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A B S T R A C T

Performance evaluation and reliability assessment of real-world structures under earthquakes is of paramount
importance. Generally, different mechanical property parameters of a structure are usually not independent,
nor completely dependent, but partly dependent or correlated. Therefore, how to reasonably characterize such
partial dependency and whether such partial dependency real matters in the stochastic response and reliability
of structures under earthquakes are crucial issues. For this purpose, in the present paper, a novel physically-
guided data-driven methodology of capturing the correlation configuration of basic random variables and
the probability density evolution method are synthesized. The physically-guided data-driven methodology is
firstly outlined. In this methodology, the underlying physical mechanism between dependent random variables
is firstly involved to establish a random function model, and then the available observed data are adopted to
identify the parameters in this model. What is more, physical constraints are also revealed for the initial
modulus of elasticity and compressive strength of concrete. The probability density evolution method is then
adopted, and the point selection by minimizing the GF-discrepancy is adjusted according to the correlation
configuration and physical constraints. A reinforced concrete frame structure subjected to earthquake input is
studied. It is found that when the structure is in the strongly nonlinear stage, the correlation configuration has
considerable effects on the standard deviation of the stochastic responses, by a factor of nearly 2. In addition,
whether the mechanical parameters in different floors are independent or not has great effects on the stochastic
responses as well. Problems to be further studied are also outlined.

1. Introduction

Reasonable quantification of mechanical properties of construction
materials is crucial for the seismic performance evaluation and reli-
ability analysis of structures. These mechanical properties are to be
taken as random variables or random fields, and are usually correlated.
For the sake of simplicity, however, in most practical applications,
these random variables are either considered to be independent, or
completely dependent. For instance, in the widely used orthogonal
polynomial expansion method, the basic random variables are usually
assumed to be independent [1–3]. In contrast, in engineering practice it
is widely recommended that the initial modulus of elasticity of concrete
is determined deterministically according to the compressive strength
in an empirical relationship [4], which implies a perfect, though,
nonlinear dependency between the two random variables. However, it
was well recognized from experimental data that these two mechanical
parameters of concrete are partly correlated in nature [5,6]. In static
reliability of structures it has been demonstrated that such correlation
has great effect on structural reliability assessment [7,8]. Then the
following two questions arise: what is the reasonable probabilistic
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model that can capture such correlations? What is the effect of such
correlation on the stochastic response and reliability of structures under
earthquakes?

The methodology of capturing partially correlation between two
random variables based on data can be broadly classified into two
types: one is to find an appropriate joint probability density function
(PDF) by hypothesis and test; and the other is to find a random function
relationship between the two random variables so that the dependent
random variables can be converted into independent random variables.
To the former class belonging, for instance, the copula function has
been applied in soil and rock engineering [9,10] to find a joint PDF
with known marginal PDFs and a deterministic copula function. Nev-
ertheless, the selection of form of copula function is usually difficult
and somewhat empirically based. On the other hand, to the second type
belonging, e.g., the Rosenblatt transformation [11] and the polynomial
chaos expansion [12], are widely employed in practice, where the
dependency is represented by strong nonlinear transforms. Though
converting dependent random variables to independent basic random
variables, unfortunately such transforms will usually worsen, more or
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less, the well-posedness of the problem in many cases. For instance, due
to such transformations, the accuracy of point estimate of moments of
response may be considerably deteriorated [13].

Recently, based on the thought of physically-guided data-driven
(PGDD) modeling methodology, Chen et al. [6] proposed a new ran-
dom function model, which is of weak nonlinearity, to capture the
correlation configuration of dependent random variables. Based on this
random function model, the correlation between the modulus of elas-
ticity 𝐸c and the compressive strength 𝑓c of concrete was investigated.
Remarkably, in this random function model the underlying physical
background was advocated, and therefore, two physical constraints, as
byproducts of modeling, were also obtained. These two physical con-
straints will guide and adjust the point selection, which is an important
step in the probability density evolution method (PDEM, [14]). In this
paper, the stochastic responses of a reinforced concrete (RC) frame
structure subjected to earthquake acceleration are analyzed. The cases
with completely independent (CI) basic random vector, completely
dependent (CD) basic random vector [4], and partially dependent (PD)
basic random vector [6] are studied and compared. The results indicate
that the effect of correlation configuration of mechanical properties is
unignorable for the stochastic response of structures.

