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A B S T R A C T

Soil parameters are spatially random variables. Thus, the spatial correlation relationship, besides the mean
and variance, of a specific soil site is needed for any realistic stochastic modeling. In this regard, an improved
autocorrelation model involving a linear, an exponential and cosine terms, named linear-exponential-cosine
(LNCS), is adopted here to capture the spatial properties of the soil deposits. Further, a random field of the
soil deposit is simulated using a two-dimensional Karhunen–Loéve expansion based on the new autocorrelation
model. Furthermore, two cases for the soil settlement are calculated with the random field of the soil deposits.
One case is the stochastic settlement from a reference paper. Some comparisons are undertaken, and it is
found that the mean value agrees well with the reference. The other case involves the differential settlement
analysis of a real engineering project. The settlement is calculated with the random field, the uniform field
respectively, and is compared with the on-site measured values. The results show that the random field model
can capture the differential settlement better than the corresponding uniform field model.

1. Introduction

Potential settlement calculation is of great interest in geotechnical
engineering, especially for cases of non-uniform settlement. This is due
to the fact that several problems may arise, such as cracking due to
angular distortion, tilting due to differential settlement, and excessive
downward displacement. All of these effects can be detrimental to
the construction process, and excessive settlement can compromise the
functional service or even the safety of the structure. Almost typically,
the non-uniform settlement is caused by the inhomogeneous properties
of the soil.

It is well known that soil deposits can be multi-layered with differ-
ent kinds of soil. Therefore, it can be more accurate to consider the soil
deposit by different soil type separately. Further, the soil parameters
are spatially correlated. Thus, the mean and standard deviation are
not adequate to capture the spatial correlation of the soil. In this
context, the autocorrelation function (ACF) is used to capture the
spatial correlated property, and the random field theory is adopted
to describe the randomness and correlation of the soil [1,2]. There-
fore, a proper and efficient autocorrelation function is one of the key
parameters describing the spatial correlation. There have been many
autocorrelation functions proposed and used in the soil deposit [3].
The autocorrelation has the feature that as the separation distance
increases, the correlation reduces. Thus, the most commonly used is
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the simple exponential function [4], in which the autocorrelation value
decreases asymptotically from one to zero as the distance increases.

In this paper, the soil deposits are studied according to different soil
types. And a new correlation model, involving a linear, an exponential,
and a cosine terms, named linear-exponential-cosine (LNCS), is adopted
to simulate the spatial properties of the soil deposits. Further, the
settlement of a soil deposit is calculated and analyzed based on the
random field, which is simulated using a two-dimensional Karhunen–
Loéve expansion relating to the new autocorrelation model. And the
differential settlement of an engineering project is simulated and com-
pared with the measured data. Settlement and differential settlement
statistics predictions are carried out using Monte Carlo simulations
combined with the deterministic finite element method (DFEM).

2. Improved autocorrelation model

2.1. ACF calculation and autocorrelation model

In the statistical analysis of the actual soil data obtained from
field or laboratory tests, obvious ‘trends’ (changes in average values)
are often encountered, most typically as a function of the depth. It
is commonly accepted that the trends can be viewed as segments of
a large-scale fluctuation, and a large-scale fluctuation must appear
as part of the statistical characterization if the trend also exist on
other site inference [5,6]. The choice of the trend to be removed is
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Fig. 1. A sample of the autocorrelation function.

a delicate task as it affects the correlation structure, and the value of
the statistical parameters describing the random field [7]. Linear trend
removal has been used in several variability studies. However, from the
field data considered, it is found that in the same soil layer, no apparent
linear trend with the depth exists. In this case, it is advantageous to
standardize the soil data by substituting each original datum point 𝑞𝑐 (𝑧)
by the equation

𝑞(𝑧) =
[𝑞𝑐 (𝑧) − 𝑞𝑐 ]

𝑞𝑐
, (1)

where 𝑞𝑐 is the mean value of the layer soil, and 𝑞𝑐 is the standard
covariance.

Next, the following procedures are adopted to obtain the ACF of the
soil parameters.

For one of the samples, assume that 𝑥𝑖 = 𝑞𝑐 (𝑧𝑖) is the value of the
sample at depth 𝑧𝑖 = 𝑖𝛥𝑧, 𝑖 = 1, 2,… , 𝑛. The sample covariance function
is obtained from the moment estimator

𝐶(𝜏𝑗 ) =
1
𝑛

𝑛−𝑗
∑

𝑖=1
(𝑥𝑖 − 𝜇𝑥)(𝑥𝑖+𝑗 − 𝜇𝑥), (2)

where 𝑗 = 0, 1, 2,… , 𝑛 − 1, lag 𝜏𝑗 = 𝑗𝛥𝑧. Here, the mean value is
expressed as

𝜇𝑥 = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖. (3)

The sample correlation is then

𝜌(𝜏𝑗 ) =
𝐶(𝜏𝑗 )
𝐶(0)

. (4)

Proceeding with the calculations based on the above equations, the
ACF of the soil data can be obtained.

