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ABSTRACT

Inverted Sequence Identification in Diploid Genomic Scaffold Assembly
via Weighted MAX-CUT Reduction

Paul M. Bodily
Department of Computer Science, BYU

Master of Science

Virtually all genome assemblers to date are designed for use with data from haploid or
homozygous diploid genomes. Their use on heterozygous genomic datasets generally results in
highly-fragmented, error-prone assemblies, owing to the violation of assumptions during both the
contigging and scaffolding phases. Of the two phases, scaffolding is more particularly impacted and
algorithms to facilitate the scaffolding of heterozygous data are lacking. We present a stand-alone
scaffolding algorithm, ScaffoldScaffolder, designed specifically for scaffolding diploid genomes.

A fundamental step in the scaffolding phase is the assignment of sequence orientations to
contigs within scaffolds. Deciding such an assignment in the presence of ambiguous evidence is
what is termed the contig orientation problem. We define this problem using bidirected graph theory
and show that it is equivalent to the weighted MAX-CUT problem. We present a greedy heuristic
solution which we comparatively assess with other solutions to the contig orientation problem,
including an advanced MAX-CUT heuristic. We illustrate how a solution to this problem provides
a simple means of simultaneously identifying inverted haplotypes, which are uniquely found in
diploid genomes and which have been shown to be involved in the genetic mechanisms of several
diseases. Ultimately our findings show that due to the inherent biases in the underlying biological
model, a greedy heuristic algorithm performs very well in practice, retaining a higher total percent
of edge weight than a branch-and-bound semidefinite programming heuristic.

This application exemplifies how existing graph theory algorithms can be applied in the
development of new algorithms for more accurate assembly of heterozygous diploid genomes.

Keywords: Genome Assembly, Scaffolding, Weighted MAX-CUT Algorithms, Bidirected Graph
Theory
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Chapter 1

An Introduction to Heterozygous Genome Assembly

1.1 Motivation

Deoxyribonucleic Acid (DNA) molecules are the building blocks of all forms of life on this planet,

from viruses and bacteria to human beings. The unique combination of adenine (A), cytosine (C),

guanine (G), and thymine (T) bases to form a DNA sequence is what ultimately engenders diversity

between species and between individuals. Genetic variation is the root cause for numerous diseases

or predispositions to life-threatening diseases such as cancer, heart disease, and HIV. Genetic

variation in plants is the basis for variability in crop yields, nutritional value, and flavor. The future

of scientific study in these areas depends heavily on the ability to study and characterize genetic

variation.

Despite the direct bearing that genetics has on each of these instances, the specific genetic

variations at play are not well-characterized, their effects are not well-understood, and the ability

to scientifically study them is limited. This is due to the relatively sparse amount of accurately

assembled data that is available. The shortage derives in large part from the cost-prohibitive and

somewhat primitive nature of the technology and software used to obtain and analyze genetic data.

The first human genome was assembled nearly a decade ago and cost close to 2.7 billion dollars1.

Though DNA sequencing costs have decreased significantly, the time and manual effort required

to produce finished genome sequences are still very restrictive. Despite global efforts to collect

and sequence any and all forms of life, only about 1,200 organisms have been sequenced and

are available in NCBI’s public database—most at a preliminary level—hardly enough to begin

1http://www.genome.gov/11006943
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to adequately characterize the patterns responsible for genetic variations of interest2. In order to

deduce and characterize the effects of genetic variation, we need a larger number of high-quality

sequenced genomes, implying the need for technology and software to produce them.

Genome assembly projects to date have aimed at generating a single reference sequence

to represent a given species. However, the genomes of nearly all large species actually consist of

two or more variated copies of such a reference. Because of the increased complexity involved

in assembling two similar but different copies, most sequencing projects preliminarily require

inbreeding of a target specimen before data is collected. This inbreeding step aims to reduce

the variation and produce an organism with DNA that is more easily assembled. However, this

preparatory work is both time- and cost-intensive and in some cases has raised ethical concerns.

Often this homogenizing step is impossible because it yields unviable progeny. In all cases the

unique variation between copies is lost, and with it, a great deal of critical data. There is a need for

tools capable of directly assembling and analyzing genomes with more than one copy.

1.2 Background

The DNA of all plant and animal genomes is divided among a number of chromosomes. The

number of chromosomes or haploid number is a defining characteristic for a given species, and the

ordering and content of chromosomes is predominantly the same between individuals of the same

species. Independent of the haploid number for a species is the ploidy of a species, a number which

represents the number of copies of the entire set of chromosomes in the cell. Most animals are

diploid organisms, meaning that their cells contain two copies of each chromosome, one deriving

from each of two parents. There are slight differences between the copies (each unique copy is called

a haplotype) which interact to make the offspring unique from either parent. Matching regions (i.e.

sequences in the same position) on each copy are termed homologous regions or homologs. Two

homologous sequences that are the same are called homozygous; the difference between homologs

is expressed in terms of heterozygosity. When we speak of sequencing the DNA of a species (or

2http://www.ncbi.nlm.nih.gov/About/tools/restable_mol.html
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simply “sequencing a species”), we are generally referring to finding an “average” sequence, where

the nucleotide base at any chromosomal location is a function of the most common base among

individuals of the species.

Technology has thus far been only moderately successful at solving the problem of genomic

sequencing. The most prominent methods require large-scale replication of genetic material which

is then broken through sonication into an amalgam of short fragments of various sizes (called

reads). From this mixture are extracted sequences suitable to the capacity of sequencing machines.

The most cost-effective machines are capable of sequencing reads of approximately 100 bases

while maintaining reasonably low error rates. Reads as long as several hundred base pairs can be

sequenced at a much higher price and with somewhat higher error rates. In any case, the sequencers

are unable to sequence anything that even begins to approximate the size of an entire chromosome

which, for example in a raspberry, averages lengths of several million base pairs. The algorithmic

challenge is to reassemble the full-length chromosomes from short DNA reads.

This reconstruction is generally broken into two phases: the overlapping of reads to form

consensus contigs and the scaffolding of contigs to form chromosomes.

1.2.1 Contigging

In the initial phase of the assembly process we seek to use the reads to form long contiguous

sequences of known bases. This is accomplished by combining overlapping reads to produce longer

consensus sequences called contigs (see Figure 1.1a). If all read-length genomic sequences were

unique, we could continue this process until we reconstructed the original chromosomal sequence

in its entirety. However, due to the presence of repetitive regions throughout a genome, reads will

exist which support multiple paths of reconstruction (see Figure 1.1b).The ambiguity of this result

is often modeled as a graph where the nodes are the unambiguous consensus contig sequences

produced from combining overlapped reads and the edges are possible ways in which these contigs

could be sequentially combined (see Figure 1.1c). Often the number of contigs can outnumber the

actual number of chromosomes by as much as a factor of 103. The graph will often be missing

3



Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

(a)

Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

(b) (c)

Figure 1.1: (a) Short reads whose sequences overlap are overlaid such that their consensus is a
reconstruction of the original sequence from which the reads are taken. (b) Repetitive regions whose
length exceeds that of sequenced reads create different possible reconstructed consensus paths. (c)
The different reconstructions can be modeled as a graph where unambiguous consensus sequences
are collapsed into nodes and evidence for the different paths are represented as edges.

nodes or edges due to insufficient sampling of certain areas of the genome or because of erroneous

contigs produced from errors during the read-sequencing phase.

1.2.2 Scaffolding

Scaffolding is the step in the assembly process where additional information is leveraged to infer

the relative distance and orientation of contigs. Two distinct approaches are commonly used in the

scaffolding step. The first approach attempts to infer the distance and orientation of contigs by using

the known sequence of a closely related genome. We refer to the degree of genetic similarity in

gene-order between different species as synteny. To the extent that the genomes of two species are

syntenic, this approach can be moderately successful. However, no species has the same genome as

that of another species which inherently limits this approach to scaffolding.

The second approach to scaffolding makes use of paired-end data. Paired-end data consists

of pairs of short reads whose distance and orientation is known from the technique used to sequence

them. Due to the read-size constraints mentioned above, the paired-reads are the same length or
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Figure 1.2: (a) Paired-end reads or mate-pairs are formed by sequencing the ends of a sequence
of known length. (b) Because the orientation and distance of the paired-end reads is known, they
can be used to position and orient contigs relative one to another. (c) The result is a reconstructed
sequence composed of known and unknown regions. Unknown bases are denoted using the letter
‘N’.

shorter than normal unpaired DNA reads. However, the paired-reads are sequenced from either

end of a longer insert sequence of known length using one of a number of paired-end sequencing

technologies (see Figure 1.2a). Unique alignments of the paired reads to the pre-assembled contigs

are supporting evidence for the inference of distance and orientation of contigs (see Figure 1.2b).

Scaffolding thus aims to reconstruct the chromosomal sequences by orienting the contigs and fixing

them at distances suggested by paired-end linkages (see Figure 1.2c). The gaps are reported using

the inferred number of bases in the gap (denoted using the letter ‘N’). The scaffolding problem

using paired-end data can likewise be modeled as a graph where the nodes are contigs and the

edges are paired-end linkages between contigs weighted by the amount of evidence supporting the

linkage.

The goal of scaffolding is to continue to properly orient and fix contigs at the correct

distances until the number of scaffolds approaches the number of expected chromosomes. A

full reduction to the exact number of chromosomes is rarely possible without substantial manual

curation. Post-processing includes filling gaps between contigs using a variety of both wetlab and

computational techniques.
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1.2.3 The Challenge of Diploid Genome Assembly

Numerous assembly algorithms exist, each with its own unique strengths. Some algorithms work

better with longer reads; others work well with short reads. Some algorithms are designed to work

well with bacterial genomes, which by nature are quite different from multi-cellular, eukaryotic

species. Algorithms can vary in the type of input they require and the type of output they produce.

For example, some algorithms depend heavily on confidence scores for the base calls at each

position in a sequenced DNA read, while others begin by assuming no errors in the DNA bases

called by the sequencing machinery. For the most part it is assumed that the goal is to reproduce a

single haplotype.

Most algorithms reasonably assume the reconstruction of a single haplotype because it is far

simpler and historically biologists have catered to it. To understand how this assumption simplifies

the problem, let us compare the reassembly of chromosomes from short DNA reads to reconstructing

a jigsaw puzzle. In the case of a diploid species, reconstructing two different haplotypes would be

like mixing the pieces of multiple similar jigsaw puzzles together before attempting a reconstruction

of each individual puzzle. There is no clear way to identify to which puzzle each piece belongs and

perhaps more frustrating, the pieces from both puzzles look (or sometimes are) identical. Rather

than develop algorithms to handle this complexity, most sequencing projects elect to inbreed a

species over multiple generations so that the haplotypes inherited at each generation are increasingly

similar. This would be analogous to reducing our problem from reconstructing multiple mixed

puzzles back to reconstructing a single jigsaw puzzle.

Though this assumption makes the problem easier for the bioinformaticians, the process of

inbreeding in order to satisfy the assumption is not always an affordable luxury. Multiple iterations

of inbreeding required to yield a highly homozygous genome can necessitate years of waiting, not

to mention the increased cost of maintaining the project in the interim. In some cases, there are

ethical concerns against inbreeding. Even with careful inbreeding, it is impossible to guarantee that

two haplotypes are perfectly homozygous, and therefore some ambiguity is inevitable. In cases

where the heterozygosity proves too great, additional expenditures may be required to obtain data
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for a more homozygous specimen. An additional potential drawback is that the species resulting

from inbreeding is either not viable or does not represent the same organism that was initially being

investigated. Hence, there is a critical need for sequencing algorithms capable of handling the

complexity of heterozygous diploid genomes, a complexity that violates the fundamental assumption

of the vast majority of traditional sequencing algorithms. Having matured past the infant stages of

bioinformatic algorithms, it becomes necessary to abandon the simplifying and costly assumptions

made in earlier stages in order to more efficiently and effectively solve whole-genome sequencing.

