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a b s t r a c t 

In this work, variational formulations are proposed for solving numerically the problem of bending and 

buckling of Timoshenko nano-beams. The present work belongs to research branch in which the non- 

local theory of elasticity has been used for analysis of beam-like elements in smart materials, micro- 

electro-mechanical (MEMS) or nano-electro-mechanical systems (NEMS). In fact, the local beam theory 

is not adequate to describe the behavior of beam-like elements of smart materials at the nano-scale, 

so that different non-local models have been proposed in last decades for nano-beams. The nano-beam 

model considered in this work is a convex combination (mixture) of local and non-local phases. In the 

non-local phase, the kinematic entities in a point of the nano-beam are expressed as integral convo- 

lutions between internal forces and an exponential kernel. The aim is to construct a functional whose 

stationary condition provides the solution of the problem. Two different functionals are defined: one for 

the pure non-local model, where the local fraction of the mixture is absent, and the other for the mix- 

ture with both local and non-local phases. The Euler equations of the two functionals are derived; then, 

attention focuses on the mixture model. The functional of the mixture depends on unknown Lagrange 

multipliers and the Euler equations of the functional provide not only the governing equations of the 

problem but also the relationships between these Lagrange multipliers and the other variables on which 

the functional depends. In fact, approximations of the variables of the functional can not be chosen ar- 

bitrarily in numerical analyzes but have to satisfy suitable conditions. The Euler equations involving the 

Lagrange multipliers are essential in the numerical analyzes and suggest the correct approximations that 

have to be adopted for Lagrange multipliers and the other unknown variables of the functional. The pro- 

posed method is verified by comparing numerical solutions with exact solutions in bending problem. 

Finally, the method is used to determine the buckling load of Timoshenko nano-beams with mixture of 

phases. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Smart materials (such as transducers, sensor, actuators, etc.)

re used in many practical applications. The requirement of small-

ess of devices made of smart materials has led to the production

f micro-electro-mechanical systems (MEMS) made of compo-

ents between 1 and 100 μm and nano-electro-mechanical systems

NEMS) with dimensions in nanoscale. Small size effects are ex-

ected to occur in small structures composing these systems and

any authors have predicted these effects using non-local the-

ry. Sedighi et al. [1] have employed Gurtin-Murdoch model and

ringen’s elasticity in order to consider the surface energy and
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E-mail addresses: raimondo.luciano@uniparthenope.it (R. Luciano), 

.caporale@unicas.it (A. Caporale). 

[

 

d  

t  

ttps://doi.org/10.1016/j.mechrescom.2019.103470 

093-6413/© 2019 Elsevier Ltd. All rights reserved. 
on-local effect, respectively, in the dynamic stability of double-

ided NEMS. Ebrahimi and Dabbagh [2] have proposed a non-local

train gradient theory to capture size effects in wave propagation

nalysis of compositionally graded smart nano-plates. Mahinzare

t al. [3] have modeled free vibration of a rotating circular nano-

late made of two directional functionally graded piezo materials

two directional FGPM) employing the modified couple stress the-

ry. Rezazadeh et al. [4] have used a non-local EulerBernoulli beam

odel based on the theory of non-local elasticity to study the ther-

oelastic damping in a nano-beam considered as a beam-type of

EMS. Theory accounting for size effects and internal length of the

aterial are widely used and applied to objects of different sizes

5] . 

Recently, Romano and Barretta [6] have introduced a stress-

riven non-local integral model, where the bending field is

he input variable so that the constitutive law is evaluated by
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convolution between bending field and an averaging kernel, solv-

ing a ill-posedness of non-local problems in nano-mechanics [7] .