Specifically, Fig. 1 is one sample of the autocorrelation curve from
the cone penetration test data of a site in Shandong Province, China.
It can be seen that as the separation (or lag) distance increases, the
correlation decreases, although at large separations, where the numbers
of data pairs are smaller, there is much statistical fluctuations. For zero
separation distance, the correlation coefficient must equal 1.0. For a
large separation distance, the correlation coefficient approaches zero.
However, in between, the autocorrelation first falls from 1.0 to negative
values and then becomes zero again. From the collected data of 157
soundings from Shandong Province of China, the same pattern can be
found [8]. Moreover, many references about the autocorrelation curves
also had such kind of feature [2,9]. To simulate the autocorrelation
curve, various kinds of autocorrelation models have been employed in
the geotechnical literature to fit ACF [5,7,10–12].

The most commonly used autocorrelation model (ACM) is the single
exponential model (SNX).

𝑅(𝜏) = 𝑒−𝑘𝑆𝑁𝑋 ⋅|𝜏|, (5)

where 𝑘𝑆𝑁𝑋 is a parameter relating to the correlation length. However,
this model is non-differentiable at the origin of the spatial axis. Thus,

Fig. 2. The four autocorrelation models.

Spanos et al. [13] proposed a modified linear exponential model (LNX)
by introducing a slight modification in the mathematical description
of the single exponential model. In this context, the autocorrelation
function becomes differentiable at the origin of the spatial axis. The
expression for the LNX is

𝑅(𝜏) = (1 + 𝑘𝐿𝑁𝑋 |𝜏|)𝑒−𝑘𝐿𝑁𝑋 ⋅|𝜏|, (6)

where, 𝑘𝐿𝑁𝑋 are the parameters that capturing the correlation length.
In Ref. [1], a ‘‘cosine-exponential’’ model (CSX) was used which can

accommodate negative values of the ACF. The specific expression of the
CSX is

𝑅(𝜏) = 𝑒−𝑘𝐶𝑆𝑋 ⋅|𝜏| cos(𝑘𝐶𝑆𝑋 |𝜏|). (7)

Note that from the preliminary analysis of the autocorrelation of
the soil data and many Refs. [2,4,8,9], it has been found that the
autocorrelation value will change from positive to negative after a
certain lag distance, and back to zero again. This means that the
parameters change from positive correlation to negative correlation
as the distance apart becomes larger. Further, note that even this
model with alternating sign is not differentiable at the origin of the
spatial axis. In this regard, the ‘differentiability’ of the model Eq. (6)
and the alternating sign of model Eq. (7) are considered together.
Thus, an improved autocorrelation model is used herein with linear,
exponential, and cosine terms. It is named as linear-exponential-cosine
model (LNCS), and it is expressed as

𝑅(𝜏) = (1 + 𝑘𝐿𝑁𝐶𝑆 |𝜏|)𝑒−𝑘𝐿𝑁𝐶𝑆 ⋅|𝜏| cos(𝑘𝐿𝑁𝐶𝑆 |𝜏|), (8)

where 𝑘𝐿𝑁𝐶𝑆 is the corresponding parameter capturing the correlation
length, which will be shown in Section 2.2.

Fig. 2 is a schematic diagram for the four autocorrelation models
capturing their differences.

2.2. The correlation length of the LNCS model

Vanmarcke [3] has discussed the concept of the scale of fluctua-
tion, 𝛿, to measure the distance within which the soil property shows
relatively strong correlation or persistence from point to point. This
parameter can be calculated using the equation

𝛿 = 2∫

∞

0
𝑅(𝜏)𝑑𝜏. (9)

Combining Eqs. (9) and (8), the scale of fluctuation of the different
models can be obtained. Specifically,

𝛿𝐿𝑁𝐶𝑆 = 1
𝑘𝐿𝑁𝐶𝑆

. (10)

It is noted that often the concept of correlation length is used; it is
given by the equation

𝑐 = 1
2
𝛿. (11)
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3. Random field simulation with Karhunen–Loeve expansion

Next, the Karhunen–Loeve representation [14,15], often used to
capture uncertainty in engineering applications, is used here for the
simulation of the random field.

