physical behavior of granular me-

ia. Further example is represented by pantographic structures

5–10] , for which their exotic behavior has to be described with

igher gradient continuum theories [11] or micromorphic theories

12,13] .Lastly, we remark that granular system presented herein

hares some key features with tensegrity cell mechanical meta-

aterial as axially loaded one-dimensional structures that have

 broad literature on their dynamic behavior and their applica-

ions as energy absorption components [14–16] . The new manu-

acturing possibilities propel research to the point of reversing the

aradigm used to date in studying the mechanical behavior of ma-

erials. We are now able to endow them with a micro-structure,

hich is potentially customizable and tunable according to the ap-

lications to be addressed. Therefore, once the system’s Lagrangian

as been defined, more precisely once the expression of the defor-

ation energy density of the system has been expressed in term

f the chosen independent kinematic parameters, we can design

he corresponding mechanical system [17] . In the present work, we

https://doi.org/10.1016/j.mechrescom.2019.103462
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
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Fig. 1. (a) Generic deformed configuration of the beam model in the reference plane xy (b) graphic description of the kinematic fields w ( x ), u ( x ) and θ ( x ). 
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have considered a one-dimensional micropolar system with chiral-

ity which derives from a full understanding of the granular mi-

cromechanics model [1] . The geometric structure is a linear array

of grains, which will be referred to as grain beam, whose grains

are connected by a particular grain-pair connection. The design of

the interaction is such that the axial displacement field is cou-

pled with the transverse displacement field, that yields to a chiral

macroscopic behavior of the grain beam. A modified Timoshenko

beam model is defined to fulfill a micro-macro identification of the

structure. The work developed in this article demonstrates com-

mon tracts with mechanical cable models in which the axial and

twist mechanical behaviors are coupled, which could have relevant

impact in the field of manufactured rope and cables or the analy-

sis of DNA filaments [18–20] . The identification aims at determin-

ing the stiffness parameters which characterize the strain energy

function of the modified Timoshenko beam model. We have ac-

counted as reference data set the results obtained from a series

of numerical simulation performed with the commercial Finite El-

ement software Comsol Multiphysics. Specifically, different sets of

boundary conditions have been applied to the granular structure

which has been considered as a 2D Cauchy deformable-body. 

2. Beam model 

Let us consider a curve C in reference plane xy lying on the x

axis in the undeformed configuration. The current configuration C ′ 
of the curve is given by the map χ which depends on the generic

x 0 coordinate as shown in Fig. 1 a. The analytical beam model that

we are introducing describes the configuration of the granular sys-

tem, which is characterized by the kinematic variables shown in

Fig. 1 b. Thus, we define the vector χ as 

χ(x ) = { w (x ) , u (x ) , θ (x ) } T (1)

whose components w ( x ), u ( x ), θ ( x ) correspond to the axial dis-

placement, transverse displacement and rotation of the grains

respectively. We now consider the following expression of elastic

deformation energy density, based on the kinematic parameters

introduced 

W = 

1 

2 

K e w 

′ 2 + 

1 

2 

K f θ
′ 2 + 

1 

2 

K s 

(
u 

′ − θ
)2 − αw 

′ (u 

′ − θ
)
. (2)

Eq. (2) resembles a classical Timoshenko beam with an addi-

tional term appearing in the expression. The stiffness coefficient

α couples, using the classical terms of beam theories, the axial
eformation measure w 

′ with the shear deformation measure

(u ′ − θ ) . Rewriting Eq. (2) in matrix form it can be noted that the

tiffness matrix is no more diagonal: 

 = 

1 

2 

[
w 

′ u 

′ − θ θ ′ ][ 

K e α 0 

α K s 0 

0 0 K f 

] [ 

w 

′ 
u 

′ − θ
θ ′ 

] 

oreover, the stiffness parameters must fulfill the following condi-

ions which ensure that the stiffness matrix is positive definite 

 e K s > α2 ; K f > 0 (3)

The system of differential equations and boundary conditions

ave been obtained for the present beam model by imposing the

rst variation of the strain energy functional to be equal to 0. 
 

