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a b s t r a c t 

The aim of the present work is to investigate the mechanical behaviour of orthotropic masonry subjected 

to localised loads in the context of both ‘implicit’/‘weak’ and ‘explicit’/‘strong’ non-local continuum mod- 

els. To look for possible correspondences and differences, the solutions of Cosserat (micropolar) and inte- 

gral form of Eringen models, obtained by employing finite element method, are compared. The resulting 

displacement and stress fields highlight the diffusive character of micropolar model, and the capability of 

Eringen model in avoiding stress singularities. 
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. Introduction 

The gross mechanical behaviour of complex microstructured

aterials strongly depends on the heterogeneous and discontin-

ous nature of the underlying internal structure. By lacking in

nternal scale parameters, the classical theory of elasticity seems

ncapable of capturing the size effects, while, direct discrete mod-

lling techniques are computationally cumbersome for systems

ith many degree of freedoms [1–3] . To balance the accuracy with

omputational efficiency, it is favourable resorting to enhanced

ontinuum theories [4–9] which not only exploit the advantages of

he field description at the coarse level, but also retain the mem-

ry of internal material organisation. Depending on the procedures

ollowed to incorporate size effects, the non-classical theories are

lassified as implicit/weak and explicit/strong, non-local models

4,10–12] . In the so–called implicit non-local models, also referred

s multifield continua [12] , the body is considered as a collection

f deformable (or rigid) particles that are endowed with additional

egrees of freedom. As a result of additional descriptors introduced

o represent the material microstructure, new strain/stress mea-

ures and balance equations are presented. On the other hand,

xplicit non-local models preserve the primal fields of classi-

al theory, yet the equations of motions contain different opera-

ors. Since implicit non-local models incorporates size effects only
∗ Corresponding author. 
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hrough newly introduced non-standard primal field, they possess

 limited non-local character while as a result of linking size ef-

ects directly to the bulk properties, explicit models have a strong

on-local character. Among various implicit and explicit non-local

odels, the focus of the present work will be on the micropolar

Cosserat) theory [4,7,13,14] and Eringens nonlocal theory [9,15] .

lthough both theories incorporate size effects and show spatial

ispersion properties in wave propagation [6] , application fields

re quite different because of the distinct kinematic and static de-

criptors they possess. Micropolar model corresponds to an assem-

ly of rigid particles which undergo displacement and rotations,

ndependent of each other, and interact through forces and cou-

les. It has been widely employed to describe many material cases

nd in particular to study block assemblies like granular rock, par-

icle composites, masonry, etc. [16–18] . It has been shown, more-

ver, that, due to the presence of the relative rotation between

acro (local rigid) and micro rotation, that corresponds to the

kew-symmetric part of strain, the micropolar continuum is partic-

larly suitable to investigate the behaviour of anisotropic (specifi-

ally orthotropic) media [18–22] . If micro rotations are constraint

o follow the local rigid (macro) rotations, the theory becomes of

ouple Stress, and by further adding statical constraint on couples

he classical continuum is recovered (see for instance Appendix in

16] ). On the other hand, Eringen’s nonlocal theory of elasticity is

oncerned with the physics of materials bodies whose behaviour

t a material point is influenced by the state of all points of the

ody [9] . Hence, the theory covers long-range interactions by re-

ating stress at each point to the strain of entire domain through
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an attenuation-type kernel function containing information about

non-locality. It has been widely employed to investigate the me-

chanical behaviour of nano or micro sized structures [23–27] . As

the ratio between nonlocal parameter and the external length of

the body approaches to zero, the size effects become negligible,

and the model behaves as Cauchy continua. 