2. Representation of dependent random variables

2.1. Random function model for dependent random variables

For clarity, considering two dependent random variables 𝑋 and 𝑌 .
In Chen et al. [6], the dependency between 𝑋 and 𝑌 is written as the
following form of random function

𝑌 = 𝑔1 (𝑋) + 𝜁 ⋅ 𝑔2 (𝑋) (1)

where 𝜁 is a random variable with zero mean and unity variance, and
is independent to 𝑋. The two weak nonlinear functions 𝑔1 (⋅) and 𝑔2 (⋅)
are to be determined, either by physical reasoning or data learning.
Further, by conducting the conditional expectation on both sides of
Eq. (1), we have

E [𝑌 |𝑋] = 𝑔1 (𝑋) (2)

where E [⋅] denotes the expectation operator. This means that 𝑔1 (⋅) is
nothing but the conditional mean function, which is the optimal func-
tion satisfying the minimum mean squared error (MSE) as well [15].
Similarly, the conditional variance function can be deduced as

E
[

(𝑌 − E [𝑌 |𝑋])2 |𝑋
]

= 𝑔22 (𝑋) , (3)

which means that the function 𝑔2 (⋅) is actually the conditional standard
deviation function.

Hence, the dependent random vector (𝑋, 𝑌 ) can be converted into
an independent random vector (𝑋, 𝜁) by the random function (1).
Generally, the conditional mean function and the conditional standard
deviation function are nonlinear functions, but the nonlinearity is usu-
ally weak. In fact, Eqs. (2) and (3) are closely associated with specific
physical backgrounds, e.g., the conditional mean function captures
the major tendency of 𝑌 with respect to 𝑋, whereas the conditional
standard deviation function represents the degree of uncertainty of 𝑌 in
terms of 𝑋, respectively. As mentioned, the functions 𝑔1 (⋅) and 𝑔2 (⋅) are
to be determined by the embedded physical mechanism, or simply in-
ferred statistically. The probability distribution of the auxiliary variable
𝜁 can be also determined either by the embedded physical mechanism,
or more frequently be determined by statistical inference of observed
data. In the latter case, the ith sample value of 𝜁 is calculated by

𝜁𝑖 =
𝑦𝑖 − 𝑔1

(

𝑥𝑖
)

𝑔2
(

𝑥𝑖
) (4)

where
(

𝑥𝑖, 𝑦𝑖
)

is the ith sample point of the random vector (𝑋, 𝑌 ).

2.2. Physically-guided data-driven (PGDD) methodology

To determine the functions 𝑔1 (⋅) and 𝑔2 (⋅), a physically-guided data-
driven (PGDD) methodology was proposed [6], where the compressive
strength of concrete 𝑓c and the initial modulus of elasticity of concrete
𝐸c are taken into investigation. To this end, the shape of the two
basic functions are determined by advocating the underlying physical
mechanism of concrete materials. For instance, in Refs. [16] and [17],
a simple rheological model was proposed to describe the mechanical
behavior of concrete subjected to uniaxial compression. This model
consists of two parts: the Hooke part representing the elasticity of
concrete and the Kelvin part reflecting the viscoelasticity of concrete,
respectively. It was then derived, by taking the secant modulus as the
modulus of elasticity, where 𝜎 = 𝛽𝑓c, such that [16]

1
𝐸c

=
𝐸1 + 𝐸2
𝐸1𝐸2

− 𝐾𝑣
𝐸2
2𝛽

1
𝑓c

(

1 − exp
(

−
𝛽𝐸2
𝑣𝐾

𝑓c

))

, (5)

where 𝐸1, 𝐸2, 𝐾 and 𝑣 are parameters of the rheological model as
shown in [16]. Rewriting Eq. (5), after taking 𝐴 = 𝐸1+𝐸2

𝐸1𝐸2
, 𝐵 =

− 𝐾𝑣
𝐸2
2𝛽
, 𝐶 = 𝛽𝐸2

𝑣𝐾 , leads to

1
𝐸c

= 𝐴 + 𝐵 1
𝑓c

(

1 − exp
(

−𝐶𝑓c
))

(6)

where 𝐴, 𝐵 and 𝐶 are constants. Till now, a clear relation is generated
between 𝐸c and 𝑓c.

2.2.1. Conditional mean function
For engineering purposes, concise but meaningful expression is

needed. When exp
(

−𝐶𝑓c
)

→ 0, Eq. (6) can be simplified into

1
𝐸c

≈ 𝐴 + 𝐵 1
𝑓c

. (7)

It reveals that the reciprocal of modulus of elasticity is in linear rela-
tionship with the reciprocal of compressive strength of concrete [6,16],
which is actually adopted by Chinese code for design of concrete
structures [4].

Since Eq. (7) can reflect the major relation between 𝐸c and 𝑓c, the
form of 𝑔1 (⋅) can be determined accordingly as

𝑔1
(

𝑓c
)

= 1
𝑎1 + 𝑏1

1
𝑓c

(8)

where 𝑎1 and 𝑏1 should be identified from experimental data by Eq. (2),
see [6] for the details. Here, the lower-case letters 𝑎1 and 𝑏1 are utilized
for identified deterministic parameters, corresponding to the former
parameters 𝐴 and 𝐵 in Eq. (7), respectively.