3.1. Basic concept of the Karhunen–Loeve expansion

A stochastic process 𝑋(𝜏, 𝜃) indexed on a bounded domain D, and
having zero mean (for convenience) and finite variance, can be repre-
sented using a finite Karhunen–Loeve (K–L) series

𝑋(𝜏, 𝜃) =
∞
∑

𝑖=1

√

𝜆𝑖𝜉𝑖(𝜃)𝜙𝑖(𝑡), (12)

where 𝜉𝑖(𝜃) is a set of uncorrelated standardized random variables with
zero mean and unit variance. If 𝑋(𝜏, 𝜃) is a Gaussian process, then
an appropriate choice of 𝜉𝑖(𝜃) is a vector of uncorrelated standard
Gaussian random variables;

{

𝜙𝑖
}

and
{

𝜆𝑖
}

are the eigenfunctions and
eigenvalues of the covariance function 𝐶

(

𝜏1, 𝜏2
)

, respectively. They
satisfy the homogeneous Fredholm integral equation

∫𝑇
𝐶(𝑠, 𝑡)𝜙𝑖(𝑡)𝑑𝑡 = 𝜆𝑖𝜙𝑖(𝑠). (13)

The truncated version of 𝑋(𝜏, 𝜃) can be expressed as

𝑋(𝜏, 𝜃) =
𝑀
∑

𝑖=1

√

𝜆𝑖𝜉𝑖(𝜃)𝜙𝑖(𝑡). (14)

The truncated Karhunen–Loeve expansion is optimal in the sense of a
mean square error minimization [15].

The non-zero-mean stochastic process can be expressed as

𝑋(𝜏, 𝜃) = 𝜇 + 𝜎
𝑀
∑

𝑖=1

√

𝜆𝑖𝜉𝑖(𝜃)𝜙𝑖(𝑡). (15)

For a particular application, the number of terms M to be chosen
depends on the desired accuracy, and on the complexity of the autocor-
relation function of the random field. Ordinarily, in most engineering
applications, less than 10 terms suffice.

3.2. Two dimensional field simulation using Karhunen–Loeve expansion

Note that extension of the preceding developments to two dimen-
sional field defined for the correlation function on a rectangular domain
can be achieved, as well. For a certain class of covariance functions,
which are separable, the eigenvalue and the eigenfunction for 𝑋(𝐭) are
also separable. Thus, the random field can be expressed as truncated
expression in the form

𝑋(𝐭) = 𝑋(𝑡1, 𝑡2) =
𝑁
∑

𝑘=1

√

𝜆𝑘𝜙𝑘(𝑡1, 𝑡2)𝜉𝑘 , (16)

where 𝜆𝑘 =
∏𝑑

𝑗=1 𝜆
(𝑗)
𝑖𝑗

,

𝜙𝑘(𝑡1, 𝑡2,… , 𝑡𝑑 ) =
𝑑
∏

𝑗=1
𝜙(𝑗)
𝑖𝑗
(𝑡𝑗 ), 𝑖𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑑,

𝑑 is the dimension.

4. Soil differential settlement analysis

4.1. Comparison study of field settlement

A model is used first to a simple foundation case. The model is from
reference paper [16].

The model is a single footing of width 2.0 m to be founded on a soil
layer of depth 10 m and length 30 m. The left and right boundaries are
constrained with horizontal displacement, and the bottom boundary is
fixed. The finite element model is shown in Fig. 3. The concentrated

Fig. 3. The finite element model.

Fig. 4. One random field sample.

force acting on the rigid footing is simplified as uniform load 500 kN∕m
on the soil surface.

The elastic modulus is treated as a random field, and the lognormal
distribution is adopted for the generation of the random field. The
use of this distribution conform with the knowledge that the elastic
modulus cannot have a negative value [17]. Accepting the use of this
distribution, the elastic modulus field can be obtained through the
transformation.

𝐸𝑖 = exp(𝜇 ln 𝜀 + 𝜎ln𝐸 ⋅ 𝑔𝑖) (17)

where 𝐸𝑖 is the elastic modulus of the element; 𝑔𝑖 is the corresponding
standard Gaussian random field; 𝜇ln𝐸 and 𝜎ln𝐸 are the mean and
standard deviation of lognormal 𝐸 which can be obtained using the
formulas

𝜎2ln𝐸 = ln(1 + 𝜎2𝐸∕𝜇
2
𝐸 ) (18a)

and

𝜇ln𝐸 = ln(𝜇𝐸 ) −
1
2
𝜎2ln𝐸 (18b)

The mean value and standard deviation of the elastic modulus are
40 MPa and 40, respectively, which means the coefficient of variation
is 1. It is assumed that the scale of fluctuation is 𝜃ln𝐸 = 3.0 m. The
Poisson ratio is taken as 0.25. Using the Karhunen–Loeve method, the
random field can be obtained. Fig. 4 shows one sample of the random
field of elastic modulus.

