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a b s t r a c t 

Kinetics of surface growth with coupled diffusion is studied for the case of growth on a spherical sub- 

strate. The considered material system is composed of two species, a solid matrix and a permeating 

solvent, which can interact by a chemical reaction on the boundaries of the body. It is shown that, for 

arbitrary substrate curvature, a transient diffusion dominated response is rapidly exhausted before the 

system arrives at a universal path that is independent of initial conditions. Along this path, the system 

evolves up to arrival at a steady state, called treadmilling, in which addition and removal of mass are 

balanced. This result confirms that the universal path, recovered in previous work for growth on a flat 

rigid substrate, generalizes to additional geometrical settings and also to situations in which the substrate 

is deformable. The universal path thus facilitates the investigation of the coupling between growth, dif- 

fusion and substrate deformation that is induced by buildup of internal stress. This complex coupling is 

shown to result in a non-monotonic evolution, before arriving at the treadmilling state. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Surface growth by association or dissociation of material on the

oundary of a body is a process that is omnipresent in a variety of

atural and engineering contexts. For instance, in nature, surface

rowth is a key process in growth and remodeling of living tissues

1] , development of seashells [2–5] , degradation processes [29] and

rowth of trees [6] . Most available studies of surface growth are

ased on kinematic assumptions [3,4,7–11] . In that context, Sozio

nd Yavari [12] have recently presented a geometric theory that

aptures the nonlinear mechanics and incompatibilities induced by

ccretion. To couple between the kinematics and the kinetic laws

hat drive the growth, while requiring conservation of mass, Abi-

kl et al. [13] , take advantage of the notion of a reference config-

ration that can exist in a higher dimensional space, as described

or the special case of growth on a spherical substrate in [14] , and

eneralize it to develop a framework for surface growth in a ma-

erial system composed of two species (i.e. a solid matrix and a

olvent) coupled with diffusion. In this framework, the configura-

ional forces that drive association and dissociation are obtained

nd allow for identification of a thermodynamically consistent ki-

etic law of growth. 

Applying this framework to the case of growth on a flat sub-

trate [13] revealed that before the system arrives at a treadmilling

tate, in which association and dissociation reactions are balanced,
∗ Corresponding author. 
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he evolution follows a universal path that is independent of initial

onditions. This universal path, which is driven by the harmonious

ction of surface reaction and diffusion, appears following a rapid

ransient response that is dominated by diffusion. Being indepen-

ent of initial conditions, evolution along the universal path was

hown to be amenable to analytical investigation. Hence, it was

roposed in [13] that taking advantage of this response can sim-

lify the analysis of surface growth in additional, more complex,

ettings. However, it has not been confirmed that similar evolution

ould appear in different settings. 

In this work, we use the framework developed in [13] to study

he evolution of a material grown on a spherical substrate. Be-

ond the convenience of spherical symmetry to study the effect

f substrate curvature, surface growth in spherical settings is also

revalent in nature and thus provides an additional motivation for

his study and the specific choice of constitutive relations. For in-

tance, in the context of cell mechanics, polymerization through

ross linking of actin filaments to form an elastic gel is a funda-

ental mechanism that drives cell motility [15–18] which has mo-

ivated a number of theoretical studies that focus on this growth

attern [14,19–22] . In this manuscript we first consider a rigid sub-

trate to evaluate the effect of different curvatures on the growth

rocess, then we allow the spherical substrate to deform in re-

ponse to the buildup of internal stresses and investigate how this

oupling between the growth and the substrate curvature influence

he response. It will be shown that the universal path appears in

oth cases, and can be taken advantage of to simplify the solution

rocedure. 

https://doi.org/10.1016/j.mechrescom.2019.103457
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
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2. Problem formulation 

The governing equations of surface growth coupled with sol-

vent diffusion, in a general setting, were developed in [13] . Before

specializing the formulation to the spherically symmetric problem

setting considered in this work, we begin by briefly summarizing

that formulation. 

In a non-dilute solution, composed of solvent units, we intro-

duce an object of arbitrary shape. On its surface, a chemical re-

action promotes association of solvent units to form a solid ma-

trix. That matrix can, in-turn, absorb the solvent and swell to form

an aggregate body composed of both a solid matrix and an im-

pregnating solvent. A binding reaction can occur only on the as-

sociation surface where it is energetically favorable. Consequently,

new layers that are formed at the association surface push away

the previously formed layers and internal stresses may build up.

Dissociation of the material can then occur on the free surface of

the grown body. Throughout this process, the surface growth reac-

tion is strongly coupled with solvent diffusion, since conservation

of mass requires that the growth reaction is sustained by a con-

tinuous supply of solvent units. In this work, we consider each of

the species to be separately incompressible, hence conservation of

mass translates directly to conservation of volume. 

Variables . In the physical configuration , the body R (t) is de-

scribed by y and its boundary moves at a velocity V . We denote

the solvent volume fraction by φ = φ( y , t) , the solvent flux by

j = j (y , t) , and the Cauchy stress tensor by T = T (y , t) . The corre-

sponding variables in the reference configuration are described by x

and are denoted by a superimposed ( ) R . The first Piola–Kirchhoff

stress tensor is denoted by S = S (x , t) . 

