
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-11-01

Building 3D-Printed Widgets to Incorporate into
Prototypes
David E. Brandt
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Brandt, David E., "Building 3D-Printed Widgets to Incorporate into Prototypes" (2015). All Theses and Dissertations. 5625.
https://scholarsarchive.byu.edu/etd/5625

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5625?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Building 3D-Printed Widgets to Incorporate into Prototypes 

     David E. Brandt 

A thesis submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of 

Master of Science 

Michael D. Jones, Chair 
Kevin Darrell Seppi 
Yiu-Kai Dennis Ng 

Department of Computer Science 

Brigham Young University 

November 2015 

Copyright © 2015 David E. Brandt

 All Rights Reserved 



ABSTRACT 

Building 3D-Printed Widgets to Incorporate into Prototypes 

David E. Brandt 
Department of Computer Science, BYU 

Master of Science 

Creating interactive prototypes can be a long and difficult process. It requires expertise in 
various fields. Prior work in developing interactive prototypes minimize time required to make a 
prototype, but generally sacrifice fidelity for fluidity. Advances in 3D printing create new 
opportunities to prototype with greater fidelity and fluidity. We investigate the use of several 
kinds of sensors, including IR photo interrupters, IR photo reflectors, push button switches, and 
potentiometers, to create interactive prototypes. We first design a library of 3D printable 
interaction components, buttons, sliders, and knobs using those sensors then we develop software 
to transform interaction events into events in computer programs. The combinations of 
interaction components and sensing devices are evaluated based on their durability and ability to 
be printed into prototypes and used as human-computer interface devices.  

Keywords: PhysiComps, Widgets, 3D-Printed 
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 Introduction 

A physical interactive computing device (PhysiComp) is a small handheld device that 

includes sensors and computing. A defining feature of a PhysiComp is that the physical shape is 

driven by the intended purpose and human factors. PhysiComps rarely take the form of a 

rectangular box. They are designed for usability and comfort. 

Creating 3D prototypes of PhysiComps requires a significant amount of time and 

expertise. The process often involves designers, engineers and modelers. The designers create 

the look and feel of the device, but have to wait until the engineers are done creating the 

electronics to have a fully working prototype. 3D CAD modelers then come in and add any 

mounting brackets necessary to enable the device to contain the electronics. The design may 

require revisions to work with the electronics. This process can take weeks and involve the 

expertise of several people, reducing the number of iterations a prototype can feasibly go 

through. 

3D printers have opened the door for iterating through prototypes much more quickly. 

Once a device is designed and modeled, it can be printed and tested in a short amount of time. 

The model can then be changed and reprinted efficiently many times with little time or cost 

overhead. Unfortunately, making a PhysiComp interactive still requires a significant amount of 

expertise. 

It is not enough to just model a device in 3D modeling software. Doing so would neglect 

the importance of finding a form factor for the device that fits well and feels comfortable in a 

user's hand. For this purpose, we have developed a design flow in which designers mold their 

prototypes with clay or foam, so that they can easily make small adjustments until the device 

feels right. After the device is sculpted, interactive widgets need to be added at the right places 
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on the surface to create a PhysiComp. My thesis will lay the ground work for adding interactive 

widgets to PhysiComps. 

 

 

Figure 1.1 Widget 

 

A widget is a part designed for human interaction that can be incorporated into 

PhysiComps. It is made up of a component that interfaces with one or more sensors. A 

component is a 3D-printed part, and any non-printed parts (like magnets or springs) if necessary, 

that interface with both the human user and a sensor. A sensor is a piece of hardware with which 

the component interfaces and outputs data. The component interfaces with the sensor by 

changing its state. The way that a component changes sensor state depends on the sensor (see 

chapter 4 for more details).  As an example, Figure 1.1 shows a magnetic button widget. The 

component consists of the mounting geometry for the sensor, the magnetic button above the 

sensor, the magnets that are inside the magnetic button, and the plunger that interacts with the 

sensor. The sensor is a push button switch mounted on the component. When the magnetic 

button is pushed, a plunger pushes the push button switch down causing the sensor to change 

state. 

Sensor 

A widget is constructed from a component and a sensor. A component (gray 
in left image) is a 3D-printed part, and any non-printed parts (like magnets 
or springs) if necessary, used to interface with both human user and sensor. 
A sensor (red in left image) interfaces with a component and outputs data. 

Component 



3 
 

Adding interactive widgets to PhysiComps is important to designers involved in the 

prototyping process. It is a challenge for them to add interactivity to a PhysiComp without help 

from experts in other fields. Further adding interactivity to PhysiComps is a challenge to them 

because it requires knowledge in programming and hardware. A toolkit that enables designers to 

add interaction to their device while still giving them the freedom to iterate over designs will 

allow them to more efficiently hone in on a preferred design. 

The following scenario gives a broad overview of how the widgets can be used to create a 

PhysiComp in order to show how this work contributes to the future work. Imagine that a 

designer named Sally is creating a simple device that can control an mp3 player. It might have a 

skip backward, play/pause, and skip forward button widget, and a slider widget to turn the 

volume up and down. The device is in the form of a ski pole handle and Sally wants to make it 

comfortable to hold and use. She envisions the shape of the device and begins to sculpt it out of 

clay. As she is sculpting, she also thinks about where the component parts of the widgets can be 

placed to fit into her design. She gets it to the point where it feels comfortable to use with one 

hand and lets the sculpture dry. 

The next day Sally comes back and she is not quite satisfied with the shape, so she files 

down some of the curves to create a better fit for her hand. Finally, the sculpture is to the point 

where she is ready to create a digital model and make it interactive. She marks the places on the 

sculpture where she wants to place the button and slider components. 

Sally creates the digital model by scanning the sculpture. She opens the model inside of a 

CAD program. She then runs a tool that detects where she has placed the markings for her 

components. It finds those markings and replaces them with the corresponding components. The 
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tool enables Sally to modify the size and shape of the button components, and the size of the 

slider component. 

She decides that she is satisfied with the model and sends it off to a 3D printer to be 

printed. She pulls the 3D-printed model out of the printer and attaches the sensors that she needs 

to make it interactive and functional. The sensors are attached to a programmable chip that can 

read the sensor data, and include a push button switch for each button component, and a slide 

potentiometer for the slider component. With the sensors attached to their corresponding 

components (see Figure 1.1), Sally now has a PhysiComp with fully assembled widgets. She 

uses a program to link the button and slider widgets with their functions. For example, the slider 

widget would be linked to controlling the volume of the MP3 player. 

Sally has created a fully functioning prototype that allows her to test her design. She 

decides that she does not like the position of the play/pause button component or the slider 

component. So, she opens up the CAD program again to edit the placement of the components. 

She uses the tool to tweak the position of the components and then reprints the prototype. She 

removes the hardware from her first prototype and places it into the modified version to test it. 

This process of modifying and tweaking the position of components can continue until 

Sally is satisfied. It requires little effort to change the prototype and new designs can be iterated 

over quickly and efficiently. 

In this thesis, we support the realization of this scenario by exploring ideas for the 

assembly and placement of 3D-printed widgets. The combination of the sensors and components 

should make it easier to prototype interactive PhysiComps and give designers more fluidity when 

creating prototypes. The widgets should be durable for repeated use in a prototype, printable in 

any orientation to support a fluid design exploration and provide realistic pleasing haptic 
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feedback to users. We study how push button switches, potentiometers, infrared (IR) photo 

interrupters, and IR photo reflectors can be used to transform mechanical motion from 3D-

printed components into computing events. The components are most often the elements that the 

user interacts with so it is important that they are durable and provide haptic feedback. The 

components are printed and ideally should be printable in any orientation on the surface. The 

sensors are used to implement interaction in the widgets in PhysiComps so they will be evaluated 

based on their usability in a widget implementation. This includes the size and shape of their 

interaction region, sensitivity to interaction events, and programmability). Figure 1.2a shows 

some of the sensors that are used inside of PhysiComps. Figure 1.2b shows a ski pole handle that 

controls an mp3 player using the sensors and components created in this project. 

 

Figure 1.2 Sensors and Prototype 
 
 

1.1 Thesis Statement  

3D printing is an effective means by which to build durable interactive widgets that can 

be used in any orientation and which are pleasing human-computer interface devices that can be 

incorporated into PhysiComps. 

(a) Sensors: from left to right: Push Button Switch, 
IR Photo Reflector, IR Photo Interrupter, Knob 

Potentiometer 
 

(b) Ski Pole Handle 
Prototype 
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1.2 Organization  

The rest of the thesis is organized as follows. Chapter 2 presents related work. Chapter 3 

discusses the base component designs for the buttons, slider, and knobs. Chapter 4 describes the 

sensors and how they were incorporated into the components to create functioning widgets. 

Chapter 5 shows examples of PhysiComps using the widgets. Chapter 6 discusses conclusions 

and future work. 
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 Related Work 

Much work has been done to make it easier for designers to prototype physical devices. 

Some develop specialized hardware toolkits that are easy to set up and incorporate into a 

prototype. Others use sensors to detect interaction in order to eliminate the need for hardware 

toolkits, which can be bulky and make it difficult for designers to form their device in the way 

they want. The following sections describe some of the work that has been done and how it 

relates to this work. Compared to prior work, this work presents 3D printable components for use 

with common sensors that are simple use.  

2.1 Widget toolkits for interaction with physical devices 

D.tools was developed with the idea of creating a tool based on how designers think in 

the prototyping phase (Hartmann et al., 2006). It uses pre-defined hardware, such as buttons, 

sliders, switches, LCD screens, and LEDs, that are customizable and can be programmed with a 

simple-to-use visual language that is extendable. This toolkit assists designers with hardware, but 

they have to figure out how to incorporate the hardware into their prototype. We seek to create 

widgets where sensor interaction is built in.  