2.2.2. Conditional standard deviation function
By Eq. (3), it is noticed that the conditional standard deviation

function is based on the difference between the conditional mean
function and the dependent variable, 𝑌 (i.e., 𝐸c). Hence, by taking
the absolute value of the residual as |𝛥| = |

|

|

𝐸c − 𝑔1
(

𝑓c
)

|

|

|

, according to
Eq. (3) there is

𝑔2
(

𝑓c
)

=
√

E
[

|𝛥|2
]

=  (E [|𝛥|]) (9)

where  (⋅) denotes the quantity of the same order of magnitude.
Further, substituting Eqs. (6) and (7) in it leads to

|𝛥| =
|

|

|

|

|

|

|

𝐸c −
1

𝐴 + 𝐵 1
𝑓c

|

|

|

|

|

|

|

≈
𝐵𝑓c

(

𝐴 + 𝐵𝑓c
)2

⋅ exp
(

−𝐶𝑓c
)

=  (E [|𝛥|]) . (10)

The second equality in Eq. (10) means that, by statistical inference
of |𝛥| and 𝑓c, we can have an optimal estimation of |𝛥| with the
minimum mean squared error, which is a proper form of 𝑔2

(

𝑓c
)

as well.
Therefore, we have

𝑔2
(

𝑓c
)

=
𝑏2𝑓c

(

𝑎2 + 𝑏2𝑓c
)2

⋅ exp
(

−𝑐𝑓c
)

(11)
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Fig. 1. The random function model for the modulus of elasticity and compressive
strength of concrete.

where 𝑎2, 𝑏2 and 𝑐 should be identified from the test data of |𝛥| and
𝑓c. With Eqs. (8) and (11) at hand, and by Eq. (4), the probability
distribution of 𝜁 can then be determined. It should be emphasized that
to some degree of statistical errors, 𝜁 may not be exactly but close to
zero mean value and unity standard deviation. Actually, according to
the data the mean value 𝜇𝜁 is 0.118 while the standard deviation 𝜎𝜁 is
1.38 [6]. Therefore, the random function finally takes

𝐸c =
10

𝑎1 + 𝑏1∕𝑓c
+
(

𝜁𝜎𝜁 + 𝜇𝜁
) 𝑏2𝑓c
(

𝑎2𝑓c + 𝑏2
)2

⋅
1

exp
(

𝑐𝑓c
) (12)

where all the undetermined parameters are specified in [6], taking the
same procedure from Eqs. (5) to (11). Note that in Eq. (12) though the
function looks complex, it is actually only weakly nonlinear in terms of
𝑓c, and linear in terms of 𝜁 , which can be seen clearly from Fig. 1.

Note that in the above modeling procedure the shape of the two
functions are determined by physical reasoning, whereas the distribu-
tion of the auxiliary random variables and the parameters are iden-
tified from observed data. Such methodology of capturing the depen-
dency between different random variables can be referred to as the
physically-guided data-driven (PGDD) method.

Remark 1. Alternatively, when the random function model in Eq. (12)
is established, the joint PDF of

(

𝑓c, 𝐸c
)

can be derived easily by
combining marginal PDFs of 𝑓c and 𝜁 and by the rule of change of
random variable(s) [6]:

𝑝𝑓c ,𝐸c

(

𝑓c, 𝐸c
)

= 1
|

|

|

𝑔2
(

𝑓c
)

|

|

|

𝑝𝑓c
(

𝑓c
)

𝑝𝜁

(

𝜁 =
𝐸c − 𝑔1

(

𝑓c
)

𝑔2
(

𝑓c
)

)

(13)

where the marginal PDF of 𝑓c, i.e., 𝑝𝑓c (𝑓c), can be identified from
test data [18] in the form of normal distribution with mean value
𝜇𝑓c = 41.81 and standard deviation 𝜎𝑓c = 14.14;, the marginal PDF of 𝜁 ,
i.e., 𝑝𝜁 (𝜁 ), is determined by statistical inference from Eq. (4) and found
to be normally distributed as well. Then the joint PDF 𝑝𝑓c ,𝐸c

(𝑓c, 𝐸c) is
derived as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝𝑓c ,𝐸c
(

𝑓c, 𝐸c
)

=

(

𝑎2𝑓c + 𝑏2
)2

𝑏2𝜎𝜁𝑓c
exp

(

𝑐𝑓c
)

× 1
2𝜋𝜎𝑓c

exp

⎧

⎪

⎨

⎪

⎩

−
𝜎2
𝑓c
𝜁2 +

(

𝑓c − 𝜇𝑓c

)2

2𝜎2
𝑓c

⎫

⎪

⎬

⎪

⎭

,

𝜁 =
𝐸c −

1
𝑎1+𝑏1∕𝑓c

−
𝜇𝜁 𝑏2𝑓c

(𝑎2𝑓c+𝑏2)2 exp(𝑐𝑓c)
𝜎𝜁 𝑏2𝑓c

×
(

𝑎2𝑓c + 𝑏2
)2 exp

(

𝑐𝑓c
)

(14)

Fig. 2. The marginal PDF of 𝐸c calculated by Eqs. (14) and (15) compared with the
test data from [18] in the form of histogram.