Non-classical theories are used to study the various kinds of

material problems [28,29] , but recently, a special attention is paid

to comparison of different continuum models which can shed light

on the proper description of physical phenomena of the underly-

ing discrete system [30–33] . To this end, possible correspondences

and differences between implicit Cosserat and explicit Eringen the-

ories are studied through a common problem of a two-dimensional

(2D) square masonry, fixed at the bottom edge and subjected to

loads at the top edge (as in [34] ). As in the previous exercise of

the authors’ focused on geometric singularity [33] , Eringens theory

is not here specifically used to model solids at atomistic scale, but

rather the focus is on larger structures dominated by a mesoscale

internal length, l , that does not significantly differ from the macro-

scopic length, L ( l L � 1 ). A block masonry wall has been consid-

ered; although the actual discrete structure of the materials is non-

homogeneous, it has been described as a homogeneous and or-

thotropic linear elastic equivalent continuum model, exploiting a

coarse-graining procedure. This particular problem allows us to use

a computationally efficient way to model class of structures, of-

ten encountered in historical masonry. Moreover, it allows us to

observe the response of non-local continuum models in the pres-

ence of load singularities. The anisotropy, on the other hand, is in-

corporated to reflect response of masonry walls of practical inter-

est; indeed, consideration of isotropy in continuum modelling cor-

responds to orthotetragonal arrangements of bricks which has no

practical importance. The numerical solution has been obtained us-

ing finite element formulations derived within the linearised kine-

matical framework. Devoting special attention to varying load foot-

print size and block/brick size, that is to varying the internal length

and the level of non-locality, the response of Cosserat and Eringen

continua is discussed focusing on resulting displacement and stress

fields. 

2. Material and methods 

In this section, continuum theories considered in the study are

briefly explained, and the displacement-based finite element for-

mulations are derived within the linearised kinematical frame-

work. A Cartesian coordinate system xyz is used with a suit-

able origin for parameterisation. The body under investigation is

assumed as two-dimensional orthotropic, homogeneous medium

with a uniform and symmetric thickening of h . The superscripts

E and M , that refer to Eringens and micropolar model, respectively,

are used to distinguish the parameters appearing in both theories,

and possessing different interpretations. The simulations are per-

formed by using an in-house Mathematica code considering two

different discretisation and element formulations. 

2.1. Micropolar theory 

Micropolar theory belongs to a class of generalised continua,

that using the definition [4,10,11] called as implicit non-local model

[12] . The material particles that constitute the continuum are de-

scribed in terms of both their positions and orientations [4,7,13] .

Hence, in the reduced 2D media, each particle possess two in-

plane displacement components along x and y directions ( u x , u y ),

and one out-of-plane micro-rotation component along z direction

( φz ). In the linearised framework following kinematic relations are

obtained: 

ε M 

i j = u i, j + e i jk φk , χk j = φk, j (1)
here, εij and χ kj denote the components of strain and curvature

ensor while e ijk being the usual third order perturbation tensor.

ith σ M 

i j 
and μkj being the components of non-symmetric stress

nd couple stress tensors, following equilibrium equations are ob-

ained in the absence of body forces and body couples: 

σ M 

i j, j 
= 0 , μk j, j − e i jk σ

M 

i j = 0 (2)

onsidering linear elasticity, the stress–strain relation of an or-

hotropic micropolar continua can be represented as: 

M = D 

M 

ε ε 

M , μ = D χχ (3)

ith elasticity matrices being 

 

M 

ε = 

⎡ 

⎢ ⎣ 

A 1111 A 1122 0 0 

A 2211 A 2222 0 0 

0 0 A 1212 A 1221 

0 0 A 2112 A 2121 

⎤ 

⎥ ⎦ 

, 

D χ = 

[
D 11 0 

0 D 22 

]
(4)

y considering hyperelastic materials the major symmetries hold:

 i jhk = A hki j , D i j = D ji (i, j, h, k = 1 , 2) . Note that, the elasticity con-

tants appearing in D 

M 

ε , do not retain memory of internal lengths,

hile these are incorporated in bending moduli D χ , responsible for

cale effects. 

For FE modelling, the field variables within an element e ( u e 

nd φe ) are approximated considering a natural coordinate system

, η and using related interpolation function matrices: 

u e = N 

M 

u ˜ u e , φe = N φ
˜ φe 

(5)

he over tilde symbol here is used to express the nodal values

f field variables. Since optimum choice for micropolar element is

ine-node Lagrange element [22,34,35] with micro-rotation DOFs

ttached only to the four corner nodes, the interpolation function

atrices take the following form: 

 

M 

u = 

[
N 

1 
u 0 

0 N 

1 
u 

· · · N 

9 
u 0 

0 N 

9 
u 

]
, 

N φ = 

[
N 

1 
φ

. . . N 

4 
φ

]
(6)

y using differential matrix operator, L M , permutation vector M ,

nd gradient operator, ∇: 

