
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-11-01

Building 3D-Printed Widgets to Incorporate into
Prototypes
David E. Brandt
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Brandt, David E., "Building 3D-Printed Widgets to Incorporate into Prototypes" (2015). All Theses and Dissertations. 5625.
https://scholarsarchive.byu.edu/etd/5625

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5625?utm_source=scholarsarchive.byu.edu%2Fetd%2F5625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Building 3D-Printed Widgets to Incorporate into Prototypes

 David E. Brandt

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael D. Jones, Chair
Kevin Darrell Seppi
Yiu-Kai Dennis Ng

Department of Computer Science

Brigham Young University

November 2015

Copyright © 2015 David E. Brandt

 All Rights Reserved

ABSTRACT

Building 3D-Printed Widgets to Incorporate into Prototypes

David E. Brandt
Department of Computer Science, BYU

Master of Science

Creating interactive prototypes can be a long and difficult process. It requires expertise in
various fields. Prior work in developing interactive prototypes minimize time required to make a
prototype, but generally sacrifice fidelity for fluidity. Advances in 3D printing create new
opportunities to prototype with greater fidelity and fluidity. We investigate the use of several
kinds of sensors, including IR photo interrupters, IR photo reflectors, push button switches, and
potentiometers, to create interactive prototypes. We first design a library of 3D printable
interaction components, buttons, sliders, and knobs using those sensors then we develop software
to transform interaction events into events in computer programs. The combinations of
interaction components and sensing devices are evaluated based on their durability and ability to
be printed into prototypes and used as human-computer interface devices.

Keywords: PhysiComps, Widgets, 3D-Printed

ACKNOWLEDGEMENTS

I would like to express my thanks and appreciation first and foremost to my advisor Dr.

Michael Jones for believing in me, providing me with support, and guiding me through the

process of completing this thesis. I would also like to thank Dr. Dan Olsen and Dr. Kevin Seppi

for providing me with valuable feedback on my work, and Dr. Dennis Ng for supporting me.

I thank my fellow lab mates for their support. I especially want to mention Hunter

Hofstrand and Casey Walker for helping me with some of the designs for the widgets and

prototypes and for their help creating images for my thesis. I would like to thank Tim Price and

Kristian Sims for answering any questions I had with hardware. I thank Kyler Tolman from the

compliant mechanisms lab for helping me understand the bistable mechanism model, which led

to the creation of the cantilever button. Finally, I would like to thank my family for their support

and for always believing in me.

iv

Table of Contents

Table of Contents..iv

Table of Figures ... v

Table of Tables ... vii

 Introduction .. 1

1.1 Thesis Statement .. 5

1.2 Organization .. 6

 Related Work ... 7

2.1 Widget toolkits for interaction with physical devices .. 7

2.2 Cameras for interaction with physical devices .. 10

 Component Designs ... 12

3.1 Evaluation Criteria ... 12

3.2 Buttons ... 14

3.2.1 Cantilever Button .. 15

3.2.2 Compliant Mechanism Button .. 16

3.2.3 Pop Cap Button ... 20

3.2.4 Spring Button .. 21

3.2.5 Magnetic button .. 22

3.3 Slider .. 23

3.4 Knob .. 24

3.5 Summary Table .. 25

 Widgets .. 26

4.1 Mechanical Sensors as Widgets ... 27

4.1.1 Buttons .. 28

4.1.2 Slider and Knob .. 29

4.2 IR Photo Reflectors as Widgets ... 30

4.2.1 Buttons .. 32

4.2.2 Slider ... 33

v

4.2.3 Knob ... 34

4.3 IR Photo Interrupters as Widgets ... 38

4.3.1 Buttons .. 39

4.3.2 Gray Code Slider .. 40

4.3.3 Gray Code Knob ... 44

4.4 Modular Widgets ... 46

4.5 Grid Array ... 47

4.5.1 Button ... 48

4.5.2 Slider ... 48

4.5.3 Knob ... 50

 Prototypes .. 52

5.1 Software Architecture .. 52

5.2 Ski Pole Handle ... 54

5.3 Etch-a-Sketch Controller ... 56

5.4 3D Mouse .. 58

5.5 Grid Array Prototype ... 59

 Conclusion and Future Work ... 61

6.1 Future Work ... 62

References ... 64

Table of Figures

Figure 1.1 Widget .. 2

Figure 1.2 Sensors and Prototype .. 5

Figure 3.1 Print Orientation ... 14

Figure 3.2 Cantilever Button ... 15

Figure 3.3: Compliant Mechanism Button .. 16

Figure 3.4: PRBM for one half of compliant mechanism .. 17

Figure 3.5: Monostable Model .. 19

Figure 3.6 Pop Cap Button .. 20

vi

Figure 3.7 Spring Button ... 21

Figure 3.8 Magnetic Button ... 22

Figure 3.9 Base Slider ... 23

Figure 3.10 Base Knob .. 24

Figure 4.1 Front to back: Push button switch, Rotary potentiometer, Slide Potentiometer .. 27

Figure 4.2 Button Interaction ... 28

Figure 4.3 Slide Potentiometer Widget .. 29

Figure 4.4 Slide Potentiometer Trace .. 29

Figure 4.5 IR Photo Reflector .. 30

Figure 4.6 Reflectance Test Device ... 31

Figure 4.7 IR Photo Reflector with Compliant Mechanism Button ... 32

Figure 4.8 Slider with IR Photo Reflector ... 33

Figure 4.9 Knob with IR Photo Reflector .. 34

Figure 4.10 Knob States and Traces .. 35

Figure 4.11 Three Sensors Trace ... 37

Figure 4.12 IR Photo Interrupter ... 38

Figure 4.13 IR Photo Interrupter with Cantilever Button .. 39

Figure 4.14 Gray Code Slider .. 40

Figure 4.15 Custom Gray Code PCBs ... 41

Figure 4.16 4-Bit Gray Code Sequence ... 42

Figure 4.17 Gray Code Knob ... 44

Figure 4.18 4-Bit Circular Gray Code ... 45

Figure 4.19 Modular Widget ... 46

Figure 4.20 Grid Array of Proximity Sensors .. 47

Figure 4.21 Grid Slider Example ... 49

Figure 5.1 Overview of Software Architecture .. 53

Figure 5.2 Ski Pole Handle .. 54

Figure 5.3 Etch-a-Sketch Controller .. 56

vii

Figure 5.4 3D Mouse ... 58

Figure 5.5 Grid Array Prototype .. 59

Table of Tables

Table 3.1 Units for Compliant Mechanism Model .. 18

Table 3.2 Example Parameters .. 19

Table 3.3 Features of Component Designs .. 25

Table 4.1 Color Reflectance Values .. 32

1

 Introduction

A physical interactive computing device (PhysiComp) is a small handheld device that

includes sensors and computing. A defining feature of a PhysiComp is that the physical shape is

driven by the intended purpose and human factors. PhysiComps rarely take the form of a

rectangular box. They are designed for usability and comfort.

Creating 3D prototypes of PhysiComps requires a significant amount of time and

expertise. The process often involves designers, engineers and modelers. The designers create

the look and feel of the device, but have to wait until the engineers are done creating the

electronics to have a fully working prototype. 3D CAD modelers then come in and add any

mounting brackets necessary to enable the device to contain the electronics. The design may

require revisions to work with the electronics. This process can take weeks and involve the

expertise of several people, reducing the number of iterations a prototype can feasibly go

through.

3D printers have opened the door for iterating through prototypes much more quickly.

Once a device is designed and modeled, it can be printed and tested in a short amount of time.

The model can then be changed and reprinted efficiently many times with little time or cost

overhead. Unfortunately, making a PhysiComp interactive still requires a significant amount of

expertise.

It is not enough to just model a device in 3D modeling software. Doing so would neglect

the importance of finding a form factor for the device that fits well and feels comfortable in a

user's hand. For this purpose, we have developed a design flow in which designers mold their

prototypes with clay or foam, so that they can easily make small adjustments until the device

feels right. After the device is sculpted, interactive widgets need to be added at the right places

2

on the surface to create a PhysiComp. My thesis will lay the ground work for adding interactive

widgets to PhysiComps.

Figure 1.1 Widget

A widget is a part designed for human interaction that can be incorporated into

PhysiComps. It is made up of a component that interfaces with one or more sensors. A

component is a 3D-printed part, and any non-printed parts (like magnets or springs) if necessary,

that interface with both the human user and a sensor. A sensor is a piece of hardware with which

the component interfaces and outputs data. The component interfaces with the sensor by

changing its state. The way that a component changes sensor state depends on the sensor (see

chapter 4 for more details). As an example, Figure 1.1 shows a magnetic button widget. The

component consists of the mounting geometry for the sensor, the magnetic button above the

sensor, the magnets that are inside the magnetic button, and the plunger that interacts with the

sensor. The sensor is a push button switch mounted on the component. When the magnetic

button is pushed, a plunger pushes the push button switch down causing the sensor to change

state.

Sensor

A widget is constructed from a component and a sensor. A component (gray
in left image) is a 3D-printed part, and any non-printed parts (like magnets
or springs) if necessary, used to interface with both human user and sensor.
A sensor (red in left image) interfaces with a component and outputs data.

Component

3

Adding interactive widgets to PhysiComps is important to designers involved in the

prototyping process. It is a challenge for them to add interactivity to a PhysiComp without help

from experts in other fields. Further adding interactivity to PhysiComps is a challenge to them

because it requires knowledge in programming and hardware. A toolkit that enables designers to

add interaction to their device while still giving them the freedom to iterate over designs will

allow them to more efficiently hone in on a preferred design.

The following scenario gives a broad overview of how the widgets can be used to create a

PhysiComp in order to show how this work contributes to the future work. Imagine that a

designer named Sally is creating a simple device that can control an mp3 player. It might have a

skip backward, play/pause, and skip forward button widget, and a slider widget to turn the

volume up and down. The device is in the form of a ski pole handle and Sally wants to make it

comfortable to hold and use. She envisions the shape of the device and begins to sculpt it out of

clay. As she is sculpting, she also thinks about where the component parts of the widgets can be

placed to fit into her design. She gets it to the point where it feels comfortable to use with one

hand and lets the sculpture dry.

The next day Sally comes back and she is not quite satisfied with the shape, so she files

down some of the curves to create a better fit for her hand. Finally, the sculpture is to the point

where she is ready to create a digital model and make it interactive. She marks the places on the

sculpture where she wants to place the button and slider components.

Sally creates the digital model by scanning the sculpture. She opens the model inside of a

CAD program. She then runs a tool that detects where she has placed the markings for her

components. It finds those markings and replaces them with the corresponding components. The

4

tool enables Sally to modify the size and shape of the button components, and the size of the

slider component.