Further, the marginal PDF of 𝐸c can be easily derived by

𝑝𝐸c

(

𝐸c
)

= ∫ 𝑝𝑓c ,𝐸c
(𝑓c, 𝐸c)d𝑓c. (15)

The marginal PDF of 𝐸c is drawn along with the test data in Fig. 2, and
a good fitness is achieved. Notice that 𝐸c is neither normally distributed
by observations of the analytical PDF nor the histogram of test data.

2.2.3. Comparison of partial dependency and complete dependency
In the remaining parts, the unit of 𝐸c takes 104 MPa while the unit

of 𝑓c takes MPa, respectively. Compared to the empirical relation in
Chinese code for design of concrete structures [4,6]

𝐸c =
10

2.2 + 34.7
𝑓c

. (16)

It is seen clearly that the mean of Eq. (12) is almost identical to Eq. (16),
but in Eq. (12) the fluctuating part is also involved.

2.3. Physical constraints and point set adjustment

2.3.1. Physical constraints for dependent mechanical parameters
Concrete, as a type of complex composite material, is remark-

ably featured by the randomness and nonlinearity in its mechanical
behaviors. The former characteristic is due to the uncertainty of its
mixture and micro-mechanical constitution, while the latter is due to
its damage evolution when subjected to external loadings [19]. Clearly,
the ascent stage of concrete subjected to uniaxial compression should
satisfy Drucker’s postulate [20], namely

d𝜎d𝜀𝑝 ⩾ 0 (17)

where d𝜎 is an incremental stress and d𝜀𝑝 denotes an increment of
plastic strain. In short, the yielding surface of stable materials, e.g., con-
crete in its ascent stage, must be convex. Furthermore, for uniaxial
compression, the following inequation holds

𝐸c > 𝐸sec (18)

where 𝐸sec is the secant modulus of elasticity. By adopting more
empirically physical relations [4,6], from Eq. (18) there is
{

𝐸c > 0.83𝑓 0.31
c

𝐸c > 100𝑓c
/(

700 + 172
√

𝑓c
) , (19)

3
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Fig. 3. The random function model, physical constraints, test data and simulated data.

Fig. 4. Structural information.

which implies that 𝐸c is not only dependent on 𝑓c but also admits the
underlying physical principles that satisfying Inequality (19). There-
fore, the above two physically based constraints are imposed in the
following analysis.

The random function model and the test data are displayed in
Fig. 3(a). The test data are adapted from [18]. It can be seen that
most of the data are in the range of 𝑔1

(

𝑓c
)

± 2 ⋅ 𝑔2
(

𝑓c
)

, while 𝑔2
(

𝑓c
)

and 𝑔1
(

𝑓c
)

are weakly nonlinear in terms of 𝑓c, as also illustrated in
Fig. 1. This demonstrates that the random function model can capture
the correlation between the two variables. The two physical constraints
are plotted in Fig. 3(b), where both the test data and simulated data
generated from the random function model are also shown. It is found
remarkably that all the test data are above the two physical constraints,
which verifies Inequality (19). However, there is one simulated point
that is below the constraint, which is spurious due to the unbounded
Gaussian distribution of 𝜁 . There might be more spurious points if one
repeats the simulation or increases the size of simulated data. In the
crude Monte Carlo simulation, these spurious point samples can be
simply abandoned since they are randomly generated. Nevertheless,
in the PDEM analysis, the point set is generated by certain optimal
strategies, e.g., the GF-discrepancy minimized strategy [21]. Therefore,
the spurious samples cannot be directly discarded. Consequently, the
adjustment of point set with certain physical constraints is needed, and
will be discussed in Section 3.3 in details.

From the above, the PGDD is featured by: (i) the form of the
basic functions is determined by the underlying physical mechanism,
which makes the model more objective than the phenomenologically

fitted ones because usually different inference or fitting methods, either
parametric or non-parametric, may lead to different results; (ii) the
correlation between the random variables is captured by two weakly
nonlinear functions that will not worsen the well-posedness of the
problem; and (iii) during the modeling procedure, more valuable in-
formation, e.g., some inherent physical principles may be revealed. It
is noted that the PGDD is essentially consistent with the thought of
physical modeling of stochastic excitations [22,23].

