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ABSTRACT

Elucidation and Improvement of Algorithms for Mass Spectrometry
Isotope Trace Detection

Rob Smith
Department of Computer Science, BYU

Doctor of Philosophy

Mass spectrometry facilitates cutting edge advancements in many fields. Although
instrumentation has advanced dramatically in the last 100 years, data processing algorithms
have not kept pace. Without sensitive and accurate signal segmentation algorithms, the
utility of mass spectrometry is limited. In this dissertation, we provide an overview and
analysis of mass spectrometry data processing. A tutorial to ease the learning curve for those
outside the field is provided. We draw attention to the lack of critical evaluation in the field
and describe the resulting effects, including a glut of algorithm contributions of questionable
novel contribution. To facilitate increased critical evaluation, we show the importance of a
modular paradigm for mass spectrometry data processing through highlighting the impact of
data processing algorithm choice upon experimental results. Our novel controlled vocabulary
is presented with the aim of facilitating literature reviews for comparisons. We propose
a novel nomenclature and mathematical characterization of mass spectrometry data. We
present several novel algorithms for mass spectrometry data segmentation that outperform
existing standard approaches. We end with an overview of future research which will continue
to advance the state of the art in mass spectrometry data processing.

Keywords: Isotope Trace Detection, Feature Detection, Chromatogram Detection, LC-MS
Simulation, Mass Spectrometry
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Chapter 1

Introduction

Mass spectrometry (MS) refers to the analysis of the molecular composition of samples

through the mass measurement of ions and their fragments. It is a key technology for

innovations in diverse fields including drug design, medical diagnostics, and forensics. MS is

a complex domain with many challenging and open problems (see Chapter 2, published in

BMC Bioinformatics).

Mass spectrometers produce a complex 3-d output typically consisting hundreds of

thousands of signal patterns called an isotopic envelopes (see Figure 1.1)—each caused by

the accumulation of a class of molecule at a given charge state. The central task in mass

spectrometry is the quantification and identification of an analyzed sample. Identification

refers to the elucidation of the list of molecules that produced the signal in the MS output

for a given sample. Quantification refers to the measurement of the amount of each of these

molecules in a sample.

The industry-preferred method for MS identification is MS/MS fragmentation. In

this technique, certain portions of sample in the mass spectrometer are broken into smaller

molecules, creating an additional detected signal pattern. The idea is that this secondary

signal, called an MS/MS spectrum, provides a fingerprint that can be matched to a theoretical

database to suggest possibilities for the identity of the source of the original signal (called

MS1) generated by the portion of the sample that was selected for fragmentation. Despite

the ubiquity of MS/MS, it can only be used on a small percentage of the molecules in a

1



Figure 1.1: An isotopic envelope, the accumulated signal generated by a class of molecule at
a given charge state in the sample analyzed via mass spectrometer.

complex sample (approx. 15%), and the database assignment is subject to high false positives

(approx. 50%) [64].

An alternative to MS/MS-based identification and quantification is to match the

unfragmented mass spectrometer signal output directly to a database of MS1 signals generated

via in silico calculation of signals that would be produced by real molecules. This approach,

though similar in spirit to the MS/MS approach, is free from the capture limitations of

MS/MS. What’s more, MS1 data could provide more identifications of higher likelihood than

MS/MS alone.

Robust, MS/MS-independent isotopic envelope extraction methods are not widely

used in the community. The first step towards this end is to create an accurate algorithm

for extracting the component signals of an isotopic envelope: isotope traces. Though several

algorithms for isotope trace extraction exist, they are unable to capture the majority of MS

output signals. Moreover, this characteristic remains widely unknown due to a general lack of

algorithm evaluations (see Chapter 3, published in Bioinformatics). The lack of evaluations,

in our experience, stems from: 1) a misunderstanding of data processing’s impact on the

final experimental MS result, 2) shallow literature searches and comprehension of algorithm

description due to ambiguous terms describing MS data concepts, and 3) the lack of labeled

data.

In Chapter 4 (published in Briefings in Bioinformatics), we use a case study to

unequivocally show that data processing algorithms are a variable in the overall MS experiment

2



with significant impact. We make a strong case for treating each module in the data processing

pipeline as an independent problem which deserves its own literature search and evaluation

of a novel solution in the context of existing algorithms.

In Chapter 5 (submitted to Proteomics), we describe the problem of a lack of a unique,

unambiguous nomenclature for MS data concepts and propose a standard nomenclature.

Without a standard nomenclature, it is virtually impossible to concisely and precisely describe

novel algorithms for MS data processing, a condition that is partially responsible for the bloat

of publications in the field that do not necessarily improve upon the current state of the art.

Ground truth data in this field is virtually non-existant. Hand labeling is a challenge

as a single data file can require a year of full-time work to label, and still may be inconsistent.

This lack of ground truth data precludes quantitative evaluation of MS data processing

algorithms on all but the smallest scale. What’s more, with ground truth it is difficult to

create advanced models for data behavior that can inform algorithm creation. A partial

solution to both problems lies in creating a mathematical characterization of the data.

Although such a characterization is not as informative as a full generative model due to the

lack of evidence-based parameters, it is a necessary first step in creating advanced algorithms.

A mathematical formalization informs new algorithms that capture known data characteristics

and makes possible a simulator construction which can provide labeled data. Quantitative

feedback creates new information to refine both the algorithms and the simulator, yielding

an iteratively improving process.

In Chapter 6 (submitted to IEEE/ACM Transactions on Computational Biology

and Bioinformatics), we provide a novel mathematical characterization of the behavior of

chromatographic MS data. This characterization informs the Mspire-simulator, the first ever

simulator to include a realistic characterization of isotope trace variance (see Chapter 7,

published in Journal of Proteomics Research). In Chapter 8 (submitted to Bioinformatics),

we introduce JAMSS, an MS simulator that incorporates the novel aspects of Mspire-

simulator while providing a GUI, multi-threaded logic, dataset cloning capabilities, and a

3



modular framework more fitting for future model refinements. In Chapter 9 (published in

Bioinformatics), we use the mathematical characterization to inform a novel isotope trace

extraction algorithm that greatly outperforms existing isotope trace extraction algorithms.

However, not all MS studies are chromatographic. In Chapter 10 (published in Bioinformatics),

we propose a novel solution for isotope trace extraction in non-chromatographic data using a

statistical approach suggested by the mathematical data characterization.

4



Chapter 2

Proteomics, lipidomics, metabolomics: A Mass Spectrometry Tutorial From a

Computer Scientist’s Point of View1

Abstract

For decades, mass spectrometry data has been analyzed to investigate a wide array of

research interests, including disease diagnostics, biological and chemical theory, genomics,

and drug development. Progress towards solving any of these disparate problems depends

upon overcoming the common challenge of interpreting the large data sets generated. Despite

interim successes, many data interpretation problems in mass spectrometry are still challenging.

Further, though these challenges are inherently interdisciplinary in nature, the significant

domain-specific knowledge gap between disciplines makes interdisciplinary contributions

difficult. This paper provides an introduction to the burgeoning field of computational mass

spectrometry. We illustrate key concepts, vocabulary, and open problems in MS-omics,

as well as provide invaluable resources such as open data sets and key search terms and

references. This paper will facilitate contributions from mathematicians, computer scientists,

and statisticians to MS-omics that will fundamentally improve results over existing approaches

and inform novel algorithmic solutions to open problems.

1Smith, R., Mathis, Andrew D., Ventura, D., and Prince, J.T.: Proteomics, lipidomics, metabolomics:
A mass spectrometry tutorial from a computer scientist’s point of view, BMC Bioinformatics,
2014 (in press)
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2.1 Background

Robust data processing tools for MS data are lagging behind the substantial advances occurring

in instrumentation and protocol [14]. One reason for this is that few outside experts—

mathematicians, computer scientists, and statisticians—have climbed the learning curve

(usually requiring several years of dedicated study) to understand the terminology, chemical

theory, workflows, and challenges of MS-omics (proteomics, lipidomics, and metabolomics).

This sort of interdisciplinary learning curve is not unusual in bioinformatics; however, the

influx of external experts to genomics has not been seen to date in MS-omics. One reason for

this is the lack of a succinct and cogent introductory resource that can bring outside experts

to a basic but functional level of MS-omics familiarity.

In this primer, we will elucidate the mechanisms of MS-omics, the problems it is used

to solve, key concepts and terms found in the literature, and open problems and their salient

literature. The purpose of this tutorial is to expedite the new researcher’s acquisition of a

functional knowledge of MS-omics sufficient for contribution to the field.

2.2 Results and discussion

2.2.1 Relationship of genomics, proteomics, lipidomics, and metabolomics

The exponential growth of genomics studies during the last ten years has not been matched by

corresponding research in MS-omics [118]. Genomics researchers have several peer-reviewed

conferences in which to publish their results. To the best of our knowledge, there has not

been a single peer-reviewed conference to date on lipidomics or metabolomics, let alone any

specifically addressing algorithmic approaches to problems specific to either area, although

there are periodic special genomics conferences dedicated to proteomics. Several existing

venues labeled as bioinformatics will not accept papers on MS-omics, as their stated area of

interest is limited to a distinct subfield of bioinformatics such as genomics. This phenomenon

of focus on genomics is also reflected in institutional research programs. In a recent review of
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78 post-secondary degree-granting bioinformatics programs, 22 programs noted a research

emphasis in genomics, while 18 noted a research emphasis in proteomics. Not a single

institution listed a research program in lipidomics or metabolomics [46].

The biological reach and impact of research in MS-omics is so extensive that it can be

argued that MS-omics should now be the highest priority of systems biology [41]. From a

pragmatic perspective, the large set of fresh problems and substantial potential for impact in

MS-omics ought to be very attractive to those in more crowded disciplines.

Proteomics

Proteomics is the study of biological processes via the analysis of protein expression or state

in cells or tissue. Proteins are ubiquitous building blocks of life, and they are composed

of peptides, which are chains of amino acids built by translating mRNA. There are 20

amino acids, uniquely abbreviated with a single letter. Peptides thus can be described as

a string of the letters corresponding to the amino acids. Though protein sequences are

determined by DNA sequences, post translational protein modifications (such as acetates,

phosphates, lipids etc.) are not as easily predicted. These modifications quickly diversify and

regulate/complicate protein function and cellular protein composition and are characteristic in

most cellular processes and diseases. Therefore, the aim of MS-proteomics is to provide data

that DNA sequences cannot—namely, individual protein concentrations and identification of

post-translational modifications.

Lipidomics

Lipidomics is the systems-level analysis of lipids (fat molecules) and their interactions [34]. It

is a science still in its infancy but one that promises to revolutionize biochemistry [41]. Lipids

are grouped into eight categories that share common physical and chemical properties [33, 41],

and there are currently some 38,000 documented lipids.
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Lipids that occur rarely or in small quantities are often the most effectual lipids in

biological processes, meaning they are particularly important in disease diagnostics and in

understanding pathology [34]. Lipidomics can elucidate the pathology and treatment of

many diseases such as cancer, diabetes, obesity, cardiovascular disease, arthritis, asthma,

inflammatory bowel disease, Alzheimer’s and others due to the associated disruption of lipid

metabolic enzymes and pathways [34, 53, 66, 118]. A better understanding of lipidomics

could significantly advance diagnostic medicine as well as provide novel treatment options.

Metabolomics

Metabolomics is the study of metabolomes—small molecular end products of cellular regu-

latory pathways [35] that can provide a snapshot of cell physiology. Metabolites are much

smaller than proteins and smaller than most lipids. Their small size precludes the direct

overlap of some techniques used in proteomics or lipidomics, but they may be generally

analyzed in similar ways. Lipids may be classified as a subset of metabolites; however, mass

spectrometrists typically consider lipids distinct from metabolites because analytically they

must be treated separately (i.e., require different solvents).

Sample Ionization Mechanism
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...
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MS/MS

Introduction Mechanism

Flow Injection*

Column Chromatography*

*LC/MS (HPLC)
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Quantification
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Figure 2.1: The MS-omics pipeline. A sample is introduced to an ionization mechanism
with or without a preliminary separation technique, where particles receive a charge enabling
the detector to estimate the mass-to-charge ratio (m/z) and intensity of each analyte. If
the system has tandem mass spec capabilities, some precursor ions (MS1) are selected for
fragmentation (MS/MS). Data processing techniques prepare the data to be quantified via
statistical methods and identified via matches to theoretical databases.

8



2.2.2 MS-omics pipeline

The workflow from sample preparation to result quantification, can be split into two consecu-

tive pipelines: the wet-lab pipeline and the data processing pipeline. The data processing

pipeline consists of many possible processing steps that take the data resulting from the

wet-lab pipeline (the mass spectrometer output) to the end result: identification and quantifi-

cation (see Figure 2.1). The quality of each step in the pipeline affects the sensitivity and

reliability of the outcome [84]. There are many optional steps, some of them very popular.

We will describe the essential and some optional steps.

All MS experimental data share a set of descriptive keywords that are essential for

referencing components of the output map (see Figure 2.2). A unique and unambiguous

visual lexicon for MS-omics data processing data structures is given in [95]. A comprehensive

reference of key MS terms is provided in [69].

Sample preparation

The details of sample preparation are beyond the scope of this paper. However, at a general

level, sample preparation strategies prior to mass spectral analysis are based on isolating

analytes of interest and removing all other contaminating molecules. For instance, filters

can be used to separate high molecular weight proteins from low molecular weight lipids

and metabolites, or contaminates. Other sample preparation techniques exploit analyte

hydrophobicity, charge, and analyte-specific affinity. The degree of specificity in sample

preparation is determined by the end goal of the experiment [26]. For example, if an

experiment requires the analysis of only phosphorylated proteins, the sample preparation

should isolate only phosphorylated proteins. Of course, this is very challenging but using

an appropriate sample preparation strategy specific to an experimental need significantly

simplifies mass detection and data analysis and in some cases is required to identify analytes

of interest. Proteomics, lipidomics, and metabolomics each have unique considerations in

sample preparation.
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Figure 2.2: Common nomenclature. Each portion or summary of an MS run is referred to
by a different name. A spectrum contains all points with a single RT value. The sum of
signals across all spectra is called the total ion spectrum (TIS). A slice of data containing a
contiguous m/z range extending across all RT is called an extracted ion chromatogram (XIC).
While the total ion chromatogram (TIC) is the sum of all signals across all m/z, the base
peak chromatogram (BPC) is the set containing the most intense signal for each RT across
all m/z. An isotope trace is the signal produced by a single ion of a single analyte (i.e., a
peptide or a lipid) at a particular charge state. An isotopic envelope trace is the group of
isotopic traces produced by a single analyte at a particular charge state. Note that certain
terms like peak, feature, and chromatogram, are overloaded in the literature and as such are
exceedingly unclear [95].

Introduction methods

Direct injection refers to infusing the sample directly into the mass detector. This is usually

done with some sort of machine to make the flow constant.

While it is sometimes advantageous to allow all analytes to flow through detection at

once, most MS experiments of complex samples will use chromatography due to its ability

to spread out analytes over time, making it less likely that the ionization capacity will

be overcome by large quantities of analyte or background ions, a phenomenon called ion

suppression.
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Chromatography disperses the introduction of analytes into the mass detector through

time based on some chemico-physico property (hydrophobicity, for instance). All chromatog-

raphy systems have two phases: the stationary phase and the mobile phase. The stationary

phase causes analyte separation and the mobile phase carries the analytes through the

chromatographic column to the mass spectrometer. Methods include:

• LC-MS - mass spectrometry coupled to liquid chromatography. Liquid chromatography

uses a liquid mobile phase and a column packed with chemically derivated beads as a

stationary phase. The mobile phase is composed of a two-liquid gradient. Changes in

the gradient (the percent composition of each liquid) cause analytes to be slowly released

from the column and enter the mass spectrometer. Different stationary phases can

separate analytes based on hydrophobicity, charge, size, or affinity. However, the most

common stationary phases for LC-MS on biomolecules are reversed phase (hydrophobic)

and strong cation (charge) [23].

• GC-MS - mass spectrometry coupled to gas chromatography. In gas chromatography

systems the mobile phase is an inert gas (such as helium) and the stationary phase is a

column designed to separate molecules based on polarity. The gradient is temperature

increase; molecules with a high affinity for the column elute at higher temperatures.

• CE-MS - mass spectrometry coupled to capillary electrophoresis. Electrophoresis differs

from chromatography, relying on electric fields, rather than mobile and stationary

phases, to separate molecules [65]. Capillary electrophoresis uses an electric field

applied to long narrow capillaries to separate molecules based on size, charge, and flow

resistance through the capillary.

Multidimensional chromatography (sometimes referred to as tandem chromatography)

refers to two chromatographic systems applied to the same system. In the case of LC-GC-MS,

for example, analytes are introduced into the gas chromatography system as they elute from

the LC system, with each system causing analytes with specific properties to elute with
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precedence. A more common multidimensional system in MS-omics is MUDPIT. MUDPIT

uses two orthogonal separation strategies like strong cation ion exchange (charge based) and

reversed phase (hydrophobicity based) chromatography to achieve greater resolution.

Ionization methods

Analytes must be ionized (i.e., in a charged state) in order to be detected by the mass

spectrometer. Electrospray ionization (ESI) was developed in 1994 and is the most popular

in MS-omics due largely to its ability to ionize unstable molecules without breaking chemical

bonds and to the diverse range of analytes that can be ionized by the method [20, 44].

Other methods include atmospheric pressure chemical ionization (APCI) [43], matrix-assisted

laser/desorption ionization (MALDI) [43], and electron-ionization (EI) [43]. Ionization

methods for ms-omics are generally referred to as soft ionization methods and include ESI

and MALDI. EI is a harsh ionization method and will destroy most biomolecules except for

very stable lipids and metabolites.

Mass detection

As charged particles are passed through the mass spectrometer, the mass-to-charge ratio

(m/z) of detected particles is registered. A single scan on the resulting output represents

a snapshot of the precursor ions passing through the mass spectrometer at that particular

retention time (RT). The ions in this stage are called precursor ions because in tandem mass

spectrometry (MS/MS), ions in small m/z windows are captured for fragmentation and MS

detection a second time, yielding a second set of ions called product ions that can be used to

identify precursor ions by matching their MS/MS patterns to a database of possibilities. It

is important to understand that the ratio of solution selected for MS/MS fragmentation is

low, normally capturing only 10-20% of the precursor (MS1) data. Because most MS/MS

systems autoselect what segments to capture based on intensity, much of that portion overlaps
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between replicates. Of that 10-20%, less than 60% are identified via database lookup, and

even that is subject to false positive identifications [64].

An analyte can contain certain naturally occurring rare isotopes, such as carbon-13.

These isotopes tend to occur in individual analytes in known quantities, causing a characteristic

pattern called an isotopic envelope (see Figure 2.2). The envelope is characterized by the

number of and relative intensity between its isotopes. The monoisotopic peak, or peak that

appears at the theoretical mass discounting any attached heavy isotopes, usually appears

alongside the slightly heavier masses of any portion of the peptide or lipid in the sample that

contains heavy isotopes.

When an analyte exists in a run in more than one charge state (a very common

occurrence due to variability in ionization), its isotopic envelope will reappear in a compressed

and shifted form due to increased charge, as illustrated in Figure 2.3. The equation for the

shift is specific to the source of the charge. For instance, a charge can be induced by the

addition of a proton, in which case the shift is defined by (µ + k)/charge m/z with a gap

between ions in the isotopic envelope of 1/k, where k is the charge of the analyte (3+, 2+,

1+, and 1+, respectively in Figure 2.3) and µ is the m/z of the single-charged analyte (this

is the analyte with only a +1 charge—399 in Figure 2.3).
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Figure 2.3: Deisotoping. A contrived example of deistoping. The same molecule is displayed
here in three reduced isotopic envelopes (denoted by color) created from single- ([M +
H]+1), double- ([M +H]+2) and triple-charged ([M +H]+3) instances of the molecule. The
monoisotope (the lowest m/z ion) from each isotopic envelope is combined to form the
deistoped monoisotopic peak.
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Figure 2.4: A profile (a) and centroid (b) version of the same spectrum. The profile raw data
detected by a mass spectrometer consists of distributed signal across m/z values at each point
where an ion is detected. Centroid data is raw data that has been processed by an algorithm
to retain only the local maximum in each range in which an ion is detected. Because each
ion detected creates an m/z distribution of signal, the distribution itself (in profile mode)
or the maximum to which it is reduced (its centroid) is sometimes called a peak. This ion
intensity distribution along m/z is not to be confused with the distribution of ion intensity
along time in chromatographic studies (see Figure 2.2).

Mass spectrometers output raw data—a large collection of data points each consisting

of a tuple of m/z, intensity, and time (RT) either in profile or centroid form. Profile data

contains all data points registered by the mass spectrometer (see Figure 2.4a), while centroid

data has been reduced to data points that represent the local maxima in a single spectrum, a

distribution of data over an m/z range for a given RT (see Figure 2.4b). Centroid data is

much more concise than profile data, but the reduction incurs information loss.

Experiments can run in full scan mode—where the full range of m/z values is read—or

the mass spectrometer can scan only certain m/z values (called single reaction monitoring in

the case of one m/z value or multiple reaction mode in the case of several) [43].

Mass spectrometers have varying characteristics depending on the mechanisms used

for mass detection, each with a different resolution. Resolution at a certain m/z is given

by the ratio of that m/z to the smallest m/z gap between two distinguishable ions. Higher

resolution instruments yield narrower profile peaks (see Figure 2.4a), allowing the signals

from two distinct ions to be distinguished despite their similarity in m/z.
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Data processing

Data processing consists of each of the possible steps in the MS-omics pipeline (Figure 2.1)

involving digital manipulation of the mass spectrometer data or products from that data.

These methods are constantly being improved upon and are discussed in detail in Section 2.2.5.

Here, we provide a high-level overview of the role of data processing in the MS-omics pipeline.

The first step in data processing is handling the raw data produced by the mass

spectrometer. Algorithms for noise reduction, feature detection, and correspondence exist

that operate on the raw data. However, many require preliminary conversion out of the

proprietary data format of the instrument and into an open data type (see below for a

discussion of existing data types). It is important to note that, due to the size of the data

sets, random access data processing—where only a portion of the data file is loaded into

memory at a time—is a must, although some current tools load the full file and are therefore

prone to crashing and subject to file size limits as memory is exhausted.

Prior to analyte identification, the data must be denoised, peak-picked, feature-

detected, deisotoped, and deconvoluted. These are significant and open problems and are

discussed in more detail below.

Analyte identification follows data processing. Here, one of several available databases

are used to compare the experimental feature observations (i.e. isotopic envelopes, isotopic

traces, etc.) to theoretical patterns. These include Sequest [32] for proteins, LIPIDMAPS [86]

for lipids, and METLIN [91] for metabolites. Due to incomplete/growing databases and noisy

data, closest-match assignment is prone to false positives and mismatches. Statistical analysis

is almost always incorporated in this or prior steps in order to ascertain the significance of

the identification.

The ultimate goal of data processing is to yield the quantity of each analyte. The

identification and quantity of analytes, as well as the underlying raw data, must be stored in

data structures that allow for efficient access and manipulation of the data.
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2.2.3 Data types

Raw data is a general label that actually describes a set of data formats specific to the vendor

of the instrument. Many data converters from raw to open data formats exist. One popular

converter is pwiz (http://proteowizard.sourceforge.net/). The Network Common Data

Form (NetCDF), a generic open science data format, is an early data format that is still in use

in some applications. mzXML is an open XML based data format with wide support. mzML

was developed to replace mzXML and has more information from the raw data encoded

and uses extensible ontologies to encode meta-data. mzQuantML is an open data format

specifically intended for the storage of quantities associated with identified feature data.

mzIdentML and pepXML are standards designed to facilitate database identity searches.

Annotated Putative Peptide Markup Language (APML) is an XML standard designed to

provide a single data file encoding of the original data set and its modifications via data

processing tools [13].

2.2.4 Data sets

Lack of labeled data

The prevailing problem in developing and evaluating computational approaches to MS-omics

problems is the lack of labeled data [74]. Labeled data is difficult to obtain both because of

the size of data sets—which can easily consist of millions of data points per file and hundreds

of GBs of files for a replicate experiment series—and the undependability of hand-labeling—

which is both time consuming and subjective. Several approaches for mitigating this problem

exist: qualitative metrics, spiked mixtures, and in silico simulated data.

Qualitative metrics Evaluation metrics that do not use ground truth avoid the need

for labeled data. For example, replicate alignment quality can be assessed via the Pearson

correlation coefficient, feature overlap rate, or coefficient of variation. This approach is

sub-optimal, as a good score on a qualitative metric does not necessarily translate into a good
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quantitative score using labeled data, but it is easy to compute and is comparable across

problem instances.

Spiked mixtures Commercially available purified and quantified measures of a specific

analyte are combined to produce a data set with known composition and quantity. These

samples are not exactly ground truth, however. Due to ionization inefficiencies, environmental

contaminants, and the variability of mass spectrometry, no instrument will report the same

quantity and composition predicted by a spiked mixture. What’s more, a mixture of a

few analytes, which often do not co-occur in nature, is hardly representative of real-world

scenarios, in which complex samples can easily contain hundreds of thousands of distinct

analytes. To create more realistic conditions, spiked mixtures can be added to samples where

the spiked analytes are not expected to occur. However, a method’s accuracy on a few

analytes is not necessarily indicative of performance across all analytes, particularly given

the variability and limitations of MS/MS, which is commonly used to single out the m/z of

the expected analytes but cannot be expected to capture the gross majority (≈ 80− 90%) of

the remaining sample.