She decides that she is satisfied with the model and sends it off to a 3D printer to be

printed. She pulls the 3D-printed model out of the printer and attaches the sensors that she needs

to make it interactive and functional. The sensors are attached to a programmable chip that can

read the sensor data, and include a push button switch for each button component, and a slide

potentiometer for the slider component. With the sensors attached to their corresponding

components (see Figure 1.1), Sally now has a PhysiComp with fully assembled widgets. She

uses a program to link the button and slider widgets with their functions. For example, the slider

widget would be linked to controlling the volume of the MP3 player.

Sally has created a fully functioning prototype that allows her to test her design. She

decides that she does not like the position of the play/pause button component or the slider

component. So, she opens up the CAD program again to edit the placement of the components.

She uses the tool to tweak the position of the components and then reprints the prototype. She

removes the hardware from her first prototype and places it into the modified version to test it.

This process of modifying and tweaking the position of components can continue until

Sally is satisfied. It requires little effort to change the prototype and new designs can be iterated

over quickly and efficiently.

In this thesis, we support the realization of this scenario by exploring ideas for the

assembly and placement of 3D-printed widgets. The combination of the sensors and components

should make it easier to prototype interactive PhysiComps and give designers more fluidity when

creating prototypes. The widgets should be durable for repeated use in a prototype, printable in

any orientation to support a fluid design exploration and provide realistic pleasing haptic

5

feedback to users. We study how push button switches, potentiometers, infrared (IR) photo

interrupters, and IR photo reflectors can be used to transform mechanical motion from 3D-

printed components into computing events. The components are most often the elements that the

user interacts with so it is important that they are durable and provide haptic feedback. The

components are printed and ideally should be printable in any orientation on the surface. The

sensors are used to implement interaction in the widgets in PhysiComps so they will be evaluated

based on their usability in a widget implementation. This includes the size and shape of their

interaction region, sensitivity to interaction events, and programmability). Figure 1.2a shows

some of the sensors that are used inside of PhysiComps. Figure 1.2b shows a ski pole handle that

controls an mp3 player using the sensors and components created in this project.

Figure 1.2 Sensors and Prototype

1.1 Thesis Statement

3D printing is an effective means by which to build durable interactive widgets that can

be used in any orientation and which are pleasing human-computer interface devices that can be

incorporated into PhysiComps.

(a) Sensors: from left to right: Push Button Switch,
IR Photo Reflector, IR Photo Interrupter, Knob

Potentiometer

(b) Ski Pole Handle
Prototype

6

1.2 Organization

The rest of the thesis is organized as follows. Chapter 2 presents related work. Chapter 3

discusses the base component designs for the buttons, slider, and knobs. Chapter 4 describes the

sensors and how they were incorporated into the components to create functioning widgets.

Chapter 5 shows examples of PhysiComps using the widgets. Chapter 6 discusses conclusions

and future work.

7

 Related Work

Much work has been done to make it easier for designers to prototype physical devices.

Some develop specialized hardware toolkits that are easy to set up and incorporate into a

prototype. Others use sensors to detect interaction in order to eliminate the need for hardware

toolkits, which can be bulky and make it difficult for designers to form their device in the way

they want. The following sections describe some of the work that has been done and how it

relates to this work. Compared to prior work, this work presents 3D printable components for use

with common sensors that are simple use.

2.1 Widget toolkits for interaction with physical devices

D.tools was developed with the idea of creating a tool based on how designers think in

the prototyping phase (Hartmann et al., 2006). It uses pre-defined hardware, such as buttons,

sliders, switches, LCD screens, and LEDs, that are customizable and can be programmed with a

simple-to-use visual language that is extendable. This toolkit assists designers with hardware, but

they have to figure out how to incorporate the hardware into their prototype. We seek to create

widgets where sensor interaction is built in.

Hudson created the BOXES system (Hudson and Manko, 2006). It essentially consists of

thumbtacks, wires and hardware boards. When they are touched, the boards sense capacitance

and register an event. One difficulty with the system is that it only works well with thin materials

like cardboard. This results in it being difficult to prototype 3D shapes. We were inspired by the

physicality of the method and the fluidity of the prototype system, but aim for a higher fidelity

prototype of the physical form while retaining similar fluidity.

Midas is similar to the BOXES system in that it uses capacitive touch sensors (Savage et

al., 2012). It is more customizable as the touch interface can be attached to many different types

8

of materials and can easily be molded to fit most shapes. Midas can send touch events by

simulating the mouse and keyboard or by sending instructions to a device via a WebSocket.

While Midas is customizable, it requires the touch sensors be fabricated for each device. We

created a toolkit that has readymade electronics that are quicker and easier to incorporate into a

prototype. The toolkit also has a wider range of interactive experiences because we use moving

physical widgets rather than just tape.

Gadgeteer is a system designed with the idea of making the creation of new physical

computing prototypes accessible, flexible, and versatile (Villar et al., 2012). A number of

components were created that can be incorporated and programmed with little experience.

Additionally, the library can be easily incorporated into a 3D-printed model, or laser-cut housing.

We build on these ideas by making it easier for designers to incorporate interactive widgets into

their 3D models with little modeling experience. This is achieved by creating a library of 3D

printable components that are designed around interaction with a sensor. The component designs

can be printed and incorporated into a prototype to add interaction quickly. Any special

mounting geometry for the sensor is included in the component.

Switcharoo gives designers the ability to quickly create interactive prototypes while still

focusing on form and feel (Avrahami and Hudson, 2002). Designers are able to create models

out of soft materials like foam. They can then take components from Switcharoo and pin them on

to their models to make them interactive. The Calder toolkit is similar to Switcharoo. It gives

designers a set of tools, similar to GUI toolkits for software developers that can be used to make

their prototypes interactive with little technical background (Lee et al., 2004). The components

are also attached to foam or clay models. Rather than using just using soft modeling materials

like foam, we extend this work to use 3D printers, which give designers the ability to incorporate

9

interactive components directly into their prototypes. 3D printers enable higher fidelity

prototypes with lower fluidity.

Lamello uses acoustics for sensing interaction (Savage et al., 2015). 3D printable

interactive components such as buttons, sliders, and dials were made with tines. A moving part

strikes the tines as it moves generating sound that is detected by an audio sensor. The sound can

then be processed and used to understand the interaction. A limitation of Lamello is that it can

only detect interaction when the position of a moving part changes. It also is not yet able to

distinguish between multiple components that are moved at the same time. Our work also uses

3D printable components, but with simpler sensors that are able to detect static position as well

as change in position. Multiple components can be used distinguished and used simultaneously

as well.

Vázquez developed a method of detecting interaction using pneumatics (Vázquez et al.,

2015). The interactive controls were 3D-printed with air chambers, and use pressure sensors to

detect user input. Interestingly, they use elastic material for their controls. For example, the

pneumatic button contains a chamber made out of elastic material. As air is pumped in, the

chamber inflates and can be used to simulate a button when a user presses it. The pneumatic

controls are customizable in terms of shape and feel. Different shapes can be 3D-printed and the

amount of air pumped into the chambers can change the feel of the controls. The method is

limited in that it requires that an air compressor be attached to each control. The controls are also

complicated to print as they often require components to be added mid print. We seek to simplify

the process of making interactive controls by using simpler sensors and designs that can be

printed and used without a complicated assembly process.

10

Numerous other design toolkits have been created to make the prototyping process faster

and easier by making the electronics modular including MetaCricket (Martin et al., 2000),

Phidgets (Greenberg and Fitchett, 2001), Smart-Its (Gellersen et al., 2004), littleBits (Bdeir,

2009), and xTel (Tokuhisa et al., 2009). All these toolkits integrate well with design prototypes

and help designers, with little to no engineering or programming experience, develop their own

prototypes. We seek to more fully integrate an easy to use toolkit into 3D printing and focus on

interaction widgets.

2.2 Cameras for interaction with physical devices

We compare our work with work that uses optical sensors because they relate to our use

of IR sensors. Cameras are used to detect color and texture data, which can be processed and

understood. IR sensors are much simpler as they can only detect light levels, but both sensors are

optical and can be used to detect interaction for more than one type of widget.

Akaoka created DisplayObjects, a system that projects a virtual model of a device

prototype onto a physical model designed by the user (Akaoka et al., 2010). Interactive elements

such as buttons can be created and placed onto the device. Interaction is picked up by sensors

and cameras. While this allows more freedom for designers to explore new devices as well as

test their physical prototypes as if they were functional, the tools are limited to use inside a

motion capture arena. They also lack physical versions of the interactive elements.

Savage created a tool called Sauron that uses a single camera and image processing

techniques to create an interactive 3D printable device (Savage et al., 2013). The inside of the

object has to be illuminated and each interactive component needs to be registered so that the

camera can distinguish between the components. All components must be visible within the field

of view of the camera. Rather than using a camera with optical flow implemented in software we

11

use a variety of light sensing and processing tools. Using different technology to sense

interaction events creates a new set of possibilities in prototyping. The sensors we use are more

self-contained. They do not require the use of a camera attached to a computer running an image

processing algorithm to generate interaction data. Instead, the sensors collect data and send it to a

computer wirelessly.

Magic finger is a motion detecting device that allows users to have touch capabilities on

many surfaces (Yang et al., 2012). The device consists of an optical camera, like those found in

computer mice, for sensing motion parallel to the camera plane, and an RGB camera that can

identify textures. A similar idea is used in this project for sensing input from the 3D-printed

components, but simpler sensors are used.

12

 Component Designs

The following chapter discusses the different component designs. A component is either

a button, slider, or knob that is 3D-printed with exception of the slider and knob potentiometers,

which are used as is. (They are sensors that do not require a component. See chapter 4.) We have

constructed each kind of component with different sensors. In this chapter we discuss the design

and construction of each component/sensor combination and then evaluate their durability,

haptics and print orientation. Table 3.3 at the end of the chapter summarizes the features of the

component designs.

3.1 Evaluation Criteria

Durability is measured by the strength of the component. For buttons, strength means the

approximate number of times they can be pushed down without breaking. For sliders, strength is

defined by the number of times the slider can slide back and forth. For knobs, strength is defined

by the number of times the knob can be rotated. Each component was printed and used 100

times. Very durable (good durability) means that it did not break, fairly durable (fair durability)

means that it broke in 50 uses or more, and not very durable (bad durability) means it broke in

less than 50 uses.

Haptics is a description of how the component feels to a human user. For example,

pleasing feedback to a human user in terms of the button is that it is clear that the button has been

pushed down. Otherwise, the button could be pushed until it breaks and/or it could be unclear to

the user when it is in the down state. For the slider and knob, it is measured by whether or not the

motion is smooth.