The correspondence between the physical and the refer-

ence configurations relies on the mapping y = ̂  y ( x , t ) . The de-

formation gradient is F ( x , t ) = ∂ ̂  y ( x , t ) / ∂x , and the volume ra-

tio is J(x , t) = det (F (x , t)) , with the particle velocity given by 1

v ( x , t ) = ∂ ̂  y ( x , t ) / ∂t . The boundary velocities in the current and

reference configurations are related by 

V = FV 

R + v , (1)

and field variables in the current and reference configurations are

related through the following transformations: φR = Jφ, j R = JF −1 j ,

and S = J TF −T . The following formulation takes advantage of both

configurations as they become useful. 

Bulk governing equations . In the physical configuration, species

balance and conservation of volume result in the compact set of

equations 

∂φ

∂t 
+ div (φv + j ) = 0 , div (v + j ) = 0 , J = 

1 

1 − φ
, (2)

where the latter two field equations assure conservation of each

separately incompressible species in any subregion of the body.

The former equation relates the volume ratio of the solid matrix

and the solvent volume fraction. In absence of body forces, me-

chanical equilibrium implies div T = 0 , (with T = T T ). Note that in

deriving (2) 3 the undeformed configuration of the solid has been

chosen as the dry state (for which φ = 0 ). In the reference config-

uration, conservation equations simplify to the form 

˙ φR + Div 
(
j R 

)
= 0 , J = 1 + φR , (3)

and mechanical equilibrium reads Div S = 0 , (with SF T = FS T ). We

also make use of the relation 

2 

1 

J 2 
∂ J 

∂t 
= div 

(
v 

J 

)
. (4)
1 For simplicity, we will use the same notation, J , and v for functions expressed in 

terms of the reference configuration coordinates, ( x , t ), and in terms of the physical 

configuration coordinates, ( y , t ). 
2 This relation can be derived from the commonly used identity ˙ J = J div v . 

r  

a

onstitutive assumptions. Assuming that the energetic state of a ma-

erial unit relies on both the elastic deformation of the matrix and

he solvent concentration, we take the free energy per unit refer-

ntial volume to have the form ψ = ψ(F , φR ) . Using the Coleman–

oll methodology on the dissipation rate, constitutive relations for

he stresses and for the chemical potential μ can be obtained and

 thermodynamically consistent kinetic law for diffusion of solvent

an be chosen to satisfy the non-negativity of the dissipation rate,

.e. j R · Grad μ ≤ 0. Through this procedure, the hydrostatic pres-

ure p arises as a reaction to the volume conservation constraint

nd is constitutively indeterminate. 

Interface equations and growth kinetics. In writing the conditions

or conservation of volume across the boundary of the growing

ody, the motion of the boundary ( V ) and the flux should be con-

idered to write 3 

j + · n + V · n = −j − · n + ( V − v ) · n . (5)

dditionally, we require continuity of chemical potential across the

oundary, i.e. μ+ = μ−, which is consistent with a Fick’s type dif-

usion law. Displacement and stress boundary conditions are also

pplied on the growing body. 

Finally, it was shown in [13] that the driving force of growth

cting on the boundary can be written as 

f = Sn 

R · Fn 

R + �ψ + μJ, (6)

here �ψ = ψ 

+ − ψ 

− is the latent energy of the growth reaction.

he growth rate is the thermodynamic conjugate to the driving

orce. The two can be related through a kinetic law of the form

 

R = G ( f ) , which obeys the dissipation inequality if f G ( f ) ≥ 0 . 

. Growth on a spherical surface 

We now apply the theory to the specific problem of growth on

 rigid, impermeable and spherical surface of radius r a . We will

rst write the formulation considering a rigid growth surface of

onstant curvature. It will be shown that in absence of inertial ef-

ects the formulation can be directly applied to consider situations

n which the growth surface can deform in response to the growth

rocess that leads to accumulation of residual stresses. Ultimately,

he goal is to describe the time evolution of the growing body and

o identify a treadmilling response, shall it exist. 

.1. Sperical problem setting 

The physical configuration is described by spherical system of

oordinates ( r, θ , ϕ), where the association surface is at the con-

tant location r = r a and the dissociation surface is at r = r d ( t ) , as

hown in Fig. 1 . Growth is initiated at time t = 0 . For any t > 0, the

rowing body manifold occupies the region r ∈ [ r a , r d ( t )], θ ∈ [0,

], and ϕ ∈ [0, 2 π ]. 

