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ABSTRACT
Data Selection Using Topic Adaptation for Statistical Machine Translation

Hitokazu Matsushita
Department of Computer Science, BYU
Master of Science

Statistical machine translation (SMT) requires large quantities of bitexts (i.e., bilingual
parallel corpora) as training data to yield good quality translations. While obtaining a large
amount of training data is critical, the similarity between training and test data also has a
significant impact on SMT performance. Many SMT studies define data similarity in terms of
domain-overlap, and domains are defined to be synonymous with data sources. Consequently,
the SMT community has focused on domain adaptation techniques that augment small (in-
domain) datasets with large datasets from other sources (hence, out-of-domain, per the
definition). However, many training datasets consist of topically diverse data, and not all data
contained in a single dataset are useful for translations of a specific target task.

In this study, we propose a new perspective on data quality and topical similarity to enhance
SMT performance. Using our data adaptation approach called topic adaptation, we select topically
suitable training data corresponding to test data in order to produce better translations. We propose
three topic adaptation approaches for the SMT process and investigate the effectiveness in both
idealized and realistic settings using large parallel corpora. We measure performance of SMT
systems trained on topically similar data and their effectiveness based on BLEU, the widely-used
objective SMT performance metric. We show that topic adaptation approaches outperform baseline
systems (0.3 — 3 BLEU points) when data selection parameters are carefully determined.

Keywords: topic adaptation, data selection, statistical machine translation
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Chapter 1

Introduction

Machine translation produces translations automatically from one language into another with
computers [56]. Statistical machine translation (SMT) is an approach for producing translations
based on machine learning techniques [68]. SMT has made a rapid progress and become a
mainstream approach to machine translation problems in the last two decades [100].

This thesis investigates a novel data selection method for the enhancement of statistical
machine translation (SMT) performance. In this introduction, we provide an overview of the
relationship between the characteristics of training data and SMT performance, discuss the types
of datasets used for SMT, explain critical factors for training data which affect SMT performance
significantly, discuss domain adaptation for SMT and identify a weakness in the existing perspective,

and illustrate the problem based on characteristics of a specific dataset.

1.1 Data for Statistical Machine Translation

SMT requires a substantial amount of parallel training data to yield desired translation results.
Parallel training data are called bitexts, collections of documents paired with their corresponding
translations, and they are the main source of training instances for SMT [93]. For SMT training,
bitexts need to be segmented into sentences in both source and target languages, and these segmented
sentences should be aligned to form translation units (TUs), consisting of minimal corresponding
sets of consecutive sentences in both source and target languages. Various approaches for bitext

segmentation and alignment have been investigated in the past two decades ([12, 13, 23, 34,75, 101],



inter alia). Furthermore, a wide variety of bitexts have recently become available for SMT training.

In general, the following kinds of datasets are used as the source of training TUs:

1. Parallel corpora, such as proceedings of the European Parliament (Europarl) [55], the Cana-
dian Parliament (Canadian Hansards) [85], and the United Nations (UN) [29], are collected
from aligned bilingual documents translated by people working in multilingual organizations.

These corpora are used widely for research purposes in the SMT community (e.g., [10]).

2. Translation memories (TMs) are datasets collected from human-translated texts, which have
mainly been used in the translation industry to facilitate re-use of previously translated
materials. Many TMs created by various organizations have recently been shared and utilized

as another source of training data for SMT."!

3. Comparable corpora are collections of documents from different sources that presumably
discuss the same topics. Unlike 1 and 2 above, this type of data is not directly usable for
SMT because it consists of semi-aligned or unaligned texts. Various approaches have been
investigated to extract usable TUs from web contents [82, 90] and social media [27, 65] for
SMT training. Also, methods for utilizing word or phrase pairs extracted from comparable
corpora to augment translation models have also been investigated ([49, 53, 58, 77, 84, 89],

inter alia).

1.2 Critical Properties of Training Data

For successful SMT performance, collecting usable training TUs from these data sources is crucial.
In this section, we discuss two critical properties of training TUs which determine the quality of
SMT performance, namely the quantity of training data and the similarity between training and

target data.

See https://www.tausdata.org/ as an example.


https://www.tausdata.org/
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Figure 1.1: Learning Curve with the Europarl EN-FR Dataset

1.2.1 Quantity of Training Data

The first factor for desirable SMT performance is the quantity of training TUs. As with other
machine learning problems, SMT performance generally improves when models are trained on
large amounts of data, due to the statistical or data-driven approach employed by SMT systems.

Irvine [48] describes why larger quantities of data help SMT performance:

e Fewer Out-Of-Vocabulary (OOV) words: more data provide more words and phrases for a

translation model to learn, leaving fewer gaps in translation output.

e Better parameter estimation: more data provide more accurate word alignments and phrase pair

extraction, which leads to better translation probability and reordering probability estimation.

Although it is important to provide a substantial amount of training TUs, data size increase is not
always proportional to SMT performance. Figure 1.1 depicts the relationship between training
data size and SMT performance. We randomly selected TUs from the English-French (EN-FR)
portion of Europarl,? a widely-used parallel corpus, and trained an SMT system with the selected

TUs. Then we translated a validation test set with the trained system. We increased the training TU

*http://www.statmt.org/europarl/
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count from 10,000 to 700,000 in increments of 10,000 and computed BLEU [81], a common SMT
performance metric, on translations of the validation set for each training data size. As shown in the
figure, the linear growth of training data size does not cause linear growth in SMT performance.
Based on the trend shown in the figure, it is easily anticipated that the performance improvement
slows with further data. Therefore, there are quickly diminishing returns from simply increasing the
amount of training TUs. Moreover, adding more data can potentially hurt SMT performance if the
data are greatly dissimilar to the target task (i.e., documents to be translated), which leads to the

next critical property.

1.2.2 Similarity between Training and Target Data

If training and target data are similar, then SMT is more likely to yield desirable results. To illustrate,
Carpuat et al. [15] conducted an SMT experiment using two heterogeneous corpora, Hansards and
EMEA [92]. Both copora are collections of EN-FR bilingual documents, but the former consists
of Canadian parliament proceedings, whereas the latter is collected from medical-related bitexts.
The Hansards dataset is about twenty-five times larger than EMEA in terms of the number of word

tokens. In this study, the following three SMT systems were trained:

e An SMT system trained only on Hansards (System 1)
e An SMT system trained only on EMEA (System 2)

e An SMT system trained on both Hansards and EMEA (System 3)

Using a test set created from EMEA, they compared the performance of the three systems. The

results are shown in Table 1.1:

System BLEU

System 1 27.72
System 2 34.83
System 3 34.76

Table 1.1: Hansards-EMEA Experiment Results



The results clearly indicate the importance of the similarity between training and target
data. There is a difference of about 7 BLEU points between System 1 and 2.> Moreover, the
performance of System 3 is slightly lower than System 2, which indicates that the Hansards data did
not contribute to the performance.* Furthermore, Carpuat et al. [15] mention that the Hansards data
would hurt the performance more significantly if the dataset were much larger (see also [38, 66]).

In this experiment setting, the distinction between similar and dissimilar data is made simply
by the datasets (EMEA and Hansards), and data in a specific dataset are essentially treated as
homogeneous training instances. Based on this simple distinction, the TUs in EMEA contributed
positively to the performance of System 2, whereas those in Hansards exerted no or negative impact
on the performance of System 3 due to the dissimilarity to the target task. As in this experiment,
categorizing training TUs based on data sources is a common approach in the SMT community, and
many previous studies have examined methods to effectively utilize TUs which do not belong to
target corpora based on the source-based data distinction. This problem is called domain adaptation,
and various domain adaptation approaches for SMT have been investigated in the last decade

([4, 50, 61, 701, inter alia).

1.3 Domain Adaptation

In this section, we briefly discuss the main idea of domain adaptation and issues that arise in current
domain adaptation approaches for SMT.

Intuitively, the concept of a textual “domain” refers to a set of shared characteristics,
including vocabulary and phrases. Textual domains are related to genres, registers, sources, and
topics. Data collected from the same domain should exhibit similarities. In many SMT studies, data

sources are typically regarded as the primary way to specify a data domain. A domain is usually

3Statistical significance of performance comparison between two systems is usually attained at p-value of 0.01
when the difference is more than 1 BLEU point [54].

“Due to the stochastic nature of the SMT training and tuning processes, the small decrease in the BLEU scores
beween System 2 and 3 in Table 1.1 can be within a margin of error, and it is difficult to conclude that the Hansards hurt
the performance.



defined based on the genre of contained bitexts (e.g., legal, medical, or news [50]) or simply the
name of a dataset (e.g., Hansards or EMEA). Thus, “domain” is often used as a proxy for “source”.

Domain adaptation is a machine-learning problem which considers how to utilize available
data in order to perform well on a given target task, potentially in a domain that is not similar to
the available data [80]. The typical domain adaptation scenario discussed in the SMT literature
explores how to augment a small amount of in-domain training data (i.e., data from the same source
as the target set) with a large amount of out-of-domain data (i.e., data from other sources) (e.g.,
[61]). With regard to the Hansards-EMEA example above, it was not effective to simply use all of
the (out-of-domain) Hansards data alone or to outright combine all of the Hansards and EMEA data
together in the training set. What is needed for better SMT performance is to properly mitigate the
differences between the EMEA and Hansards data. One approach to doing so is to augment the
small in-domain EMEA training data with only the useful portions of the Hansards data.

There is a spectrum of domain adaptation approaches ranging from simply using all available
training data adapting nothing at all — on the one hand — to selecting data sources that are
(potentially) relevant to the source of a given test set. Adaptation involves augmenting a small
amount of in-domain data with a suitable amount of out-of-domain data. For adaptation to be
possible, the target domain must be known a priori by its source, so that suitable data can be
included in the training set. It is also worth noting that most of the domain adaptation experiments
reported in prior studies are designed to deal with a single “in-domain” test set. This is not always
the case in real-world situations, wherein users translate documents on various subjects in a single
translation process. In such situations, it is highly likely that a particular target domain is not
identifiable before translation time because the dataset consists of data from various domains that
can only be recognized at translation time.

In addition, the notion of making data sources synonymous with domains can be misleading
and is not necessarily applicable to all cases. The following section describes one real-world

situation where the notion is not applicable.