 

 

 

 

K e w 

′′ − α
(
u 

′′ − θ ′ ) = 0 (4 .a ) 

K s 

(
u 

′′ − θ ′ ) − αw 

′′ = 0 (4 .b) 

K f θ
′′ − αw 

′ + K s 

(
u 

′ − θ
)

= 0 (4 .c)

 

 

 

 

 

[
K e w 

′ − α
(
u 

′ − θ
)]

δw = 0 at x=0, x=L (5 .a ) [
K s 

(
u 

′ − θ
)

− αw 

′ ]δu = 0 at x=0, x=L (5 .b) [
K f θ

′ ]δθ = 0 at x=0, x=L (5 .c) 

We report the governing differential equations of the classical

imoshenko beam model in Eq. (6.a) and (6.b) 
 

 

 

d 

dx 
GAK s 

(
˜ u 

′ − ˜ θ
)

= 0 (6 .a ) 

d 

dx 

(
EI ̃  θ ′ ) − GAK s 

(
˜ u 

′ − ˜ θ
)

= 0 (6 .b)

here ˜ u , ˜ θ, AGK s and EI represent the classic kinematic variables

nd stiffness parameters of Timoshenko beam [21] . It is remark-

ble that the coupled system of differential equations of the de-

ived model includes one additional equation (Eq. (4.a)). The lat-

er comes from the accounting of the longitudinal displacement w,

hich in the classical Timoshenko model could be considered as

n separate problem. Further, the classical Timoshenko beam equa-

ions (Eq. (6.a) and (6.b)) are enhanced with additional coupling

erms which appear in Eq. (4.b) and (4.c). 

Finally, we can identify from Eq. (5), the normal force N ( x ), the

hear force T ( x ) and the bending moment M ( x ) of the 1D beam as:

(x ) = K e w 

′ − α
(
u 

′ − θ
)

(7)
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Fig. 2. Graphic visualization of the geometric features of the grain pair connection. 

Fig. 3. Granular system microstructure employed for the numerical simulation 

treating the system as a Cauchy continuum which is solved using full FE discretiza- 

tion. In the magnifying frame we show the mesh size for which the convergence is 

accomplished (the number of DOF is equal to 89718). The discretization is realized 

via triangular bi-dimensional elements whose displacement fields are approximated 

using quadratic serendipity polynomials. 
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Table 1 

Values of geometric features of the 

grain-pair connection. Lengths are 

expressed in millimeters. 
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 (x ) = K s 

(
u 

′ − θ
)

− αw 

′ (8)

(x ) = K f θ
′ (9) 

e report the expressions of shear force and bending moment of

he classical Timoshenko beam model in Eqs. (10) and (11) 

˜ 
 (x ) = GAK s 

(
˜ u 

′ − ˜ θ
)

(10) 

˜ 
 (x ) = EI ̃  θ ′ (11) 

nd it can be remarked that while the bending moment has identi-

al expression an additional terms appears in the shear expression.

oreover, the equation Eq. 7 which express the normal force in

he 1D beam model, has a different expression with respect to the

lassical bar model because an additional term due to the coupling

ppears. 

. Numerical simulations and stiffnesses identification 

A numerical technique is developed to identify the stiffness

alues which characterize the energy density of the novel beam

odel. The reference data set utilized to identify K e , K f , K s and

has been obtained by performing numerical simulation with the

ommercial finite element software COMSOL Multiphysics in which

he granular system shown in Fig. 3 has been designed as a 2D de-

ormable continuum and subjected to different cases of boundary

onditions. The geometrical parameters of the grain-pair connec-

ion are depicted in Fig. 2 and their numerical values are listed

n Table 1 . The whole array used in the simulation accounts for

 = 30 grains, being the total length l = 0 . 435 m. We have con-

idered three different type of planar equilibrium problems, which
epending on the load direction and boundary conditions activate

 subset of the stiffnesses defined in the energy density equation

f Eq. (2) . In Fig. 4 a graphic representation of the tests employed

o accomplish the identification are shown. The realization of these

imulations on the 2D granular system has been performed by

onsidering the left and right boundary grains as rigid domains.

he three degrees of freedom of the left rigid domain have been

mposed equal to zero while the right grain has been displaced

f δ = 0 . 001 l and rotated by an angle μ = 0 . 001 rad with respect

is centroid, for Identification Test 1 and Identification Test 2, re-

pectively. Differently, for Identification Test 3, zero horizontal and

ertical displacement has been prescribed for both left and right

rain, and a rigid rotation around each centroids has been im-

osed, with the angle μ = −0 . 001 rad and μ = 0 . 001 for the left

nd right rigid domain respectively. In Table 2 we report the cor-

esponding analytical expression of the boundary conditions im-

osed on the 1D beam model, with δ = 0 . 001 l and μ = 0 . 001 rad.