As shown in [14] and further discussed in [13] , within a four-

imensional space, the material manifold occupies the surface of

 hyper-cylinder whose base is a spherical surface of undeformed

adius R (note the difference in notation R which denotes the

ody), described by the coordinates 	 ∈ [0, π ], and 
 ∈ [0, 2 π ].

he axis of the hyper-cylinder spans along the Z coordinate, and

ts caps move to accommodate association or dissociation, such

hat the association surface is given by Z = Z a (t) , and the disso-

iation surface is given by Z = Z d (t) . Thus, the reference configu-

ation can be described by the set of coordinates ( Z , 	, 
). The

adius of the base can be obtained by considering the tangential
3 The superscripts ‘+’ and ‘ −’ on a quantity denote its limiting values on the outer 

nd inner side of the, respectively. 
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Fig. 1. Continuum representation of a body growing on a spherical substrate and 

corresponding boundary velocities in both the reference and the physical spaces. 
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tretch imposed on the layer as it grows on association surface 4 

λ0 to write R = r a /λ0 . Due to spherical symmetry, the mapping

etween the reference and current configurations can be written as

(r, θ, ϕ) = ( ̂ r (Z, t) , 	, 
) . The principal stretches in the radial and

ircumferential directions and the swelling ratio are thus 

r = 

∂r 

∂Z 
, λθ = λϕ = 

r 

R 

, J = λr λ
2 
θ = 

∂r 

∂Z 

(
r 

R 

)2 

, (7)

espectively. 

Motion occurs only in the radial direction in the physical con-

guration, hence the material velocity and flux can be written as

 = v(r) e r and j = j(r) e r , where v(r) = ∂ ̂  r / ∂t . In this setting, the

elocity of the association and dissociation boundaries in the phys-

cal configuration are V a = 0 and V d = ˙ r d (t) e r , respectively, and in

he reference configuration 

 

R 
a = −V 

R 
a e Z and V 

R 
d = V 

R 
d e Z , (8)

here V 

R 
a = − ˙ Z a and V 

R 
d 

= 

˙ Z d are the association and dissociation

ates, respectively. From here on the subscripts ( ) a and ( ) d denote

alues at the association and dissociation boundaries (i.e. r a and

 d ), respectively. 

Let � ( t ) denote the thickness of the body in the physical config-

ration, it can be expressed as 

 (t) = r d (t) − r a . (9)

imilarly, let � R ( t ) denote the thickness of the growing layer in the

eference configuration, that we shall refer to as the dry thickness ,

t can be written as 

 

R (t) = Z d (t) − Z a (t) . (10)

y combination of (8) and (10) , the dry thickness evolves at the

ate 

˙ 
 

R = V 

R 
a + V 

R 
d . (11)

Now, specializing the conservation equation (2) 2 , and integrat-

ng it, while employing the condition that association surface is

mpermeable, we obtain the simplified form 

 + j = 0 , r a < r < r d (t) . (12)

e also specialize Eq. (4) to the present spherically symmetric set-

ing to write 

∂ J 

∂t 
= 

J 2 

r 2 
∂ 

∂r 

(
r 2 

J 
v 

)
. (13) 
4 This is a property of the growth surface that can be determined for example 

y the distribution of binding sites; it represent the in-plane predeformation of the 

ewly associated material. 

v

r  

t

sing a diffusion law of the general form j R = −M (F , φR ) Grad μ
ith Eq. (12) and, specializing to the present setting, we can ex-

ress the velocity v as 

 = 

λ2 
r 

J 
M 11 

∂μ

∂r 
, (14) 

here M 11 > 0 is the (1,1)-component of the positive semi-definite

obility tensor M . 

Mechanical equilibrium implies 

∂T r 

∂r 
+ 

2 

r 
( T r − T θ ) = 0 , (15) 

here T r and T θ are the radial and tangential components of the

auchy stress tenor. Considering situations in which the dissoci-

tion surface is stress free, we can write the boundary condition

 r (r d ) = 0 . 

In this specific spherical setting, assuming isotropy, we can

rite the Helmholtz free energy as a function of the princi-

al stretches and the solvent volume fraction in the form ψ =
(λr , λθ , λϕ , φR ) . The principal components of the Cauchy stress

ensor, and the chemical potential thus read 

 r = 

1 

J 

∂ψ 

∂λr 
λr − p, T θ = 

1 

J 

∂ψ 

∂λθ
λθ − p, μ = 

∂ψ 

∂φR 
+ p, (16)

espectively. Substituting (16) in (15) , we can write 

∂ p 

∂r 
= 

∂ 

∂r 

(
1 

J 

∂ψ 

∂λr 
λr 

)
+ 

2 

rJ 

(
1 

J 

∂ψ 

∂λr 
λr − 1 

J 

∂ψ 

∂λθ
λθ

)
. (17) 

ecall that p , the hydrostatic pressure, arises as a response to the

ncompressibility constraint. 

Using relations (3) 2 and (7) , all the relevant physical quantities,

hat depend on φR , λr and λθ , can be rewritten in terms of r and J

nly: ψ( r, J ), T ( r, J ), p ( r, J ) and μ( r, J ). Additionally, substituting the

erivative of (16) 3 in Eqs. (12) and (14) we can write 

r 2 

J 
v = L 

(
r, J, 

∂ J 

∂r 

)
, (18) 

here for brevity, we specify the function L in the next section for

 specific constitutive response. 