Type TU

The database that receives and processes all survey responses may col-

EN | lect the Internet Protocol (IP) addresses through which responses are
transmitted to us.

Technology

In der Datenbank, in der alle Umfrageergebnisse eingehen und verar-
DE | beitet werden, werden unter Umstiinden die IP-Adressen gespeichert,
iiber die die Antworten an uns iibermittelt werden.

EN Doctors and local health providers who know simple infant resuscitation
techniques can be the difference between joy and heartache.
Medical Ob die Arzte und das medizinische Fachpersonal vor Ort einfache Tech-

DE | niken zur Wiederbelebung von Siuglingen kennen oder nicht, kann den

Ausschlag geben fAijr Gliick oder Kummer.

The facilities manager plans and manages the deep cleaning and mainte-
EN | nance procedures and performs all other tasks necessary to prepare the
Facilities building for use.

Management Der Regionalleiter BI plant die Grundreinigungs- und Instandhal-

DE | tungsverfahren, veranlasst deren Ausfiihrung und erledigt alle weiteren

Aufgaben, die vor Nutzung des Gebidudes noch anstehen.

Therefore, all things whatsoever ye would that men should do to you, do

EN
.. ye even so to them, for this is the law and the prophets.
Religious : - — .
DE Alles nun, was auch immer ihr wollt, daBAS§ euch die Menschen tun
sollen, das tut ihnen auch, denn das ist das Gesetz und die Propheten.
) EN | Hey, how are you doing, man?
Colloquial Y Y g

DE | Wie Lauft’s, Alter?

Table 1.2: Example English-German (EN-DE) TUs in LDS Dataset

1.4 LDS Dataset

TUs in a single “domain” can be very diverse in terms of vocabulary and style although they are
collected from a specific data source, such as a set of bitexts created by a particular organization.
According to the conventional notion of domain adaptation, the TUs in such a dataset are regarded
as data generated in a specific d omain. However, it is questionable to always consider all the
TUs in the dataset as instances which contribute to SMT performance. An example of a dataset
consisting of diverse TUs is seen in the TMs used at The Church of Jesus Christ of Latter-Day
Saints (henceforth, the LDS Church). The LDS Church publishes various materials in English
and translates them into more than 100 languages to support communication among its 15 million

members in various countries. Along with a substantial amount of religious texts [90], the LDS



Church produces documents on a wide variety of subject domains including education, legal,
medical, finance, technology and so forth. Also, the formality of language use varies according to
the intended use (e.g., instruction manuals vs. casual conversations in a video clip). Some example
TUs from the English-German (EN-DE) TM are shown in Table 1.2. According to the notion of
domain adaptation, this dataset can be labeled as a “religious” or “LDS” domain. However, it is
unreasonable to categorize this dataset with such a single domain label and to disregard the diversity
exhibited in the contained TUs. In order to effectively utilize the TUs in a dataset such as this LDS
dataset for SMT performance, it is highly important to identify TUs which exhibit similarities to the
target task regardless of the ostensible characteristics such as arbitrary domains.

In this thesis we investigate a data selection method using topic adaptation for MT train-
ing. Topic adaptation has been actively investigated recently as an approach to enhance internal
components of MT systems by utilizing latent features or topics found in words and phrases. Such
models can be found using text mining methods called topic models (c.f. [6]). The previous topic
adaptation studies are based mainly on the idea that topic models capture various thematic contexts
indicated by topics and help MT systems identify suitable word and phrase translations according
to the contexts [42]. Although we adopt the idea of using topic models for the improvement of MT
performance discussed in the previous studies, the focus of this study is using topic models for data
selection rather than the enhancement of internal MT components, which enables us to use our

approach regardless of the chosen MT systems or translation models.

1.5 Contributions of This Thesis

The contributions of this thesis are listed below:

1. Data selection approaches that are applicable to any SMT methods
2. Topical training data selection using topic models and clustering algorithms
3. Using a surrogate set, which discussed in Chatper 5, for regirous experimentation

4. An investigation of the impact of topical training data on SMT performance

8



We discuss these items based on the findings of our experiments in the remaining chapters. We
organize this thesis as follows. In Chapter 2, we present various domain and topic adaptation
approaches investigated in the previous studies. In Chapter 3, we describe the three topic adaptation
approaches examined in this thesis. In Chapter 4, we conduct several preliminary experiments and
report the results. In Chapter 5, we expand our experiments in realistic settings and examine the
effectiveness of the proposed approaches. In Chapter 6, we review our conclusions, contributions,

and future work.



Chapter 2

Related Work

2.1 Overview

In this section, we classify, summarize, and discuss previous work on domain and topic adaptation
for SMT, closely related to the proposed study. Domain adaptation has been one of the active
research areas in SMT, and topic adaptation has attracted attention of the SMT community in
recent years mainly because of the issue discussed in Section 1.4. Although they are closely related
problems, the notions of these two problems are different. In a typical domain adaptation scenario,
TUs within a training corpus or domain are not distinguished from one another and are handled in
the same way. Also, their contribution to the SMT performance primarily depends on whether the
target task is generated from the same domain. Based on this assumption, many domain adaptation
studies focus on the approaches of adjusting SMT systems trained on a particular corpus to apply to
target tasks from the other corpus [3]. On the other hand, the proponents of topic adaptation believe
that TUs can be thematically diverse even within a corpus and such diversity is closely related
to multiple latent topics. Thus, we separate prior studies based on these different perspectives
regarding data sources.

Also, domain and topic adaptation approaches discussed in prior studies can be categorized
in two groups. One focuses on weighting corpora, TUs, phrases or words extracted from training
TUs according to the closeness to the in-domain data and target tasks. The other focuses on selecting
TUs from a large pool of data based on similarity criteria. Therefore, we call the former “Data
Weighting” and the latter “Data Selection” as in [38] and classify prior studies based on these two

types of the approaches.

10



Figure 2.1 shows the taxonomy of prior work based on the types of problems (i.e., domain
adaptation and topic adaptaion) and approaches (data weighting and data selection). The cell (4) in
the figure is highlighted because it is the focus of this thesis. To the best of our knowledge, using
data selection for topic adaptation has not been reported in the previous studies. In the following

subsections, we summarize the prior studies categorized by (1) through (3) in the taxonomy.

Domain Adaptation  Topic Adaptation

oY)

=

=

5 1) @)
5 (

s

<

(&)

=

.S

3

3 3) @
s

<

()

Figure 2.1: Taxonomy of Related Work

2.2 Data Weighting for Domain Adaptation

Data weighting for domain adaptation is one of the most widely-used approaches for various SMT
systems. The typical phrase-based SMT system combines multiple statistical models, such as
translation models, language models, reordering models, and so forth [56] to yield translations
of given source texts. Using the independence assumptions of these statistical models, posterior
translation probabilities are computed using log-linear combination. Researchers have trained
multiple translation and/or language models with in- and out-of-domain training corpora separately
and learned mixing weights in the tuning phase using discrimative learning algorithms such as

minimum error rate training (MERT [79]). This domain adaptation approach is used in a wide

11



variety of SMT engines (e.g., [60], [97]) because of its simplicity and efficiency. Several studies
examine the effectiveness of a log-linear model to combine multiple language and translation
models at the corpus level [31, 61] or the phrase level [4, 38] and observe moderate gains with this
discriminative combination approach. Furthermore, Matsoukas et al. [70] and Foster et al. [33]
extract sentence-level features from each training TU and train a perceptron and an SVM to map
features. Niehues and Waibel [78] used phrase-pair features and incorporated them into factored
translation models [57]. Daumé III and Jagarlamudi [22] identified that Out-Of-Vocabulary (OOV)
is the primary problem in translating documents in a divergent domain. Using a techinique called
Canonical Correlation Analysis, they mine unseen words from out-of-domain corpora to integrate
the identified OOV items into the translation model. Irvine et al. [51] extend their approach and
examine a method to extract OOV words from comparable corpora, and Irvine et al. [50] identify
that sense errors (i.e., mapping errors between known source-language words and unknown target-
language words) frequently occur along with OOV errors. Carpuat et al. [16] propose a classification
method to weight seen and unseen target phrases at decoding time using various textual features.
Carpuat et al. [15] propose a domain adaptation method called phrase sense disambiguation (PSD)
[14] to address cross-domain translation problems using classification techniques.

The primary problem with the mixing weight approach is that it downweights the entire
out-of-domain dataset uniformly without considering the similarities between training and test [15].
Also, this approach works only when the provided development and blind test data are similar. Since
a development test set is usually a subset of training data, it is difficult to guarantee this condition.
Also, the data weighting requires modifications of existing SMT systems in order for computed
weights to be incorporated into final phrase tables. Also, devising effective methods for training

weights of training data can be very challenging [38].

2.3 Data Weighting for Topic Adaptation

Data weighting for topic adaptation has been actively investigated in recent years. The difference

from data weighting for domain adaptation is that this type of approach dynamically weights word
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and phrase pairs, which are treated as atomic units in the SMT models, based on latent topic
distributions of training and test data obtained with topic modeling, rather than on the domain or
data source features. For example, Xiong and Zhang [99] show that topic information discovered by
topic models can be used as features for a word sense disambiguation classifier integrated in the MT
decoder [99]. Also, Hasler et al. [41] used topics in order to be incorporated in log-linear models as
features and optimized in the MT tuning process using MIRA [21, 40]. The other previous studies
on topic adaptation focus on utilizing topic information for (re-)weighting word and phrase pairs
during the SMT training and tuning processes. Eidelman et al. [28] use Latent Dirichlet Allocation
(LDA; Blei et al. [9]) to identify word topics using the source side of training TUs and compute
lexical weighting probabilities [20, 59] augmented by topic distributions. Hu et al. [47] extend the
approach by Eidelman et al. [28] using bilingual topic models called polylingual tree-based topic
models to capture topic information through not only the source side but also the target side of a
training parallel corpus. They discover word-pair topics with this model and incorporate them into
lexical weighting probability estimation. Hasler et al. [43] focus on topical phrase pair identification
for the phrase-based translation models. In their approach, source-side phrases formed in the phrase
table are treated as documents. The topic distributions over phrases identified by the model are
used for computing cosine distance of training and test phrases at training time and dynamically
re-weight the phrase table based on the similarity values at translation time.