Hudson created the BOXES system (Hudson and Manko, 2006). It essentially consists of 

thumbtacks, wires and hardware boards. When they are touched, the boards sense capacitance 

and register an event. One difficulty with the system is that it only works well with thin materials 

like cardboard. This results in it being difficult to prototype 3D shapes. We were inspired by the 

physicality of the method and the fluidity of the prototype system, but aim for a higher fidelity 

prototype of the physical form while retaining similar fluidity. 

Midas is similar to the BOXES system in that it uses capacitive touch sensors (Savage et 

al., 2012). It is more customizable as the touch interface can be attached to many different types 
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of materials and can easily be molded to fit most shapes. Midas can send touch events by 

simulating the mouse and keyboard or by sending instructions to a device via a WebSocket. 

While Midas is customizable, it requires the touch sensors be fabricated for each device. We 

created a toolkit that has readymade electronics that are quicker and easier to incorporate into a 

prototype. The toolkit also has a wider range of interactive experiences because we use moving 

physical widgets rather than just tape. 

Gadgeteer is a system designed with the idea of making the creation of new physical 

computing prototypes accessible, flexible, and versatile (Villar et al., 2012). A number of 

components were created that can be incorporated and programmed with little experience. 

Additionally, the library can be easily incorporated into a 3D-printed model, or laser-cut housing. 

We build on these ideas by making it easier for designers to incorporate interactive widgets into 

their 3D models with little modeling experience. This is achieved by creating a library of 3D 

printable components that are designed around interaction with a sensor. The component designs 

can be printed and incorporated into a prototype to add interaction quickly. Any special 

mounting geometry for the sensor is included in the component.  

Switcharoo gives designers the ability to quickly create interactive prototypes while still 

focusing on form and feel (Avrahami and Hudson, 2002). Designers are able to create models 

out of soft materials like foam. They can then take components from Switcharoo and pin them on 

to their models to make them interactive. The Calder toolkit is similar to Switcharoo. It gives 

designers a set of tools, similar to GUI toolkits for software developers that can be used to make 

their prototypes interactive with little technical background (Lee et al., 2004). The components 

are also attached to foam or clay models. Rather than using just using soft modeling materials 

like foam, we extend this work to use 3D printers, which give designers the ability to incorporate 
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interactive components directly into their prototypes. 3D printers enable higher fidelity 

prototypes with lower fluidity. 

Lamello uses acoustics for sensing interaction (Savage et al., 2015). 3D printable 

interactive components such as buttons, sliders, and dials were made with tines. A moving part 

strikes the tines as it moves generating sound that is detected by an audio sensor. The sound can 

then be processed and used to understand the interaction. A limitation of Lamello is that it can 

only detect interaction when the position of a moving part changes. It also is not yet able to 

distinguish between multiple components that are moved at the same time. Our work also uses 

3D printable components, but with simpler sensors that are able to detect static position as well 

as change in position. Multiple components can be used distinguished and used simultaneously 

as well. 

Vázquez developed a method of detecting interaction using pneumatics (Vázquez et al., 

2015). The interactive controls were 3D-printed with air chambers, and use pressure sensors to 

detect user input. Interestingly, they use elastic material for their controls. For example, the 

pneumatic button contains a chamber made out of elastic material. As air is pumped in, the 

chamber inflates and can be used to simulate a button when a user presses it. The pneumatic 

controls are customizable in terms of shape and feel. Different shapes can be 3D-printed and the 

amount of air pumped into the chambers can change the feel of the controls. The method is 

limited in that it requires that an air compressor be attached to each control. The controls are also 

complicated to print as they often require components to be added mid print. We seek to simplify 

the process of making interactive controls by using simpler sensors and designs that can be 

printed and used without a complicated assembly process. 
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Numerous other design toolkits have been created to make the prototyping process faster 

and easier by making the electronics modular including MetaCricket (Martin et al., 2000), 

Phidgets (Greenberg and Fitchett, 2001), Smart-Its (Gellersen et al., 2004), littleBits (Bdeir, 

2009), and xTel (Tokuhisa et al., 2009). All these toolkits integrate well with design prototypes 

and help designers, with little to no engineering or programming experience, develop their own 

prototypes. We seek to more fully integrate an easy to use toolkit into 3D printing and focus on 

interaction widgets.  

2.2 Cameras for interaction with physical devices 

We compare our work with work that uses optical sensors because they relate to our use 

of IR sensors. Cameras are used to detect color and texture data, which can be processed and 

understood. IR sensors are much simpler as they can only detect light levels, but both sensors are 

optical and can be used to detect interaction for more than one type of widget. 

Akaoka created DisplayObjects, a system that projects a virtual model of a device 

prototype onto a physical model designed by the user (Akaoka et al., 2010). Interactive elements 

such as buttons can be created and placed onto the device. Interaction is picked up by sensors 

and cameras. While this allows more freedom for designers to explore new devices as well as 

test their physical prototypes as if they were functional, the tools are limited to use inside a 

motion capture arena. They also lack physical versions of the interactive elements. 

Savage created a tool called Sauron that uses a single camera and image processing 

techniques to create an interactive 3D printable device (Savage et al., 2013). The inside of the 

object has to be illuminated and each interactive component needs to be registered so that the 

camera can distinguish between the components. All components must be visible within the field 

of view of the camera. Rather than using a camera with optical flow implemented in software we 



11 
 

use a variety of light sensing and processing tools. Using different technology to sense 

interaction events creates a new set of possibilities in prototyping. The sensors we use are more 

self-contained. They do not require the use of a camera attached to a computer running an image 

processing algorithm to generate interaction data. Instead, the sensors collect data and send it to a 

computer wirelessly. 

Magic finger is a motion detecting device that allows users to have touch capabilities on 

many surfaces (Yang et al., 2012). The device consists of an optical camera, like those found in 

computer mice, for sensing motion parallel to the camera plane, and an RGB camera that can 

identify textures. A similar idea is used in this project for sensing input from the 3D-printed 

components, but simpler sensors are used. 



12 

 Component Designs 

The following chapter discusses the different component designs. A component is either 

a button, slider, or knob that is 3D-printed with exception of the slider and knob potentiometers, 

which are used as is. (They are sensors that do not require a component. See chapter 4.) We have 

constructed each kind of component with different sensors. In this chapter we discuss the design 

and construction of each component/sensor combination and then evaluate their durability, 

haptics and print orientation. Table 3.3 at the end of the chapter summarizes the features of the 

component designs.    

3.1 Evaluation Criteria 

Durability is measured by the strength of the component. For buttons, strength means the 

approximate number of times they can be pushed down without breaking. For sliders, strength is 

defined by the number of times the slider can slide back and forth. For knobs, strength is defined 

by the number of times the knob can be rotated. Each component was printed and used 100 

times. Very durable (good durability) means that it did not break, fairly durable (fair durability) 

means that it broke in 50 uses or more, and not very durable (bad durability) means it broke in 

less than 50 uses.   

Haptics is a description of how the component feels to a human user. For example, 

pleasing feedback to a human user in terms of the button is that it is clear that the button has been 

pushed down. Otherwise, the button could be pushed until it breaks and/or it could be unclear to 

the user when it is in the down state. For the slider and knob, it is measured by whether or not the 

motion is smooth. 
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Print orientation refers to the way components are printed. The 3D printer used in this 

thesis lays down material one horizontal layer at a time. A component can be oriented at any 

angle relative to the layer plane. That orientation is the print orientation.  

Print orientation can affect the strength and functionality of some of the components. We 

illustrate this with the compliant mechanism button design. Print orientation is determined by the 

printer used. We used a Stratasys Dimension Elite printer, which is a fused deposition modeling 

(FDM) printer that prints in ABS plastic. FDM essentially means that the printer builds models 

layer by layer. Using an FDM printer can limit the possible print orientations of a component if 

the component breaks easily when the layers are not placed in a certain way. 

Figure 3.1 shows the compliant mechanism button printed in three different orientations. 

Figure 3.1a shows it printed flat. The first image is a cross section of the button, and the lines 

show how the 3D printer layers the plastic. The second image shows how the button was 

oriented on the print bed. This orientation does not work well for the compliant mechanism 

button. The flexures are very thin, so the layers just separate when the button is pushed. 

Figure 3.1b shows the button printed on its side widthwise. Printing the button in this 

orientation does not work because the layers are parallel to the direction that the button is pushed 

down. There is also only a thin layer holding each flexure to the button and to the housing. When 

the button is pressed, the layers will separate from each other and the button will break. 

Figure 3.1c shows the button printed on its side lengthwise. This is the required 

orientation for the compliant mechanism button. The layers follow the angle of the flexures and 

continue into the button and the housing, creating a strong connection between them. As the 

flexures bow, the layers hold together, making the button much stronger. 
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These criteria measure how effective a component is in terms of printing it and using it as 

a pleasing human interface. Durability is important because if a component were to break on its 

first few uses, it would take longer to test out a device as a result of spending time printing and 

reprinting components every time they break. Haptic feedback is important to give designers a 

better idea of how the device might feel before it gets to its final iterations. Print orientation is 

important because it shows the ease of use of each component. Printing a component right into a 

prototype requires less assembly and is thus easier than printing it separately and creating a way 

to mount it into a prototype. 

