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The paper is devoted to expanded-tapered sandwich beam under three-point bending. The analytical 

model of the beam based on the broken-line hypothesis (zig-zag theory) is developed. The maximum 

deflection of the beam with consideration of the shear effect is analytically determined. Moreover, a nu- 

merical FEM model (SolidWorks) of the beam is formulated. The maximum deflections of example beams 

with the use of two methods are calculated and compared. The results are specified in Tables. 
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. Introduction 

.1. Review of the literature 

The sandwich structures initiated in the 20th century are

ntensively developed to-day. Vinson [1] described the basics of

odeling of the sandwich structures, taking into account the ar-

icles from the 20th century. Thomsen and Vinson [2] presented a

ew high-order theory enabling consideration of sandwich beams

nd plates of varying thickness of the core. The core is rigid only

n the out-of-plane direction, remaining flexible in the transverse

irection. The proposed theory was verified by comparison of the

umerical results to those obtained from finite element analysis,

howing their good compliance. Icardi [3] developed a model en-

bling the analysis of laminated and sandwich beams, assuming a

ig-zag approximation within each layer, with consideration of the

ransverse shear and the transverse normal stress. The results were

ompared to the 3-D elasticity solutions and various models avail-

ble in literature. It was shown that the zig-zag representation im-

roves accuracy of the results. Auciello and Ercolano [4] analyzed

ynamic behavior of the Timoshenko beams taking into account

he shearing deformation and the rotating inertia. The authors

sed the iterative variational Rayleigh–Ritz method for this pur-

ose. The procedure was applied to tapered beams as an alterna-

ive to the usual FEM approach reported in the literature. Accuracy

f the results obtained this way was very good. Maalek [5] dealt

ith the shear deflection of a tapering cantilever of rectangular
∗ Corresponding author. 
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ross section using the Timoshenko’s beam theory. The formulae

or the deflection have been derived in two ways, i.e. by integra-

ion of the Timoshenko’s beam equation and with the method of

irtual work. Good agreement with the finite element method and

xperimental results indicated effectiveness of the methods. Dado

nd Al-Sadder [6] studied very large deflections of prismatic and

on-prismatic cantilevers subjected to various loads. The angle of

he beam rotation was determined by a polynomial. Several cases

f the cantilever shapes and loads were satisfactorily compared to

he finite element results. Attarnejad et al. [7] developed a method

f static analysis of arbitrarily tapered Timoshenko beams, based

n the basic displacement functions. This allowed to achieve exact

nterpolation of the displacement field along the elements, thus

nsuring fast convergence of the procedure. Effectiveness of the

pproach was verified for several cases of the static and dynamic

xamples. Shahba et al. [8] investigated free vibration and stability

f functionally graded tapered Timoshenko beams using a finite el-

ment approach. The authors formulated an element that enabled

onsideration of variation of the cross-section profile and mechan-

cal properties. Numerical examples validated good efficiency of

he method. Challamel [9] examined the buckling of higher-order

hear beam-columns using the enriched continuum approach. The

uckling problem of a third-order shear beam-column was analyt-

cally solved using the gradient elasticity Timoshenko theory. The

uthor presented several gradient elasticity Timoshenko models,

nclusive of the buckling solutions for various structures and mi-

rostructured beams. Wang [10] studied the characteristics of the

eformations of a tapered cantilever caused by its self-weight. The

uthor derived asymptotic formulae for large deformations. The

esults so obtained were compared to the ones obtained by

umerical integration. The relationships between the cantilever

https://doi.org/10.1016/j.mechrescom.2019.103471
http://www.ScienceDirect.com
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Fig. 1. Scheme of the expanded-tapered sandwich beam. 
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deformation and the taper degree and the cross section shape

were found. Rajasekaran [11] used the differential transformation

method and differential quadrature element method to investigate

the free bending vibration of rotating functionally graded Tim-

oshenko tapered beams. Effectiveness of both these approaches

was verified by comparison with previously published results.