As in the case of data weighting for domain adaptation, the challenge inherent to these
approaches is devising methods to assign reasonable weights to each data unit. Also, some
approaches such as Hasler et al. [43] can be computationally expensive because the phrases in the
translation table are re-weighted for every test instance (see also [39]). Therefore, such approaches

are not necessarily suitable for SMT training with multiple large-scale training datasets.

2.4 Data Selection for Domain Adaptation

Data selection for MT has also been actively investigated by several researchers. The basic approach

of data selection is to identify TUs similar to in-domain training or target instances from a large
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pool of TUs, typically called the mixed-domain dataset, based on similarity criteria. One of the
most popular approaches used for SMT utilizes information-theoretic metrics such as similarity
measures. For example, Yasuda et al. [103] use perplexities computed with language models trained
on the source side of in-domain data. Mansour et al. [69] and Axelrod et al. [2] use cross entropy
computed by language models trained on in-domain and mixed-domain datasets to measure the
similarities between the TUs. The approach of Axelrod et al. [2] is based on a language model
enhancement method used by Moore and Lewis [76], but they apply the cross-entropy approach to
translation models by utilizing language models trained on both source-side and target-side TUs.
As an extension of the approaches using n-gram language models, Duh et al. [26] and Mediani et al.
[71] use neural language models [72] to deal with word contexts in the continuous vector space so
that the data selection system can capture TUs in the mixed-domain sets that are similar but contain
unknown words more effectively. Other popular approaches are based on information-retrieval
(IR) techniques. For example, Duh et al. [25] report that they select TUs similar to the target data
using a TF/IDF-based technique developed by Hildebrand et al. [45]. Mirkin and Besacier [74]
incorporate the IR-based approach called Vocabulary Saturation Filter [64] to form a subset which
is similar to the in-domain set but contains a wide variety of n-grams to avoid overfitting, which
tends to occur when the in-domain set is significantly small. Kirchhoff and Bilmes [52] propose
another data selection method based on an optimization approach involving submodular functions
[62]. The motivation for this approach is based on the fact that training data size growth causes
sublinear growth in SMT performance, which coincides with the idea of diminishing returns, one of
the fundamental properties of submodular functions. They devise several feature-based submodular
functions which act as surrogates for the BLEU metric [81] using n-grams and TF-IDF. They report
that the SMT performance with the selected TUs is about the same as or exceeds that of the baseline
systems.

The main criticism of the data filtering approach is that it is often difficult to obtain a
reasonable amount of “good” data from out-of-domain corpora if the discrepancies between datasets

are large [86]. Also, this approach can be effective only when the TUs in the in-domain dataset are
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guaranteed to be homogeneous. Therefore, if the in-domain set consists of various types of TUs,

such as the one described in Section 1.4, these approaches may not necessarily be effective.

2.5 Data Selection for Topic Adaptation

Our approach is an application of topic adaptation to data selection. As far as we know, topic adap-
tation has not been applied to data selection for MT. Although a similar idea has been investigated
in a previous study [1], ours is different from it because the previous study focuses on using topic
models constrained by the in- and out-of-domain distinction, which is the main concept of domain
adaptation. On the other hand, because documents in a specific corpus can be dissimilar to one
another, we treat documents contained in training and target datasets as topically diverse entities,
and our main focus is to identify the topically similar portions in these datasets using topic models

for the enhancement of MT performance.
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Chapter 3

Topic Adaptation for Data Selection

Our goal is to select training TUs which are topically similar to the target task using topic
models. In this chapter we describe the data selection method that we have chosen to accomplish
the goal. First, we describe the types of datasets used in the SMT training and evaluation processes.

Second, we explain the three approaches of topic adaptation. Lastly, we declare the thesis statement.

3.1 Types of Datasets

The three datasets used in the SMT system training and evaluation are the training set, the develop-
ment set and the test set respectively. They are shown and highlighted in red (“Training Dataset(s)”,
“Dev”, and “Test”) in Figure ??. In this figure, we depict training and development sets as a pair of
two documents to indicate that they are collections of bilingual texts or bitexts. The test set is shown
in the figure as a collection of documents, which indicates that the set consists of monolingual
documents to be translated. We use these two types of pictures to distinguish between parallel and

non-parallel datasets hereafter. The purposes of these datasets are summarized as follows:

e The training dataset consists of a large number of TUs (hundreds of thousands to millions) and
is used to generate various statistical models, as indicated in Figure ??. They are comprised
of translation models, language models, reordering models, lexical weighting models, and so
forth. These models are trained independently of one another, and the contribution of each
model to translation quality is not known at the time of their creation. These statistical models
are called sub-models and are sometimes refered to as features because they are components

of the entire SMT system and used jointly to produce translations [56].

16



e To produce translations with the sub-models, the SMT system is tuned with the parallel data
in the development test set (“dev’), which usually consist of a few thousand TUs. In this
tuning process, the sub-models are combined in log-linear fashion, and the weights on sub-
models are estimated based on the translation quality measured on the development test set by
automatic translation quality metrics such as BLEU [56]. The weights are iteratively adjusted
using parameter estimation algorithms such as MERT [79], MIRA [19], and Rampion [36],

until the weight values converge.

e The test set contains documents to be translated for system evaluation. The documents are
trainslated with an SMT system trained and optimized with the training and development sets,
and the translation quality is measured with quality metrics in the same manner as for the
tuning process. Only the source-language segments in the test set are made available to the

translation system. Target language segments are available for the evaluation metrics.

As described above, training and development sets have separate impacts on the SMT performance.
However, one simple but important aspect is that if both training and development sets are similar
to the test set, the final SMT system is likely to yield target-like translations because such similar
training data provides language features, such as vocabulary items and phrases, which are likely to
be found in the test set, and a development set similar to the test set leads the log-linear model to be
tuned favorably to the test set. Based on these foundations, we explain our data selection approach

using topic models in the following section.

3.2 Data Selection using Topic Models

Algorithm 3.1 shows the process of data selection using monolingual and bilingual topic models.
This algorithm takes three inputs: training datasets 7rn, which are the SMT training datasets in
Figure ??, a target dataset Trg, and the size of a dataset selected from the training dataset based

on the similarities to the target dataset, which is S in Algorithm 3.1. The output is the collection

17



Algorithm 3.1: Data Selection
input :training datasets 7rn, target dataset Trg, size of selected training dataset S
output :selected training dataset ST
1 if Trg is monolingual then
L remove target-language data from Trn

pre-process Trn and Trg:
1. create segments
2. remove stopwords
3. collect vocabulary items
4. transform segments to a document-term matrix for topic modeling
if Trg is monolingual then
L train a monolingual topic model

D-TE- R - A7 I )

10 else
1 L train a bilingual topic model

12 extract a vector representation of each segment
13 initialize: create singleton clusters with vector representations
14 initialize: ST < &

15 repeat

16 compute distances between clusters

17 merge two clusters with the minimum distance

18 ST < ST U training segments in clusters with segments from 7rg

19 until 7U count in ST > S
20 return ST

of training data which are topically similar to the target set. In this algorithm, we consider the

following two scenarios based on the type of the target set:

e The target set is a monolingual dataset. In this case, this is a test set of the SMT System in

Figure ??.

o The target set is a bilingual dataset. This set is guaranteed to be similar to the target set and
can be generated by expert knowledge or by a automatic process. We will discuss this type of

datasets later in Section 3.3.3.

The type of the provided target set is examined in lines 1 and 2 of the algorithm. If the given
target set is monolingual, then the source-language data will be extracted from 7rn because a

monolingual topic model will be chosen and the target-side data in the training set cannot be used
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for the subsequent data selection processes. If the given target set is bilingual, both source- and
target-side data in Trn will be used.

Lines 3 through 7 in the algorithm show the necessary processes to be conducted prior to the
topic model training. First, the training and target sets need to be segmented to form a collection of
documents because topic models need documents as its inputs. We describe our approach to generate
segments for topic modeling in Section 4.2. Removing stopwords and transforming segments into a
document-term matrix are typical pre-processes for topic modeling (see [5]). These processes are
also conducted in this step.

Lines 8 through 11 show the process of choosing a topic model to be trained for data
selection based on the type of the target set Trg. If Trg is monolingual, then a monolingual topic
model will be trained on the generated segments; otherwise, a bilingual topic model will be used.

Lines 12 through 19 show the data selection process using a hierarchical agglomerate
clustering (HAC) algorithm. Line 12 extracts vector representations of the segments generated from
Trn and Trg. These vector representations are obtained with the chosen topic model. We explain the
vector representations in Section 3.3.4 below. As the initialization processes, singleton clusters are
formed with the extracted vector representations, and an empty placeholder for selected training
data ST is created.

Lines 15 through 19 show the clustering process. In this loop, the distances between all the
pairs of two clusters are computed, and the pair with minimum distance is merged to form a single
cluster. Following the merge process, the algorithm goes through each of the clusters containing
segments obtained from 7rg to examine whether training segments are also stored in those clusters.
If training segments are found in the clusters, then those training segments are included as elements
of ST. Once the number of training TUs in ST reaches the requested data size S, the clustering
process is terminated, and ST will be returned.

Figure 3.1 depicts monolingual and bilingual data selection cases dealt with in Algorithm
3.1. As shown, the main difference in these two scenarios are (1) whether the target side of training

bitexts is used or not and (2) monolingual and bilingual topic models are used for data selection,
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Figure 3.1: Monolingual and Bilingual Data Selection Processes

and the difference is distinguished simply by the type of target set (i.e., monolingual or bilingual).
As shown in Algorithm 3.1, the choice of monolingual and bilingual data selection processes can be
handled automatically. Henceforth, we use a single term “Data Selection” to indicate both cases in
the subsequent sections of this chapter rather than using two separate terms for the sake of simplicity.
With this data selection algorithm, we propose three data selection approaches of topic adaptation

and describe them in the following section.

3.3 Three Approaches to Topic Adaptation

Figure 3.2 shows our three approaches to topic adaptation for data selection. The three approaches

are depicted according to the types of user-provided SMT development set and according to the
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respectively.
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topic models used for data selection, which we described in the previous section. We call these

three approaches User-Dev, LDA-Dev, and PLTM-Dey, respectively.