In silico simulated data Simulated data is used in the field to refer to real-world data

sets that have been purtubed with m/z shifts or intensity value modifications in order to

create psuedo-new data without having to rerun costly experiments. True simulated data,

called in silico to identify that it as purely sourced from simulation algorithms on a computer,

is a relatively new advent in MS-omics. Creating realistic in silico data requires the analysis

of many ground truth datasets, which creates a chicken and egg problem, as the difficulty of

obtaining ground truth datasets is the very reason an in silico simulator would be beneficial.

Sources of open data

To facilitate strictly algorithmic advances in MS-omics, to avoid the need for a costly wet

lab for creating mass spectrometry data, and to aid in evaluative comparisons against
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existing methods, more and more practitioners are making their data freely available online.

Although any serious foray into MS-omics should certainly include a collaborator with mass

spectrometry assets and formal training, we present a list of some of these open data sets in

order to aid those who are interested in investigating MS-omics for the first time as well as

more seasoned investigators who would simply like to make a case for the generality of their

methods.

Lange et al. have provided two proteomic and two metabolomic data sets [55]

which they have used to assess the quality of several alignment algorithms at http://msbi.

ipb-halle.de/msbi/caap. The data is already segmented into reduced isotopic envelopes

(isotopic envelopes whose isotopic traces are integrated into a single point).

Listgarten et al. provide centroided replicate data with spiked-in peptides [58]. There

are two data sets: a set of 11 replicate LC-MS runs from ruptured E. Coli cells and a set of

14 LC-MS runs of human serum samples.

Jeffries provides a data set consisting of raw replicates of SELDI data [49] at http:

//data.ninds.nih.gov/Jeffries/alignment/index.html.

The SuperHirn data set [67] can be found at http://proteomics.ethz.ch/muellelu/

web/Latin_Square_Data.php. It consists of 18 LC-MS runs from tryptic digests of 6 nonhu-

man proteins spiked with different concentrations into a complex human peptide sample and

includes the raw as well as processed data. The data was obtained on an FT-LTQ.

2.2.5 Problems of interest

Among the data processing portion of the MS-omics pipeline, some problems are widely

studied, and some are emerging. All provide future research potential.

In silico simulation

The lack of ground truth data for evaluation of data processing algorithms precludes effective

validation and comparison. In silico data simulation is a relatively new approach to providing

18

http://msbi.ipb-halle.de/msbi/caap
http://msbi.ipb-halle.de/msbi/caap
http://data.ninds.nih.gov/Jeffries/alignment/index.html
http://data.ninds.nih.gov/Jeffries/alignment/index.html
http://proteomics.ethz.ch/muellelu/web/Latin_Square_Data.php
http://proteomics.ethz.ch/muellelu/web/Latin_Square_Data.php


on demand ground truth simulated data. By modeling a list of analytes and a description

of experimental conditions, simulators can provide estimates of mass spectrometer output

combined with labels of the analytes and quantities used in silico to generate the data (see

[9, 70, 87, 94]).

Correcting mass shift

Analyte detection on the m/z axis in mass spectrometers is subject to two types of error:

systematic mass error—a functional deviation from true mass—and random mass error [28].

Typically, systematic mass error is mitigated by routine machine recalibration—a process

wherein analytes of known mass are processed in the mass spectrometer to create a model

that is used to interpolate m/z shift for any given m/z value. However, the efficacy of

this calibration reduces over time as the mass constantly continues to shift. Additionally,

some machines benefit from an injection of spiked standards during a normal experiment

for internal calibration, which helps overcome the temporal effects of space charge effects,

electric fields, peak intensity, and temperature [28]. Internal standards are undesirable due

to the additional cost of standards and the suppression implications of spiked standards.

Computational mass calibration techniques have been proposed in order to provide the mass

accuracy of internal calibration but with better consistency and lower cost [28]. This is an

active but not crowded area of research with practical implications.

Correspondence

Correspondence, the registration of recurring signals from the same analyte over replicate

samples, is a crucial problem in any of the many MS experiments where multiple runs of

similar samples are compared to each other (see Figure 2.5). For a comprehensive review of

current algorithms, see [97]. Persisting problems are an abundance of user parameters, models

that do not include known behavior, prohibitively long runtimes, and a lack of performance

comparison between methods [98].
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Figure 2.5: MS correspondence. Correspondence is the problem of registering features across
multiple samples (matches across the samples are depicted in the same color). Most times
this process is facilitated by aligning the retention time (RT) of features across multiple
samples (top to bottom row). Note that features are almost never present across all samples
and can display significant RT variability and (to a lesser degree) m/z variability.

Denoising

MS-omics produces inherently noisy data. Noise can consist of spurious data points or

distortion of a data point’s true value in retention time, m/z, or intensity. Denoising as used

in MS-omics refers to the removal of spurious data points. Baseline subtraction is a common

method in which signals with intensity lower than an adaptive threshold are considered

to be noise and removed (see Figure 2.6). This is an active area of research, though most

experiments in the literature have not made an explicit and dedicated study of different

techniques, instead describing the denoising method applied as a data processing step in a

larger experiment.
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Figure 2.6: Baseline subtraction. Baseline subtraction is the functional estimation and
removal of background noise.

Feature detection

The most important step of an MS-omics workflow is undoubtedly feature detection [14], a

general term that can apply to the extraction of various signal elements from MS data. In

chromatographic data, feature detection can refer to either extracting isotopic envelopes or

isotopic traces from an MS sample output (see Figure 2.7). Many methods exist for isotope

trace extraction, among them a promising new algorithm that performs well on existing

evaluations [21]. Sometimes this process is called peak picking or peak detection, but those

terms should be avoided since they are also used to refer to the conversion from profile

data to centroid data. In direct injection data, feature detection is sometimes referred to as

peak summarization, since each spectra (being an approximation of the latent content of the

non-chromatographically separated sample) must be combined into a TIS through mitigating

the variance inherent in m/z across spectra (see [92]).

Data structures

As described earlier, many data types exist for MS-omics data. New data formats continue

to be proposed to meet unforeseen needs.

A recent prevailing expansion point has been the need to store the results of data

processing tools in addition to the original data. Truly modular pipelines require data

structures that contain all necessary data to be used by any tool in the pipeline, meaning
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Figure 2.7: Feature detection. Feature detection consists of labeling data points which pertain
to individual features (indicated by color here) while excluding noise points (in black).

previous modifications are annotated in addition to retention of the original data. APML is

one attempted solution to this problem, but, so far, the community has not embraced it, as

it appears that there are only two extant algorithms which use it [13].

There is still a need for compact, random access, and information rich data structures

and access for MS data [102]. What’s more, some proprietary formats can still only be

converted to open formats on Windows platforms.

Identification

As discussed earlier, mass spectral identifications may be based on several factors, but two

inputs, the precursor mass (the mass of the molecule) and the fragmentation pattern (through

MS/MS) of the precursor mass, are by far the most common identifiers. This spectral

information provides a fingerprint unique to most biological molecules; however, low quality

spectra cause false positives and false negatives. While improving mass spectrometry will

certainly improve spectral quality, improving spectral search algorithms and employing new

identification inputs will allow for more confident identifications. This is particularly true for

the relatively new fields of metabolomics and lipidomics.
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Predicting RT

Retention time refers to the amount of time an analyte is delayed by chromatography before

exiting and being detected by the mass spectrometer. Retention time is correlated with

physical and chemical analyte characteristics; therefore, predicting analyte retention time

provides another factor for positive identification. Many peptide retention time prediction

strategies exist [5]. However, cross instrument retention times vary greatly due to changes

in experimental parameters, creating a real need for retention time normalization as well as

retention time prediction.

Mass variance correction

Mass variance, the difference between the theoretical and experimental (observed) mass of

analytes is an open problem. One way of correcting mass variance is by using the weights of

the elements of each analyte to predict m/z locations where a lack of signal is impossible,

allowing for the identification of systematic deviation from theoretical masses in a sample [125].

A similar approach is to model such theoretical gaps via a sine curve fitted via a fast Fourier

transform [28]. Accurate m/z values are essential to analyte identification.

Ontology

According to a recent survey of the field, the biggest problem in lipidomics is the need

for a standardization of data acquisition and data processing, due to the huge variability

in instruments, protocol and data processing for lipidomics[51]. The many options and

permutations in the MS pipeline would make for a very long methods section if explicitly

described in a paper—much too long for any journal’s page limits. Although several partial

ontologies exist (see [105, 119]), there is no concise way to uniquely identify an experiment from

start to finish, including sample preparation, mass spectrometry protocol, and post-processing.

Existing ontologies are particularly lacking in terms of data processing terms.
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Absolute quantitation

MS signal intensity is related to but not equivalent to analyte quantity [57, 59]. Factors that

influence this discrepancy include [36]:

• Ionization efficiency. Not all analytes in a sample are ionized.

• Enzyme digestion rate. When an enzyme—such as trypsin—is used to digest proteins

into peptides, not all proteins are completely cleaved. This leads to less-than-expected

signal abundance, as the true abundance will be diminished by whole proteins (which

are not ionized and therefore not detected), and incompletely digested proteins (which

will be detected at different m/z than the expected peptide components).

• Ion suppression. When the quantity of analyte entering the ionization mechanism at a

given time exceeds the ionization capacity of the ionization mechanism, only a portion

of the analyte is charged [3].

Accurate models of these effects would improve estimates of analyte population in samples,

as well as further advance in silico simulation.

Currently, quantification methods generally fall into one of three approaches: label free

spectral counting, quantification via differential stable isotopes, and label free quantification

based on the precursor ion signal intensities [68]. Spectral counting is a method in which

peptide signals are used to create a protein tally—the count of every protein containing

a certain peptide is incremented each time one of its peptides is identified via MS/MS.

Despite its prevalence, the accuracy of spectral counting is limited by its dependence on

MS/MS acquisition rates, which, as mentioned above, are very low, and its propensity for false

positives, since all proteins containing each detected peptide are considered as present when in

reality only one need be. Stable isotope labeling methods (SILAC, ICAT, iTRAQ, and TMT)

also have significant limitations (see [126]). Besides cost and sample prep complications,

nearly all methods increase the number of co-eluting analytes, creating a bottleneck for

the complexity of samples handled. What’s more, because stable isotope methods target a
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Figure 2.8: Dynamic range. Dynamic range is the window of intensities visible to the sensor
at any given RT. The main chromatogram shows the signal of maximum intensity for each
RT. The gray box indicates the dynamic range at that RT. The red peak is shown with the
other signals at that RT. Note the green peaks will not be detected by the mass spectrometer
because they lie outside the dynamic range.

small specific list of analytes a priori, they are not practical in terms of time and money for

data-driven discovery, where sample composition is unknown [111].

Modeling dynamic range suppression effect

Dynamic range is a term that describes the minimum intensity of a detectable signal given

a co-eluting analyte of a higher intensity (see Figure 2.8). All mass spectrometers have a

dynamic range limitation. The current state of the art is 103 - 104, meaning that at a given

RT if one analyte has an intensity of 1.3 × 105, any analyte with an intensity less than

1.3× 102 would not be detected.

Fragment ion intensities

Because MS/MS acquisition captures not just the analyte of interest but also any surrounding

precursor ions, and because fragmentation isn’t a perfect process, fragment ion intensities are

not as accurate as desired [10, 41]. Several machine learning approaches have been proposed

for making more accurate fragment identifications [4, 31]. However, this is still an open

problem.
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De novo peptide sequencing

De novo sequencing is an alternative method to database matching that accommodates

peptides that don’t match up with the database (caused by mutations, polymorphisms,

modified amino acids or simply a missing database entry) [37]. Here, the original peptide

sequence—defined by a series of letters, each representing an amino acid—is reconstructed

based on the MS/MS fingerprint and the chemical properties of the analytes. A recent tutorial

provides more detail and resources [17].

Fragmentation patterns for lipids

Proteins have a known cleavage pattern, meaning that when peptides are fragmented by

MS/MS, association to a peptide is straightforward. Lipids, on the other hand, have a much

more complex form due to a wider vocabulary of building blocks and a more complicated

fragmentation pattern. To date, no fragmentation rules have been published, making MS/MS

much less helpful in lipidomics than proteomics. Because of the complexity of lipids, a

machine learning approach could be appropriate in finding a solution to this problem.

Biomarker detection

Biomarker discovery is the use of comparative analysis (see Figure 2.9) in order to identify

analytes that correlate with certain diseases or other conditions for diagnostics or drug

development. It is an active area of research with a lot of published work; however the

problem is still wide open due to limitations in mass spectrometry, pre-processing, and

identification. Current methods struggle to highlight case/control differences in complex

samples, requiring painstaking, time consuming, and error-prone manual detection.

Deisotoping

Deisotoping is the process of reducing several instances of the same analyte at different charge

states into a single feature—usually a monoisotopic peak (see Figure 2.3). This is necessary
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Figure 2.9: Difference detection. Comparative or differential MS-omics aims to identify
possible differences between two sets of replicate studies. In this case the three red signals
are cases—samples from individuals of interest—and the blue signals are controls—samples
from baseline individuals. The center peak clearly indicates a differentially expressed analyte.

because the query to a data base search consists of only the single-charged feature m/z and

(optionally) RT. Adding to the complexity of registering differently charged versions of the

same analyte is the fact that, in complex samples, the isotopic envelopes of different analytes

can and do overlap, requiring deconvolution (see below).

Deconvolution

Overlapping signals must be resolved prior to quantification (see Figure 2.10). RT overlaps

occur when two isobaric analyte elute without a gap between them, and are more common

in complex samples. Isotopic envelope overlaps occur in m/z where two analyte are not

sufficiently separate in m/z at their current charge state. Ion overlaps occur when particular

ions of two given analyte are too similar to be resolved in m/z. All m/z overlaps are less

likely in high resolution machines, which by definition are capable of better resolving power

evinced by more narrow signals in m/z. RT overlaps can be minimized to some extent by

sample preparation and protocol designed to separate similar molecules into different RT

areas.

Parameter reduction

In general, most algorithms require the user to optimize a host of parameters through

manual tuning, which is time intensive. New algorithms should avoid free parameters. If

included, they should also provide guidance or an automated method to fix them. Research
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Figure 2.10: Deconvolution. Overlapping analytes create convoluted signals, which must be
deconvoluted. This example depicts how three convoluted peaks in profile mode might look
in the output of a low resolution mass spectrometer (a). In order to further process the data,
they must be deconvoluted into their respective peaks (b).

opportunities include developing methods for automatically optimizing parameters on existing

and popular methods.

2.3 Conclusions

MS-omics is an exciting, developing field with many research opportunities for mathematicians,

computer scientists, and statitisticians. Although contribution to the field requires a functional

understanding of many domain-specific concepts and terms, the open nature of most of the

existing problems provides many opportunities for impact.
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Chapter 3

Novel Algorithms and the Benefits of Comparative Validation1

Bioinformatic research has produced a large volume of proposed algorithmic solutions

to a host of problems. Whether presented as a processing step in a clinical experiment or

treated in a stand-alone publication, novel bioinformatic algorithms are often not subjected

to the thorough comparative evaluation endured by their counterparts in other closely related

fields—such as computer science—where an algorithm unevaluated against extant methods

is considered unpublishable. Two audiences are interested in algorithmic publications: the

practitioner, who may use the algorithm, and the researcher, who will work to develop

solutions superior to those extant. We argue that failure during the review/publication

process to require comparative evaluation for novel algorithms is detrimental to both parties.

To demonstrate the dilemma, we conducted a case study of novel LC-MS alignment

algorithms. Of the 48 publications from 2001 to 2012 that present alignment algorithms of

which we are aware, 60% include no comparison to other methods. Another 20% compare

their method to one or two others (see Figure 3.1). Only two papers compare performance

against the state-of-the-art methods available at the time of publication. Interestingly, both

of these, with 6 and 7 comparisons respectively, reuse comparative evaluation performance

data and data sets from a stand-alone review paper of 6 methods [55].

It is natural to wonder if publication year correlates to the number of comparisons

made. After all, earlier papers would have less methods to compare against. We found no

correlation (r=0.397) between year of publication and number of comparisons (see Table 3.1).

1Smith, R., Ventura, D., and Prince, J.T.: Novel algorithms and the benefits of comparative
validation, Bioinformatics 29(12), 15831585, 2013
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Figure 3.1: A comparison of the number of papers presenting MS alignment algorithms and
the number of competing algorithms against with they compare. The majority of novel
alignment method papers fail to compare against even one extant method.

Again, the correlation number would be even lower if it weren’t for the fact that someone

published a comparative evaluation of at least some of the extant alignment methods. Without

the reuse of that survey paper data, the correlation coefficient would drop to 0.313. These

data reinforce the prevailing paradigm that comparative performance of a new algorithm to

existing ones is too time consuming for the author and reviewers and ought to be the subject

of dedicated research [6]. At least for alignment, such dedicated comparison studies are few

and far between—we are aware of only one such comparative survey paper, even though

almost 50 new algorithm papers have been published over the last 11 years (see [55]). Even

if these evaluative review papers were more numerous, there are many reasons why these

evaluations ought to be primarily provided in the novel algorithm publications themselves.

A practitioner relies on the peer review process to ensure that the methods they are

choosing have met a minimum standard of quality. Though a new method’s description or

performance may be convincing, these qualities alone are insufficient to weigh the usefulness

of an algorithm. Without comparative evaluation, algorithms that under-perform against

existing ones can easily flood a domain, making the practitioner’s task of selecting an

algorithm more difficult with every additional publication. Besides an extensive literature

review caused by the inundation of papers on the subject, the practitioner must also perform
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Table 3.1: A list of papers presenting novel -omics alignment algorithms. The data has
a correlation coefficient of 0.397, suggesting there is no trend towards comparison against
extant algorithms.

Publication #Comp Year Venue
Fraga et al. 0 2001 Anal Chem
Hastings et al. 0 2002 Rapid Com in MS
Bylund et al. 1 2002 J Chrom A
Torgrip et al. 2 2003 J Chemometrics
Åberg et al. 0 2004 J Chemometrics
Lee et al. 0 2004 Anal Chim Acta
Tomasi et al. 0 2004 J Chemometrics
Eilers 0 2004 Anal Chem
Vorst et al. 0 2005 Metabolomics
Pierce et al. 0 2005 Anal Chem
Walczak et al. 4 2005 Chem Intel Lab Sys
Baran et al. 0 2006 BMC Bioinformatics
Smith et al. 0 2006 Anal Chem
Sadygov et al. 0 2006 Anal Chem
Fischer et al. 0 2006 Bioinformatics
Jaitly et al. 0 2006 Anal Chem
Prince et al. 1 2006 Anal Chem
Skov et al. 0 2007 J Chemometrics
Yao et al. 0 2007 J Chrom A
Kirchner et al. 0 2007 J Stat Software
Palmblad et al. 0 2007 ASMS
Lange et al. 0 2007 Bioinformatics
Wang et al. 0 2007 Biostatistics
Mueller et al. 0 2007 Proteomics
Listgarten et al. 0 2007 Bioinformatics
Fischer et al. 2 2007 BMC Bioinformatics
Csenki et al. 3 2007 Anal Bioanal Chem
Åberg et al. 0 2008 J Chrom A
De Groot et al. 0 2008 Proteomics
Suits et al. 0 2008 Anal Chem
Shinoda et al. 0 2008 Bioinformatics
Christin et al. 1 2008 Anal Chem
Podwojski et al. 2 2009 Bioinformatics
Befekadu et al. 3 2009 IEE EMBS
Christin et al. 3 2010 JPR
Daszykowski et al. 0 2010 J Chrom A
Tomasi et al. 1 2010 J Chrom A
Bloemberg et al. 1 2010 Chem Intel Lab Sys
Eliasson et al. 0 2011 Curr Pharm Biotech
Sinkov et al. 0 2011 Anal Chim Acta
Befekadu et al. 3 2011 IEEACM TCBB
Tang et al. 3 2011 Prot Science
Ballardini et al. 6 2011 J Chrom A
Voss et al. 7 2011 Bioinformatics
Zhang 0 2012 ASMS
Struck et al. 1 2012 J Chrom A
Hoekman et al. 2 2012 ASBMB
Kaya et al. 3 2012 Inform Sciences
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a comparative evaluation of the existing algorithms since they have no mechanism for

quantifying the comparative strengths or weaknesses of the methods from the publications

themselves. As pointed out by a recent paper, this process is as time consuming as it is difficult,

given the oft-encountered difficulties of obtaining and then successfully running someone

else’s software [6]. Extensive comparative analysis reduces the practitioner’s overall time

commitment by reducing the number of algorithms under consideration as well as by providing

a realistic expectation of performance, hopefully justifying the inevitable inconvenience of

obtaining and operating new software. Often, evaluation is made much more difficult (if not

impossible) when open source code is omitted in submission. While English descriptions and

pseudocode assist in building intuition about an algorithm, they are lossy definitions that

leave out essential details needed for code implementation. Besides time savings, requiring

source code facilitates more expansive comparison through automation as well as providing

the reviewers an easy metric to determine whether the method is suitably formally defined to

be distributed and replicated or whether it is an ad-hoc agglomeration.

There are also secondary consequences to consider. Publication is an incentive that

can drive innovation. If novel algorithms are not required to outperform extant ones, then

innovation—true forward progress not necessarily achieved by mere invention—is less likely

to occur. Finding the best choice in an expanding sea of mediocre choices then becomes a

Herculean task sure to exhaust any practitioner. The practical result is that practitioners

stop short of exhaustively evaluating all the possible options and choose based on some other

criteria (e.g., popularity, ease of use, or familiarity). The inevitable outcome of the algorithm

selection crapshoot are results poorer than what may otherwise have been.

Researchers (the algorithm makers) also suffer when comparative evaluation is ne-

glected. In the face of burgeoning publication numbers, they encounter the same exhaustive

search problem faced by the practitioner, but they also face a moral dilemma—the current

environment makes it easy to generate many publications, yet very difficult to perform the sort

of due diligence comparison advocated in this letter. A good comparison requires choosing
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among the several existing evaluation methods, each of which highlight only specific behavior.

The choice is non-trivial—in alignment, metrics include metrics that evaluate the alignment

in isolation [18, 19, 109], in combination with other data processing steps [6, 55], globally,

and locally. One must also find data sets, which should include sufficient data representative

of the different typical performance-affecting real-world characteristics (e.g., complexity of

the data, variability of peptide concentration, number of unique and common peptides, extent

and form of retention time shift in the data, etc.). What’s more, there is no disincentive

provided for publishing work untested against existing methods. Thus, left to their own

devices, will the researcher ever behave in a manner that is not in his best interest, though it

is in the best interest of the field? Apparently, not very often. Our experience suggests that

the pattern we found in alignment algorithms applies to algorithmic approaches in proteomics

and metabolomics generally, and it may extend to other bioinformatics subfields where we

have less experience.

So what is the solution? The problem, we have found, does not lie in the lack of venue

requirements for performance demonstration against state of the art algorithms. Interestingly,

many of the papers with zero-comparisons came from journals that explicitly require authors

to provide quantitative comparison with state-of-the-art methods. Similarly, though an openly

available group of standard data sets and metrics as described here would greatly facilitate

the evaluations petitioned for, authors in other fields manage to provide comparisons even

without standardized metrics or open frameworks for evaluation.

We suggest that greater care be taken by editors and reviewers to require novel

algorithmic contributions to contain a reasonable comparative quantitative evaluation with

existing methods. New contributions should also include necessary elements to facilitate

future comparisons with other algorithms such as source code and parameter setting guidance.

Such an effort will inevitably maximize the outcome of practitioner results, encourage the

widespread use of the highest-quality tools, and provide researchers an incentive to truly

innovate.
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Chapter 4

Controlling for Confounding Variables in MS-omics Protocol: Why Modularity

Matters1

Abstract

As the field of bioinformatics research continues to grow, more and more novel techniques

are proposed to meet new challenges and improvements upon solutions to long-standing

problems. These include data processing techniques as well as wet lab protocol techniques.

While the literature is consistently thorough in experimental detail and variable-controlling

rigor for wet lab protocol techniques, bioinformatics techniques tend to be less described and

less controlled. As the validation or rejection of hypotheses rests on the experiment’s ability

to isolate and measure a variable of interest, we urge the importance of reducing confounding

variables in bioinformatics techniques during MS experimentation.

In science, we generate questions and design experiments to test possible answers to

those questions. The ideal experiment involves a carefully controlled system where the impact

of changes to a single variable may be measured. In practice, achieving full control over a

system is difficult because the systems of most interest tend to be immensely complicated.