Figure 3.1 Print Orientation 

3.2 Buttons 

Five different button designs are discussed and evaluated here.  The designs differ based 

on how they work mechanically. The first three designs are completely 3D-printed and are 

Flexures 

(c) Printed on side lengthwise 

(b) Printed on side widthwise 

(a) Printed flat 

Button 

Housing 
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designed to move and provide haptic feedback without any assembly. The idea was to design a 

button that worked by printing it right on a prototype, but each one relies on print orientation so 

the motion, durability, and feedback are not consistent. As a result, we made two other designs 

that can be printed in any orientation which require assembly using other parts, such as springs, 

to allow motion and haptic feedback. These can be printed right into a prototype in any 

orientation. 

3.2.1 Cantilever Button 

 

 

Figure 3.2 Cantilever Button 
 

 The cantilever button (Figure 3.2) contains two cantilever springs. The springs are 

connected to the button. Each spring also connects to its own post. The posts are used to attach 

the button to a prototype. When the button is pressed, the springs flex and allow the button to 

bow downward. The springs move the button back to its original state when released. 

 The button is fairly durable. It breaks after about 100 clicks by reasonable finger force of 

around 1.20 to 1.40 N or if a single force of about 17.35 N or more is used to push it. The button 

starts to sag from its original resting state after about 50 clicks. It has little haptic feedback. In 

other words, it is difficult to feel whether or not it is in the down state. As a result, it is possible 

to push the button too far and snap the springs. Print orientation matters. The springs are best 

Cantilever Springs 

Button 
Post 
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printed flat, orthogonal to the print head. That way the layers are also orthogonal to the direction 

of motion, strengthening the springs. 

3.2.2 Compliant Mechanism Button 

 The compliant mechanism button (Figure 3.3) is described by equations that came from 

BYU’s Compliant Mechanisms Lab1. 

 
Figure 3.3: Compliant Mechanism Button 

 

There are six constants (see Figure 3.3 for reference): The width of the flexures (𝑤) is the 

width of a single flexure. The length of the flexures (ℓ) is the length of a flexure from the post to 

the button. The variable 𝑡 is the out-of-plane thickness. The modulus of elasticity (𝐸) is a 

constant that changes depending on the material that is used. The initial angle (𝜃0) is the starting 

angle of the flexures before any force is applied to move the button. The length (𝑟10) is the 

horizontal width from the middle of the post to the middle of the button. The independent 

variable is 𝛿2, which is the displacement or the amount the button has moved down based on the 

force applied to it.  

 
1 Adapted from the first lab of ECCE 550/ME550 Micro-Electro-Mechanical Systems (MEMS), Fall 2012 
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Figure 3.4: PRBM for one half of compliant mechanism2 
 

The dependent parameters are calculated by the following equations (Figure 3.4): 

𝑘 =
𝑡𝑤3𝐸

12ℓ
 

𝑘1 =
𝐸𝑡𝑤

2ℓ
 

𝑘 is the stress constant for the button, and 𝑘1 is the stress constant for the post. 

𝑟3 =
𝑟10

cos(𝜃0)
 

𝑟3 is the length of the flexure plus the length of half of the post and half of the button.   

𝑟20 = 𝑟10 tan(𝜃0) 

𝑟20 is the vertical length starting from the center of the button down to the center of the post. 

𝑟2 = 𝑟20 − 𝛿2 

𝑟2 is the current vertical position of the button.  

 
2 Image taken from first lab of ECCE 550/ME550 Micro-Electro-Mechanical Systems (MEMS), Fall 2012 
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𝜃 = sin−1 (
𝑟2

𝑟3
) 

𝜃 is the current angle of the flexure. 

𝛿1 = 𝑟3 cos 𝜃 − 𝑟10 

𝛿1 is the horizontal displacement of the post. 

𝜓 = 𝜃0 − 𝜃 

𝜓 is the angle that the flexure rotates from the initial angle 𝜃0. 

The above parameters are used to calculate the approximate downward force required to push the 

button down to the given displacement 𝛿2. The force is calculated as follows: 

𝐹 =
𝑘1𝑟2(𝑟3 cos(𝜃) − 𝑟10)

√𝑟3
2 − 𝑟2

2
+

2𝑘𝜓

√𝑟3
2 − 𝑟2

2
 

 
Table 3.1 Units for Compliant Mechanism Model 

Constants Units 
Width of flexures (𝑤) 𝜇𝑚 
Length of flexures (ℓ) 𝜇𝑚 

out-of-plane thickness (𝑡) 𝜇𝑚 
modulus of elasticity (𝐸) 𝐺𝑃𝑎 

initial angle (𝜃0) 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 
length (𝑟10) 𝜇𝑚 

 

Table 3.1 shows common units that are used. When using these parameters, the calculated force 

(𝐹) is in 𝜇𝑁. 
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Figure 3.5: Monostable Model 

Figure 3.5 shows the relationship between 𝐹 and 𝛿2. The button moves to its down 

position when a force of just above 1000 (𝜇𝑁) is applied. A force graph like this shows that the 

button is stable in only one state. That means, when it is released, it will return to its up state. 

Had the force graph crossed the origin, it would mean that the button has 2 stable states (bi-

stable). This means that the button would stay in the button down state until pushed back to the 

button up state. The parameters used to generate Figure 3.5 are as follows in Table 3.2: 

Table 3.2 Example Parameters 
Constants Value 

Width of flexures (𝑤) 800 𝜇𝑚 
Length of flexures (ℓ) 6000 𝜇𝑚 

out-of-plane thickness (𝑡) 3000 𝜇𝑚 
modulus of elasticity (𝐸) 2.09 𝐺𝑃𝑎 

initial angle (𝜃0) 0.09 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 
dimension (𝑟10) 14000 𝜇𝑚 
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The modulus of elasticity was taken from MatWeb3 using the average value for the Acrylonitrile 

Butadiene Styrene (ABS), Extruded. The material was a good match for the material we used 

with the Dimension Elite printer. 

 The compliant mechanism button is very durable since it does not break with reasonable 

finger force of around 1.20 to 1.40 N after 100 clicks. It breaks when a single force of about 

30.25 N is applied to it. When the button is first printed there is little haptic feedback besides 

some resistance when the button is in the down state. After being pushed about 100 times, the 

button starts forming a slight popping feel, which gives haptic feedback that is a pleasing to 

human interaction when the button is pushed down. The button print orientation is on its side, 

with the flexures being built up in the z direction for it to work (as shown in Figure 3.1c). 

3.2.3 Pop Cap Button 

 

Figure 3.6 Pop Cap Button 

 The pop cap button (Figure 3.6) is a thin dome that when pressed, gives under the force. 

When released, the dome returns to its original state.  

 The button is very durable as it does not break with reasonable finger force of around 

1.20 to 1.40 N after 100 clicks. It can break if a force of about 80.95 N or more is exerted on it. 

 
3 http://www.matweb.com 

Dome Plunger 
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Cracks can appear after clicking more than 100 times. The button still works, but the plunger can 

also fall off of it if clicked enough. The plunger is attached on the underside of the dome in the 

center. When the dome is pressed enough, the plunger can start to shear off because of the strain 

caused from the dome deforming. The button gives haptic feedback that is pleasing to human 

interaction when pressed, so it is easy to tell when the button is in the down state. The best print 

orientation is when it is printed flat. If it is printed on its side, the layers separate from each other 

when the button is pressed.  

3.2.4 Spring Button 

 

 

Figure 3.7 Spring Button 
 

The spring button (Figure 3.7) contains a housing, a plunger, and a washer. These pieces 

are printed separately. A metal spring is then inserted into the housing, and the plunger goes 

through the center of the spring and through a hole in the bottom of the housing. The washer is 

attached to the plunger and keeps the plunger from being pushed out of the housing by the spring 

when the button is released. 

 The button is durable because it does not noticeably break down after 100 or more clicks. 

It has haptic feedback that is pleasing to human interaction because the button down state can be 

felt when the spring compresses fully. Print orientation does not matter for this button. 

Housing 

Plunger 

Washer 

Spring 
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3.2.5 Magnetic button 

 

 

Figure 3.8 Magnetic Button 
 

 The magnetic button (Figure 3.8) is similar to the spring button. It contains a housing, a 

plunger, and a cap instead of a washer. Two magnets with donut holes are placed inside the 

housing. The plunger is inserted down the donut holes of the magnets and through a hole in the 

bottom of the housing. The cap is then placed around the plunger and snapped on to keep 

everything together. The plunger has a stop to keep it from coming out of the housing. 

 The repulsive force of the magnets is used as the mechanism for the button. As the button 

is pressed, the magnets move closer to each other and their repulsive force grows stronger. Upon 

release, the magnets push the button back up to its original state. 

 The button does not noticeably break down after 100 clicks and so is very durable. It has  

haptic feedback that is pleasing to human interaction from the force of the repulsion increasing 

as the button is pressed down. Print orientation does not matter. 
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Plunger 
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3.3 Slider 

Figure 3.9 Base Slider 

The basic 3D-printed slider (Figure 3.9) consists of a container and a runner that slides 

inside of it. The runner is printed at resolution distance from the container so that it does not 

fuse. Resolution distance in this case is the minimum distance in which two objects can be 

printed without being fused into one object. For example, the Dimension Elite prints at 0.178 

mm resolution, so the runner is placed at 0.178 mm distance on all sides of the container. The 

slider is printed in place to reduce assembly time. 

The slider is very durable as it can be slid back and forth at least 100 times without 

anything breaking. In terms of haptics, having to place the runner at resolution distance from the 

container causes the slider motion to be a little sloppy. There is a little up and down play inside 

the container. The runner also moves without being pushed if the slider is angled so that the 

runner moves at a downhill angle. Each print is slightly different and sometimes the runner does 

not run very smoothly in the container. A simple fix to make the slider feel smoother and stay in 

place is to use Super Lube® Synthetic Grease with Syncolon® (PTFE) Multi-Purpose Lubricant. 