13

Print orientation refers to the way components are printed. The 3D printer used in this

thesis lays down material one horizontal layer at a time. A component can be oriented at any

angle relative to the layer plane. That orientation is the print orientation.

Print orientation can affect the strength and functionality of some of the components. We

illustrate this with the compliant mechanism button design. Print orientation is determined by the

printer used. We used a Stratasys Dimension Elite printer, which is a fused deposition modeling

(FDM) printer that prints in ABS plastic. FDM essentially means that the printer builds models

layer by layer. Using an FDM printer can limit the possible print orientations of a component if

the component breaks easily when the layers are not placed in a certain way.

Figure 3.1 shows the compliant mechanism button printed in three different orientations.

Figure 3.1a shows it printed flat. The first image is a cross section of the button, and the lines

show how the 3D printer layers the plastic. The second image shows how the button was

oriented on the print bed. This orientation does not work well for the compliant mechanism

button. The flexures are very thin, so the layers just separate when the button is pushed.

Figure 3.1b shows the button printed on its side widthwise. Printing the button in this

orientation does not work because the layers are parallel to the direction that the button is pushed

down. There is also only a thin layer holding each flexure to the button and to the housing. When

the button is pressed, the layers will separate from each other and the button will break.

Figure 3.1c shows the button printed on its side lengthwise. This is the required

orientation for the compliant mechanism button. The layers follow the angle of the flexures and

continue into the button and the housing, creating a strong connection between them. As the

flexures bow, the layers hold together, making the button much stronger.

14

These criteria measure how effective a component is in terms of printing it and using it as

a pleasing human interface. Durability is important because if a component were to break on its

first few uses, it would take longer to test out a device as a result of spending time printing and

reprinting components every time they break. Haptic feedback is important to give designers a

better idea of how the device might feel before it gets to its final iterations. Print orientation is

important because it shows the ease of use of each component. Printing a component right into a

prototype requires less assembly and is thus easier than printing it separately and creating a way

to mount it into a prototype.

Figure 3.1 Print Orientation

3.2 Buttons

Five different button designs are discussed and evaluated here. The designs differ based

on how they work mechanically. The first three designs are completely 3D-printed and are

Flexures

(c) Printed on side lengthwise

(b) Printed on side widthwise

(a) Printed flat

Button

Housing

15

designed to move and provide haptic feedback without any assembly. The idea was to design a

button that worked by printing it right on a prototype, but each one relies on print orientation so

the motion, durability, and feedback are not consistent. As a result, we made two other designs

that can be printed in any orientation which require assembly using other parts, such as springs,

to allow motion and haptic feedback. These can be printed right into a prototype in any

orientation.

3.2.1 Cantilever Button

Figure 3.2 Cantilever Button

 The cantilever button (Figure 3.2) contains two cantilever springs. The springs are

connected to the button. Each spring also connects to its own post. The posts are used to attach

the button to a prototype. When the button is pressed, the springs flex and allow the button to

bow downward. The springs move the button back to its original state when released.

 The button is fairly durable. It breaks after about 100 clicks by reasonable finger force of

around 1.20 to 1.40 N or if a single force of about 17.35 N or more is used to push it. The button

starts to sag from its original resting state after about 50 clicks. It has little haptic feedback. In

other words, it is difficult to feel whether or not it is in the down state. As a result, it is possible

to push the button too far and snap the springs. Print orientation matters. The springs are best

Cantilever Springs

Button
Post

16

printed flat, orthogonal to the print head. That way the layers are also orthogonal to the direction

of motion, strengthening the springs.

3.2.2 Compliant Mechanism Button

 The compliant mechanism button (Figure 3.3) is described by equations that came from

BYU’s Compliant Mechanisms Lab1.

Figure 3.3: Compliant Mechanism Button

There are six constants (see Figure 3.3 for reference): The width of the flexures (𝑤) is the

width of a single flexure. The length of the flexures (ℓ) is the length of a flexure from the post to

the button. The variable 𝑡 is the out-of-plane thickness. The modulus of elasticity (𝐸) is a

constant that changes depending on the material that is used. The initial angle (𝜃0) is the starting

angle of the flexures before any force is applied to move the button. The length (𝑟10) is the

horizontal width from the middle of the post to the middle of the button. The independent

variable is 𝛿2, which is the displacement or the amount the button has moved down based on the

force applied to it.

1 Adapted from the first lab of ECCE 550/ME550 Micro-Electro-Mechanical Systems (MEMS), Fall 2012

𝑤

𝑡

ℓ

𝜃0

Flexure Post
Button

𝑟10

𝛿2

17

Figure 3.4: PRBM for one half of compliant mechanism2

The dependent parameters are calculated by the following equations (Figure 3.4):

𝑘 =
𝑡𝑤3𝐸

12ℓ

𝑘1 =
𝐸𝑡𝑤

2ℓ

𝑘 is the stress constant for the button, and 𝑘1 is the stress constant for the post.

𝑟3 =
𝑟10

cos(𝜃0)

𝑟3 is the length of the flexure plus the length of half of the post and half of the button.

𝑟20 = 𝑟10 tan(𝜃0)

𝑟20 is the vertical length starting from the center of the button down to the center of the post.

𝑟2 = 𝑟20 − 𝛿2

𝑟2 is the current vertical position of the button.

2 Image taken from first lab of ECCE 550/ME550 Micro-Electro-Mechanical Systems (MEMS), Fall 2012

18

𝜃 = sin−1 (
𝑟2

𝑟3
)

𝜃 is the current angle of the flexure.

𝛿1 = 𝑟3 cos 𝜃 − 𝑟10

𝛿1 is the horizontal displacement of the post.

𝜓 = 𝜃0 − 𝜃

𝜓 is the angle that the flexure rotates from the initial angle 𝜃0.

The above parameters are used to calculate the approximate downward force required to push the

button down to the given displacement 𝛿2. The force is calculated as follows:

𝐹 =
𝑘1𝑟2(𝑟3 cos(𝜃) − 𝑟10)

√𝑟3
2 − 𝑟2

2
+

2𝑘𝜓

√𝑟3
2 − 𝑟2

2

Table 3.1 Units for Compliant Mechanism Model

Constants Units
Width of flexures (𝑤) 𝜇𝑚
Length of flexures (ℓ) 𝜇𝑚

out-of-plane thickness (𝑡) 𝜇𝑚
modulus of elasticity (𝐸) 𝐺𝑃𝑎

initial angle (𝜃0) 𝑟𝑎𝑑𝑖𝑎𝑛𝑠
length (𝑟10) 𝜇𝑚

Table 3.1 shows common units that are used. When using these parameters, the calculated force

(𝐹) is in 𝜇𝑁.

19

Figure 3.5: Monostable Model

Figure 3.5 shows the relationship between 𝐹 and 𝛿2. The button moves to its down

position when a force of just above 1000 (𝜇𝑁) is applied. A force graph like this shows that the

button is stable in only one state. That means, when it is released, it will return to its up state.

Had the force graph crossed the origin, it would mean that the button has 2 stable states (bi-

stable). This means that the button would stay in the button down state until pushed back to the

button up state. The parameters used to generate Figure 3.5 are as follows in Table 3.2:

Table 3.2 Example Parameters
Constants Value

Width of flexures (𝑤) 800 𝜇𝑚
Length of flexures (ℓ) 6000 𝜇𝑚

out-of-plane thickness (𝑡) 3000 𝜇𝑚
modulus of elasticity (𝐸) 2.09 𝐺𝑃𝑎

initial angle (𝜃0) 0.09 𝑟𝑎𝑑𝑖𝑎𝑛𝑠
dimension (𝑟10) 14000 𝜇𝑚

20

The modulus of elasticity was taken from MatWeb3 using the average value for the Acrylonitrile

Butadiene Styrene (ABS), Extruded. The material was a good match for the material we used

with the Dimension Elite printer.

 The compliant mechanism button is very durable since it does not break with reasonable

finger force of around 1.20 to 1.40 N after 100 clicks. It breaks when a single force of about

30.25 N is applied to it. When the button is first printed there is little haptic feedback besides

some resistance when the button is in the down state. After being pushed about 100 times, the

button starts forming a slight popping feel, which gives haptic feedback that is a pleasing to

human interaction when the button is pushed down. The button print orientation is on its side,

with the flexures being built up in the z direction for it to work (as shown in Figure 3.1c).

3.2.3 Pop Cap Button

Figure 3.6 Pop Cap Button

 The pop cap button (Figure 3.6) is a thin dome that when pressed, gives under the force.

When released, the dome returns to its original state.

 The button is very durable as it does not break with reasonable finger force of around

1.20 to 1.40 N after 100 clicks. It can break if a force of about 80.95 N or more is exerted on it.

3 http://www.matweb.com

Dome Plunger

21

Cracks can appear after clicking more than 100 times. The button still works, but the plunger can

also fall off of it if clicked enough. The plunger is attached on the underside of the dome in the

center. When the dome is pressed enough, the plunger can start to shear off because of the strain

caused from the dome deforming. The button gives haptic feedback that is pleasing to human

interaction when pressed, so it is easy to tell when the button is in the down state. The best print

orientation is when it is printed flat. If it is printed on its side, the layers separate from each other

when the button is pressed.

3.2.4 Spring Button

Figure 3.7 Spring Button

The spring button (Figure 3.7) contains a housing, a plunger, and a washer. These pieces

are printed separately. A metal spring is then inserted into the housing, and the plunger goes

through the center of the spring and through a hole in the bottom of the housing. The washer is

attached to the plunger and keeps the plunger from being pushed out of the housing by the spring

when the button is released.

 The button is durable because it does not noticeably break down after 100 or more clicks.

It has haptic feedback that is pleasing to human interaction because the button down state can be

felt when the spring compresses fully. Print orientation does not matter for this button.

Housing

Plunger

Washer

Spring

22

3.2.5 Magnetic button

Figure 3.8 Magnetic Button

 The magnetic button (Figure 3.8) is similar to the spring button. It contains a housing, a

plunger, and a cap instead of a washer. Two magnets with donut holes are placed inside the

housing. The plunger is inserted down the donut holes of the magnets and through a hole in the

bottom of the housing. The cap is then placed around the plunger and snapped on to keep

everything together. The plunger has a stop to keep it from coming out of the housing.

 The repulsive force of the magnets is used as the mechanism for the button. As the button

is pressed, the magnets move closer to each other and their repulsive force grows stronger. Upon

release, the magnets push the button back up to its original state.

 The button does not noticeably break down after 100 clicks and so is very durable. It has

haptic feedback that is pleasing to human interaction from the force of the repulsion increasing

as the button is pressed down. Print orientation does not matter.