Especially for complex systems, confounding variables—variables whose behavior can be

spuriously attributed to the variable we are explicitly testing—may introduce hidden bias

(referred to as omitted-variable bias) and therefore undermine an experiment. The degree to

which omitted-variable bias is minimized is directly related to the accuracy of information

which may be gleaned from an experiment. The MS-omics (proteomics, lipidomics, and

1Smith, R., Ventura, D., and Prince, J.T.: Controlling for confounding variables in MS-omics
protocol: Why modularity matters, Briefings in Bioinformatics, 2013
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Figure 4.1: A comparison of m/z values of biomarkers for diagnosing cancer from two papers
that used the same data set, with the only variability between them being the choice of
bioinformatics tools used to post-process the data.

metabolomics prosecuted via mass spectrometry) community has been extremely careful to

control for confounding variables in sample preparation/processing and mass spectrometry

analysis (hereafter called lab protocol). But somewhat surprisingly, this meticulousness has

not extended as uniformly to data processing protocols in these same experiments. It seems

obvious that data processing can and will influence experimental outcomes, just as changes to

lab protocol do, and this influence should be expected to grow as the complexity of algorithms

and data sets increases.

Consider two experiments carried out on the same mass spec output files in search of

drug biomarkers. In [2] and [77], the same group conducted two analyses of the same data set

to predict cancer biomarkers. Despite the fact that the experimental variation was limited

to the choice of post-processing bioinformatics tools (in this case, classification algorithms),

the experiments yielded only two mutual m/z features (see Figure 4.1). The diagnostic

biomarkers selected as well as the sensitivity and specificity of the diagnostic changed due

solely to the data processing protocol details (see Table 4.1). Data processing protocol can

and does influence experimental outcomes.

In data processing protocol, just as in lab protocol, limiting confounding variables boils

down to limiting novel aspects under experiment. We suggest three guidelines to mitigate

data-processing-related omitted-variable bias in MS-omics.
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First, bioinformatics methods must be sufficiently described to permit replication, and

parameters must be set to the established community standard independently demonstrated

as effective in the literature. Although an explicit and careful protocol does not remove

omitted-variable bias, it does make the potential confounding variables more obvious. It is

hard to find a paper that does not include meticulous lab protocol details: sample preparation

and source, sample storage conditions, machine manufacturer and calibration settings, etc.

Unfortunately, when it comes to data processing, detailed descriptions are far too often

replaced with descriptive snippets far too vague to reproduce the described protocol. In some

papers, bioinformatic details are even simply relegated to a flow-chart box with a generic label

like data pre-processing. No paper that compressed all the details of the source, composition,

and preparation of a sample into a single flow-chart box labeled sample prep would ever

pass peer review. Bioinformatic tools are unfortunately replete with free parameters that

dramatically impact performance. If existing research suggests optimal parameter settings

for a given situation, such settings should be employed. If not, a reasonable search of the

parameter space ought to be conducted and reported. A suboptimal parameter setting can

lead to lurking variable effects such as differential performance incorrectly attributed to the

variable under experimentation. Although minimal reporting requirements suggested by

HUPO-PSI (MIAPE, MIAMET, MIAME, etc.) are a step in the right direction, they do

not require the reporting of all software parameters [3]. Consequently, a paper can meet the

HUPO-PSI minimum reporting standards and still be completely unreproducible.

Second, new bioinformatic tools or unproven parameter settings ought to be presented

and evaluated independently from studies designed for clinical outcomes. It is already

Table 4.1: A comparison of m/z values of biomarkers to diagnose cancer from two papers
that used the same data set, with the only variability between them being the choice of
bioinformatics tools used to post-process the data.

Study Features Sensitivity Specificity
[2] 9 83% 97%
[77] 12 97-100% 97-100%
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accepted that a new lab method deserves its own paper in which there is sufficient room to

describe the method in reproducible detail as well as to ascertain its strengths and weaknesses

in controlled experiments over a variety of data sets. The same standard ought to apply

to bioinformatics methods. All too often, a paper whose focus is answering a chemical,

biological, or clinical question is used as a vehicle to present a novel data processing method.

Introducing a new variable in order to study another variable should at the least be somewhat

disconcerting to any scientist. It is far more clear and appropriate to present novel methods

in their own right.

Third—and most importantly—whenever possible, bioinformatics algorithms ought

to be implemented following the single responsibility principle (SRP)—each module should

have only one responsibility. In other words, algorithms ought to do one thing and do

it well. This is not only a good programming philosophy but also a good experimental

protocol philosophy that is at the heart of the scientific method—isolate and measure the

variable of interest. New data processing methods, when coded modularly, are plug-in

compatible with existing pipeline modules. Plug-in compatibility allows for a quick and

comprehensive evaluation of new methods to ascertain downstream effects in the MS-omics

pipeline. This approach has been implemented in frameworks for MS analysis (see, for

example, mzMine 2 [73] and OpenMS [100]), yet new algorithms are consistently presented

independently of these frameworks. Not only are these new contributions more difficult to use

and evaluate due to their independent packaging, their non-modular interfaces and secondary

functionality (visualizations, data import/export, etc.) are usually second rate to the full

modular frameworks mentioned above. Packaging an alignment algorithm with yet another

2-D LC-MS display makes about as much sense as bundling a newly invented pipette with

a second-rate centrifuge. Modularity not only facilitates the isolation of new variables but

also decreases the learning curve by cutting down the need to install new software, learn

new interfaces, deal with new file types, and facilitate transfer to the existing workflow.

What’s more, because of the number of confounding variables and added obfuscation, lack of
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modularity decreases the ease and transparency of evaluation against other methods, stifling

innovation and community progress [98].

We suggest that practitioners treat confounding variables in the MS-omics toolkits with

as much care as they do with confounding variables in the mass spec experimental protocol.

A modular approach to bioinformatic tool development will help minimize omitted-variable

bias, make bioinformatic tools interchangeable parts in the data processing pipeline, and

facilitate extensive evaluation in controlled conditions before use in clinical application.

4.1 Key Points

• Choice of bioinformatic data processing algorithms and parameters affect the outcome

of MS-omics experiments.

• Mitigation of confounding variables is just as important for data processing portions

of the experiment as they are for lab portions and should be treated with as much

care in practice and detail in publication. Each data processing variable necessary to

reproduce the results ought to be reported in the article or supplemental information,

including software choices and parameter settings.

• Novel algorithmic protocols ought to be introduced in their own dedicated article

complete with either open source code or sufficient detail to reproduce the algorithm

as well as sufficient evaluation with existing approaches to establish performance and

detail shortcomings. It is not appropriate to introduce novel data processing techniques

as a part of an experiment’s protocol.
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Chapter 5

Clarity in Concepts: A Novel, Unambiguous Nomenclature for MS-omics Data

Structures1

Abstract

The comparison of analyte MS1 signal is central to many proteomic (and other omic)

workflows. However, no standard vocabulary to describe the core data structures and

algorithms involved exists. Without a standard, unambiguous nomenclature, literature

searches, algorithm reproducibility, and algorithm evaluation for MS-omics data processing

are nearly impossible. We propose a nomenclature which is constructed of a limited number

of base terms along with qualifier terms allowing a vast number of data structures to be

succinctly, precisely, and intuitively described. Using our terminology, we are able to show

how terms from current official ontologies are too vague to explicitly map molecular entities

to MS signals, and we illustrate the inconsistency and ambiguity of current colloquially

used terms. We suggest this nomenclature as a beginning to, not the culmination of, the

standardization process.

1Smith, R., Taylor, R., and Prince, J.T.: Clarity in Concepts: A novel, unambiguous nomencla-
ture for MS-omics data structures, Proteomics, 2014 (in submission)
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5.1 Introduction

Liquid-chromatography mass spectrometry (LC-MS) is a ubiquitously used platform for

proteomic (and other ”omic”) investigations [93]. MS signal from hundreds to millions of

ions can be quantitatively compared across experimental conditions in a fairly robust and

repeatable way [64]. Analyte quantities are captured directly in MS signal (aka MS1), while

analyte identities are often elucidated or confirmed using MS/MS (aka MS2) fragmentation

spectra [64].

Confidently matching MS1 analyte signal between runs (”correspondence”) is difficult

with complex samples[97], so a variety of approaches to circumvent this problem have been

explored. Multiple reaction monitoring (MRM) can be effective for monitoring a relatively

small number of pre-selected analytes with a high degree of confidence, but it is unsuited

to discovery-based experiments. MS/MS based approaches (e.g. iTRAQ [81] and spectral

counting [61]) are also popular alternatives. However, due to low MS/MS capture rates (10–

20%) and low database match rates (<60%) [64], MS/MS driven approaches lack sensitivity

compared to MS1-based approaches. And, although a data independent acquisition (DIA)

approach may address some of the sensitivity deficiencies of MS/MS for identification, DIA

does not of itself address difficulties in correspondence and quantitation. Hence, despite the

availability of alternative approaches, the ability to match MS1 signal across experimental

conditions is still highly desired.

Numerous efforts, large and small, have focused on using MS1 signal to compare

analyte quantities. The most well-known of these are packages that implement the nec-

essary algorithms for comparison of signal in an end-to-end fashion (e.g., SuperHirn [67],

MaxQuant [22], XCMS [21], and Skyline [62]). However, the entire process is complex, and

many algorithms have been developed which focus on individual steps such as extracting signal

from the different data structures involved [128] and performing the final correspondence

step [97]. Although many methods exist, very few have actually been compared against one

another [98]. Some of this may stem from the lack of modularity of popular solutions (i.e.,
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it is difficult to isolate and test subcomponents in monolithic software) [96], but a larger

portion may be due to a deeper and more troubling problem: few algorithms in this domain

share any common nomenclature for the core data structures and processes needed for MS1

correspondence.

The result of not having any kind of standard terminology for this domain is that

LC-MS data processing is stagnated. Without consistent, clear terminology researchers

have no handles for searching the literature, so they are unable to easily take advantage of

modularized components that each solve a discrete problem. This leads to massive duplication

of effort and few cross-tool evaluations since researchers are unaware of related efforts. A

well defined vocabulary and problem domain also encourages and aids new-comers to the

field resulting in more and better solutions to difficult data processing challenges. It is also

much easier to re-implement solutions when both the what and how of a process are clearly

understood. Hence, an increase in term clarity has immediate impact on reproducibility—a

requirement firmly enforced for sample preparation and wet-lab processing protocols but

which is almost completely unenforced for data processing descriptions [98].

What about using terms from existing HUPO-PSI [105] and IUPAC [69] standards and

ontologies? As they stand, there are no terms in existing ontologies with enough granularity

to precisely and reproducibly describe a data processing pipeline. Standards committees

are best at crystallizing and refining accepted practice, but the onus to invent or select

appropriate terminology lies foremost with the community itself, at least initially. A good

example of this was the creation of a standard spectrum exchange format. The mzXML

format was created and published by a small group of researchers [72]. After several years

of use the HUPO PSI mass spectrometry working group produced the mzML format which

was able to draw upon the experience gained from use of the mzXML format. An official

nomenclature culminates with IUPAC [69] and HUPO-PSI [105] standards but the community

cannot realistically expect nomenclature to begin there.
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As a small but critical first step towards eventual standardization, we have identified

core data structures and algorithms necessary for MS data processing. We also propose a

nomenclature to describe them which is constructed of a limited number of base terms along

with qualifier terms. This combinatorial design allows a vast number of data structures to

be succinctly, precisely, and intuitively described. With precise terminology in hand, we are

then able to show how terms from current official ontologies are too vague to explicitly map

molecular entities to MS signals, and we illustrate the inconsistency and ambiguity of current

colloquially used terms.

5.2 Proposed Terms

In order to maximize the information communicated in a term, we have created base terms,

which describe the general concept under consideration, as well as qualifier terms, which

specify any additional information possible about the genesis of the data concept. An overview

of all terms is presented in Figure 5.1.

5.2.1 Base Terms

Generic terms allow us to refer to a specific data structure without necessarily adding detail

about how it was processed. These terms are useful for algorithms that will take data

structured in a certain way, no matter how it came to be in the current format.

Molecule - The unit that accepts charge. For instance, a lipid in a lipidomics experiment

or a protein in a proteomics experiment.

Isotope - An isotope in this context consists of a molecule, at a particular charge state,

with a certain number of neutrons (no distinction is made in this context among molecules

where the neutron is associated with different atoms or kinds of atoms) (see Figure 5.1).
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Figure 5.1: In this partial overview of the proposed nomenclature, the relationship between
base concepts and some of qualifier terms is demonstrated. The qualifier trace adds a time
dimension to a base concept. An envelope is a set of related instances across the m/z
dimension. An isotope is a molecule at a particular charge state with a certain number of
neutrons. An isotopic envelope is the unique impulse signal (at a specific RT) generated by
one molecule/charge state combination consisting of one or more isotopes equally spaced
m/z 1/z apart. A molecular envelope is the set of unique isotopic envelopes generated by
one molecule across multiple charge states. An isotopic trace is the unique whole (meaning
throughout RT) signal generated by the accumulation of instances of a given molecule at
a given charge state whose molecular formula contains the same isotopic composition. An
isotopic envelope trace is the unique whole signal generated by one molecule/charge state
combination consisting of one or more isotopic traces equally spaced m/z 1/z apart. A
molecular envelope trace is the set of whole isotopic envelopes generated by one molecule
across multiple charge states.
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Figure 5.2: The terms profile and centroid in combination with the other terms proposed
allow distinction between a low resolution convolved signal created by instances of a single
molecule / charge state combination and the same concept in data from a high resolution
instrument. These distinct concepts are indistinguishable under the IUPAC, HUPO-PSI, and
colloquial term peak.

5.2.2 Qualifiers

Obviously, the most specific term possible should be used in each instance. For this purpose,

we have introduced a set of qualifying terms that add specificity to the above-defined generic

terms. The use of qualifiers allows us to encode previous processing steps into the term used

to identify a data structure.

Profile

A profile is the data distribution generated by a single isotope (see Figure 5.2).

The qualifier profile allows us to specify concepts that are otherwise conflated between

low-resolution and high-resolution data. For instance, in 2-d terms, an isotope profile is the

data distribution thought to be a single isotope, and is found in high resolution profile data,

while an isotope envelope profile is the convolution of several isotope profiles as found in low

resolution profile data (see Figure 5.2).
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Centroid

A centroid is the result of consolidating a profile into a single representative impulse containing

the center of the previous profile and possessing the cumulative intensity of that profile (see

Figure 5.2). This qualifier allows us to disambiguate between distinct concepts such as a

centroid isotopic envelope and a profile isotopic envelope. Note that the assumption is that

all data is centroided unless otherwise stated.

Envelope

An envelope connotes a discrete collection of things across the m/z dimension. For example,

when we couple envelope with isotope, we get isotopic envelope, the unique impulse (meaning

at a specific retention time (RT)) series generated by one molecule / charge state combination

consisting of one or more isotopes equally spaced m/z 1/z apart (see Figure 5.1). By coupling

molecule with envelope, we get molecular envelope, the set of unique isotopic envelopes

generated by one molecule across multiple charge states (see Figure 5.1).

Trace

A trace implies a signal that extends into the RT dimension. For example, when we combine

isotopic envelope and trace, we get an isotopic envelope trace, which is the unique whole

(meaning throughout RT) accumulated (meaning throughout a run) signal generated by

one molecule / charge state combination consisting of one or more isotopic traces equally

spaced m/z 1/z apart (see Figure 5.1). Likewise, an isotopic trace the unique whole (meaning

throughout RT) signal generated by the accumulation of instances of a given molecule at

a given charge state whose molecular formula contains the same isotopic composition (see

Figure 5.1). A molecular envelope trace is the set of whole (meaning throughout RT) isotopic

envelopes generated by one molecule across multiple charge states (see Figure 5.1).
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in an isotopic trace.

Integrated

An integrated object has been summed through the RT dimension. For example, if we take an

isotopic trace and sum its constituent centroids (or profile points), we will end up with a single

3-tuple consisting of m/z, RT, and intensity that can accurately be called an isotope (see

Figure 5.1). However, by calling it an integrated isotopic trace, we retain a unique description

of the original data structure as well as the transforming process used (see Figure 5.3). An

integrated isotopic envelope trace is the sum of the constituent points in the isotopic traces

contained in the isotopic envelope trace. In appearance, it is identical to the isotopic envelope

in Figure 5.1.

Average

The data structures described by the qualifier average are, in appearance, the same as those

in integrated, however the process to generate them involves taking the average of the intensity

of the composite points, not the sum.

Instantaneous

The qualifier instantaneous implies that this object is a spectral slice of a trace object at a

given RT. The instantaneous objects look exactly like those with that are integrated, however,

this qualifier indicates that we are looking at a slice of the data structure in time, not a

summation or average of the data through time.
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envelope.

Max

The qualifier max implies that this object is the spectral slice of a trace object at a the RT

of greatest intensity. Max objects look exactly like those with that are integrated, however,

this qualifier indicates that we are looking at a slice of the data structure in time, not a

summation or average of the data through time.

Deisotoped

The qualifier deisotoped implies that the object has been combined through the m/z dimension,

such as a deisotoped isotopic envelope, the consolidation of all isotopes in an isotopic envelope

(see Figures 5.4 and 5.5).

Reduced

The qualifier reduced implies that the object has been combined through reducing charge

states to the lowest common charge state. For instance, a reduced molecular envelope is

the set of the composition of all isotopic envelope in the molecular envelope (see Figure 5.1,

bottom left to middle left).

Candidate

A candidate signal is one which is suspected to be a certain data structure, but has not yet

been processed. For example, a mound of signal could be an isotopic envelope trace, so we

call it a candidate isotopic envelope trace.
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Figure 5.5: Deisotoped molecular envelope - the set of the composition of all isotopes in each
isotopic envelope in a molecular envelope (see Figure 5.5).

Detected

A detected signal has been extracted from the full data set. Since this is the default assumption,

the qualifier is rarely if ever used except to distinguish from a candidate or theoretical signal

component.

Theoretical

A signal constructed in silico is said to be theoretical, as it is not an observation derived from

observed experimental measurements.

5.3 Current Terms and Usage

To those unfamiliar with the field of MS-omics, it may be worth asking why it is that a new

vocabulary is needed for the basic data structures of MS-omics. Surprisingly, there has been

no effort of which the authors are aware to generate an unambiguous nomenclature for these

concepts.

5.3.1 Why Current Official Terms are Incomplete

IUPAC [69] and HUPO-PSI [105] are organizations that specialize in standardizing nomen-

clature. Their significant and useful controlled vocabularies address all aspects of MS

experimentation—including wet lab protocol and instrumentation—and have done much to

improve reproducibility. The motivation at the heart of our proposed nomenclature is to

suggest a nomenclature that explicitly maps causal molecular entities to the signals they
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produce. However, the current HUPO-PSI and IUPAC data concepts terms do not yet

capture this level of granularity and clarity, which is an absolute must in order to achieve

data processing reproducibility.

The HUPO-PSI-MS OBO has more MS data processing terms than IUPAC. Most are

extremely generic. For example, they provide a term mass spectrum to refer to any segment

of data with m/z and abundance axes: “a plot of the relative abundance of a beam or other

collection of ions as a function of the mass-to-charge ratio (m/z).” They also provide a

complementary term to refer to the time and abundance axes: chromatogram. However, these

terms are sufficiently generic that one or both terms can accurately be applied to all of our

above provided concepts. Additionally, the term profile spectrum as defined could apply to a

combination of signals of any m/z width. Likewise, the term peak as defined could refer to

any signal in the entire run.

In addition to these generic terms, the HUPO-PSI-MS OBO provides two specific data

concepts: deisotoping and charge deconvolution. Deisotoping is referred to as “the removal of

isotope peaks to represent the fragment ion as one data point and is commonly done to reduce

complexity. It is done in conjunction with the charge state deconvolution.” The concept

described is worthy of a definition, but the one provided can be improved upon. A fragment

ion is not a data signal, but a molecular object. However, deisotoping is an operation on a

data signal. Additionally, this term should not be specific to fragment ions, but also applies to

non-fragmented MS1 data, such as an MS1 isotopic envelope. Our nomenclature expands this

term to include the logical wider use. Charge deconvolution is defined as “the determination of

the mass of an ion based on the mass spectral peaks that represent multiple-charge ions.” We

have named this concept reduction. Deconvolution is already a widely used signal processing

term (also used in MS processing e.g. in [15]) for resolving two overlapping signals into

their constituent parts (see 5.2, top right). What’s more, the definition focuses on mass

determination. However, the real task at hand is transforming the charge of each isotopic

envelope in the molecular envelope to match that of the lowest charged molecule in the
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molecular envelope, and then combining those signals in order to assess the mass and quantity

of the entire molecular envelope. In addition to avoiding overloading, we consider reduction

to be more intuitive than deconvolution.

Both HUPO-PSI and IUPAC use a similar definition of the term ion: an atomic,

molecular, or radical species with a non-zero net electric charge. We agree that this concept

needs a name. The problem with this term is that it cannot distinguish between the instances

of interest (e.g. proteins in a proteomics experiment, lipids in a lipidomics experiment) and

the molecular charged units of any scale that are detected in a mass spectrometer experiment.

In other words, while our term molecule is limited to a lipid or a protein, the term ion could

also correctly refer to any of the constituent points in a profile, centroids derived from a

profile, isotopes, and molecular envelopes.

IUPAC terms are similarly ambiguous. The four data processing terms we are aware

of in the most recent specification include two terms whose distinction is unclear to us:

1) isotope cluster - “group of peaks representing ions of the same elemental composition,

but different isotopic compositions;” 2) isotope pattern - “set of peaks related to ions with

the same chemical formula but containing different isotopes that have a particular pattern

associated with the relative abundance of the isotopes.” As defined, isotope cluster and

isotope pattern can correctly be used to refer to all combinations of isotopic envelope and its

qualifiers.

Finally, IUPAC shares a similar definition as HUPO-PSI for peak, “a localized region

of relatively intense detector response in a mass spectrum when ions of a specified m/z are

detected.” As a catch-all, this term is useful, however it does not relieve the need for specific

terms for each different concept that peak could refer to.

51



5.3.2 Ambiguous Colloquial Terms

The industry has not yet adopted a standard for MS data structure concepts. Consider, for

instance, the usage of two of the most common labels for MS-omics data structures. These

lists are by no means exhaustive in references or instances.

The term feature is used for:

• An isotopic envelope [56, 110, 128].

• A candidate isotopic envelope [67].

• A deisotoped integrated isotopic envelope [55, 107].

• An integrated isotopic trace [64].

The term peak is used for:

• A profile [22].

• A centroid [25, 54, 128].

• An isotopic trace [25, 25, 27, 110, 128].

• A deisotoped integrated isotopic envelope [64, 129].

• An isotopic envelope [128].

• An integrated isotopic trace [107, 128].

• An isotope [11].

• An instantaneous isotopic envelope [132].

It should be abundantly clear that these terms convey very little useful information—

certainly insufficient information for reproducibility. These terms are used with so little care

that even the attachment of a very specific qualifier does not relieve the lack of specificity.

For example, adding the qualifier monoisotopic to peak could mean:

• An isotopic trace where the signal is generated by a light isotope [110].
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• The most abundant isotopic trace in an isotopic envelope [105].

• An integrated isotopic trace where the signal is generated by a light isotope [132].

• A deisotoped integrated isotopic envelope [114, 128].

These examples briefly illustrate the ubiquity of overloading (using one term to mean

more than one concept). Overloading treats a term as a variable, whose meaning must be

defined in detail for the scope of each publication it appears in. An adequate definition takes

significant thought, some space, and usually a descriptive image. There simply isn’t ample

space in each manuscript to define a custom set of terms for MS-omics data processing. This

results in insufficient definitions for terms or no definition at all.

For example, the terms isotopic peaks and isotopic multiplets do not convey a clear

meaning and are undefined in the manuscript where they appear [130]. It is unclear if a

peak/multiplet is dealing with an isotopic trace, an integrated isotopic envelope trace, a max

isotopic envelope trace, or an instantaneous isotopic envelope trace. The paper describes a

decharging algorithm for isotopic envelopes, but depending on what definition you adopt for

these terms, you will get a very different result.

As another example, consider a review paper that describes the algorithmic composition

of several approaches to data processing problems [25]. To allow for the use of mathematical

algorithm descriptions, the author provides a key where symbols are defined for certain

MS data constructs. These include symbols for peak area, number of chromatograms, peak

maximum, peak end, peaks detected in a mass channel, raw height of peak, and peaks detected

in a chromatogram. But what is a peak? What is a chromatogram? As seen from the citations

in this paper, these terms are not universally defined, and the author does not define them.

Subsequently, the algorithms in the paper are irreproducible unless the reader is able to

correctly guess the definition of these terms intended by the author.

Reproducibility is, in fact, at the heart of the nomenclature problem. An algorithm

description is rendered useless if the data structure terms used within it are ambiguous

or undefined. In a modular approach to pipeline algorithm creation and testing [96], data
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processing methods prior to the pipeline module of interest have to be exactly describable

with concise terms. If an algorithm says it operates on monoisotopic peaks, how does the

practitioner know to which format it refers? What’s more, in evaluating algorithms, knowing

the exact format of the input data informs interpretation of the algorithm. For instance, we

know that any alignment algorithm that takes as input deisotoped candidate isotopic envelopes

is subject to the error introduced by convolved isotopic envelopes mistakenly assumed to be

a single isotopic envelope. As another example, any alignment algorithm that uses deisotoped

isotopic envelope data as an input is not putting to use the added information available in

the complete isotopic envelope trace.