RunnerContainer 
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However, the up and down play is not fixed by the grease, and may be best fixed through 

printing the slider in separate pieces or using a higher resolution printer. This would allow for 

tighter tolerances which would reduce the up and down play. Printing in separate pieces enables 

tighter tolerances because the pieces can be printed closer (within the resolution of the printer) to 

the correct size without fusing.  

The base design for the slider varies a little depending on the sensor used (refer to 

Chapter 4). The print orientation of the slider depends on the sensor used. The container and 

runner design has been printed standing and sideways, and both orientations printed without any 

fusing or other issues. 

3.4 Knob 

Figure 3.10 Base Knob 

The 3D-printed knob (Figure 3.10) contains a rotating center piece inside of a container. 

There is a washer (also printed in place) below the container of the knob that attaches to the 

rotating center piece and keeps it from falling out of the container. The distance between the 

container and center piece is also done at resolution to keep them from fusing. The knob is 

printed in place to reduce assembly time. 

The knob is very durable as it does not break after about 100 rotations. Haptics are 

similar to the slider. There is some slop because of the resolution of the printer. There is a little 

Rotating Center 
Piece 

Container Washer 
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up and down play as well as side to side play. The knob rotates well inside the container, but 

feels smoother when lubricant is added. The up and down and side to side play may be best fixed 

through using a higher resolution printer or through printing the pieces separately. This would 

allow for tighter tolerances which would reduce the up and down and side to side play. Printing 

in separate pieces enables tighter tolerances because the pieces can be printed closer (within the 

resolution of the printer) to the correct size without fusing. 

Its print orientation also depends on the sensor being used. The rotational center piece 

and container design has been printer flat (the washer is flush with the print bed) and on its side 

and both printed without any fusing or other issues. 

3.5 Summary Table 

Table 3.3 Features of Component Designs 
Component Type Durability Haptics Print Orientation 

Matters 
Cantilever Button Fair None Yes 
Compliant Mechanism 
Button 

Good Good Yes 

Pop Cap Button Good Good Yes 
Spring Button Good Good No 
Magnetic Button Good Good No 
Slider Good Okay, Smoother with 

grease 
Depends on sensor 

used, but base model 
no 

Knob Good Okay, Smoother with 
grease 

Depends on sensor 
used, but base model 

no 
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 Widgets 

We explain and evaluate each of the sensors used to make widgets. The sensor types are 

mechanical sensors, IR photo reflectors, and IR photo interrupters. We then discuss the widgets 

built using these sensor types. The sensors are evaluated based on their interaction region, 

sensitivity, and noise. Interaction region is defined as the space around a sensor in which it is 

possible to create changes in the sensor’s value by creating motion through that space. This 

includes the action or direction needed to create the change in the sensor value. Sensitivity is the 

amount of motion required from a component to interact with a sensor. Noise is the fluctuations 

in the data that come when a component interacts with a sensor.  The source of noise associated 

with the sensor itself is not distinguished and is instead assumed to be noise associated with the 

component interacting with the sensor in this evaluation. 

Evaluating the sensors with these three criteria helps in understanding how each sensor 

can be used to develop a widget. Evaluating the interaction region enables us to understand the 

direction a component must move and the action it must take to trigger a sensor. Sensitivity 

informs the amount of motion a component needs to create for the sensor to detect change. Noise 

shows how loose tolerances in components may affect the reliability of what the sensor collects. 

Each component has a general design that was discussed in Chapter 3. The button designs 

remain the same for all of the sensors except the plunger changes a little depending on the sensor 

it is interacting with. The slider and knob designs are modified for the different sensors.  

The widgets are evaluated based on assembly and feasibility of widget placement. 

Assembly is defined as the necessary number of steps to assemble a functioning widget by 

combining its component and sensor and placing it on a prototype. More assembly can 

complicate the process of making a prototype and require more time. Feasibility of widget 

placement is defined as the area on the surface of a prototype on which it is possible to place a 
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specific widget. This shows how restrictive a widget is when designing a prototype. One other 

evaluation criteria, print orientation, is used for the sliders and knobs as in Chapter 3. The criteria 

could not be used until this chapter because the designs are dependent on the sensor.  

4.1 Mechanical Sensors as Widgets 

 

 

Figure 4.1 Front to back: Push button switch,  
Rotary potentiometer, Slide Potentiometer 

 

Mechanical sensors (Figure 4.1) are used for a comparison to the other two sensors (IR 

photo reflectors and IR photo interrupters) as the functionality for a button, slider, and knob 

already come built into the sensors. The term mechanical is used to signify that the sensors 

contain their own moving parts to generate changes in their readings. 

 The mechanical sensor used for buttons is commonly known as the push button switch. 

The push button switch either completes or breaks a circuit when pressed. The sensors we use 

contain a little piece of domed copper. When the button is pressed, the dome collapses from the 

force of the press and makes contact with the pins on either side of the button, completing the 

circuit. The dome reforms when the button is released, once again breaking the circuit. 

 Potentiometers can function as either a slider or a knob. The basic idea behind a 

potentiometer is that it creates fractional changes in resistance. These fractional changes are 

caused as a contact moves along a resistive strip. As the contact moves along the resistive strip, 
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resistance is either increased or decreased. Potentiometers can be found and purchased in either 

linear (slider) or rotary (knob) form.  

4.1.1 Buttons  

  

Figure 4.2 Button Interaction 
 

 The push button switch is rigid in terms of its interaction region. A force between straight 

down and approximately a 40º angle (Figure 4.2a) from vertical must be applied to the sensor in 

order for the button to go down. The button is sensitive in that as soon as it is pushed, the signal 

will change immediately. There is no noticeable noise from the senor when a component 

interacts with it. We did not observe any noise associated with bouncing, so no measures were 

taken to debounce the signal. It has two states high and low, and only changes when pressed and 

released. 

 Figure 4.2b shows the push button switch mounted below a pop cap button. To assemble 

the widget, the push button switch must be mounted below the button. It then needs to be wired 

up so that it can be attached to a processor that can detect its signal changes. The component is 

limited to being placed right above the sensor in order to interact with it. So the feasible widget 

Force can be applied from 
straight down to 

approximately a 40º angle 

(a) Push Button 
Switch 

Interaction 

(b) Push Button 
Switch with Pop 

Cap Button 

40º 40º 
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placement would be anywhere on the surface of a prototype where the component and sensor fit 

in a similar configuration as seen in Figure 4.2b. 

4.1.2 Slider and Knob 
 

 

Figure 4.3 Slide Potentiometer Widget 
 

  The component for the slide and knob potentiometers is a hole through the surface of the 

prototype and any mounting geometry if necessary. The slide and knob potentiometers that we 

used have handles that protrude far enough from the prototype surface that they can work for a 

human to interface with the device, but handles can be printed and attached if necessary or 

desired. The Potentiometers can be mounted so that the handle sticks through the surface of a 

prototype. Interaction occurs directly with the user as there is no component in between. 

 

Figure 4.4 Slide Potentiometer Trace 
 

The Interaction region for the slider is just a side-to-side force that moves the slider back 

and forth. The knob requires a rotational force. Potentiometers are sensitive. They can detect 

small movements. There is a slight bit of noise from the potentiometers, but it can easily be 

(a) No Filter (b) Low Pass 
Filter (α = 0.5) 

Noise 
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filtered out using a low pass filter. Figure 4.4 shows two similar graphs of the signal coming 

from a slide potentiometer. Figure 4.4a shows the signal before a low pass filter is applied. There 

is not a lot of noise, but the signal has a tendency to attenuate a little. Figure 4.4b shows the 

signal after a low pass filter is applied. It smooths out the small attenuations. The print 

orientation does not apply in this case. 

Assembly for both the slide and rotary potentiometer is just a matter of mounting it 

through the surface of a prototype (Figure 4.3) and attaching wires to it. The feasible widget 

placement is dependent on the size of the potentiometer. Their size and shape is dependent on 

what is available on the market. 

4.2 IR Photo Reflectors as Widgets 

 

Figure 4.5 IR Photo Reflector 
 

IR photo reflectors (Figure 4.5a), also known as proximity or line sensors, can detect 

varying levels of reflected IR light. Generally, they are configured so that an IR LED and an IR 

sensor (phototransistor) are placed side-by-side, facing the same direction. When an IR reflective 

surface, such as paper, is placed in front of the sensor, greater degrees of IR light are reflected 

(a) Diagram of  
IR Photo Reflector 

(b) Interaction Area 

Reflective Surface 

IR LED
  

IR Sensor
  

Sensing Area 
2-7 mm 

7.62 mm  13.97 mm
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back to the sensor as the surface gets closer. Depending on the implementation, this can either 

cause fractional increases or decreases in voltage. 

The IR photo reflector has the largest range of interaction compared to the other sensors 

used. Figure 4.5b shows a blue cone that represents the interaction area of the sensor, which is 

approximately 30º angling away from one of the edges of the sensor. Imagine that the height of 

that cone is about 5 mm. A widget can interact with the sensor at about any angle above the 

sensor, and at about a 30º angle off of one of the edges. The optimal sensing distance is at about 

3 mm, but the sensor can sense objects that are about 5 mm away as well as objects almost 

touching the sensor. The sensing distance depends on how reflective the material is. A more 

reflective material gives a wider range of values as well as can be detected from a slightly further 

distance (out to about 7mm). 