Housing

Plunger

Cap Plunger Stop

Magnets

23

3.3 Slider

Figure 3.9 Base Slider

The basic 3D-printed slider (Figure 3.9) consists of a container and a runner that slides

inside of it. The runner is printed at resolution distance from the container so that it does not

fuse. Resolution distance in this case is the minimum distance in which two objects can be

printed without being fused into one object. For example, the Dimension Elite prints at 0.178

mm resolution, so the runner is placed at 0.178 mm distance on all sides of the container. The

slider is printed in place to reduce assembly time.

The slider is very durable as it can be slid back and forth at least 100 times without

anything breaking. In terms of haptics, having to place the runner at resolution distance from the

container causes the slider motion to be a little sloppy. There is a little up and down play inside

the container. The runner also moves without being pushed if the slider is angled so that the

runner moves at a downhill angle. Each print is slightly different and sometimes the runner does

not run very smoothly in the container. A simple fix to make the slider feel smoother and stay in

place is to use Super Lube® Synthetic Grease with Syncolon® (PTFE) Multi-Purpose Lubricant.

RunnerContainer

24

However, the up and down play is not fixed by the grease, and may be best fixed through

printing the slider in separate pieces or using a higher resolution printer. This would allow for

tighter tolerances which would reduce the up and down play. Printing in separate pieces enables

tighter tolerances because the pieces can be printed closer (within the resolution of the printer) to

the correct size without fusing.

The base design for the slider varies a little depending on the sensor used (refer to

Chapter 4). The print orientation of the slider depends on the sensor used. The container and

runner design has been printed standing and sideways, and both orientations printed without any

fusing or other issues.

3.4 Knob

Figure 3.10 Base Knob

The 3D-printed knob (Figure 3.10) contains a rotating center piece inside of a container.

There is a washer (also printed in place) below the container of the knob that attaches to the

rotating center piece and keeps it from falling out of the container. The distance between the

container and center piece is also done at resolution to keep them from fusing. The knob is

printed in place to reduce assembly time.

The knob is very durable as it does not break after about 100 rotations. Haptics are

similar to the slider. There is some slop because of the resolution of the printer. There is a little

Rotating Center
Piece

Container Washer

25

up and down play as well as side to side play. The knob rotates well inside the container, but

feels smoother when lubricant is added. The up and down and side to side play may be best fixed

through using a higher resolution printer or through printing the pieces separately. This would

allow for tighter tolerances which would reduce the up and down and side to side play. Printing

in separate pieces enables tighter tolerances because the pieces can be printed closer (within the

resolution of the printer) to the correct size without fusing.

Its print orientation also depends on the sensor being used. The rotational center piece

and container design has been printer flat (the washer is flush with the print bed) and on its side

and both printed without any fusing or other issues.

3.5 Summary Table

Table 3.3 Features of Component Designs
Component Type Durability Haptics Print Orientation

Matters
Cantilever Button Fair None Yes
Compliant Mechanism
Button

Good Good Yes

Pop Cap Button Good Good Yes
Spring Button Good Good No
Magnetic Button Good Good No
Slider Good Okay, Smoother with

grease
Depends on sensor

used, but base model
no

Knob Good Okay, Smoother with
grease

Depends on sensor
used, but base model

no

26

 Widgets

We explain and evaluate each of the sensors used to make widgets. The sensor types are

mechanical sensors, IR photo reflectors, and IR photo interrupters. We then discuss the widgets

built using these sensor types. The sensors are evaluated based on their interaction region,

sensitivity, and noise. Interaction region is defined as the space around a sensor in which it is

possible to create changes in the sensor’s value by creating motion through that space. This

includes the action or direction needed to create the change in the sensor value. Sensitivity is the

amount of motion required from a component to interact with a sensor. Noise is the fluctuations

in the data that come when a component interacts with a sensor. The source of noise associated

with the sensor itself is not distinguished and is instead assumed to be noise associated with the

component interacting with the sensor in this evaluation.

Evaluating the sensors with these three criteria helps in understanding how each sensor

can be used to develop a widget. Evaluating the interaction region enables us to understand the

direction a component must move and the action it must take to trigger a sensor. Sensitivity

informs the amount of motion a component needs to create for the sensor to detect change. Noise

shows how loose tolerances in components may affect the reliability of what the sensor collects.

Each component has a general design that was discussed in Chapter 3. The button designs

remain the same for all of the sensors except the plunger changes a little depending on the sensor

it is interacting with. The slider and knob designs are modified for the different sensors.

The widgets are evaluated based on assembly and feasibility of widget placement.

Assembly is defined as the necessary number of steps to assemble a functioning widget by

combining its component and sensor and placing it on a prototype. More assembly can

complicate the process of making a prototype and require more time. Feasibility of widget

placement is defined as the area on the surface of a prototype on which it is possible to place a

27

specific widget. This shows how restrictive a widget is when designing a prototype. One other

evaluation criteria, print orientation, is used for the sliders and knobs as in Chapter 3. The criteria

could not be used until this chapter because the designs are dependent on the sensor.

4.1 Mechanical Sensors as Widgets

Figure 4.1 Front to back: Push button switch,
Rotary potentiometer, Slide Potentiometer

Mechanical sensors (Figure 4.1) are used for a comparison to the other two sensors (IR

photo reflectors and IR photo interrupters) as the functionality for a button, slider, and knob

already come built into the sensors. The term mechanical is used to signify that the sensors

contain their own moving parts to generate changes in their readings.

 The mechanical sensor used for buttons is commonly known as the push button switch.

The push button switch either completes or breaks a circuit when pressed. The sensors we use

contain a little piece of domed copper. When the button is pressed, the dome collapses from the

force of the press and makes contact with the pins on either side of the button, completing the

circuit. The dome reforms when the button is released, once again breaking the circuit.

 Potentiometers can function as either a slider or a knob. The basic idea behind a

potentiometer is that it creates fractional changes in resistance. These fractional changes are

caused as a contact moves along a resistive strip. As the contact moves along the resistive strip,

28

resistance is either increased or decreased. Potentiometers can be found and purchased in either

linear (slider) or rotary (knob) form.

4.1.1 Buttons

Figure 4.2 Button Interaction

 The push button switch is rigid in terms of its interaction region. A force between straight

down and approximately a 40º angle (Figure 4.2a) from vertical must be applied to the sensor in

order for the button to go down. The button is sensitive in that as soon as it is pushed, the signal

will change immediately. There is no noticeable noise from the senor when a component

interacts with it. We did not observe any noise associated with bouncing, so no measures were

taken to debounce the signal. It has two states high and low, and only changes when pressed and

released.

 Figure 4.2b shows the push button switch mounted below a pop cap button. To assemble

the widget, the push button switch must be mounted below the button. It then needs to be wired

up so that it can be attached to a processor that can detect its signal changes. The component is

limited to being placed right above the sensor in order to interact with it. So the feasible widget

Force can be applied from
straight down to

approximately a 40º angle

(a) Push Button
Switch

Interaction

(b) Push Button
Switch with Pop

Cap Button

40º 40º

29

placement would be anywhere on the surface of a prototype where the component and sensor fit

in a similar configuration as seen in Figure 4.2b.

4.1.2 Slider and Knob

Figure 4.3 Slide Potentiometer Widget

 The component for the slide and knob potentiometers is a hole through the surface of the

prototype and any mounting geometry if necessary. The slide and knob potentiometers that we

used have handles that protrude far enough from the prototype surface that they can work for a

human to interface with the device, but handles can be printed and attached if necessary or

desired. The Potentiometers can be mounted so that the handle sticks through the surface of a

prototype. Interaction occurs directly with the user as there is no component in between.

Figure 4.4 Slide Potentiometer Trace

The Interaction region for the slider is just a side-to-side force that moves the slider back

and forth. The knob requires a rotational force. Potentiometers are sensitive. They can detect

small movements. There is a slight bit of noise from the potentiometers, but it can easily be

(a) No Filter (b) Low Pass
Filter (α = 0.5)

Noise

30

filtered out using a low pass filter. Figure 4.4 shows two similar graphs of the signal coming

from a slide potentiometer. Figure 4.4a shows the signal before a low pass filter is applied. There

is not a lot of noise, but the signal has a tendency to attenuate a little. Figure 4.4b shows the

signal after a low pass filter is applied. It smooths out the small attenuations. The print

orientation does not apply in this case.

Assembly for both the slide and rotary potentiometer is just a matter of mounting it

through the surface of a prototype (Figure 4.3) and attaching wires to it. The feasible widget

placement is dependent on the size of the potentiometer. Their size and shape is dependent on

what is available on the market.

4.2 IR Photo Reflectors as Widgets

Figure 4.5 IR Photo Reflector

IR photo reflectors (Figure 4.5a), also known as proximity or line sensors, can detect

varying levels of reflected IR light. Generally, they are configured so that an IR LED and an IR

sensor (phototransistor) are placed side-by-side, facing the same direction. When an IR reflective

surface, such as paper, is placed in front of the sensor, greater degrees of IR light are reflected

(a) Diagram of
IR Photo Reflector

(b) Interaction Area

Reflective Surface

IR LED

IR Sensor

Sensing Area
2-7 mm

7.62 mm 13.97 mm

31

back to the sensor as the surface gets closer. Depending on the implementation, this can either

cause fractional increases or decreases in voltage.

The IR photo reflector has the largest range of interaction compared to the other sensors

used. Figure 4.5b shows a blue cone that represents the interaction area of the sensor, which is

approximately 30º angling away from one of the edges of the sensor. Imagine that the height of

that cone is about 5 mm. A widget can interact with the sensor at about any angle above the

sensor, and at about a 30º angle off of one of the edges. The optimal sensing distance is at about

3 mm, but the sensor can sense objects that are about 5 mm away as well as objects almost

touching the sensor. The sensing distance depends on how reflective the material is. A more

reflective material gives a wider range of values as well as can be detected from a slightly further

distance (out to about 7mm).

Figure 4.6 Reflectance Test Device

The Dimension Elite has 9 materials. A cube was printed in each material and placed

about 3 mm away from an IR photo reflector (Figure 4.6). The initial value of the sensor, without

anything in front of it was about 1018. Higher values mean less reflectance. Table 4.1 shows the

approximate reflective value for each color used with the Dimension Elite.

32

Table 4.1 Color Reflectance Values
Color Approximate Value
White 76
Yellow 112

Red 242
Orange 295

Blue 500
Ivory 522
Grey 916
Green 934
Black 987

White is the most reflective surface and black is the least reflective. It is important that the

surface is reflective when using an IR photo reflector. Otherwise, the sensor is not able to detect

movement from a widget. Depending on the distance from the sensor, as well as the color, the

levels of reflectance change. As a result, whenever this sensor is used, a registration step is

required. Each widget is registered differently, but generally it means calibrating the widget to

the sensor so that the widget functions properly.