Of the two reconstruction phases, scaffolding is particularly impacted by the assumption of

a single haplotype. The algorithm for extending reads into contigs remains largely unchanged even

when a single haplotype is not assumed. Scaffolding algorithms, however, generally rely heavily on

the assumption that most contigs belong in only a single scaffold, representative of a portion of a

haploid genome. We propose the development of a scaffolding algorithm which accommodates the

unique challenges of diploid genomes.

1.2.4 Thesis Statement and Document Organization

Ongoing research in the Computational Sciences Laboratory has for some time attempted to

complete a sequencing and assembly of the Rubus idaeus cultivar heritage raspberry genome. For

reasons of time and money, the samples collected for this species were not taken from an inbred

organism and consequently we have data for a very heterozygous diploid organism. This master’s

thesis is motivated by the lack of sufficient tools for handling a genome of this type. Both the

problem and the solution are readily generalizable to any sequencing project. We hypothesize that

adaptation of existing graph algorithms to the problem of diploid genome assembly will aid in the

resolution of haplotype-specific variation. Success in this endeavor promises to accelerate the rate at

which new species can be sequenced, reduce costs, and eliminate the ethical dilemma of inbreeding.

Improving the efficiency of sequencing will ultimately provide data collections of sufficient size to

more easily study the effects of genetic variation.
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The thesis is organized as follows. In chapter 2, we present related work in the field of

heterozygous genome assembly. In chapter 3, we present a paper that was presented at BIOCOMP

’12 which describes a scaffolding model that is built to allow for multiple haplotypes. This research

provides the groundwork for chapter 4, in which we present a paper that was submitted to ACM

BCB 2013. This chapter discusses a specific algorithmic challenge in scaffolding called the contig

orientation problem. We show that the problem is readily reducible to a weighted MAX-CUT

problem and demonstrate how solutions to this problem in diploid genome assemblies can be used

to extract features that are unique to diploid heterozygous genomes. We present our own greedy

heuristic solution and demonstrate its superior performance in reducing ambiguity in scaffold graphs.

Solutions were assessed using four metrics: the total count of edges retained; the total weight of

edges retained; the total count of edges excluded; and the total weight of edges excluded. We also

use BLAST [1] to verify the accuracy of inverted-haplotype predictions, as described in more detail

in that chapter.
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Chapter 2

Related Work

Most widely-used scaffolding algorithms are explicitly designed to reconstruct homozygous

genomes. The Newbler assembler, developed by 454 Life Sciences and distributed with 454

sequencing machines, has been used on a number of assembly projects [31, 37, 41]. Its efficiency in

contigging is particularly notable given that it works natively with the .SFF data format to account

for the specifics of pyrosequencing errors. Newbler requires uniquely mapping mate-pairs (i.e.

paired-reads) as scaffolding evidence, disregarding reads which potentially map to multiple contigs.

This can prove problematic with diploid genome reconstruction where reads may map to multiple

homologous sequences.

Bambus [38] uses mate-pair information together with other types of linking data to infer

the orientation and ordering of contigs to hierarchically construct scaffolds. The linkage data is

used to create a graph where nodes are contigs and edges represent linkage evidence. Unlike many

scaffolding algorithms, Bambus does not disregard ambiguous linkage evidence (e.g., multiply

mapped pairs), and is capable of outputting pertinent data for manual finishing of ambiguous paths.

However, this data is not used to inform the finishing algorithm in the case that automated finishing

is required. Rather this simple greedy algorithm iteratively finds the longest non-self-overlapping

path without consideration of graph structures characteristic of repetitive or polymorphic sequences.

No performance data on heterozygous genomes is reported.

Arachne [4, 21] is a Whole Genome Shotgun (WGS) assembler which was adapted for use

in the assembly of the heterozygous Ciona savignyi genome (details below) [48]. In the contigging

phase, Arachne uses depth of coverage and the presence of conflicting links as evidence of repetitive
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regions in order to avoid erroneous extension of contigs. Contigs are also incorporated in the filling

of intra-scaffold gaps. The algorithm does not natively allow for assembling multiple haplotypes.

A few algorithms have been developed specifically to handle highly heterozygous genomes,

but the majority are designed in-house for specific problems without successive marketing or

publication of the algorithmic details. Contigs for the highly heterozygous (7.1X sequencing depth,

0.4% heterozygosity) diploid fungal pathogen Candida albicans genome [22] were constructed

from Sanger reads (10.9X) using PHRAP (www.phrap.org). The authors expected that application

of PHRAP to a heterozygous genome would lead to misassembles because the algorithm assumes

a single-copy sequence. The authors assumed that where apparent gaps came as a result of

heterozygous sequence, and not from a lack of data, standard gap-closing experiments were unfit to

resolve the genome. They describe a process of identifying heterozygous regions, aligning separated

homologs using BLASTN alignments, and then reconstructing the two homologous supercontigs.

Though the approach taken in assembling the Candida albicans genome addresses some of the

traditional oversights in assembly of heterozygous genomes, it is designed for use with small

genomes (Candida albicans is an estimated 14.8 kb) and no effort has been made to reproduce the

algorithm, let alone with genomes of several hundred million base-pairs.

Vinson et al. present a method for assembling highly polymorphic diploid genomes and

applied this method in their assembly of the heterozygous (4.6% average substitution rate, 60 times

that in humans) sea squirt Ciona savignyi genome [48]. The estimated genome size was 190 Mb

and the assembly used WGS libraries with 5-kb and 40-kb insert sizes. The method, which at its

heart employs a “splitting rule” to keep haplotypes from joining in the contigging phase, attempts to

assemble two haplotypes separately and then merge the assemblies by selecting a representative base

at each locus. The merge criteria is concerned primarily with minimizing the number of inter-contig

gaps and secondarily with minimizing the switches between haplotypes in scaffold reconstruction.

The method was employed as an extension to the Arachne assembly program [4, 21]. They illustrate

how their algorithm significantly improved the N50 contig and scaffold size and read usage with

respect to the default algorithm.
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In drafting a genome sequence for the highly heterozygous (1 SNP per .1 Kb and 1 in/del

per 0.45 Kb) grapevine Vitis vinifera, Velasco, R. et al. constructed metacontigs (i.e. scaffolds)

using paired reads matching to non-repetitive parts of the contigs [46]. They found that 11.2%

of DNA on homologous chromosomes differ. The estimated genome size was 504.6 Mb. The

project used a combination of Sanger (6.5X) and 454 (4.2X) reads. Paired reads were Sanger

reads. Coverage (relative to average coverage) was used to identify and handle contigs representing

repetitive sequence. They used Assemble (Myriad Genetics Inc., Salt Lake City, Utah) to assemble

contigs. Neighboring contigs were linked using paired-reads only if each read uniquely mapped to

a single contig sequence. The same method was used to sequence the domesticated apple (Malus x

domestica) genome and the grape species [47].

Zharkikh et al. [50] discuss problems and solutions with sequencing highly heterozygous

genomes, using Vitis vinifera as a model. Their work suggests that heterozygous genome assembly

requires focus on obtaining sufficiently high coverage of the sequence with high-quality reads to

accurately determine consensus and variant base calls. Both Zharkikh et al. [50] and Vinson et al.

[48] indicate that although assembly of homozygous genomes should allow for some mismatches in

overlapping reads, in reconstructing individual haplotypes only overlaps with near perfect identity

need be considered. They discuss phasing techniques and note that dramatic improvements in

haplotype resolution are achieved by employing a larger variety of clone size. Matching coverage

was used to identify repetitive sequence and distinguish them from unique sequence.

Comparative analysis of scaffolding algorithms on heterozygous data remains largely unex-

plored. Donmez et al. [12] present an assembler for highly polymorphic genomes called Hapsembler.

The method employs a kmer hashing technique to detect read overlaps and then uses a Naive Bayes

probabilistic error correction procedure. A simplified mate pair graph is created via transitive edge

reduction. Paths between mate pairs are detected, allowing for reconstruction of multiple haplo-

types. They assess Hapsembler’s assembly of simulated reads from the Ciona savignyi genome and

demonstrate its ability to recover haplotype-specific blocks containing 300 or more adjacent SNPs

in half of the assembled genome. Donmez et al. [13] more recently released Scarpa, a standalone

11



scaffolding module, which they test on both a simulated diploid genome as well as datasets from G.

clavigera and E. coli data.

The vast majority of published algorithms have been created to assume reconstruction of

haploid genomes. The challenges posed by heterozygous diploid genomes violate this fundamental

assumption and analyses that are undertaken using most state-of-the-art software result in fragmented

and error-prone assemblies. As demonstrated in several of these related works, researchers are

required to develop ad hoc work-arounds to remedy these effects. There is a pressing need for

tools that are specifically designed to address the complexities of heterozygous diploid genomes.

Adapting existing graph algorithms to the specific challenge of scaffolding diploid genomes has

the potential for yielding improved assembly and analysis of such genomes. This thesis explores

different options for creating scaffolds from heterozygous data and the theoretical tradeoffs of each

approach.
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Chapter 3

ScaffoldScaffolder: An Aggressive Scaffold Finishing Algorithm

This paper was presented at BIOCOMP’12 and published in conference proceedings, pp. 385-390

Abstract

With next generation sequencing technologies producing vast amounts of nucleotide data, it becomes

imperative to streamline and automate the genome assembly process as much as possible. Contig

scaffolding algorithms, ideally designed to reconstruct full chromosomes, more often tend to

produce a still intractable number of disjoint sequences, requiring further manual finishing of the

genome. To this end we present ScaffoldScaffolder, an aggressive automated scaffold finisher

which further reduces the scaffold set using paired-end data. We evaluate the performance of

ScaffoldScaffolder on Newbler scaffolds created from the Rubus idaeus cultivar heritage raspberry

species. Further automated genome finishing methods are discussed.

3.1 Introduction

3.1.1 Motivation

Genetic variation is the root cause for numerous diseases or predispositions to life-threatening

diseases such as cancer and heart disease. Genetic variation in plants is the basis for variability

in crop yields, nutritional value, and flavor. The future of scientific study in these areas depends

heavily on the ability to study and characterize genetic variation.

Despite the direct bearing that genetics has on each of these instances, the specific genetic

variations at play are not well-characterized, their effects are not well-understood, and the ability to
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scientifically study them is limited. To a large extent this is due to the relatively sparse amount of

data that is available. This shortage derives in large part from the cost-prohibitive and somewhat

unrefined nature of the technology and software used to obtain and analyze genetic data. The

first human genome was sequenced less than 10 years ago and cost upwards of 3 billion dollars.

Though DNA sequencing costs have decreased significantly, the time and manual effort required

to produce finished genome sequences are still very restrictive. Despite global efforts to collect

and sequence any and all forms of life, only about 1,200 organisms have been sequenced, most at

a primitive level, hardly enough to begin to adequately characterize the patterns responsible for

genetic variations of interest1. In order to deduce and characterize the effects of genetic variation,

we need a larger number of high-quality sequenced genomes, implying the need for improved

technology and software to produce them.

To this end we have undertaken to develop ScaffoldScaffolder, an automated scaffold

finisher.