Our suggested vocabulary eliminates most if not all of the ambiguity in the current

naming schemes employed in the literature. The following examples illustrate how the

proposed vocabulary untangles the currently obfuscated terms in use.

Isotopic envelope trace describes a concept for which the following terms have all

been used: an empheluting isotopic distribution [7], a emphchromatogram [25], an isotope

series [25], an isotope pattern [22], an isotope-resolved mass spectrum [103], an ion series [108],

and an isotopic cluster [15, 114]. None of these terms differentiate between the concepts we

refer to as isotopic envelope trace, instantaneous isotopic envelope, max isotopic envelope, etc.

Isotopic traces have been referred to as eluting isotopes [7], single ion chromatograms [25],

peaks [22, 25, 27], mass spectra [11], and peak hills [22]. Each of these terms are unclear.

The problem with the term chromatogram is that is does not specifically refer to the elution

profile of a single isotope. For example, an extracted ion chromatogram is an m/z slice of data

that can extend across an entire run’s RT. Any term that uses peak is bound to be confusing

due to the overuse of the term. Like chromatogram, a mass spectrum can technically stretch

across an entire m/z range and therefore does not specifically describe the m/z window of a

specific molecule.
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Integrated isotopic envelope has been called an isotope pattern [27]. However, many

other concepts can accurately be called isotope patterns, such as a max isotopic envelope or

an averaged isotopic envelope.

5.4 Conclusion

The ever-increasing number of MS-omics experiments drives a thriving MS-omics data

processing algorithms field. However, the lack of an unambiguous vocabulary for MS-omics

data structures has created serious challenges for reproducibility and evaluation of data

processing algorithms.

In this paper, we have highlighted the ambiguity of current vocabulary for MS-omics.

We propose an unambiguous vocabulary together with a visual lexicon for the proposed

terms. By adopting these terms, authors can facilitate reproduction of their algorithms

succinctly by providing a crystal-clear set of meanings for terms they use, vastly improving

the reproducibility of their work.
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Chapter 6

A Coherent Mathematical Characterization of Isotope Trace Extraction,

Isotopic Envelope Extraction, and LC-MS Correspondence1

Abstract

Liquid chromatography-mass spectrometry is a popular technique for high-throughput

protein, lipid, and metabolite comparative analysis. Such statistical comparison of millions of

data points requires the generation of an inter-run correspondence. Though many techniques

for generating this correspondence exist, few if any, address certain well-known run-to-run

LC-MS behaviors such as elution order swaps, unbounded retention time swaps, missing

data, and significant differences in abundance. Moreover, not all extant correspondence

methods leverage the rich discriminating information offered by isotope envelope extraction

informed by isotope trace extraction. To date, no attempt has been made to create a formal

generalization of extant algorithms for these problems. By enumerating extant objective

functions for these problems, we elucidate discrepancies between known LC-MS data behavior

and extant approaches. We propose novel objective functions that more closely model known

LC-MS behavior. Through instantiating the proposed objective functions in the form of novel

algorithms, practitioners can more accurately capture the known behavior of isotope traces,

isotopic envelopes, and replicate LC-MS data, ultimately providing for improved quantitative

accuracy.

1Smith, R., Prince, J.T., and Ventura, D.: A coherent mathematical characterization of iso-
tope trace extraction, isotopic envelope extraction, and LC-MS correspondence, IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2014 (in submission)
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6.1 Introduction

Liquid chromatography-mass spectrometry (LC-MS) is a popular technique for elucidating

the composition of liquid samples. Data processing considerations are essential to accurately

determine the identity of molecules (analytes such as lipids or peptides) contained in the

sample (a process called identification), as well as their quantity in sample (a process called

quantitation).

Information about sample quantity is captured directly in survey scans, or MS (aka

MS1) data. Fragmentation spectra of one or more analytes constitute MS/MS (or MS2)

data, and this information is typically used to corroborate or ascertain the identity of a

molecule. Partitioning/clustering MS1 signal from complex samples and mapping the signal

to other analyses (correspondence) is challenging. Some quantification strategies bypass

these challenges by using information derived directly or indirectly from MS/MS data. These

methods include spectral counting [16] and isobaric tags for relative and absolute quantitation

(iTRAQ) [122]. Though these methods have been successful, the amount of quantifiable signal

embedded in MS1 data is estimated to far exceed what is currently available by MS/MS [64];

however, most MS1 data remains unused by current software. Hence, improving methods for

partitioning and mapping MS1 signal stands to significantly (˜10 fold) increase the sensitivity

of a typical label-free or isotope-labeling MS-omics experiment, both for experiments currently

being run and for past experiments where raw data is still available.

Subdivision of raw mass spectrometer output data into smaller signal partitions

attributed to specific analytes in the sample is critical prior to achieving analyte identification

and quantification. The larger partition unit, called an isotopic envelope trace, is the

signal pattern generated by each analyte/charge combination (see Figure 6.1).2 Because

mass spectrometers can only detect charged analytes, the sample must be subjected to an

ionization method, which imputes a charge on each detected analyte. Since multiple instances

of each component exist in the sample, and since each instance is charged independently,

2To avoid ambiguity, this manuscript uses the nomenclature described by Smith et al. [95]
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there exist in each output the signals of multiple analytes, each with (potentially) multiple

charge states. These create a distinct signal—the isotopic envelope trace—for the total

signal detected for each analyte/charge state combination. Each isotopic envelope trace is

composed of a series of isotope traces, which are manifestations of the fact that each analyte

is composed of chemically similar compounds that differ in the weight of certain isotopes

(such as 12C vs 13C). At each charge state, each molecular variant of the analyte is detected at

a particular m/z offset, creating one isotope trace per molecular variant/charge-state/analyte

combination.

Mass spectrometry data, in its raw form, is not ideal for isotope trace extraction or

subsequent processing. After internally accumulating signal over discrete time slices, the mass

spectrometer outputs raw data condensed into the form of many narrow profiles wherever

signal is present. Conversion to centroid mode integrates the abundance of each of these

profiles into a single tuple called a centroid. This is considered a routine conversion for which

ample software is readily available. We adopt the typical convention of using centroid data.

Despite the ubiquity of LC-MS experiments, to the best of our knowledge, no concise,

complete description of the LC-MS isotope trace and isotopic envelope extraction problems

exists. Here, we describe constructs for isotope traces and isotopic envelopes, as well as

formally describe the relationship of centroids, isotope traces and isotopic envelopes. In this

context, we review extant objective functions for isotope trace extraction, isotopic envelope

extraction, and correspondence. Finally, we propose novel objective functions for each of

these tasks that address shortcomings in current approaches.

6.2 Isotope Trace Extraction

The most important data processing step in a typical quantitative LC-MS pipeline is isotope

trace extraction [14]. Clustering centroids into isotope traces is a non-trivial problem due to

the many sources of noise affecting centroid mass and abundance. Sources of noise affecting

centroids include chemistry effects due to chromatography, abundance inaccuracy due to
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Figure 6.1: An LC-MS sample is composed of many instances of many classes of analyte.
Each detected instance of an analyte is ionized to a charge state. The signal produced by
each charged analyte is accumulated as a function of the mass of the analyte, its charge
(together composing the mass-to-charge ratio (m/z)), and the time at which it is detected
(dictated by the chromatographic system in use).

ionization efficiencies, m/z deviation due to machine calibration, occlusion/adulteration of

low-abundance signal due to dynamic range limitations, and compounded inaccuracies in

mass-to-charge ratio (m/z) and abundance due to centroid construction. Of course, these

complications are propagated from the clustering of isotope traces to the clustering of isotopic

envelopes to the identification of cross-experiment correspondence.

A centroid is denoted as c = (µ, τ, α) where µ, τ, α are values for m/z, retention time

(RT), and abundance, respectively. A single MS run produces a set of centroids C = {ci}ni=0,

where n can readily reach into the millions.

An isotope trace F ⊂ C is defined as a set of centroids: F = {ci}mi=0, with each set F

constrained so that all members of a given isotope trace F are within a distance threshold θ

from other centroids in their neighborhood Υ (see Figure 6.2):

max
j∈Υi

δF (ci, cj) < θµ,α,τ (6.1)
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Figure 6.2: Each box illustrates an example candidate local neighborhood Υ defined by an
algorithm-specific m/z and RT window. Blue centroids indicate the centroids pertaining to
the isotope trace, while red centroids have been rejected due to differences in abundance,
m/z, and/or RT compared to other centroids in Υ.

where θ is a function of centroid m/z, RT, and abundance, δF is a distance function based on

m/z, RT, and abundance, and Υ is a neighborhood demarcated by m/z, RT, and abundance.

Additionally, the slope of a (abundance-weighted) linear regressor estimate for an isotopic

trace is very nearly infinite (in the m/z,RT -plane). One way to formalize this is to use a

weighted, inverse variant of the Theil-Sen estimator as follows (see Figure 6.3):

∑
ci,cj∈F

cµj−c
µ
i

cτj−cτi
cαj c

α
i∑

ci,cj∈F c
α
j c
α
i

≈ 0 (6.2)

where cα is the abundance of centroid c and cµ is the m/z of centroid c.

Note that the behavior of isotope traces are dependent on all three MS dimensions

although many common approaches to isotope trace extraction ignore one or more of these

dimensions. For example, most proprietary MS software uses hard m/z bins for isotope trace

extraction.
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Figure 6.3: One way to characterize the relative lack of variance in m/z (compared to
RT) of an isotopic trace is by using an inverse variant of the Theil-Sen estimator—a fully-
connected graph is constructed with edges connecting each pair of centroids (circles whose
radius indicates abundance), and weighted by the abundance of its connected centroids
(represented by line thickness). An isotopic trace will have a weighted average (inverse) slope
of approximately zero (not all connections shown).

6.2.1 Extant Objective Functions

The prominent algorithms for isotope trace extraction include centWave [104], MatchedFil-

ter [104], centroidPicker [73], massifquant [21], and MaxQuant [22].

MatchedFilter operates on the simplifying assumptions that 1) isotope traces are

completely contained within pre-processed hard m/z bins and 2) the shapes of all isotope

traces in a run can be fit to the same shape. MatchedFilter minimizes the error of a Gaussian

fit over prospective isotope traces, by attempting to find the set of isotope traces F , a scaling

factor bF , and mean retention time F t for each isotope trace that minimizes the summed

abundance error over all isotope traces. Note the use of a single, global variance σ, an average

RT width for all F ∈ F :

λF =
∑
F∈F

∑
c∈F

∣∣∣∣bF e−(cτ−Ft)2

2σ2 − cα
∣∣∣∣ (6.3)

The centWave algorithm extracts isotope traces that fit a scaled and translated Ricker

wavelet ζ (commonly called a Mexican hat function). The fit is calculated as a convolution
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between the shape function and the signal intensity (abundance), so the goal is to maximize

the objective function:

λF =
∑
F∈F

∑
c∈F

cαζ(c) (6.4)

where

ζ(c) =

 1√
bF

2
√

3π
1
4

(
1−

(
cτ − tF
bF

)2
)
e
−
(
cτ−tF
bF

)2

2

 (6.5)

with isotope trace-specific scaling parameter bF and translation parameter tF chosen to

maximize the convolutional fit over isotope trace F .

The algorithm centroidPicker uses heuristic operations on a neighborhood graph to

separated the data into connected components. It connects an undirected graph G = (C,N)

of centroids where the edges N are constrained such that:

N =

(ci, cj)

∣∣∣∣∣∣∣
δc(ci, cj) < δc(ci, ck)∀k 6=j

cαi > θ and cαj > θ

 (6.6)

for some intensity threshold θ and centroid distance function δc, resulting in G being composed

of one or more connected components, each considered one isotope trace. Thus, F =

{Fi|∀ck ∈ Fi,∃cl∈Fi {cl ∈ Υ(ck)}}, where the neighborhood function Υ(c) returns the set of

nodes connected to c (and is symmetric because G is undirected).

The objective functions for massifquant and MaxQuant define F as the set of all F

formed by iterating over values of time t, and adding c if cτ = t and |cµ − cµ∗ | < ε, where

c∗ ∈ F and cτ − cτ∗ ≤ cτ − cτj for all cj ∈ F . For massifquant, ε is prescribed by a Kalman

filter induced from the variance in cµ and cα for all cj ∈ F such that cτj < t, with the added

constraint that cτ be unique in F . MaxQuant defines ε simply as a distance threshold of

7ppm m/z.
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6.2.2 Proposed Objective Functions

We define F µ, the m/z of isotope trace F , given by the weighted m/z of its component

centroids:

F µ =

∑
c∈F

cαcµ∑
c∈F

cα
(6.7)

and using it propose an alternative objective function for isotope trace extraction:

λF =
∑
F∈F

∑
c∈F

∣∣∣∣bF (τ)e
−(cτ−Ft)2

2σ2
F aF (α)e

−(cµ−Fµ)2

2h(α)2 − cα
∣∣∣∣ (6.8)

where, again, centroid clustering F and retention time means F t are chosen to minimize the

Gaussian fit error; however, rather than using a single global variance in the RT dimension,

each isotope trace F has a local variance σF ; in addition, the scaling factors have become

time-dependent scalar functions bF (·). The second Gaussian factor, parameterized by mean

F µ and variance function h(·), models the m/z width of the isotope trace, which is a function

of the abundance α. Isotope traces splay at low abundance and narrow at high abundance;

thus, both the variance h(·) and the scaling factors aF (·) are modeled as functions dependent

on the abundance α. Note that while variance is trace-independent (depending only on

abundance), each isotope trace has its own scaling function (which in turn is dependent on

abundance).

6.2.3 Alleviating Current Limitations in Isotopic Trace Extraction

Current objective functions for isotopic trace extraction fail to capture isotopic trace behavior

formalized in this section: namely, a pattern of centroids forming a generally tight distribution

through time around a specific m/z, with variation occurring as a factor of abundance, with

normal abundance traces splaying at the beginning and end of elution, and lower abundance

traces displaying high m/z variance in general. Moreover, isotope traces are skewed in time,
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with sharp onset of intensity followed by a post-peak long tail. The shape of traces is almost

never strictly Gaussian (or even symmetric), as chromatography almost always deviates from

the Gaussian in heading (which is more steep) and in tailing (which is less steep). Our

objective functions account for each of these behaviors.

6.3 Isotopic Envelope Extraction

The LC-MS clustering problem is defined as a two-step partitioning problem. In the first

step, isotope trace extraction, we require a partition φ of the set of all centroids C into the

set of isotope traces F , φ(C) = {Fi}ri=1 = F with the properties:

r⋃
i=1

Fi = C and Fi ∩ Fj = ∅ ∀Fi 6=Fj∈F (6.9)

In other words, 1) all centroids are assigned to an isotope trace; 2) isotope traces can’t share

centroids. Because any sensor’s detection of a physical system will deviate somewhat from the

true physical system, we can expect MS detections to contain extraneous centroids. However,

all signal ought to be accounted for (even if some identified “traces” eventually are identified

as noise) and, in a platonic model, ought to be assigned to an isotope trace.

In the second step, isotopic envelope extraction, we require a partition ψ of the set of

isotope traces F into the set of isotopic envelopes E , ψ(F) = {Ei}pi=1 = E with the property

p⋃
i=1

Ei = F (6.10)

The choice of partitions φ and ψ is guided by a set of distance functions ∆ that

define distances between centroids, isotope traces, isotopic envelopes, etc. and objective

functions λF and λE that describe “good” isotope traces and isotopic envelopes, respectively.

The choice of distance and objective functions, along with choice of optimization procedure,

characterizes an algorithmic approach for solving this clustering problem. A defining general

property of isotopic envelopes, however, is the regular spacing between component isotope
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traces. In addition, for virtually all molecules from biological sources we expect that if there

is an isotope with index j and an isotope with index j + 2, then there exists an isotope with

index j + 1.

An isotopic envelope E is the set of isotope traces Fi that are produced by a given

analyte/charge state combination: E = {Fi}qi=0 subject to the constraint that the m/z

difference between each consecutive (assuming an ordering of centroids from least mass to

greatest mass) isotope trace in E must be equivalent to k
zE

+ ε, where k is the mass of a

neutron, zE is the integer charge of E and ε is a noise tolerance parameter. That is, assuming

an indexing function ιµ : E × N → F that returns the ith least massive isotope trace in an

isotopic envelope:

ιµ(F, i+ 1)− ιµ(F, i) =
k

zE
+ ε, 1 ≤ i ≤ |E| − 1 (6.11)

The m/z m of the jth isotope trace in E must be roughly equivalent to

m =
m̃+ jk

z
(6.12)

where m̃ is the uncharged molecular weight of the ion.

Every isotope trace consists of signal from at least one isotopic envelope, and, in the

case of overlapping isotopic envelopes, an isotope trace may be composed of signal from more

than one isotopic envelope.

6.3.1 Extant Objective Functions

FeatureFinder [115] is an isotopic envelope extraction algorithm in OpenMS that searches

directly for E. Although the details are not completely clear, it appears that the algorithm

attempts to minimize

λE =
∑
E∈E

∑
c∈E

GE(c) (6.13)
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where the GE compute a comparison between the (µ, τ , α) values for a centroid and the

expected centroid values obtained from a heuristic isotopic envelope shape. Note that isotopic

trace extraction is ignored.

MSInspect [7], another approach to isotopic envelope extraction, groups all co-eluting

signals and compares them to a simulated envelope calculated from a Poisson distribution

parameterized by m/z, with the goal being to minimize the KL divergence between the

Poisson distribution and the “distribution” of abundance in an instantaneous profile of the

envelope at time τ :

λE =
∑

F∈E,c∈τF

P̂ (cα) log
P̂ (cα)

Pm(cµ)
(6.14)

where the notation c ∈τ F means that c ∈ F at time τ , E is the maximal intensity

(instantaneous) isotopic envelope (at time τ), P̂ (·) is the ratio of the intensity of isotope trace

F (at time τ) to the total intensity of all isotope traces F ∈ E (at time τ), and Pm(·) is the

value of the Poisson distribution at cµ.

6.3.2 Proposed Objective Functions

We propose an alternative objective function for isotopic envelope extraction:

λE = βI(E) + (1− β)J(E), 0 ≤ β ≤ 1 (6.15)

where β is a relative importance weighting coefficient. The first term computes the deviation

of member isotope traces from the expected charge-based m/z interval—we want the isotope

traces in envelope E to fit expected m/z spacing:

I(E) =
∑

Fi,Fj∈E∧
Fµi <F

µ
j ∧

∀
F
µ
k
∈EF

µ
k >F

µ
i =⇒ Fµk >F

µ
j ∨Fk=Fj

|(F µ
i − F

µ
j )− k

zE
| (6.16)
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The second term computes the deviation in elution time of member isotope traces—we want

all the isotope traces in isotopic envelope E to co-elute within a small time window:

J(E) =
∑

Fi,Fj∈E

F τ
i − F τ

j (6.17)

where F τ could be defined analogously to Equation 6.7, could be the maximum intensity for

isotopic trace F or could be some other reasonable definition for isotopic trace elution time.

We want to optimize E and the zE so that λE is minimized; that is, we want to find

charge-state/isotopic-envelope pairs such that the errors in expected m/z and co-elution time

are minimized.

The isotopic envelope extraction segment of the MaxQuant [22] algorithm is one of

the possible instantiations of this objective function, though many possibilities exist for how

to set the allowable m/z and RT error and how to generate the prerequisite list of isotope

traces.

6.3.3 Alleviating Current Limitations in Isotopic Envelope Extraction

Isotopic envelopes are rich with data: the expectation of contiguous isotope traces with a

uniform m/z charge gap, and similar maximal abundance across all isotope traces. Accounting

for this behavior is not possible without adopting an isotope trace-centric approach to data

extraction. Reliance upon maximal elution time alone—an approach that is susceptible to

conflation with overlapping envelopes in complex samples—is not a sensitive approach in

envelopes of lower abundance, where maximal elution times are not pronounced. Moreover,

by first finding the isotope traces, the exact m/z of each isotope trace can be calculated using

a weighted average, alleviating the need for larger than theoretically justified isotope trace

gaps, which will not be sensitive in complex samples with overlapping isotopic envelopes.

Instead, the proposed objective functions leverage a precise and reliable m/z charge gap and

adjacency of isotope traces along with maximal elution times, using all the information in

the data.
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6.4 Correspondence

The final objective of almost every MS experiment is the differential analysis of more than

one MS run. This comparison allows the identification of significant quantity and component

differences, useful for applications such as drug design, disease treatment, biological processes

research and chemical forensics. Correspondence yields a mapping between isotopic envelopes

in different runs (see Figure 6.4), a prerequisite for differential analysis.

The combination of noise from within one run (enumerated above) and noise from

run to run—most notable in retention time shifts, where an isotopic envelope appears at a

different retention time or with a compressed or stretched RT length compared to another

run—make LC-MS correspondence non-trivial.

The correspondence mapping should again optimize an objective function which, in

turn, characterizes an algorithm choice for solving the correspondence problem.

6.4.1 Extant Objective Functions

According to a recent review on LC-MS correspondence algorithms [97], all extant approaches

use either centroid data or a reduction of isotopic envelope traces into a single centroid. Of the

almost sixty algorithms reviewed there, nearly all use the same objective function—finding a

family of one-to-one partial functions χr : Er → E∗ (a different function for each experimental

run r), where E∗ is the set of envelopes from a reference run, that minimizes global RT and

m/z distance between isotopic envelopes (in any of their reduced forms, according to the

authors):

λcorr =
∑
E∈Er

δ(E,χr(E))τ,µ (6.18)

where δ()τ,µ is a distance function defined over RT and m/z.

The continuous profile model (CPM) [58] uses a different objective function, and

thus is free from the reference requirement that most other algorithms have, allowing for a
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Figure 6.4: Objective functions for correspondence must allow a mapping from an isotopic
envelope in one run to an envelope in another, or to none, if there is no corresponding isotopic
envelope. Here, the unillustrated relations would yield FALSE.

symmetric solution (one that is not dependent on the choice of a reference run). Additionally,

the mapping is somewhat more localized than that of most correspondence algorithms. CPM

minimizes the log likelihood of differences between a hidden Markov model mτ of the RT of

a latent run and observed runs:

λcorr = log p(D|mτ ) (6.19)

where D is the set of observed runs.

6.4.2 Proposed Objective Functions

In contrast to existing LC-MS correspondence objective functions, the objective functions

suggested here use the entire isotopic envelope. This allows greater discrimination by using

isotope trace quantity and spacing to match isotopic envelopes from different runs. This

extra discrimination is essential given the amount of RT variance and (to a lesser degree)

m/z variance present in the data.

Let R be a set of runs, each of which has an associated set of isotopic envelopes

Er = {Er
i }

pr
i=1, 1 ≤ r ≤ |R| and let Ẽ =

⋃
r Er. We seek to find a binary equivalence relation ρ

69



that induces a set of correspondence classes over Ẽ that is reflexive (an envelope corresponds

with itself), symmetric (if envelope E1 from run 1 corresponds with envelop E2 from run 2,

then E2 also corresponds with E1) and transitive (if envelope E1 from run 1 corresponds

with envelope E2 from run 2 and envelope E2 corresponds with envelope E3 from run 3, then

E1 corresponds with E3); and if ρ(Er
i , E

s
j ) = TRUE, then for k 6= i, ρ(Er

k, E
s
j ) = FALSE and

for k 6= j, ρ(Er
i , E

s
k) = FALSE (an envelope from one run may have 0 or 1 matches from any

other run; note that due to reflexivity, this also means that two non-identical envelopes from

the same run never correspond).

This relation should minimize

• The difference in charge state between corresponding isotopic envelopes, δcharge.

• The difference in m/z between isotope traces in corresponding isotopic envelopes, δmzit .

• The difference in elution duration between isotope traces in corresponding isotopic

envelopes, δdur.

• The difference in isotope abundance ratios between corresponding isotopic envelopes,

δratio.

• The difference in m/z between corresponding isotopic envelopes, δmzie .

• The number of singleton correspondence classes, δorphan.

• The difference in retention time between corresponding isotopic envelopes, δrt.

An objective function incorporating all of these variables can take many forms, with

perhaps the simplest generalization being a weighted linear combination, with weighting

coefficients ω allowing relative prioritization:
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λcorr =
∑

ρ(E1,E2)

ωchargeδcharge(E1, E2) + ωmzitδmzit(E1, E2)

+ ωdurδdur(E1, E2) + ωratioδratio(E1, E2)

+ ωmzieδmzie(E1, E2) + ωorphanδorphan(E1, E2)

+ ωrtδrt(E1, E2) (6.20)

with the summation over ρ(E1, E2) meaning a summation taken over all pairs of envelopes

E1, E2 ∈ Ẽ for which ρ(E1, E2) = TRUE. Given the weighting coefficients ω, the most

desirable correspondence would be that induced by the relation ρ∗ that minimizes λcorr (see

Figure 6.4),

ρ∗ = argmin
ρ

λcorr

6.4.3 Alleviating Current Limitations in Correspondence

Recently, several ubiquitous shortcomings were identified in a review of over 50 LC-MS

correspondence algorithms [97]. The most significant of these shortcomings was the fact that

all current LC-MS correspondence algorithms make model assumptions that fail to capture

common behavior. In other words, each algorithm is constructed in such a way that the

algorithm is guaranteed to get the wrong answer under certain conditions that are common

to real LC-MS data. The behaviors discussed included the ideas that:

• Not all analytes appear in all replicates.