The sensor is very sensitive to any change in light. Out of all of the sensors used, the IR

photo reflector has the most noise as a result of difficulty controlling light levels. A low pass

filter and time average can be used to help filter the signal.

4.2.1 Buttons

Figure 4.7 IR Photo Reflector with Compliant Mechanism Button

33

All that is required to get the IR photo reflector to interact with a button is to place it

under the plunger (Figure 4.7). The button widgets are not complex to print and assemble, but do

require an extra step in software. They have to be registered in order to detect button up and

down states properly. Buttons are registered by first detecting the reflectance in the button up

state, then in the button down state. That way the computer listening to the sensor can send an

event when the button changes state.

 Button widgets that use the IR photo reflector have the largest range of feasible widget

placement. The placement is limited on the size of the component as well as the size of the

sensor, but the sensor can be placed anywhere around a button component as long as it is about

3-5mm (7mm with a more reflective color) and can detect changes in light level as the button is

pushed down. This allows for more freedom in where to place a button widget on the surface of a

prototype.

4.2.2 Slider

Figure 4.8 Slider with IR Photo Reflector

 The sensor is placed on the runner of the slider facing a wedge. As the runner slides over

the wedge, the amount of light the sensor detects increases or decreases as the wedge slopes

closer or farther away from the sensor (Figure 4.8). The reflectance value coming from the

sensor is used as the position of the slider.

Runner and IR photo
reflector Mount

Wedge

34

 A registration step is needed to know the minimum and maximum values of the slider.

The minimum and maximum are used to normalize the values. This allows for the freedom to

resize and reshape the slider to fit as desired into a prototype.

 The assembly for this slider includes mounting the IR photo reflector, attaching the wires,

and mounting the widget on the surface of a prototype. The slider can be printed directly into the

prototype, but print orientation does matter. The runner is a lot weaker and buckles when the

slider is printed with the runner facing sideways instead of up.

 The size and shape of this slider can change as long as the wedge causes a steady

increase/decrease in reflectance values. The feasible widget placement of the slider is limited by

its size and the wires. The size can change giving designers more freedom in how they can place

the widget on their prototype. The wires require enough room to move with the sensor so that

they do not get snagged as the sensor is slides.

4.2.3 Knob

Figure 4.9 Knob with IR Photo Reflector

 The sensor is placed below a corkscrew shaped wedge. As the knob rotates, the wedge

changes slope, changing the amount of light reflected back to the sensor. There is a sharp change

after the wedge rotates one full rotation. The sharp change signals that the knob is still rotating in

Corkscrew
Wedge

IR Photo
Reflector Mount

35

the same direction and that the knobs values continue to increase or decrease depending the

direction (Figure 4.9).

 The above process does not work very well because the corkscrew does not cause a sharp

jump in the values of the sensor unless the user turns it fast enough. Since this design does not

control the speed at which a user turns the knob, the sensor can read intermediate values. This is

likely a result of the sensor being caught halfway (more or less) between the highest and lowest

points in the corkscrew. It is difficult to know what the values will be at that stage with the result

being the errant detection of multiple changes in direction.

Figure 4.10 Knob States and Traces

 In an attempt to clean up the data, a registration step was created for the knob. The

registration consists of gathering n number of discrete states. The knob is marked with a line

indicating where it is pointing and when it makes a full 360º revolution. For example, in one

experiment 4 states were gathered (Figure 4.10a). State 0 was marked as the first value when the

knob marker points up. State 1 was marked where the knob marker points right. State 2 was

marked where the knob points down and state 3 where the knob points left. The light reflectance

values were gathered at each of these states.

 As the knob rotates, the distance of the value coming from the senor to the 4 states

collected was calculated. The state that the value was closest to would be the current state of the

0

1

2

3
0

1

2

3
0

1
Same Direction

(a) Knob States (b) Trace One Sensor (c) Trace Two Sensors

36

knob. If the state change was positive, then the knob increased. If it was negative, then it

decreased. The only exception was if the knob did a full revolution. In this case the change was

counted as positive if the state went from 3 to 0 and negative if it went from 0 to 3. It became

even clearer that intermediate values were coming in during this jump (Figure 4.10b). Unless the

knob was turned very quickly over the point where it goes from the lowest to highest state,

intermediate values would pop up. In the case of the knob used to generate data for Figure 4.10,

this point was between 2 and 3. So, instead of going from 2 to 3, the states (2, 1, 0) or a subset of

them would come through. This made it difficult to know when the knob was continuing in the

same direction, or reversing direction. It was also possible to stop at one of those intermediate

values even though the state at that point should be either 2 or 3.

 A second sensor was added in an attempt to be more consistent in detecting the direction

that the knob was turning. The sensors were originally placed 180º apart. The knob would only

be counted as increasing values or decreasing values if the reflectance from the two signals was

changing in the same direction. This stabilized the knob, but unfortunately there was only a small

window in which both sensor signals were changing in the same direction. As a result, the

sensors were placed about 90º apart (Figure 4.10c) in an attempt to increase the amount of

surface over the knob’s corkscrew in which they change in the same direction. Doing so did

increase the time in which both of the sensor’s signals changed at the same time, but not enough

to make the knob very responsive. This widget in its current state gives unreliable results as it is

not responsive and is a little jumpy from the noise caused by the sloppiness from the print

tolerances.

37

Figure 4.11 Three Sensors Trace

 Finally, adding a third sensor gave reliable results. It was placed about 130-135 degrees

offset from the first two sensors. Placement was driven by where it would fit. In this case,

discrete knob states were no longer used. They helped in understanding the data, but are not

necessary for detecting the direction that the knob is turning. Instead, the raw trace values were

used as seen in Figure 4.11. When the knob is turned, the difference between the current read

value and the previous read value of each sensor is calculated. The sign of each of the differences

is checked and if the difference is greater than some arbitrary threshold, then a counter associated

with the sign of that difference is incremented.

Once that is done for the three sensors, the larger absolute value of the two counters is

selected. If it is greater than 1, it means that at least two of the sensors agree on the direction that

the knob is turning. The result is the direction of knob rotation is consistently detected. Figure

4.11 shows the knob as it is rotated clockwise. There are always two sensor traces consistently

changing in the upward direction. The limiting resolution of the 3D printer allowed movement of

the knob both vertically and horizontally, which could cause false readings. Increasing the

arbitrary threshold reduced the number of false readings, but made the knob less responsive.

 The assembly for the knob widget requires that the sensor be mounted in the component,

and that wires be attached to it. The widget can then be mounted or printed onto the surface of a

38

prototype. The feasible widget placement for the knob is constrained by the size of the knob and

corkscrew as well as the size of the sensor. The sensor should be placed to detect the linear

change in reflectance as the corkscrew rotates. With that requirement met, the knob widget can

be placed wherever it can fit on the surface of a prototype. The diameter of the knob can change,

but the diameter of the corkscrew that interacts with the sensor must be large enough to change

the amount of light being reflected back to the sensor as it is turned.

4.3 IR Photo Interrupters as Widgets

Figure 4.12 IR Photo Interrupter

IR photo interrupters (Figure 4.12a) contain an IR LED and an IR sensor that face each

other across a gap. When a surface is inserted in between the gap, the light is blocked and the

sensor detects the change. This can be used as a binary switch.

In terms of the interaction region, IR photo interrupters in general require more precision

than the mechanical sensors and the IR photo reflectors when interacting with components. The

part of the component that interacts with the sensor has to cross through the correct part of the

gap to block out the IR light. Even though more precision is required, there are more ways to

interact with it than the mechanical sensors. For example, a button plunger can move into the gap

at any angle, as long as its plunger blocks the light in the button down state. This allows for

Gap

(b) Interaction
Area

(a) Diagram of
IR Photo Interrupter

About 1800
of interaction

IR LED

IR Sensor

Surface

39

about 180o of interaction around the gap (Figure 4.12b). The sensor is very sensitive and changes

state as soon as any IR light is blocked or detected. There is no noticeable noise when a

component interacts with the sensor. The signal changes immediately when the IR light is

blocked or unblocked. It is possible for the sensor to detect IR light from nearby components of

nearby widgets when not desired if the sensors are not covered well enough to block out ambient

IR light, in the case of the gray code slider (section 4.2.2) and knob (section 4.2.3).

4.3.1 Buttons

Figure 4.13 IR Photo Interrupter with Cantilever Button

All of the button designs work with the IR photo interrupter. Assembly is simple as the

sensor is placed below the button so that the plunger can interact with it (Figure 4.13). The

sensor also has to have wires soldered to it so that it can interact with a processor. The placement

of the sensor is a little more complex depending on the width of the gap even though there are

more ways to interact with it. The smaller the gap is, the more precise the movement from the

button has to be to slide into the gap when the button is pressed down. The sensor allows a little

more freedom for widget placement than the push button switch because the sensor could be

mounted at different angles and still interact with its component.

 The cantilever button is the most challenging design to use with this sensor, since the

button gives no feedback when it goes to the button down state. As a result, it is easy to snap the

button by pushing it too far. This can be fixed by mounting the sensor closer to the button so that

40

the plunger runs into the sensor when pushed down. Another challenge is that the button

cantilever sags after about 100 clicks. The button can sag into the gap and always block the light,

causing the button to always register in the down state.

4.3.2 Gray Code Slider

Figure 4.14 Gray Code Slider

 The gray code slider uses a slightly different sensor than the buttons, but uses the same

idea behind the IR photo interrupter. Figure 4.14 shows two different views of the slider. The

side view shows the IR phototransistor sensor mount and that the LEDs and phototransistors line

up across the gray code. The perspective views show the IR LED sensor mount.

A custom PCB was made (Figure 4.15) that contains 4 IR LEDs and another that contains

4 IR phototransistors. Figure 4.15a shows the schematic for the PCBs. The left schematic shows

the logic for the IR LED board, which is used to illuminate the sensor board. The right-hand

schematic details the logic for the IR phototransistor board, which is used to read the light output

from the IR LED board. The sensors that detect IR light from the LED board is determined by a

3D-printed component (continue reading this section and 4.2.3 for more detail). Figure 4.15b

shows three different sizes of the board. The LEDs, phototransistors and resistors are all 0603

(0.6 mm x 0.3 mm) surface mounts. The two PCBs are placed across a gap facing each other.

Dividers

Gray Code

IR Phototransistor
Sensor Mount

Slider

IR LED Sensor
Mount

41

Figure 4.15 Custom Gray Code PCBs

 Gray codes are used to create unique patterns that differ consecutively by one bit. Since

there are 4 sensors and each has a high and low state, a total of 24 or 16 unique patterns can be

generated. These patterns can be laid out linearly, creating a code that can be used as a slider.