Barretta et al. [8] have improved the stress-driven model intro-

ducing a mixture of local and non-local phases for the bending

problem of Timoshenko nano-beams. In this work, we present

variational methods for the numerical solution of the stress-driven

model with mixture of phases and apply the methods to the bend-

ing and buckling of Timoshenko nano-beams. The present work

belongs to research branch in which the non-local theory of elas-

ticity has been used for the analysis of beam-like elements in

smart materials, MEMS or NEMS. The aim of this work is to con-

struct and use simple functionals whose stationary condition pro-

vides the solutions for nano-beams in stress-driven approach. Our

attention focuses on the functional for the mixture of local and

non-local phases. The constitutive equations of the adopted stress-

driven model are briefly described in Section 2 . In the stress-

driven model, bending curvature and shear deformation are ex-

pressed as integral convolutions between bending moment and

shear force, respectively, and an averaging kernel. The convolu-

tions involve a non-local behavior where kinematic entities at

a point of the beam depend on internal forces in a neighbor-

hood of that point. The integral formulation of the stress-driven

mixture admits an equivalent differential formulation, which is

described in Section 2 and on which the proposed variational

methods are based. Sections 3 and 4 introduce two different

functionals and derive their Euler equations. The functionals are

constructed by adding the product between Lagrange multipli-

ers and suitable expressions, representing the constitutive rela-

tions of the adopted stress-driven model, to the total potential

energy (TPE). The first functional is presented in Section 3 for

a stress-driven model without the local phase (no mixture): in

this case, the constitutive laws of the stress-driven model are in-

serted directly in the strain energy of the TPE and only the con-

stitutive boundary conditions of the stress-driven model have to

be added in the functional through Lagrange multipliers. The sec-

ond functional is defined in Section 4 for a stress-driven model

with mixture of local and non-local phases: here, the constitutive

laws of the stress-driven mixture model are added to the func-

tional through Lagrange multipliers: this simple operation involves

the addition of further unknown variables whose meaning has to

be clearly determined through the derivation of the Euler Equa-

tions. In Section 5 , numerical methods are used to find approxi-

mate solutions of the problem through the stationary conditions

of the functional presented in previous Section 4 . The functional

depends on unknown variables approximated with linear combi-

nations of functions belonging to a base. In the mixture model,

the derivation of the Euler equations of the functional is nec-

essary to choose correctly the functions of the linear combina-

tions approximating the unknown variables, on which the func-

tional depends on. In fact, the functions of the linear combinations

for some unknown variables (e.g. the Lagrange multipliers) in the

mixture model can not be chosen arbitrarily but they have to re-

spect consistency conditions emerged from the Euler equations of

the functional. The derivation of the Euler equations may be te-

dious, however the numerical method for imposing the stationary

condition of the functional is easy to implement. The proposed

method can be applied to cases where exact solutions are not

yet available in literature or may be difficult to find. In Section 5 ,

Timoshenko nano-beams based on stress-driven mixture and sub-

ject to transverse load and/or critical axial load are considered.

For nano-beams in bending, the proposed numerical solutions are

compared with exact solutions present in literature. Finally, the

method is applied for evaluating the buckling load of Timoshenko

nano-beams, for which exact solutions are not yet available in

literature. 
a
. Stress-driven model 

We briefly describe the equations of the stress-driven model,

or which we develop variational formulations in the next sections.

he model is a convex combination (mixture) of local and non-

ocal phases, with the non-local phases expressed as integral con-

olutions between internal forces and an exponential kernel de-

ending on a scale parameter L c > 0. Barretta et al. [9] have shown

hat the mixture integral relationship between bending curvature

and bending moment M is equivalent to the second-order dif-

erential equation 

′′ (x ) − 1 

L 2 c 

χ(x ) = α
M 

′′ (x ) 

EI 
− 1 

L 2 c 

M(x ) 

EI 
, (1)

ith the following constitutive boundary conditions (CBCs) 
 

 

 

 

 

 

 

χ ′ (0) − 1 

L c 
χ(0) = α

M 

′ (0) 

EI 
− α

L c 

M(0) 

EI 
, 

χ ′ (L ) + 

1 

L c 
χ(L ) = α

M 

′ (L ) 

EI 
+ 

α

L c 

M(L ) 

EI 
, 

(2)

here EI is the local bending stiffness, x ∈ [0, L ] in (1) and L > 0

s the length of the nano-beam. From integral equations, it ap-

ears that the parameter α governs the quantity of the phases in

he mixture: α = 0 provides a full non-local model without local

hase, whereas α = 1 provides the classical local model without

on-local phase. In this work, the prime symbol ( ′ ) denotes deriva-

ives with respect to the variable x . 

Analogously, Barretta et al. [8] have shown that the mixture in-

egral relationship between shear deformation γ and shear force Q

s equivalent to the differential problem governed by the equation

′′ (x ) − θ (x ) 

L 2 c 

= α
Q 

′′ (x ) 

κGA 

− 1 

L 2 c 

Q(x ) 

κGA 

+ φ′′ (x ) − φ(x ) 

L 2 c 

, (3)

ith the following CBCs 
 

 

 

 

 

 

 

θ ′ (0) − θ (0) 

L c 
= α

Q 

′ (0) 

κGA 

− α

L c 

Q(0) 

κGA 

+ φ′ (0) − φ(0) 

L c 
, 

θ ′ (L ) + 

θ (L ) 

L c 
= α

Q 

′ (L ) 

κGA 

+ 

α

L c 

Q(L ) 

κGA 

+ φ′ (L ) + 

φ(L ) 

L c 
, 

(4)

here GA is the local shear stiffness and κ is the shear factor. The

hear deformation is γ (x ) = θ (x ) − φ(x ) , where θ (x ) = v ′ (x ) is the

lope of the nano-beam deformed center-line and φ( x ) is the rota-

ion of the transverse section of the beam. The bending curvature

s correlated to the rotation: χ(x ) = φ′ (x ) . 