• Elution order can swap.

• Shifts occur in m/z as well as in RT.

Some correspondence methods reduce isotopic envelopes to a single point representation.

This deprives the method of a rich source of distinguishing data found in full isotopic envelopes—

the expectation of contiguous isotope traces with a uniform m/z charge gap, number of
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isotope traces, and relative abundance ratio of isotope traces. Similarly, most correspondence

algorithms conduct an initial RT alignment, where signals (almost always much-reduced

from the full isotopic envelope, and rarely built up from isotope traces to isotopic envelopes)

are shifted up or down in RT (preserving original order) in order to most closely match a

reference run. This is invariably followed by direct matching. The problem is that the initial

warping is a lossy procedure that adulterates the original RT time, which would be useful to

probabilistically ascertaining the closest corresponding isotopic envelope.

The proposed objective function does not force matches between runs, as it is very

common for species to either not be present or fall below the signal-to-noise ratio in differential

studies. Instead, the proposed objective function leverages the full breadth of isotope envelope

information, allowing a rigorous direct comparison of candidate correspondences based on all

available data to select the most likely correspondence (in the sense of minimizing error), or

no correspondence at all if that is the most likely case given the data.

6.5 Conclusion

We present a concise attempt to formalize LC-MS data clustering problems, describing the

constructs of isotope traces and isotopic envelopes and their relational structure. We provide

a review of current approaches to isotope trace extraction and LC-MS correspondence, and

propose novel objective functions for both tasks that address shortcomings in current methods.
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Chapter 7

Mspire-Simulator: LC-MS Shotgun Proteomic Simulator for Creating Realistic

Gold Standard Data1

Abstract

The most important step in any quantitative proteomic pipeline is feature detection (aka peak

picking). However, generating quality hand-annotated data sets to validate the algorithms,

especially for lower abundance peaks, is nearly impossible. An alternative for creating

gold standard data is to simulate it with features closely mimicking real data. We present

Mspire-Simulator, a free, open source shotgun proteomic simulator that goes beyond previous

simulation attempts by generating LC-MS features with realistic m/z and intensity variance

along with other noise components. It also includes machine learned models for retention

time and peak intensity prediction and a genetic algorithm to custom fit model parameters for

experimental data sets. We show that these methods are applicable to data from three different

mass spectrometers, including two fundamentally different types, and show visually and

analytically that simulated peaks are nearly indistinguishable from actual data. Researchers

can use simulated data to rigorously test quantitation software, and proteomic researchers

may benefit from overlaying simulated data on actual data sets.

1Noyce, A.B., Smith, R., Dalgleish, J., Taylor, R.M., Erb, K.C., Okuda, N., and Prince, J.T.: Mspire-
Simulator: LC-MS shotgun proteomic simulator for creating realistic gold standard data, Jour-
nal of Proteome Research, 12(12), pp. 5742-5749, 2013
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7.1 Introduction

A single liquid chromatography-mass spectrometry (LC-MS) run is inherently capable of

quantifying upwards of 100,000 peptides [64]. Unfortunately, in a typical analysis the

majority of this data is discarded due to difficulties in identifying and accurately picking

chromatographic peaks, especially those of lower abundance. Increasing the accuracy of peak

picking results in the detection of more features that can be compared across runs. More

accurate peak picking can also influence mass estimates and therefore yield an increase in

the number and quality of identifications [22]. It ultimately simplifies cross-run comparisons

of feature abundances and increases the overall accuracy of those quantitative comparisons.

In other words, peak picking quality influences the entire downstream analysis.

For these reasons, it is undoubted that the most important step of a proteomic

workflow is feature detection, for which many algorithms exist[14, 22, 75]. However, very

little has been done to fully test or compare the performance of these algorithms. In large

part, this is due to the challenging nature of creating gold-standard data. Fully annotating

actual complex proteomic data sets, or even small portions, is extremely time consuming,

difficult, error prone, and subjective. Because MS/MS annotation is rare for small peaks and

because they have intensities near the signal to noise threshold, accurate human annotation

of small peaks in a complex sample is very likely impossible.

Simulation is routinely used in related fields when gold standard data is difficult

to come by (e.g., systems biology network simulation) [80] or the cost of performing each

experiment is high (simulated ion movement in MS fields) [83]. For quantitative mass

spectrometry, an attractive alternative to using hand-labeled data sets is to simulate actual

data using noise parameters derived from experimental data. An ideal simulator would

generate data sets where all aspects of the data are known, the various noise components are

adjustable, and the peak characteristics conform to those found in biologically derived data

sets. Such data sets would be invaluable for comparing algorithms because accuracy can be
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comprehensively and quickly ascertained programmatically. The speed of this feedback will

also aid in the creation of new, more sophisticated algorithms.

Because simulators can produce fully defined peaks of any size, data sets produced

by simulation are particularly well-suited to test algorithms for their ability to detect and

accurately quantify small LC peaks. Small peaks are highly desirable targets for identification

and quantitation because: 1) seminal biological events may occur at low quantities (e.g.,

upstream signal transduction) 2) a change in state to low quantity may be as significant

as an increase in quantity 3) post-translational modifications may manifest themselves as

a drop in the unmodified peptides concentration 4) lower abundance peaks constitute the

majority of peaks in an LC-MS run and these are inaccessible by current MS/MS regimes. By

quantifying low abundance peaks, proteomic and individual protein coverage may improve,

and intra-protein variation can be tracked.

Many proteomic workflows allow users to examine their experimentally derived frag-

mentation spectra alongside a representation of the theoretically matched spectrum (i.e.,

an MS/MS fragmentation view). With a simulated LC/MS data set in hand, a somewhat

analogous view could be generated for the user where simulated MS1 data is layered on top

of actual data. This view would encourage a researcher to examine their MS1 output in order

to reconcile what they can observe with what they expect to observe. A peak that went

unidentified may still be present, and researchers would then know where to look within their

MS1 data. Alternatively, a peak that should have been present may be absent prompting

researchers to simulate data with conjectured post-translational modifications in an effort to

locate the modified peak. Simulated data sets have the potential to augment the traditional

proteomics workflow in which researchers often neglect to thoroughly examine their MS1

data.

While previous MS1 proteomic simulators [9, 87] have been created, a simulator that

mimics the intensity and m/z variance found in real data sets is critical for testing peak-

picking/quantitation algorithms. Here we present a full featured LC/MS shotgun proteomics
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simulator, Mspire-Simulator, that generates peptide peaks with realistic m/z and intensity

variance and elution profiles. Machine learning is used to generate peaks with a realistic

retention time distribution as well as peak heights reflecting peptide ionization efficiency.

7.2 Methods

Mspire-Simulator takes as its input FASTA files containing the protein sequences that are

to be in the simulated run. Using one of 16 proteolytic enzymes and relevant digestion

parameters each protein sequence is in-silico digested into peptides. Each peptide’s charge,

mass and theoretical spectrum, including the isotopic distribution, is calculated. These

calculations are currently used to create centroided data. The simulator will be extended

to create profile data in the future. Centroided data will be most useful initially because

most analytical software deals with this type data. The simulator is implemented in the

Ruby programing language and makes use of and extends the mspire (mass spectrometry

proteomics in Ruby) library [76]. It is available under the MIT license and works out of the

box with sensible defaults. Customization to data from different machines is achieved through

an included Ruby script which uses a genetic curve fitting algorithm. This script produces

SVG files that visualize the fits as well as the necessary parameters for Mspire-Simulator to

adapt its simulations.

The actual data used to create our default simulation model was obtained from our in

house LTQ-Orbitrap mass spectrometer coupled with reverse phase liquid chromatography

using nanospray ionization. The data is derived from an LC-MS shotgun proteomic run

of complex Human Embryonic Kidney (HEK-293T) cells. We used a Waters Nano Acuity

column (15cm long). A solvent used was 95:5 water to acetonitrile and 0.1% formic acid

and B solvent was acetonitrile and 0.1% formic acid. Gradient was formed by 5% - 60%

solvent mix over 70% of the run. This data along with all files produced and used is deposited

at https://chorusproject.org/anonymous/download/experiment/-17116340021687089. The

76



MM14 data is already available at http://msbi.ipb-halle.de/msbi/centwave/, and the Orbitrap-

Velos data which is available upon request.

Orbitrap-Velos data was generously provided by the Christine Vogel lab and was from

a ubiquitin pulldown from Saccharomyces Cerevisiae (Eksigent NanoFlow Plus, LC gradient

2-90% acetonitrile over 4.5 hrs at flow rate 400nL/min). MM14 data is from the Bruker

MicrOTOF-Q instrument, is described by Tautenhahn et al. and details can be found in that

publication [104].

7.3 Results

Mspire-Simulator models elution, variance in intensity and variance in the mass to charge

ratio (m/z) and predicts retention times and intensities for peptides. We follow the convention

of Cappadona et al. and refer to a peptide feature as the full chromatographic profile of a

peptide (at a given charge state) and a peptide peak as an individual isotopic component of

a feature [14]. Figure 7.1 outlines the overall process of simulation, and we consider each

component in turn.

7.3.1 Retention Time and Intensity Prediction

A peptide is first situated along the retention time axis (see Figure 7.1A). Both retention

time and intensity are predicted for each peptide using a machine learned model that was

built in WEKA [39]. We used the M5Rules [48] algorithm for retention time prediction and

the M5P [112] algorithm for intensity prediction, both of which gave the best correlation

coefficients for our test data, 0.96 and 0.74 respectively using the internal WEKA ten-fold

cross validation technique. The test data can be downloaded using the above hash. These

prediction models were trained on in house data which contained amino acid counts, average

m/z value, the charge state, mass, retention time, and a binned intensity value for 1484

peptides. The intensity values were binned into ten bins based on magnitude ranges. This

allowed for a better prediction of intensities. The user may replace the default models with
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Figure 7.1: Overall process of simulation from theoretical spectrum to realistic peaks. The
underscored 3d box in part B and E designates the specific peak shown in following parts. A:
The theoretical spectrum calculated for a certain peptide. B: Ideal elution profiles are given
to the spectrum. C, D: Intensity variance is calculated for each peak in the elution profile. E,
F: Mass to charge variance is calculated for each peak in the elution profile.
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custom/better ones in order to mimic other configurations and machines. For each peptide a

single retention time and intensity is predicted; these values are used as starting points from

which the retention times and intensities of all the centroids related to a particular peptide

are generated. The retention times are coerced into times that conform to a user specified

sampling rate (e.g. one scan per two seconds). Elution profiles are generated by sampling

from the normal distributions of parameters t and f.

7.3.2 Feature Shape

Peptide features are modeled along the m/z axis (see Figure 7.1A) by predicting the charge

states and isotope distribution of a peptide. For charge state prediction, a user specifies a pH,

after which a standard iterative procedure is used to determine the ratio of charge states that

would be observed (e.g. for the peptide DRVYIHPF at a pH of 2.0, 29.045% of this peptide

would have a charge of +2 and 70.959% a charge of +3). We label this parameter ionized pH

to indicate that it represents the acidity of the peptide as it enters the mass spectrometer and

not necessarily in LC buffer. Isotope distributions are calculated by FFT convolution [78].

The elution profile (see Figure 7.1B) is produced by function composition of a dynamic

standard deviation with a Gaussian function. The standard deviation (σ) is based on the

relative position along the elution curve:

σ = tx+ f (7.1)

where x is the relative retention time index from the starting retention time of the feature, t

is the tailing factor and f influences the shape at the front of the profile. The elution profile

is then given by substitution of σ into a Gaussian function:

i = he−0.5(x−µ
σ

)2 (7.2)
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Figure 7.2: Elution Peak Shape. Max intensity normalization was used in each case. The
noisy gray line shows a peak from actual data. Dashed line shows the function that the
simulator uses. The simulators model can be modified to fit many elution profiles present in
real data. A: LTQ-Orbitrap. B: Orbitrap-Velos. C: Qq-TOF.

where i is the intensity at that point in the elution, µ is where the apex of the curve is located,

x is as above, and h is an initial height factor which determines the maximum height of the

peak and is the same for each peptide. Thus, i is a generalized intensity which is later modified

by a variance model and predicted intensity values as mentioned above. This produces a

skewed elution profile that fits peaks derived from a wide variety of elution conditions as

shown for data an LTQ-Orbitrap (see Figure 7.2A), a Quadrapole Time-of-Flight (Qq-TOF)

(see Figure 7.1B) and an Orbitrap-Velos (see Figure 7.1C).

For the mass spectrometer types we examined there was a global relationship between

the intensity of a peak and the variance of its measurement. We observed larger intensity

variance in more intense features and thus also nearer the apex of an eluting peak (see

Figure 7.1C,D). An inverse exponential function captures this relationship:

σ = m ∗ (1− e−c∗i) + d (7.3)

where σ defines the standard deviation in intensity given the intensity value, i. The c, d, and

m parameters represent experimentally derived constants that can be used to fine-tune the

function for different mass spectrometers or run conditions (see Figure 7.3A,B). σ is then

composited into a Gaussian function for each peak, again like above, and the ideal intensity

is modified by drawing stochastically from this distribution. Our intensity variance model
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Figure 7.3: Intensity and m/z variance. Circles show simulated standard deviation variance
and pluses show actual standard deviation variance. Max intensity normalization was applied
in each case. The x axis is on a log10 scale. A-B: Standard deviation is calculated along
intervals of ten peaks across the elution profiles. A: The simulator models this behavior from
a LTQ-Orbitrap accurately with a small RMSD between actual and simulated of 0.9051.
B: It can also model Qq-TOF data accurately; RMSD of 1.1167. C: Inset is one actual
elution peak and the large image is four combined (RMSD = 0.1153). D: M/z variance from
Qq-TOF data. C-D: This shows the general trend of measured m/z values varying more at
low intensity signals and less at high intensity signals as well as the simulators ability to
mimic this observation.

adequately mimics real data. When compared to actual data we observe a RMSD of 0.9051

(see Figure 7.3A,B).

The m/z variance is a function of intensity and therefore may vary between peptide

features, and also within each elution profile contained in a feature (see Figure 7.1E,F). This

is modeled by the following function:

σ = m ∗ i−y (7.4)

Where σ is the standard deviation, i is the relative intensity of the feature at that

point in its elution profile and y is another experimentally derived constant that can be fit to
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different data types. The standard deviation function is composited with a Gaussian function,

similar to the above elution functions, and is then randomly sampled from to give the quantity

of m/z variance in either direction. The m/z variance model produces realistic results based

on the comparison of simulated m/z variance to actual m/z variance (see Figure 7.3C,D).

Feature shape is further modeled by given protein abundances. The abundances can

be specified in the FASTA file header by a ’#’ symbol followed by a value representing

the percentage of that protein in the sample. If no abundances are given, equal molarity

is assumed. These values are then used to modify the total area under the function that

determines feature shape by a simple scaling procedure.

7.3.3 Drops and Noise

At certain retention times, in real LC-MS runs, entire scans where very few if any peaks

are observed are referred to as drops (e.g. PeptideAtlas accession PAe000142 contributed

by S. Markey). Our model also simulates drops at random retention times by a specified

percentage of the total run time. This elevates the realism in the simulation and adds another

dimension of control when using simulated data to test analytical software.

The simulator has the ability to add white noise to the spectra based on density and

intensity factors specified by the user. The higher the density factor, the more white noise

there is in each spectrum. Intensities are pulled from a flat random distribution that varies

between a maximum and minimum value given by the user. These parameters, along with

the option to turn off the white noise completely, give the user complete control for testing

purposes.

7.3.4 Merging Overlapping Peaks

As a final processing step, overlapping peaks are detected and merged. This is accomplished

by using a ppm range to define whether two peaks are sufficiently close to be overlapping

or not. The intensities of the peaks to be merged are summed and the new m/z value is
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calculated by a weighted average of the original m/z values weighted by the intensities of the

respective peaks. We use 1/4 of the m/z variance in ppm to define the range that we use to

detect overlapping peaks, and this parameter is adjustable by the user.

7.3.5 MS/MS

Theoretical fragmentation spectra are produced by generating fragment ion formulas for all

possible cleavages and calculating the mass for each ion, at the predicted charge states. The

ion types are configurable, and masses can be average or monoisotopic. The fragmentation

spectra are produced by the MS-fragmenter gem, freely available from Rubygems.org.

7.3.6 Modifications

Mspire-Simulator has the ability to add modifications to specified residues and termini.

Modifications are read in by the user specifying a modification ID from the PSI-MOD.obo and

which residue/terminus to apply it too. These modifications are then used in the calculation

of each spectrum. Since there will always be modifications in peptide samples this is an

important part of simulation.

7.3.7 Output

The simulated run is written to an mzML file that can be visualized with any mzML file

viewer. The mzML format is the standard de jure and is quickly becoming the standard

de facto for mass spectrometer data. Cross-platform converters like Proteowizard [50] can

convert mzML into mzXML [72] or other formats. Alternatively, the code base itself could

easily be extended to directly output other representations of the data as well. The program

also creates an SQLite, XML or CSV file which contains information on all of the data in the

simulated run which can then be used to validate peak picking and quantitation software.
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Figure 7.4: Demonstrating the visual output from the curve fitting program. Max intensity
normalization was used for each. This is a fit of Orbitrap Velos data. The blue dots show the
actual data and the red smooth lines represent the curve fit. This shows the ability to quickly
generate parameters needed to simulate different types of data. This output took 5 min.

7.3.8 Parameter Fitting Automation

Simulating data from different mass-spectrometers and operating conditions requires some

customization of noise and variance parameters. We developed a genetic algorithm to discover

parameters from actual data. Figure 7.4 demonstrates the automatic fitting of Orbitrap Velos

data, and it works equally well on the many peaks and instrument types we have tested.

7.3.9 Using the Simulator to Assess Quantitation Performance

The lack of quantitative comparison of data processing and wet lab protocol is due in large

part to the daunting task of obtaining labeled data [96, 98]. The size and complexity of

MS data sets precludes obtaining labeled data without a significant outlay of resources.

Mspire-Simulator provides a facile method for generating any quantity of labeled simulated

data. As a case study, consider Smith et al, where Mspire-Simulator data used in conjunction

with hand labeled real data allowed the use of qualitative metrics to evaluate the accuracy of

a peak summarization, a data processing step in non-chromatographic studies [92].
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7.4 Discussion and Conclusion

Mspire-Simulator succeeds at creating highly realistic LC-MS peptide features as demon-

strated by the comparison between actual and simulated data shown in Figure 7.6. Under

macro- and microscopic inspection, analytically and visually, the two features are virtually

indistinguishable (Table 1). An entire simulated run of Bovine Serum Albumin (BSA) Fig-

ure 7.5 shows the similarity between the simulated data and what is commonly observed

in performing an actual BSA digest during quality control runs. Mspire-Simulator can

also produce highly complex runs (see Figure 7.7) as well as simulate data from different

mass-spectrometers (see Figures 7.2 and 7.3).

Table 7.1: Statistics comparing the two features shown in Figure 5. Normalized values were
calculated by using a max intensity normalization. Isotope index (I.I.) from least to most
abundant.

Statistic Actual Simulated Difference
m/z Var I.I. 1 0.095 0.215 0.120
m/z Var I.I. 2 0.070 0.137 0.066 (ppm)
mz Var I.I. 3 0.239 0.373 0.134 (ppm)
m/z Var I.I. 4 0.255 0.203 0.043 (ppm)
m/z Var I.I. 5 0.032 0.296 0.264 (ppm)
Intensity Var 26.3 25.8 0.52

Elution Length (s) 43.384 43.360 0.025
Normalized Mean Intensity 21.90 21.35 0.55

Normalized Median Intensity 8.20 8.08 0.12
Num Samples / Num Peaks Used 73 85 12

Num Peaks in Quartile 1 21 21 0
Num Peaks in Quartile 2 27 25 2
Num Peak in Quartile 3 15 21 6
Num Peaks in Quartile 4 10 16 6

With Mspire-Simulators abilities, layering simulated data next to or on top of actual

data, visually or analytically, could become standard practice in proteomicsmuch the way

MS/MS spectra are layered onto predicted b and y ion series to identify potential database

matches. By comparing actual data with the model and then refining the model, a feedback

loop is created that has utility not only in affirming what is known but in pointing out what
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(a)

(b) (c)

Figure 7.5: A simulated BSA run ((a), left) is compared to an actual BSA run ((a), right).
As can be seen, there are differences in retention times and intensities between the two runs
indicating that refinements can be made to these two prediction models. A detail segment of
the simulated ((b)) and real ((c)) BSA runs show that for each there are labels not found in
the other (red) while there are many that are found in both (black).

is missing. Is an expected peptide missing because it has been modified? Are changes in the

ratios of charge states indicative of pH or electrospray voltage aberrations? These and other

aspects of a run can now be queried, and this process will inevitably result in more complete,

more refined models of shotgun proteomics.

Refinements to Mspire-Simulator will focus initially on technical aspects of a LC-

MS proteomic experiment. These include: a more explicit model of a peptides ionization

efficiency [12, 63]; the pH of a solution as buffer concentrations change and as influenced

by the electrospray process; the relative rates of tryptic digestion as a function of adjacent

amino acid residues [79]; profile data simulation; exploring the relationship between variance
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Figure 7.6: Left side shows simulated features and right side shows the actual features. A:
Visual comparison of LC-MS feature from the peptide: HLVDEPQNLIK (single letter code
amino acids). See Table 1 for analytical comparison. B: Detail of a single elution profile
showing m/z variance characteristics. Simulated m/z variance is very similar to actual (see
Table 1; row 1-5).

parameters and m/z and retention time; and improvements in peak merging. Future efforts

will be devoted to these refinements.

Mspire-Simulator could also be extended with more sophisticated modeling of biological

phenomenon. More rigorous post-translational modification or splice-variant prediction would

alter the landscape of predicted peptides. Protein level enrichment could easily be added

in, reflecting predictions about localization in a fractionated sample for instance. While

biological questions are appropriately addressed after analysis of the raw data, it is nonetheless

intriguing to consider mapping the biology as a simulated data set onto the raw data in an

effort to generate putative identities for unanticipated peaks.

As simulated data becomes more sophisticated, we are aware of the possibility of its

inappropriate use. The mzML file format is open and completely editable. As it currently

stands, we see no way to prevent a simulated mzML file from being tampered with in order

to be passed off as actual data. But, the problem is not as hopeless as it might seem at first

glance: the mzML format encourages use of a file hash tag audit trail, so instrument produced
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Figure 7.7: Birdseye view of a simulated complex human cell run. 50,000 peptides were
taken from the human FASTA database and simulated in two charge states creating 100,000
features. The run was generated in 31hrs on a single 2.50GHz core and used 1.9Gb of RAM.
White vertical lines represent dropped/lower signal and are intentionally included. The run
demonstrates the simulators ability to generate highly complex runs. Purple peaks are the
highest intensity, then red, yellow, and gray the lowest. Viewed in TOPPView [101].
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data should always point back to a vendor produced raw data file. Deciding whether a file

was simulated is now roughly equivalent to deciding whether a file was tampered with, and

that is checking against a vendor produced raw data file. The potential for the fraudulent

use of simulated data should serve, then, to encourage what researchers should be doing

anyway: providing access to raw data and using audit trails. In any event, we suggest that the

potential benefits of simulation software far outweigh the challenges presented by potential

misuse.

Mspire-Simulator will be useful initially in testing and developing algorithms for

peak picking and quantitation. Simulated data is not meant to replace testing on actual

data, but to facilitate more rigorous testing of algorithms. Data may be simulated with

a range of peak and noise characteristics, and strengths or flaws in algorithms uncovered.

Mspire-Simulator will be especially useful in testing algorithms for their ability to accurately

detect and quantify small peaks because the provenance of every centroid is known. Simulated

data may ultimately facilitate workflows that find and quantitate an order of magnitude more

peptides than is currently possible.
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Chapter 8

JAMSS: Proteomics Mass Spectrometry Simulation in Java1

Abstract

Countless proteomics data processing algorithms have been proposed, yet few have been

critically evaluated due to lack of labeled data (data with known identities and quantities).

Although labeling techniques exist, they are limited in terms of confidence and accuracy.

In silico simulators have recently been used to create complex data with known identi-

ties and quantities. We propose JAMSS: a fast, self-contained in silico simulator capable

of generating simulated MS and LC-MS runs. JAMSS improves upon previous in silico

simulators in terms of its ease to install, minimal parameters, graphical user interface,

multi-threading capability, retention time shift model, and reproducibility. The simulator is

open source software licensed under the GPLv3. The software and source are available at

https://github.com/optimusmoose/JAMSS.

1Smith, R. and Prince, J.T.: JAMSS: Proteomics Mass Spectrometry Simulation in Java, Bioin-
formatics, 2014 (in submission)
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8.1 Introduction

Proteomics studies require the prediction of the quantity and identity of proteins in sample.

The accuracy of the determination relies wholly on the accuracy of the data processing

pipeline modules that systematically extract and process the components of the sample

output file [93, 96]. Despite the criticality of data processing accuracy, very few published

algorithms have quantitative comparisons against other algorithms using labeled data—data

where the correct protein quantity and identity are known [98].