3. Fundamentals of PDEM and point selection strategy

3.1. Fundamentals of PDEM

For clarity, we start with an outline of the probability density
evolution method [14]. Without loss of generality, consider a stochastic
dynamical system

𝐗̇ =  (𝐗,Θ, 𝑡) (20)

where 𝐗=
(

𝑋1,… , 𝑋𝑚
)T is an m-dimensional state vector with the

initial condition 𝐗
(

𝑡0
)

= 𝐗0,  (⋅) denotes a state mapping and Θ =
(

𝛩1,… , 𝛩𝑠
)T is an s-dimensional random vector with the joint PDF

𝑝Θ (𝜽). For well-posed problems, the solution of Eq. (20) can be denoted
by 𝐗 = 

(

𝐗0,Θ, 𝑡
)

with its components 𝑋𝓁 = 𝓁
(

𝐗0,Θ, 𝑡
)

for 𝓁 =
1,… , 𝑚. The generalized velocity can be denoted as 𝐗̇ = ℎ

(

𝐗0,Θ, 𝑡
)

with its components 𝑋̇𝓁 = ℎ𝓁
(

𝐗0,Θ, 𝑡
)

for 𝓁 = 1,… , 𝑚, respectively.

4
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Fig. 5. Constitutive models of concrete and steel bars.

Fig. 6. Adjusted point sets corresponding to three different correlation configurations.

According to the principle of preservation of probability [24], the joint
PDF of (𝐗 (𝑡) ,Θ), denoted by 𝑝𝐗Θ (𝐱,𝜽, 𝑡), is governed by

𝜕𝑝𝐗Θ (𝐱,𝜽, 𝑡)
𝜕𝑡

+
𝑚
∑

𝓁=1
𝑋̇𝓁 (𝜽, 𝑡)

𝜕𝑝𝐗Θ (𝐱,𝜽, 𝑡)
𝜕𝑥𝓁

= 0, (21)

which is called the generalized density evolution equation (GDEE).
More generally, when we focus on only one quantity of interest (QoI),
e.g., the 𝓁th component 𝑋 (the subscript 𝓁 is omitted in the following
part without inducing confusion), then Eq. (21) is reduced to
𝜕𝑝𝑋Θ (𝑥,𝜽, 𝑡)

𝜕𝑡
+ 𝑋̇ (𝜽, 𝑡)

𝜕𝑝𝑋Θ (𝑥,𝜽, 𝑡)
𝜕𝑥

= 0. (22)

By solving Eq. (22) and integrating in terms of Θ, one immediately has

𝑝𝑋 (𝑥, 𝑡) = ∫𝛺Θ

𝑝𝑋Θ (𝑥,𝜽, 𝑡) d𝜽 (23)

where 𝑝𝑋 (𝑥, 𝑡) is the PDF of QoI and 𝛺Θ is the distribution domain of
Θ.

In general, the numerical procedure for solving GDEE involves four
steps [14]:

Step 1.1: Partition of random parameter space 𝛺Θ with a certain
point selection strategy [25]. Suppose the domain 𝛺Θ is partitioned
into 𝑛sel domains, and in each domain one representative point 𝜽𝑞 is
specified. In short, a point set denoted by  =

{

𝜽𝑞
}𝑛sel
𝑞=1 is generated

in this step by a certain point selection strategy. More details are
illustrated in Section 3.2.

Step 1.2: Deterministic analysis with the representative points. For
each representative point 𝜽𝑞 , the deterministic analysis is conducted for
Eq. (20) by setting Θ = 𝜽𝑞 , and the corresponding QoI, i.e., 𝑋̇

(

𝜽𝑞 , 𝑡
)

,
is obtained.

Step 1.3: Solving GDEE. For each representative point 𝜽𝑞 with
corresponding 𝑋̇

(

𝜽𝑞 , 𝑡
)

from Step 1.2, solve the partially discretized
version of Eq. (22)

𝜕𝑝(𝑞)𝑋Θ

(

𝑥,𝜽𝑞 , 𝑡
)

𝜕𝑡
+ 𝑋̇

(

𝜽𝑞 , 𝑡
)
𝜕𝑝(𝑞)𝑋Θ

(

𝑥,𝜽𝑞 , 𝑡
)

𝜕𝑥
= 0, 𝑞 = 1,… , 𝑛sel. (24)

Step 1.4: Synthesizing the results from Step 1.3. The PDF of QoI is
finally obtained by

𝑝𝑋 (𝑥, 𝑡) =
𝑛sel
∑

𝑞=1
𝑝(𝑞)𝑋Θ

(

𝑥,𝜽𝑞 , 𝑡
)

. (25)

It should be emphasized that there is no assumption of indepen-
dency of basic random variables in PDEM theoretically.