Magnucki et al. [12] investigated deflection of a bent five-layer

sandwich beam, the mechanical properties of which vary in its

thickness direction. An mathematical model of the beam con-

sidering the shear effect was developed. Based on the principle

of stationary total potential energy the system of differential

equations of equilibrium was derived, allowing for formulation of

the deflection formula. The effect of the thickness and mechanical

properties of the binding layer on the beam deflection was ana-

lyzed. Auricchio et al. [13] considered a non-prismatic beam the

cross-section of which varies along the beam axis. A model of a

2D linear-elastic non-prismatic beam enabled to develop a finite

element describing the problem. Numerical results indicated that

the proposed beam model correctly predicts the displacement and

stress distributions of the beam. Pradhan et al. [14] analyzed static

and dynamic stability of a pinned-pinned tapered sandwich beam

with viscoelastic core. The beam was supported on a variable

Pasternak foundation and subjected to pulsating axial load and

a steady, one-dimensional temperature gradient. The Hamilton’s

principle allowed to formulate a set of equations solved afterwards

with the general Galerkin’s method. The principal regions of

instability were investigated in accordance with various external

conditions. Ai and Weaver [15] developed a sandwich beam model

with a view to determine the effects of geometric taper and vari-

able stiffness of the core on the static response of the beam. The

minimum total potential energy method together with the Ritz

technique enabled to obtain an approximate solution. It was found

that variation of the axial stiffness of the core significantly affected

displacements and stresses of the beams. Magnucki et al. [16] dealt

with a short beam with symmetrically varying mechanical proper-

ties. The principle of stationarity of total potential energy served as

a basis for formulation of the differential equations of equilibrium,

solved afterwards for the case of three-point bending. The results

were compared to those obtained with finite element method.

Smyczynski and Magnucka-Blandzi [17] presented a strength

analysis of a simply supported three layer beam composed of two

metal facings, the metal foam core and two binding layers be-

tween the faces and the core. Two different nonlinear hypotheses

of the deformation of the beam cross section were formulated. The

results obtained based on the principle of the stationary potential

energy were verified experimentally and numerically with the

use of the finite element method. Magnucki et al. [18] devoted

their work to a seven layer beam including the main core, two

inner sheets, two second cores and two outer sheets. The zig-zag

hypothesis enabled to determine the displacement and strain

fields based on the stationary total potential energy. The effect of

the core foam types on the deflections and stresses of the beam

was analyzed. The analytical solution was compared to numer-

ical FEM results. Magnucki [19] presented a problem of simply

supported sandwich beams and I-beams of symmetrical struc-

ture subjected to three-point bending and uniformly distributed

load. The models of deformation of planar beam cross section

were assumed according to classical “broken line” hypothesis and

nonlinear “polynomial” hypothesis. The system of the equations

derived based on the principle of stationary total potential energy

was solved for both load types. The deflections of the beams

were calculated taking into account the shear effect. Magnucki

et al. [20] delivered a comparative analysis of the stress state in

bending of a homogenous tapered cantilever beam of rectangular

cross section, calculated analytically and numerically (FEM). The

analytical model is described based on bibliography, while the
umerical FEM model is developed with the use of the SolidWorks

oftware. 

.2. Description of the paper subject 

The subject of the paper is an expanded-tapered sandwich

eam of the length L and width b under three-point bending

 Fig. 1 ). 

The depth of the cross section of the beam 

 ( x ) = 2 

t f 

cos α
+ t c ( x ) (1)

here: t c ( x ) = t c 0 + 2 x tan α - thickness of the core, t c0 - thickness

f the core at the beam end, t f - thickness of the faces, α - taper

ngle, x - coordinate (0 ≤ x ≤ L /2). 

The thin-walled faces of the beam are made of metals of elastic

onstants E f , ν f , while the core is made of metal foam of elastic

onstants E c , νc . 

The main goal of the study consists in elaboration of an an-

lytical model of the expanded-tapered sandwich beam under

hree-point bending based on the broken-line hypothesis (zig-zag

heory). The approach to analytical modeling of the tapered beam

nables to calculate the deflection and stress states. This analytical

tudy of the expanded-tapered sandwich beam is an enhancement

f the analytical study presented in [19] for the beams of constant

epth. The essence of the enhancement consists in demonstration

f significant difference between these two analytical models.

he coefficients of the differential equations of equilibrium of the

eams of constant depth are constant, while the coefficients of

he differential equation of the expanded-tapered beams are the

unctions. 