 Before printing the gray code slider, a 3D modelling program called OpenSCAD4 was

used. OpenSCAD is a functional language that specializes in generating 3D models that can be

printed. The phototransistors on the custom PCBs register as high or 1 when no light is shining

on the sensor, and low or 0, when light is shining on the sensor. This means that there has to be

geometry to block light from the sensor where the code is 1 and holes where the code is 0.

 The gray codes were generated on OpenSCAD recursively. Then, those codes were used

to build the geometric model for the slider by placing a rectangle wherever there was a 1. The

combination of rectangles was extruded to create a solid. Figure 4.16 illustrates how the

4 http://www.openscad.org

(b) Custom gray code
sensors (LEDs on left,

phototransistors on
right), top was first
design, bottom two,

second smaller designs
(a) Schematic

42

geometry for the code was built. In this case, each bit was represented by a 3mm x 3mm square.

Notice that the geometry is placed where there are 1’s.

Figure 4.16 4-Bit Gray Code Sequence

 The material used to build a gray code slider must not be very reflective of IR light.

Otherwise, IR light can be reflected around the slider and give false values. IR light being

emitted from the LEDs will not be blocked from the printed representation of the gray code.

Instead, it will reflect off of the code and other parts of the slider and could potentially find its

way to one of the sensors that should be blocked from receiving light, causing the sensor to give

a false reading. Black worked the best out of the material that came out of the Dimension

because it is the least reflective, though green and gray also worked. The brighter colors, such as

white or yellow, shown in Table 4.1 did not work well because they do not block enough IR

light, which causes false readings.

 To further control the amount of light being sent to the phototransistors, dividers and

sensor mounts were used. Figure 4.14 shows the dividers. They are placed in between each row

of the gray code sequence. The dividers are there to help keep IR light from bleeding over into

sensors that should be blocked. The sensor mounts were designed to block the edges around the

LEDs and phototransistors. In the case of the LEDs, this blocks out light being emitted sideways.

For the phototransistors, the mounts block out light coming into the sides of the sensor,

restricting it to detecting IR light that is shined directly in front of it.

43

 Assembly for the gray code slider is challenging. There are 4 signal wires and 2 wires for

power and ground. The LED PCB is lined up and powered by headers coming across the gap

from the phototransistor PCB.

 The widget’s placement is restricted by its size and the wires coming off of the PCBs.

The height of the slider can be changed by the height of the sensor. The width of the slider is

affected by the width of the sensor. Making the sensor length shorter works, but eventually the

sensor starts to miss or skip over codes if the gray code width is too small. The wires come off of

the IR phototransistor PCB, which means there has to be room for them to slide along as the

sensor moves across the code. The slider then has to be mounted on the prototype using glue or

some other method.

The slider runner is printed in place as part of the slider component and it works when

printed standing or on its side for the larger PCBs. The smallest PCB (last PCB in Figure 4.15)

requires that the slider be printed standing up. Otherwise, the holes for the mounts do not print

out properly when using the Dimension Elite. The smaller the PCB, the more the sloppiness of

the print affects the readings from the sensor. The reason is that any small movements up and

down in the runner have the potential to offset the gray code PCBs just enough so that they are

no longer lined up with the gray code. The larger PCBs have more space between the

phototransistors, and therefore a little movement up and down does not affect the sensor

readings.

44

4.3.3 Gray Code Knob

Figure 4.17 Gray Code Knob

 The gray code knob uses the same sensor and pattern as the gray code slider, but the

pattern is laid out in a circle. Figure 4.17 shows the knob from different perspectives. The knob

turns the gray code wheel and the sensors are static. The dividers are there to divide each ring of

the gray code (4 in this case since there are 4 channels or phototransistors). They help keep light

from bleeding over to neighboring phototransistors when two or more holes are next to each

other. The sensor mounts encase the LEDs and phototransistors. Similar to the gray code slider,

this reduces the amount of emitted IR light from the LEDs. They also reduce the amount of IR

light detected by the phototransistors.

OpenSCAD was used as well, except arcs were used to build the gray code geometry

instead of rectangles. Figure 4.18 illustrates how the geometry was built using the codes. The

middle black circle is not part of the gray code, it is a mounting bracket for the knob. The height

of the arc is defined by the size of the LEDs and phototransistors as well as the space between

each of them. The arc angle is defined by 360º/42 (4 being the number of channels). This will

give 16 arcs around each ring with the correct height to block the phototransistors. Each ring

refers to the series of arcs that make up the code for each channel or IR phototransistor. There

are 4 rings in this case. Arcs are only added where the code is 1.

Dividers
Gray Code Knob

IR Phototransistor
Sensor Mount

IR LED Sensor
Mount

45

Figure 4.18 4-Bit Circular Gray Code

 The same limitations as the gray code slider apply for the colors that can be used. Black,

green and gray were the least reflective, and should be used so that IR light is blocked.

Reflective material can cause erroneous results as the dividers and sensor mounts no longer

block IR light.

 Since the gray code knob uses the same sensor as the gray code slider, the same assembly

is required to get the IR LED and IR phototransistors up and running. The knob is printed

separately, so it has to be glued or mounted in some other way on a prototype.

 The feasible widget placement for the knob is dependent on its size. The largest part of

the knob is the gray code wheel. The size of this is dependent on the height of the sensor as well

as the space between each of the LEDs and phototransistors. The height of each ring is the same

height as the LEDs and phototransistors plus the space between them. The rings cannot change

sizes, otherwise the code would not be lined up with the sensors. The mounting ring can change

diameters. The widget can be mounted anywhere on the surface of a prototype as long as the

gray code wheel fits.

46

4.4 Modular Widgets

Figure 4.19 Modular Widget

Modular widgets (Figure 4.19) were created to make it easier to change out the

component part of a widget. There are two parts to the component of a modular widget. It has

one of the designs described in Chapter 3 and a housing. The housing is attached to the surface

of a prototype and the sensor or sensors are mounted onto it. The design clips into the housing

and is positioned so that it can interact with the sensor.

The cantilever button and magnetic button with the push button switch and the IR photo

reflector knob were converted into modular widgets. The buttons are interchangeable, meaning

that they both use the same housing and interact with their sensor the same way. The IR photo

reflector knob has a different housing from the buttons.

The modular widgets are useful because a designer can quickly change out components.

For example, if one of the cantilever buttons break, it can be replaced by popping the broken one

out of its housing and snapping a newly printed one in place. No re-gluing or re-mounting of

sensors is required. The trade-off is that the widgets are boxier and take up more room on the

prototype.

Housing

Component Design
(IR Photo Reflector Knob)

Prototype
Surface

Sensor
s

47

4.5 Grid Array

Figure 4.20 Grid Array of Proximity Sensors

 The grid array consists of 16 IR photo reflectors. Each sensor is placed side by side in a

4x4 grid. In this case, sensors are no longer attached directly to a component. Instead, all of the

components interact with the grid. A distinction for the purposes of this paper is that the

definition of widget is somewhat different when using the grid. The grid is decoupled from the

components rather than integrated into them, but functionally we still consider it a widget. Each

component has to be registered, so that the computer listening to the sensors can differentiate

between them. The interaction, sensitivity, and noise follow the same evaluation as was

described in section 4.3. The only difference is that interaction is a little more complicated as

there could be interference from other sensors. In this case, we did not worry about interference

and are relying on the sensors being spaced far enough apart as well as their short 5-7 mm sense

range to eliminate any interference that they may cause between each other.

 Assembly is about the same for each of the widgets in this case. They can be printed in

place if they are oriented right or if print orientation does not matter as in the case of the spring

button. They can also be printed separately and attached to the prototype. The assembly for the

hardware is just a matter of mounting the grid inside the prototype. The components have to be

modified slightly to ensure that they move within the sensing range (inside 5-7 mm) of the IR

48

photo reflectors. For example, the button plunger has to be long enough to reach the grid when

the button is pressed.

4.5.1 Button

 The button is registered by collecting a button up and a button down state. A difference is

found between these two states to find the sensor or sensors that the button interacts with. The

value halfway between the button up and button down state is used to trigger a button down

event, when that value is crossed. The button can be placed anywhere above or around the sides

of the grid. As long as its plunger is moving over one or more sensors, the grid can sense its

motion.

4.5.2 Slider

 The Slider is registered by collecting three states. The slider runner is moved to the left

most position, the center position, and the right most position. The difference between the left

most and center state, and the difference between the center state and right most state is taken to

find the sensors that the slider interacts with. If any of the differences are above an arbitrary

threshold, then it is assumed that the slider interacts with the sensors corresponding to those

differences.

 A registered slider includes a low, middle, and high value. These values are used to

interpolate the value of the slider widget. The value of the slider widget is found by taking the

current state of the sensor values corresponding to the slider and calculating the Euclidean

distance between that state and the left most (𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡), center (𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟), and right most

(𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡) states. If 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 is less than 𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡, a weighted average is found by

𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 × 𝑙𝑜𝑤𝑉𝑎𝑙𝑢𝑒 + 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 × 𝑚𝑖𝑑𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 + 𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟

49

The sensor value is then set by rounding the result of the weighted average. If 𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 is less

than 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 then the weighted average is found by

𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 × 𝑚𝑖𝑑𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒 + 𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 × ℎ𝑖𝑔ℎ𝑉𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 + 𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟

The sensor value is then set to the rounded value of this weighted average.

Figure 4.21 Grid Slider Example

 For example (refer to Figure 4.21), suppose the low value is 0, middle value is 5, and

high value is 11, and the sensor interacts with four sensors on the grid. The left most state is {s0:

500, s1: 800, s2: 900, s3: 1000} (s stands for sensor). The center state is {s0: 1000, s1: 600, s2:

600, s3: 1000}. The right most state is {s0: 1000, s1: 900, s2: 800, s3: 500}. Say the current state

of the slider is {s0: 800, s1: 500, s2: 800, s3: 1000}. The Euclidean distances for each state are

𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 = 435.89, 𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 = 300, 𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 = 670.82. The 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 is less than the

𝑑𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 so the weighted average is found by

𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟 × 𝑙𝑜𝑤𝑉𝑎𝑙𝑢𝑒 + 𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 × 𝑚𝑖𝑑𝑑𝑙𝑒𝑉𝑎𝑙𝑢𝑒

𝑑𝑖𝑠𝑡𝐿𝑒𝑓𝑡 + 𝑑𝑖𝑠𝑡𝐶𝑒𝑛𝑡𝑒𝑟

300 × 0 + 435.89 × 5

435.89 + 300
 = 2.96

The weighted average is rounded and so the sensor value is set to 3.

s0 s1 s2 s3

50

The low, middle, and high values can be changed, but the wider the range the more

jumpy the values tend to be. Using a smaller range is stable, but the wider ranges are more prone

to the noise coming from the sensor because slight changes in the reflectance values can change

the interpolated value of the slider. The above method is not very stable when the slider is close

to the middle state regardless of the size of the range. Using more sensors may help because

there would be more sensor values that could be used for interpolation.