3.1.2 Background

Technology has thus far been only moderately successful at solving the problem of genomic

sequencing. The most prominent methods require large-scale replication of genetic material which

is then broken through sonication into an amalgam of short fragments of various sizes (called

reads). From this mixture are extracted sequences suitable to the sequencing capacity of sequencing

machines. The most cost-effective machines are capable of sequencing reads of approximately

100 bases while maintaining reasonably low error rates. Reads as long as 600 base pairs can be

sequenced at a much higher price and with slightly higher error rates. In any case, the sequencers

are unable to sequence anything that even begins to approximate the size of an entire chromosome

which, for example in a raspberry, averages lengths of several million base pairs. The algorithmic

challenge is to reassemble the full-length chromosomes from short DNA reads. The genome

1http://www.ncbi.nlm.nih.gov/About/tools/restable mol.html
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Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

(a)

Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

(b) (c)

Figure 3.1: (a) Short reads whose sequences overlap are overlaid such that their consensus is a
reconstruction of the original sequence from which the reads are taken. (b) Repetitive regions whose
length exceeds that of sequenced reads create different possible reconstructed consensus paths. (c)
The different reconstructions can be modeled as a graph where unambiguous consensus sequences
are collapsed into nodes and evidence for the different paths are represented as edges.

reconstruction is divided into two phases: the overlapping of reads to form consensus contigs and

the scaffolding of contigs to form chromosomes.

In the initial phase of the assembly process reads are used to form long contiguous sequences

of known bases. This is accomplished by combining overlapping reads to produce longer consensus

sequences called contigs (see Figure 3.1a). If all read-length genomic sequences were unique, we

could continue this process until we reconstructed the original chromosomal sequence in its entirety.

However, due to the presence of repetitive regions throughout a genome, reads will exist which

support multiple paths of reconstruction (see Figure 3.1b).The ambiguity of this result is often

modeled as a graph where the nodes are the unambiguous consensus contig sequences produced

from combining overlapped reads and the edges are possible ways in which these contigs could be

sequentially combined (see Figure 3.1c). Often the number of contigs can outnumber the actual

number of chromosomes by as much as a factor of 103. The graph will often be missing nodes or
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edges due to insufficient coverage of certain areas of the genome or by erroneous contigs produced

from errors during the read-sequencing phase.

Scaffolding is the step in the assembly process where additional information is leveraged to

infer the relative distance and orientation of contigs. This is most commonly done using paired-end

data. Paired-end data consists of pairs of short reads whose distance and orientation is known

from the technique used to sequence them. Due to the read-size constraints mentioned above,

the paired-reads are the same length or shorter than normal unpaired DNA reads. However, the

paired-reads are sequenced from either end of a longer insert sequence of known length using one

of a number of paired-end sequencing technologies (see Figure 3.2a). Unique mappings of the

paired reads to the pre-determined contigs are supporting evidence for the inference of distance

and orientation of contigs (see Figure 3.2b). Scaffolding thus aims to reconstruct the chromosomal

sequences by orienting the contigs and fixing them at distances suggested by paired-end linkages

(see Figure 3.2c). The gaps are reported using the inferred number of bases in the gap (denoted

using the letter ‘N’). The goal of scaffolding is to continue to properly orient and fix contigs at the

correct distances until the number of scaffolds approaches the number of expected chromosomes.

The quality of an assembly notably increases by using a large variety of clone sizes in the scaffolding

phase [50]. However, additional measures are required to reduce the resulting scaffold number to

the chromosome number.

We have developed ScaffoldScaffolder, a lightweight tool designed to automate the scaf-

folding of scaffolds using paired-end data. Whereas it is the purpose of a scaffolder to recover

the orientation and placement of contigs inasmuch as the data will accurately allow, the purpose

of the ScaffoldScaffolder is to act as a post-processing step to aggressively reduce the number of

sequences as much as possible by leveraging remaining unused linkages inferred from paired-end

data. Rather than simply concatenating resulting scaffolds in random order, at random distances,

and in random orientations, ScaffoldScaffolder attempts to infer the correct scaffolding, though in a

somewhat less cautious manner than a scaffolder.
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Figure 3.2: (a) Paired-end reads or mate-pairs are formed by sequencing the ends of a sequence
of known length. (b) Because the orientation and distance of the paired-end reads is known, they
can be used to position and orient contigs relative one to another. (c) The result is a reconstructed
sequence composed of known and unknown regions. Unknown bases are denoted using the letter
‘N’.

3.2 Related Work

The Newbler assembler, developed by 454 Life Sciences and distributed with 454 sequencing

machines, has been used on a number of assembly projects [31, 37, 41]. Its efficiency in contigging

is particularly notable given that it works natively with the .SFF data format to account for the

specifics of pyrosequencing errors. Newbler requires uniquely mapping mate-pairs (i.e. paired-

reads) as scaffolding evidence, disregarding reads which potentially map to multiple contigs.

Bambus [38] uses mate-pair information together with other types of linking data to infer

the orientation and ordering of contigs to hierarchically construct scaffolds. The linkage data is used

to create a graph where nodes are contigs and edges represent linkage evidence. Unlike many scaf-

folding algorithms, Bambus does not disregard ambiguous linkage evidence (for example multiply

mapped pairs), and is capable of outputting pertinent data for manual finishing of ambiguous paths.

However, this data is not used to inform the finishing algorithm in the case that automated finishing

is required. Rather this simple greedy algorithm repeatedly finds the longest non-self-overlapping

path without consideration of graph structures characteristic of repetitive or polymorphic sequences.
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Arachne [4, 21] is a Whole Genome Shotgun (WGS) assembler which has been used to

assemble heterozygous genomes [48]. In the contigging phase, Arachne uses depth of coverage

and the presence of conflicting links as evidence of repetitive regions in order to avoid erroneous

extension of contigs. These contigs are incorporated in filling intra-scaffold gaps.

SOAPdenovo is a short-read assembly algorithm developed by the Beijing Genomics Insti-

tute (BGI) which has been employed in a large number of genome projects [29]. The program is

designed primarily to function with Illumina GA short reads in reconstruction of large genomes.

MAIA [35] integrates multiple de novo and comparative assemblies by creating a graph of

the contigs from these assemblies and their alignments. Four properties for the edge weighting are

implemented, namely contig length, overlap length, length of non-aligned overhang, and original

assembly quality. This approach makes it possible to use specific assemblers for different next-

generation data sources and enables the use of multiple known related genomes in the assembly

process. The algorithm was applied on the de novo sequencing of the Saccharomyces cerevisiae

and demonstrated improvements upon single assembly methods (Velvet, Celera, MAQ) and other

hybrid methods (Velvet, Minimus). The disadvantages are that MAIA inherently relies on a very

closely related genome in the assembly process and the computational expense of the algorithm

renders the approach impractical for larger genomes. The algorithm, like many, is designed for use

with homozygous genomes.

3.3 Methods

ScaffoldScaffolder is designed to be used as an iterative algorithm where each successive iteration

utilizes a paired-end library of a larger insert size than the previous iteration. Each iteration requires

as input a series of sequences to be scaffolded in fasta format and any number of similarly-sized

paired datasets. The high-level purpose of the algorithm is to use the paired datasets to infer

scaffoldings of the input sequences and then to select and output an unambiguous subset of the

scaffoldings in fasta format. It additionally outputs information detailing the specifics of the input

sequences which compose the new scaffolds.

18



5' ACGT 3'! ! 5' ACGT 3'

5' ACGT 3'! ! 3' TGCA 5'

3' TGCA 5'! ! 5' ACGT 3'

3' TGCA 5'! ! 3' TGCA 5'

(a) (b)

Figure 3.3: (a) There are four possible ways for two sequences to be adjacent. The correct orientation
can be uniquely defined by specifying which ends are adjacent. (b) Orientation can be preserved in
a graph model using bi-terminal nodes where each terminal represents a sequence end.

Internally the algorithm stores input sequences in the context of a graph where nodes

represent sequences and edges between nodes indicate that paired data exists to suggest that two

sequences should be scaffolded. We must make a slight modification on how we define nodes in

the context of this problem. In classic graph theory, we say that if (u,v) is an edge in a graph G

= (V,E), then node v is adjacent to node u. However, in the context of our problem it is possible

for two sequences to be adjacent in one of four different orientations. One possible solution to

this problem relies on the biological concept of sequence orientation which defines one end of the

sequence as the 5’ (said five prime) or upstream end and the opposite end of the sequence as the 3’

or downstream end inasmuch as DNA synthesis proceeds in a 5’ to 3’ direction. This directionality

is an inherent characteristic of each sequence.

One way to uniquely distinguish between the four different orientations of two DNA

sequences is to specify which two ends are adjacent (see Figure 3.3a). We can model this in our

graph by defining our nodes as bi-terminal, where edges to one terminal represent adjacency to the

5’ end of the represented sequence and edges to the second terminal represent adjacency to the 3’

end of the same sequence (see Figure 3.3b). This concept of a graph can be reduced to the standard

definition of a graph by making each terminal its own node and creating an edge between them.

In the ScaffoldScaffolder, this scaffold graph is initialized only with the sequence nodes;

edges are later progressively added as each input dataset is processed for linking evidence. It is
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assumed that contigs represent unique sequences and thus there is a one-to-one relationship between

nodes and sequences.

The algorithm uses an external mapping algorithm, Bowtie [28], to map reads in the input

paired datasets to the sequences to be scaffolded. While the algorithm is heavily modularized to

support other mapping algorithms (including GNUMAP [9] and BLAST [1]), testing has been

limited to Bowtie. Experimentation to date has required mappings to be unique (meaning no more

than a single alignment location exists for the mapped read) in order to maximize confidence in the

resulting scaffolds. ScaffoldScaffolder currently gives the user the option of adjusting this parameter

as well as parameters dictating read-trimming options, alignment-mismatch options, and options

for skipping the first n reads in a dataset. A parameter allows the user to specify the paired-end

orientation either as -fr (Illumina paired-end protocol), -rf (Illumina mate-pair protocol), or -ff (454

mate-pair protocol).

From the Bowtie results ScaffoldScaffolder then identifies pairs for which both ends are

uniquely mapped. In cases where both ends map within the same sequence, the distance between

the mappings is cataloged in order to infer an insert size for the library. In cases where ends map to

distinct sequences, the algorithm infers the orientation and gap size between the two base sequences.

Assuming that the gap size is viable (i.e. nonnegative), the weight of the corresponding edge in

the scaffold graph is linearly incremented and the inferred gap size for the scaffolding of the two

oriented base sequences is cataloged. The final gap size is the mean of the inferred gap sizes.

The process of mapping paired-reads and then loading the scaffold graph according to the

mapping results is repeated for each provided paired-end source in the respective iteration of the

algorithm. At the conclusion of this phase, the scaffold graph contains a number of ambiguous

linkages where a given base sequence may have multiple possible scaffoldings in the upstream

and/or the downstream direction. ScaffoldScaffolder assumes that a given base sequence will be

scaffolded with only one sequence in either direction. In order to reduce the graph to include an

unambiguous subset of scaffold edges, the edges are sorted by weight, following which edges

are greedily considered for inclusion in the final graph. If adding an edge creates an ambiguous
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scaffolding, the edge is skipped. A minimum support parameter determines the minimum number

of unique pairs required as support for an edge to be included.

Scaffold sequences are constructed from the disambiguated scaffold graph and these se-

quences, together with any unscaffolded sequences, are output in fasta format by decreasing order

of length.

3.4 Results

We tested the ScaffoldScaffolder algorithm on Newbler scaffolds created for the heterozygous

Rubus idaeus cultivar heritage raspberry genome.