. Analytical model of the beam – deflection 

The deformation of a planar cross section of the beam deter-

ined with consideration of the broken-line hypothesis is shown

n Fig. 2 . 

Therefore, the longitudinal displacements and strains for suc-

essive layers are as follows: 

• the upper face −h (x ) / 2 ≤ y ≤ −t c (x ) / 2 

u ( x, y ) = −y 
dv 
dx 

− u 1 ( x ) , (2)

ε ( u − f ) 
x ( x, y ) = 

∂u 

∂x 
= −y 

d 2 v 
d x 2 

− d u 1 

dx 
, 

γ ( u − f ) 
xy ( x, y ) = 

dv 
dx 

+ 

∂u 

∂y 
= 0 , (3)

• the core −t c (x ) / 2 ≤ y ≤ t c (x ) / 2 

u ( x, y ) = −y 

[
dv 
dx 

− 2 

u 1 ( x ) 

t c ( x ) 

]
, (4)
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Fig. 2. Scheme of the deformation of a planar cross section of the beam. 
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ε ( c ) x ( x, y ) = 

∂u 

∂x 
= −y 

[
d 2 v 
d x 2 

− 2 

t c ( x ) 

d u 1 

dx 
+ 4 

u 1 ( x ) 

t 2 c ( x ) 
tan α

]
, 

γ ( c ) 
xy ( x, y ) = 

dv 
dx 

+ 

∂u 

∂y 
= γ ( c ) 

xy ( x ) = 2 

u 1 ( x ) 

t c ( x ) 
, (5) 

• the lower face t c ( x )/2 ≤ y ≤ h ( x )/2 

u ( x, y ) = −y 
dv 
dx 

+ u 1 ( x ) , (6)

ε ( l− f ) 
x ( x, y ) = 

∂u 

∂x 
= −y 

d 2 v 
d x 2 

+ 

d u 1 

dx 
, 

γ ( l− f ) 
xy ( x, y ) = 

dv 
dx 

+ 

∂u 

∂y 
= 0 , (7) 

The bending moment 

 b ( x ) = b 

{∫ −t c ( x ) / 2 

−h ( x ) / 2 
yσ ( u − f ) 

x ( x, y ) dy 

+ 

∫ t c ( x ) / 2 

−t c ( x ) / 2 
yσ ( c ) 

x ( x, y ) dy + 

∫ h ( x ) / 2 

t c ( x ) / 2 
yσ ( l− f ) 

x ( x, y ) dy 

}
, (8) 

here the normal stresses 

( u − f ) 
x ( x, y ) = E f ε 

( u − f ) 
x ( x, y ) , 

( c ) 
x ( x, y ) = E c ε 

( c ) 
x ( x, y ) , 

( l− f ) 
x ( x, y ) = E f ε 

( l− f ) 
x ( x, y ) . 

(9) 

t may be noticed that in accordance with the broken-line hypoth-

sis the normal stresses are linear functions with respect to y -

oordinate in the faces and the core. 

After integration, with consideration of the longitudinal strains

3) , (5) , (7) , one obtains the following differential equation 

f v ( x ) 
d 2 v 
d x 2 

− 2 f u ( x ) 
d u 1 

dx 
+ 4 e c t c ( x ) u 1 ( x ) tan α = −12 

M b 

E f b 
, (10)
here: e c = E c / E f - dimensionless coefficient, and two functions 

f v ( x ) = 2 

t f 

cos α

[
h 

2 ( x ) + h ( x ) t c ( x ) + t 2 c ( x ) 
]

+ e c t 
3 
c ( x ) , 

f u ( x ) = 6 

t f 

cos α

[ 
t f 

cos α
+ t c ( x ) 

] 
+ e c t 

2 
c ( x ) . 

The shear force 

 ( x ) = b 

∫ t c ( x ) / 2 

−t c ( x ) / 2 
τ ( c ) 

xy ( x ) dy = 

E c b 

1 + νc 
u 1 ( x ) , (11)

here the shear stress 

( c ) 
xy ( x ) = 

E c 

2 ( 1 + νc ) 
γ ( c ) 

xy ( x ) . (12) 

t should be noticed that according to the broken-line hypothesis

he shear stresses are equal to zero in the faces, while are constant

n the core with respect to y -coordinate. 