 The feasible widget placement of the slider is either above or to the side of the grid. It

needs to interact with (slide across) more than one sensor. The part that interacts with the sensors

can be a piece of geometry that moves with the slider that is close enough to change the light

levels of the sensors as it moves across them.

4.5.3 Knob

 Similar to the IR photo reflector knob, a corkscrew wedge was used to detect increasing

and decreasing light levels. The same problem appeared when reaching the end of the corkscrew

where the sensors read intermediate values instead of jumping from the lowest reflectance value

to the highest reflectance value or vice versa.

 In an attempt to clean up the data, we collected reflectance states for all of the sensors on

the grid. Specifically, we collected four different positions on the knob that represented each

quarter turn. Those value were fed into a neural network. About 50 data samples were collected

for every sensor at each quarter turn. The neural net seemed to do fine classifying the positions

until the end of the corkscrew wedge was reached. Intermediate values were detected. For

example, assuming the knob is being turned clockwise, 3,0 would be the desired sequence,

However, going from state 3 to 0 might cause the sequence 3, 2, 1, 0 or 3, 1, 0, both indicating a

counter-clockwise rotation, depending on how fast the knob is turned.

51

 The only feasible knob widget placement is above the sensors. The knob can be slightly

angled as long as the corkscrew wedge is close enough to the sensors to change the amount of IR

light reflected back to them.

52

 Prototypes

Three prototypes were made to demonstrate the use of the widgets. A ski pole handle

MP3 player controller, etch-a-sketch controller, and 3D mouse were made to demonstrate how

the widgets can be used as building blocks to make an interactive prototype. We also built an

array of sensors to prototype a generic “field of interaction” that could be placed below an object

surface and used to explore different widget arrangements.

Each of these prototypes is evaluated by their functionality, assembly, and widget

placement. Functionality is defined as whether or not the prototype functioned as a whole. It

helps in understanding if the widgets work and can be used together. Assembly is an overview of

the steps needed to make the entire prototype, which demonstrates how difficult it is to use the

widgets. The placement of their widgets is a discussion on the size and limitations of each widget

in regards to the prototype.

A brief discussion about the software architecture is presented in this section. The

software was used to test the widgets and as a platform on which to build applications to test

prototypes using the widgets.

5.1 Software Architecture

A Blend micro Arduino microcontroller was used to read sensor values and send them to

a computer. The microcontroller wirelessly sends data via Bluetooth. A computer was used to

receive the sensor values from the microcontroller via Bluetooth. The computer software was

implemented in Java. Figure 5.1 shows a basic overview of software architecture. The

architecture was designed to be an event handling system for the widgets and to be easily

extendable to support new widget types with different designs and/or sensors.

53

There was a Bluetooth data collector that parses the data coming from the

microcontroller. The data collector handles either digital or analog values. Each widget type had

a base abstract class that raised common events for that widget. For example, the button had a

button down and button up event. The abstract classes were extended to create differing

functionalities depending on which sensor was used. For instance, the slider had an

implementation for the potentiometer slider, the gray code slider, and the IR photo reflector

slider.

Figure 5.1 Overview of Software Architecture

Any data filtering, like low pass filters, happened in the individual widgets. The widgets

were responsible for storing any data that they needed. For example, the slider with the IR photo

reflector stored its previous filtered value. When it received a new value, it used its previous

filtered value to filter the new value using a low pass filter.

The observer pattern was used to create events. The basic idea behind the observer

pattern is that there is an object that contains a list of dependent objects or listeners. When that

objects state changes, it notifies the listeners often by calling one of their methods. Every time a

ButtonWidget

PushButtonSwitchButton

IRPhotoReflectorButton

IRPhotoInterrupterButton

BluetoothListener

Legend:

Class AbstractClass Interface

SliderWidget

PushButtonSwitchSlider

IRPhotoReflectorSlider

IRPhotoInterrupterSlider

KnobWidget

PushButtonSwitchKnob

IRPhotoReflectorKnob

IRPhotoInterrupterKnob

54

widget is instantiated, it is registered with the Bluetooth data collector as a listener. The data

collector triggers an event with a digital widget only if the signal has changed from low to high

or high to low. The analog widgets receive events every time the data collector receives new data

because analog data tends to be fairly variable. To raise an event on a listener, the data collector

calls the handleBluetoothEvent method for either digital or analog signals.

Widgets contained a list of listeners called controllers. A controller implemented the

events that are common to a widget. For example, a knob had three events, initialKnobPosition,

valueDecreased, and valueIncreased. When creating a new prototype application, a programmer

can implement the controller and tell it what to do when one of those events is raised.

5.2 Ski Pole Handle

Figure 5.2 Ski Pole Handle

The ski pole handle MP3 player controller controls an MP3 player over Bluetooth. It is

wireless and powered by a lithium ion battery. It has three button functions: play/pause, skip

forward, skip backward, and one slider function: change volume.

Figure 5.2 shows a prototype of the ski pole handle that contains two compliant

mechanism button widgets and a slider widget. One compliant mechanism button widget uses an

IR photo interrupter and the other uses an IR photo reflector. Since there are three button

functions, one of the button widgets has the skip forward function tied to a single click and the

55

skip backward function tied to a double click. The other button widget’s function is play/pause.

The slider widget uses an IR photo reflector and is used to change volume.

In this case, all of our controls functioned as designed. The assembly required gluing the

sensors to their corresponding components. The IR photo reflector button widget required a

registration step to detect the correct button down state. The IR photo reflector slider widget

required a registration step so that the software could detect the left-most and right-most

positions of the slider runner.

The compliant mechanism button widgets have a small amount of space to move around

along the surface of the prototype as long as they do not interfere with each other or the slider

widget. The slider widget is curved to follow the contour of the back of the ski pole handle. It

works well in its position, but the size and shape of the widget would likely have to change for it

to fit anywhere else on the surface of the prototype.

The ski pole handle is a perfect example of a PhysiComp. We designed three other

prototypes of the ski pole handle with widgets before this example. The first one was designed

just for functionality. The second was designed more for comfort. The third design utilized our

gray code slider. We learned that although the gray code slider provided adequate volume

control, it only provided 16 discrete positions. Our last prototype replaced the gray code slider

with an IR photo reflector slider widget, which gave a smooth continuum of volume control.

Moving the placement of widgets or using different widgets to fit a new form turned out to be

straightforward, illustrating the effectiveness of 3D printing when building an interactive

PhysiComp.

56

5.3 Etch-a-Sketch Controller

Figure 5.3 Etch-a-Sketch Controller

 The etch-a-sketch controller (Figure 5.3) controls an etch-a-sketch program on the

computer wirelessly. An etch-a-sketch is used to control a pointer that draws lines as it moves.

The cable is used for power, but a battery can also be used. This controller uses sliders instead of

knobs to draw as an interesting departure from the original etch-a-sketch design. It contains a

gray code knob to change line thickness. The button in the middle allows the user to change line

color. It also changes the LED color corresponding to the color of the line.

 The prototype functions as it is supposed to. The gray code knob was a little difficult to

get working because the wheel is a little loose allowing it to move side to side. The smallest gray

code PCBs were used for this prototype and the small amount of play was enough to move the

sensor off of the coded part of the wheel. Mounting it to the prototype made it more stable, but

every once in a while the wheel became offset enough to the point where the gray code changed

incorrectly.

 Assembly involved adding a push button switch to a cantilever button, one IR photo

reflector to each slider, and an IR LED/Sensor PCB to the gray code knob. The sliders and

cantilever button were printed directly into the housing. The gray code knob was attached using

hot glue. An RGB LED was also attached using hot glue.

(b) Etch-a-Sketch
Program

(b) Etch-a-Sketch Prototype

57

 The microcontroller, wires, battery, and widgets use up most of the room in this

prototype. The wires for the slider kept getting snagged on other wires and widgets making it

difficult to move. We had to change to solid wires because the braided wires we originally used

kept getting ripped off of the slider when they would get snagged.

 The problem with the gray code knob could be resolved by using a larger wheel and a

PCB where there are larger gaps in between each sensor. The larger gaps would allow the arcs

that make up the gray code wheel to be larger. This would guard against the side-to-side motion

of the wheel caused by the limited resolution of the printer because more motion would be

required to offset the wheel enough to incorrectly change the code. Another fix would be to print

on a higher resolution printer or print the component in parts for a tighter fitting wheel.

 The problem with the slider widgets containing the IR photo reflector might be remedied

by placing conductive strips above or below the runner, which contains the sensor. The sensor

could have brushes attached to it that made contact with the runners, allowing it to be connected

to power, ground, and signal. This way the wires are no longer moving with the sensor.

Otherwise, a different widget may have been a better choice, like the slide potentiometer, or the

prototype could have been enlarged to make more room for the moving wires.

 The etch-a-sketch is an example of a PhysiComp that was designed to be comfortably

used as a handheld device. The prototype showed that the 3D printer can be used effectively to

print widgets directly into the housing of a prototype. Of course, the button cantilever was

oriented the right way in the housing for the print, otherwise it would have needed to be printed

separately and attached. The slider length and width could be changed as needed (as long as the

width does not go below the width of the IR photo reflector) so that the device feels comfortable

to the user.

58

5.4 3D Mouse

Figure 5.4 3D Mouse

 The 3D mouse (Figure 5.4) controls a custom .obj viewer application. An .obj file is a 3D

geometry file format. The program loads the 3D object defined by the file. It allows the user to

move the object/camera using the 3D mouse prototype to see the object in different views. The

mouse has six buttons. The white buttons are all magnetic buttons. The other three are cantilever

buttons. The buttons control the functions top view, bottom view, left view, right view, change

axis of manipulation, and toggle pan/rotate. The middle of the mouse contains an IR photo

reflector knob that is used for panning or rotating. The top contains a slide potentiometer that

controls zoom.

 All of the widgets on the prototype function well. This prototype helped us understand

that the IR photo reflector knob needed three sensors to function. It functions as desired, but

moving and rotating the 3D model in the mouse application is a little jumpy from noise caused

from the component interacting with the sensor. This may affect user experience with the

prototype negatively because the knob does not provide motion as smoothly as, for example, the

knob potentiometer. The advantage is that the diameter of the IR photo reflector knob can be

changed as long as it is large enough for the component to interact with the sensors.

 The assembly used modular widgets. The sensors still have to be attached to their

corresponding components, but they are attached to the housings that the components fit into. Six

(a) 3D Mouse Prototype (b) .obj Viewer Application

59

push button switches were attached to housing for six different buttons. The cantilever and

magnetic buttons use the same housing and can be interchanged. Three IR photo reflectors were

attached in the housing for the knob. The slide potentiometer was not a modular widget. It was

just hot glued to the surface of the prototype so that the handle was sticking through the surface.