Now, returning to the relation for the driving force (6) , we find

hat in contrast to the case of growth on a flat surface (considered

n [13] ), the term Sn 

R does not vanish on the association bound-

ry. Hence, stresses play a role in determining the driving force of

rowth, which in spherical symmetry reads 

f = JT r + �ψ + Jμ. (19)

n the association surface the latent energy of growth has the

orm �ψ = ψ a − ψ 

−, with ψ a denoting the chemical binding po-

ential [13] . Consequently, since V 

R 
a = G( f a ) and V 

R 
d 

= G( f d ) , the as-

ociation and dissociation rates can be expressed in terms of r a , J a ,

 d and J d . Thus the coupling between surface growth and swelling

s generated by the dependence of the association and dissociation

ates on the local values of the swelling ratio J . 

For a complete formulation of the initial-boundary value prob-

em, there remains the definition of additional boundary condi-

ions. On the dissociation boundary (r = r d (t)) , the continuity of

hemical potential implies 

(r d , J d ) = μ0 , (20)

hus resulting in an implicit equation relating J d and r d . By the

inematic relation (1) , the particle velocity at association and dis-

ociation boundaries are 

 a = 

R 

2 

r 2 a 

J a V 

R 
a and v d = 

˙ r d −
R 

2 

r 2 
d 

J d V 

R 
d , (21) 

espectively. The boundary condition on the association surface is

hus obtained by combination of (18) and (21) . 
1 
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In summary, the initial-boundary value problem can be written

in terms of the swelling field J ( r, t ) in the physical configuration as

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ J 

∂t 
= 

J 2 

r 2 
∂ 

∂r 

(
L 

(
r, J, 

∂ J 

∂r 

))
, r a ≤ r ≤ r d (t) , 

μ( r d , J d ) = μ0 , r = r d (t) , 

L 

(
r, J, 

∂ J 

∂r 

)
= R 

2 V 

R 
a ( r a , J a ) , r = r a , 

J(r, 0) = J 0 (r) , t = 0 , 

(22)

where the moving boundary obeys ⎧ ⎨ 

⎩ 

˙ r d = 

J d 

r 2 
d 

[
L 

(
r d , J d , 

∂ J 

∂r 
| r= r d 

)
+ R 

2 V d (r d , J d ) 

]

r d (0) = r 0 

(23)

It is important to note that the system is fully described at

a given time by the thickness and swelling ratio, ( � ( t ), J ( r, t )) in

the physical configuration, which can be directly translated to de-

termine ( � R ( t ), J ( Z, t )) in the reference configuration. This initial-

boundary value problem is written here for a general material sys-

tem composed of two species (a solid matrix and a solvent). Next,

to evaluate solutions we will consider a specific constitutive model.

3.2. Specific constitutive model 

Considering a growth reaction of polymerization to form a poly-

mer network permeated by a solvent, we employ a Helmholtz

free energy following the Flory and Rehner [23] approach as in

[13,24–26] , we write 

ψ(F , J) = ( J − 1 ) ψ 0 + 

kT 

ν
(J − 1) 

[ 
ln 

(
1 − 1 

J 

)
+ 

χ

J 

] 

+ 

NkT 

2 

(| F | 2 − 3 − 2 ln ( det F ) 
)
. (24)

Here we have readily substituted φR = J − 1 . Next, using (16) , the

principal stress components thus read 

T r = 

NkT 

J 

(
R 

4 

r 4 
J 2 − 1 

)
− p, T θ = T φ = 

NkT 

J 

(
r 2 

R 

2 
− 1 

)
− p, (25)

and the chemical potential is 

μ = μ0 + 

kT 

ν

[ 
ln 

(
1 − 1 

J 

)
+ 

1 

J 
+ 

χ

J 2 

] 
+ p. (26)

The solvent diffusion within the solid matrix is assumed to follow

the classical model [27] , hence (14) translates to 

v = 

Dν

kT 
φ

∂μ

∂r 
, (27)

where D is the diffusion coefficient. 

As in [13] , the growth function is taken of the Arrhenius form

G( f ) = 

b 

2 

(
e 

ν f 
kT − e −

ν f 
kT 

)
= b sinh 

(
ν f 

kT 

)
. (28)

Now, replacing (25) in the equilibrium equation (15) , the pres-

sure gradient is simplified to the form 

∂ p 

∂r 
= NkT 

[
−2 

(
R 

4 

r 5 
J + 

r 

R 

2 J 

)
+ 

(
R 

4 

r 4 
+ 

1 

J 2 

)
∂ J 

∂r 

]
. (29)

From (25) , the traction free condition at r d implies 

p ( r d ) = 

NkT 

J d 

(
R 

4 

r 4 
J 2 d − 1 

)
. (30)
ombining the kinetic law (27) with (18) we can write 

 

(
r, J, 

∂ J 

∂r 

)
= 

r 2 

J 
D 

(
1 − 1 

J 

)[(
Nν

R 

4 

r 4 
+ 

1 

J − 1 

− 1 

J 

−1 − Nν

J 2 
− 2 χ

1 

J 3 

)
∂ J 

∂r 
− 2 Nν

(
R 

4 

r 5 
J + 

r 

R 

2 J 

)]
. (31)

inally, from (26) , the continuity of chemical potential at the dis-

ociation boundary is 

n 

(
1 − 1 

J d 

)
+ 

1 

J d 
+ 

χ

J 2 
d 

+ 

Nν

J d 

(
R 

4 

r 4 
d 

J 2 d − 1 

)
= 0 . (32)

otice that in contrast to the case of growth on a flat surface, J d is

ot constant in time as it depends on r d that varies with time. 