he deformed shape of the 2D granular system is shown in Fig. 5

or the three identification tests. As a result of the peculiar grain

air interaction, the system presents a vertical displacement when

n axial displacement is prescribed ( Fig. 5 a). We remark that the

oupling effect is independent of the size of the grain array and

imilar results are obtained for systems with different numbers of

rains. In Fig. 6 the vertical components of the grain displacements

nder a load as Identification Test 1 is shown for different system

izes. The plots in Fig. 6 a,b,c refer to a 10-grain system, a 20-grain

ystem and a 30-grain system, respectively. Overall, the displace-

ents of the grains result to have comparable shapes with differ-

nt amplitude, which has been amplified 2 · 10 3 times to facilitate

isualization. Moreover, the chirality of the system is evident: if we

erformed reflection with respect to a plane parallel to the one

n which the granular assembly lies by means of an orthogonal

atrix with determinant equal to −1 , we would obtain equal de-

ormed shapes but opposite in sign, for all the identification tests. 

In the following procedure, a subset of the constitutive param-

ters have been estimated comparing the expression of total strain

nergy of the beam model 

 i = 

∫ l 

0 

W(x ) dx (12)

ith the total strain energy obtained with the 2D granular system.

he index i will indicate the identification test to which the energy

xpression corresponds. The first stiffness parameter taken into ac-

ount was the bending stiffness K f . By imposing the set of bound-

ry conditions of Identification Test 3 ( i = ID 3 ), the expression of

train energy of 1D beam is 

 ID 3 = 

2 K f μ
2 

l 
. (13) 

e have evaluated the strain energy value from the FE calculation

f the analogous case, and the bending stiffness of the 1D model

ave been calculated. The stiffness parameter K s has been identi-

ed by applying the boundary condition of the Identification Test

 ( i = ID 2 ), which leads to the following expression for the strain

nergy 

 ID 2 = 

2 K f (36 K 

2 
f 
l + 3 K f K s l 

3 + K 

2 
s l 

5 ) μ2 

(−12 K f l + K s l 3 ) 2 
. (14) 
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Fig. 4. Graphic description of the boundary condition sets for (a) Identification Test 1, (b) Identification Test 2 and (c) Identification Test 3. 

Fig. 5. Deformed shapes of Cauchy continuum model of the 2D granular system for (a) Identification Test 1, (b) Identification Test 2 and (c) Identification Test 3. 

Fig. 6. Vertical displacement of the 2D granular system for Identification Test 1. The red arrows represent the motion amplitude amplified of 2 · 10 3 times for each grain, 

being the total number (a) 10 grains, (b) 20 grains, (c) 30 grains. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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By equalizing Eq. (14) with the strain energy value evaluated via

the 2D numerical simulation, two possible solutions for K s were

obtained. A quantitative comparison with the reference numerical

simulation of the 2D granular system allowed to estimate the cor-

rect value of K s . In Fig. 7 the field u ( x ) of the beam model has

been plotted for the two values obtained, which we have indicated
ith K s 1 and K s 2 . As depicted in Fig. 7 , only one of the two val-

es results in perfect agreement with the plot of transverse dis-

lacement of 2D granular system. Finally, the Identification Test 1

llowed to evaluate stiffnesses K e and α. The latter has been found

o be strictly related to the amplitude of the transverse motion un-

er extension. For the current Identification Test 1, the area A ( x )
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Fig. 7. Transverse displacement u ( x ) of the beam model for K s 1 and K s 2 , and trans- 

verse displacement of 2D granular system, for Identification Test 3. 
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Table 2 

Analytical expression of boundary conditions of the Identification Tests. 

Identification Test 1 Identification Test 2 Identification Test 3 

w (0) = 0 w (0) = w (L ) = 0 w (0) = w (L ) = 0 

u (0) = u (L ) = 0 u (0) = u (L ) = 0 u (0) = u (L ) = 0 

θ (0) = θ (L ) = 0 θ (0) = 0 θ (0) = −μ

w (L ) = δ θ (L ) = μ θ(L ) = μ

Table 3 

Stiffness values after identification process. 