. Variational formulation of the non-local problem (no 

ixture) 

In this section, we consider the local fractions of the mixtures

qual to zero, by setting α = 0 . With this assumption, relation

1) provides the bending moment M as function of the curvature

and its second derivative: 

(x ) = EI 
(
χ(x ) − L 2 c χ

′′ (x ) 
)

(5)

nd the relevant CBCs are 

′ (0) − 1 

L c 
χ(0) = 0 , χ ′ (L ) + 

1 

L c 
χ(L ) = 0 . (6)

n a similar manner, relation (3) provides the shear force Q as func-

ion of the shear strain γ and its second derivative: 

(x ) = κGA 

(
γ (x ) − L 2 c γ

′′ (x ) 
)

(7)

nd the relevant CBCs are 
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o  

w  

0  

c  

a  

(

L  
′ (0) − 1 

L c 
γ (0) = 0 , γ ′ (L ) + 

1 

L c 
γ (L ) = 0 . (8)

he objective is to construct a functional L N whose stationary point

s the solution satisfying the governing equations of the problem,

amely the equilibrium equations and the constitutive relations

5) and (7) , together with kinematic boundary conditions and CBCs

6) and (8) . The total potential energy (TPE) for beams subject to

istributed transverse load q and critical axial load P is 

= U + W, (9) 

here the strain energy U is 

 = 

1 

2 

∫ L 

0 
( M(x ) χ(x ) + Q(x ) γ (x ) ) dx (10) 

nd the potential energy W of the external loads is 

 = −
∫ L 

0 

q (x ) v (x ) dx − P 

2 

∫ L 

0 

(
v ′ (x ) 

)2 
dx. (11)

eplacing M ( x ) and Q ( x ) in (10) with the right-hand sides of

5) and (7) , respectively, we obtain: 

 = 

EI 

2 

∫ L 

0 

(
χ − L 2 c χ

′′ )χdx + 

κGA 

2 

∫ L 

0 

(
γ − L 2 c γ

′′ )γ dx, (12)

here the dependence on x of the variables χ and γ is omitted

or brevity. Total potential energy � with strain energy U given by

12) is a functional depending on v ( x ) and φ( x ), which are the un-

nowns of the problem. Denoting the first variation of � as δ�, it

an be shown that the condition δ� = 0 provides the equilibrium

quations in terms of the kinematic entities v ( x ) and φ( x ), if v ( x )

nd φ( x ) already satisfy CBCs as well as kinematic boundary con-

itions. Therefore, � with substitutions (5) and (7) could be the

earched functional. Imposing the satisfaction of the CBCs before

olving the stationary problem δ� = 0 may be tedious. Therefore,

e construct a simple functional L N whose stationary point sat-

sfies the governing equations of the problem and the CBCs. The

unctional L N is obtained by adding suitable terms to the total po-

ential energy �: 

 N = � + 

4 ∑ 

i =1 

μi b i , (13)

here μi is the Lagrange multiplier associated with the constitu-

ive boundary expression b i and 

 1 = χ ′ (0) − 1 

L c 
χ(0) , b 2 = χ ′ (L ) + 

1 

L c 
χ(L ) , 

 3 = γ ′ (0) − 1 

L c 
γ (0) , b 4 = γ ′ (L ) + 

1 

L c 
γ (L ) . 

ext, we write the stationary condition of the functional L N with

train energy U given by (12) . After several integrations by parts,

he stationary condition becomes 

 = δL N = −
∫ L 

0 

(
M 

′ + Q 

)
δφdx −

∫ L 

0 

(
Q 

′ + q − P v ′′ 
)
δv dx 

+ [ Mδφ] 
L 
0 + 

[(
Q − P v ′ 

)
δv 

]L 

0 
+ 

4 ∑ 

i =1 

( δμi b i + μi δb i ) 

− EI 

2 

L 2 c 

{ [
χδχ ′ ]L 

0 
−

[
χ ′ δχ

]L 

0 

} 

− κGA 

2 

L 2 c 

{ [
γ δγ ′ ]L 

0 
−

[
γ ′ δγ

]L 

0 

} 

, (14) 

here M and Q are given by the right-hand sides of (5) and (7) ,

espectively. The Euler equations of the functional L N are obtained

y setting the coefficients of δφ and δv in the integrals and the

oefficients of δμi to zero in (14) and by observing that Lagrange

ultipliers μ for i = 1 , . . . , 4 are arbitrary parameters so that the
i 
oefficients of δχ( ̄x ) , δχ ′ ( ̄x ) , δγ ( ̄x ) and δγ ′ ( ̄x ) for x̄ = 0 , L also

ave to be equal to zero. Concluding, the Euler equations of L N are:

φ : M 

′ + Q = 0 , in 0 < x < L, (15)

v : Q 

′ + q − P v ′′ = 0 , in 0 < x < L, (16)

μi : b i = 0 for i = 1 , . . . , 4 , (17)

χ(0) : e χ ′ (0) − μ1 

L c 
= 0 , (18)

χ ′ (0) : −e χ(0) + μ1 = 0 , (19)

χ(L ) : −e χ ′ (L ) + 

μ2 

L c 
= 0 , (20)

χ ′ (L ) : e χ(L ) + μ2 = 0 , (21)

γ (0) : g γ ′ (0) − μ3 

L c 
= 0 , (22)

γ ′ (0) : −g γ (0) + μ3 = 0 , (23)

γ (L ) : −g γ ′ (L ) + 

μ4 

L c 
= 0 , (24)

γ ′ (L ) : g γ (L ) + μ4 = 0 , (25)

here e = − EI 
2 L 

2 
c and g = − κGA 

2 L 2 c . Relations (15) and (16) are the

quilibrium equations of the Timoshenko nano-beam subject to

istributed transverse load q and critical axial load P . In this work,

 is the shear force normal to the deformed beam axis. Equilib-

ium equations may be expressed in terms of a shear force V that

s normal to the un-deformed beam axis and keeps this constant

irection. The relation between Q and V is 

 = V cos θ + P sin θ � V + P θ = V + P v ′ . (26)

qs. (18) and (19) imply μ1 = L c e χ ′ (0) and μ1 = e χ(0) , respec-

ively, and L c χ ′ (0) = χ(0) , which is the first of the CBCs (6) . Anal-

gously, (20) –(25) imply the remaining CBCs introduced in this

ection. Therefore, Euler equations of the functional L N are the

overning equations of the non-local Timoshenko nano-beam sub-

ect to distributed transverse load and axial critical load in stress-

riven mode characterized by α = 0 (no mixture). In numerical

ethods, an approximate solution of this problem, which is gov-

rned by the above-mentioned equilibrium equations, the consti-

utive laws (5) and (7) , and CBCs (for α = 0 ), can be found by ex-

ressing the variables φ( x ) and v ( x ) as linear combination of given

unctions and then setting the partial derivatives of L N , with re-

pect to the unknown coefficients of the combination and the La-

range multipliers μi , to zero. In the mixture model characterized

y 0 < α < 1, it is no longer possible to express the bending mo-

ent as a function of only the curvature and its derivative through

he constitutive law (5) ; the same holds for the shear force. In this

ase, a different formulation is required with the introduction of a

ew functional depending on φ( x ), v ( x ) and other new variables. 

. Variational formulation of the mixture problem 

In previous Section 3 , the strain energy U in (12) depends only

n the kinematic entities φ and v , thanks to Eqs. (5) and (7) ,

hich appear like constitutive laws of the nano-beam. Assuming

 < α < 1 in the mixture model defined in Section 2 , we have to

onsider Eqs. (1) and (3) in place of (5) and (7) . This task may be

ccomplished by introducing a new functional L M 

where (1) and

3) are imposed through Lagrange multipliers: 

 M 

= � + 

∫ L 

0 

( 

2 ∑ 

i =1 

λi (x ) c i (x ) 

) 

dx + 

4 ∑ 

i =1 

μi b i , (27)
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where λi ( x ) is the Lagrange multiplier associated with the function

c i ( x ) given by 

c 1 (x ) = χ ′′ (x ) − χ(x ) 

L 2 c 

− α
M 

′′ (x ) 

EI 
+ 

1 

L 2 c 

M(x ) 

EI 
, 

c 2 (x ) = γ ′′ (x ) − γ (x ) 

L 2 c 

− α
Q 

′′ (x ) 

κGA 

+ 

1 

L 2 c 

Q(x ) 

κGA 

, 

and μi is the Lagrange multiplier associated with the boundary

term b i given by 

b 1 = χ ′ (0) − 1 

L c 
χ(0) − α

M 

′ (0) 

EI 
+ 

α

L c 

M(0) 

EI 
, 

b 2 = χ ′ (L ) + 

1 

L c 
χ(L ) − α

M 

′ (L ) 

EI 
− α

L c 

M(L ) 

EI 
, 

b 3 = γ ′ (0) − 1 

L c 
γ (0) − α

Q 

′ (0) 

κGA 

+ 

α

L c 

Q(0) 

κGA 

, 

b 4 = γ ′ (L ) + 

1 

L c 
γ (L ) − α

Q 

′ (L ) 

κGA 

− α

L c 

Q(L ) 

κGA 

. 