 

Figure 4.6 Reflectance Test Device 
 

The Dimension Elite has 9 materials. A cube was printed in each material and placed 

about 3 mm away from an IR photo reflector (Figure 4.6). The initial value of the sensor, without 

anything in front of it was about 1018. Higher values mean less reflectance. Table 4.1 shows the 

approximate reflective value for each color used with the Dimension Elite. 
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Table 4.1 Color Reflectance Values 
Color Approximate Value 
White 76 
Yellow 112 

Red 242 
Orange 295 

Blue 500 
Ivory 522 
Grey 916 
Green 934 
Black 987 

 
White is the most reflective surface and black is the least reflective. It is important that the 

surface is reflective when using an IR photo reflector. Otherwise, the sensor is not able to detect 

movement from a widget. Depending on the distance from the sensor, as well as the color, the 

levels of reflectance change. As a result, whenever this sensor is used, a registration step is 

required. Each widget is registered differently, but generally it means calibrating the widget to 

the sensor so that the widget functions properly.  

The sensor is very sensitive to any change in light. Out of all of the sensors used, the IR 

photo reflector has the most noise as a result of difficulty controlling light levels. A low pass 

filter and time average can be used to help filter the signal. 

4.2.1 Buttons 

 

 

Figure 4.7 IR Photo Reflector with Compliant Mechanism Button 
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All that is required to get the IR photo reflector to interact with a button is to place it 

under the plunger (Figure 4.7). The button widgets are not complex to print and assemble, but do 

require an extra step in software. They have to be registered in order to detect button up and 

down states properly. Buttons are registered by first detecting the reflectance in the button up 

state, then in the button down state. That way the computer listening to the sensor can send an 

event when the button changes state. 

 Button widgets that use the IR photo reflector have the largest range of feasible widget 

placement. The placement is limited on the size of the component as well as the size of the 

sensor, but the sensor can be placed anywhere around a button component as long as it is about 

3-5mm (7mm with a more reflective color) and can detect changes in light level as the button is 

pushed down. This allows for more freedom in where to place a button widget on the surface of a 

prototype. 

4.2.2 Slider 

 

Figure 4.8 Slider with IR Photo Reflector 
 

 The sensor is placed on the runner of the slider facing a wedge. As the runner slides over 

the wedge, the amount of light the sensor detects increases or decreases as the wedge slopes 

closer or farther away from the sensor (Figure 4.8). The reflectance value coming from the 

sensor is used as the position of the slider. 

Runner and IR photo 
reflector Mount 

  
Wedge 
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 A registration step is needed to know the minimum and maximum values of the slider. 

The minimum and maximum are used to normalize the values. This allows for the freedom to 

resize and reshape the slider to fit as desired into a prototype. 

 The assembly for this slider includes mounting the IR photo reflector, attaching the wires, 

and mounting the widget on the surface of a prototype. The slider can be printed directly into the 

prototype, but print orientation does matter. The runner is a lot weaker and buckles when the 

slider is printed with the runner facing sideways instead of up. 

 The size and shape of this slider can change as long as the wedge causes a steady 

increase/decrease in reflectance values. The feasible widget placement of the slider is limited by 

its size and the wires. The size can change giving designers more freedom in how they can place 

the widget on their prototype. The wires require enough room to move with the sensor so that 

they do not get snagged as the sensor is slides. 

4.2.3 Knob 

 

Figure 4.9 Knob with IR Photo Reflector 
 

 The sensor is placed below a corkscrew shaped wedge. As the knob rotates, the wedge 

changes slope, changing the amount of light reflected back to the sensor. There is a sharp change 

after the wedge rotates one full rotation. The sharp change signals that the knob is still rotating in 

Corkscrew 
Wedge 

IR Photo 
Reflector Mount 
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the same direction and that the knobs values continue to increase or decrease depending the 

direction (Figure 4.9). 

 The above process does not work very well because the corkscrew does not cause a sharp 

jump in the values of the sensor unless the user turns it fast enough. Since this design does not 

control the speed at which a user turns the knob, the sensor can read intermediate values. This is 

likely a result of the sensor being caught halfway (more or less) between the highest and lowest 

points in the corkscrew. It is difficult to know what the values will be at that stage with the result 

being the errant detection of multiple changes in direction. 

 

Figure 4.10 Knob States and Traces 
 

 In an attempt to clean up the data, a registration step was created for the knob. The 

registration consists of gathering n number of discrete states. The knob is marked with a line 

indicating where it is pointing and when it makes a full 360º revolution. For example, in one 

experiment 4 states were gathered (Figure 4.10a). State 0 was marked as the first value when the 

knob marker points up. State 1 was marked where the knob marker points right. State 2 was 

marked where the knob points down and state 3 where the knob points left. The light reflectance 

values were gathered at each of these states. 

 As the knob rotates, the distance of the value coming from the senor to the 4 states 

collected was calculated. The state that the value was closest to would be the current state of the 
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knob. If the state change was positive, then the knob increased. If it was negative, then it 

decreased. The only exception was if the knob did a full revolution. In this case the change was 

counted as positive if the state went from 3 to 0 and negative if it went from 0 to 3. It became 

even clearer that intermediate values were coming in during this jump (Figure 4.10b). Unless the 

knob was turned very quickly over the point where it goes from the lowest to highest state, 

intermediate values would pop up. In the case of the knob used to generate data for Figure 4.10, 

this point was between 2 and 3. So, instead of going from 2 to 3, the states (2, 1, 0) or a subset of 

them would come through. This made it difficult to know when the knob was continuing in the 

same direction, or reversing direction. It was also possible to stop at one of those intermediate 

values even though the state at that point should be either 2 or 3. 

 A second sensor was added in an attempt to be more consistent in detecting the direction 

that the knob was turning. The sensors were originally placed 180º apart. The knob would only 

be counted as increasing values or decreasing values if the reflectance from the two signals was 

changing in the same direction. This stabilized the knob, but unfortunately there was only a small 

window in which both sensor signals were changing in the same direction. As a result, the 

sensors were placed about 90º apart (Figure 4.10c) in an attempt to increase the amount of 

surface over the knob’s corkscrew in which they change in the same direction. Doing so did 

increase the time in which both of the sensor’s signals changed at the same time, but not enough 

to make the knob very responsive. This widget in its current state gives unreliable results as it is 

not responsive and is a little jumpy from the noise caused by the sloppiness from the print 

tolerances. 
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Figure 4.11 Three Sensors Trace 

 
 Finally, adding a third sensor gave reliable results. It was placed about 130-135 degrees 

offset from the first two sensors. Placement was driven by where it would fit. In this case, 

discrete knob states were no longer used. They helped in understanding the data, but are not 

necessary for detecting the direction that the knob is turning. Instead, the raw trace values were 

used as seen in Figure 4.11. When the knob is turned, the difference between the current read 

value and the previous read value of each sensor is calculated. The sign of each of the differences 

is checked and if the difference is greater than some arbitrary threshold, then a counter associated 

with the sign of that difference is incremented. 

Once that is done for the three sensors, the larger absolute value of the two counters is 

selected. If it is greater than 1, it means that at least two of the sensors agree on the direction that 

the knob is turning. The result is the direction of knob rotation is consistently detected. Figure 

4.11 shows the knob as it is rotated clockwise. There are always two sensor traces consistently 

changing in the upward direction. The limiting resolution of the 3D printer allowed movement of 

the knob both vertically and horizontally, which could cause false readings. Increasing the 

arbitrary threshold reduced the number of false readings, but made the knob less responsive. 

 The assembly for the knob widget requires that the sensor be mounted in the component, 

and that wires be attached to it. The widget can then be mounted or printed onto the surface of a 
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prototype. The feasible widget placement for the knob is constrained by the size of the knob and 

corkscrew as well as the size of the sensor. The sensor should be placed to detect the linear 

change in reflectance as the corkscrew rotates. With that requirement met, the knob widget can 

be placed wherever it can fit on the surface of a prototype. The diameter of the knob can change, 

but the diameter of the corkscrew that interacts with the sensor must be large enough to change 

the amount of light being reflected back to the sensor as it is turned. 

4.3 IR Photo Interrupters as Widgets 

 

 

Figure 4.12 IR Photo Interrupter 
 

IR photo interrupters (Figure 4.12a) contain an IR LED and an IR sensor that face each 

other across a gap. When a surface is inserted in between the gap, the light is blocked and the 

sensor detects the change. This can be used as a binary switch. 

In terms of the interaction region, IR photo interrupters in general require more precision 

than the mechanical sensors and the IR photo reflectors when interacting with components. The 

part of the component that interacts with the sensor has to cross through the correct part of the 

gap to block out the IR light. Even though more precision is required, there are more ways to 

interact with it than the mechanical sensors. For example, a button plunger can move into the gap 

at any angle, as long as its plunger blocks the light in the button down state. This allows for 

Gap 

(b) Interaction 
Area 

(a) Diagram of  
IR Photo Interrupter 

About 1800 
of interaction 

IR LED 

IR Sensor 

Surface 



39 
 

about 180o of interaction around the gap (Figure 4.12b). The sensor is very sensitive and changes 

state as soon as any IR light is blocked or detected. There is no noticeable noise when a 

component interacts with the sensor. The signal changes immediately when the IR light is 

blocked or unblocked. It is possible for the sensor to detect IR light from nearby components of 

nearby widgets when not desired if the sensors are not covered well enough to block out ambient 

IR light, in the case of the gray code slider (section 4.2.2) and knob (section 4.2.3). 

4.3.1 Buttons 

 

Figure 4.13 IR Photo Interrupter with Cantilever Button 

 

All of the button designs work with the IR photo interrupter. Assembly is simple as the 

sensor is placed below the button so that the plunger can interact with it (Figure 4.13). The 

sensor also has to have wires soldered to it so that it can interact with a processor. The placement 

of the sensor is a little more complex depending on the width of the gap even though there are 

more ways to interact with it. The smaller the gap is, the more precise the movement from the 

button has to be to slide into the gap when the button is pressed down. The sensor allows a little 

more freedom for widget placement than the push button switch because the sensor could be 

mounted at different angles and still interact with its component. 