3.3.1 User-Dev Approach

The User-Dev is applicable when all three types of datasets are provided by the user and is illustrated
in Figure 3.2a. “Training Dataset(s)” in the figure indicates all of the training TUs from parallel
corpora and/or translation memories available to the user. “Dev” in the “User-Provided” box in the
figure indicates the development set used in the SMT tuning process. “Test” in the “User-Provided”
box in all parts of Figure 3.2 indicates a collection of documents to be translated and used to evaluate
SMT performance with a chosen translation quality metric. The User-Dev approach assumes that
the TUs in the development set are selected based on the user’s preference or domain knowledge,
and this approach uses the development set in the SMT tuning process without any modification.
“Data selection” indicates the data selection process using the test documents and/or the development
set, and all the available training datasets, as described in the previous section. In this approach,
data selection is conducted with a monolingual topic model by using test documents as the target
set in the process. It is also possible that a bilingual topic model is applied if the development set,
which provides both source-language sentences and corresponding translations, assuming that the
development set is a true representation of the test documents. In the following chapters, however,

we do not consider using a bilingual model with this approach.

3.3.2 LDA-Dev Approach

The LDA-Dev approach is used when no development set is provided by the user and a monolingual
topic model such as LDA is used for data selection using source-language only test segments as
the target set. As shown in Figure 3.2b, the training and test sets are involved in the data selection.
When data selection is complete, both a training set and a development set are generated. Both of
these sets are topically similar to the test segments and used in the SMT training process described

in Figure ??.
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3.3.3 PLTM-Dev Approach

This approach is similar to the LDA-Dev approach above in that no user-provided development set
is available in the beginning of the process. However, this approach utilizes a bilingual topic model
by creating a “Surrogate” set in “Surrogate Selection” before the data selection process, as shown in
Figure 3.2c. “Surrogate” in the figure indicates a parallel dataset created from the training datasets
which is similar to the provided source-language only test documents based on the chosen similarity
measure. It is called a surrogate set because it is a substitute for the actual test segments in the
data selection process enabling a bilingual topic model to be used for data selection. Thus, unlike
the test documents, the surrogate set contains TUs, where target-language segments are available.
Therefore, the bilingual data selection described in Section 3.2 above is applicable in this approach.
As illustrated in Figure 3.2c, the surrogate set is generated from the provided training datasets.
After the surrogate selection process, the remaining training data is used as a training set for the
subsequent data selection process. The SMT development set can be selected in the same manner as
in the LDA-Dev approach above, or the surrogate set can be directly used as the topically similar
development set as indicated in Figure 3.2c. In our experiments in the next two chapters, We choose

the latter approach and use the surrogate set as the SMT development set.

3.3.4 From Data Selection to SMT Training

Upon the completion of data selection, “SMT System” in Figure 3.2 is trained on the selected
and user-provided datasets. “SMT System” in all parts of Figure 3.2 corresponds to the portion
surrounded by the dotted-line rectangle in Figure ??. The SMT system training process is common
among the three approaches, and it is described in Section 3.1. The SMT system is tuned by either a
user-provided development test set or the one selected in the data selection process or the surrogate
set, depending on the chosen approach described above. Then the trained SMT system yields
the final translations with the given test documents in an ordinary manner. One significant aspect
of these data selection approaches is that the user can choose any SMT system and translation

model approach (e.g., phrase-based and syntax-based) in this process because the data selection is
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nodes denote hidden random variables. The rectangular boxes are “plate notation” which denote
replication [7].

completely independent of this SMT system training. Also, the TUs in the training datasets which
are not selected in the data selection process can be utilized in this process using existing domain
or topic adaptation approaches, which is indicated by the dotted line in these figures. We do not
consider this option in this study and leave it as a possible direction for future work.

The topic models we chose for this study are LDA as a monolingual topic model and the
polylingual topic model (PLTM; [73, 95]) as a biligual topic model. For the surrogate set creation,
only LDA is used because the source-language only test documents are involved in this process.
The graphical models of LDA and PLTM are shown in 3.3. Each model represents the interaction
of between observed words (shaded nodes in the graphs) in the provided documents and latent
topics in the probabilistic generative process [7]. For LDA, it is assumed that a word is drawn from
the multinomial distribution parameterized by ¢., ,, where ¢, denotes the distributions of words
over topics drawn from the Dirichlet distribution Dir(3), and z,,,, denotes a topic drawn from the
distributions over the documents (0 in the figure), which are drawn from the Dirichlet distribution
Dir(«). PLTM is the multilingual version of LDA. The main difference from LDA is that the
latent topics of the words in the document pairs are drawn from the mutual distributions of latent
topics over the documents (indicated as @) based on the assumption that the latent topics are shared

by the words in the document pairs. In the surrogate creation and data selection processes, the

24



chosen topic model is trained with all the datasets. Training a topic model provides two important
components: the distributions of latent topics over the documents and the distributions of words over
topics (henceforth, per-document topic distributions and per-topic word distributions, respectively)
are discovered. Both types of distributions are probability vectors and used as the numerical
representations, and they are depicted as 8 and ¢ in Figure 3.3. Particularly, per-document topic
distributions are suitable for the data selection process because each of the 8 vectors is assigned to
each document as a vector representation as illustrated in Figure 3.1. Using the vectors obtained
by topic models as numerical representations of documents, the similarity of each pair of training
and test (or surrogate) documents are computed by a distance metric such as cosine distance and
Jensen-Shannon (JS) divergence.

For the surrogate data selection, the similarity measure is computed for each combination
of the test and training documents, and the training document which is the closest to each test
document is chosen to form the surrogate set.

For data selection, we use the hierarchical agglomerative clustering (HAC) algorithm with
complete linkage. In the initial stage, singleton clusters are formed with individual documents from
the datasets. The clusters are merged based on the similarity measure in each iteration. In each
merging process, the clusters with test or surrogate documents are examined to count the training
TUs contained in those clusters. Once the desired number of training TUs is collected in the clusters
with the test or surrogate documents, the iteration is terminated, and the selected TUs form a training
dataset. With this process, we can utilize identified topic distributions to cluster segments based on
similarities.

Based on this simple approach, Chapter 4 presents several experiments examining the

effectiveness of our data selection methods.

3.4 Thesis Statement

Translation units (TUs) selected for training in such a way that they match the topical content

of texts to be translated improve statistical machine translation performance on those texts over

25



approaches that select training TUs only from a matching source when data selection parameters

are carefully determined.
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Chapter 4

Preliminary Experiments

4.1 Overview

In this chapter, we conduct several preliminary experiments and discuss the effectiveness of topic
adaptation for SMT. These experiments are designed to select document segments to facilitate using
topic models and to examine the effectiveness of types of topic models using a synthetic dataset.
We also report SMT experiments in an idealized setting, which will be described in the following
sections. In the preliminary experiments discussed in this chapter, we used Europarl [55], a diverse

parallel corpus used widely in SMT research.

4.2 Experiment 1: Optimal Segment Length

Most of the available parallel corpora are obtained from texts such as speeches, the web, news, and
so on, which are relatively unstructured compared with formally written documents. These parallel
corpora often do not or cannot provide internal document segment information. On the other hand,
segment boundary information is significantly important for topic modeling because document
scope is an important factor for topic identification processes [11]. Therefore, it is often the case
that studies on topic models use collections of academic journal papers, where document or segment
boundaries are easily identified due to their unified length and format [7]. In such a case, topics are
reliably discovered in the process by treating each document equally. If such length uniformity is
not guaranteed, it is advised that segments contained in corpora should be processed properly in
order for them to have similar lengths [11]. While parallel corpora can be separated systematically

based on some identifiable boundaries such as paragraphs and speakers, the amounts of text in
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these segments are often radically different, which is not desirable for topic modeling [73]. Several
previous studies investigate various approaches to segment documents based on topical coherence
(e.g., Blei and Moreno [8], Du et al. [24], Eisenstein and Barzilay [30], Hearst [44], Shafiei and
Milios [88]). These approaches are effective for corpora with formally written documents but might
not be applicable to parallel corpora due to the aformentioned reasons. In order for topic adaptation
to be possible, creating reasonable segments from parallel corpora is crucial.

To investigate a solution to this non-trivial issue, we conducted an experiment to identify a
reasonable working segment length by uniformly changing TU count in each segment, regardless
of speaker or paragraph boundaries indicated in Europarl. To identify optimal segment length, we
conduct the following experiment. First, we created a synthetic dataset using the English portion
of Europarl by substituting all English words with corresponding random strings. Second, we
created a dictinary between English and the syntheic words. Therefore, this synthetic dataset is
essentially the same as the original English set but with different word representations. We ran
LDA on both original English and synthetic datasets with various topic and TU counts. Then
we unmasked synthetic words using the dictionary in the topics to compute JS divergence of all
combinations of topics identified for both datasets. Lastly, we averaged the values to examine what

TU count yields the lowest JS divergence throughout various topic counts. Figure 4.1 illustrates
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the results. As shown, extremely small TU counts cause high JS divergence, which indicates that
topic word assignments are significantly different between these datasets especially when the topic
count is large. Also, the JS divergence gradually increases after exceeding particular TU counts,
depending on the topic count. Although these datasets are basically the same, TU count in a segment
affects topic discovery processes significantly. We chose 50 TUs in a segment for the rest of our
experiments because JS divergence is relatively low throughout all the topic counts (i.e., across all

trend lines) as shown in Figure 4.1.

4.3 Experiment 2: Comparison of Multilingual and Monolingual Topic Models

One question that arises is whether multilingual topic models are more suitable than monolingual
counterparts such as LDA for the purpose of obtaining topically similar data for SMT. To investigate

this question, we conducted the following experiment:

1. Create synthetic target language data derived from the English source side of data in the

Europarl English-German (EN-DE) pair, as described in Section 4.2.

2. Generate two versions of the simulated target language instances from the synthetic data
above: One version involves splitting long English words (eight characters or more) in
two and assigning separate synthetic words to the respective parts (one-to-many), and the
other is merging short words (three characters or less) to the subsequent, adjacent long
words (five characters or more) and assigning a single synthetic word to the combined words

(many-to-one), in order to simulate real-world target language morphology.