Common strategies for labeling data are limited in terms of confidence and accuracy.

For example, MS/MS identifications are biased towards the approximately 16% most intense

signals, and have an approximately 50% false positive rate [64], leading to evaluative results

that are not representative of the data set, particularly among the more biologically significant

but less-abundant peptides. Hand labeled data sets exist [21], but due to the complexity of

labeling by hand usually consist of very small segments of data within an intensity threshold.

Using existing tools, hand labeling consists of many subjective decisions, and creating a set

of replicates would take years.

Construction of in silico data sets is an attractive alternative to labeling, as these data

sets automatically include labels. In silico simulation consists of emulating the physiochemical

processes involved in the mass spectrometry analysis of a sample in order to produce an

mzML (or equivalent) output file similar to what would be generated in a real run but without

any material or instrument time cost. Although more research is needed before an exact

replicate of a real sample run can be simulated, the overall characteristics of the output data

in terms of density, noise, signal shape, etc. are similar enough to be valuable as labeled data

for LC-MS data processing algorithmic evaluation.

LC-MS simulation is still in its infancy. LC-MSsim, an incorporated module of

OpenMS, was the first simulator to produce full-featured MS simulated data [87]. It has

since been replaced by MSSimulator, featuring more realistic isotope trace variance (in both

intensity and m/z) and MS/MS simulation [9]. Most recently, Mspire-simulator, a stand-alone
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simulator in the Ruby programming language, provided automatic charge modeling, realistic

hourglass-shaped isotope traces (increased variance at lower intensities), direct control over

post-translational modifications (PTMs), and the ability to extract simulation parameters

from existing mzML files using machine learning [70].

There remains much to be done in MS simulation. Existing simulators have involved

installation processes, requiring installation of their parent libraries and a sometimes onerous

degree of dependency management. They are also both command-line programs with very little

documentation. Neither program is multi-threaded. Both programs feature many parameters,

some of which significantly alter the simulation outcome in unclear ways. Although Mspire-

simulator produces run-to-run variation (unlike MSSimulator), it does not vary the RT of

eluents across runs and cannot produce a clone of a previous run when fed the same input

and parameters. Although Mspire-simulator’s isotope trace generation features more realistic

variance in m/z and intensity than MSSimulator, it is many times slower and has no bound

on RAM requirements. Both programs seem limited in regards to PTMs: both seem to

render all PTMs as static, even variable ones. MSSimulator produces the same isotope trace

shape (scaled for intensity) for every peptide, meaning its utility for generating data sets for

evaluating data processing algorithms is limited.

This paper describes the Java Mass Spectrometry Simulator (JAMSS), a novel sim-

ulator designed to address each of the above-mentioned drawbacks of current simulation

software.

8.2 Methods

JAMSS takes any protein .fasta file as input. Optionally, users can specify the quantity of

each protein as a percentage of the total sample content (see program documentation in

README file). The GUI provides several clear options to modify the output. For example,

the user can specify how many cores to use if using a multi-core machine. They can select

one of 16 digestion enzymes. They can select how many scans per second, how many missed
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Figure 8.1: JAMSS has a straightforward GUI interface to facilitate parameter selection for
MS simulation.

cleavages to allow, how many MS2s per scan to generate, how many noise points to include

and at what intensity range, and the pH of the sample. They can control the resolution of the

simulation through a merge parameter. Additionally, the GUI can be set for a one-dimensional

(non-chromatographic) simulation, which is useful in modeling direct injection experiments.

There are also settings for PTMs. The program includes options for carbamidomethylation,

pyroglutamation, phosphorylation, and methionine oxidation. Although these options do

not include all possible PTMs, limiting them by explicit mention allows for treating variable

PTMs as they should be treated: that is, the combinatoric possibilities of all selected PTMs

are calculated, and the total quantity of each protein is split according to the percentage of

the proteins each PTM combination will affect.

After reading the .fasta file, the simulator instantiates N mass spectrometer objects,

one for each CPU core selected by the user. The program delegates each protein sequence to

one of the MS objects until all proteins are processed. Inside the MS object, each protein

sequence is digested. For each peptide, atom counts are calculated from which the isotopic

envelopes and charge are calculated. If PTMs are selected, this process is executed for

each PTM applicable to the peptide. From there, the amino acid profile of the peptide (or

PTM-modified peptide, if applicable) is fed into the same machine learning model used in [70]

to predict the retention time of the peptide (see [70] for details). The intensity of the peptide
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is determined by the user-provided intensity or, if none is provided, an inverse exponential

sample. The shape and variance of each isotope trace in a molecular envelope’s isotopic

envelopes is modeled using the same mechanisms in [70]. Isotope trace shapes are determined

via a modified Gaussian function with sufficient variation so that no two isotope traces are

identical, providing variation for replicate runs. Further variation is achieved by modeling

RT shifts as normally distributed events. From there, each centroid is subject to general

noise in m/z, as well as intensity-specific noise in m/z (providing splayed isotope traces in

the head/tail regions).

Memory usage is bounded by having the MS objects periodically writing their produced

centroids onto disk. Frequency of writing out is determined automatically as a factor of the

size of the JVM selected by the user and the CPUs in use by the user. For faster processing,

more RAM can be selected by the user at runtime. After all centroids are created, the

program finishes each RT scan by merging points within the resolution set by the user and

generating an mzML output file, as well as .csv files to facilitate labeling of each centroid,

isotope trace, and isotopic envelope.

8.3 Results

JAMSS is a GUI-based MS simulator in Java (see Figure 8.1). It creates fully annotated

complex proteomic data sets in both mzML and a convenient .csv format. It can be

used to generate LC-MS and MS data, allowing for the evaluation of a wide range of

data processing algorithms such as isotope trace extraction (both in chromatographic and

non-chromatographic [92] applications), isotopic envelope extraction, molecular envelope

extraction and reduction, and correspondence [97]. It has a limited number of intuitive

parameters, a self-contained one click installation with no external libraries or dependencies,

and supports multi-threading. It creates isotope traces with realistic variance in both m/z

and intensity and has an user set memory upper bound. JAMSS handles variable PTMs

and static PTMs. JAMSS features controlled randomized trace shape generators to create
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run-to-run variation in replicates but uses controlled random seeding so it is possible to

produce a clone of a previous run. It maintains relative protein abundance in isotope traces

accounting for isotope trace variability and abundance distribution over PTMs. JAMSS also

models RT shifts in order to provide more realistic replicates for generating data sets to test

LC-MS correspondence algorithms.

Funding: This work was supported by the National Science Foundation Graduate

Research Fellowship [DGE-0750759] to R.S.
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Chapter 9

Massifquant: Open-Source Kalman Filter Based XC-MS Isotope Trace Feature

Detection1

Abstract

Motivation: Isotope trace detection is a fundamental step for XC-MS data-analysis that

faces a multitude of technical challenges on complex samples. The Kalman filter application

to isotope trace detection addresses some of these challenges; it discriminates closely eluting

isotope traces in the m/z dimension, flexibly handles heteroscedastic m/z variances and does

not bin the m/z axis. Yet the behavior of this Kalman filter application has not been fully

characterized since no cost-free open-source implementation exists and incomplete evaluation

standards for isotope trace detection persist. Results: Massifquant is an open source solution

for Kalman filter isotope trace detection that has been subjected to novel and rigorous methods

of performance evaluation. The presented evaluation with accompanying annotations and

optimization guide sets a new standard for comparative isotope trace detection. Compared to

centWave and matchedFilter—two alternative isotope trace detection engines in the XCMS

software—Massifquant detected more true isotope traces in a real LC-MS complex sample,

especially low-intensity isotope traces. It also offers competitive specificity and equally

effective quantitation accuracy. Availability: Massifquant is integrated into XCMS with

GPL license ≥ 2.0 and hosted by Bioconductor: http://bioconductor.org Annotation

data is archived at http://hdl.lib.byu.edu/1877/3232. Parameter optimization code and

documentation is hosted at https://github.com/topherconley/optimize-it.

1Conley, C., Smith, R., Torgrip, R.J.O., Taylor, R.M., Tautenhann R., and Prince, J.T.: Massifquant:
open-source Kalman filter based XC-MS isotope trace feature detection, Bioinformatics, 2014
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9.1 Introduction

The most important automated data-analysis step in a typical quantitative -omics XC-MS

analysis pipeline is isotope trace (IT) detection [14]2. In liquid or gas chromatography

mass spectrometry (LC-MS or GC-MS, with either specified as XC-MS) analytes elute with

chromatographic separation and are subsequently measured by the mass spectrometer. IT

detection is the first and essential step in enumerating the signals of these analytes.

IT detection is a trivial task when performed on data derived from simple mixtures,

but can be highly challenging for complex mixtures because there are 1) large numbers of

analytes which co-elute, many show interlocking or overlapping isotope envelopes; 2) an

unknown number of analytes; 3) an abundance of ITs with low signal to noise ratio; 4)

significant intensity variation in the signal composing lower abundance ITs due to dynamic

range limitations of the spectrometer; and 5) heteroscedastic m/z variance as a function of

intensity for most mass spectrometers. Unisotropic m/z variance results in that the data

comprising the tails of a IT have larger m/z variance than the data around the mode, and

that low abundance ITs have a larger m/z variance than high abundance ITs.

Though difficult to achieve, increasing the sensitivity and accuracy of IT detection

software influences the entire downstream analytical pipeline [96]. An example: Vast numbers

of peptides go unidentified in proteomic analyses [64]; a more sensitive IT detection would

allow researchers to track and quantify these peptides, leveraging identifications acquired

in other samples. It goes without saying that accurately determining IT boundaries and

distinguishing signal from noise improves quantitation results. Furthermore, accuracy in IT

detection can also result in more accurate precursor mass estimates and therefore yield an

increase in both the number and quality of peptide identifications.

Most IT detection software, such as matchedFilter, relies on the creation of fixed width

m/z bins (buckets) to facilitate finding and quantifying eluting analytes. Though bucketing

is computationally efficient, for complex data sets it is impossible to find a bin size and

2We adopt the MS-omics terminology specified in [95]
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position that excludes closely co-eluting ITs while also being broad enough to fully capture

the IT of interest. To address this shortcoming, Tautenhahn et al. [104] developed a software

package, centWave, which uses a binless pre-scan to first identify regions of interest composed

of centroids. A centroid is a (m/z, intensity) measurement pair at a given time scan of the

chromatographic dimension. Once a region is specified, the centroids are then collapsed into

a one-dimensional chromatogram and wavelet-based curve fitting is performed to separate

closely eluting ITs. The approach is appealing because the initial algorithm identifies zones

of interest in a binless way and because the algorithm used for detecting ITs using intensity

fluctuation in the time domain is sophisticated. However, in this approach subtle shifts in

m/z value are ignored when data are combined into a one-dimensional chromatogram. ITs

which are very close in m/z or with poor chromatographic profiles may not be properly

resolved.

The same year Aberg et al. [1] developed TracMass, a binless IT detection algorithm

which fully utilizes m/z information in distinguishing ITs. TracMass uses a chromatograph-

ically traversing 2-dimensional Kalman filter model (KF)—one dimension focused on m/z

values and the other on intensity values—to determine which centroids belong with each

extending IT. The decision to incorporate a centroid is made by carefully weighing all previous

m/z and intensity evidence of that IT, so mis-incorporation of centroids is rare as the KFs

incorporate more data. Furthermore, the KF accounts for the heteroscedastic variance within

the same IT as intensity values change. The KF approach can disentangle even the most

closely eluting chromatographic ITs. Furthermore, for the non-expert user, TracMass requires

few user parameters for effective operation.

Despite its apparent promise for IT detection in complex samples, no peer-reviewed

publication had compared TracMass performance to leading options [128, 131] until just

recently with TracMass2 [106]. This is not an isolated deficiency—most IT detection algo-

rithms are not rigorously evaluated because of the difficulty of establishing ground-truth data,
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especially for lower abundance ITs [98, 131]. Indeed, other compelling binless methods for

quantitation may benefit from a similar evaluation as presented here [22, 127].

Here, we make available an open source implementation of the TracMass algorithm,

called Massifquant, and integrate it into the popular XCMS software suite [90, 104]. Like

TracMass, Massifquant uses a two-dimensional Kalman filter to quickly, accurately, and

adaptively find ITs in highly complex samples without resorting to binning, and its open

license (GPL ≥ 2.0) enables further extension and inspection. We indicate how the KF adapts

to m/z variance and describe two major modifications which mitigate known limitations of

TracMass. We detail novel metrics for evaluating XC-MS IT detection and use these metrics

with manually annotated data to perform a detailed evaluation of Massifquant, centWave,

and matchedFilter performance on different LC-MS platforms.

9.2 Methods

9.2.1 Description of the Massifquant algorithm

Massifquant relies on 2D Kalman filters to identify ITs in XC-MS data. A single KF’s purpose

is to track the m/z and intensity coordinates of a IT over the chromatographic dimension.

A track is an instance of a KF model, which predicts the existence of a centroid in the

next time scan. If the prediction is close enough to a real centroid, it incorporates the real

centroid to the track. Closeness is determined by quasi-confidence intervals centered about

the prediction. The KF then updates its estimate of the underlying “true” centroid and

predicts again. When the signal of the IT disappears (i.e., we have reached the end of a

chromatographic IT) the KF will fail to predict a centroid on successive scans and tracking

will be terminated.

With many ITs to be discovered, Massifquant manages a host of active KFs. For a

given scan, each active KF claims the centroid that best fits its predicted location. Unclaimed

centroids trigger new instances of KF tracks in the expectation that these are the beginning

of new ITs. The process is then repeated on the next scan until all scans have been examined.
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In this way, every centroid is either claimed by an existing KF or triggers the creation of

a new KF. After an entire sample has been parsed, spurious KFs are discarded based on

simple filters for minimum length, intensity, expected m/z deviance, or consecutive missed

predictions.

We will describe the Kalman gain to highlight the model’s adaptive nature and

how it can be tuned. After the KF predicts a centroid, it refines the prediction by carefully

weighting the model prediction error through a modeling device known as the Kalman Gain.

This device is largely a function of (i) the estimation error covariance, which is initialized by

the modeler, but evolves over time based on prediction performance; (ii) and the assumed

measurement error of the Mass Spectrometer, also defined by the user. So the modeler may

tune the Kalman gain based on these parameters. A smaller Kalman gain means that the

model prediction, which is based on previous observations, is trusted to be closer to the true

centroid location than the newly acquired observation. The default settings of Massifquant

create a Kalman gain that places more trust in early acquired observations (i.e. the first 4-30

scans) as illustrated in Figure S1 in the supplementary materials. The idea is to find the IT’s

location quickly and not deviate once it has been found; the default works for a variety of

situations, but can also be tuned to a particular dataset. The fact that the KF continuously

adapts its centroid prediction estimates based on the information it has previously amassed

and the variance it encounters makes it an effective tool for identifying ITs with their own

specific heteroscedastic variance. For a more mathematical discussion, an introduction to the

theory behind the discrete Kalman Filter/Gain are described in Welch and Bishop [117] and

section 2 of the supplementary materials.

Massifquant implements most of the core of the TracMass algorithm; however, it

is difficult to determine how much the two algorithms differ since the latter’s source code

is not available. There are a few known major differences. The initialization of the P is

likely different. Moreover, the intensity component of the Scheffe-type quasi-confidence

intervals—used to classify whether a next-scan centroid belongs to a KF prediction–was
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not found to be sufficiently discriminatory. Massifquant only uses the m/z dimension to

determine a successful prediction. Retaining the intensity estimation in the KF does seem to

aid in resolving competing KFs that claim the same centroid (by virtue of comparing their

two dimensional prediction distances).

Massifquant also implements a function to ensure continuity of identified ITs that is

not found in TracMass (discussed in section 3 of the supplementary information). We found

that a KF will periodically lose the position of the IT, stop tracking it en route, triggering

a new KF track which will finish estimating the IT’s other data points (see supp. file

Figure S2). Since each KF track corresponds to an IT, we call the undesirable phenomenon

“segmentation”. The segmentation problem was addressed by an ad-hoc t-test comparing the

m/z locations between these problematic KF. The conservative test combines many of the

segmented tracks into a unified IT.

A more thorough description of the Massifquant implementation is given in the

supplementary material (see the section ”Reimplementing the Kalman filter model”). The

supplement highlights some differences with TracMass and a discussion of the logic behind

specific design decisions. The description will be useful to anyone seeking to modify or extend

the algorithm. Massifquant was written in C++ and has been integrated into the XCMS

pipeline available through Bioconductor [40, 90]. It plays the same role as centWave or

matchedFilter in the differential analysis workflow.

9.2.2 Annotation

Data sets

We chose two very different LC-MS data sets to assess IT-detection flexibility. The first

annotated data set, MM14, is a subset from a UPLC-ESI-QTOF analysis of 14 plant

metabolites resulting in 46 annotated ITs. The centWave developers originally showcased

their method of parameter optimization on the entire data set, and its provenance is detailed

in Tautenhahn et al. [104].
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The second data set, MOUSE, is one fraction from a larger mouse brain phospho-

proteomic analysis. Briefly, 408.8 mg of brain tissue was homogenized/boiled in SDS-lysis

buffer and clarified. Proteins were then digested and peptides purified following the FASP

protocol [124] to yield an estimated 7.3 mg of peptides. 25 mg of Titanspere TiO2 beads

(GL Sciences) were used to enrich for phosphorylated peptides. 3M Empore Anion Exchange

disks were packed into a 200 l pipette and Britton & Robinson buffer was used to elute

at pH 11 (the fraction termed ’MOUSE’ in this work), 6, 5, 4, and 2. MS analysis was

perfomed with an LTQ-Orbitrap XL fed by an Eksigent NanoLC UHPLC system. A Nano

Acquity (1.7m, 130 C18 bead BEH, 75m m x 150mm) column run at 375 nL/min in a

linear gradient from 2.5% to 10% ACN (with water and 0.1% formic acid as the second

buffer) for 60 minutes, then to 28% ACN for an additional 220 minutes. The complete

raw file is available upon request, and virtually all parameters may be accessed using the

cross-platform unfinnigan software (see https://code.google.com/p/unfinnigan/). The

relevant parameters are: MS1 data collected between 375–1800 m/z at 60,000 resolution

with an MS/MS data dependent scan collected after each MS scan. The section chosen for

hand-annotation generally spans retention time 5429.5–7306.2 seconds and 600.0003–637.3923

m/z. In total, this area contained 589 annotated ITs which show variation in length, shape,

and variance.

Data annotation

The MOUSE and MM14 datasets were manually-annotated to be used as ground truth for

assessing the automated IT detection abilities. A tuned LC-nanoESI system is capable of

producing consistent chromatographic IT shapes. However, when running complex samples,

even on the best tuned system, fundamental dynamic range limitations will unavoidably

produce IT shapes that are far from ideal. The lack of characteristic IT shapes among lower

abundance ITs, the number of overlapping ITs (in m/z and time), and their sheer number
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and density makes manual annotation difficult. For the MOUSE data, any IT that did not

exceed a maximum intensity of 1×105 was ignored to preserve the integrity of the annotation.

Because IT annotation in complex data sets is challenging, we established guidelines for

what is called a true IT. These guidelines consider within-IT and between-IT characteristics

to ensure the best annotation possible. To be defined as a IT, a series of centroids should

typically exhibit the following properties:

Within 1. The m/z error variance structure is influenced by intensity. Toward the tails of a

IT, the m/z observations show mostly symmetric and increasing deviations from

the mean. The body and apex centroids deviate less. From a bird’s eye view (i.e.,

looking down the intensity axis), the m/z-time projection has the shape of a string

fraying at the edges.

2. The collective centroids should have a chromatographic IT shape. Dramatic

oscillations in intensity from scan to scan could disqualify an annotation.

Between 1. The detected ITs should have approximately the same m/z ppm variance.

2. Within an isotopic envelope, ITs should have very similar mode and shape, although

length typically varies.

In each case, great effort was made to balance the benefits of the systematic application

of these rules with human judgment. Each IT was individually annotated (based on all

criteria) and then wrapped into appropriate isotopic distributions where possible.

We executed this annotation scheme on the MM14 and MOUSE data sets using Topp-

View [101] as follows: From a global 2-D view, the annotator identified mass traces satisfying

mentioned properties. After zooming, a 3-D inspection confirmed similar chromatographic

length and shape for a given isotopic distribution. Once confirmed, the IT’s centroids were

selected and collectively saved into an .mzML file. Candidate mass traces that did not

sufficiently satisfy all the criteria, but still had some resemblance to a IT, were labeled as

questionable and saved as .mzML files; these were excluded from the algorithm performance
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analysis since they were deemed liable to interfere with true algorithmic specificity and

sensitivity. Objectively determining an IT’s chromatographic boundaries is difficult, especially

since there is so much diversity among IT shape and length. Generally, we tried to include as

much of each IT tail as possible and to be as consistent as possible across each data set.

9.2.3 Performance Evaluation

Different algorithms select different portions of a IT when attempting to identify ITs (any

attempted IT classification we call a candidate). Because the extent and location of the

mapping from a candidate to the true IT may vary widely, gauging the success of a candidate

can be challenging. For example, a method that identifies 30 centroids directly in the middle

of the high intensity region of a IT should be given more credit than one that identifies 35

centroids but that are all in the very low intensity tail region. In another example, credit

should be given to an algorithm that successfully captures an entire IT with three distinct

candidates, but it should not receive as much credit as an algorithm that identified the IT

with a single candidate. These examples motivated the development of two ways of examining

success: at the IT-level and at the entire sample-level.

Isotope trace-level evaluation

Classifying the success of an algorithm at the IT-level requires the classification to be general

enough to handle a variety of IT shapes and yet still be precise. To classify the successful

identification of a IT, we defined metrics that consider how a candidate’s centroids individually

contribute to the overall intensity of the annotated IT, namely, the true area under the curve

(AUCA). The centroids clustered into a candidate are either true positives, false positives, or

false negatives. Restricting attention to the true positives, a candidate’s true area under the

curve is denoted as AUCTP . Naturally, a candidate’s relative correct identification of a IT

within the context of intensity is defined to be α := AUCTP
AUCA

. Now, an algorithm is said to

sufficiently identify the ith annotated IT if αi ≥ 1− r, where 0 ≤ r ≤ 1. For the following
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analysis, we took r = 0.5 because requiring a candidate to capture more than 50% of an IT’s

total intensity ensures that the main body of a IT has been identified, while still allowing

for differences in opinion on exact IT boundaries. In short, this criterion abstracts away the

difficulty of varying shapes and algorithmic-selection bias.

Conversely, the false positive and false negative centroids contain precise information

as to where a candidate is accurate and by how much. To be clear, the AUC quantitation

error is taking evaluation precision beyond classification. Let AUC∗ be the quantification

reported by the algorithm, which includes true and false positive centroids alike and excludes

false negative centroids. Then the AUC percent error is simply ε := |AUCA−AUC∗|
AUCA

× 100%.

Dramatic variation in IT intensity motivated the percent error representation.

Another issue is that true negative ITs are impossible to define. So an algorithm’s

IT-identification accuracy was measured by the commonly used metrics of precision and

recall (sensitivity) for information retrieval. Isotope trace sensitivity (sf ) is the number

of ITs correctly identified by the algorithm divided by the number of true ITs. Isotope trace

precision (pf) is the number of ITs correctly identified by the algorithm divided by the

number of algorithm-claimed ITs. High sensitivity means the algorithm successfully identifies

most true ITs, while high precision is a measure of identification reliability. The harmonic

mean of these is the F1 score := 2
sfpf
sf+pf

; it summarizes the overall identification performance.

Sample-level evaluation

Finally, sample-level metrics allow us to define how much of the entire sample AUC was

correctly identified without regard for individual ITs. It is a way to quantify the level of

intensity information found by an IT detection without regard to how the centroids are

actually clustered into ITs. The sample sensitivity is defined as
∑
i AUCTPi∑
j AUCAj

. This is the

total algorithm-identified true raw intensity divided by total true raw intensity. On this

global level, a true negative can be defined as the sample noise, or the centroids that don’t

contribute to any real ITs. Thus, the sample specificity equals
∑
i AUCTNi∑

j AUCFPj+
∑
k AUCTNk

. This
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taken to be the total correctly algorithm-ignored raw intensity (true negative signal) divided

by total noise raw intensity of the sample (including false positives of the algorithm) . These

last two metrics are useful as a global measure of accuracy in contrast to the IT-specific

accuracy in the preceding metrics.

Evaluation by IT type

An evaluation should indicate how certain IT types influence performance. Simpson’s paradox

further motivates an evaluation by type since conclusions based on the aggregate annotation

are sometimes reversed when analyzed by type [8]. We classified ITs by intensity, ppm error,

and length. Annotated ITs were grouped by the variable of interest into 8 percentile categories

{[0, 12.5%), [12.5%, 25%) . . . , [87.5%, 100%]}. For example, the longest IT was categorized

in [87.5%, 100%]. The recall was computed for each category; precision was approximate

because mapping the algorithm-identified ITs to the right annotation-based category was

not always right. For instance an algorithm-identified IT length might be shorter or longer

than the annotation length and the mapping can only be corrected if the IT identification is

correct.