Here, M and Q in potential energy � of (27) are two unknown

functions. After several integrations by parts, the stationary condi-

tion of L M 

becomes 

0 = δL M 

= 

∫ L 

0 

[
−
(

M 

′ 
2 

+ λ′′′ 
1 − λ′ 

1 

L 2 c 

+ 

Q 

2 

+ λ′′ 
2 −

λ2 

L 2 c 

)
δφ

−
(

Q 

′ 
2 

+ λ′′′ 
2 − λ′ 

2 

L 2 c 

+ q − P v ′′ 
)
δv + 

(
φ′ 
2 

− α
λ′′ 

1 

EI 
+ 

1 

L 2 c 

λ1 

EI 

)
δM

+ 

(
v ′ − φ

2 

− α
λ′′ 

2 

κGA 

+ 

1 

L 2 c 

λ2 

κGA 

)
δQ + 

2 ∑ 

i =1 

c i δλi 

] 

dx 

+ 

[(
M 

2 

+ λ′′ 
1 −

λ1 

L 2 c 

)
δφ

]L 

0 

+ 

[(
Q 

2 

+ λ′′ 
2 −

λ2 

L 2 c 

− P v ′ 
)

δv 
]L 

0 

+ 

[
λ1 δφ

′′ − λ′ 
1 δφ

′ ]L 

0 
− α

EI 
[ λ1 δM 

′ − λ′ 
1 δM] L 0 

+ 

[
λ2 δγ

′ − λ′ 
2 δγ

]L 

0 
− α

κGA 

[ λ2 δQ 

′ − λ′ 
2 δQ] L 0 

+ 

4 ∑ 

i =1 

( δμi b i + μi δb i ) . (28)

Next, we show that the Euler equations of L M 

are the govern-

ing equations of the problem based on the mixture defined in

Section 2 for 0 ≤ α ≤ 1. Before proceeding with the derivation

of the Euler equations, we note that these equations also have an-

other purpose. In next section, the functional L M 

will be used to

find approximate solutions to some non-local problems. To this

end, the functions of the linear combinations approximating the

unknown variables λ1 ( x ) and λ2 ( x ) in the functional L M 

defined in

(27) can not be chosen arbitrarily, but they have to satisfy certain

conditions, which depend on the physical meaning of λ1 ( x ) and

λ2 ( x ). The Euler equations of L M 

in (27) also provide the relation-

ships between the unknown functions M ( x ), Q ( x ), λ1 ( x ) and λ2 ( x ),

on which L M 

depends, and the physical meaning of λ1 ( x ) and λ2 ( x ).

The Euler equations of L M 

are 

δφ : 
M 

′ 
2 

+ λ′′′ 
1 − λ′ 

1 

L 2 c 

+ 

Q 

2 

+ λ′′ 
2 −

λ2 

L 2 c 

= 0 , in 0 < x < L, (29)

δv : 
Q 

′ 
2 

+ λ′′′ 
2 − λ′ 

2 

L 2 c 

+ q − P v ′′ = 0 , in 0 < x < L, (30)

δM : 
φ′ 
2 

− 1 

EI 

(
αλ′′ 

1 −
λ1 

L 2 c 

)
= 0 , in 0 < x < L, (31)
Q : 
v ′ − φ

2 

− 1 

κGA 

(
αλ′′ 

2 −
λ2 

L 2 c 

)
= 0 , in 0 < x < L, (32)

λ1 : c 1 = 0 , in 0 < x < L, (33)

λ2 : c 2 = 0 , in 0 < x < L, (34)

n the interior points and 

μi : b i = 0 for i = 1 , . . . , 4 , (35)

χ(0) : −μ1 

L c 
+ λ′ 

1 (0) = 0 , (36)

χ(L ) : 
μ2 

L c 
− λ′ 

1 (L ) = 0 , (37)

χ ′ (0) : μ1 − λ1 (0) = 0 , (38)

χ ′ (L ) : μ2 + λ1 (L ) = 0 , (39)

M(0) : 
α

EI 

(
μ1 

L c 
− λ′ 

1 (0) 
)

= 0 , (40)

M(L ) : 
α

EI 

(
−μ2 

L c 
+ λ′ 

1 (L ) 
)

= 0 , (41)

M 

′ (0) : 
α

EI 
( −μ1 + λ1 (0) ) = 0 , (42)

M 

′ (L ) : 
α

EI 
( −μ2 − λ1 (L ) ) = 0 , (43)

γ (0) : −μ3 

L c 
+ λ′ 

2 (0) = 0 , (44)