 

M = 

[
∂ 
∂x 

0 

∂ 
∂y 

0 

0 

∂ 
∂y 

0 

∂ 
∂x 

]T 

M = 

[
0 0 1 −1 

]T 

∇ = 

[
∂ 
∂x 

∂ 
∂y 

]T 
, (7)

he strain and curvature fields, ordered in vectors as 

 

M 

e = 

[
ε M 

xx ε M 

yy ε M 

xy ε M 

yx 

]T 

e 
, 

χe = 

[
χzx χzy 

]T 

e 
, (8)

re obtained: 

ε 

M 

e = L M u e + M φe = L M N 

M 

u ˜ u e + M N φ
˜ φe 

= 

[
L M N 

M 

u M N ϕ 

]{˜ u e 

˜ φe 

}
= B 

M 

eε d 

M 

e , 

χe = ∇ φe = ∇ 

(
N φ

˜ φe 

)
= 

[
0 ∇ N φ

]{˜ u e 

˜ φe 

}
= B 

M 

eχ d 

M 

e 

 

M 

e = 

{
˜ u 

1 
x ˜ u 

1 
y . . . ˜ u 

9 
x ˜ u 

9 
y 

˜ φ1 
z . . . ˜ φ4 

z 

}T 

e 
, (9)
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here B 

M 

eε and B 

M 

eχ including derivation of interpolation func-

ions called as strain-displacement matrices, while d 

M 

e refers to

odal displacement vector. Note that the superscripts appeared in

qs. (6) and (9) 3 refer to node numbers, and the derivation oper-

tions given in Eq. (7) are performed using chain rule and the in-

erse of Jacobian matrix. For the uniform mesh configuration con-

idered in the present study, the Jacobian matrix is same for all

quare elements with an edge length of l e : 

 = 

l e 

2 

[
1 0 

0 1 

]
(10) 

nherently, for an element e the constitutive equations given in

q. (3) are transformed to 

σM 

e = D 

M 

eε B 

M 

eε d 

M 

e , μe = D 

M 

eχ B 

M 

eχ d 

M 

e (11) 

ith 

M 

e = 

[
σ M 

xx σ M 

yy σ M 

xy σ M 

yx 

]T 

e 
, 

μe = 

[
μzx μzy 

]T 

e 
(12) 

As the last step, the minimum of total potential energy princi-

le is employed to obtain the formulation of an element m with

 

M 

m 

and k 

M 

m 

being the element force vector and element stiffness

atrix: 

f M 

m 

= k 

M 

m 

d 

M 

m 

 

M 

m 

= 

⎛ 

⎝ 

h 

∫ 1 
−1 

∫ 1 
−1 

(
B 

M 

mε 

)T 
D 

M 

mε B 

M 

mε det | J m 

| d ζ d η
+ 

h 

∫ 1 
−1 

∫ 1 
−1 

(
B 

M 

mχ

)T 
D 

M 

mχ B 

M 

mχ det | J m 

| d ζ d η

⎞ 

⎠ 

︸ ︷︷ ︸ 
k M mε + k M mχ

(13) 

ventually, by performing proper assemblage operations, the linear

quation system is achieved: 

 

M d 

M = f M (14) 

here K 

M , d 

M and f M refer to global stiffness matrix, global nodal

isplacement vector, and global external force vector of a 2D mi-

ropolar FE model. For integrations, a standard numerical integra-

ion technique, Gauss quadrature rule, is employed with either two

r three Gauss sampling points depending on the order of the ele-

ents. 