K e [ N ] K s [ N ] K f 

[
N · m 

2 
]

α[ N ] 

49545.4243 18819.4046 0.3307 −12048 . 7 
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w  

g  

o

hat the curve u ( x ) subtends with the x-axis has the following an-

lytical expression: 

 (x ) ID 1 = 

( l − x ) 
2 
x 2 αδ

24 K f + 2 K s l 3 
(15) 

The value of Eq. (15) at x = 

l 
2 has been compared with the re-

pective values obtained from the Cauchy bi-dimensional contin-

um model, and we have evaluated the stiffness parameter α. The

xtensional stiffness K e has been calculated via a comparison be-

ween the strain energy of the analytical beam model, which has

he following expression 

 ID 1 = 

(
12 K e K f + K e K s l 

2 + 3 l 2 α2 
)
δ2 

24 K f l + 2 K s l 3 
(16) 

nd 2D continuum model. The final set of constitutive parameters

f the beam model are reported in Table 3 . 
Fig. 8. Comparison of kinematic fields between 2D granular system and the a
A first verification of the identified value is reported in Fig. 8 .

onsidering the stiffness values of Table 3 , we have evaluated the

inematic fields w ( x ), u ( x ) and θ ( x ) of the beam model for Iden-

ification Test 1, Identification Test 2 and Identification Test 3. The

lots have been compared with the corresponding values obtained

rom the 2D numerical simulations for the three tests. In each plot

f Fig. 8 , the solid line represents the components of the vector

while the points represent the plane displacement components

nd the rotation of each grain. It can be observed that a precise

verlap of results occurs except in one case. The grain rotation of

he 2D model has somewhat higher values with respect to the field

( x ) of the beam model, for Identification Test 1. It is noted that

he apparent mismatch between plots of the axial displacement

 ( x ) of the two models for Identification Tests 2 and 3 is negli-

ible as the order of magnitude 10 −9 is insignificant compared to

ther kinematic quantities. 
nalytical beam model. The plots refer to Identification Tests of Table 2 . 
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Fig. 9. Graphic description of the boundary condition sets for (a) Validation Test 1 

(b) Validation Test 2 (c) Validation Test 3 (d) Validation Test 4. 

 

 

 

 

 

 

 

Table 4 

Prescribed displacements and rotations on the right grain of 2D granu- 

lar system for Validation Tests. 

horizontal disp. transverse disp rotation 

Val. Test 1 δ = −0 . 001 l 0 0 

Val. Test 2 δ = −0 . 001 l δ = 0 . 001 l 0 

Val. Test 3 0 δ = 0 . 001 l μ = 0 . 001 rad 

Val. Test 4 δ = −0 . 001 l δ = 0 . 001 l μ = 0 . 001 rad 

Table 5 

Analytical expression of boundary conditions of the Validation Tests. 

Val. Test 1 Val. Test 2 Val. Test 3 Val. Test 4 

w (0) = 0 w (0) = 0 w (0) = w (l) = 0 w (0) = u (0) = 0 

u (0) = u (l) = 0 u (0) = 0 u (0) = 0 θ (0) = 0 

θ (0) = θ (l) = 0 θ (0) = θ (l) = 0 θ (0) = 0 θ (l) = μ

w (l) = −δ w (l) = −δ θ (l) = μ w (l) = −δ

u (l) = δ u (l) = δ u (l) = δ

h  

r
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4. Validation 

In order to prove the actual forecasting capability of the identi-

fied beam model toward the 2D granular system, we compare the

two for four independent tests different from the ones used for

the identification. A graphic representation of boundary conditions

of validation tests is shown in Fig. 9 . The realization of numeri-

cal simulations for the 2D granular system has been performed by

considering the boundary grains as rigid domains. The left grain
Fig. 10. Comparison of kinematic fields between 2D granular system and the
as been considered fixed for all the simulations, while on the

ight grain, the boundary conditions are listed in Table 4 . 