The differential Eq. (10) includes two unknown functions: v ( x )

 the deflection, and u 1 ( x ) - the displacement ( Fig. 2 ). The coeffi-

ients of this Eq. (10) are functions. The equation is solved for the

eneralized load. Taking into account [21] and [22] , the generalized

oad is assumed in the following form: 

• the intensity of the distributed load 

q ( ξ ) = 

˜ q ( ξ ) 
F 

L 
, 

˜ q ( ξ ) = 

k 

2 tanh ( k/ 2 ) 

1 

cosh 

2 
[
k 
(
ξ − 1 

2 

)] , (13) 

here: k - dimensionless parameter (0 ≤ k < ∞ ), ξ = x/L - dimen-

ionless coordinate (0 ≤ ξ ≤ 1), and total load F = L 
∫ 1 

0 q (ξ ) dξ , 

• the shear force 

V ( ξ ) = 

˜ V ( ξ ) F , 

˜ V ( ξ ) = − 1 

2 tanh ( k/ 2 ) 
tanh 

[ 
k 

(
ξ − 1 

2 

)] 
. (14) 

• the bending moment 

M b ( ξ ) = 

˜ M b ( ξ ) F L, 

˜ M b ( ξ ) = 

1 

2 k tanh ( k/ 2 ) 
ln 

cosh ( k/ 2 ) 

cosh 

[
k 
(
ξ − 1 

2 

)] . (15) 

The particular cases of the load: 

• the uniformly distributed load ( k → 0) 

lim 

k → 0 
q ( ξ ) = 

F 

L 
, lim 

k → 0 
V ( ξ ) = 

1 

2 

( 1 − 2 ξ ) F , 

lim 

k → 0 
M b ( ξ ) = 

1 

2 

( 1 − ξ ) ξF L. 

• the three-point bending ( k → ∞ ) 

The example diagrams of the dimensionless intensity (13) ,

hear force (14) and bending moment (15) for k = 200 are shown

n Fig. 3 . 

It may be noticed that the generalized load for k = 200 ap-

roaches the three-point bending case. Therefore, the analytical

tudy presented below is carried out for k = 200. 

Based on comparison of the expressions (11) and (14) , the dis-

lacement function in dimensionless coordinate takes the follow-

ng form 

 1 ( ξ ) = − 1 + νc 

2 tanh ( k/ 2 ) 
tanh 

[ 
k 

(
ξ − 1 

2 

)] 
F 

E c b 
. (16) 

Substituting the functions (15) and (16) into the Eq. (10) , and

fter simple transformation, one obtains 
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Fig. 3. Diagrams of generalized load for k = 200. 
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Table 1 

The results of analytical calculations of the beam of length 

L = 320 mm. 

α [ °] 0 1 2 3 4 

˜ v ( Analyt ) 
max 6577.5 4109.2 2853.4 2117.1 1644.2 

v ( Analyt ) 
max [mm] 1.644 1.027 0.713 0.529 0.411 

Table 2 

The results of analytical calculations of the beams of length L = 640 mm. 

α [ °] 0 1 2 3 4 

˜ v ( Analyt ) 
max 48,408.2 20,363.0 11,417.3 7363.4 5164.7 

v ( Analyt ) 
max [mm] 12.102 5.091 2.854 1.841 1.291 
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o  

t  
d 2 v 
d ξ 2 

= 

{
−( 1 + νc ) 

[
k 

e c λ
ϕ 1 ( ξ ) − 2 ϕ 2 ( ξ ) tan α

]
1 

λ

− 6 

k 
ϕ 3 ( ξ ) 

}
λ3 

tanh ( k/ 2 ) 

F 

E f b 
, (17)

where dimensionless functions 

ϕ 1 ( ξ ) = 

˜ f u ( ξ ) 

˜ f v ( ξ ) 

1 

cosh 

2 
[ k ( ξ − 0 . 5 ) ] 