.2. Integral form of Eringen’s nonlocal theory 

Eringen’s theory is considered as an ‘explicit’ non-local model

4,10,11] , where stress at each point is related to strain of en-

ire domain through an attenuation-type kernel function [9,15] . In

his theory, primal fields of classical elasticity are conversed and

ollowing kinematical relations are obtained within the linearised

ramework: 

 

E 
i j = 

1 

2 

(
u i, j + u j,i 

)
(15) 

here ε E 
i j 

denotes components of symmetric strain tensor. In the

bsence of body forces, following equilibrium equation similar to

lassical elasticity theory is carried out: 

E 
i j, j = 0 (16) 

ith σ E 
i j 

being the components of symmetric stress tensor. Consid-

ring linear elasticity, the stress–strain relation of an orthotropic

ringen media is represented as follows 

E = 

∫ ∫ 
τ ( r, κ) D 

E ε 

E ( ̄x , ȳ ) d ̄A (17) 

here τ ( r, κ) refers to kernel function, Ā corresponds to surface

rea of the 2D domain, r denotes the Euclidean distance between
orresponding point x ( x, y ) and its neighbouring points x̄ ( ̄x , ̄y ) (i.e.

 = | x − x̄ | ) and κ is the non-local parameter including information

bout internal length, and where: 

 

E = 

⎡ 

⎣ 

ˆ A 1111 
ˆ A 1122 0 

ˆ A 2211 
ˆ A 2222 0 

0 0 

ˆ A 1212 

⎤ 

⎦ (18) 

ote that, in the present study, the orthotropic material behaviour

s included only through bulk properties, while kernel function

s assumed as isotropic similar to existing literature [36,37] . The

nisotropic material behaviour through not only elastic stiffness

roperties, but also length scale parameters could be the topic of

nother project. In this study, hyperelastic materials are considered

n such a way that: ˆ A i jhk = 

ˆ A hki j , (i, j, h, k = 1 , 2) . 

For FE modelling, the domain is discretised with 2D elements,

nd the displacement field within an linear element e is approx-

mated by using interpolation function matrix and corresponding

odal displacement vector: 

u e = N 

E 
u d 

E 
e 

 

E 
u = 

[
N 

1 
u 0 

0 N 

1 
u 

· · · N 

4 
u 0 

0 N 

4 
u 

]

d 

E 
e = 

{
˜ u 

1 
x ˜ u 

1 
y ˜ u 

2 
x ˜ u 

2 
y ˜ u 

3 
x ˜ u 

3 
y ˜ u 

4 
x ˜ u 

4 
y 

}
e 

T 
(19) 

ccording strain field within an element e (i.e. ε E e =
ε E xx ε E yy 2 ε E xy 

]T 

e 
) is then calculated as follows by using

he differential matrix operator, L E : 

 

E 
e = L E N 

E 
u d 

E 
e = B 

E 
e d 

E 
e 

L E = 

[ 

∂ 
∂x 

0 

∂ 
∂y 

0 

∂ 
∂y 

∂ 
∂x 

] T 

(20) 

s already mentioned, the derivations with respect to physical co-

rdinate systems given in Eq. (20) 2 are performed by the chain

ule, and employing the inverse of Jacobian matrix of element.

onsequently, for an exponential type kernel function, the consti-

utive equation given in Eq. (17) is transformed to following for an

lement e : 

E 
e = 

N total e ∑ 

i =1 

∫ 1 

−1 

∫ 1 

−1 

e −
r 
κ

2 πκ2 
D 

E 
i B̄ 

E 
i d 

E 
i det 

∣∣J̄ i ∣∣d ̄ζ d ̄η (21) 

here stress tensor is described as: 

E 
e = 

[
σ E 

xx σ E 
yy σ E 

xy 

]T 

e 
(22) 

he subscript i in Eq. (21) refers to elements that fall within the in-

uence zone of the element e , hence N total e being the total number

f related neighbour elements of e . Their numbers increase with

on-locality and disrupts the banded character of global stiffness

atrix. Also note that the over bar denotes that the related ma-

rix is written in terms of ζ̄ , η̄ due to long range interactions in

onstitutive equation. 

Based on the minimum of total potential energy principle, the

ormulation of m th element of Eringen nonlocal model is derived

s below: 

 

E 
m 

= 2 k 

E 
mm 

d 

E 
m 

+ 

N total m ∑ 

n =1 , n � = m 

(
k 

E 
mn d 

E 
n + 

(
k 

E 
nm 

)T 
d 

E 
n 

)
(23)

ith 
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Fig. 1. Geometric sketch of the problem under investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Constitutive material parameters used in calculations. 