Optimization

With the goal of maximizing the F1-score, we optimized parameters for the two algorithms on

each dataset. Initial values for centWave on MM14 were selected from the paper Tautenhahn

et al. [104]; the manual annotations provided a baseline of minimum IT length, height, and

ppm deviation. Where prior knowledge was absent, liberal parameter grids were explored for

parameters like snthresh for centWave, or criticalValue for Massifquant. Paired parameters,

or parameters that were thought to have interactions, were explored simultaneously in two

dimensions. For instance, the (min, max) IT length form a natural pair and exhibited

interactions in F-score performance for centWave. The most important parameters for

both algorithms, (snthresh, ppm) in centWave, and (criticalValue, consecMissedLim) in
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Table 9.1: centWave optimization on MM14 improved with identification performance and
the parameters are in the same vicinity.

version ppm snthresh peakwidth peakfilter F1-score
original 30 2 (5,10) (2, 400) .8936

our evaluation 18.4 2.5 (3,11) (1, 511) .9438

Massifquant were searched simultaneously. Their respective F-score surface plots exhibited

near-concavity, a desirable property for parameter tuning. It appears unique to Massifquant

that all F-score surface plots had near-concavity. The optimizations were conducted with

R (http://www.r-project.org) and Matlab scripts (MATLAB version 7.14.0.739, The

Mathworks Inc., Natick, Massachusetts). Scripts and detailed procedures to reproduce

all results are provided upon request. Other details of the optimization are included in

the supplementary file. Table 9.1 compares centWave performance on MM14 based on

reported optimized parameters from the original centWave publication and the optimized

parameters resulting from this new evaluation. The two different evaluation settings yield

similar parameters and F1-scores, suggesting this new annotation and evaluation effort is

valid. For matchedFilter, all combinations of the suggested ranges for each parameter were

exhaustively evaluated.

9.3 Results

9.3.1 Overall Evaluation

As detailed in the methods section, we developed an independent, open-source implementation

of Aberg et al.’s TracMass algorithm, and call it ‘Massifquant’. The algorithm uses 2-

dimensional Kalman filters to adaptively find chromatographic ITs in the m/z domain

without bucketing the data. We compared Massifquant’s ability to sensitively and accurately

find ITs with centWave, a sophisticated and well-known algorithm used in the XCMS platform

for label-free IT detection, and matchedFilter, the original binning-based XCMS method for

IT detection.
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Figure 9.1: Optimized performance metrics by dataset and algorithm. Massifquant is the
performance of Massifquant without correcting IT segmentation. This and other figures used
reshape2 and ggplot2 R packages [120, 121]

We manually annotated ITs in two data sets, chosen to have different characteristics,

following a set of rational guidelines. The MM14 data set is a run of 14 plant metabolites on

a lower-resolution UPLC-ESI-QTOF. The MM14 reveals the performance of an IT finder

under close to ideal circumstances (viz. low sample complexity, good signal-to-noise, good

chromatography). The MOUSE sample was run on an Orbitrap mass spectrometer and is

typical of many highly complex proteomic analyses. While chromatographic IT shapes are

smooth for high abundance ITs, the intrinsic dynamic range limitations result in greater

m/z and intensity variability for lower abundance analytes. The heterogeneity of IT sizes

and shapes encountered in the MOUSE data is ideal for discovering the limitations of an IT

detection algorithm.

Figure 9.1 shows that Massifquant reported uniformly higher sensitivity values than

centWave and the t-test union of segmented ITs improves Massifquant performance on

MOUSE. As for identification reliability, precision was in the same neighborhood for both
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Figure 9.2: A comparison of log-transformed percent quantitation errors (log ε) for successfully
identified ITs. Massifquant outperforms centWave’s quantitation error on both data sets.

datasets, yet centWave shows higher sample specificity in MOUSE since it rarely found a false

IT. Massifquant exhibited a better F1-score on MOUSE since it identified substantially more

ITs than centWave. Both algorithm’s MM14 performance is effectively equal for all metrics

but sensitivity. The matchedFilter algorithm was only able to identify 33 of the 589 ITs in

the MOUSE dataset after optimization over 215 parameter settings. Because matchedFilter

performs so poorly compared to centWave and Massifquant, we omit the results from the

charts in this paper.

Comparing algorithms’ quantitation accuracy is controversial because defining IT

boundaries is not clear-cut and in this analysis most error comes from the tails—knowledge

afforded because of the evaluation criterion. No statistical test comparing the two algorithm’s

was done since the spatial components, length, shape, m/z variance, etc. likely create

dependence among ITs. Nonetheless, Figure 9.2 illustrates that Massifquant and centWave

quantitation errors are generally in the same small neighborhood.
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Figure 9.3: A comprehensive view of manually annotated ITs on the MOUSE data set and
detected ITs, for A) centwave and B) Massifquant. Correctly identified ITs are color-coded
according to the percent quantitation error (ε): dark blue < 10% , aqua < 20%, green <
40%, orange > 40%. False ITs are labeled in red; all other noise was excluded. ITs missed by
the algorithm (i.e., false negatives) are labeled black.
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9.3.2 Evaluation by IT Type

An evaluation is incomplete without identifying what types of ITs were missed within certain

types of samples. For example, both algorithms are perhaps equally excellent at detecting

ITs in a simple sample like MM14 with high signal-to-noise (see supp. data Figure S3). On

the other hand, Figure 9.3 shows that Massifquant excels at finding low-intensity type ITs in

the MOUSE complex sample and quantifies them very well, whilst these are not identified by

centWave.

The “Evaluation by IT Type’ strategy’, described in section 2.3, addresses whether the

high number of low-intensity ITs relative to high-intensity ITs in the MOUSE data unfairly

benefited Massifquant in aggregate statistics (viz. F1-score). Figure 9.4 summarizes the

results of IT-typed performance for characteristics thought to vary widely within MOUSE.

centWave’s IT sensitivity improves as the intensity increases and the estimated ppm error

decreases, both in a linear fashion. Massifquant’s sensitivity varies little across all categories,

irrespective of the variable, and without a doubt outperforms centWave. With respect to IT

precision, the effect of each variable seems present for both algorithms. Both have similar

approximate precision results. Not surprisingly, Massifquant shows improved precision as

length, narrowness, and max-intensity increase.

9.4 Discussion & Conclusions

In Massifquant, we have implemented an open-source Kalman filter-based IT detection

algorithm based on Aberg et al. [1]. We have evaluated its performance using two manually-

annotated data sets, and compared the performance of Massifquant with centWave, a

wavelet-based IT finder, and matchedFilter, a binning-based IT finder. A protocol for how

IT detection algorithms should be evaluated has not yet been established, so we first discuss

the evaluation process; then, we address algorithmic performance and suitability for use, and

finally conclude with some thoughts about the use of m/z information in MS IT detection

generally.
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9.4.1 The evaluation process

Comparative evaluation of algorithms in MS-omics is often lacking Smith et al. [98], and Zhou

et al. [131] recently suggested that the quantitative evaluation of IT detection algorithms is

long overdue. We believe the general lack of evaluation is related to the difficulties associated

with creating data sets to effectively test these algorithms and also to a lack of clear and

explicit metrics for assessing success. In order to facilitate further efforts in this area, we

discuss some of the challenges and successes we met using a manually annotated data set

approach.

Hand-annotation, especially of low abundance ITs, is extremely challenging. It requires

concerted effort over a long period of time. The authors spent several weeks of dedicated

effort in order to annotate the two data sets, and the MOUSE data set is only a small subset

of the complex LC-MS sample from which it was derived. Despite our best efforts to be

accurate and consistent, we conclude that the manual annotation process is still somewhat

subjective. Indeed, we simply had to exclude the evaluation of ITs below a certain threshold

because we felt human judgment was inadequate for the task. Despite these challenges, the

annotation data itself is a useful model for future validation efforts. Moreover, it contains

isotopic-level information that could be of use in other projects.

We validated the manual annotation efforts through a holistic visual inspection (see

Figure 9.3 for example) and analysis of histograms of ppm deviation (see supp. Figure S4 for

example) to ensure that there were no outliers. So, despite the inherent difficulty of manual

annotation, we conclude that the endeavor was largely successful. Several aspects of the

process are worth considering in more depth: 1) We used semi-rigid guidelines for annotation

that we believe worked well across a variety of ITs with different characteristics. We could

have generated and applied very strict rules for annotation at the outset, but this may have

resulted in even worse systematic bias considering the highly variable ITs we encountered.

The proposed guidelines should serve useful for future annotation efforts. 2) We used a single

annotator for both data sets to eliminate person-to-person variability in the interpretation
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and application of IT criteria. However, tools for community-sourcing annotations would be

an interesting solution and has been already been discussed in genomic contexts [42]. 3) We

used ToppView, the MS viewer associated with OpenMS, to help us find and annotate ITs

[52, 101]. Additional add-ons such as color-coding and flagging of already-annotated ITs and

producing a community-based validation would also improve the annotation process.

Among the previous efforts to evaluate IT detection algorithms, we found that most of

them focused solely on questions of identification, but lacked in detail of what constituted an

’identified’ IT. For IT detection, the identification criterion is critical for fair evaluation—and

we additionally argue that the evaluation should probe quantitation accuracy if possible. We

evaluated identification at IT and sample levels, and also calculated the percent quantitation

error for each IT. The precisely defined metrics may now be more easily employed, modified,

or improved.

This multi-metric evaluation exposes two risks other evaluations take when relying

purely on the F1-score. 1) Precision values show that Massifquant does at least as well if

not better at IT identification reliability for MOUSE at low intensity. However, the sample

specificity, along with Figure 9.3, provide stronger evidence that centWave effectively discrim-

inates low-intensity non-ITs better than Massifquant. Hence, precision and consequently the

F1-score can be misleading. To our knowledge, this is the first evaluation that has proposed

a true specificity measure for IT detection, which helps avert wrong conclusions. 2) By

our evaluation standards, and likely others, accurate quantitation does not always imply a

favorable IT detection F-score and vice-versa. On the MOUSE dataset centWave ignores

many low-intensity ITs, giving it a low F-score; however, the ITs that it does identify are

generally quantitatively accurate with a median ε = 8.663%. Thus, quantitative accuracy is

somewhat distinct from IT detection sensitivity or precision.
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9.4.2 Algorithm performance

On the simple data set MM14, Massifquant showed similar performance to centWave. On

a highly complex sample, MOUSE, Massifquant performed much better. In particular,

Massifquant excels at finding ITs with a variety of characteristics such as differing intensity,

widths, and lengths. Massifquant outperforms centWave in IT detection sensitivity across

every size and shape of ITs in the complex sample tested. As for reliability, Massifquant is

competitive with centWave with the exception that it finds more false low-intensity ITs; the

excess false positives and multi-modal artifacts are two deficiencies of Massifquant which

can complicate downstream analysis in sample-to-sample comparisons. Future extensions of

Kalman Filter IT detection will need to make intensity estimation more robust. An attempt

to combine centWave’s wavelet intensity estimation with Massifquant has not proven to be

effective (see supplement section 4). In spite of these deficiencies, both algorithms reported

similar quantitation accuracy for the quantified ITs; Massifquant just found far more ITs.

A possible objection to our general comparison is that a large number of small ITs

might bias the evaluation in Massifquant’s favor. However, Figure 9.4 removes any suspicion

of unfair advantage; even if low-intensity or very broad ITs (e.g. first four bins) were removed

from the analysis, Massifquant still identifies ITs better on the MOUSE data set.

As shown in Figure 9.1, our effort to address the problem of IT segmentation with

Massifquant was successful—on the MOUSE and MM14 data set, the precision increased

from 0.7391 to 0.7894 and 0.9185 to 0.9355, respectively. However, some ITs were erroneously

combined (see supp. data Figure S2) . For algorithmic simplicity, future efforts should

attempt to address the IT segmentation problem from within the framework of the Kalman

filter. Ideally, such an approach would also be more effective than the ad-hoc method we

applied in this study to treat IT segmentation.
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Figure 9.5: Massifquant identifies differentially expressed ITs between wild-type (WT) vs.
knock-out (KO) conditions in the faahKO dataset for (A) trivial cases and (B) non-trivial
cases.

9.4.3 Ease of use

Massifquant parameters can be readily optimized through visual confirmation instead of score-

based methods (e.g. f-score) that require an annotation. Visual optimization is more time

efficient, intuitively simple, and almost as accurate. Similar in purpose to Tengstrand et al.

[106], the visualization tools at https://github.com/topherconley/optimize-it illustrate

precise changes in IT detection induced by differing parameter input. The documentation

offers a step-by-step guide how to optimize Massifquant to new data sets, especially controlling

the number of false positives. Further, the score-based method shows a concave f-score surface

when varying Massifquant’s parameters, indicating a very predictable parameter behavior

(see supp. data Figure S5,S12,S13,S14). Massifquant’s appeal is due, at least in part, to the

the fact that several internal KF parameters are learned from the data—in an initial prescan,

and then later for each individual IT being tracked.
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Massifquant operates on centroided MS data, which means it can analyze data taken

in centroid mode or profile mode (after centroiding), whereas algorithms requiring profile

data cannot operate on centroid data because the centroiding process is not readily reversible.

Further, running Massifquant is as easy to run and modular as other XCMS IT detection

options. The same differential abundance (DA) workflow applies. Figure 9.5 illustrates a

Massifquant-based DA analysis in on the FAAH knock out LC/MS data set [82], (see http://

bioconductor.org/packages/devel/data/experiment/manuals/faahKO/man/faahKO.pdf

for details).

9.4.4 The use of m/z information in IT detection

Can the success of Massifquant on a complex sample be generalized? ITs in a highly complex

sample—particularly low abundance ITs—are different from ITs derived from a simple

mixture: limitations in a mass spectrometer’s dynamic range produce much greater intensity

variability for ITs from a complex sample. Because of this, at least for mid-to-high mass

accuracy/resolution mass spectrometers, m/z measurements will tend to be far more helpful

at distinguishing closely eluting species than IT shape. Indeed, we found that Massifquant

performs at a high level because of its m/z estimation (despite extremely poor intensity

estimation). Most IT detection algorithms focus on IT shape, but we suggest that on

highly complex samples an algorithm should be focused mainly on subtle changes in m/z.

Algorithms that bin data from closely related ITs in order to do IT shape analysis lose the

richest information available for distinguishing those ITs. Distinguishing convolved isobaric

compounds and near-isobaric compounds will, of course, require chromatographic IT shape

analysis, but new algorithms will likely see the greatest improvement gains by working to

fully utilize the m/z information found in closely eluting analytes.
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Chapter 10

Statistical Agglomeration: Peak Summarization for Direct Infusion Lipidomics

Abstract

Motivation: Quantification of lipids is a primary goal in lipidomics. In direct infu-

sion/injection (or shotgun) lipidomics, accurate downstream identification and quantitation

requires accurate summarization of repetitive peak measurements. Imprecise peak summa-

rization multiplies downstream error by propagating into species identification and intensity

estimation. To our knowledge, this is the first analysis of direct infusion peak summarization

in the literature.

Results: We present two novel peak summarization algorithms for direct infusion

samples and compare them with an off-machine ad-hoc summarization algorithm as well

as with the propriety Xcalibur algorithm. Our statistical agglomeration algorithm reduces

peakwise error by 38% (m/z) and 44% (intensity) compared to the ad-hoc method over 3

data sets. Pointwise error is reduced by 23% (m/z). Compared to Xcalibur, our statistical

agglomeration algorithm produces 68% less m/z error and 51% less intensity error on average

on two comparable data sets.

Availability: The source code for Statistical Agglomeration and the data sets used

are freely available for non-commercial purposes at https://github.com/optimusmoose/

statistical_agglomeration. Modified Bin Aggolmeration is freely available in MSpire, an

open source mass spectrometry package at https://github.com/princelab/mspire/.
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10.1 Introduction

Direct infusion (injection) lipidomics, sometimes called “shotgun” lipidomics for it’s similarity

to shotgun genomics, is an emerging but well studied field [29, 30, 113]. Here, a liquid sample

is injected into a mass spectrometer, yielding a set of (mass/charge (m/z), intensity, retention

time (RT)) 3-tuples [45]. For our purposes, we define a data point as a single m/z and

intensity observation of a given isotope at a particular RT and a peak as the data points

that comprise the observation of a distinct isotope. (Hereafter, we will more accurately use

the term ridge instead of peak due to the fact that direct injection lipid intensity does not

vary as a function of time.) Since there is no chromatographic separation in direct infusion

lipidomics, each RT scan represents an independent measurement of the sample. Ideally,

the species in the sample would be uniformly distributed across RT and measured in near

identical intensities across RT, making reduction to a single two-dimensional vector of unique

ridges trivial. Unfortunately, there are several noise factors that appear in real world direct

infusion samples. Sample distribution heterogeneity results in inter-scan variance in both m/z

and intensity. What’s more, technical and mechanical limitations in the mass spectrometer

inculcate even more error into the output. Accurately estimating the true ridge values from

the resulting output file is a nontrivial challenge (see Figure 10.1).

In order to identify and quantify each lipid, it’s component ridges must somehow be

isolated one from another, and the additive noise ridges removed. We will call this process

ridge summarization. Only after ridge summarization can the isotopic envelopes be compared

with theoretical databases in order to identify and quantify the individual lipids in the sample.

The necessity of a solution for the ridge summarization problem in every direct infusion

lipidomics application and the presumed effect of the results of such a solution on downstream

quantitation would suggest that a description of ridge summarization be found in every

shotgun lipidomics study [84]. However, it is frequently left unmentioned (e.g. [71], [99], and

[29]). Although direct infusion methods have been around since the mid-1990s, we are only

aware of two published solutions to this segment of the quantitation pipeline. The first is
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that of treating a survey scan as a true ridge measurement [88]. From a glance at a typical

shotgun lipidomics plot, it should be clear that treating any single RT scan of data as a

representative set of true ridges would be less than ideal, as the scan would include many

ridges with incorrect m/z and intensity and exclude many other true ridges (see Figure 10.1).

The second, a more robust approach, applies to shotgun lipidomics a technique that has been

used in several proteomics studies [38, 60]. This approach, which we label the fixed width

algorithm, averages scans across the retention time dimension to yield an estimation of the

true contents of the sample [47]. Though this approach is simple to code and runs in linear

time, it is non-statistical and does not take into account the data densities along the m/z

axis.

Here we present two statistical approaches to solving the ridge summarization problem

and evaluate them against both synthetic and real-world ridge summarization problems.

We also provide the first comparative performance analysis of Xcalibur and the fixed width

algorithm on the ridge summarization problem.

77
4.

05
77

4.
10

77
4.

15
77

4.
20

77
4.

25
77

4.
30

77
4.

35

370.0

410.0

450.0

490.0

530.0

570.0

8E+4

9.E+5

10E+5

m/z

Ret
en

tio
n T

im
e 

(R
T)

In
te

ns
ity

Figure 10.1: A typical direct infusion lipidomics sample. The lack of consistent repetition in
data points in the RT dimension and the abundance of noise in each of the three dimensions
make accurate ridge summarization difficult. The colors delineate observed ridges.
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(a) (b)

Figure 10.2: Scan Combination. Here (a) multiple scans are combined into (b) one list of
(m/z, intensity) pairs by removing the retention time (RT) dimension. Each data point (an
m/z and intensity observation of a distinct isotope at a given RT) is depicted here with a
pinhead, while the collection of pinheads of one color denotes a ridge.

10.2 System and Methods

We use a representative sample of three labeled data sets to test the capabilities of the

methods we present as well as the baseline results from the widely used Xcalibur software

shipped with Thermo mass spectrometers.

10.2.1 Data

The methods presented in this paper were evaluated on one synthetic data set and two real

world, hand labeled data sets.

The Noyce data set is a synthetic data set constructed as described in [70] with

sampling rate 1, noise density factor 500, and one dimension mode.

Sample 3 750-800 and Sample 3 1000-1050 are two m/z intervals of a rat soleus lipid

extract. Each ridge in these data sets were isolated and labeled by hand using TOPPView [101]

and an exhaustive list of all (m/z, intensity, RT) triplets in the file.

Each of the data sets used in lipidomics can be represented as a list of points where

each point is an (m/z, intensity, RT) triplet. For the purposes of the algorithms detailed here,

points are reduced to m/z and intensity values (see Figure 10.2).

Sample 3 750-800 and Sample 3 1000-1050 are two m/z intervals of a rat soleus

lipid extract. The total lipids from about 20 mg of the mouse muscle cells grown in
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DMEM + 10% fetal bovine serum medium were extracted using a modified Bligh and Dryer

method. Lipids were dried under a nitrogen stream and 14 micrograms of the internal

standard (cer 18:1/17:0) was added before the analysis. The whole lipids were dissolved in

Chloroform:Methanol:Isoproponal (2:1:1) containing 11 mm Ammonium acetate and analyzed

for 10 minutes in an LTQ-orbitrapXL mass spectrometer with positive polarity, 4.2KV ESI

ionization voltage, 35V capillary voltage, and 110V tube lens voltage. The MS1 settings were

FTMS analyzer, a mass range of 450 -2000 m/z, resolution of 100,000, full scan, centroid

data.

All data sets were obtained in centroid mode. Designing algorithms to treat data in

centroid mode is more general than choosing to only handle profile mode due to the lack of

ability to convert centroid data to profile data when the opposite conversion is readily possible.

This design decision is reflected in industry software standards such as CentWave [104].

10.2.2 Metrics

Each of the following metrics measures a different quality of ridge assignment. Since each

algorithm has different strengths, these metrics allow a ranking of algorithms based on what

is important for the practitioner. Since we cast the ridge selection problem as a clustering

problem, all of the following metrics are established clustering metrics, with the exception

of normalized true ridge distance, which is a metric devised specifically for measuring the

quality of summarized ridges.

In what follows, we define R as the set of observed ridges, R̂ as the set of predicted

ridges, and D as the set of data points. We define the intensity, r̂int, of a predicted ridge r̂ as

the sum of the intensities of the ridge’s assigned points:

r̂int =
∑
d∈r̂

dint (10.1)
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and the m/z value, r̂m/z, of r̂ as the intensity-weighted mean of the m/z value of the ridge’s

assigned points:

r̂m/z =
∑
d∈r̂

dm/z
dint
r̂int

(10.2)

NORMALIZED TRUE PEAK DISTANCE (NTPD). NTPD is a metric we developed

for this task which indicates the normalized m/z or intensity difference between the predicted

ridges and the nearest observed ridges. The nearest observed ridge, r̃, to a predicted ridge r̂

is always calculated using m/z/ value as:

r̃ = argmin
r∈R

(|r̂m/z − rm/z|) (10.3)

Using this closest observed ridge, the m/z NTPD is calculated as

NTPD(R̂,R) =
1

min(|R̂|, |R|)

∑
r̂∈R̂

(|r̂m/z − r̃m/z|) (10.4)

while the intensity NTPD is calculated using the same equation (Eq. 10.4) with r̂m/z and

rm/z replaced with r̂int and rint.

The normalizing term controls score inflation whether the error is in predicting too

many or too few ridges. The significance of this metric is reflected in its analytical relevancy.

This per-ridge metric basically measures how easy it would be to correctly assign the true

species label using a standard lipid species library. Such is not the case for a per-point error

measure such as sum squared error (SSE) or an intrinsic cluster metric like normalized mutual

information (NMI) or purity.

∆ NUMBER OF RIDGES. In downstream algorithms, each estimated ridge will be

treated as an actual isotope. It is clear that any identification or quantitation algorithms will

be highly sensitive to the number of predicted ridges versus the number of actual ridges.
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PURITY. Purity measures the averaged homogeneity of each estimated ridge over all

data points. It is defined as:

purity(R̂,R) =
1

|D|
∑
r̂∈R̂

max
r∈R
|r̂ ∩ r| (10.5)

A purity of 1 is perfect, and zero is the lowest possible score. One way to achieve high

purity is to reduce the size of the predicted ridges. In fact, a näıve algorithm that simply

assigns each data point into its own ridge will achieve a perfect score for purity.

NORMALIZED MUTUAL INFORMATION (NMI). NMI allows the quantitation of

the trade off between number of predicted ridges and the quality of predicted ridges.

NMI(R̂,R) =
I(R̂,R)

[H(R̂) + H(R)]/2
(10.6)

where I is mutual information, given by

I(R̂,R) =
∑
r̂∈R̂

∑
r∈R

|r̂ ∩ r|
|D|

log
|D||r̂ ∩ r|
|r̂||r|

(10.7)

and H is entropy, given by

H(R̂) = −
∑
r̂∈R̂

|r̂|
|D|

log
|r̂|
|D|

(10.8)

NMI indicates the dependence of sets R̂ and R. If they are completely independent the ridge

predictions provide no information about the observed ridge assignments (indicated by an

NMI of 0). A perfect score of 1 indicates that the observed ridge assignments provide no

additional information beyond that provided by the predicted ridge assignments.

SUM SQUARED ERROR (SSE). SSE is a common measurement of error. It is

computed by summing the squared error of each assignment.
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For the SSE of the m/z dimension, we use:

SSE(R̂,R) =
∑
d∈D

(r̂dm/z − rdm/z)2 (10.9)

where r̂dm/z indicates the m/z of the predicted ridge containing point d and rdm/z indicates the

m/z of the observed ridge containing point d.