3. Run LDA and PLTM with these two English-Synthetic parallel datasets.

4. Unmask the discovered synthetic topic words and evaluate the similarity of those unmasked

topic words with the English topic counterparts.

We chose to use the synthetic data approach (as in the experiment in Section 4.2) above since using

real language pairs makes comparison of different topic models difficult due to a lack of objective
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metrics for bilingual data. On the other hand, the unmasked synthetic datasets allow us to use direct
similarity metrics used for monolingual topic models to compare the capabilities of the topic models

by unmasking the synthetic words.

1 model model
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Figure 4.2: Comparison of LDA and PLTM using English-Synthetic Bitexts

Figure 4.2 shows results from the comparison of topic-word distributions for the English
and Synthetic data using (1) two separate LDA models (one for English and the other for Synthetic
respectively) and (2) PLTM. In this experiment, we used JS divergence as the metric to compare the
similarities between mutual English-Synthetic topics. Because JS divergence shows the proximity
of two distributions, we can consider the JS divergences of topic pairs as distance metrics and easily
compare the topic identification capabilities of the two different approaches. As shown, the JS
divergences of the PLTM topic pairs are distributed in the lower (better) ranges in both merged and
split word cases.

These results indicate that using multilingual topic models can be more suitable than using
two monolingual topic models for multilingual topic identification of topically similar data from

bilingual parallel corpora. We will further investigate the actual impact on SMT performance in the

subsequent experiments.
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4.4 Experiment 3: Topic Adaptation in the Idealized Scenario

Based on the findings above, we conducted a series of end-to-end SMT experiments with topically
similar data extracted from the Europarl English-French (EN-FR) pair using LDA and PLTM. In
these experiments, we make the target side of the test set visible in the data selection process
described in Chapter 3 so that the PLTM-based clustering process is available. Concequently, we
call this experiment setting the “idealized scenario.” We examine the four aspects of topic adaptation

listed below under this idealized scenario and discuss each of them in the following subsections:

1. The impact of topic adaptation on SMT performance in a simplified data selection approach
2. The impact of topic counts on SMT performance in a simplified data selection approach
3. The impact of topic counts on SMT performance with a pre-selected test set

4. The impact of the size of topical TUs on SMT performance with a pre-selected test set

(learning curve)

4.4.1 SMT System Configuration

For SMT processes, we use the Moses MT toolkit [60]. We choose a standard phrase-based
translation model with maximum phrase size of 7. We use 5-gram language models (LMs) smoothed
by the modified Knese-Ney method with SRILM [91]. We use MGIZA++ [35] for word alignment
and MERT [79] for the tuning process with n = 100 for n-best lists. For MT performance evaluation,

we compute the BLEU score according to [81]:

4
BLEU = BP - exp (Z log pn> x 100, (4.1)

n=1

where B P indicates the brevity penalty which is computed as follows:

(4.2)

BP — min < | _output sentence length ) |

" reference sentence length
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Figure 4.3: Simplified Topic Adaptation

The sentence length is measured by the number of words in the sentence. p,, in Equation 4.1 is the
n-gram precisions, where the maximum 7 is 4. The BLEU score yielded by Equation 4.1 ranges

from O to 100.

4.4.2 Topic Adaptation in the Simplified Data Selection Approach

To simplify the topic adaptation process, the SMT experiment discussed in this subsection are
conducted under the topic clustering procedure shown in Figure 4.3. As illustrated, we create all
three SMT datasets from the training set after the data selection process is completed. The purpose
of this experiment is to investigate the impact of topic adaptation on SMT performance with limited
confounding factors. The following procedure selects topically similar and out-of-topic portions

from the corpus:

1. Assign topics to document pairs by running PLTM to identify 100 topics in EN-FR data. This

number is chosen arbitrarily.

2. Characterize each document pair based on their most dominant topics, and group the document

pairs according to those topics.

3. Group the topics using the HAC algorithm with JS divergence as a distance metric.
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4. Choose a cluster of similar topics. we choose a cluster of topically similar data and call it T’

(topical) in this experiment. Figure 4.4 illustrates 7' chosen based on the clustering process.

5. Collect document pairs which do not belong to cluster 7' Call the out-of-topic documents N'T'

(non-topical).

6. Generate training (ﬂrain and N ﬂrain)’ tuning (Tdev and N Tdev)a and test (ﬂest and N ﬂest)
datasets by splitting these topically similar and out-of-topic data, and build phrase-based SMT

models with these datasets. Restrict the size of both the tuning and test sets at 2,500 TUs.

7. Tune the models with MERT, translate the test sets with the models, and report respective

BLEU scores.

An example bilingual topic discovered by PLTM during the data selection process is shown
in Figure 4.5. Through this process, we obtained 300,000 TUs as a topically similar dataset T’

and just as many out-of-topic TUs in NT'. Furthermore, we created two additional datasets C
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Figure 4.6: SMT Performance Results

(concatenation of 7" and NT') and R (a dataset with 300,000 randomly selected TUs — equally —

from 7" and N'T') for comparison.
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Figure 4.6 shows the SMT performance measured by BLEU with these datasets. Regarding
the BLEU scores against Tiegt, Tirain + Tgev (1.€., an MT system trained and tuned on 7, and Tjyey)
significantly outperformed the other training datasets. On the other hand, the performance on
N'T\ 1s lower than the other training and tuning sets (approximately 1 to 2 BLEU points). The
performance on Ry and Ci is also lower than the other datasets although the difference is not
so different as the case of N'7T. This result clearly indicates that topical similarity of training
and test data is more beneficial to SMT performance than increasing data quantity through simple
concatenation. Also, this result confirms that the topic adaptaion using PLTM effectively identifies

similar data from the topically-rich Europarl corpus in an effective manner.

4.4.3 Topic Counts in the Simplified Data Selection Approach

In the experiment above, we fixed the topic count to 100. As in the case of JS divergence in the
segment granularity experiment described in Section 4.2, we realize that topic count affects SMT
performance and that BLEU scores with topically similar data vary significantly as this parameter
changes. In this experiment, we investigate the impact of topic counts under the simplified data
selection approach of Figure 4.3. The experiment procedure is essentially the same as that in
Subsection 4.4.2, but the topic counts are swept from 50 to 500 in increments of 50. We used
both LDA and PLTM for data selection, and p (the topical cluster) and m (the random cluster) are
considered in this experiment. The results are shown in Figure 4.7. As seen in each topical and
random bar pair in the figure', BLEU scores with the topical clusters outperform the random cluster
counterparts by more than one BLEU point across all the topic counts. Therefore, the trend found
in Subsection 4.4.2 holds across other topic counts with both LDA and PLTM under this simplified

data selection approach.

'Since the test set is different for each topic count, the BLEU scores of different topic counts are not comparable.
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Figure 4.7: Topical data selected with various topic counts and BLEU scores

4.4.4 Topic Counts with Pre-Selected Test Set

The simplified data selection approach (Figure 4.3) used in the two previous experiments selects

the test set from the topical cluster. It was a useful approach to demonstrate the impact possible
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in the ideal case. However, this is not realistic because a test set must be provided by the user. In
this experiment, we investigate the effectiveness of topic adaptation using a test set selected from
Europarl prior to the data selection process. Since this experiment deals with a pre-selected test set,

the topic adaptation process is similar to the one depicted in Figure 3.2b. However, this experiment
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is still idealized, since the target side of test set is still visible during the data selection process.
In this experiment, we generate a test set with randomly selected 50 segments from Europarl and
exclude them from the training dataset. Then we conduct data selection with LDA and PLTM as
described in Subsection 4.4.2. We repeat the same process with different topic counts in the same
manner as Subsection 4.4.3. The results are shown in Figure 4.8. As indicated in the figure, the
topical clusters outperform the random counterparts across all the topic counts. This shows that the
trend seen in Subsection 4.4.3 still holds even when a test set is chosen prior to the data selection

process.

4.4.5 Learning Curve

The last experiment in the idealized scenario is to examine the impact of increase in TU counts
to SMT performance. The topic adaptation procedure is essentially the same as Subsection 4.4.4,
where we used a pre-selected test set. The difference from the previous experiment is that we change
the TU count contained in the training set from 10,000 to 70,000 in increments of 10,000 and fix
the topic count to 200 because the SMT performance was best between 200 and 400 in the previous
experiment. The results are shown in Figure 4.9. These results clearly indicate that topical clusters
with both LDA and PLTM always outperform random clusters for all TU counts. Therefore, the

results from Subsections 4.4.3 and 4.4.4 still hold across larger training sets.

4.5 Discussion

The results from the four SMT experiments described above indicate that data selection with topic
adaptation is effective in the idealized scenario. Regardless of topic counts, TU counts, and types
of topic models, topically-clustered training data always outperformed random data. Also, the
segments with 50 TUs each generated based on the experiment in Section 4.2 functioned reasonably
well although the approach was very simple. The contribution from these findings is that training
data, chosen properly, will yield superior translation results. Furthermore, topics identified by topic

models can help select relevant training data according to the provided test data.
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Figure 4.9: TU count increase and BLEU scores

In the next chapter, we investigate the effectiveness of topic adaptation in the realistic
scenario, where no target-language information in the test set is available, using the corresponding

topic adaptation approaches discussed in Chapter 3.
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Chapter 5

Realistic Scenario

5.1 Overview

In this chapter, we investigate the effectiveness of data selection with topic adataption using a
blind test set, where no target-side information is available during the data selection process. To
distinguish this scenario from the idealized scenario which we discussed in the previous chapter,
we call this experimental setting the realistic scenario. We conduct several experiments under the
realistic scenario. First, we evaluate the SMT performance with a topical training set selected with
the aid of a surrogate set. Second, for the sake of comparison, we use additional features called
top-n per-document [96] along with per-document topic distributions for selecting training data.
Third, we compare the topic adaptation approaches with the other existing data selection approach
by [76]. Lastly, we leave behind the standard benchmark datasets and apply the topic adaptation

approaches to a real-world dataset.