Cauchy 

ˆ A 1111 = 3 . 75 × 10 4 MPa 
ˆ A 2222 = 1 . 50 × 10 4 MPa 
ˆ A 1212 = 1 . 875 × 10 4 MPa 

Cosserat 

Parameter set 1: 

l 1 /L = 0 . 1 

A 1111 = 3 . 75 × 10 4 MPa (D 11 ) 1 = 450 . 0 MN 

A 2222 = 1 . 50 × 10 4 MPa (D 22 ) 1 = 150 . 0 MN 

A 1212 = 0 . 75 × 10 4 MPa Parameter set 2: 

A 2121 = 3 . 00 × 10 4 MPa l 2 /L = 0 . 25 

(D 11 ) 2 = 2812 . 5 MN 

(D 22 ) 2 = 937 . 5 MN 

Eringen 

Parameter set 1: 
ˆ A 1111 = 3 . 75 × 10 4 MPa l 1 /L = 0 . 1 
ˆ A 2222 = 1 . 50 × 10 4 MPa κ1 = 0 . 012 m 

ˆ A 1212 = 1 . 875 × 10 4 MPa Parameter set 2: 

l 2 /L = 0 . 25 

κ2 = 0 . 03 m 

Fig. 2. Discretisation of the domain (a) coarse mesh configuration, (b), (c) fine mesh 

configuration. 
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g  
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p  

d  
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r  

y  

a  
k 

E 
mn = 

h 

2 

∫ 1 

−1 

∫ 1 

−1 

∫ 1 

−1 

∫ 1 

−1 

e −
r 
κ

2 πκ2 
L mn d ̄ζ d ̄ηd ζ d η

L mn = 

(
B 

E 
m 

)T 
D 

E 
n ̄B 

E 
n det 

∣∣J̄ n ∣∣det | J m 

| (24)

and 

r = 

√ (
ζ̄ − ζ

)2 + ( ̄η − η) 
2 (25)

Note that for a domain with homogeneous material properties, as

in the present work, following simplification can be made: 

k 

E 
mn = 

(
k 

E 
nm 

)T 
(26)

Finally, a linear equation system is obtained similar to Cosserat

model by performing proper assemblage operations with K 

E , d 

E 

and f E being the global stiffness matrix, global nodal displacement

vector, and global external force vector of a 2D Eringen FE model.

K 

E d 

E = f E (27)

To calculate the integration in Eq. (24) with minimum possible er-

ror, the number of Gauss sampling points should be carefully ad-

justed depending on the ratio between non-local parameter and

element length ( κ/ l e ). As this ratio decreases, more Gauss points

are required to catch the trend of exponential function in integra-

tion. 

3. Numerical simulations 

The present study aimed at comparing the two different non-

local models; namely ‘explicit’/‘strong’ Eringen model and ‘im-

plicit’/‘weak’ Cosserat model in the presence of localised loads

and accountable size effects. To this end, a square wall of length

L = 4 m and thickness h = 1 m, fixed at the bottom edge and sub-

jected to several loads at the top edge, is investigated. As illus-

trated through half wall geometries at Fig. 1 , the footprint size and

intensity of loads are arranged to keep the resultant force, F , con-

stant, such that; q 1 = 2.5 MPa, q 2 = 10.0 MPa, F = 10 MN. It must

be noted that, to avoid any numerical problems (hourglassing)

that may encounter for increasing κ/ l e ratios, concentrated load is

modelled as a distributed load on a very small region ( < L /50)

for Eringen’s model. Furthermore, to examine the scale effects,

the structures are investigated considering two different internal

lengths (brick/block sizes), resulting in altered non-locality. The

corresponding continuum material properties of Cauchy, Cosserat

and Eringen models are listed in Table 1 . 

For Cosserat and Cauchy continua, the equivalent material con-

stants are evaluated using the coarse graining approach given in

[38] , while the non-local parameter in Eringen model is selected

based on the variation of displacement field between Cauchy and
osserat models in such a way that, the vertical displacement at

he middle of the top edge is almost same for both models in Case

. This can be achieved simply by trial and error or using an evo-

utionary algorithm previously employed [27] . The main reason at-

ention is focused on Case 2 in parameterisation is because the size

ffects are pronounced for both non-classical models (unlike Case

) and it does not possess singularity (unlike Case 3). The ratio be-

ween first and second non-local parameter is then arranged to be

n accordance with the change in the block size. 