Contigs were first assembled from the reads using the Newbler assembler. Due to memory

and time constraints, the 5k dataset was not incorporated into the Newbler assembly. Aside from

this exception, the same data used in the Newbler assembly was used as input to ScaffoldScaffolder.

The assembler parameters were set to require a minimum length of 30 bases, a minimum

overlap length of 70 bases, and a minimum overlap identity of 98 bases. The large genome assembly,

heterozygotic, and scaffold flags were enabled. Using these parameters, Newbler produced 123,121

contigs and 13,037 scaffolds.

ScaffoldScaffolder was parameterized to use Bowtie for the mapping of paired reads, with

a maximum of 3 mismatches, and only allowing uniquely mapping reads. The minimum support

required for valid links was 1.

ScaffoldScaffolder was able to reduce the scaffold count by 5399, representing a reduction

of over 40% of the scaffolds produced using Newbler’s scaffolding algorithm alone (see Table 3.1).

The 3kb and 20kb datasets (those produced using the 454 mate pair protocol) had noticeably

lower rates of alignment. We suspect this derives from the inability of the Bowtie aligner to

consider insertions or deletions when aligning reads. This proves troublesome for reads sequenced

using the 454 protocol which often have insertions and deletions in homopolymorphic sequences.

Consequently, selection of other short-read mapping algorithms capable of handling indels could

further improve the performance of the ScaffoldScaffolder algorithm.
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Table 3.1: Reduction of Newbler Scaffolds via Multiple Iterations of ScaffoldScaffolder

Iteration Reads Uniquely Scaffold Count Max Scaffold Size Avg Scaffold Size

(insert size) Aligned

Initial 13,037 4,456,429 19,313

400b 171,490,959 11,620 4,456,429 21,905

3kb 397,429 11,271 4,456,429 22,643

5kb 99,333,568 8,695 4,456,429 30,976

20kb 893,745 7,638 4,678,214 37,961

3.5 Discussion

ScaffoldScaffolder attempts to provide an algorithmic solution to automated finishing using paired-

end data. Although it may be argued that the aggressive nature of the algorithm will lead to

inaccuracies in the resultant assembly, similar inaccuracies are common to other prevalent finishing

methods of which we will briefly discuss two.

3.5.1 Genetic Linkage Map

Biological assays are capable of inferring the relative distance along chromosomes of a number

of specific genetic sequences based on what is called the recombination rate of protein-coding

sequences (i.e. genes). Recombination refers to the rearrangement and exchange of genetic material

that occurs when chromosomes cross over one another. The likelihood of such a rearrangement

occurring between two genes, known as the recombination rate, increases as a function of the

distance between the two genes. Thus the relative distance and ordering of certain observable genes

can be inferred biologically in order to create a genetic linkage map. These genes, whose sequences

are known, can be used to guide the finishing of the assembly. Assuming that such a genetic linkage

map is available, this process is quite accurate, but may still fail to place a number of scaffolds.
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3.5.2 Related Genomes

A second approach to genome finishing attempts to infer the distance and orientation of contigs by

using the known sequence of a closely related genome. We refer to the degree of genetic similarity

in gene-order between different species as synteny. To the extent that the genomes of two species

are syntenic, the ordering and orientation of similar sequences on the related genome can be used to

guide the assembly of the target scaffolds. The challenge with this approach is proper identification

and treatment of genomic differences.

3.6 Conclusion

In this research, we present ScaffoldScaffolder, an aggressive automated scaffold finisher. We have

illustrated its effectiveness in significantly reducing a set of Newbler scaffolds created for the Rubus

idaeus cultivar heritage raspberry genome. Future development aims to address the complexities of

scaffolding heterozygous genomes with inclusion of structural/sequence-based heuristics to identify

and assemble distinct haplotypes. Improved input data analysis will aim to infer parameters so as to

reduce the information required from the user for execution.
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Chapter 4

Solving the Contig Orientation Problem via

Bidirected Graph Reduction to a Directed Graph

A shortened version of this paper was submitted to ACM Conference on Bioinformatics,

Computational Biology and Biomedical Informatics (ACM BCB 2013). The analysis section was

not included in the shortened version.

Abstract

In the context of genome assembly, the contig orientation problem is described as the problem

of removing sufficient edges from the scaffold graph so that the remaining subgraph assigns a

consistent orientation to all sequence nodes in the graph. This problem is equivalent to finding

the maximum fully-directed subgraph of a bidirected scaffold graph. We show how this problem

is equivalent to both the weighted MAX-2-XORSAT and weighted MAX-CUT problems and

provide reduction algorithms. A linear-time algorithm is presented which solves this problem by

heuristically maximizing total edge weight. We compare the performance of this algorithm to

a random solution and to a semi-definite programming solution. We show how inverted repeats

and inverted haplotypes violate the fundamental assumption of the contig orientation problem

and demonstrate how solutions to the contig orientation problem can be used to identify these

biologically significant regions.
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 5' ACCCGGCGGCAGGAGAGGG 3' 

 5' CCCTCTCCTGCCGCCGGGT 3' 

    downstream

    downstream

Figure 4.1: By convention DNA is written 5’ to 3’. DNA is double-stranded with 5’ to 3’ direction-
ality of the reverse-complement strand being opposite that of the forward strand.

4.1 Introduction

Accurate and efficient genome assembly algorithms are essential in unlocking the solutions to chal-

lenges posed by genetic disease, genetic engineering, and even next-generation digital information

storage [8]. The term genome describes a complete set of DNA in the cell of an organism. Within

the genome, DNA is organized as a distinct set of molecules called chromosomes, the number of

which is a unique characteristic of a species. Each chromosome is composed of a sequence of

nucleotide bases, or simply nucleotides, which encode all of the functionality of a living organism.

The goal of genome assembly is to ascertain the identity of this sequence and is prerequisite to

making inferences about the complex mechanisms that govern life.

DNA is inherently directional, which means that defining the head of a sequence (called the

5’ or five prime end) and the tail of a sequence (3’) is as essential as defining the nucleotide residues

themselves. By convention, the forward strand of a sequence s+ is written in the 5’ to 3’ direction

(the same order in which DNA is biologically replicated, transcribed, and sequenced); however, as

DNA is double-stranded, it is always implied (though usually not written) that for any sequence s+,

an equally viable reverse-complement sequence s− exists whose 5’ to 3’ direction is opposite that

of s+ (see Figure 4.1). The forward strand is commonly referred to without the superscript. We will

define moving in the 5’ to 3’ direction as moving downstream and 3’ to 5’ as moving upstream.

Next-generation sequencing technologies are currently only capable of sequencing (i.e., as-

certaining the sequence of nucleotide residues of) short DNA fragments called reads. Consequently
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Read 1:! ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC
Read 2:!  CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA
Read 3:!   CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG
Read 4:!    CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5:!     GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6:!      GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7:!       CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC
… 

Consensus: !ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC…

Read 1:! ! TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 2:! ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAA
Read 3:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Read 4:! !  ATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
… 

Contig (reads 1 & 3): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 1 & 4): !TATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG
Contig (reads 2 & 3): !CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAA
Contig (reads 2 & 4): ! CATAGTAGCTGATTGTATTATTGATTGTATTGTATACTATATTAAG

Reads

Possible assemblies:

Figure 4.2: The contigging phase overlaps short DNA reads to determine the consensus sequence of
the larger derivative molecule.

the genome assembly process requires first fragmenting chromosomes (which in humans are on the

order of hundreds of millions of nucleotides in length) into small segments to be sequenced. Then

confident overlaps are found between the reads to recover the chromosomal sequence. This process

is known as contigging (see Figure 4.2).

In reality, insufficient molecular sampling and repetitive regions in the DNA prevent full

chromosomal reconstruction and it is thus commonplace for assembly algorithms to produce a large

set of partially-reconstructed chromosomes termed contigs. Contigs must then be oriented and

positioned relative to one another in order to reconstruct full chromosomes through scaffolding.

Scaffolding uses longer fragments of a known length whose ends are sequenced (called paired-

end reads) to infer positional and orientational relationships between contigs (see Figure 4.3).

Considering that a paired-end may match to either the forward sequence or the reverse-complement

sequence, there are four possible ways in which two adjacent contigs may be oriented relative to

one another (see Figure 4.3c).

The problem of scaffolding contigs is commonly modeled as a graph (i.e., a scaffold graph)

where vertices are contigs and edges indicate candidate scaffoldings of contigs, weighted by the

amount of supportive evidence for the scaffolding. It should be noted that in the contigging phase,

reads from repetitive regions in the genome will overlap and combine into a single contig. It is not

uncommon for scaffolding algorithms to ignore these repeat contigs, as proper repeat resolution
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400 residues 

70 residues 70 residues 

(a) A Paired-End Read

400 residues 

Contig A Contig B 

(b) Scaffolding

Contig A (forward) Contig B (forward) 

Contig A (reverse) Contig B (forward) 

Contig A (forward) Contig B (reverse) 

Contig A (reverse) Contig B (reverse) 

(c) Orientation of Contigs in Scaffolds

Figure 4.3: a) A paired-end read is a long DNA fragment whose ends have been sequenced (arrow
indicates the 5’ to 3’ directionality). b) Paired-end reads are used to infer the relative position
and orientation of contigs (contigs shown with reverse-complement in gray) to which the ends
find matching locations. c) Although the paired-end reads have a fixed position and orientation,
depending on whether an end aligns to a contig’s forward or reverse strand, contig pairs may be
oriented in four different ways within a scaffold (gray contigs represent 5’ to 3’ of the reverse-
complement strand).

often requires manual curation [38]. Repeat contigs naturally suggest varied scaffoldings that

create conflicts in the scaffold graph. Sequencing errors create additional complexity, suggesting

contig positionings and/or orientations that are inconsistent with other scaffolding evidence. As a

result of these complications, the problem is generally simplified, so that the goal simply becomes

finding a maximal path through the graph that incorporates each contig sequence once. By defini-

tion, including each sequence once requires first assigning each contig a single orientation in the

reconstruction.

The contig orientation problem describes the challenge of assigning contig orientations so

as to minimize conflicting orientation evidence [38] . More specifically, the goal is to remove the

minimum number of edges from the scaffold graph so that the remaining subgraph suggests a single

consistent orientation of all vertices in the graph (see Figure 4.4).

One purpose of the current paper is to formally define the contig orientation problem and

compare possible solutions. However, a second and equally important purpose is to discuss the

viability of the problem’s foundational assumption: that each non-repetitive sequence belongs in

the reconstruction in a single orientation. We will refer to this as the single-orientaton assumption.

27



   a!    b!    c!

Figure 4.4: The Contig Orientation Problem. Shown are three contigs, A, B, and C and edges
(solid lines) between them suggesting ways in which these contigs might be relatively positioned
and oriented in molecular reconstruction. Note that two edges support scaffolding sequences A+,
B+, C+ (light gray arrows). Two other edges suggest scaffold A+, B−, C+ (dark gray arrows).
The two possible reconstructions suggest internally inconsistent orientations of contig B relative to
contigs A and C. The contig orientation problem is the problem of excluding the minimum number
of edges (or minimum edge weight) so that a single orientation is suggested for all contigs in the
graph.

Ultimately we find that the assumption fails, even when repeats are screened; however, in considering

the cases in which this assumption fails, we discover a possible method for detecting two biologically

significant structures: inverted repeats and inverted haplotypes.

The paper is outlined as follows. We begin by formally defining the problem in terms

of bidirected graph theory, demonstrating an equivalency to the well-studied weighted MAX-2-

XORSAT and weighted MAX-CUT problems. We then present a novel solution to which we

compare a number of weighted MAX-CUT solutions. Finally, we comment on the validity of the

single-orientation assumption and its role in identifying inverted repeats and inversion variants.