 The cantilever button is the most challenging design to use with this sensor, since the 

button gives no feedback when it goes to the button down state. As a result, it is easy to snap the 

button by pushing it too far. This can be fixed by mounting the sensor closer to the button so that 
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the plunger runs into the sensor when pushed down. Another challenge is that the button 

cantilever sags after about 100 clicks. The button can sag into the gap and always block the light, 

causing the button to always register in the down state. 

4.3.2 Gray Code Slider 

 

Figure 4.14 Gray Code Slider 
 

 The gray code slider uses a slightly different sensor than the buttons, but uses the same 

idea behind the IR photo interrupter. Figure 4.14 shows two different views of the slider. The 

side view shows the IR phototransistor sensor mount and that the LEDs and phototransistors line 

up across the gray code. The perspective views show the IR LED sensor mount. 

A custom PCB was made (Figure 4.15) that contains 4 IR LEDs and another that contains 

4 IR phototransistors. Figure 4.15a shows the schematic for the PCBs. The left schematic shows 

the logic for the IR LED board, which is used to illuminate the sensor board. The right-hand 

schematic details the logic for the IR phototransistor board, which is used to read the light output 

from the IR LED board. The sensors that detect IR light from the LED board is determined by a 

3D-printed component (continue reading this section and 4.2.3 for more detail). Figure 4.15b 

shows three different sizes of the board. The LEDs, phototransistors and resistors are all 0603 

(0.6 mm x 0.3 mm) surface mounts. The two PCBs are placed across a gap facing each other. 
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Figure 4.15 Custom Gray Code PCBs 
 

 Gray codes are used to create unique patterns that differ consecutively by one bit. Since 

there are 4 sensors and each has a high and low state, a total of 24 or 16 unique patterns can be 

generated. These patterns can be laid out linearly, creating a code that can be used as a slider. 

 Before printing the gray code slider, a 3D modelling program called OpenSCAD4 was 

used. OpenSCAD is a functional language that specializes in generating 3D models that can be 

printed. The phototransistors on the custom PCBs register as high or 1 when no light is shining 

on the sensor, and low or 0, when light is shining on the sensor. This means that there has to be 

geometry to block light from the sensor where the code is 1 and holes where the code is 0. 

 The gray codes were generated on OpenSCAD recursively. Then, those codes were used 

to build the geometric model  for the slider by placing a rectangle wherever there was a 1. The 

combination of rectangles was extruded to create a solid. Figure 4.16 illustrates how the 

 
4 http://www.openscad.org 
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geometry for the code was built. In this case, each bit was represented by a 3mm x 3mm square. 

Notice that the geometry is placed where there are 1’s. 

 

Figure 4.16 4-Bit Gray Code Sequence 
 

 The material used to build a gray code slider must not be very reflective of IR light. 

Otherwise, IR light can be reflected around the slider and give false values. IR light being 

emitted from the LEDs will not be blocked from the printed representation of the gray code. 

Instead, it will reflect off of the code and other parts of the slider and could potentially find its 

way to one of the sensors that should be blocked from receiving light, causing the sensor to give 

a false reading. Black worked the best out of the material that came out of the Dimension 

because it is the least reflective, though green and gray also worked. The brighter colors, such as 

white or yellow, shown in Table 4.1 did not work well because they do not block enough IR 

light, which causes false readings. 

 To further control the amount of light being sent to the phototransistors, dividers and 

sensor mounts were used. Figure 4.14 shows the dividers. They are placed in between each row 

of the gray code sequence. The dividers are there to help keep IR light from bleeding over into 

sensors that should be blocked. The sensor mounts were designed to block the edges around the 

LEDs and phototransistors. In the case of the LEDs, this blocks out light being emitted sideways. 

For the phototransistors, the mounts block out light coming into the sides of the sensor, 

restricting it to detecting IR light that is shined directly in front of it. 
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 Assembly for the gray code slider is challenging. There are 4 signal wires and 2 wires for 

power and ground. The LED PCB is lined up and powered by headers coming across the gap 

from the phototransistor PCB. 

 The widget’s placement is restricted by its size and the wires coming off of the PCBs. 

The height of the slider can be changed by the height of the sensor. The width of the slider is 

affected by the width of the sensor. Making the sensor length shorter works, but eventually the 

sensor starts to miss or skip over codes if the gray code width is too small. The wires come off of 

the IR phototransistor PCB, which means there has to be room for them to slide along as the 

sensor moves across the code. The slider then has to be mounted on the prototype using glue or 

some other method. 

The slider runner is printed in place as part of the slider component and it works when 

printed standing or on its side for the larger PCBs. The smallest PCB (last PCB in Figure 4.15) 

requires that the slider be printed standing up. Otherwise, the holes for the mounts do not print 

out properly when using the Dimension Elite. The smaller the PCB, the more the sloppiness of 

the print affects the readings from the sensor. The reason is that any small movements up and 

down in the runner have the potential to offset the gray code PCBs just enough so that they are 

no longer lined up with the gray code. The larger PCBs have more space between the 

phototransistors, and therefore a little movement up and down does not affect the sensor 

readings. 
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4.3.3 Gray Code Knob 

 

Figure 4.17 Gray Code Knob 
 

 The gray code knob uses the same sensor and pattern as the gray code slider, but the 

pattern is laid out in a circle. Figure 4.17 shows the knob from different perspectives. The knob 

turns the gray code wheel and the sensors are static. The dividers are there to divide each ring of 

the gray code (4 in this case since there are 4 channels or phototransistors). They help keep light 

from bleeding over to neighboring phototransistors when two or more holes are next to each 

other. The sensor mounts encase the LEDs and phototransistors. Similar to the gray code slider, 

this reduces the amount of emitted IR light from the LEDs. They also reduce the amount of IR 

light detected by the phototransistors. 

OpenSCAD was used as well, except arcs were used to build the gray code geometry 

instead of rectangles. Figure 4.18 illustrates how the geometry was built using the codes. The 

middle black circle is not part of the gray code, it is a mounting bracket for the knob. The height 

of the arc is defined by the size of the LEDs and phototransistors as well as the space between 

each of them. The arc angle is defined by 360º/42 (4 being the number of channels). This will 

give 16 arcs around each ring with the correct height to block the phototransistors. Each ring 

refers to the series of arcs that make up the code for each channel or IR phototransistor. There 

are 4 rings in this case. Arcs are only added where the code is 1. 

Dividers 
Gray Code Knob 

 

IR Phototransistor 
Sensor Mount 

IR LED Sensor 
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Figure 4.18 4-Bit Circular Gray Code 
 

 The same limitations as the gray code slider apply for the colors that can be used. Black, 

green and gray were the least reflective, and should be used so that IR light is blocked. 

Reflective material can cause erroneous results as the dividers and sensor mounts no longer 

block IR light. 

 Since the gray code knob uses the same sensor as the gray code slider, the same assembly 

is required to get the IR LED and IR phototransistors up and running. The knob is printed 

separately, so it has to be glued or mounted in some other way on a prototype. 

 The feasible widget placement for the knob is dependent on its size. The largest part of 

the knob is the gray code wheel. The size of this is dependent on the height of the sensor as well 

as the space between each of the LEDs and phototransistors. The height of each ring is the same 

height as the LEDs and phototransistors plus the space between them. The rings cannot change 

sizes, otherwise the code would not be lined up with the sensors. The mounting ring can change 

diameters. The widget can be mounted anywhere on the surface of a prototype as long as the 

gray code wheel fits. 

 

 



46 
 

4.4 Modular Widgets 

 

Figure 4.19 Modular Widget 

 

Modular widgets (Figure 4.19) were created to make it easier to change out the 

component part of a widget. There are two parts to the component of a modular widget. It has 

one of the designs described in Chapter 3 and a housing. The housing is attached to the surface 

of a prototype and the sensor or sensors are mounted onto it. The design clips into the housing 

and is positioned so that it can interact with the sensor. 

The cantilever button and magnetic button with the push button switch and the IR photo 

reflector knob were converted into modular widgets. The buttons are interchangeable, meaning 

that they both use the same housing and interact with their sensor the same way. The IR photo 

reflector knob has a different housing from the buttons. 

The modular widgets are useful because a designer can quickly change out components. 

For example, if one of the cantilever buttons break, it can be replaced by popping the broken one 

out of its housing and snapping a newly printed one in place. No re-gluing or re-mounting of 

sensors is required. The trade-off is that the widgets are boxier and take up more room on the 

prototype. 
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4.5 Grid Array 

 

Figure 4.20 Grid Array of Proximity Sensors 
 

 The grid array consists of 16 IR photo reflectors. Each sensor is placed side by side in a 

4x4 grid. In this case, sensors are no longer attached directly to a component. Instead, all of the 

components interact with the grid. A distinction for the purposes of this paper is that the 

definition of widget is somewhat different when using the grid. The grid is decoupled from the 

components rather than integrated into them, but functionally we still consider it a widget. Each 

component has to be registered, so that the computer listening to the sensors can differentiate 

between them. The interaction, sensitivity, and noise follow the same evaluation as was 

described in section 4.3. The only difference is that interaction is a little more complicated as 

there could be interference from other sensors. In this case, we did not worry about interference 

and are relying on the sensors being spaced far enough apart as well as their short 5-7 mm sense 

range to eliminate any interference that they may cause between each other. 

 Assembly is about the same for each of the widgets in this case. They can be printed in 

place if they are oriented right or if print orientation does not matter as in the case of the spring 

button. They can also be printed separately and attached to the prototype. The assembly for the 

hardware is just a matter of mounting the grid inside the prototype. The components have to be 

modified slightly to ensure that they move within the sensing range (inside 5-7 mm) of the IR 
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photo reflectors. For example, the button plunger has to be long enough to reach the grid when 

the button is pressed. 