In Table 5 we give the respective analytical expressions of

oundary conditions applied to 1D beam model. The deformation

f the 2D continuum model of the granular system has been eval-

ated for all the above mentioned sets of boundary loads, and

ach deformed shape is shown in Fig. 9 . Similarly, we have eval-

ated the deformed configuration of the beam model employing

he identified values of the constitutive parameters K e , K s , K f , α
or the 4 load cases of Table 5 , and the values of the kinematic

elds w ( x ), u ( x ) and θ ( x ) were compared with the results obtained

rom simulations of 2D model under the same loading conditions.

he plots for Validation Test 1 are shown in the first column of

ig. 10 , and they reveal a good agreement between the 1D beam

odel and the reference data. It is noticeable that when the beam

ndergoes a compression of a small amount, a non negligible verti-

al displacement field u ( x ) and a rotation field θ ( x ) arise. Moreover,
 analytical beam model. The plots refer to Validation Tests of Table 5 . 
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omparing the plots of the kinematic fields between Identification

est 1 (see Fig. 8 ) and Validation Test 1 (see Fig. 10 ), a precise sym-

etry with respect to the x -axis can be observed. Lastly, it is evi-

ent that the behavior of the present 1D beam model is different

ith respect to a standard Timoshenko beam model undergoing

dentical boundary conditions. The comparison between kinematic

elds of 1D beam model and 2D granular system for Validation

est 2 are reported in the second column of Fig. 10 . An adequate

greement can be noted for the axial and transverse displace-

ents, but for the rotation field θ ( x ) a slight dissimilarity occurs.

his aspect, which must be investigated more in future works, can

e related to a boundary effect on the rotation of external grains

f the 2D granular system. The third column of Fig. 10 shows the

isplacement fields of 1D beam model and 2D granular system for

alidation Test 3. A careful overlap can be observed for the trans-

erse displacement u ( x ) and the rotation θ ( x ). However, a discrep-

ncy is present between the kinematic field w ( x ) and the axial dis-

lacement of the grains, but the relative error committed is neg-

igible at a length-scale of the field u ( x ) and the vertical displace-

ent of the grain assembly. We have to remark that, the displace-

ent fields of 1D beam model produced by Validation Test 2 and

 have similar behaviors compared to those provided by a classi-

al Timoshenko beam model under respectively identical boundary

onditions. The fourth column of Fig. 10 reports the plots of dis-

lacement field of 1D beam model and the displacements of the

D granular system for Validation Test 4. It can be observed that

he beam model faithfully describes the behavior of the 2D gran-

lar system in all the three components. As for Validation Test 1

 Timoshenko beam model under a set of boundary conditions as

alidation Test 4 gives different behaviors for transverse displace-

ent u ( x ) and rotation field θ ( x ). 

. Conclusions and perspective 

One of the most recurrent themes in the literature of continu-

us mechanics is the formulation of reduced models for describing

tructures and mechanical systems. Reducing the size of the vari-

bles with which a physical system is described has the immedi-

te advantage of facilitating calculations and reducing their com-

utation time. On the other hand, the information we can access

ill be less accurate. As a remark, the transition from a refined

odel to a reduced order one is necessary when we are dealing

ith complex systems [22–27] . In this paper, we have presented

n identification process of constitutive parameters that character-

ze the deformation energy density of a chiral beam model. This

odel can be considered as an enhanced model of the Timoshenko

eam with an additional stiffness term that couples the horizon-

al and transverse displacement fields of the beam. As a result of

his coupling, chiral behavior is triggered. The identification pro-

ess has considered as a reference data set the results of numeri-

al simulations employing a 2D Cauchy continuum in which a lin-

ar assembly of grains has peculiar granular interaction. The de-

ign of the grain-pair connection has been inspired by the study

n the constitutive relations formulated for granular materials fol-

owing granular micromechanics approach [1] . The identification

as been proven to be effective via validation tests in which we

ave observed perfect agreement between the results of the en-

anced Timoshenko beam model and reference data. Despite the

esults obtained, the present work represents the first step toward

 complete analysis of the introduced micropolar granular system

ith chirality. A thorough experimental survey seems necessary

o (a) establish the chiral behavior for a larger set of specimens

nd (b) to obtain a consistent reference data set for future identi-

cation processes. Moreover, the dynamics of microstructured ma-

erials and their mechanical response towards time-varying loads

nd waves propagation is a crucial point. In the wake of earliest
tudy investigating dynamics of granular system [28–30] and pan-

ographic structures [31–33] , it is particularly useful to have both

redictive continuum models as well as innovative experimental

vidence. 
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