3.2. Point selection strategy in PDEM

For clarity and completeness, the point selection strategy of PDEM
in Step 1.1 will be detailed herein. In the point selection strategy by
minimizing the GF-discrepancy [21,26], there are three major steps:

Step 2.1: Generate an initial point set (0) =
{

𝜽𝑞
}𝑛sel
𝑞=1. Denote the

𝑛sel initial points by 𝜽𝑞 =
(

𝜃𝑞,1,… , 𝜃𝑞,𝑠
)T , 𝑞 = 1,… , 𝑛sel, where s is the

dimension of the vector 𝜽𝑞 . For instance, the Sobol’ sequence is sug-
gested to generate this initial point set, but any other low-discrepancy
point set is also feasible.

Step 2.2: Point set rearrangement – the first round. Convert the
initial point set by

𝜃′𝑘,𝑖 = 𝐹 −1
𝑖

( 𝑛sel
∑

𝑞=1

1
𝑛sel

⋅ 𝐼
{

𝜃𝑞,𝑖 < 𝜃𝑘,𝑖
}

+ 1
2
⋅

1
𝑛sel

)

for 𝑖 = 1,… , 𝑠, 𝑘 = 1,… , 𝑛sel

(26)

where 𝐹−1
𝑖 (⋅) is the inverse of cumulative distribution function (CDF)

of the ith dimension, and 𝐼{⋅} is an indicator function with value being
one if the bracket event is true and otherwise zero. By doing so, a new
point set (1) =

{

𝜽′𝑞
}𝑛

𝑞=1
is generated with a relative low discrepancy.

Step 2.3: Point set rearrangement – the second round. To obtain a
low GF-discrepancy, an additional rearrangement is required. First, the
assigned probability for each point is specified by

𝑃𝑞 = ∫𝑉𝑞
𝑝Θ (𝜽) d𝜽, 𝑞 = 1,… , 𝑛sel (27)

where 𝑝Θ is the joint PDF of random vector Θ and 𝑉𝑞 is the 𝑞th
partitioned sub-domain, which can take the Voronoi cell as elaborated
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Fig. 7. Stress–strain curves of steel and concrete materials of case 1 and 2.

in Chen et al. [21]. By replacing the equal weight in Eq. (26), a second
rearrangement can be written as

𝜃′′𝑘,𝑖 = 𝐹−1
𝑖

(𝑛sel
∑

𝑞=1
𝑃𝑞 ⋅ 𝐼

{

𝜃′𝑞,𝑖 < 𝜃′𝑘,𝑖
}

+ 1
2
⋅ 𝑃𝑘

)

for 𝑖 = 1,… , 𝑠, 𝑘 = 1,… , 𝑛sel.

(28)

Therefore, the final point set (2) =
{

𝜽′′𝑞
}𝑛sel

𝑞=1
is generated with a low

GF-discrepancy.

3.3. Point set adjustment in terms of physical constraints

As mentioned above, in reality, there exists some physical con-
straints for dependent mechanical parameters. Therefore, the point
selection strategy in Section 3.2 should satisfy the underlying physical
constrains. Thus, the following steps are taken.

Step 2.4: Point adjustment in terms of underlying physical con-
straints. The point set (2) =

{

𝜽′′𝑞
}𝑛sel

𝑞=1
is sieved according to certain

physical constraints, i.e., by Eq. (19). Denote the remaining point set

Fig. 8. Typical hysteretic curve of restoring force vs. inter-story drift of case 1 and 2.

as (2),𝑟 =
{

𝜽′′𝑞
}𝑛r

𝑞=1
. Notice that this point set may have a relatively

high GF-discrepancy compared to (2), thus another loop by Eq. (28)
is needed. After several loops between Steps 2.3 and 2.4, a final point
set denoted as F is yielded. The GF-discrepancy of point set is thus
minimized and all the representative points satisfy the certain physical
constraints.

Remark 2. Notice that the above procedure of point selection strategy
is utilized for independent random variables, e.g.,

(

𝑓c, 𝜁
)

. Then, we
transform

(

𝑓c, 𝜁
)

into
(

𝑓c, 𝐸c
)

by Eq. (12), of which 𝑓c and 𝐸c are
naturally dependent. Since 𝑔1 (⋅) and 𝑔2 (⋅) are weakly nonlinear (as
shown in Fig. 1), such a transformation will not considerably increase
the point discrepancy of

(

𝑓c, 𝐸c
)

.