γ (L ) : 
μ4 

L c 
− λ′ 

2 (L ) = 0 , (45)

γ ′ (0) : μ3 − λ2 (0) = 0 , (46)

γ ′ (L ) : μ4 + λ2 (L ) = 0 , (47)

Q(0) : 
α

κGA 

(
μ3 

L c 
− λ′ 

2 (0) 
)

= 0 , (48)

Q(L ) : 
α

κGA 

(
−μ4 

L c 
+ λ′ 

2 (L ) 
)

= 0 , (49)

Q 

′ (0) : 
α

κGA 

( −μ3 + λ2 (0) ) = 0 , (50)

Q 

′ (L ) : 
α

κGA 

( −μ4 − λ2 (L ) ) = 0 , (51)

t the boundary points. Next, we show that Euler equations of the

unctional L M 

are the governing equations of the non-local Timo-

henko nano-beam subject to distributed transverse load and ax-

al critical load in stress-driven mode characterized by 0 ≤ α ≤ 1

mixture of local and non-local phases). Expressing χ as function

f λ1 through (31) , it results 

′′ − 1 

L 2 c 

χ = 

2 α

EI 

(
λ′′ 

1 −
λ1 

L 2 c 

)′′ 
− 2 

L 2 c EI 

(
λ′′ 

1 −
λ1 

L 2 c 

)
. (52)

uler Eq. (33) and relation (52) imply 

′′ 
1 −

λ1 

L 2 
= 

M 

2 

. (53)
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imilarly, the Lagrange multiplier λ2 satisfies the relation 

′′ 
2 −

λ2 

L 2 c 

= 

Q 

2 

. (54) 

rom (53) and (54) , Euler Eqs. (29) and (30) represent the equilib-

ium equations of the problem, namely 

 

′ + Q = 0 , Q 

′ + q − P v ′′ = 0 , (55)

nd the boundary terms with variations δφ and δv in (28) be-

ome (
M 

2 

+ λ′′ 
1 −

λ1 

L 2 c 

)
δφ

]L 

0 

= [ Mδφ] 
L 
0 (

Q 

2 

+ λ′′ 
2 −

λ2 

L 2 c 

− P v ′ 
)

δv 
]L 

0 

= 

[(
Q − P v ′ 

)
δv 

]L 

0 
(56) 

nd vanish: e.g. either the transverse displacement v or the shear

orce V � Q − P v ′ = 0 can be assigned at each boundary point (the

nly external transverse load different from zero is the distributed

oad q ). 

. Numerical solutions through the stationary condition of the 

unctional L M 

In this section, approximate solutions of the Timoshenko nano-

eams subject to distributed transverse load and/or critical axial

oad are determined by imposing the stationary condition of the

unctional L M 

defined in Section 4 . This functional depends on un-

nown functions φ( x ), v ( x ), M ( x ), Q ( x ), λ1 ( x ), λ2 ( x ) and unknown

onstants μi for i = 1 , . . . , 4 . In the proposed numerical method,

e express each of the unknown functions as a finite linear com-

ination of given basis functions, paying attention to the fact that

ome unknown functions are not independent, as shown by re-

ationships (53) and (54) . Approximations adopted for rotation φ,

isplacement v , bending moment M , shear force Q and Lagrange

ultipliers λ1 and λ2 are 

n 1 (x ) = ψ 

(1) 
0 

(x ) + 

n 1 ∑ 

i =1 

a i ψ 

(1) 
i 

(x ) , (57)

 n 2 (x ) = ψ 

(2) 
0 

(x ) + 

n 2 ∑ 

i =1 

a n 1 + i ψ 

(2) 
i 

(x ) , (58)

 n 3 (x ) = 

n 3 ∑ 

i =1 

a n̄ 2 + i ψ 

(3) 
i 

(x ) , (59)

 n 4 (x ) = 

n 4 ∑ 

i =1 

a n̄ 3 + i ψ 

(4) 
i 

(x ) , (60)

1 ,n 5 (x ) = 

n 5 ∑ 

i =1 

a n̄ 4 + i ψ 

(5) 
i 

(x ) , (61)

2 ,n 6 (x ) = 

n 6 ∑ 

i =1 

a n̄ 5 + i ψ 

(6) 
i 

(x ) , (62)

espectively, where ψ 

( j) 
i 

(x ) for j = 1 , . . . , 6 are the basis functions,

¯ j = 

∑ j 

k =1 
n k and a i for i = 1 , . . . , ̄n 6 are unknown real constants.