A full description of the material response is thus defined

y a set of material parameters ( ν , N, χ , ψ 0 , D, b ). In solv-

ng for treadmilling in the next section we will use values of

he model parameters within common ranges found in the liter-

ture [13,24,26,28] : ν = 10 −28 m 

3 , N = 10 24 m 

−3 , χ = 0 . 2 and ψ 0 =
4 × 10 5 Jm 

−3 
, and assuming room temperature we have kT = 4 ×

0 −21 J , DNν = 10 −8 m 

2 s −1 and b = 10 −7 ms −1 . While holding these

alues constant, investigation of the sensitivity of our results will

enter on the curvature of the growth surface. 

. Results for growth on a rigid substrate 

Treadmilling. When addition and removal of mass are balanced,

ll time derivatives in the current configuration vanish and the sys-

em arrives at a treadmilling state. In this steady state, the layer

hickness, � (or equivalently � R ), remains constant, although asso-

iation and dissociation persist. If a treadmilling state exists, the

oundary value problem (22) and the associated boundary motion

23) can be solved to determine these thicknesses and the corre-

ponding steady field 

˜ J (r) . The superior ˜ ( ) will be used henceforth

o denote quantities associated with the treadmilling state, e.g. ˜ � is

he value of � at treadmilling. 

According to (11) , when addition of solid mass at r = r a is bal-

nced by the removal of solid mass at r = r d , we can write 

 

R 
a (r a , ˜ J a ) = −V 

R 
d ( ̃ r d , ˜ J d ) , (33)

here ˜ J a = 

˜ J (r = r a ) denotes the steady swelling ratio at the associ-

tion boundary. Since the association surface is rigid, r a is constant.

qs. (20) and (33) are independent, and relate the three unknowns
˜ 
 a , ˜ r d and 

˜ J d . We thus need to identify a third independent equa-

ion to determine all three unknowns. When the time derivatives

n the current configuration vanish, it follows from (22) 1 and (22) 3 
hat the steady field 

˜ J obeys the differential equation 

 

(
r, ˜ J , 

∂ ̃  J 

∂r 

)
= R 

2 V 

R 
a (r a , ˜ J a ) , r a < r < 

˜ r d . (34)

ntegrating the above relation between r a and ˜ r d , and enforcing
˜ 
 (r = r a ) = 

˜ J a and 

˜ J (r = r d ) = 

˜ J d yields an implicit relation between
˜ 
 a , ˜ r d and 

˜ J d , which, combined with (20) and (33) , provides a solu-

ion for these three variables. Then, integrating this same relation

34) between r a and r ∈ [ r a , ̃  r d ] , we obtain an implicit relation be-

ween the swelling ratio ˜ J and the spatial coordinate r . 

The pressure throughout the thickness is obtained by integra-

ion of Eq. (29) with boundary condition (30) and the stress state

an be determined using (25) . 

To understand the sensitivity of the treadmilling response to

he problem geometry, we introduce the curvature γ = 1 /r a . Let
˜ 
 0 denote the treadmilling thickness in the flat surface limit ex-

mined in [13] , corresponding to γ = 0 . The thickness ˜ � 0 will be

sed to normalize lengths. We thus define the normalized radius

 

∗
a = r a / ̃  � 0 , the normalized curvature γ ∗ = 1 /r ∗a , and the normal-

zed treadmilling thickness for a given curvature ˜ � ∗ = 

˜ � / ̃  � . We will
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Fig. 2. (a) Dependence of the treadmilling thickness on the normalized curvature of the growth surface represented on a logarithmic scale shown using two different 

normalizations. (b) Effect of γ ∗ on the universal path. The universal paths determined by numerical simulations are indistinguishable from the analytical relation obtained 

by integration of (35) in the reference frame. 
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(  
ocus our discussion in this section to the sensitivity of the growth

rocess to the substrate curvature. It has been confirmed that the

ensitivity to model parameters λ0 and ψ a is comparable to those

bserved for growth on a flat surface [13] . In all of the results pre-

ented in this manuscript we will use representative values from

13] , (i.e. λ0 = 4 . 96 and ψ a / (kT /ν) = −0 . 325 ). 

Fig. 2 (a) shows the sensitivity of the normalized treamilling

hickness to the curvature of the growth surface (shown in a log-

rithmic scale). Focusing on the blue curve, it is observed that

or γ ∗ → 0, the solution converges towards the flat surface limit
˜ 
 

∗ → 1 . As γ ∗ increases, ˜ � ∗ vanishes. This behavior is due to transi-

ion from a diffusion-limited to a stress-limited response for higher

urvatures. 

To better characterize the treadmilling response for growth sur-

aces with γ ∗ � 1, we examine the product γ ˜ � = 

˜ � /r a that is rep-

esented by the black curve in Fig. 2 (a). It is shown that for in-

reasing curvatures the ratio between the grown thickness and

he substrate radius arrives at an asymptotic maximum. Essentially,

ven though the treamilling thickness vanishes as the radius of the

rowth surface vanishes, the geometric ratio becomes more signif-

cant for smaller growth surfaces. 