5.2 Surrogate Selection 1

To conduct data selection with both monolingual and bilingual topic models under the realistic
scenario, it is necessary to generate a data set which is similar to the test set but which also has the
target-side information (i.e., reference translations) available. In Subsection 3.3.3, we described the
approach to generate such a dataset from the training set, and we called this dataset a “surrogate”
set because this dataset is used as a substitute for the blind test set in the training data selection
process. In this section, we examine several approaches for surrogate set creation. As illustrated

in Figure 3.2c, a surrogate set must be generated prior to the training data selection process, when
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Figure 5.1: SMT results evaluated on the surrogate sets. SS (Surrogate Selection) and TS (Training
Selection) indicate the types of dataset selection methods.

using test and training datasets. Since the surrogate set needs to be topically similar to the test set,
the surrogate set creation process is conducted in a manner similar to the training data selection
process described in the previous chapters. The main difference between the training and surrogate
selection processes is that in the training selection process, multiple segments similar to each test
document must be found to obtain a desired number of TUs (e.g., 300k), whereas only one surrogate
segment corresponding to each test document needs to be found in the surrogate selection process.
Because of this simplicity, there are more approaches available to the surrogate selection process
than the training selection process. However, since the target side of the blind test set is not visible,
surrogate selection must be accomplished only with LDA. Based on these settings, we investigate

the following four approaches in this section:
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Figure 5.2: SMT results evaluated on the surrogate sets (Cont.)

1. Random: randomly select the same number of segments as that of the blind test documents

from the training set.

2. Highest: choose a segment which has a mode at the same topic index in the per-document

topic distribution vector (henceforth, 6 vector) as the test segment.

3. Cosine: choose a segment which is the most similar to the segment in the training set with the

lowest cosine distance measure between the # vector pairs for the respective documents.

4. JS: Choose a segment in the training set with the lowest JS value computed between 6 vector

pairs.

For the surrogate selection process, we consistently use the topic count of 100 for LDA. For Highest,

Cosine, and JS, there is a possibility that the same training segment is chosen for multiple test

42



SS: RANDOM  TS:JS Model: LDA SS: RANDOM  TS:JS Model: PLTM

15 - 15—

5 10 - cluster 10-
&) . random
—
= . topical

5- 5-

0- 0-

| | | | |
350 150 200 00

cluster

é . random
=] . topical
400 4 1%0
Topic Count Topic Count
SS: HIGHEST TS:JS  Model: LDA SS: HIGHEST TS:JS Model: PLTM
15- 15—
10 - cluster 10 — cluster
2 2
m random = random
= =
M I topical =] l topical
5- 5-
0- 0-
460 3‘50 2$0 3,"‘70 4[‘)0 360
Topic Count Topic Count

Figure 5.3: Three BLEU scores on the blind dataset with the topic counts of the best three BLEU
scores on the surrogate dataset. The topic counts are ordered according to the BLEU scores evaluated
on the surrogate set.

documents. In that case, we simply include multiple copies of the same segment (no deduplication).
In these experiments, we choose to use newstest2008, a blind test set used in the WMT workshop
2008.! This blind set contains 2,051 sentences to be translated from various news articles and is
segmented in blocks of 50 TUs each as for the other datasets in the data selection process. The
experiment is conducted based on the PLTM-Dev method shown in in Figure 3.2c with slight

modifications:

1. The generated surrogate set is used as a test set rather than a development set in SMT, in
order to sweep topic counts as in the experiment described in the experiment of topic count

sweeping with a pre-selected test set in Section 4.4.4. Therefore, the development set for the

!Available at http://www.statmt . org/wmt08/shared-task.html.
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SMT tuning process is generated along with the training set as in the LDA-Dev approach

shown in Figure 3.2b.
2. For comparison, we use both LDA and PLTM for the training selection process.

3. Based on sweeping the topic count parameter, we choose the three topic counts yielding the
three highest BLEU scores with the surrogate set and create three topical training sets using
the topic counts for SMT and evaluate the performance of the three systems with the blind

test set.

User-Provided Repeat Process with Different Topic Counts

Test

Selected

Training

Bilingual Dataset b User-Dev
Surrogate | — oo — J|——————| sM system | —— —— [Optimal Topic Count|———»| LDA-Dev
PLTM-Dev
Training

Dataset(s) /

Used as Test Set

Figure 5.4: PLTM-Dev Modified for Topic Count Sweeping with a Surrogate Set

Figure 5.4 shows the schema of topic count sweeping with a surrogate set. The significant aspect of
this approach is that by using a surrogate set for sweeping the topic count parameter, we are able to
identify ideal topic counts without examining the target translations of the blind set in the realistic
scenario. The other settings for this experiment are the same as Section 4.4.4. Figures 5.1 and 5.2
show the topic counts and the BLEU scores evaluated on the surrogate dataset chosen by the four
surrogate selection approaches described above. For clarity, we label surrogate selection as SS and
training data selection as TS in the figures. Overall, the topical training sets outperform the random
counterparts with all the topic counts, regardless of the type of surrogate selection method. This is
a similar trend seen in the results of the experiment in Subsection 4.4.4. Also, The superiority of
the performance with the topical training sets is confirmed in both LDA and PLTM for surrogate

selection.
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Figure 5.5: Three BLEU scores on the blind dataset with the topic counts of the best three BLEU
scores on the surrogate dataset (Cont.)

Figures 5.3 and 5.5 show the BLEU scores on the blind set using topical training sets
generated with three topic count values chosen based on the SMT performance on the surrogate sets.
Unlike the results on the surrogate sets, topical training sets do not always outperfom the random
counterparts on the blind test set. However, Highest for surrogate selection works for all three topic

counts with both LDA and PLTM.

5.3 Surrogate Selection 2

The BLEU scores shown in Figures 5.1 and 5.2 are produced with single SMT processes. However,
the MERT algorithm used in the tuning process does not lead to consistent BLEU scores because
the search space is non-convex, so the training algorithm is highly likely to be caught by different

local optima in different runs [17, 32]. Hence, it is difficult to say that the choices in the topic
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Figure 5.6: SMT results evaluated on the surrogate data. SS (Surrogate Selection) and TS (Training
Selection) indicate the types of segment selection methods. The points on the line plots show BLEU
scores averaged by five runs, and vertical bars on the points indicate the standard errors.

counts based on Figures 5.1 and 5.2 are optimal. To choose optimal topic counts more reliably, it is
necessary to obtain averaged BLEU scores through multiple runs with the same training, tuning
and test sets, which is a widely-used SMT evaluation method for system comparison (e.g., Hu et al.
46, Kirchhoff and Bilmes 52). We choose to run SMT system training and tuning five times. The
other experiment settings are the same as Section 5.2. However, we omit the random surrogate
selection approach to focus on the other three approaches. For training selection, we use Cosine in
the case of Highest and Cosine surrogate selection and JS for JS surrogate selection.

Figures 5.6 and 5.7 show the BLEU scores evaluated on the surrogate sets with topic counts
from 50 to 600. As in the cases shown in Figures 5.1 and 5.2 in the previous section, topical clusters

with all three surrogate selection approaches outperform the random counterparts although the
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Figure 5.7: SMT results evaluated on the surrogate data (Cont.)

BLEU scores in the JS approach at the high topic counts (600 for LDA and 550 for PLTM) are very
close or almost identical.

Figure 5.8 shows the BLEU scores evaluated on the blind set using the three topic counts
that yield the best BLEU scores on the surrogate set. As shown, Cosine works well in both LDA
and PLTM cases and is able to identify topical clusters that outperform the random counterparts

effectively while the other surrogate selection methods exhibit mixed results.

5.4 Top-N Per-Document (TNPD) Features

The BLEU scores with Cosine surrogate selection shown in Figure 5.8 are consistently better than
those with the random clusters at the selected topic counts. However, the differences in the BLEU
scores on the blind set observed in the experiment are rather small (< 1 BLEU point). Seeking
to attain better SMT performance with topical training sets, we extract additional features from
the training and test segments along with the 6 vectors in the training selection process, and we
examine if the additional features help identify training segments which are topically similar to the
test segments more effectively.

The additional features we examine are top-n per-document (TNPD; Walker 96), features

which are a varation of TF-IDF. The conventional TF-IDF score is computed for a word in a
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set.

document as follows:

f(w, d)

N

TF-IDF(w, d) =

-1
maxyreq f(w', d) 062 (n
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Figure 5.10: Weighted Feature Combination and BLEU scores (Blind Set)

where d is a document in a corpus, w is a word in the document d, NN is the total number of
documents in the corpus, n,, is the number of documents which contain the word w, and f(w, d)
is the number of occurrences of the word w in the document d. The problem with TF-IDF is that
the dimensionality of the extracted features is very high. Rather than using all of the vocabulary
items in the document collection, we select the top n words from each document to limit the feature
dimensionality. Thus we call this feature extraction approach TNPD. In this experiment, we choose
n = 1 (i.e., one initial feature from each document). This allows us to limit the dimension of
features to 5,865 in the segments of the source side of EN-FR Europarl. We extract these features

and form a feature vector to create a representation of each segment.
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To combine TNPD and per-document topic distribution features, we normalize respective
vectors independently to make them unit vectors, set a mixing weight to values in the range from
0.0 to 5.0 in increments of 1.0 on per-document topic distributions, and concatenate them to be
a single vector for each segment. These vectors are used for the clustering process in training
selection. In this experiment, the topic count is fixed to 200 without sweeping the topic count
parameter to examine the impact of the TNPD features on SMT performance. We use the same
surrogate data selection approach used in the previous two sections. However, the blind test set
used in this experiment is test2007, a held-out blind set created from Europarl containing 2,000
sentences to be translated.? We replace newstest2008, the previous blind set, with test2007 to
examine the effectiveness of the approach under the setting where training, development, and blind
sets are generated from the same corpus and the difference in SMT performance between topical
and random datasets on the blind set can be more perceivable than that of newstest2008. For
BLEU computation, we average the scores of five runs as in the experiment of the previous section.
Figure 5.9 shows the BLEU scores evaluated on the surrogate set with six different feature weights.
For both LDA and PLTM, the differences of BLEU scores between topical and random clusters
are consistent, and those of the topical training sets are approximately one BLEU point higher than
those of random counterparts across all the weight values. Figure 5.10 shows the BLEU scores
evaluated on the blind set with the six different feature weights. As seen in Figure 5.9, the topical
training sets outperform the random counterparts throughout all the feature weights although the
differences are much smaller. In the previous section, we observed the same superiority of the
topical clusters generated by per-document topic distributions only. Therefore, it is difficult to say
that TNPD features enhances the training selection capability. Also, note that the BLEU scores with
the weight 0.0 means that training data are selected with TNPD features only. The surrogate set
results in Figure 5.9 show that the SMT performance with TNPD features only is the best. However,
the blind set results in Figure 5.10 show that the weight 2.0 for LDA and 3.0 for PLTM yield the

best performance. These results indicate that using per-document topic distributions only is more

2 Available at http://www.statmt .org/wmt07/shared-task.html.
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effective to select topical training data than combining TNPD features with per-document topic

distributions.