4.2 Analysis

In this section we formally define the contig orientation problem in terms of bidirected graph theory.

We demonstrate its equivalence with MAX-2-XORSAT and MAX-CUT.
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4.2.1 Bidirected Scaffold Graphs

A weighted bidirected graph (as introduced by [14]) is formally defined as an undirected multigraph

G with a set of vertices V and a set of bidirected edges E. A bidirected edge e has two endpoint

orientations, one with respect to each of its endpoints. An endpoint orientation may be either

positive or negative, defining e as either positive-incident or negative-incident to an endpoint. We

further associate a weight function with the edges, w:E 7→R+. We say that a bidirected graph is

connected if its underlying undirected graph is connected.

In the graphical representation of a bidirected edge e, we represent positive-incidence with

an arrow pointing out of the vertex and negative-incidence with an arrow pointing in to the vertex.

Based on this representation, we say that e is: directed if it is positive-incident to one endpoint and

negative-incident to the other; introverted if positive-incident to both endpoints; and extraverted

if negative-incident to both endpoints (see Figure 4.8). A directed graph is a special case of a

bidirected graph in which all edges are directed edges.

A valid (v1,vk)-walk is a sequence v1,e1,. . .,vk−1,ek−1,vk where ei is an edge incident to vi

and vi+1 and for all 2 ≤ i ≤ k − 1, ei−1 and ei have opposite endpoint orientations incident to vi

(see Figure 4.6).

Based upon this definition, we define a bidirected scaffold graph for a set of contigs C and a

set of weighted candidate scaffoldings F as a bidirected graph G=(V ,E) in which vertex vi ∈ V

represents contig ci ∈ C and a weighted bidirected edge e linking vertices vi and vj represents the

weighted candidate scaffolding f ∈ F between contigs ci and cj (see Figure 4.5). The endpoint

orientations of e are determined by the relative orientation of the forward strands of ci and cj in f :

if the forward strands of ci and cj are oriented in the same direction, then e is a directed edge that is

positive-incident to the vertex representing the upstream contig; if the forward strands are oriented

away from one another (i.e., 5’ ends are proximal), then e is an extraverted edge; and if the forward

strands are oriented towards one another (i.e., the 3’ ends are proximal), then e is an introverted

edge (see Figure 4.8).
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Figure 4.5: Bidirected Graph Notation. A scaffold graph constructed in bidirectional graph notation
in which nodes are contigs and edges are candidate scaffoldings of contigs, weighted by the amount
of scaffolding evidence. In this notation, relative sequence orientation is notated in the edge forms.

Two critical specifications must be made at this point to the bidirected scaffold graph in

order that our biological constraints are maintained. First, the 5’ to 3’ directionality of a DNA

molecule must be consistent along the entire length of the sequence. This means that introverted

and extraverted edges, both of which represent internally inconsistent 5’ to 3’ directionality of

the forward strand, violate a biological constraint. As per this definition, only directed edges are

considered valid in the final scaffold reconstruction. The second specification, however, is that

because the biological molecule allows us to consider a contig ci as either its forward strand c+i or its

reverse-complement strand c−i , for any vertex vi ∈ V we can arbitrarily select between the forward-

orientation assignment v+i and the reverse-orientation assignment v−i in order to ensure consistency

of the 5’ to 3’ directionality of contigs ci and cj in scaffolding f . We will refer to this selection as

the contig-orientation assignment of ci or vertex-orientation assignment for vi. Furthermore we

refer to a contig-orientation assignment for all contigs in C (or vertices in G) as a contig-orientation

assignment of C (or vertex-orientation assignment of G). Switching between assignments v+i and

v−i is equivalent to flipping all endpoint orientations incident to vi (see Figure 4.6c), thus potentially

rendering introverted and extraverted edges as directed edges, or vice versa. We will refer to a

vertex vi with possible vertex-orientation assignments v+i and v−i as an orientable vertex. As the
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Figure 4.6: (a) In a bidirected scaffold graph, a valid walk enters and exits a node through oppositely-
oriented arrows. (b) An invalid walk enters and exits a node through same-oriented arrows. (c)
Reversing all edge-orientations adjacent to a node results in the same potential valid walks. This is
biologically equivalent to selecting the reverse-complement s− in place of the forward sequence s+.

forward strand c+i of each assembled contig ci is arbitrarily given as input, each corresponding

vertex vi is initially assumed to be assigned the vertex-orientation v+i .

A final clarification must be made prior to formally defining the contig orientation problem.

The goal of finding a maximal contig-orientation assignment for a graph is not equivalent to the

goal of finding a maximal walk through the scaffold graph (i.e., creating linear scaffolds). There are

several cases (e.g., heterozygous sequences and/or repetitive sequences on different chromosomes)

in which a single connected contig-graph component can account for multiple walks resulting in

multiple scaffolds that belong in the final reconstruction [39]. Indeed further algorithmic elucidation

of reconstructive paths is required following the resolution of the contig orientation problem. What

will be guaranteed from resolution to the contig orientation problem is that any valid walk chosen

from the resulting subgraph will have consistent internal orientation of all constituent contigs. A

maximal solution to the contig orientation problem seeks to accomplish this while maximizing the

scaffolding evidence that is rendered valid by the orientation assignment.

4.2.2 MAX-DIR-SUBGRAPH Problem

We formally state the corresponding decision problem as follows:
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Figure 4.7: An example of a bidirected scaffold graph. The MAX-DIR-SUBGRAPH problem is
defined as the problem of finding a vertex-orientation assignment which maximizes the number of
directed edges.

MAX-DIR-SUBGRAPH = {(G,k) | G is a bidirected graph with orientable vertices, and

there exists a vertex-orientation assignment for G resulting in a subgraph containing at least k

directed edges}

Depending on whether the preferred bias is towards more evidence or more edges, the

weighted and unweighted versions of this problem (respectively) become important. In the following

equivalence proofs of the MAX-DIR-SUBGRAPH problem to other well-known decision problems,

we will consider the unweighted version and assume that the weighted version is readily deducible

from the unweighted. For the purposes of illustration, we include an example of a bidirected scaffold

graph for which we would like to find a vertex-orientation assignment (see Figure 4.7) and show

the corresponding MAX-2-XORSAT and MAX-CUT problems. The example demonstrates the

weighted versions of each problem.

We first show that MAX-DIR-SUBGRAPH is equivalent to the MAX-2-XORSAT problem

and then show that this latter problem is equivalent to the widely-studied MAX-CUT problem, which

is NP-complete. Because the MAX-CUT problem is NP-complete, showing these equivalences
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proves not only that the MAX-DIR-SUBGRAPH problem is NP-complete, but also that heuristic

solutions to the MAX-CUT problem can be applied to the MAX-DIR-SUBGRAPH problem. The

same is true of the weighted forms of these decision problems.

4.2.3 Equivalence to MAX-2-XORSAT

Showing the equivalence of the MAX-DIR-SUBGRAPH problem to the MAX-2-XORSAT problem

is straightforward and is also helpful in showing equivalence to the MAX-CUT problem. Let a

binary variable be a variable whose value is either 1 (i.e., true) or 0 (i.e., false). A literal (which we

will denote using xi) is a binary variable bi or its negation ¬bi. A 2-XOR-clause, or simply a clause,

C, is a linear equation of 2 literals of the form

C = (xi ⊕ xj)

A truth assignment is a mapping I that assigns 0 or 1 to each variable in its domain. The clause

C is satisfied iff it evaluates to true, that is iff (I(xi) + I(xj)) = 1. A 2-XOR-formula, or simply a

formula, is a conjunction of distinct 2-XOR-clauses. A truth assignment satisfies a formula φ iff it

satisfies every clause in φ. The decision problem corresponding to the MAX-2-XORSAT problem

is thus stated:

MAX-2-XORSAT = {(φ, k) | φ is a 2-XOR-formula, and there is a truth assignment that satisfies at

least k clauses}

The MAX-DIR-SUBGRAPH problem can be reduced to the MAX-2-XORSAT problem

as follows. Given a bidirected graph G with a set of orientable vertices V and a set of bidirected

edges E, we create a 2-XOR-formula φ as a conjunction of 2-XOR-clauses using the following

reduction. For each edge e ∈ E connecting vertices (vi,vj) we create a 2-XOR-clause C of the form

C = (xi ⊕ xj), where:

1. xi is bi if e is positive-incident to vertex vi and ¬bi otherwise; and

2. xj is bj if e is positive-incident to vertex vj and ¬bj otherwise
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Figure 4.8: (a) There are three forms of bidirected edges: introverted, extraverted, and directed. (b)
In the reduction to MAX-2-XORSAT, a clause is created for each bidirected edge in the scaffold
graph.

(see Figure 4.8b). The number of steps required for the reduction is linear in the size of E.

Figure 4.9 shows the set of weighted 2-XOR-clauses resulting from a reduction of our bidirected

graph example.

Each truth assignment of a binary variable bi in the 2-XOR-formula has a corresponding

vertex-orientation assignment of vi in the bidirected graph: true ≡ forward-orientation; false ≡

reverse-orientation. By definition, the truth assignment of bi will always be opposite that of ¬bi,

which is equivalent to saying that the vertex-orientation assignment v+i will always be opposite that

of v−i . Thus a truth assignment of a negated variable ¬bi by default assigns the opposite value to the

literal bi.

It remains to be shown then that a truth assignment I which satisfies at least k clauses has a

corresponding vertex-orientation assignment A resulting in a subgraph containing at least k directed

edges. Such a correspondence can be shown if we can demonstrate that given a truth assignment

I to bi and bj which satisfies the clause C = (xi ⊕ xj) representing edge e, the corresponding

vertex-orientation assignment A of vi and vj will always render e a directed edge. We proceed

by considering all cases in which C is satisfied. It is assumed that I initially assigns true to all

variables in the domain of φ and correspondingly A assigns all vertices to forward-orientation.
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Figure 4.9: An example of a set of weighted 2-XOR-clauses resulting from the reduction of the
weighted bidirected graph in Figure 4.7. A weighted 2-XOR-clause is of the form C = (xi ⊕ xj ,
u), where u is the weight for the clause. The 2-XOR-formula formed by the conjunction of these
weighted clauses represents an instance of the weighted MAX-2-XORSAT problem.

In the cases where neither literal xi nor xj is a negated variable (meaning that in the

represented edge e, both endpoints are positive-incident) or both literals are negated variables

(both endpoints are negative-incident), then to satisfy C, I must assign true to one variable and

false to the other. To whichever variable I assigns false, the corresponding vertex is assigned the

reverse-orientation. This flips one of the two positive-incident endpoints of e and renders e directed.

In the remaining case where only one of the two literals is a negated variable (meaning that e is

already directed), I must assign true to both variables (e does not change) or false to both variables

(both endpoints in e are flipped, making e a directed edge in the opposite direction) to satisfy C.

Thus any truth assignment I which satisfies a clause C renders the corresponding edge e a directed

edge. A truth assignment I , therefore, which satisfies at least k clauses in φ has a corresponding

vertex-orientation assignment A of G resulting in a subgraph containing at least k directed edges.

We have thus shown that any MAX-DIR-SUBGRAPH problem has a linear-time reduction to

a MAX-2-XORSAT. To show equivalency, we must now prove that any MAX-2-XORSAT problem

has a linear-time reduction to a MAX-DIR-SUBGRAPH problem. Given a 2-XOR-formula φ, we

create a bidirected graph G with orientable vertices. We create a vertex vi in G for each variable bi
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in the domain of φ. Then for each clause C = (xi ⊕ xj) in φ we create a bidirected edge e linking

vi and vj where:

1. e is positive-incident to vertex vi if xi is not a negated variable and negative-incident to vi

otherwise; and

2. e is positive-incident to vertex vj if xj is not a negated variable and negative-incident to vj

otherwise.