Intensity SSE is calculated in the same fashion, with intensity replacing m/z in

Equation 10.9.

TREATMENT OF NOISE POINTS. The clustering metrics used here were modified

to address the problem of noise points (whether true noise or falsely assigned as such), which

are not a typical occurrence in standard clustering problems. Let R0 denote the set of

observed noise points and N denote the set of points assigned as noise points.

Purity was modified to consider only the points D \ (R0 ∪N). In other words, purity

ignores both assigned and observed noise points. Thus, for r̂ ∈ R̂, r̂ is replaced by ρ̂ (see

Equation 10.10) and R̂ is replaced by P̂ (see Equation 10.11).

ρ̂ = {i | i ∈ r̂ ∧ i 6∈ R0} (10.10)

P̂ =
⋃
r̂∈R̂

ρ̂ \N (10.11)

With this change, the equation for purity becomes:

purity(R̂,R) =
1

|D|
∑
ρ̂∈P̂

max
r∈R
|ρ̂ ∩ r| (10.12)

We posit that purity should not be increased in the case where a prospective ridge is

exclusively composed of points labeled by the summarization method as noise, since these

points do not belong to an observed ridge and should not therefore contribute to the purity

measurement of the observed ridge assignments. Likewise, our modifications prevent the case
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where a noise point misassigned into a ridge incorrectly covers for an observed ridge member

that has been incorrectly assigned to noise or another ridge.

NMI was modified as follows: To provide an equitable comparison for the entropy and

mutual information terms, we make each true noise point its own true ridge. Formally,

RNMI = R
⋃
d∈R0

{d} (10.13)

Additionally, we remove observed noise points assigned to ridges (and therefore not assigned

as noise) from R, as including them would obviate the penalty due when predicted ridges

replace observed ridge members with noise points. This decision provides an entropic penalty

to observed noise points incorrectly assigned to ridges since they would otherwise offset the

deficient number of points in the predicted ridges they are assigned to. However, assigned

noise points are included in R, with each point treated as its own ridge. Treating them

as their own ridge provides a more local and reasonable way of measuring error than, say,

comparing individual noise ridges to the centroid value of a ridge containing all the noise

points.

R̂NMI =
⋃
r̂∈R̂

r̂ \N
⋃

d∈N∧d6∈r̂∀r̂∈R̂

{d} (10.14)

Thus the NMI equation becomes:

NMI(R̂,R) =
I(R̂NMI ,RNMI)

[H(R̂NMI) + H(RNMI)]/2
(10.15)

For SSE, the point assignment error calculation is dependent on whether or not the

point d is really a noise point and whether or not the point is assigned as error. There are

four cases (see Table 10.1):

• If a real point is assigned as noise (d 6∈ R0 and d ∈ R̂0), the error amount is the distance

between the point and the observed ridge the point belongs to.
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• If a noise point is assigned as a noise point (d ∈ R0 and d ∈ R̂0), there is no error.

• If a noise point is assigned as a real point (d ∈ R0 and d 6∈ R̂0), the error is the distance

between that point and the closest observed noise point.

• If a real point is assigned as a real point (d 6∈ R0 and d 6∈ R̂0), the error is the distance

between the predicted ridge the point was assigned to and the observed ridge the point

belongs to.

Table 10.1: SSE error calculation for an assigned point δ. When δ is noise and assigned as
such, there is no error. If δ is a real point but assigned as noise, the error amount is the
distance between δ and the observed ridge δ belongs to. When δ is a noise point and is
assigned as real, the error is the distance between δ and the closest observed noise point.
When δ is real and assigned to ridges, the error is the distance between the predicted ridge δ
was assigned to and the observed ridge δ belongs to. For intensity SSE, replace m/z values
with intensity.

Actual
Noise Real

Predicted
Noise 0 |δm/z − r̂δm/z|
Real minr∈R0(|δm/z − dm/z|) |rδm/z − r̂δm/z|

10.3 Algorithms

While both methods proposed as well as the fixed width method follow the ridge summarization

paradigm by combining multiple scans (see Figure 10.2), each of the three methods diverges

in the way the ridges are segmented once combined into one spectra.

10.3.1 Fixed Ridge Width Method

Many practitioners use some variant of this method (e.g., [84]). Defining the ridge width

in terms of the mass of the given point models the variation of resolution along the m/z

scale [47] (see Figure 10.3). The combined spectra (see Figure 10.2) are sliced into adjacent

bins of width m/z
resolution

, where m/z is the m/z at the current point and resolution is the

resolution of the machine. Each bin is then treated as a ridge.
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Figure 10.3: Fixed Width Segmentation. The combined spectra (see Figure 10.2) are sliced

into bins of width m/z
resolution

. Note how fixed width has no means of detecting data density, nor
comparing the intensity of points. The shadow ridge (gray) is indistinguishable from the geen
ridge next to it, despite the intensity difference. Also, note how the hard bin limits segment
observed ridges that happen to fall on both sides of a bin interval. The colors delineate
observed ridges. The red segments along the x-axis indicate bin boundaries.

10.3.2 Modified Bin Agglomeration

Modified Bin Agglomeration (MBA) uses a series of decisions based on the shape of intensity

histogram bins to partition the data into ridges. First, the data is binned according to the

Fixed Width algorithm, except with a user-defined bin width whose default is 5ppm for the

Orbitrap XL (see Figure 10.4). After this initial binning, the contiguous bins demarcated

by empty bins are considered ridges. Note the difference between this and the Fixed Width

algorithm, which considers hard contiguous bin intervals as ridges irrespective of the content

of each bin. At this point, if the user has selected the zero option, the algorithm is complete.

There are two other options available: share and greedy y. Both options split all

ridges where the sum of the intensities of each bin form a local minima within a series of

contigous bins. The difference between the share and greedy y options consists of how these

local minima are treated (see Figure 10.5).

10.3.3 Statistical Agglomeration

Statistical Agglomeration (SA) bases bin agglomeration decisions on statistical analysis of

the data. The approach here is to treat ridges as distributions and bins of data as samples

from those distributions. Although there is no guarantee that the samples being tested are
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Figure 10.4: Modified Bin Agglomeration Segmentation. The combined spectra (see Fig-
ure 10.2) is sliced into bins of user-defined width (default 5ppm). MBA then segments existing
bins into disparate ridges at local minima (black arrows). The colors delineate observed
ridges. See Figure 10.5 for more detail on MBA bin splitting.

(a) Share Split (b) Greedy y Split

Figure 10.5: MBA Bin Splitting. After segmenting all points into fixed interval bins and
creating initial ridges of each contiguous segment bounded by empty bins, the MBA algorithm
further divides ridges by considering local minima. With the share method (a), the local
minimum is split among adjoining ridges proportional to the neighboring ridges’ intensities.
The greedy y method (b) awards the entire disputed bin to the adjoining ridge of greatest
total intensity. Note that the bars in this figure represent histograms of the intensity of the
points in the assigned bins, not the component points themselves.

normally distributed, we make this assumption in order to use the t-test. ridges (distributions)

whose means are not statistically different according to this test are combined iteratively

until all remaining ridges are statistically different with high confidence.

As with the previous methods, the data is first sorted by ascending m/z and split into

bins of size m/zwindow (see Figure 10.6):

m/zwindow = resolution× 10−7 (10.16)
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This formula was empirically derived from observation of several lipid samples to yield

a good balance between minimal window size and sufficient size to estimate ridge statistics,

and it should be applicable across many mass spectrometers.

After the initial bin assignment, starting at the lowest m/z value, adjacent bins

are subjected to a Welch t-test [116] (we use the Welch t-test because the samples (bins)

have potentially different sizes and variances) to test the hypothesis that the two sample

distributions have the same mean:

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

(10.17)

where X̄i, s
2
i and Ni are the ith sample mean, sample variance and sample size, respectively.

The degrees of freedom are approximated using the Welch-Satterthwaite equation [85]:

v =
(
s21
N1

+
s22
N2

)2

s41
N2

1 ·(N1−1)
+

s42
N2

2 ·(N2−1)

(10.18)

For each potential bin agglomeration, the p value is obtained from a t-distribution

for a two-tailed test for the computed t and v values (see Eq. 10.17, 10.18) to validate the

null hypothesis that the ridge means are equal. If the p value is greater than 0.01, meaning

the confidence that they are different is less than 99%, we accept the null hypothesis and

combine the bins being tested. Note that, in order to accommodate a test of both the m/z

Figure 10.6: Statistcal Agglomeration Segmentation. The combined spectra (see Figure 10.2)
is sliced into bins of width resolution×10−7. The colors delineate observed ridges. The red
segments along the x-axis indicate bin boundaries.
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and intensity differences of the considered bins, each tested bin pair is subjected to two t-tests,

one using the m/z data and one using the intensity data. As an overall measure of confidence,

we use the maximum p value for the two t-tests. The approach here is to be no more confident

than our least confident t-test dimension (intensity or m/z). This design decision provides an

implicit awareness of situations which would be deceptive if the minimum p value were used

as an overall measure of confidence, such as when two bins have a very similar m/z values

but very different intensities. This situation, which we call shadow ridges, occurs surprisingly

often when a low intensity ridge appears directly adjacent to a very high intensity ridge. This

approach also helps discriminate in cases when two bins that should not be combined are

similar in average intensity. This is a common occurrence at low intensities. In this case, the

lack of confidence in the m/z dimension will prevent combination of the two ridges.

In the event that the two bins under consideration are combined, the resulting

agglomerated bin is considered as a single bin in the next iteration’s comparison to the next

bin in ascending m/z order. If they are not combined, the first bin in m/z order remains

unchanged, and with the next iteration the second bin is compared with the next subsequent

(a) (b) (c)

Figure 10.7: SA Bin Agglomeration. After sorting the data by m/z value, and assigning
data points to bins of fixed width, a t-test is conducted on the intensity and m/z means of
the first two bins (a). If either of the t-tests fail to show a high confidence that the means
are different, the bins are not combined and the algorithm considers the next two bins for
agglomeration (b). Otherwise, the two bins are agglomerated, and the algorithm considers
the agglomerated bin and the next bin for agglomeration (c). Dotted lines indicate ridge
boundaries.
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bin in ascending m/z order (see Figure 10.7). The entire algorithm runs in just one pass,

resulting in O(n) performance, where n is the number of bins.

For post-processing noise removal, we use an established noise filtering method where

all points with intensities below the estimated noise level (signal to noise ratio (s/n) = 1)

are labeled as noise and removed. This method is borrowed from Samuelsson, et al., but

we modify the quantitation of noise from an intensity level to a frequency count, which is

more robust to lower intensity signals [84]. This approach rests on the assumption that noise

points are distributed uniformly, and thus should be equally distributed across the initial

bins. The expected noise level is one noise point per bin.

10.3.4 Xcalibur

Xcalibur is a propriety mass spectrometry software platform from Thermo Scientific. Since

Xcalibur will not accept data in the community standard mzML format, we were unable to

use it on the Noyce synthetic data set [24]. However, the raw data of the Sample 3 data sets

were analyzed using Xcalibur 2.1.

10.4 Results

SA generally outperforms the other methods under consideration across all data sets on both

the qualitative and quantitative measures considered in this study.

SA and MBA outperform all other methods on NTPD m/z (see Figure 10.8). MBA

had a slightly lower NTPD rate on Sample 3 750-800, while SA outperformed all other

methods on the other two data sets. The relative performance was identical for NTPD

intensity, with the exception being more disparity between the SA and MBA scores and Fixed

Width on the Noyce data set (see Figure 10.9(a)). Note that Xcalbur’s NTPD is dramatically

higher for both NTPD intensity and NTPD m/z than all other methods on the two data sets

that were comparable given Xcalibur’s proprietary data limitations.
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SA predicted the number of ridges far more accurately than any other method tested,

including Xcalibur, which was furthest from the actual number of ridges (see Figure 10.10).

MBA was second-best on average at predicting the correct number of ridges.

On average, each of the three methods performs rather similarly on purity. The scores

averaged across all three data sets are 0.73, 0.7, and 0.74 for SA, MBA, and Fixed Width

respectively (see Figure 10.11). Because we are ignoring all noise points (real or assigned),

and because Fixed Width produces the narrowest ridges, it is not surprising that Fixed Width

performed so well on purity.

The NMI scores averaged across all three data sets are 0.95, 0.96, and 0.93 for SA,

MBA, and Fixed Width respectively (see Figure 10.12). It is surprising that they are so close,

but this is likely a result of the modifications to this metric to handle noise.

Each of the three methods performs inconsistently on SSE. SA outperforms the other

methods on both Sample 3 data sets for m/z SSE, but MBA has a dramatically lower SSE

(a) (b) (c)

Figure 10.8: Normalized True Peak Distance (NTPD) - m/z. NTPD is a difference metric
that compares the predicted ridge to the nearest observed ridge. Here we compare the ridges’
m/z values resulting from each of the four methods (Statistical Agglomeration, Modified
Bin Agglomeration, and Xcalibur) using the (a) Noyce, (b) Sample 3 750-800, and (c)
Sample 3 1000-1050 data sets. On average, SA provides a 38% reduction in error from
Fixed Width and provides a 68% improvement over Xcalibur for the two data sets for which
Xcalibur’s propriety data restrictions precluded measurement. Note the different scales.
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(a) (b) (c)

Figure 10.9: Normalized True Peak Distance (NTPD) - Intensity. Here we compare predicted
ridge intensities to the nearest observed ridge for each of the four methods (Statistical
Agglomeration, Modified Bin Agglomeration, and Xcalibur) using the (a) Noyce, (b) Sam-
ple 3 750-800, and (c) Sample 3 1000-1050 data sets. SA outperforms the other methods on
average, providing a 51% error reduction from Xcalibur for the two measurable data sets
given Xcalibur’s proprietary data restrictions. SA provides a 44% reduction on average over
Fixed Width. Note the different scales.

for the Noyce data set then either of the other methods (see Figure 10.14). Fixed Width

has a dramatically lower intensity SSE than either of the other methods on the Noyce data

set, but only slightly less SSE than SA on the Sample 3 750-800 data set (see Figure 10.13).

MBA noticably outperforms other methods on the Sample 3 1000-1050 data set.

While the above reported metrics should give an overall quantitative measure of the

performance of each method, the segments of the spectra in Figures 10.15 and 10.16 provide

a qualitative assessment of each method on the Sample 3 data sets (see Figure 10.17) . The

pattern that emerges across data sets is that, at least on these random segments, SA consistly

summarizes ridges exactly or very close to the hand annotation. MBA also performs well.

Fixed Width is not consistent in performance but usually adds extra ridges and/or shifts m/z

values of ridges substantially. Across both Sample 3 data sets, Xcalibur drastically increases

the number of ridges in the segment. Xcalibur’s predicted ridges are also notably less intense

than the hand annotated data set.
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Figure 10.10: ∆ Number of Ridges Predicted by Method. Each bar represents the difference
from the actual number of ridges for each of the four methods (Statistical Agglomeration,
Modified Bin Agglomeration, and Xcalibur) summed across all data sets. SA’s number of
predicted ridges is much closer to the observed number than any other method. Xcalibur
predicted far more ridges than any other method. Because Xcalibur only accepts data in its
proprietary format, the results are not available for the Noyce data set. Note the different
scales.
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Figure 10.11: Purity. Purity measures the averaged homogeneity of each estimated ridge over
all data points. There is no notable difference between methods on average. Since an inflated
number of ridges increases purity, predicted vs. actual number of ridges suggests that MBA
and Fixed Width purity values are due in part to overestimating the true number of ridges.
Xcalibur does not provide sufficient detail about ridges’ constituent points to measure purity.

10.5 Discussion

Fixed Width, to our knowledge the only extant algorithmic solution to this problem, is

simple to code, yet has some obvious limitations. In mass spectrometry, the intra-sample

resolution is inherently variable [89]. At least for the Orbitrap, low intensity signal groups are

more dispersed while high intensity signal groups have less m/z variance. Any fixed width

solution will either chop low intensity ridges into incorrect component ridges, incorrectly
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Figure 10.12: Normalized Mutual Information (NMI). NMI measures the information shared
between the real ridge assignments and the predicted ridge assignments. Xcalibur does not
provide sufficient detail about ridges’ constituent points to measure NMI.

(a) (b) (c)

Figure 10.13: Sum Squared Error (SSE) - Intensity. Fixed Width has the lowest error on two
of three data sets. This metric could not be measured for Xcalibur’s ridge assignments. Note
the different scales.

agglomerate high intensity ridges, or both. As shown in the results, fixed width methods

significantly overestimate the number of ridges, cascading error downstream into identification

and quantitation.

MBA attempts to provide robust means for dealing with ridges that overlap, and

builds on the idea of Fixed Width binning by agglomerating any adjacent non-empty bins.

Although the initial fixed width and the choice of which bin splitting options to use are

parameters that must be determined and set by the operator, the information in manufacturer
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(a) (b) (c)

Figure 10.14: Sum Squared Error (SSE) - m/z. The SSE of each of the four methods
(Statistical Agglomeration, and Modified Bin Agglomeration) is measured for each of the
3 data sets (a) Noyce, (b) Sample 3 750-800, and (c) Sample 3 1000-1050 data sets. SA
outperforms the other methods on Sample 3 750-800 and Sample 3 1000-1050, but MBA
outperforms the other methods on the Noyce data set. SA’s average error is 23% lower than
Fixed Width. This metric could not be measured for Xcalibur’s ridge assignments. Note the
different scales.
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Figure 10.15: Peak Summarization of Sample 3: 784-785. Note: all intensities have been
log-transformed for fit.

specifications, such as resolution, should assist in deciding the MBA parameters. In practice,

the machine calibration to which the specifications are tied is not always the setup desired for
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Figure 10.17: Peak Summarization of the Noyce Data Set. Note: all intensities have been
log-transformed for fit. Xcalibur could not be compared due to proprietary data restrictions.

the practitioner due to time requirements, desire to use MS/MS, etc. Also, the true machine

resolution can vary widely outside of the m/z value the specification is provided for. However,

practical experience may assist in knowing when the manufacturer specs are sufficient and

what changes need to be made when they are not.
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Since each ridge can be a different width, SA addresses the problem of bin size in a

flexible, data-driven manner. The ridge agglomeration procedure is statistically driven using

the data itself, handling problems like overlapping ridges and avoiding the need for users to

set parameters or for apriori knowledge about the data set. Noise filtering allows for the

avoidance of boundary conditions found in fixed width methods such as ridges with just one

data point. We consider s/n=1 to be a useful apriori setting, as it was the ideal setting

across all three of our data sets. SA’s ability to predict a far more accurate number of ridges

than the other methods suggests it will increase accuracy in downstream processes over the

current methods used, including Xcalibur (see Figure 10.10).

One troubling observation from this study is the difficulty in accurately assessing

intensity of discovered ridges. Both species identification and quantitation require an accurate

intensity measurement. Yet, even SA’s performance is simply the best of several inaccurate

methods. Given the amount of lipid quantitation performed currently, and also the state of

the art, better methods of estimating intensity are needed.

We have described the need for accurate ridge summarization in direct injection

lipidomics samples. Interestingly, despite the importance of accuracy in this first step of

the analysis pipeline, there has been no study of solutions to this version of the ridge

summarization problem to our knowledge. We present our estimate of what is currently done

in the community, and also propose two novel algorithms, MBA and SA, for resolving ridges

in shotgun lipidomics samples. We show that SA outperforms open source and proprietary

methods on average in a measure of ridgewise error, NTPD, on three data sets. We also show

that SA significantly outperforms the proprietary program Xcalibur on the two data sets for

which we could use Xcalibur.

Incorporation of SA into existing analysis pipelines could drastically improve down-

stream quantitation and identification results in a variety of lipidomics experiments. Future

work should continue improving our capacity to produce summarized ridges that more ac-

curately estimate intensity. In light of the recent calls for greater reproducibility in mass
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spectrometry [123], and to foster development of improved algorithms, these data sets and

the SA algorithm (with ample documentation) are available freely for non-commercial use at

http://github.com/optimusmoose/statistical_agglomeration.
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Chapter 11

Conclusion

This work attempts to improve the fundamental processes of mass spectrometery (MS)

identification and quantification. We have focused our efforts on isotope trace detection, one

module in the MS data processing pipeline, simulation, a general purpose tool for created MS

labeled data, and increasing general scientific rigor in the field with meta-analysis of common

practices.

In order to facilitate understanding and outside entry into the field, we provide the

first ever tutorial covering the breadth of MS data processing (Chapter 1). Although tutorials

exist for specific aspects of MS data processing, they are written for domain experts and not

interdisciplinary contributors that are not familiar with the field. The paper presents enough

detail to provide entry points for novel contributions while simultaneously providing enough

background to facilitate a quick entry-level comprehension.

We attempt to catalyze a paradigm shift in the field by suggesting a modular approach

to the quantitation and identification problem while stressing the importance of thorough

evaluation (Chapters 3 and 4). The importance of this contribution is notable, as these

two problems have contributed to the glut of papers that do not necessarily make a novel

contribution in the field. This makes is very difficult for practitioners to establish a state-

of-the-art for algorithm selection, and also perpetuates the lack of evaluation by making it

difficult to find and test individual algorithms that may exist for a problem the theorist is

trying to improve upon. Our evaluation paper was so well received that it was selected by

142



the Faculty of 1000, an interdisciplinary post-peer-review indexing group that recommends

manuscripts they consider to be important for the broader scientific audience.

In Chapter 5 we propose a novel unambiguous controlled vocabulary for MS data

processing. Our nomenclature is unambiguous and provides coverage for concepts not

described in the existing two controlled vocabularies or the colloquial vocabulary. Our

nomenclature facilitates precise algorithm description, and is also very important for a

mathematical specification of MS data.

In Chapter 6 we provide a formal characterization for the behavior of MS data. This

characterization describes the data and suggests approaches to various problems, such as

the segmentation of isotope traces from the whole set of signals in an MS output file. A

formalization of the problem has never before been published, and has proven essential to

our other contributions.

In order to facilitate evaluations, which are quite difficult because of the lack of labeled

data intrinsic to MS, propose two MS simulators. The mspire-simulator was designed to

improve upon the two existing MS simulators (Chapter 7), both of which failed to implement

the known behavior we characterized with our mathematical description of LC-MS data

(Chapter 6). As we showed in Figure 7.1F, our models for simulating the variance in real

isotope traces are qualitatively superior to ideal isotope traces without variance (Figure 7.1B),

such as those in previous simulators. This variance model is essential to achieving fidelity

with real data. The simulator achieves quantitative fidelity with real data, as shown in Figure

7.3.

Although mspire-simulator creates more accurate simulations than existing simulators,

it has serious performance limitations due to the language of implementation. JAMSS

implements the models in mspire-simulator, but improves upon the programmatic and user

interface aspects (see Chapter 8). Simulating MS data is computationally intensive. It is also

a complicated process that precludes normal multi-threading. JAMSS features an innovative

workflow consisting of several phases that are separately processed, as well as several custom
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optimizations to provide speed-up without omitting 50% of the proteins in the sample as

does MSSimulator, a previously published simulator. It also features a GUI with simplified

user parameters to make it easier to use. It is packaged as a JAR file and designed to

omit any external libraries, allowing a one click install, compared to many external package

dependencies of the three other published simulators.

Using labeled data and applying our mathematical characterization, we create an

advanced isotope trace extraction algorithm, Massifquant, that outperforms popular existing

algorithms (Chapter 9). Massifquant dramatically outperforms the state of the art algorithms

we compared it against. Additionally, the same process of mathematical characterization

and innovation has yielded a novel isotope trace extraction algorithm for a different MS

experiment type that outperforms state-of-the-art algorithms (Chapter 10).

11.1 Future Work

We have created a body of work that suggests a paradigm shift towards greater modular focus

in the MS data processing pipeline. However, there are still significant future contributions

that can and should be made.

Though our evaluative comparison of Massifquant included the most widely used

existing algorithms, a benchmark evaluation with a broader range of datasets and existing

algorithms is needed to define which algorithms practitioners should consider and which

perform poorly enough that they ought to be abandoned.

Isotope trace feature detection is the first step towards an MS1 pipeline for identification

and quantification. Our algorithm is the prerequisite step for an isotopic envelope extraction

algorithm. The process of creating a benchmark, testing existing algorithms, studying their

drawbacks, and developing a new algorithm must be repeated to do for isotopic envelope

extraction what we’ve done for isotope trace detection.

This process will be slightly more straightforward due to our contribution of the

JAMSS and mspire simulators, as well as our mathematical characterization of both isotope
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traces and isotopic envelopes. The JAMSS simulator is the most realistic MS simulator

available. However, due to the lack of labeled data, its models are limited in fidelity compared

to real data. In the future, algorithms that facilitate more observations on real data, such

as Massifquant, will inform the models in JAMSS and allow a bootstrap process to create

more realistic simulations. These, in turn, can produce more realistic evaluations on existing

algorithms. Thus, our work has not only produced an advanced isotope trace detection

algorithm, as well as a mathematical characterization of both isotope traces and isotopic

envelopes, but also developed a framework for attacking these problems that will be just as

useful for other modules in the MS identification and quantitation pipeline.
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