The analysis are repeated for two different mesh configurations

llustrated at Fig. 2 . Note that we assume non-dilatant material

or which: A 1122 = A 2211 = A 1221 = A 2112 = 0 as well as ˆ A 1122 = 

ˆ A 2211

 0 . 

In the following, comments about each load case will be briefly

iven with focusing on resulting vertical displacement and stress

elds demonstrated in Figs. 3 and 4 for Mesh 1. It is important to

ention that, the alteration of results with mesh configuration is

nly evident in the proximity of localised loads, and still lead to

ame contour plots for considered legends. 

According to results, following inferences can be made. For ‘im-

licit’ non-local models, size effects are not implied under uniform

istributed load (Case 1) which results in a homogeneous deforma-

ion state, while the deviations around domain boundaries of Erin-

en model, that increases with non-locality is originated from long

ange interactions and missing neighbour relations. For other cases

ielding inhomogeneous deformations (Cases 2 and 3), Cosserat

nd Eringen models act in an opposite manner in terms of dis-
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Fig. 3. Vertical displacement fields ( u y × 10 3 ) for Case 1 (1st row), Case 2 (2nd 

row), and Case 3 (3rd row). 

Fig. 4. Vertical stress fields ( σ yy ) (MPa) for Case 1 (1st row), Case 2 (2nd row), and 

Case 3 (3rd row). 
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lacement fields such that with increasing non-locality, Eringen

odel becomes more flexible while Cosserat model becomes more

igid. As a consequence, Cosserat is able to better distribute the

oad depending on the level of non-locality, more in the presence

f larger brick, while the diffusion of Eringen model seems not al-

ered. 
To show the effect of non-locality on both non-classical models,

he variation of vertical stress along vertical axis y is illustrated at

ig. 5 for Cases 2 and 3. Although the advantageous character of

ringen’s model in providing finite stresses with problems having

ingularities are reported many times, an interesting point draws

ne’s attention. As a consequence of missing neighbour interac-

ions around boundaries, the corresponding regions become more

exible, and results in an abrupt increase of stress. Although for

ases 1 and 2, it results in slightly higher values inside the domain

lose to boundary (see Fig. 5 (a), for concentrated load case, the in-

orporation of long range interactions compensates that looseness

nd leads to finite stress field (see Fig. 5 (b)). This behaviour is in

greement with that reported by Eringen [9] , where the displace-

ent field of local theory is used for calculation of stress. Hence,

he reason why the maximum stress in the present study is esti-

ated higher than Eringen [9] is due to no assumption made on

isplacement fields. 

In terms of computational efficiency, Cauchy and Cosserat

odel is absolutely superior over Eringen, because of two rea-

ons. In Eringen model, due to incorporation of long range inter-

ctions, the strain field of all elements located in the influence

one of corresponding element should be considered during form-

ng the element stiffness matrix. This necessity intensively extends

he calculations, and disrupts the banded character of global stiff-

ess matrix. Secondly, due to incorporation of kernel function in

lement formulation, the number of Gauss sampling points should

e drastically increased with increasing non-locality or decreasing
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element length in order to calculate the integrals with minimum

possible error. 

4. Final remarks 

Providing that a constitutive characterisation obtainable via

multiscale procedures, as the ones in [18,19] or via optimisation

approaches [27] , both the ‘explicit’ and ‘implicit’ type non-local

theories can be effectively used for representing the mechani-

cal behaviour of complex materials, as composites or masonry-

like materials, by retaining memory of the material microstructure

avoiding the resort to computationally burdensome discrete mod-

elling. The result of the comparison between Cosserat ‘implicitly’

and Eringen ‘explicitly’ non-local models highlights that, the for-

mer should be preferred not only for the high computational effi-

ciency and ease of implementation but also because it shows bet-

ter performance in reproducing the actual behaviour of masonry

wall, due to the presence of the relative rotation related to the

skew-symmetric part of the strain [20,22,39] . However, the advan-

tage of Eringen model in providing finite stresses in case of load

singularities [9] should not be ignored. Further investigation may

be conducted on the wave propagation and dispersion problems,

in which the size effects are important, by ‘implicit’ and ‘explicit’

models. 
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