The reduction is linear in the sum of the number of variables and the number of clauses in φ.

Each vertex-orientation assignment of G has a corresponding truth assignment of φ as

defined above. We now show that a vertex-orientation assignment A of G which results in a

subgraph containing at least k directed edges has a corresponding truth assignment I of φ that

satisfies at least k clauses. We again do this by showing a one-to-one correspondence between a

directed edge in G given the vertex-orientation assignment A and a satisfied clause in φ given the

corresponding truth assignment I . We proceed by considering all cases in which A(G) renders an

edge e linking vertices vi and vj a directed edge. It is assumed that A initially assigns all vertices to

forward-orientation and correspondingly I assigns true to all variables in the domain of φ.

In the case where e is either introverted (meaning neither variable in the corresponding clause

C is negated) or extraverted (both are negated), A must assign forward-orientation to either vi or vj

and reverse-orientation to the remaining vertex in order to render e directed. To whichever vertex

is assigned reverse-orientation, the corresponding variable is assigned false, thereby satisfying C.

In the remaining case where e is already directed (meaning that one of the two variables in C is a

negated variable), then to render e directed, A must assign both vi and vj to forward-orientation

(meaning both variables are true). Thus any vertex-orientation assignment A which renders e a

directed edge has a corresponding truth assignment I which satisfies the clause C represented by e.

Therefore a vertex-orientation assignment A of G which results in a subgraph containing at least k

directed edges has a corresponding truth assignment I which satisfies at least k clauses in φ.
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4.2.4 Equivalence to MAX-CUT

Ultimately our goal is to show that the MAX-DIR-SUBGRAPH problem is equivalent to the MAX-

CUT problem, which aside from allowing us to apply any of the several heuristic solutions that have

been developed to solve MAX-CUT to the MAX-DIR-SUBGRAPH problem, also proves that the

complexity of MAX-DIR-SUBGRAPH is the same as that of MAX-CUT (i.e., NP-complete). We

find that the reduction from MAX-2-XORSAT to MAX-CUT is much easier to understand than the

reduction directly from the MAX-DIR-SUBGRAPH problem. The reduction follows similar to the

approach taken in the reduction from MAX-2-SAT to MAX-CUT (as demonstrated by Garey et al.

[16]) in that for each clause in the satisfiability problem, a number of nodes and edges are added

to the corresponding graph for which a MAX-CUT solution is to be found. The specifics of the

reductions differ sufficiently to warrant detailing the reduction to and from MAX-2-XORSAT.

The decision problem corresponding to the MAX-CUT problem is stated as follows:

MAX-CUT = {(M , k) |M is a multigraph with a cut of size at least l}

where a multigraph M=(V ,E) is a graph allowing duplicate edges and a cut in a graph is a partition

of V into two distinct subsets S and T . The size of the cut is the number of edges e ∈ E which have

an endpoint in S and an endpoint in T .

We now give a linear-time reduction from MAX-2-XORSAT to MAX-CUT. Given a 2-

XOR-formula φ with n variables and m clauses, we construct a multigraph M as follows. For each

binary variable bi in the domain of φ we create two vertices vi and ¬vi in M and add 2m edges

between the pair (vi, ¬vi). Then, for each 2-XOR-clause C = (xi ⊕ xj) in φ, we add an edge to M

linking xi and xj (see Figure 4.10). The reduction is linear in the sum of the number of variables

and the number of clauses in φ. Figure 4.11 shows the weighted MAX-CUT problem resulting from

a reduction of the 2-XOR-formula presented in Figure 4.9.

To complete the reduction, it must be shown that a cut Z of M of size at least l has a

corresponding truth assignment I for φ that satisfies at least k clauses. We do this by demonstrating

a one-to-one correspondence between an edge that is cut in Z and a 2-XOR-clause that is satisfied
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e ¬e 

f ¬f 

2m 

2m 

Figure 4.10: The component shown represents the vertices and edges that would be added to the
MAX-CUT multigraph for the 2-XOR-SAT clause (e ⊕ ¬f ).
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Figure 4.11: An example of a weighted multigraph whose MAX-CUT solution corresponds to
the weighted MAX-DIR-SUBGRAPH and MAX-2-XORSAT solutions in Figures 4.7 and 4.9
respectively. Each bold edge linking two vertices vi and ¬vi is heavily weighted such as to
guarantee its inclusion in the MAX-CUT solution.
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by I in φ. In doing so, we note that the complement edge between the pair (vi, ¬vi) corresponds to

the clause ((xi ⊕ ¬xi) = 1), which is guaranteed by the Complement Law of boolean algebra.

In finding a MAX-CUT solution of M , the partition of a vertex vi into one of two parts p0

and p1 corresponds to the assignment of the corresponding binary variable bi to 0 or 1 respectively.

In reducing from φ to M each edge e linking vi and vj can be thought of in terms of the 2-XOR-

clause C = (xi ⊕ xj) to which it corresponds: inasmuch as xi xor xj must be true to satisfy C,

vi xor vj must be in p1 in order for e to be cut. Thus finding a maximum cut Z is equivalent to

finding a truth assignment I that satisfies all clauses Ci whose corresponding edge ei is cut in Z.

By augmenting the multiplicity of complement edges (2m), we guarantee their inclusion in Z, but

clauses corresponding to these edges are not explicitly included in φ. If the number of edges cut in

Z is l and the number of complement edges cut in Z is lc, then the number of clauses satisfied by

the truth assignment I corresponding to Z is k = l − lc.

The linear-time reduction from MAX-CUT to MAX-2-XORSAT is trivial. Given a multi-

graph M with a set of vertices V and a set of edges E we construct a 2-XOR-formula φ as a

conjunction of 2-XOR-clauses as follows. For each edge e ∈ E linking vertices vi ∈ V and vj ∈ V ,

we create a 2-XOR-clause C = (xi ⊕ xj). The truth assignment I of each literal xi in φ to 0 or 1

corresponds to the partitioning of the corresponding vertex vi ∈ V into one of two partitions p0 or

p1 respectively. Inasmuch as including C in the MAX-2-XORSAT solution requires either xi xor xj

to be true, including e in the MAX-CUT solution requires cutting M such that vi xor vj is in p1. In

this case, a truth assignment I that satisfies at least k clauses will have a corresponding cut of size

at least l = k. The reduction is linear in the size of E.

4.2.5 Example Solution

Figure 4.12a shows the optimal solution to the weighted MAX-CUT example problem presented

in Figure 4.11. The partition of nodes in the weighted multigraph corresponds directly to the

truth-assignment for the weighted 2-XOR-formula referenced in Figure 4.9 (see Figure 4.12b)
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and the vertex-orientation assignment for the weighted bidirected graph shown in Figure 4.7 (see

Figure 4.12c).

4.3 Related Work

Several existing papers discuss the contig orientation problem with varying levels of detail. Pop et

al. [38] phrase the contig orientation problem as the problem of coloring a bipartite graph with the

colors corresponding to the two possible sequence orientations and implement a heuristic which

greedily assigns orientations to contigs and ignores edges which conflict with previous assignments.

Donmez et al. [13] explicitly address the issue of contig orientation by making arbitrary orientation

assignments which are propagated via a breadth-first-search through the scaffold graph. Li et al. [29],

in presenting the SOAPdenovo assembler, mention that following repeat masking, “remaining

contigs with compatible connections to each other were linearized” in preparation for scaffold

construction, but with limited detail of any specific algorithm. MAIA [35], a graph-based algorithm

for integrating multiple assemblies, assigns orientation to contigs via a graph depth-first traversal

in order of weight and removes conflicting edges. They use a reference genome to determine start

and end nodes. Many other algorithms do not explicitly address the contig orientation problem

but rather address the issue in the context of completing a walk through the graph in the scaffold

construction phase [4, 7, 49].

Many prevalent assembly algorithms do not use the formal bidirected graph notation when

illustrating scaffold graphs; however, the most common notations can be shown to be notationally

equivalent to bidirected graph notation. Several papers [35, 38, 49] use a notation similar to the one

shown in Figure 4.13, where it is the nodes that are depicted with an inherent directionality using

some sort of biterminal distinction: one node terminal represents the biological 5’ end of the contig

sequence (as read from the sequencing machine) and the other terminal represents the 3’ end. Edges

are then connected between the terminals or ends of a node in one of three ways: between 3’ and 3’

ends; between 5’ and 5’; or between 3’ and 5’ ends (e.g. , see Figure 4.13). In this notation, which
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Figure 4.12: (a) Shown is the BiqMac optimal solution to the weighted MAX-CUT example problem
presented in Figure 4.11. Note that the edge from ¬e to ¬g is uncut. (b) Shown is the corresponding
truth assignment for the weighted 2-XOR-formula referenced in Figure 4.9 which satisfies all the
weighted clauses except (¬e ⊕ ¬g). (c) Shown is the corresponding vertex-orientation assignment
for the weighted bidirected graph shown in Figure 4.7. Note that as a result of the assignment, all
edges are directed except the edge between e+ and g+.
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Figure 4.13: Biterminal Scaffold Graph Notation. The scaffold graph from Figure 4.5 is here
depicted using biterminal notation. Directionality is inherent using a biterminally distinctive node
(arrow points from 5’ to 3’ of forward strand). This notation is often preferred because the spatial
arrangement of nodes and edges more closely approximates the biological model.

is easily relatable to the biological system being depicted, a valid reconstruction or walk through a

node requires entering and exiting the node via opposite terminals.

Formal bidirected graph notation, as first introduced by Edmonds and Johnson [14], is used

in several papers to deal with double-strandedness in overlap consensus modeling, a problem related

to but very different from scaffolding [20, 30, 34]. Such notation is often represented using an

incidence matrix I : V x E 7→ {−2,−1, 0, 1, 2}. If an edge e is not incident to a vertex x then

I(x,e) = 0; if e is positive-incident to x, then I(x,e) = 1; and if e is negative-incident to x, then

I(x,e) = -1 [30].

The MAX-2-XORSAT problem has been discussed primarily as a variant of the maximum

satisfiability problem in general and in conjunction with the MAX-CUT problem. Daudé et

al. [10] consider the MAX-CUT problem on random connected graphs, specifically focusing on

the distance from bipartiteness of a graph (i.e. number of edges to be removed to turn it into a

bipartite graph), and cursorily observe an equivalence relationship between MAX-2-XORSAT and

MAX-CUT. Rasendrahasina et al. [40] randomly select 2-XOR formulae in order to characterize

phase transitions of the MAX-2-XORSAT problem, describing how likely a formula is satisfiable as

the number of clauses increases.
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Several algorithms have been proposed to heuristically or optimally solve MAX-SAT and

weighted MAX-SAT problems. Joy et al. [23] describe an integer programming branch-and-cut

algorithm which uses a GSAT heuristic. Borchers et al. [6] present a two-phase algorithm that uses

an initial heuristic solution to find a provably optimal solution based on the Davis-Putnam-Loveland

algorithm. They show that in some cases this approach outperforms the integer programming

solution, but is less effective in some other problem classes, including MAX-2-SAT problems.

MAX-CUT, which was one of Karp’s original NP-complete problems [24], has been heavily

studied and a number of effective approximation algorithms have been proposed. Ding et al. [11]

present a min-max cut algorithm based on the min-max clustering principle and demonstrate its

effectiveness compared to several other algorithms. Sahni and Gonzales [44] present a linear-time

1/2-approximation algorithm (meaning the algorithm delivers a solution that is guaranteed to be at

least 1/2 times the optimal value). This method considers vertices in random order and assigns each

vertex to whichever partition minimizes the weight of connecting edges within the set.