4. Numerical applications

4.1. Structural information

Consider a 10-story reinforced concrete frame structure as shown
in Fig. 4. The external excitation is generated by a physical stochastic

6
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Fig. 9. Statistics of structural displacement responses (each floor is independent).

model for earthquake ground motion process [27], which is physically
based on the seismic source-path-site physical mechanism. The basic
parameters of this model are 𝐴0, 𝜏, 𝜉𝑔 and 𝜔𝑔 , with respect to the
amplitude, the Brune source factor, the equivalent damping ratio and
the equivalent predominant circular frequency, respectively. For more
details, see [27] for the basic theories and [28] for engineering applica-
tions. The constitutive model of concrete in Chinese code for design of
concrete structures [1,29] is adopted, while the constitutive model of
steel is adopted from Filippou et al. [30]. The two constitutive models
are available in OpenSEES software, corresponding to ‘‘ConcreteD’’ and
‘‘Steel02’’ commands, respectively. The stress–strain relations of the
two materials are shown in Fig. 5.

The compressive strength 𝑓c and the modulus of elasticity of con-
crete 𝐸c are considered to be random variables. For the sake of sim-
plicity, the mechanical parameters of columns and beams in the same
story are assumed to be identical, while those in all 10 stories are
mutually independent (Section 4.3) or completely dependent (Sec-
tion 4.4). Details are available in Table 1. To investigate the influence of
correlations between mechanical parameters, two cases are considered,
denoted as Case 1 and Case 2. For Case 1, the peak ground acceleration
(PGA) is modified to 0.1g, aiming to ensure the structure subjected to
earthquake response in the linear stage; while for case 2, PGA is set to
0.8g, thus the structure is supposed to response in strongly nonlinear
stage.

Table 1
Model parameters with randomness (each story is independent).

Correlation Parameters Mean Std.D Distribution Note

CI 𝑓 (𝑖)
c 30 MPa 6 MPa Normal –

𝐸(𝑖)
c 2.98 × 104 MPa 2.38 × 103 MPa Normal

CD 𝑓 (𝑖)
c 30 MPa 6 MPa Normal Eq. (16)

𝐸(𝑖)
c – – –

PD
𝑓 (𝑖)
c 30 MPa 6 MPa Normal

Eq. (12)𝜁 (𝑖) 0 1 Normal

𝐸(𝑖)
c – – –

Annotation: 𝑖 = 1,… , 10 represents the story number from the 1st floor to the 10th
floor, ‘‘Std.D’’ denotes the standard deviation, ‘‘CI’’ means complete independency, ‘‘CD’’
means complete dependency, ‘‘PD’’ means partial dependency.

4.2. Probability density evolution analysis involving point set adjustment

As mentioned above, due to the underlying physical mechanisms,
it is crucial to make an adjustment of the point set. The representative
points for complete independency (CI), complete dependency (CD) and
partial dependency (PD) are illustrated in Fig. 6. Some interesting
properties are observed from these point sets: (1) all these points satisfy
the physical constraints; (2) most of the points are gathered in the
range of 24 MPa to 36 MPa in strength, which is an interval of mean
± standard deviation, i.e., 30 ± 6 MPa; and (3) for the points in the
range of tail distribution (lower than 24 MPa or higher than 36 MPa in
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Fig. 10. Contours of PDFs for three correlation configurations.

strength), the modulus of elasticity in the points of CI and PD are quite
different. We will see later that this property will lead to a closeness for
the statistical moments but has remarkable influence on tails of PDF of
QoI.

4.3. Stochastic responses of the structure involving material parameters with
three correlation configurations

In this section, the mechanical properties of different stories are con-
sidered to be mutually independent, whereas in each story, three corre-
lation configurations (CI, CD and PD) between the modulus of elasticity
and compressive strength of concrete are considered for comparison.

4.3.1. Comparison between statistical moments of stochastic responses for
different correlation configurations

The PDEM is adopted to carry out stochastic response analysis of the
structure subjected to earthquake excitations. The typical samples of
constitutive curves and of restoring force v.s. displacement are plotted
in Figs. 7 and 8, respectively. It is observed that, when the peak ground
acceleration (PGA) is small (0.1g), the structure response is almost in
the linear stage, see Figs. 7(a) and 8(a), but when the PGA is larger
(0.8g), strong nonlinearity occurs in both the constitutive curves and
the restoring force curves (see Figs. 7(b) and 8(b)). The statistics of
stochastic responses of the structure are shown in Fig. 9. Remarkably,
different correlation configurations have only slight effects on the mean
of the stochastic responses no matter the structure is in linear or
nonlinear stage (see upper subplots in Fig. 9(a) and (b)), but have great
effects on the standard deviation of the response (see lower subplots
in Fig. 9(a) and (b)) according to whether the structure is in linear

stage or not. When the structure is in linear or weakly nonlinear stage,
the standard deviation of the responses changes little against different
correlation configurations (Fig. 9(a)), whereas when the structure sub-
jected to strong earthquake is in strong nonlinear stage, the standard
deviation of response of structure with PD or CI configuration is much
larger, by a factor of nearly 2, than that with CD configuration. This
of course will affect the seismic reliability greatly. In particular, this
demonstrates that the coupling of randomness and nonlinearity will
lead to a great fluctuation in the structural responses [31].