, 

ϕ 2 ( ξ ) = 

˜ t c ( ξ ) 

˜ f v ( ξ ) 
tanh [ k ( ξ − 0 . 5 ) ] , 

ϕ 3 ( ξ ) = 

1 

˜ f v ( ξ ) 
ln 

cosh ( k/ 2 ) 

cosh [ k ( ξ − 0 . 5 ) ] 
, 

˜ f v ( ξ ) = 2 

x f 

cos α

[
˜ h 

2 ( ξ ) + ̃

 h ( ξ ) ̃ t c ( ξ ) + ̃

 t 2 c ( ξ ) 
]

+ e c ̃  t 3 c ( ξ ) , 

˜ f u ( ξ ) = 6 

x f 

cos α

[ 
x f 

cos α
+ ̃

 t c ( ξ ) 

] 
+ e c ̃  t 2 c ( ξ ) , 

˜ 
 c ( ξ ) = 1 + 2 ξλ tan α, 

˜ h ( ξ ) = 2 

x f 

cos α
+ ̃

 t c ( ξ ) , 

x f = t f / t c0 - dimensionless coefficient. 

Integrating the Eq. (17) one obtains 

dv 
dξ

= 

{
C 1 − ( 1 + νc ) 

[ 
k 

e c λ

∫ 
ϕ 1 ( ξ ) d ξ − 2 

∫ 
ϕ 2 ( ξ ) d ξ tan α

] 
1 

λ

− 6 

k 

∫ 
ϕ 3 ( ξ ) dξ

}
λ3 

tanh ( k/ 2 ) 

F 

E f b 
. (18)

The integration constant C 1 of this equation, based on the condi-

tion dv / dξ | 1 / 2 = 0 , takes the following form 

 1 = ( 1 + νc ) 

(
k 

e c λ
J 1 + 2 J 2 tan α

)
1 

λ
+ 

6 

k 
J 3 , (19)

where: J 1 = 

∫ 1 / 2 
0 ϕ 1 (ξ ) dξ , 

J 2 = −
∫ 1 / 2 

0 

ϕ 2 ( ξ ) dξ , J 3 = 

∫ 1 / 2 

0 

ϕ 3 ( ξ ) dξ . 

Integrating the Eq. (18) one obtains the elastic deflection

curve 
 ( ξ ) = 

{ 

C 2 + C 1 ξ − ( 1 + νc ) 

[ 
k 

e c λ

∫ ∫ 
ϕ 1 ( ξ ) d ξ 2 

− 2 

∫ ∫ 
ϕ 2 ( ξ ) d ξ 2 tan α

] 
1 

λ

− 6 

k 

∫ ∫ 
ϕ 3 ( ξ ) dξ

2 } 

λ3 

tanh ( k/ 2 ) 

F 

E f b 
, (20)

here the integration constant C 2 = 0, based on the condition

 (0) = 0. 

Thus, the maximum deflection of the expanded-tapered sand-

ich beam for ξ = 1 / 2 is as follows 

 

( Analyt ) 
max = v 

(
1 

2 

)
= 

˜ v ( Analyt ) 
max 

F 

E f b 
, (21)

here the dimensionless maximum deflection 

˜ 
 

( Analyt ) 
max = 

{ 

1 

2 

C 1 − ( 1 + νc ) 

[ 
k 

e c λ
J 12 

+ 2 J 22 tan α
] 

1 

λ
− 6 

k 
J 32 

} 

λ3 

tanh ( k/ 2 ) 
, (22)

here: J 12 = 

∫ 1 / 2 
0 

∫ 
ϕ 1 (ξ ) d ξ 2 , 

 22 = −
∫ 1 / 2 

0 

∫ 
ϕ 2 ( ξ ) d ξ 2 , J 32 = 

∫ 1 / 2 

0 

∫ 
ϕ 3 ( ξ ) d ξ 2 . 