Goemans and Williamson [17] present what is commonly accepted as the best known ap-

proximation (a .878-approximation) by randomly rounding the solution to a nonlinear-programming

relaxation. This is the first ever use of semi-definite programming (SDP) for approximation. Khot et

al. [25] demonstrate that if the unique games conjecture is true, the Goemans-Williamson algorithm

is the best possible approximation algorithm for MAX-CUT. Rendl et al. [42] provide a survey of

several popular and recent methods to solving MAX-CUT problems including linear-programming

based relaxation, SDP relaxation, convex quadratic equations, and multiple Branch-and-Bound

approaches. They present their own Branch-and-Bound method, BiqMac, which utilizes SDP and

applies the Goemans-Williamson hyperplane rounding technique [18] in heuristically generating fea-

sible solutions. Their primary contribution is using Lagrangian duality for solving the semi-definite

MAX-CUT relaxation.
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4.4 Methods

4.4.1 Algorithms

Prior to discovering the reduction to weighted MAX-CUT, we developed a greedy heuristic algo-

rithm to solve the weighted MAX-DIR-SUBGRAPH problem (see Algorithm 1). This algorithm

follows similarly to Kruskal’s algorithm for finding a minimum spanning tree [26] in that we start

by making each vertex in the graph its own tree and then add edges which combine distinct trees

to form larger trees. In combining trees ti and tj via edge e, we flip vertex orientations for all

vertices in tj as necessary so that e is always directed. Edges are considered in order of decreasing

weight. Any edge e linking vertices vi and vj within the same tree ti is added iff, given the current

vertex-orientation assignment of vi and vj in t, e is a directed edge. We ensure that the final subgraph

contains solely directed edges by only adding directed edges and ensuring that directed edges remain

directed as a result of vertex orientation changes.

Algorithm 1 WEIGHTED MAX-DIR-SUBGRAPH GREEDY HEURISTIC

Input: A weighted bidirected graph, G
1: Create a forest, F , with a tree ti for each vertex vi in G
2: Create a set S containing all the edges in G
3: while S is not empty do
4: Remove an edge e with maximum weight from S
5: if e connects two different trees, t1 and t2, then
6: add e to F, combining t1 and t2 into one tree
7: if e is not a directed edge then
8: for all vertices v2 in t2 do
9: Flip vertex-orientation assignment of v2

10: end for
11: end if
12: else if e is a directed edge then
13: add e to F
14: else
15: discard e
16: end if
17: end while
18: return F , a weighted directed subgraph
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The relative performance of four solutions to the contig orientation problem, including our

greedy heuristic, were measured:

1. Random - a simple 1/2-approximation algorithm which considers edges in a random order

and assigns an orientation to adjacent contigs that is consistent with previous orientation

assignments [44].

2. Greedy - our aforementioned greedy heuristic solution, which considers edges in order of

decreasing weight and assigns an orientation to adjacent contigs that is consistent with

previous orientation assignments (see Algorithm 1).

3. BiqMac - a Branch-and-Bound heuristic algorithm for solving weighted MAX-CUT problems

which uses SDP relaxation and a relative bound precision criterion [42].

4. Optimal - the optimal solution (where calculable by BiqMac), which was found using SDP

relaxations strengthened by triangle inequalities [42].

4.4.2 Datasets

The algorithms were assessed on three bidirected graphs: two synthetic genome scaffold graphs,

and a scaffold graph from the raspberry genome. We describe each of these graphs in more detail.

Synthetic Genome (w/o Errors)

A 1.25-Mb genome with haplotype variation (heterozygosity rate ≈4.0%) was synthesized from

chromosome 25 of the zebra finch (ACCN NC 011489.1) using an in-house software package called

HapMaker [36]. The following were generated for contig assembly: a set of 250bp single reads

at 80x coverage; a 4kb paired-end library at 8x coverage (250bp reads); and a 20kb paired-end

library at 8x coverage (250bp reads). Newbler 2.6 was used to assemble contigs with the following

parameters: -mi 98 -minlen 30 -infoall -ml 50 -a 1 -nohet -large. Reads were mapped and a scaffold

graph formed using ScaffoldScaffolder [5] with Bowtie v0.12.9 [28]. Only the 4kb libraries were

used for the scaffold graph construction. ScaffoldScaffolder was run with the parameters -minalign
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30 -algorithm greedy -minsupport 1 –showExcludedEdges -ploidy 2. Parameters for Bowtie were

-v 2 -a -m 1 -f.

Synthetic Genome (w/ Errors)

Using the 1.25-Mb genome reference, a paired-read library was generated from ART v1.3.1 [19]

using a quality profile with an estimated error rate of 3.35%. ART parameters were -l 75 -f 80

-qs 0 -s 10 -m 200. Contig assembly was performed using Newbler, and a scaffold graph was

created using ScaffoldScaffolder and Bowtie2 v2.0.6 (which allows for more mismatches than

Bowtie) [27]. Newbler was run with parameters -mi 90 -minlen 30 -infoall -ml 50 -a 1 -nohet

-large. ScaffoldScaffolder was run with parameters -minalign 30 -algorithm greedy -minsupport 1

–showExcludedEdges -ploidy 2. Bowtie2 parameters were –end-to-end -f -k 1 –score-min L,-0.6,-

1.2.

Raspberry Genome

We assessed performance on a scaffold graph constructed from contigs assembled using Newbler on

reads from a Rubus idaeus cultivar heritage raspberry genome (350 Mb). Contigs for the raspberry

genome were assembled using reads from a combination of Illumina HiSeq and 454 sequencing

technologies. Single reads and short insert Illumina paired reads were sampled at high coverage

and paired 454 reads (with insert sizes ranging from 3kb to 20kb) were sampled at low coverage.

Due to the size of the graph, only contigs greater than 500 bp in length were considered in the

graph. A scaffold graph was generated using ScaffoldScaffolder and Bowtie2. Only Illumina reads

were used for scaffolding inference. Newbler was run with parameters -mi 90 -minlen 30 -infoall

-ml 50 -a 1 -nohet -large. ScaffoldScaffolder was run with parameters -minalign 30 -algorithm

greedy -minsupport 1 –showExcludedEdges -ploidy 2. Bowtie2 parameters were –end-to-end -f -k

1 –score-min L,-0.6,-1.2.

46



50%$

55%$

60%$

65%$

70%$

75%$

80%$

85%$

90%$

95%$

100%$

Synthe0c$w/o$Errors$ Synthe0c$w/$Errors$ Raspberry$

%"Total"Edge"Weight"Retained"

Random$

Greedy$

BiqMac$

Op0mal$

Figure 4.14: Comparative performance of weighted MAX-DIR-SUBGRAPH solutions. The optimal
solution is shown where it was computable. In all three scaffold graphs, the greedy algorithm
retained the most total edge support.

4.4.3 Metrics

Solutions were assessed by obtaining the following four metrics: the total count of edges retained;

the total weight of edges retained; the total count of edges excluded; and the total weight of edges

excluded. Optimal solutions for the synthetic genome (w/ errors) and the raspberry genome were

not obtainable in a reasonable amount of time due to the size of these graphs.

4.5 Results

The results of the experiment are shown in Table 4.1. The percent of total edge weight retained by

each algorithm on each of the datasets is summarized in Figure 4.14.
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Table 4.1: Comparative Results on the Contig Orientation Problem

Random Greedy BiqMac Optimal
SYNTHETIC GENOME (W/O ERRORS) RESULTS

Retained Edges
Count 790 791 748 791
Weight 6553 6588 6454 6588

Excluded Edges
Count 3 2 45 2
Weight 44 9 143 9

SYNTHETIC GENOME (W/ ERRORS) RESULTS

Retained Edges
Count 1,695 1,689 1,543 n/a
Weight 39,172 39,507 38,226 n/a

Excluded Edges
Count 19 25 171 n/a
Weight 560 225 1,506 n/a

RASPBERRY GENOME RESULTS

Retained Edges
Count 528,616 642,834 559,199 n/a
Weight 6,604,235 9,080,859 7,501,716 n/a

Excluded Edges
Count 329,925 215,707 299,342 n/a
Weight 3,002,050 525,426 2,104,569 n/a
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In the synthetic genome graphs, the random and greedy algorithms outperformed the SDP

solution, with the greedy heuristic retaining the most in total edges and total edge weight. We

suspect that the superior performance of the random and greedy algorithms may be due to the fact

that in scaffold graphs, the edges derive from a molecular model that predefines an orientation

assignment for all sequences. Consequently we would expect that the vast majority of the supportive

evidence would be internally consistent; relatively few spurious edges require exclusion. In addition,

a scaffold graph is quite sparse (i.e., average in- and out-edge degrees are between 1 and 2) and

linear by nature, thus rendering the problem much simpler. We suspect that in such a graph, a local

optimum will often be part of the global optimum.

The raspberry genome graph, however, is quite different from the synthetic graphs: the

greedy algorithm retained ≈15% more edge support than the SDP algorithm and ≈25% more

support than the random algorithm. One possible explanation for the inferior performance of the

random heuristic algorithm is that inclusion of a spurious edge (via random selection) is more costly

in the raspberry genome than in the synthetic genomes. This is because the average supportive

evidence for edges in the raspberry genome is nearly five times more than the average supportive

evidence for edges in either of the synthetic genomes, which comes as an artifact of the biological

sampling. Although the weight of a spurious edge in any scaffold graph is about the same (e.g., less

than 5), the weight of a non-spurious edge in the raspberry genome is far greater than a non-spurious

edge in one of the synthetic genomes. This might explain why the random algorithm retains far less

edge support than the greedy algorithm in the raspberry scaffold graph.

The superior performance of the greedy heuristic algorithm with respect to the SDP solution

is likely due to this key observation about the nature of scaffold graphs: not only do spurious,

lowly-weighted edges contribute less to total retained edge support than heavily-weighted edges;

they are also unlikely to belong in the optimal solution. Conversely, heavily-weighted retained

edges not only contribute more to total edge support than lowly-weighted edges; they are more

likely to be part of the optimal solution. The greedy algorithm thus maximally favors edges which
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are likely to belong in the optimal solution, which may help to explain why it retained far more

edge weight than even the SDP solution in the raspberry scaffold graph.

4.6 Discussion

We noted a peculiarity when examining the subgraph produced using our greedy heuristic algorithm

on the synthetic genome without errors: the two excluded edges were both adjacent to contig 591

(see Figure 4.15a). In addition we noted that contig 591 has an average sequence depth (a value

indicative of the number of nucleotides contributing to the assembly at a given locus) of 190.4. This

is almost exactly twice the normal diploid depth, making it a likely candidate for being a two-copy

repeat (see Figure 4.15b). We used BLAST [1] to find where contig 591 aligned to the known

reference sequence and discovered that not only did it align perfectly at two locations, but that the

two matching sequences were inversions (see Figure 4.15c).

This case illustrates that if repeats are not screened, they can present exceptions to the

contig-orientation problem, and more specifically to the single-orientation assumption. The single-

orientation assumption will hold true if the contig represents a sequence which repeats in the same

orientation in a scaffold (e.g., tandem repeats). However, as our example illustrates, repeats can

also exist in differing orientations.