 This prototype has a lot of room to move the widgets around. The modular widgets are a

little bigger because they have blocky housings that fill more space than non-modular widgets.

The 3D mouse is also a good example of a PhysiComp because the design can be refined around

the idea that it should be comfortable to use with one hand. The widgets can be moved, tweaked

and reprinted until that comfort is achieved. The modular widgets take it a step further by

allowing cantilever button and magnetic button components to be interchanged, thereby

changing the feel of the widget without requiring the whole prototype to be reprinted.

5.5 Grid Array Prototype

Figure 5.5 Grid Array Prototype

 A simple prototype (Figure 5.5) was made using the grid array of sensors. It was made as

proof of concept to show that it can work, and to reduce the amount of work to integrate sensors

and components. One of each widget was printed, a button, slider, and knob, to interact with the

grid array. Each widget was registered and their events were tested. The button worked well, the

up and down states can be easily detected.

60

 The slider was programmed to linearly interpolate between values 0 and 11 inclusive. It

did well with every value except when it was near the middle. It seemed to jump between values

6, 7, and 8. The knob did not worked properly (refer back to section 4.4.3 for a discussion of why

it did not work).

 The only assembly required for this prototype was adding a spring to the button and

placing the grid array into its mount. The widgets can be moved around to interact anywhere

with the grid. The slider requires more than one sensor to function properly.

 The grid has great potential to work as a sensor array for one or more components. It

could greatly simplify assembly and prototyping, because a different set of widgets could be

used with the grid without remounting sensors. In the work completed thus far, the array only

worked effectively with one component, the button. It is possible that more sensors on the array

would give more accurate and stable readings when using the slider and knob.

61

 Conclusion and Future Work

3D printing technology is an effective way to prototype PhysiComps. 3D printing enables

the creation of custom widgets that are durable, printable in any orientation and create interaction

that is pleasing to humans. The widgets support rapid prototyping of PhysiComps because they

can be moved around and reprinted on the surface of a prototype to test different configurations.

3D printing enables the creation of custom widgets that are durable. We found that all of

our widgets were surprisingly durable. Every one of the widgets met our minimum definition of

durable (100 clicks), and all but the cantilever button exceeded that metric. This demonstrates the

durability of the designs and material we used in this research.

3D printing enables the creation of custom widgets that are printable in any orientation,

whether printed in place as part of a prototype or printed separately and attached. We found that

the cantilever button, compliant mechanism button, pop cap button, gray code slider, gray code

knob, and IR photo reflector slider widgets are affected by print orientation. As a result, we have

to pay attention to their orientation to make the widgets useable in a prototype where they have

been printed in place. However, they can still be used in any orientation by printing them

separately and attaching them to the prototype post print.

3D printing enables the creation of custom widgets that create interaction that is pleasing

to humans. Most of the button widgets provide good haptic feedback and function as expected.

The cantilever button widget is limited to good haptic feedback only when used with the push

button switch. The slider and knob potentiometers widgets provide the desired feel and behavior.

The IR photo reflector and gray code slider and knob widgets provide reasonable haptic feedback

when using synthetic grease. However, the IR photo reflector knob widget is an area for further

development to refine its feel.

62

Three of the prototypes we created, the ski pole handle controller, the etch-a-sketch

controller, and the 3D mouse illustrate the potential for how effectively 3D printing technology

can be used to quickly and efficiently design and test prototypes. With further work and

refinement, this could become a powerful tool to build commercially viable products.

The widgets created in this project are a stepping stone to building a more fully integrated

toolkit for designers. The widgets are simple to integrate into prototypes and can be efficiently

moved around or changed until the preferred design is found. Further development in automation

tools will allow designers to more quickly integrate these widgets into their prototypes.

6.1 Future Work

There are many things yet to be done. We did not explore methods for making sure that a

widget can be feasibly implemented in a housing. For example, a designer might create a

PhysiComp shape only to find out that the shape cannot include the right widgets in the right

places.

The knobs that interact with the IR photo reflector should be explored more to find a

more consistent, stable solution. Possibly a different component design would interact better with

the sensors, making it easier to detect the direction that the knob is moving. Using three IR photo

reflectors works with the corkscrew design. Making a smaller sensor that incorporates the three

sensors would enable the knob to be smaller.

The grid array of IR photo reflector sensors needs to be explored and understood better.

There is potential to make the array smaller, or about the same size with more sensors, using a

custom PCB. More stable techniques both in hardware configuration and software interface

could be explored to make the grid more reliable.

63

The next steps in the research are to extend the widget library and to automate the

addition of widgets to a prototype. Extending the widget library would include creating new

component designs, making the designs more customizable through parameterization, and using

different sensors to create new methods of interaction.

Automation would allow designers to iterate more quickly because they would not have

to move widgets around by hand. One piece of automation would be to make the process of 3D

scanning a model more streamlined. Currently, scanned 3D models require some clean up to fix

the geometry so that they can be printed. This usually requires multiple steps and sometimes

different programs. Creating a set of tools to automate this step would speed up the process.

The second piece of automation would be automatic addition of widgets to a prototype. A

designer should be able to mark either on their physical or digital model where they want to put

widgets and the type of widget they want. A tool would understand those markings and replace

the location of the prototype on the surface of the prototype with the corresponding widget.

64

References

Akaoka, E., Ginn, T., Vertegaal, R., 2010. Displayobjects: Prototyping functional physical
interfaces on 3d styrofoam, paper or cardboard models. In: Proceedings of the fourth
international conference on Tangible, embedded, and embodied interaction. ACM, pp.
49–56.

Avrahami, D., Hudson, S. E., 2002. Forming interactivity: A tool for rapid prototyping of
physical interactive products. In: Proceedings of the 4th conference on Designing
interactive systems: processes, practices, methods, and techniques. ACM, pp. 141–146.

Bdeir, A., 2009. Electronics as material: Littlebits. In: Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction. ACM, pp. 397–400.

Gellersen, H., Kortuem, G., Schmidt, A., Beigl, M., 2004. Physical prototyping with smart-its.
Pervasive Computing, IEEE 3 (3), 74–82.

Greenberg, S., Fitchett, C., 2001. Phidgets: Easy development of physical interfaces through
physical widgets. In: Proceedings of the 14th annual ACM symposium on User interface
software and technology. ACM, pp. 209–218.

Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L., Burr, B., Robinson-Mosher, A., Gee,
J., 2006. Reflective physical prototyping through integrated design, test, and analysis. In:
Proceedings of the 19th annual ACM symposium on User interface software and
technology. ACM, pp. 299–308.

Hudson, S. E., Mankoff, J., 2006. Rapid construction of functioning physical interfaces from
cardboard, thumbtacks, tin foil and masking tape. In: Proceedings of the 19th annual
ACM symposium on User interface software and technology. ACM, pp. 289–298.

Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., Dietz, P. H., Leigh, D., 2004. The calder
toolkit: Wired and wireless components for rapidly prototyping interactive devices. In:
Proceedings of the 5th conference on Designing interactive systems: Processes, practices,
methods, and techniques. ACM, pp. 167–175.

Martin, F., Mikhak, B., Silverman, B., 2000. Metacricket: A designer’s kit for making
computational devices. IBM Systems Journal 39 (3.4), 795–815.

Savage, V., Chang, C., Hartmann, B., 2013. Sauron: Embedded single-camera sensing of printed
physical user interfaces. In: Proceedings of the 26th annual ACM symposium on User
interface software and technology. ACM, pp. 447–456.

Savage, V., Head, A., Hartmann, B., Goldman, D. B., Mysore, G., Li, W., 2015. Lamello:
Passive acoustic sensing for tangible input components. In: Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. ACM, pp. 1277–
1280.

65

Savage, V., Zhang, X., Hartmann, B., 2012. Midas: Fabricating custom capacitive touch sensors
to prototype interactive objects. In: Proceedings of the 25th annual ACM symposium on
User interface software and technology. ACM, pp. 579–588.

Tokuhisa, S., Ishizawa, T., Niwa, Y., Kasuya, K., Ueki, A., Hashimoto, S., Koriyama, K.,
Inakage, M., 2009. xtel: A development environment to support rapid prototyping of
ubiquitous content. In: Proceedings of the 3rd International Conference on Tangible and
Embedded Interaction. ACM, pp. 323–330.

Vázquez, M., Brockmeyer, E., Desai, R., Harrison, C., Hudson, S. E., 2015. 3d printing
pneumatic device controls with variable activation force capabilities. In: Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, pp.
1295–1304.

Villar, N., Scott, J., Hodges, S., Hammil, K., Miller, C., 2012. .net gadgeteer: A platform for
custom devices. In: Pervasive Computing. Springer, pp. 216–233.

Yang, X.-D., Grossman, T., Wigdor, D., Fitzmaurice, G., 2012. Magic finger: Always available
input through finger instrumentation. In: Proceedings of the 25th annual ACM
symposium on User interface software and technology. ACM, pp. 147–156.

	Brigham Young University
	BYU ScholarsArchive
	2015-11-01

	Building 3D-Printed Widgets to Incorporate into Prototypes
	David E. Brandt
	BYU ScholarsArchive Citation

	Table of Contents
	Table of Figures
	Table of Tables
	Chapter 1: Introduction
	1.1 Thesis Statement
	1.2 Organization

	Chapter 2: Related Work
	2.1 Widget toolkits for interaction with physical devices
	2.2 Cameras for interaction with physical devices

	Chapter 3: Component Designs
	3.1 Evaluation Criteria
	3.2 Buttons
	3.2.1 Cantilever Button
	3.2.2 Compliant Mechanism Button
	3.2.3 Pop Cap Button
	3.2.4 Spring Button
	3.2.5 Magnetic button

	3.3 Slider
	3.4 Knob
	3.5 Summary Table

	Chapter 4: Widgets
	4.1 Mechanical Sensors as Widgets
	4.1.1 Buttons
	4.1.2 Slider and Knob

	4.2 IR Photo Reflectors as Widgets
	4.2.1 Buttons
	4.2.2 Slider
	4.2.3 Knob

	4.3 IR Photo Interrupters as Widgets
	4.3.1 Buttons
	4.3.2 Gray Code Slider
	4.3.3 Gray Code Knob

	4.4 Modular Widgets
	4.5 Grid Array
	4.5.1 Button
	4.5.2 Slider
	4.5.3 Knob

	Chapter 5: Prototypes
	5.1 Software Architecture
	5.2 Ski Pole Handle
	5.3 Etch-a-Sketch Controller
	5.4 3D Mouse
	5.5 Grid Array Prototype

	Chapter 6: Conclusion and Future Work
	6.1 Future Work

	References