unctions ψ 

( j) 
i 

(x ) for i = 1 , . . . , n j and j = 1 , 2 satisfy the homoge-

eous form of the kinematic boundary conditions, e.g. if v (0) = 0

hen ψ 

(2) 
i 

(0) = 0 for i = 1 , . . . , n 2 . The choice of the approxima-

ions in (57) –(62) has to take into account the relationships estab-

ished by Eqs. (33) , (34), (53) and (54) . This task is accomplished

n next subsections after the choice of the basis functions ψ 

( j) 
i 

(x )

or j = 1 , 2 . 
The stationary condition of L M 

is 

L M 

= 

n̄ 6 +4 ∑ 

i =1 

∂L M 

∂a i 
δa i = 0 , (63)

here a n̄ 6 + i = μi for i = 1 , . . . , 4 . Relation (63) involves the follow-

ng linear system 

∂L M 

∂a i 
= 0 for i = 1 , . . . , n̄ 6 + 4 , (64) 

n the unknowns a i . Next, numerical solutions obtained by solving

he system (64) are compared with exact solutions [8] for Tim-

shenko nano-beams subject to a distributed transverse load. Fi-

ally, the proposed numerical method is used to determine the

uckling load of Timoshenko nano-beams based on stress-driven

ixture, for which solutions are not yet available in literature. 

.1. Accuracy of the numerical solutions in bending test 

Here, we consider Timoshenko cantilever nano-beams with

ixture of phases subject to a constant distributed transverse load

 . Adopting the following base of functions 

 i (x ) = x i −1 for i ≥ 1 , (65) 

he approximations of φ and v satisfying the kinematic boundary

onditions ( v (0) = φ(0) = 0 ) are 

n 1 (x ) = 

n 1 ∑ 

i =1 

a i ψ i +1 (x ) , (66)

 n 2 (x ) = 

n 2 ∑ 

i =1 

a n 1 + i ψ i +1 (x ) . (67)

ince φ = v ′ in absence of shear deformations (Euler-Bernoulli

eam), we assume n 2 = n 1 + 1 . Approximations adopted for M and

 have to satisfy relationships (33) and (34) , respectively, and are

iven by (59) and (60) with n 3 = n 1 , n 4 = n 2 and ψ 

( j) 
i 

(x ) = ψ i (x )

or i = 1 , . . . , n j and j = 3 , 4 . The approximations of the Lagrange

ultipliers λ1 ( x ) and λ2 ( x ) have to satisfy relationships (53) and

54) , respectively. This means that basis functions used for approx-

mating λ1 ( x ) and λ2 ( x ) are the same used for M ( x ) and Q ( x ), re-

pectively. Therefore, the approximations of the Lagrange multipli-

rs λ1 ( x ) and λ2 ( x ) are given by (61) and (62) , respectively, with

 5 = n 3 , n 6 = n 4 and ψ 

( j) 
i 

(x ) = ψ i (x ) for i = 1 , . . . , n j and j = 5 , 6 .

he numerical solution is obtained from (27) setting P = 0 (buck-

ing is not considered in this example). 

The solution of the Timoshenko nano-beam subject to a con-

tant distributed transverse load q depends on the following

our dimensionless parameters: p 1 = L c /L, p 2 = κGAL 2 / (EI) , p 3 =
L/ (κGA ) and α. Next, we assume p 2 = p 3 = 1 , α = 0 . 6 and com-

are the numerical solutions with the exact solutions [8] for dif-

erent values of p 1 . In Fig. 1 , the dimensionless transverse dis-

lacement v n 2 /L is plotted against x / L for n 2 = n = 3 , 4 , 5 , 6 and

p 1 = 0 . 1 . The figure shows that the convergence of the numerical

olution improves as n increases, being n the number of basis func-

ions used to approximate the displacement. Same objects are plot-

ed in Fig. 2 but p 1 = 0 . 4 . Comparing Figs. 1 and 2 , one notes that

onvergence is better for larger scale parameter p 1 = L c /L . In fact,

he blue dashed curve (n = 5) practically coincides with the exact

olution (black continuous curve) for p 1 = 0 . 4 ( Fig. 2 ) and is quite

ar from the exact solution for p 1 = 0 . 1 ( Fig. 1 ). A slow conver-

ence is observed for very small values of p 1 = L c /L, but this cir-

umstance is not significant as the solution for L c / L tending to zero

s the local solution. The figures also bring out an important aspect

f the stress-driven model: the dimensionless displacements de-

rease with increasing the scale parameter L c / L , in accordance with

xperimental evidences. Omitting the case of very small values of
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Fig. 1. Comparison between dimensionless approximate and exact displacements 

for α = 0 . 6 and p 1 = 0 . 1 . 

Fig. 2. Comparison between dimensionless approximate and exact displacements 

for α = 0 . 6 and p 1 = 0 . 4 . 

Fig. 3. Difference between dimensionless exact displacement and the approxima- 

tion v 9 / L . 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Dimensionless buckling load p 3, cr for different values of p 1 = L c /L . 