Evolution towards treadmilling. Although the analysis of the

readmilling response provides us a means for analytical investiga-

ion of the sensitivities of the growth process, it is also insightful

o examine the evolution of growth prior to its arrival at a tread-

illing state. Hence, the initial boundary value problem (22) is

olved for various initial conditions, employing a specialized fi-

ite difference method that employs two integration time scales,

o track both the moving boundaries and the diffusion mechanism

13] . 

By examining numerical solutions for growth starting from

ifferent initial conditions (conducted using a finite difference

cheme that employs two integration timescales) we find that the

ystem undergoes a two stage evolution: first, a rapid diffusion-

ominated regime in which changes in dry thickness are negli-

ible, then a sharp change in the evolution trend towards a uni-

ersal path, which is independent of initial conditions. Along this

ath surface growth and solvent diffusion are fully coupled and

ct harmoniously to determine the evolution. Universal paths for

ayers grown on substrates with different curvatures are shown in

ig. 2 (b) in the form of phase maps exhibiting the swelling ratio

t the association surface as a function of the dry length of the

ayer. Both variables are normalized by their treadmilling value, so

hat for all curves treadmilling appears at the point (1,1). If shown,

he diffusion dominated response would appear in this map as a
traight vertical line connecting some initial state, to the univer-

al path. This response is identical to what has been observed for

he limiting case of growth on a flat surface [13] . Here we confirm

hat the existence of a universal path generalizes to more complex

rowth geometries, which involve buildup of residual stresses. 

While evolving along the universal path, the body is at a quasi-

quilibrated state in which the time derivative on the left hand

ide of (22) 1 becomes negligible, although the thickness continues

o evolve. Dropping this time derivative and using the boundary

ondition (22) 3 leads to 

 

(
r, J, 

∂ J 

∂r 

)
= R 

2 V 

R 
a (r a , J a ) , r a ≤ r ≤ r d (t) , (35)

hich is different from (34) , in allowing for time dependent r d and

 a which have not yet arrived at their treadmilling value. By inte-

ration of the above relation between Z a and Z d , using the relation

n (7) 3 for the swelling ratio, provides an implicit relation between

 

R and J a which describes the of the universal path in the ( � R , J a )-

lane. Universal curves obtained directly using this approach, are

dentical to the ones obtained numerically ( Fig. 2 ). Note that at the

imit γ ∗ → 0, the present analysis retrieves the curve obtained in

13] for growth on a flat surface. 

. Growth on a deformable substrate 

We now show that the previous analysis of growth on a rigid

phere can be extended to account for deformability of the growth

urface. We thus consider situations in which the substrate radius,

 a ( t ), can change throughout the growth process, as a response to

he buildup of internal stresses in the growing body. For simplic-

ty, we restrict our attention to situations in which the dry, stress

ree, configuration of a spherical layer has the same radius R as

he unloaded substrate. Hence, the circumferential stretch of the

ayer formed at the association surface can vary, as is given by

0 (t) = r a (t) /R . Essentially, this assumption implies that the num-

er of binding sites on the substrate remains constant as it de-

orms. For the analysis we choose R = DNν/b, which as shown in

13] , is a characteristic length scale, and will allow us to remain in

he stress-limited regime in this analysis. 

When on the universal path, for a given r a , the system is fully

haracterized by � R , through the bijection that exists between � R 

nd J a that is the universal path described in the previous section.

hus, when we consider a deformable sphere, we will take advan-

age of the universal paths associated with different values of r a 
or equivalently γ ∗), and will complement them by tracking the
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Fig. 3. (a) Quasi-static evolution path shown by the dashed–dotted line in the ( r a , 

� R )/ R . Black line distinguishes between regions of positive and negative values of the 

macroscopic growth rate ˙ � R . (b) Time evolution of � and r a starting from inception. 

The time has been normalized by the characteristic time-scale τ = R/b = DNν/b 2 . 
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[  
evolution in the ( r a , � 
R )-plane to describe the variety of problem

configurations. The problem can be fully described by determining

the four variables: r a ( t ), r d ( t ), J a ( t ) and J d ( t ). 

The procedure is as follows: for a given point ( r a , � 
R ) there ex-

ists a unique J a , as determined from the universal path (35) . There

remains r d and J d , that can be determined by requiring continuity

of chemical potential (20) . Then the remaining unknown is iden-

tified by imposing the continuity of radial stresses at the associa-

tion boundary, which is a result of the mechanical response of the

substrate relating its deformation to the radial traction (which will

be elaborated in the next section). Ultimately, the system evolution

will be along the quasi-static path, in the direction that is coherent

with the sign of ˙ � R . 

Mechanical boundary condition. The radial stress applied to

the growing body at r = r a (t) equals the radial stress applied

on the substrate to achieve mechanical equilibrium. Namely, we

have the boundary condition T r (r a ) = σr (r a ) , where the function

σ r ( r a ) is a property of the substrate, which can be thought of as a

deformable shell. For a given � R , this boundary condition leads to

a unique r a . Thus, r a ( � 
R ) defines a quasi-static path that the system

has to be on to achieve both swelling and mechanical equilibrium.