The detailed calculations are carried out for the exemplary

xpanded-tapered beams. The following data of the beams ( Fig. 1 )

re adopted: thicknesses t c 0 = 14 mm, t f = 1 mm, the width

 = 20 mm, taper angle α = 0 o , 1 o ,..., 5 o , length L = 320 mm

nd L = 640 mm, load-force F = 1 kN, dimensionless parameter

 = 200. The beam faces are made of steel of Young’s modulus

 f = 200 GPa, Poisson ratio ν f = 0.3, while the core is made of

teel foam of Young’s modulus E c = 3150 MPa and Poisson ratio

c = 0.05 [17 , 18] . The detailed calculation results are specified in

ables 1 and 2 . 

. Numerical FEM model of the beam - deflection 

The FEM model of the expanded-tapered sandwich beam is de-

eloped with the use of the SolidWorks software package. Mechan-

cal properties of the layers are equal to those used in analyti-

al approach. Taking into account the symmetry of the beam the

odel may be confined to a quarter of the whole beam ( Fig. 4 ),

ith appropriate boundary conditions imposed on it. The beam

odel is divided into 3D tetrahedral finite elements with 4 Jaco-

ian points. The number of the nodes ranged from about 1.5 �10 6 

n case of L = 320 mm and α= 0 ° to 7.1 �10 6 for L = 640 mm

nd α= 4 °. The numbers of the elements amounted to 1.1 �10 6 and

.1 �10 6 , respectively. 

Example of the mesh is shown in Fig. 5 . 

The beam is located in a Cartesian coordinate system the origin

f which is placed in the beginning of the beam neutral axis (i.e. at

he wall of the narrowed end). The longitudinal x axis is collinear
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Fig. 4. Exemplary model of the expanded-tapered sandwich beam used for FEM 

computation. 

Fig. 5. A part of a FEM mesh (in the area marked in Fig. 4 a with the dotted circle). 

w  
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t

 

 

 

Table 3 

The results of numerical - FEM calculations of the beams ( L = 320 mm, 

L = 640 mm). 

α [ °] 0 1 2 3 4 

v ( FEM ) 
max , L =320 

[ mm ] 1.634 1.006 0.691 0.509 0.394 

v ( FEM ) 
max , L =640 

[ mm ] 12.024 5.040 2.814 1.810 1.268 

Fig. 6. Comparison of the deflection values calculated analytically and numerically: 

a) L = 320 mm, b) L = 640 mm. 

 

 

a  

m

 

i

 

a  
ith the neutral axis, the y -axis is downward directed and z -axis

s normal to the longitudinal middle plane of the beam. 

The following boundary conditions imposed at the surfaces of

he beam model ensure its proper behavior: 

• The beam model is simply supported at its narrow edge (for

x = 0), where the y displacements are zero. 
• The x displacements are zero at the middle wall of the beam

perpendicular to the neutral axis (for x = L /2). The wall is

loaded with the force F parallel to the y -axis. 
• The z displacements are zero at the vertical longitudinal middle

plane of the beam (for z = 0). 

The SolidWorks calculations are carried out for the data

dopted above for the analytical cases. The Table 3 presents maxi-

um deflections calculated numerically. 

The analytical and numerical results are graphically compared

n Fig. 6 . 

Comparison of the numerical results with the values obtained

nalytically and shown in Tables 1 and 2 indicates very good con-
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vergence of both series of the results. The differences do not ex-

ceed 4.3% in case of the shorter beam and 1.8% in case of the

longer one. 

4. Conclusion 

The analytical model of the expanded-tapered sandwich beam

developed with consideration of the “broken-line” hypothesis takes

into account the shear effect. 

The assumed generalized load enables to study bending of the

beam for the load cases from a uniform to concentrated (three-

point bending) one. The three-point bending is a particular case of

this approach ( Fig. 3 ). It should be noticed that the nearly concen-

trated load is applied to a certain surface rather ( k = 200) than to

a point. Therefore, the model achieves a practical meaning, since in

actual structures the concentrated load must be applied through a

membrane or rib, which distributes the load over a certain surface.

The maximum deflection values (in the beam middle) are deter-

mined analytically with consideration of the shear effect for the

exemplary beams. 

An equivalent numerical FEM model was developed that en-

abled to make the calculations for the same beams. Such a model

may be easily applied by the designers in practice. 

Comparison of the results obtained analytically and numerically

allows to find out that they comply each to other with good accu-

racy, with the differences not exceeding 4.3%. 
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