4.5.1 Button 

 The button is registered by collecting a button up and a button down state. A difference is 

found between these two states to find the sensor or sensors that the button interacts with. The 

value halfway between the button up and button down state is used to trigger a button down 

event, when that value is crossed. The button can be placed anywhere above or around the sides 

of the grid. As long as its plunger is moving over one or more sensors, the grid can sense its 

motion. 

4.5.2 Slider 

 The Slider is registered by collecting three states. The slider runner is moved to the left 

most position, the center position, and the right most position. The difference between the left 

most and center state, and the difference between the center state and right most state is taken to 

find the sensors that the slider interacts with. If any of the differences are above an arbitrary 

threshold, then it is assumed that the slider interacts with the sensors corresponding to those 

differences. 

 A registered slider includes a low, middle, and high value. These values are used to 

interpolate the value of the slider widget. The value of the slider widget is found by taking the 

current state of the sensor values corresponding to the slider and calculating the Euclidean 

distance between that state and the left most (𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡), center (𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟), and right most 

(𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡) states. If 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 is less than 𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡, a weighted average is found by 

𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 ×  𝑙𝑜𝑤𝑉𝑎𝑙𝑢𝑒 +  𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 ×  𝑚𝑖𝑑𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 +  𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟
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The sensor value is then set by rounding the result of the weighted average. If 𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 is less 

than 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 then the weighted average is found by 

𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 ×  𝑚𝑖𝑑𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 +  𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 ×  ℎ𝑖𝑔ℎ𝑉𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 +  𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟
 

The sensor value is then set to the rounded value of this weighted average. 
 
 

 

Figure 4.21 Grid Slider Example 

 

 For example (refer to Figure 4.21), suppose the low value is 0, middle value is 5, and 

high value is 11, and the sensor interacts with four sensors on the grid. The left most state is {s0: 

500, s1: 800, s2: 900, s3: 1000} (s stands for sensor).  The center state is {s0: 1000, s1: 600, s2: 

600, s3: 1000}. The right most state is {s0: 1000, s1: 900, s2: 800, s3: 500}. Say the current state 

of the slider is {s0: 800, s1: 500, s2: 800, s3: 1000}. The Euclidean distances for each state are 

𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 = 435.89, 𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 = 300, 𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 = 670.82. The 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 is less than the 

𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 so the weighted average is found by 

𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 ×  𝑙𝑜𝑤𝑉𝑎𝑙𝑢𝑒 +  𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 ×  𝑚𝑖𝑑𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 +  𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟
 

300 ×  0 + 435.89 × 5

435.89 + 300
 = 2.96 

The weighted average is rounded and so the sensor value is set to 3.  

s0 s1 s2 s3 
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The low, middle, and high values can be changed, but the wider the range the more 

jumpy the values tend to be. Using a smaller range is stable, but the wider ranges are more prone 

to the noise coming from the sensor because slight changes in the reflectance values can change 

the interpolated value of the slider. The above method is not very stable when the slider is close 

to the middle state regardless of the size of the range. Using more sensors may help because 

there would be more sensor values that could be used for interpolation. 

 The feasible widget placement of the slider is either above or to the side of the grid. It 

needs to interact with (slide across) more than one sensor. The part that interacts with the sensors 

can be a piece of geometry that moves with the slider that is close enough to change the light 

levels of the sensors as it moves across them. 

4.5.3 Knob 

 Similar to the IR photo reflector knob, a corkscrew wedge was used to detect increasing 

and decreasing light levels. The same problem appeared when reaching the end of the corkscrew 

where the sensors read intermediate values instead of jumping from the lowest reflectance value 

to the highest reflectance value or vice versa. 

 In an attempt to clean up the data, we collected reflectance states for all of the sensors on 

the grid. Specifically, we collected four different positions on the knob that represented each 

quarter turn. Those value were fed into a neural network. About 50 data samples were collected 

for every sensor at each quarter turn. The neural net seemed to do fine classifying the positions 

until the end of the corkscrew wedge was reached. Intermediate values were detected. For 

example, assuming the knob is being turned clockwise, 3,0 would be the desired sequence, 

However, going from state 3 to 0 might cause the sequence 3, 2, 1, 0 or 3, 1, 0, both indicating a 

counter-clockwise rotation, depending on how fast the knob is turned. 
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 The only feasible knob widget placement is above the sensors. The knob can be slightly 

angled as long as the corkscrew wedge is close enough to the sensors to change the amount of IR 

light reflected back to them. 
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 Prototypes 

Three prototypes were made to demonstrate the use of the widgets. A ski pole handle 

MP3 player controller, etch-a-sketch controller, and 3D mouse were made to demonstrate how 

the widgets can be used as building blocks to make an interactive prototype. We also built an 

array of sensors to prototype a generic “field of interaction” that could be placed below an object 

surface and used to explore different widget arrangements.  

Each of these prototypes is evaluated by their functionality, assembly, and widget 

placement. Functionality is defined as whether or not the prototype functioned as a whole. It 

helps in understanding if the widgets work and can be used together. Assembly is an overview of 

the steps needed to make the entire prototype, which demonstrates how difficult it is to use the 

widgets. The placement of their widgets is a discussion on the size and limitations of each widget 

in regards to the prototype. 

A brief discussion about the software architecture is presented in this section. The 

software was used to test the widgets and as a platform on which to build applications to test 

prototypes using the widgets. 

5.1 Software Architecture 

A Blend micro Arduino microcontroller was used to read sensor values and send them to 

a computer. The microcontroller wirelessly sends data via Bluetooth. A computer was used to 

receive the sensor values from the microcontroller via Bluetooth. The computer software was 

implemented in Java. Figure 5.1 shows a basic overview of software architecture. The 

architecture was designed to be an event handling system for the widgets and to be easily 

extendable to support new widget types with different designs and/or sensors. 
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There was a Bluetooth data collector that parses the data coming from the 

microcontroller. The data collector handles either digital or analog values. Each widget type had 

a base abstract class that raised common events for that widget. For example, the button had a 

button down and button up event. The abstract classes were extended to create differing 

functionalities depending on which sensor was used. For instance, the slider had an 

implementation for the potentiometer slider, the gray code slider, and the IR photo reflector 

slider. 

 

Figure 5.1 Overview of Software Architecture 
 

Any data filtering, like low pass filters, happened in the individual widgets. The widgets 

were responsible for storing any data that they needed. For example, the slider with the IR photo 

reflector stored its previous filtered value. When it received a new value, it used its previous 

filtered value to filter the new value using a low pass filter. 

The observer pattern was used to create events. The basic idea behind the observer 

pattern is that there is an object that contains a list of dependent objects or listeners. When that 

objects state changes, it notifies the listeners often by calling one of their methods. Every time a 
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widget is instantiated, it is registered with the Bluetooth data collector as a listener. The data 

collector triggers an event with a digital widget only if the signal has changed from low to high 

or high to low. The analog widgets receive events every time the data collector receives new data 

because analog data tends to be fairly variable. To raise an event on a listener, the data collector 

calls the handleBluetoothEvent method for either digital or analog signals. 

Widgets contained a list of listeners called controllers. A controller implemented the 

events that are common to a widget. For example, a knob had three events, initialKnobPosition, 

valueDecreased, and valueIncreased. When creating a new prototype application, a programmer 

can implement the controller and tell it what to do when one of those events is raised. 

5.2 Ski Pole Handle 

 

 

Figure 5.2 Ski Pole Handle 
 

The ski pole handle MP3 player controller controls an MP3 player over Bluetooth. It is 

wireless and powered by a lithium ion battery. It has three button functions: play/pause, skip 

forward, skip backward, and one slider function: change volume. 

Figure 5.2 shows a prototype of the ski pole handle that contains two compliant 

mechanism button widgets and a slider widget. One compliant mechanism button widget uses an 

IR photo interrupter and the other uses an IR photo reflector. Since there are three button 

functions, one of the button widgets has the skip forward function tied to a single click and the 
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skip backward function tied to a double click. The other button widget’s function is play/pause. 

The slider widget uses an IR photo reflector and is used to change volume. 

In this case, all of our controls functioned as designed. The assembly required gluing the 

sensors to their corresponding components. The IR photo reflector button widget required a 

registration step to detect the correct button down state. The IR photo reflector slider widget 

required a registration step so that the software could detect the left-most and right-most 

positions of the slider runner. 

The compliant mechanism button widgets have a small amount of space to move around 

along the surface of the prototype as long as they do not interfere with each other or the slider 

widget. The slider widget is curved to follow the contour of the back of the ski pole handle. It 

works well in its position, but the size and shape of the widget would likely have to change for it 

to fit anywhere else on the surface of the prototype. 

The ski pole handle is a perfect example of a PhysiComp. We designed three other 

prototypes of the ski pole handle with widgets before this example. The first one was designed 

just for functionality. The second was designed more for comfort. The third design utilized our 

gray code slider. We learned that although the gray code slider provided adequate volume 

control, it only provided 16 discrete positions. Our last prototype replaced the gray code slider 

with an IR photo reflector slider widget, which gave a smooth continuum of volume control. 

Moving the placement of widgets or using different widgets to fit a new form turned out to be 

straightforward, illustrating the effectiveness of 3D printing when building an interactive 

PhysiComp. 
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5.3 Etch-a-Sketch Controller 

 

 

Figure 5.3 Etch-a-Sketch Controller 
 

 The etch-a-sketch controller (Figure 5.3) controls an etch-a-sketch program on the 

computer wirelessly. An etch-a-sketch is used to control a pointer that draws lines as it moves. 