4.3.2. Comparison between the probability densities and contours of
stochastic responses for different correlation configurations

Noticing that the first two statistical moments are inadequate to
represent the complete probabilistic information of the stochastic struc-
tural responses [13], the contours of PDF surface and typical PDFs of
responses are shown in Figs. 10–11. From Fig. 10 , it is observed that
the correlation configuration has significant influence in both linear
and nonlinear cases.

The differences can also be easily identified from Fig. 11, where
the coupling effect of randomness and nonlinearity is remarkable.
Actually, in linear stage of the structure, the major shapes of PDF for
the three correlation configurations are close to each other, as shown
in Fig. 11(a), whereas in the strong nonlinear stage, the PDFs are quite
different, see Fig. 11(b).

Remark 3. As noticed from Fig. 6 the majority part of points in CI and
PD are similarly scattered, thus the statistic moments of the responses
of CI and PD are close (see Fig. 9(b)). However, the points in the tail
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Fig. 11. PDFs at specific time instant for three correlation configurations.

range are different, which leads to the detailed differences in the PDF
curves (see Figs. 10 and 11).

4.4. Influence of correlation between inter-story parameters

Apart from the correlation between different mechanical parame-
ters, there exists correlations between each story [32], which is not
considered in the above analysis (see Table 1). In this section, we as-
sume all the stories are completely dependent rather than independent,
which means all mechanical parameters of concrete are identical from
the 1st floor to the 10th floor. In this case, the model parameters are
shown in Table 2 with details.

The statistical moments of responses for the top and bottom dis-
placements are shown in Fig. 12. Notice that when the structure is
in linear stage, the correlation of each story has little influence (see
Fig. 9(a) with Fig. 12(a)). However, when the structure is in strongly
nonlinear stage, comparing Figs. 9(b) and 12(b) leads to the observa-
tions that: for the top displacement, the standard deviations of response

Table 2
Model parameters with randomness (all floors are identical/completely dependent).

Correlation Parameters Mean Std.D Distribution Note

CI 𝑓c 30 MPa 6 MPa Normal –
𝐸c 2.98 × 104 MPa 2.38 × 103 MPa Normal

CD 𝑓c 30 MPa 6 MPa Normal Eq. (16)
𝐸c – – –

PD
𝑓c 30 MPa 6 MPa Normal

Eq. (12)𝜁 0 1 Normal

𝐸c – – –

in the case with completely dependency between each floor are higher
by a factor nearly 2 than those in the case when the parameters of
different floors are independent; however, for the bottom displacement,
this property is totally opposite, i.e., the standard deviations of response
in the case with completely dependency between each floor are even
lower than those in the case when the parameters of different floors
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Fig. 12. Statistics of structural displacement responses (parameters of all floors are identical).

are independent. In fact, this performance is exactly due to the spatial
variation of material properties [33], and more researches should be
done in the future.

Clearly, what is more important is that, as the standard deviations of
structural response are greatly affected by the correlation configuration
in the strongly nonlinear stage, the reliability of the structure under
strong earthquakes will thus be greatly different, and consequently
should be carefully considered in structural design. Undoubtedly, more
should be done in this aspect.

5. Concluding remarks

Practical mechanical properties of concrete structures are usually
correlated, and may have unignorable effects on stochastic responses of
structures. For this purpose, a physically-guided data-driven methodol-
ogy of capturing correlation configuration of basic random variables
and the probability density evolution method is synthesized in this
paper to implement stochastic dynamic response of concrete structures
with dependent random parameters. The main findings include:

(1) The physically-guided data-driven methodology can capture the
correlation configuration of basic random variables by combining the
physical mechanisms and observed data. Besides, possible physical
constraints can be revealed.

(2) The point selection strategy based on the GF-discrepancy mini-
mization should be adjusted based on the imposed physical constraints.

(3) The correlation configuration usually has only slight effects on
the mean value of stochastic response in both linear and nonlinear
situation, however, in the stage of strong nonlinearity, it has great
effects by a factor of nearly 2 on the standard deviation of responses,
and has remarkable influence on the PDF of stochastic responses.
Besides, it is also remarkably noticed that, the correlation between the
parameters of different floors has unignorable effects on the response,
and for different response quantities, such effects are usually quite
different, even qualitatively opposite. Consequently, the correlation
configuration cannot be ignored in the decision-making of structural
design under strong earthquakes.

Further studies, including the correlation configuration of random
field parameters of structures and the response of structures involving
randomness in both excitation and parameters, should be done in the
future.
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