Considering the center point under the footing as the reference
point; the settlement value can be obtained using the above finite
element model. First, the mean value of the elastic modulus is adopted
in the model; this case is defined as a uniform field. And then some
stochastic simulation considering random field is done using the Monte
Carlo Simulation (MCS). Here, 5000 times MCS are undertaken; and the
mean value and the standard deviation can be estimated. The uniform
field result, the random field results of mean value and standard

3
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Fig. 5. Probability distribution of the settlement.

deviation are shown in Table 1, and the results from the Ref. [16] are

also shown in Table 1. It can be seen that the random field related

values are generally larger than the uniform field, which means that

the settlement calculated using the uniform field may be unsafe.

Table 1
Settlement comparisons of the results.

Settlement Uniform field (mm) Random field (mm)

Mean value Standard deviation

Calculated 36.7 69.5 56.2
Results from Ref. [16] 35.31 67.0 20.1

Fig. 5 shows the probability distribution of the settlement. It can be
seen that the distribution of the settlement of the central point can be
fitted by a logarithmic normal distribution, which conforms with the
Ref. [16]. Further, the maximum likelihood estimation shows that the
maximum estimation value of the settlement is 52.64 mm.

4.2. Differential settlement analysis of an engineering project

4.2.1. Introduction of the project
An 11-story residential building of concrete shear wall structure

with raft foundation, shown in Fig. 6, located in Jiangsu province,
China. After the building was completed, some differential settlement
was detected, and the building leaned. It is found that the building
leaning is mainly caused by the existence of soft substratum under the
foundation. The soil profile is shown in Fig. 7, and the corresponding
parameters for each soil layer are shown in Table 2. Note that the

Fig. 6. The residential building.
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Fig. 7. Soil profile of the site.

Fig. 8. Finite element model.

Fig. 9. One random field sample.

muddy clay layer thickness on the north and south is 1.0 m and 1.4 m,

respectively, and the selfweight of the south is higher than the north;

these factors mainly cause the differential settlement. The measured

settlements on the north point (A1), and south point (A2) are 90.24 mm

and 136.81 mm, respectively.

Fig. 10. The results of the uniform field.

Fig. 11. The results of the random field.

4.2.2. The finite element model
A numerical simulation is conducted to calculate the differential set-

tlement, and the random field is considered in the model. Fig. 8 shows
the two dimensional finite element model, with size of 45 m × 12 m
to minimize the boundary effect [18]. The left and right boundaries
are constrained in the horizontal direction, and the bottom boundary
is restrained in the vertical direction. The mesh sizes are 0.2 m and
0.1 m in the horizontal and the vertical directions respectively. The
plane strain element model is adopted, and the elastic model is selected
in the finite element analysis.

The soil elastic modulus, 𝐸, is treated as a random field, and the
Poisson’s ratio, 𝜇, equals 0.25. The compressive modulus 𝐸𝑆 usually
determined in the engineering applications. The relation between the
elastic modulus and the compressive modulus can be obtained by the

5
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Table 2
Parameters of each soil layer.

Layer number Soil type North depth (m) South depth (m) Scale of fluctuation 𝛿𝑣 (m) 𝜇𝐸𝑠
(MPa) C.O.V (%)

② Silty 2.7 2.5 0.163 10.05 0.22
③ Muddy clay 1.0 1.4 1.59 2.39 0.14
④ Clay 3.7 3.5 0.176 5.48 0.17
⑤ Sandy ginger clay 3.7 3.7 0.163 9.28 0.16

Silty 0.9 0.9 0.163 7.41 0.16

Table 3
Settlement results at representative points.

Points Measured (mm) Uniform field (mm) Statistics of settlement of random field

Mean value (mm) Standard deviation (mm) C.O.V (%)

A1 90.24 94.54 96.82 2.45 2.53
A2 136.81 128.84 131.66 3.57 2.71

Fig. 12. Probability distribution of settlement.

equation

𝐸 = 1 −
2𝜇2

𝜇(1 − 𝜇)
𝐸𝑠. (19)

The raft foundation and the superstructure are simplified as dis-
tributed pressure acting on the soil surface within the length of 14.0 m,
which equals the width of the foundation. Further, the load on the
north half and the south half is calculated as 95 kN/m and 125 kN/m
respectively.