5.5 Comparison with Cross-Entropy Approach

So far, we have compared the topic adaptation approaches only with random selection. In this
section, we compare the three approaches (User-Dev, LDA-Dev, and PLTM-Dev) discussed in
Chapter 3 with a data selection method called the cross-entropy approach by [76], along with
unadapted SMT systems as baselines. We describe the cross-entropy approach and show the

experiments in the following subsections.

5.5.1 Cross-Entropy Approach

The cross-entropy approach by [76] is one of the most popular methods for data selection for SMT.

The data selection procedure is as follows:

1. Train a language model with the in-domain training set (L M;,,)
2. Train another language model with the out-of-domain training set (LM,,;)

3. Score each sentence in a data set called POO L with the difference of cross-entropy values

using the trained language models.

4. Rank additional sentences according to the scores computed in step #3 and use the n highest-

ranked sentences as additional in-domain data.

The additional sentences indicate data contained in available training sets, which do not belog to
either the in- or out-of-domain sets used for language model training. The score for ranking is

computed as follows:

topn H(s, LM;,) — H(s, LM,.), (5.2)
sePOOL

51



where POOL is a large collection of additional sentences potentially similar to the in-domain data,
and s is a sentence contained in POOL. H (s, LM) means that the cross-entropy of the sentence s
according to the language model L M. “Top n” indicates selecting top n sentences according to the
difference in cross-entropy scores: the lower the difference, the higher the rank.

Because this approach is designed for domain adaptation, the user must identify in- and
out-of- domain data a priori, which does not enable a direct comparison with the topic adaptation
approaches. To make the comparison possible, Kirchhoff and Bilmes [52] modify the score

computation as follows:

topn H(s, LMrgsr) — H(s, LMrrarn), (5.3)
SETRAIN

where T'RAIN indicates the training set for SMT systems, 7'E/ST indicates the blind test set for
SMT evalutation. This approach enables us to collect sentences from the provided training set
based on similarity to the blind set without pre-specifying in- and out-of-domain sets. Because
we determine the data similarity with language models, only the source side of TUs in the parallel

corpus is involved in this process; thus, no unjustifiable advantage is to be had.

5.5.2 Experiment Setup

The experiments are conducted based on the setting described below (see also Kirchhoff and Bilmes

[52]):

1. Let the blind test set be test2007, as in the experiment of the previous section, and let the

development set be dev20086.°

2. Sweep the selected training data size from 10% to 40% of the entire training set.

The experimental configurations are as follows:

3 Available at http://www.statmt .org/wmt07/shared-task.html.

52


http://www.statmt.org/wmt07/shared-task.html

1. Conduct the three topic adaptation approaches (User-Dev, LDA-Dev, and PLTM-Dev) de-
scribed in Chapter 3. To determine the topic count, we use test2006* so as not to exclude

any data from the original training set for surrogate selection.
2. Compute avaraged BLEU scores of five runs with the selected training sets.
3. Conduct the same experiments with the cross-entropy approach described above.

4. Conduct the same experiments with randomly selected data and the entire dataset as unadapted

versions.

Again, we use the Europarl corpus for the experiments. However we conduct the experiments with

the EN-FR and EN-DE pairs in both translation directions (EN <+ FR and EN <+ DE).

5.5.3 Results

Figure 5.11 shows the BLEU scores with different topic counts (50 to 1,000) evaluated on test2006
in order to identify the topic count that yields the highest BLEU score. For this process, we fix the
TU count for selected training set to 300,000 as in the other experiments. Because of the intensity of
computation, we examine the EN — DE and EN — FR directions only and apply the identified topic
counts to the DE — EN and FR — EN based on the EN — DE and EN — FR results, respectively,
based on the assumption that the identified topic counts are applicable to both translation directions.
According to the peaks in Figure 5.11, we choose 450 topics for EN-DE/DE-EN and 50 topics for
EN-FR/FR-EN.

Table 5.1 shows the averaged BLEU scores for each of the four language pairs. As shown,
the three topic adaptation results on EN-FR outperform those of other approaches significantly
(approx. 3 BLEU points) for all the data sizes. For FR-EN, the topic adaptation results are not able
to outperform those of the cross-entropy (Xent) approach. For EN-DE, none of the topic adaptation
approaches work better than the others. For DE-EN, only PLTM-Dev outperforms Xent at 10%,
30%, and 40%. For both EN-DE and DE-EN, 100% attains the best performance among all.

4Available at http: //www.statmt . org/wmt07/shared-task.html as well.
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The reason that the topic adaptation approaches outperform the others with the EN-FR pair
is possibly because we have conducted a series of experiments to examine various components of
the topic adaptation approaches, such as distance metrics, surrogate selection methods and so forth,
using this language pair, and we have formulated the topic adaptation approaches based on the
results. Then we have applied the same formulation of the topic adaptation approaches uniformly to

all the other language pairs in this experiment. To obtain more desirable results with other language
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Lang. Pair | Method Data Subset Sizes

10% | 20% | 30% | 40%
Rand 25.95 | 26.22 | 26.37 | 26.53
Xent 26.11 | 26.47 | 26.52 | 26.58
EN-FR | User-Dev 29.60 | 30.13 | 30.64 | 30.57
LDA-Dev | 29.79 | 30.16 | 30.26 | 30.62
PLTM-Dev | 29.79 | 30.91 | 30.54 | 30.89

100% 26.47
10% | 20% | 30% | 40%
Rand 28.42 | 28.94 | 29.16 | 29.17
Xent 31.64 | 32.23 | 32.47 | 32.66
FR-EN | User-Dev 31.66 | 32.04 | 32.26 | 32.66
LDA-Dev | 31.47 | 32.08 | 32.31 | 32.58
PLTM-Dev | 31.29 | 32.09 | 32.29 | 32.52

100% 32.61
10% | 20% | 30% | 40%
Rand 20.13 | 20.59 | 20.84 | 21.02
Xent 20.42 | 20.85 | 21.03 | 21.19
EN-DE | User-Dev 20.13 | 20.60 | 20.82 | 20.99
LDA-Dev | 20.23 | 20.55 | 20.92 | 20.93
PLTM-Dev | 20.08 | 20.69 | 20.85 | 21.01

100% 21.32
10% | 20% | 30% | 40%
Rand 26.43 | 27.16 | 27.39 | 27.49
Xent 26.29 | 27.15 | 27.54 | 27.62
DE-EN | User-Dev 26.67 | 26.67 | 26.96 | 27.29
LDA-Dev | 26.98 | 26.98 | 27.45 | 27.54
PLTM-Dev || 26.90 | 26.90 | 27.76 | 27.65

100% 28.14

5.6 LDS Data Experiment
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Table 5.1: Averaged BLEU scores on the Europarl translation task with test2007 for random
(Rand), cross-entropy (Xent), User-Dev, LDA-Dev, and PLTM-Dev. 100% = system using all of the
training data. The bold-faced numbers indicate the best BLEU scores in the data subset sizes.

pairs, we probably need to go through the same formulation process in order to customize the

components of the topic adaptation approaches for those language pairs.

Lastly, we conduct experiments with the LDS dataset, which is introduced in Section 1.4. As

mentioned, this dataset is generated from the translation memory (TM) data collected from a




wide variety of texts and their translations for publication purposes. Also, this dataset is used for
the training of SMT systems, which are incorporated as part of their in-house computer-assisted
translation framework. We conduct this experiment as an example of the application of topic
adaptation to a real-world dataset. We focus on four different language pairs in this section and
examine the topic adaptation approaches through the comparison with other approaches as we

conducted in the previous section.

5.6.1 Experiment Setup

We use the English-Spanish (EN-ES), English-Japanese (EN-JA), EN-FR and EN-DE TMs extracted
from the data storage server in November 2014 for this experiment. This server is used at the
LDS Church to store the original English documents and the translations generated by human
translators using their in-house computer-assisted translation (CAT) system, which supports large-
scale translation processes (worth 85 million words in a year). For data preparation, we clean and
extract TUs from the TMX? files using Okapi,’ a bilingual data processing framework. For Japanese
sentence tokenization, we use MeCab’, a widely-used, open-source morphological analyzer for
Japanese. Unlike Europarl, the order of TUs is not necessarily retained properly in the database.
Therefore, neighboring TUs may be generated from totally unrelated documents. Therefore, the
simple corpus segmentation approach used for Europarl is not directly applicable. To group TUs
before creating segments, we use item IDs attached to each TU as metadata. An item ID is assigned
to each translation project when it is initiated by a human translation team. A translation project
can be composed of articles in an issue of a magazine, a webpage, subtitles of a video clip, sections
of an instruction manual, and so on, depending on the type and scale of assigned materials to be
translated. First we create segments according to the assigned item IDs, assuming the TUs bundled
by a specific item ID are topically related. Table 5.2a summarizes the spread of TU counts in the

created TU groups based on the item IDs. As shown, the distributions of the TU counts are very

> An XML specification for TM data. See http://www.gala-global.org/lisa-oscar-standards.
®http://okapi.opentag.com/
"http://mecab.sourceforge.net
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Lang. Pair | #TU / Item ID Lang. Pair | Dataset #TU # Seg.
Max | 40,964 Train 1,708,186 | 37,943
EN-ES Min 1 EN-ES Dev 2,259 50
Mean 226 Test 2,298 50
Max | 36,139 Train 1,445,004 | 31,946
EN-FR Min 1 EN-FR Dev 2,213 50
Mean 217 Test 2,347 50
Max | 39,328 Train 1,155,235 | 25,632
EN-DE Min 1 EN-DE Dev 2,309 50
Mean 198 Test 2,223 50
Max | 27,338 Train 1,137,728 | 25,143
EN-JA Min 1 EN-JA Dev 2,140 50
Mean 193 Test 2,167 50

(a) Original TU Count per Item ID in Dataset (b) Final Number of TU and Segment Counts

Table 5.2: Summary of LDS Dataset

skewed with this TU-grouping approach. To rectify the skewness in the TU counts, we simply
divide the large segments into 50 TUs each, as we did for Europarl. Finally, we randomly select
100 segments to use 50 as the test set and the remaining 50 as the user-provided development set for
User-Dev in Figure 3.2. The final data sizes are shown in Table 5.2b. Other experiment settings
are the same as in the previous section, except that we sweep from 10% to 50% of the data size.
For training selection, we uniformly set the topic count to 200 to avoid the heavy computation

associated with the topic count sweeping for these four language pairs.