LB p 1 = 0 . 1 p 1 = 0 . 2 p 1 = 0 . 3 p 1 = 0 . 4 

p 3, cr 0.908 1.0185 1.176 1.308 1.408 
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y

L c / L , good approximations are already achieved with a small num-

ber n of the basis functions. Moreover, the numerical solution ap-

proximates the exact solution to any degree of accuracy, as shown

in Fig. 3 , where the error e defined as the difference between di-

mensionless exact and approximate displacements, 

e (x/L ) = 

v exact (x ) − v n 2 (x ) 

L 
, (68)

is plotted against x / L for n 2 = 9 , α = 0 . 6 and p 1 = 0 . 1 . 

5.2. Buckling load of Timoshenko nano-beams with mixture of phases

Next, we consider simply supported nano-beams. Remembering

that Eqs. (33) , (34), (53) and (54) represent constraints for the ap-

proximations of the variables φ, v, M, Q, λ1 and λ2 , we proceed

as done in previous Section 5.1 . Firstly, we define the approxima-

tions of the kinematic variables φ and v . Then, we determine the
pproximations of the remaining variables, so that constraints im-

osed by the above-mentioned equations can not be violated. The

asis functions ψ 

(2) 
i 

satisfying the kinematic boundary conditions

 v (0) = v (L ) = 0 ) of the simply supported nano-beams are 

 

(2) 
0 

(x ) = 0 , ψ 

(2) 
i 

(x ) = x i (L − x ) for i = 1 , . . . , n 2 . (69)

herefore, consistent approximations (not violating constraints of

he problem) for φ, v, M, Q, λ1 and λ2 are given by (57) –(62) ,

espectively, with n 2 = n 3 = n 5 = n 1 − 1 , n 4 = n 6 = n 1 and ψ 

( j) 
i 

=
 i (x ) for i = 1 , . . . , n j and j = 1 , 3 , 4 , 5 , 6 , where ψ i ( x ) is given by

65) . We determine the buckling load of Timoshenko nano-beams

n stress-driven mixture. The distributed transverse load is absent

n this example; therefore, the numerical solution is obtained from

27) setting q = 0 . Let A b denote the matrix of the coefficients of

he system (64) . The only unknown in matrix A b is the axial force

 . The buckling load is denoted by P cr and is the smallest root of

he equation det (A b ) = 0 in the unknown P . We express the re-

ults in dimensionless form: the solution depends on the four di-

ensionless parameters p 1 = L c /L, p 2 = κGAL 2 / (EI) , p 3 = P/ (κGA )

nd α. We assume α = 0 . 5 and p 2 = 1 . Table 1 reports the di-

ensionless buckling load p 3 ,cr = P cr / (κGA ) for different values of

p 1 = L c /L . The table also reports the value of p 3, cr for the local

eam (LB), i.e in local elasticity; p 3, cr for the local beam is 

p 3 ,cr,loc = 

π2 EI 

L 2 κGA 

1 

1 + 

π2 EI 
L 2 κGA 

= 

1 

1 + 

p 2 
π2 

. (70)

Table 1 shows that the dimensionless buckling load increases

ith increasing the scale parameter p 1 = L c /L . This trend also ap-

ears in other load cases of the stress-driven model and is in ac-

ordance with experimental evidences. 

. Conclusions 

This work proposes functionals whose stationary condition is

he solution of the bending and buckling problems of Timoshenko

ano-beams that can be considered as beam-like element in smart

aterials. The scale effects in nano-beams are considered through

 stress-driven model, which overcomes a ill-posedness emerged in

on-local treatments of nano-mechanics. Two different function-

ls are defined: one for the pure non-local model and the other

or the mixture with both local and non-local phases. Attention

ocuses on the functional for the mixture model. This functional

lso depends on unknown Lagrange multipliers, whose physical

eaning and relationships with the other unknown variables of

he functional have to be found. In fact, the numerical solution

s sought by imposing the stationary condition of the functional

epending on unknown variables approximated with finite linear

ombinations of basis functions. Approximations of the variables

f the functional can not be chosen arbitrarily for the mixture

odel but have to satisfy suitable conditions. The Euler equations

f the functional provide the governing equations of the problem

nd the necessary information to choose correctly the approxima-

ions of the unknown variables. The proposed method is verified

y comparing numerical solutions with exact solutions in bending

roblem. Omitting the unimportant case of very small values of

he scale parameter L c / L , good approximations are already achieved

ith a small number n of the basis functions. Finally, the numeri-

al method is used to determine the buckling load of Timoshenko

ano-beams with mixture of phases, for which solutions are not

et available in literature. 
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