In Fig. 3 , we represent this quasi-static path in the ( r a , � 
R )-plane,

using a dashed line. On this path, the association and dissociation

rates are not necessarily balanced, hence treadmilling is not en-

sured. To obtain the results of Fig. 3 we have used a simple linear

law of the form σr (r a ) = A (r a − R ) , with A = 2 · 10 4 Pa . m 

−1 . The re-

sults hold qualitatively for higher order laws. 

Treadmilling. When the substrate is deformable, the treadmilling

response is characterized by (i) balance between association and

dissociation, and (ii) vanishing time derivatives in the current con-

figuration. Thus at treadmilling, both radii ˜ r a and ˜ r d are constant,

as well as dry thickness ˜ � R and swelling throughout the thickness
˜ J (r) . For each bead radius r a (or equivalently γ ∗), there exists a

unique treadmilling dry thickness � R defined from the universal

paths in the previous section. In Fig. 3 (a), we represent in the ( r a ,

� R )-plane two different domains, characterized by V 

R 
a < −V 

R 
d 

and

V 

R 
a > −V 

R 
d 
, separated by a line where V 

R 
a = −V 

R 
d 

. In this plane, a

treadmilling state must fall on this specific curve. Therefore tread-

milling must occur at the intersection between the two curves in

Fig. 3 (a). 

Evolution from inception to treadmilling. Employing the quasi-

static path and extending it to capture the formation of the very

first layer, at the limit where r a / R → 1 and � R / ̃  � R → 0 . Using time

integration of the quasi-static solution (using (33) and (35) while

allowing for time variation of r a ), we show in Fig. 3 (b) the evo-

lution of substrate radius and the grown thickness over time.

The thickness increases monotonically, whereas the substrate ra-
ius undergoes an initial overshoot before converging towards its

readmilling value. This is due to competition between build-up of

tresses and diffusion, which act at different characteristic times.

t onset, rapid diffusion leads to a fast increase in radius, which is

ater countered by stresses that build-up due to the thickening of

he layer. 

The initial layers formed at the association surface of radius r a 
lose to R are dense (λ0 = 1) and thus have a propensity to swell

nd increase the tangential stretch (thus increasing r a ). This first

hase of the evolution is limited by diffusion. Then, as the grow-

ng body thickens, stresses start building up and the grown layer

ushes against the substrate thus reducing its radius. Ultimately,

he final treadmilling reached is a balance between swelling ef-

ects, growth reactions and residual stresses. 

Concluding statement. We have shown, in the spherical setting,

ow the harmonious interplay between surface growth, diffusion

ffects and mechanical constraints governs the growth of a body

nd the deformation of the substrate on which it grows. This study

an be adapted to different scenarios by tuning the constitutive

nd kinetic parameters, and varying the substrate properties. Fur-

her computational models will allow to extend it to arbitrary ge-

metries. 

eclaration of Competing Interest 

There are no conflicts of interest to declare. 

eferences 

[1] G.A. Ateshian , On the theory of reactive mixtures for modeling biological
growth, Biomech. Model. Mechanobiol. 6 (2007) 423–445 . 

[2] D.W. Thompson , On Growth and Form, 1917, 1970 . 
[3] R. Skalak , D. Farrow , A. Hoger , Kinematics of surface growth, J. Math. Biol. 35

(1997) 869–907 . 
[4] D.E. Moulton , A. Goriely , R. Chirat , Mechanical growth and morphogenesis of

seashells, J. Theor. Biol. 311 (2012) 69–79 . 

[5] A. Goriely , The Mathematics and Mechanics of Biological Growth, Springer,
2017 . 

[6] R.R. Archer , Growth Stresses and Strains in Trees, 3, Springer Science & Busi-
ness Media, 2013 . 

[7] R. Skalak , G. Dasgupta , M. Moss , E. Otten , P. Dullemeijer , H. Vilmann , Analytical
description of growth, J. Theor. Biol. 94 (1982) 555–577 . 

[8] A. Menzel , E. Kuhl , Frontiers in growth and remodeling, Mech. Res. Commun.

42 (2012) 1–14 . 
[9] G. Zurlo , L. Truskinovsky , Printing non-Euclidean solids, Phys. Rev. Lett. 119

(2017) 048001 . 
[10] G. Zurlo , L. Truskinovsky , Inelastic surface growth, Mech. Res. Commun. 93

(2018) 174–179 . 
[11] F. Sozio , A. Yavari , Nonlinear mechanics of surface growth for cylindrical and

spherical elastic bodies, J. Mech. Phys. Solids 98 (2017) 12–48 . 

[12] F. Sozio , A. Yavari , Nonlinear mechanics of accretion, J. Nonlinear Sci. 29 (4)
(2019) 1813–1863 . 