The cable is used for power, but a battery can also be used. This controller uses sliders instead of 

knobs to draw as an interesting departure from the original etch-a-sketch design. It contains a 

gray code knob to change line thickness. The button in the middle allows the user to change line 

color. It also changes the LED color corresponding to the color of the line. 

 The prototype functions as it is supposed to. The gray code knob was a little difficult to 

get working because the wheel is a little loose allowing it to move side to side. The smallest gray 

code PCBs were used for this prototype and the small amount of play was enough to move the 

sensor off of the coded part of the wheel. Mounting it to the prototype made it more stable, but 

every once in a while the wheel became offset enough to the point where the gray code changed 

incorrectly.  

 Assembly involved adding a push button switch to a cantilever button, one IR photo 

reflector to each slider, and an IR LED/Sensor PCB to the gray code knob. The sliders and 

cantilever button were printed directly into the housing. The gray code knob was attached using 

hot glue. An RGB LED was also attached using hot glue.  

(b) Etch-a-Sketch 
Program 

(b) Etch-a-Sketch Prototype 
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 The microcontroller, wires, battery, and widgets use up most of the room in this 

prototype. The wires for the slider kept getting snagged on other wires and widgets making it 

difficult to move. We had to change to solid wires because the braided wires we originally used 

kept getting ripped off of the slider when they would get snagged. 

 The problem with the gray code knob could be resolved by using a larger wheel and a 

PCB where there are larger gaps in between each sensor. The larger gaps would allow the arcs 

that make up the gray code wheel to be larger. This would guard against the side-to-side motion 

of the wheel caused by the limited resolution of the printer because more motion would be 

required to offset the wheel enough to incorrectly change the code. Another fix would be to print 

on a higher resolution printer or print the component in parts for a tighter fitting wheel. 

 The problem with the slider widgets containing the IR photo reflector might be remedied 

by placing conductive strips above or below the runner, which contains the sensor. The sensor 

could have brushes attached to it that made contact with the runners, allowing it to be connected 

to power, ground, and signal. This way the wires are no longer moving with the sensor. 

Otherwise, a different widget may have been a better choice, like the slide potentiometer, or the 

prototype could have been enlarged to make more room for the moving wires. 

 The etch-a-sketch is an example of a PhysiComp that was designed to be comfortably 

used as a handheld device. The prototype showed that the 3D printer can be used effectively to 

print widgets directly into the housing of a prototype. Of course, the button cantilever was 

oriented the right way in the housing for the print, otherwise it would have needed to be printed 

separately and attached. The slider length and width could be changed as needed (as long as the 

width does not go below the width of the IR photo reflector) so that the device feels comfortable 

to the user. 
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5.4 3D Mouse 

 

Figure 5.4 3D Mouse 
 

 The 3D mouse (Figure 5.4) controls a custom .obj viewer application. An .obj file is a 3D 

geometry file format. The program loads the 3D object defined by the file. It allows the user to 

move the object/camera using the 3D mouse prototype to see the object in different views. The 

mouse has six buttons. The white buttons are all magnetic buttons. The other three are cantilever 

buttons. The buttons control the functions top view, bottom view, left view, right view, change 

axis of manipulation, and toggle pan/rotate. The middle of the mouse contains an IR photo 

reflector knob that is used for panning or rotating. The top contains a slide potentiometer that 

controls zoom. 

 All of the widgets on the prototype function well. This prototype helped us understand 

that the IR photo reflector knob needed three sensors to function. It functions as desired, but 

moving and rotating the 3D model in the mouse application is a little jumpy from noise caused 

from the component interacting with the sensor. This may affect user experience with the 

prototype negatively because the knob does not provide motion as smoothly as, for example, the 

knob potentiometer. The advantage is that the diameter of the IR photo reflector knob can be 

changed as long as it is large enough for the component to interact with the sensors. 

 The assembly used modular widgets. The sensors still have to be attached to their 

corresponding components, but they are attached to the housings that the components fit into. Six 

(a) 3D Mouse Prototype (b) .obj Viewer Application 
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push button switches were attached to housing for six different buttons. The cantilever and 

magnetic buttons use the same housing and can be interchanged. Three IR photo reflectors were 

attached in the housing for the knob. The slide potentiometer was not a modular widget. It was 

just hot glued to the surface of the prototype so that the handle was sticking through the surface. 

 This prototype has a lot of room to move the widgets around. The modular widgets are a 

little bigger because they have blocky housings that fill more space than non-modular widgets. 

The 3D mouse is also a good example of a PhysiComp because the design can be refined around 

the idea that it should be comfortable to use with one hand. The widgets can be moved, tweaked 

and reprinted until that comfort is achieved. The modular widgets take it a step further by 

allowing cantilever button and magnetic button components to be interchanged, thereby 

changing the feel of the widget without requiring the whole prototype to be reprinted. 

5.5 Grid Array Prototype 

 

 

Figure 5.5 Grid Array Prototype 
 

 A simple prototype (Figure 5.5) was made using the grid array of sensors. It was made as 

proof of concept to show that it can work, and to reduce the amount of work to integrate sensors 

and components. One of each widget was printed, a button, slider, and knob, to interact with the 

grid array. Each widget was registered and their events were tested. The button worked well, the 

up and down states can be easily detected. 



60 
 

 The slider was programmed to linearly interpolate between values 0 and 11 inclusive. It 

did well with every value except when it was near the middle. It seemed to jump between values 

6, 7, and 8. The knob did not worked properly (refer back to section 4.4.3 for a discussion of why 

it did not work). 

 The only assembly required for this prototype was adding a spring to the button and 

placing the grid array into its mount. The widgets can be moved around to interact anywhere 

with the grid. The slider requires more than one sensor to function properly. 

 The grid has great potential to work as a sensor array for one or more components. It 

could greatly simplify assembly and prototyping, because a different set of widgets could be 

used with the grid without remounting sensors. In the work completed thus far, the array only 

worked effectively with one component, the button. It is possible that more sensors on the array 

would give more accurate and stable readings when using the slider and knob. 
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 Conclusion and Future Work 

3D printing technology is an effective way to prototype PhysiComps. 3D printing enables 

the creation of custom widgets that are durable, printable in any orientation and create interaction 

that is pleasing to humans. The widgets support rapid prototyping of PhysiComps because they 

can be moved around and reprinted on the surface of a prototype to test different configurations.    

3D printing enables the creation of custom widgets that are durable. We found that all of 

our widgets were surprisingly durable. Every one of the widgets met our minimum definition of 

durable (100 clicks), and all but the cantilever button exceeded that metric. This demonstrates the 

durability of the designs and material we used in this research. 

3D printing enables the creation of custom widgets that are printable in any orientation, 

whether printed in place as part of a prototype or printed separately and attached. We found that 

the cantilever button, compliant mechanism button, pop cap button, gray code slider, gray code 

knob, and IR photo reflector slider widgets are affected by print orientation. As a result, we have 

to pay attention to their orientation to make the widgets useable in a prototype where they have 

been printed in place. However, they can still be used in any orientation by printing them 

separately and attaching them to the prototype post print. 

3D printing enables the creation of custom widgets that create interaction that is pleasing 

to humans. Most of the button widgets provide good haptic feedback and function as expected. 

The cantilever button widget is limited to good haptic feedback only when used with the push 

button switch. The slider and knob potentiometers widgets provide the desired feel and behavior. 

The IR photo reflector and gray code slider and knob widgets provide reasonable haptic feedback 

when using synthetic grease. However, the IR photo reflector knob widget is an area for further 

development to refine its feel. 
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Three of the prototypes we created, the ski pole handle controller, the etch-a-sketch 

controller, and the 3D mouse illustrate the potential for how effectively 3D printing technology 

can be used to quickly and efficiently design and test prototypes. With further work and 

refinement, this could become a powerful tool to build commercially viable products. 

The widgets created in this project are a stepping stone to building a more fully integrated 

toolkit for designers. The widgets are simple to integrate into prototypes and can be efficiently 

moved around or changed until the preferred design is found. Further development in automation 

tools will allow designers to more quickly integrate these widgets into their prototypes. 

6.1 Future Work 

There are many things yet to be done. We did not explore methods for making sure that a 

widget can be feasibly implemented in a housing. For example, a designer might create a 

PhysiComp shape only to find out that the shape cannot include the right widgets in the right 

places.    

The knobs that interact with the IR photo reflector should be explored more to find a 

more consistent, stable solution. Possibly a different component design would interact better with 

the sensors, making it easier to detect the direction that the knob is moving. Using three IR photo 

reflectors works with the corkscrew design. Making a smaller sensor that incorporates the three 

sensors would enable the knob to be smaller. 

The grid array of IR photo reflector sensors needs to be explored and understood better. 

There is potential to make the array smaller, or about the same size with more sensors, using a 

custom PCB. More stable techniques both in hardware configuration and software interface 

could be explored to make the grid more reliable. 
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The next steps in the research are to extend the widget library and to automate the 

addition of widgets to a prototype. Extending the widget library would include creating new 

component designs, making the designs more customizable through parameterization, and using 

different sensors to create new methods of interaction. 

Automation would allow designers to iterate more quickly because they would not have 

to move widgets around by hand. One piece of automation would be to make the process of 3D 

scanning a model more streamlined. Currently, scanned 3D models require some clean up to fix 

the geometry so that they can be printed. This usually requires multiple steps and sometimes 

different programs. Creating a set of tools to automate this step would speed up the process. 

The second piece of automation would be automatic addition of widgets to a prototype. A 

designer should be able to mark either on their physical or digital model where they want to put 

widgets and the type of widget they want. A tool would understand those markings and replace 

the location of the prototype on the surface of the prototype with the corresponding widget. 
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