Using the Karhunen–Loeve expansion method, and the autocorrela-
tion function LNCS, the soil random field can be obtained. Note that in
the natural site deposits, the correlation in the vertical direction tends
to have much shorter distances than in the horizontal direction. A ratio

Fig. 13. Settlement distribution with different COVs.

of about one to ten for these correlation distances is common [19].
Here, the ratio of 10 is adopted. One sample of the random field is
shown in Fig. 9(a). Obvious layer features can be seen from the figure.
The muddy clay layer is much softer than the other layers, shown in
Fig. 9(b). The midpoint discretization method is adopted, and in this
case the values of the ‘center’ of elements are used to represent the
random field.

4.2.3. Settlement simulation results
First, a uniform field, with the mean values, is calculated. Fig. 10

shows the results of the Mises stress and the settlement of the uniform
soil field. It can be seen that the stress changes abruptly between the

6
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Fig. 13. (continued).

layers of soil, while in the random field the stress changes are more
gradual (Fig. 11). From both figures, it can be seen that the differential
settlement is due to the difference depth of the soft soil layer, and the
load difference of the two sides.

Further, stochastic analysis is done using Monte Carlo simulation
of 1000 times. To do this, 1000 random field samples of the elastic
modulus of each layer soil are generated, and then the settlement anal-
ysis is done using the preceding model. Table 3 shows the settlement
of the measured value, the result of the uniform field, and statistical
results of the random field. It can be seen that the mean value of the
random field is a somewhat higher than the uniform field for point
A1, and smaller for point A2. Further, based on the ‘‘3𝜎’’ principle
of normal distribution, the interval (𝜇 − 3𝜎,𝜇 + 3𝜎) can be considered
as the possible value interval of the random variable X in the actual
problem, and its probability is P {|X − 𝜇| < 3𝜎} = 99.74%. It can be
seen that the measured settlement of point A1 (90.24 mm) is in the
interval (89.47, 104.17) mm, and the A2 actual observed settlement
136.81 mm is also in the interval (120.95, 142.37) mm. This shows that
the random field model can capture the differential settlement better
than the corresponding uniform field model.

Fig. 12 shows a statistical graph and the probability density func-
tion curve of the normal distribution on the A1 and A2 settlements,
respectively. Note that the normal distribution is adopted for this case.

4.2.4. Parametric analysis
The variation of the soil is significant. Thus, here different co-

efficient of variation 0.3, 0.4, and 0.5 of the soil are used. Fig. 13
shows the settlement distribution of point A1 and A2, indicated above.
From Fig. 13 it can be seen that as the variation of soil parameters
becomes higher, the settlement value calculated becomes larger. Fur-
ther, as the variation becomes higher, the distribution of the settlement

Fig. 13. (continued).

changes from more to a normal distribution to close to a lognormal
distribution.

Also, the correlation length ratio of the horizontal and the vertical
directions are examined here. To study the influence on different ratios
of correlation distance for foundation settlements, the ratio n (𝛿ℎ∕𝛿𝑣 =
𝑛) changes from 10 to 90 are considered. The settlements of point A1
and A2 are obtained by the stochastic finite element analysis, shown in
Fig. 14. Comparisons of random field settlement, uniform settlement,
and the observed settlement are shown in the figure. It can be seen
that as the ratio n becomes greater, the settlement becomes a somewhat
higher, and the point A2 side is closer to the observed values.

5. Summary

An improved autocorrelation model (LNCS) has been adopted for
the simulation of the random field in soil deposits. Related settlement
has been calculated using the finite element method. Further, a stochas-
tic analysis has been carried out for an engineering project considering
the random nature of the local soil. The following concluding remarks
can be made.
(1) The improved autocorrelation model can exhibit differentiability
at zero lag, and alternating signs. Further, the random field can be
efficiently represented using the Karhunen–Loeve expansion method in
conjunction with the adopted autocorrelation model.
(2) Settlement calculation of two cases has been done; one case is from
a cited reference, and the other pertains a real engineering project.

7
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Fig. 14. Points A1 and A2 settlements with different ratios.

The results have shown that, in general, the random field can capture
the character of the settlement better than the uniform field. Note that
the probability distribution of the settlement is different for the two
cases, and for the different coefficient of variations. Additional studies
are clearly warranted to further elucidate this interesting problem
of stochastic geotechnical engineering towards reliable physical and
simultaneous efficient computing.
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