[13] R. Abi-Akl , R. Abeyaratne , T. Cohen , Kinetics of surface growth with coupled
diffusion and the emergence of a universal growth path, Proc. R. Soc. A 475

(2019) 20180465 . 
[14] G. Tomassetti , T. Cohen , R. Abeyaratne , Steady accretion of an elastic body on

a hard spherical surface and the notion of a four-dimensional reference space,

J. Mech. Phys. Solids 96 (2016) 333–352 . 
[15] R. Boujemaa-Paterski , E. Gouin , G. Hansen , S. Samarin , C.L. Clainche , D. Didry ,

P. Dehoux , P. Cossart , C. Kocks , M.F. Carlier , et al. , Listeria protein acta mimics
wasp family proteins: it activates filament barbed end branching by ARP2/3

complex, Biochemistry 40 (2001) 11390–11404 . 
[16] J. Prost , J.-F. Joanny , P. Lenz , C. Sykes , The physics of listeria propulsion, in: Cell

Motility, Springer, 2008, pp. 1–30 . 

[17] K. John , D. Caillerie , P. Peyla , M. Ismail , A. Raoult , J. Prost , C. Misbah , Act-
in-based propulsion: Intriguing interplay between material properties and

growth processes, in: Cell Mechanics, Chapman and Hall/CRC, 2010, pp. 47–84 .
[18] V. Noireaux , R. Golsteyn , E. Friederich , J. Prost , C. Antony , D. Louvard , C. Sykes ,

Growing an actin gel on spherical surfaces, Biophys. J. 78 (20 0 0) 1643–1654 . 
[19] T. Cohen , D. Durban , Y.F. Dafalias , Dampening effects on the polymerization

rate of actin gel surface growth, Extreme Mech. Lett. 1 (2014) 114–119 . 
[20] D. Durban , T. Cohen , Y. Dafalias , Solid flow fields and growth of soft solid mass,

Proc. IUTAM 12 (2015) 31–41 . 

[21] Y.F. Dafalias , D.E. Panayotounakos , Z. Pitouras , Stress field due to elastic mass
growth on spherical and cylindrical substrates, Int. J. Solids Struct. 45 (2008)

4629–4647 . 
22] Y.F. Dafalias , Z. Pitouras , Stress field in actin gel growing on spherical substrate,

Biomech. Model. Mechanobiol. 8 (2009) 9–24 . 

http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0001
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0001
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0002
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0002
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0003
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0003
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0003
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0003
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0004
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0004
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0004
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0004
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0005
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0005
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0006
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0006
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0007
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0008
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0008
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0008
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0009
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0009
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0009
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0010
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0010
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0010
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0011
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0011
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0011
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0012
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0012
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0012
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0013
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0013
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0013
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0013
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0014
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0014
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0014
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0014
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0015
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0016
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0016
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0016
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0016
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0016
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0017
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0018
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0019
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0019
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0019
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0019
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0020
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0020
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0020
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0020
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0021
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0021
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0021
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0021
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0022
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0022
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0022


R. Abi-Akl and T. Cohen / Mechanics Research Communications 103 (2020) 103457 7 

[  

[  

[  

 

[  

 

[  

 

[  

 

23] P.J. Flory , J.J. Rehner , Statistical mechanics of cross-linked polymer networks ii.
swelling, J. Chem. Phys. 11 (1943) 521–526 . 

24] W. Hong , X. Zhao , J. Zhou , Z. Suo , A theory of coupled diffusion and large de-
formation in polymeric gels, J. Mech. Phys. Solids 56 (2008) 1779–1793 . 

25] F.P. Duda , A.C. Souza , E. Fried , A theory for species migration in a finitely
strained solid with application to polymer network swelling, J. Mech. Phys.

Solids 58 (2010) 515–529 . 
26] S.A. Chester , L. Anand , A coupled theory of fluid permeation and large defor-

mations for elastomeric materials, J. Mech. Phys. Solids 58 (2010) 1879–1906 . 
[27] R.P. Feynman , R.B. Leighton , M. Sands , The Feynman Lectures on Physics, 1,
Elsevier, 1963 . 

28] Y. Lai , Y. Hu , Probing the swelling-dependent mechanical and transport prop-
erties of polyacrylamide hydrogels through AFM-based dynamic nanoindenta-

tion, Soft Matter 14 (2018) 2619–2627 . 
29] R. Abi-Akl, E. Ledieu, T.N. Enke, O.X. Cordero, T. Cohen, Physics-based pre-

diction of biopolymer degradation, Soft Matter 15 (20) (2019) 4098–4108,
doi: 10.1039/C9SM00262F . 

http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0023
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0023
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0023
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0024
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0024
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0024
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0024
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0024
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0025
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0025
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0025
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0025
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0026
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0026
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0026
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0027
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0027
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0027
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0027
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0028
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0028
http://refhub.elsevier.com/S0093-6413(19)30494-X/sbref0028
https://doi.org/10.1039/C9SM00262F

	Surface growth on a deformable spherical substrate
	1 Introduction
	2 Problem formulation
	3 Growth on a spherical surface
	3.1 Sperical problem setting
	3.2 Specific constitutive model

	4 Results for growth on a rigid substrate
	5 Growth on a deformable substrate
	Declaration of Competing Interest
	References