5.6.2 Results

Figure 5.12 shows the SMT performance with the three topic adaptation approaches along with the
baselines. The result of the unadapted baseline all (i.e., trained on the entire dataset) is repeatedly
shown in all data sizes with the other results for comparison. As shown, User-Dev, LDA-Dev
and PLTM-Dev significantly outperform Random for all data sizes and language pairs (6 to 16
BLEU points). This comparison clearly indicates that the TUs contained in the LDS dataset do

not contribute equally to the SMT performance with the specific test set and that the data selection
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approaches with topic adaptation effectively captured segments containing TUs that enhance the
SMT performance for this dataset.

For EN-FR, LDA-Dev outperforms both Xent and all with 40% and 50%. The BLEU score
difference between LDA-Dev of 50% and all is statistically significant at p < 0.05 and between
LDA-Dev of 50% and Xent at p < 0.01 based on the paired bootstrap resampling analysis [54].%
For other language pairs, the topic adaptation approaches underperform Xent and/or all, as seen in

the Europarl experiment of the previous section.

5.7 Discussion

In this chapter, we examined the effectiveness of topic adaptation in the realistic scenario. As
seen in the experiment results in the sections above, we cannot conclude that the topic adaptation
approaches are consistently effective in terms of outperforming the cross-entropy and unadapted
approaches. However, we have observed that the SMT performance for EN-FR in the Europarl
and LDS datasets is superior to other baselines. This possibly indicates that various parameters to
be estimated such as segment sizes and topic counts should be found specifically for a language
pair and/or corpus. Such careful parameter estimation was avoided because of the intensiveness
of the required computation in some of the experiments in this chapter. We will re-examine the

effectiveness of per-language pair topic adaptation with careful parameter estimation in future work.

8The script is available at http://www.ark.cs.cmu.edu/MT/.
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Chapter 6

Conclusions

6.1 Contributions of This Work

In this thesis, we have presented three data selection methods using topic models for better SMT
performance and examined their effectiveness in the idealized scenarios, in which the target side of
the test set is visible in the data selection process, and realistic scenario, in which no target language
information in the test set is available. The following list summarizes the contributions of this work

discussed in this thesis.

Data selection approaches that are applicable to any SMT methods. We have introduced three
data selection approaches (User-Dev, LDA-Dev, and PLTM-Dev) in Chapter 3 and investigated
their effectiveness in Chapters 4 and 5. As depicted in Figure 3.2, all of these three approaches
are accomplished independently of the subsequent SMT training process. Although we have
focused on the effectiveness of the approaches in the experiments only with the standard
phrase-based translation model training, these approaches are easily applied to any type
of translation models, such as hierarchical phrase-based models [18, 67] and syntax-based
models [83, 102]. Such flexibility is not necessarily available to data weighting approaches,
because they need to be incorporated directly into the SMT training framework and should be

implemented for a specific training method.

Topical training data selection using topic models and clustering algorithms. We have presented
the data clustering process based on topical similarities between training and test data in

Chapter 3 . Since topic models do not cluster documents provided for inference of hidden
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topics, an additional process for document clustering is required. We have proposed a two-step
process to cluster segments with the HAC algorithm after discovering topic distributions with
monolingual and bilingual topic models, using JS divergence and cosine distance as similarity

metrics.

Using a surrogate set for rigorous experimentation. In this study, we have used a surrogate set
for two purposes. One is using a surrogate set for topic count sweeping. In this case, we used
it as a test set in the SMT process to identify the best topic count based on the BLEU scores
evaluated on the surrogate set, and the identified topic count is used for training selection
and the final BLEU score is reported with the blind set. The other is using a surrogate set
as a substitute for the blind set for the PLTM-Dev approach. In both cases, the surrogate set
enables us to use parallel data which are similar to the target task for setting a topic count
and using a bilingual topic model without looking at the target side of the blind data in the

training selection process.

An investigation of the impact of topical training data on SMT performance. In Chapters 4 and
5 we have examined the effectiveness of the data selection approaches in the idealized and
realistic scenarios. In the idealized scenario, we have shown that topical training sets con-
sistently outperform unadapted training sets in the topic count sweeping and learning curve
experiments of Section 4.4. These results constitute an upper bound showing what is possible.
In the realistic scenario experiments, we have observed that topic adaptation approaches
outperform the cross-entropy approach and unadapted (100%) SMT systems with EN-FR
Europarl and LDS datasets, although such results are not observed in the other language pairs.
These results indicate that training data, if chosen properly from a topically diverse dataset,
will yield superior translation results even when the size of the topical training set is smaller

than the entire dataset.
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6.2 Limitations of This Work

The main drawback of these data selection approaches is the intensive computation associated with
the training selection and SMT processes. Our data selection methods rely on the HAC algorithm,
the complexity of which is O (n?). This makes the clustering process significantly slow even in a
high-performance computing environment, when a large training set is provided. Also, the SMT
training and tuning processes require significant amounts of time if training and tuning datasets are
large. Because of this constraint, we did not conduct topic count sweeping in some of the realistic
scenario experiments. For future work, we need to investigate a computationally efficient approach

to search for optimal topic counts without relying on computationally heavy processes.

6.3 Future Work

There are several directions to extend the data selection methods discussed in this thesis. Among
others, we can further our investigation of document segmentation granularity discussed in Chapter 4.
In our experiments, we consistently use 50 TUs in a segment based on the JS divergence experiment
in Section 4.2. However, this segmentation approach is not necessarily applicable to all the parallel
corpora and/or language pairs. Several previous studies investigate various approaches to segment
documents based on topical coherence in the monolingual setting (e.g., [8, 24, 30, 44, 88]). These
methods can be applied using the source side of parallel data prior to our current data selection
approaches.

Also, identifying topics at the TU level rather than the segment level is another research
direction. Co-clustering models [37, 87] are good candidates for this direction because these models
can assign topics to sentences as well as words, which is desirable for SMT due to the fact that SMT
requires TUs as the atomic unit of training data (see also [41, 98]). These co-clustering models
can be extended to accommodate bilingual data in a manner similar to PLTM as a multilingual

extension of LDA.
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The purpose of using topic models for data selection is creating vector representations of
training data. As shown in the TNPD experiment of Section 5.4, this purpose can be accomplished
with other types of feature extraction approaches. For example, the paragraph vector [63] is one
possible candidate. The paragraph vector is an extension of the word vector representations extracted
with neural networks [72]. This approach extracts features of documents or sentences and maps
them to a continuous vector space. Using paragraph vector representations of training segments or

TUs in lieu of per-document topic distributions is also promising avenue of future work.
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Appendix A

Derivation of the PLTM Complete Conditional Distribution for Gibbs Sampling

This appendix shows the derivation of complete conditional distributions for Gibbs sampling
inference in the PLTM, the bilingual topic model used in this thesis, based on [73] and [94].
Although PLTM can handle any number of languages, the following derivation focuses on the
bilingual case because SMT deals only with two languages. However, the derivation can be modified
for the multilingual case by expanding the upper limit of the language count [ from 2 to L (i.e.,
an arbitrary number of language counts). Also, the LDA complete conditional can be derived by

confining the language count [ to 1.

Let w® and 2 be the word tokens and word topics in the language [ respectively. The joint

distribution p (w™, w®, 21, 2@|a, 1), B@)) is expressed as follows:

p(w®, w® 20 2@ a0 5O = (A.1)
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By the independence assumptions of the model,

:/p(z(”|9)19(2(2)\@)1?(@\04) d@/p(wu)‘z(1>’¢(1>)p(q)<1>‘5<1>) e
" /p (w®] 2@, M) p (3] @) 45>,

(A.2)

where O is a vector of @ vectors and ®() is a K x V matrix (K: topic count; V: vocabulary size).
To iterate over all the possible values of the random variables and given constants D, K, N, N )

(N are a vector of word token counts in each document d),
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Because all the 8 vectors are independent of each other and all the q,’),(cl) vectors are also independent

of each other,

D 2 N
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where the counter variable c% indicates the number of times that topic with index £ has been

generated from the multinomial distribution specific to document d(®). kl)v is another counter which

counts the number of times the word v has been sampled by topic k.

Then simplify the products:
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Next, multiply by constants to integrate to one:
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To simplify the derivation, we focus on the langage 1. In this case, the third term in Equation A.10

can be dropped:

1 v 1
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Next, split the product to pull out the terms dependent on the current sample position d = a and

n==ub:
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where c((ll)k _, indicates the number of times that topic with index & has been generated from the

multinomial distribution specific to document a but the current topic & is excluded from the count.

t(l()l) w _ indicates the number of times w(% has been sampled by topic £, but not counting the w((il)n
a b’wa b ’ ’
et =1

7wd,n

Expand the Gamma terms using the property I'(n + 1) = nl'(n):
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Expand the remaining I" term using I'(n 4+ 1) = nl'(n) and drop the I" term because it is constant:

1 2 1
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Finally, expand the summations and substitute the general indices k and n for z 12 and wi’b respec-

tively:

z =k
d

e X s
Ka+cl)  +c® " vpo 440

(A.20)

where the dot () denotes summation over all values of the variable whose index the dot takes.

In the same manner, [z((f,z = kz] 18 derived as below:
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