Inverted repeats (also called palindromic sequences), like contig 591, represent identical

sequences from two distinct places in a scaffold, where the orientations of the two sequences are

opposite one another (see Figure 4.16a). Among their several biological roles, inverted repeats

are used to detect the boundaries of transposons (e.g., [43]) and are instrumental in transcriptional

regulation (e.g., [33]). In essence, assigning a single orientation to such a contig prevents a viable

scaffold reconstruction from occurring, prematurely fragmenting the assembly. This scenario can

be easily resolved prior to assigning contig-orientations either by special handling or screening of

repeat contigs, as done in [29, 38].

This example also serves to illustrate a significant and unanticipated ramification of the

contig orientation problem: whereas the contig orientation assignment is designed to remove
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Figure 4.15: (a) In this closeup of the subgraph produced using the greedy heuristic algorithm on a
synthetic genome without errors, we see that the only two excluded edges (dotted lines) were both
adjacent to contig 591. (b) A probability density function of the sequence depths of all contigs in
the contig set shows a diploid depth of about 95 (left vertical line). The 190.4 depth of contig 591
(right vertical line) is almost exactly twice the diploid coverage, suggestive of a repeat contig. (c)
The BLAST result of contig 591 to the reference verified that the contig was not only repetitive, but
also an inversion.

erroneous linkages from a graph, in cases where such linkages are removed via other means (e.g.,

minimum support threshold, next-generation error-correction), the contig orientation solution serves

to identify (via exclusion) biologically viable exceptions to the single-orientation assumption.

Inverted repeats are not the only scenario which would violate the single-orientation as-

sumption. One other such scenario is the case of inverted haplotypes. Most large genomes exist

as diploid or polyploid, meaning that rather than there being a single cellular genome to assemble,

there are two or more genomic versions in each cell. These versions are referred to as haplotypes.

An inverted haplotype is a sequence which is identical but oppositely-oriented at corresponding

locations on analogous chromosomes (see Figure 4.16b). Such inversions are often biologically
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Figure 4.16: Violations of the Contig Orientation Problem Assumption. (a) In an inverted repeat, a
sequence (e.g., contig A) is included in the reconstruction twice in opposite orientations. (b) In a
polyploid genome, an inverted haplotype is a case where a sequence (e.g., contig B) is included in
opposite orientations on different haplotypes.

significant and have been specifically shown to be associated at times with mental retardation,

microdeletion syndrome, renal cysts and diabetes (RCAD) syndrome, epilepsy, schizophrenia, and

autism [2, 51]. Most assembly algorithms have not been specifically designed for diploid genome

assembly and assume that where multiple haplotypes do exist, they can be readily merged to form a

single “reference” sequence. In doing so, inverted haplotype differences are metaphorically “swept

under the rug,” which is perhaps why biologists have lamented that “unlike other types of structural

variation, little is known about inversion variants within normal individuals because such events are

typically balanced and are difficult to detect and analyze by standard molecular approaches” [2]

(see also [3]).

We hypothesized that just as a contig orientation solution was able to identify an inverted

repeat, it may also be able to identify inverted haplotypes. To test this theory, we developed a

module in ScaffoldScaffolder to automatically generate a detailed report (and corresponding FASTA

file) of potential inverted repeats and inverted haplotypes. In the module, candidates are internally

identified as any contig (1) having at least 2 connecting edges from both ends and (2) which is

connected to 2 or more excluded edges. The candidates are classified as inverted repeats or inverted

haplotypes based on the location of each candidate contig in a probability density function of contig
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repeat-[551-593+,18+593-] - Scaffold 593 (532L-190.4D):
        3' Edges:
                Edge 158-593-: 3 support, 2495.0 average, 69.81403870282824 stdev
                Edge 18+593-: 1 support, 2761.0 average, 0.0 stdev
        5' Edges:
                Edge 101-593+: 6 support, 809.6666666666666 average, 170.08037315732034 stdev
                Edge 551-593+: 1 support, 3209.0 average, 0.0 stdev
haplotype-[456+458-,101-456+] - Scaffold 456 (838L-93.6D):
        3' Edges:
                Edge 101-456-: 6 support, 2465.5 average, 71.80181056212997 stdev
                Edge 456+458-: 3 support, 2862.0 average, 216.8732348631338 stdev
        5' Edges:
                Edge 101-456+: 4 support, 2546.25 average, 158.38165929172482 stdev
                Edge 456-458-: 4 support, 2865.0 average, 175.7327516429422 stdev
repeat-[61+694-,89+694+] - Scaffold 694 (375L-183.8D):
        3' Edges:
                Edge 7+694-: 2 support, 64.5 average, 50.204581464244875 stdev
                Edge 61+694-: 2 support, 1224.5 average, 58.68986283848344 stdev
        5' Edges:
                Edge 563+694+: 2 support, 3285.5 average, 37.476659402887016 stdev
                Edge 89+694+: 1 support, 1498.0 average, 0.0 stdev

(a)

contig00001-15637L-96.4D
[Scaffold1]

contig00080-3545L-94.3D
[Scaffold80]

16
(2705.0625 bp)

contig00156-2332L-91.9D
[Scaffold156]

34
(77.94117647058823 bp)

contig00148-2493L-95.8D
[Scaffold148]

29
(120.79310344827586 bp)

contig00300-1405L-89.9D
[Scaffold300]

18
(2514.4444444444443 bp)

contig00002-15287L-95.7D
[Scaffold2]

contig00094-3259L-176.5D
[Scaffold94]

35
(106.88571428571429 bp)

contig00149-2486L-104.6D
[Scaffold149]

11
(2565.818181818182 bp)

contig00317-1313L-194.1D
[Scaffold317]

13
(651.2307692307693 bp)

contig00541-656L-100.3D
[Scaffold541]

10
(19.4 bp)

contig00542-653L-98.5D
[Scaffold542]

9
(1999.888888888889 bp)

contig00576-577L-101.3D
[Scaffold576]

4
(3307.5 bp)

contig00003-13766L-96.4D
[Scaffold3]

contig00034-5787L-92.0D
[Scaffold34]

61
(156.63934426229508 bp)

contig00042-4762L-95.5D
[Scaffold42]

37
(80.4054054054054 bp)

contig00004-13580L-96.0D
[Scaffold4]

contig00165-2238L-91.0D
[Scaffold165]

37
(98.64864864864865 bp)

contig00265-1589L-54.0D
[Scaffold265]

16
(2421.3125 bp)

contig00354-1211L-99.4D
[Scaffold354]

18
(1234.8333333333333 bp)

contig00434-910L-95.5D
[Scaffold434]

10
(2596.5 bp)

contig00431-918L-101.8D
[Scaffold431]

12
(18.916666666666668 bp)

contig00750-300L-201.5D
[Scaffold750]

2
(2227.5 bp)

contig00005-12612L-96.8D
[Scaffold5]

contig00025-7091L-99.3D
[Scaffold25]

2
(3308.0 bp)

contig00100-3083L-96.1D
[Scaffold100]42

(109.92857142857143 bp)

contig00184-2119L-45.1D
[Scaffold184]

3
(3187.6666666666665 bp)

contig00253-1638L-97.1D
[Scaffold253]

21
(0.0 bp)

contig00526-700L-46.7D
[Scaffold526]

7
(2235.5714285714284 bp)

contig00659-410L-95.2D
[Scaffold659]

4
(1839.75 bp)

contig00006-11866L-95.7D
[Scaffold6]

contig00009-10687L-98.3D
[Scaffold9]

63
(94.85714285714286 bp)

contig00050-4189L-93.4D
[Scaffold50]

47
(682.1702127659574 bp)

contig00525-706L-111.8D
[Scaffold525]

6
(0.0 bp)

contig00007-11182L-96.6D
[Scaffold7]

contig00089-3304L-96.1D
[Scaffold89]

50
(335.1 bp)

contig00174-2159L-49.5D
[Scaffold174]

33
(12.090909090909092 bp)

contig00392-1083L-44.9D
[Scaffold392]

9
(2719.8888888888887 bp)

contig00694-375L-183.8D
[Scaffold694]

2
(64.5 bp)

contig00008-11079L-95.3D
[Scaffold8]

contig00079-3587L-137.4D
[Scaffold79]

15
(0.7333333333333333 bp)

30
(1821.2 bp)

contig00294-1432L-46.7D
[Scaffold294]

12
(2488.0 bp)

contig00502-758L-48.2D
[Scaffold502]

12
(128.0 bp)

contig00334-1266L-90.0D
[Scaffold334]

15
(7.066666666666666 bp)

contig00332-1270L-90.5D
[Scaffold332]

11
(2649.7272727272725 bp)

contig00408-1019L-106.4D
[Scaffold408]

8
(1182.625 bp)

contig00010-9999L-96.0D
[Scaffold10]

39
(1175.1538461538462 bp)

contig00085-3394L-46.6D
[Scaffold85]

36
(1321.1944444444443 bp)

contig00341-1244L-96.2D
[Scaffold341]

14
(127.64285714285714 bp)

contig00528-695L-96.1D
[Scaffold528]

6
(159.66666666666666 bp)

contig00011-9251L-97.7D
[Scaffold11]

contig00043-4681L-92.6D
[Scaffold43]

44
(77.54545454545455 bp)

contig00336-1259L-50.1D
[Scaffold336]

8
(2646.125 bp)

contig00347-1227L-50.9D
[Scaffold347]

14
(23.571428571428573 bp)

contig00564-593L-46.5D
[Scaffold564]

4
(1759.5 bp)

contig00012-9190L-95.9D
[Scaffold12]

23
(1845.6521739130435 bp)

contig00124-2731L-93.7D
[Scaffold124]

41
(90.60975609756098 bp) contig00380-1113L-82.9D

[Scaffold380]

2
(3048.5 bp)

contig00358-1189L-99.3D
[Scaffold358]

18
(227.88888888888889 bp)

contig00670-402L-107.9D
[Scaffold670]

3
(1369.0 bp)

contig00013-9038L-98.0D
[Scaffold13]

contig00130-2663L-85.7D
[Scaffold130]

40
(94.5 bp)

contig00210-1878L-94.7D
[Scaffold210]

9
(2861.1111111111113 bp)

contig00346-1228L-181.6D
[Scaffold346]

10
(870.2 bp)

contig00482-787L-88.0D
[Scaffold482]

10
(1535.3 bp)

contig00014-8963L-96.4D
[Scaffold14]

contig00039-4870L-92.5D
[Scaffold39]

62
(103.37096774193549 bp)

contig00205-1915L-97.8D
[Scaffold205]

24
(32.041666666666664 bp)

contig00432-917L-89.8D
[Scaffold432]

12
(2514.1666666666665 bp)

contig00015-8845L-47.2D
[Scaffold15]

contig00190-2045L-48.2D
[Scaffold190]

19
(2643.842105263158 bp)

contig00353-1222L-93.2D
[Scaffold353]

14
(1497.857142857143 bp)

contig00388-1091L-43.4D
[Scaffold388]

16
(351.3125 bp)

contig00462-822L-49.2D
[Scaffold462]

7
(2449.285714285714 bp)

contig00591-533L-35.1D
[Scaffold591]

7
(1087.5714285714287 bp)

contig00017-8328L-98.1D
[Scaffold17]

contig00169-2206L-91.6D
[Scaffold169]

25
(101.8 bp)

14
(1730.142857142857 bp)

contig00396-1076L-97.6D
[Scaffold396]7

(2362.8571428571427 bp)

10
(746.8 bp)

4
(3137.5 bp)

1
(508.0 bp)

contig00755-292L-75.3D
[Scaffold755]

3
(112.0 bp)

contig00016-8832L-49.4D
[Scaffold16]

contig00019-8032L-100.6D
[Scaffold19]

contig00046-4393L-48.9D
[Scaffold46]

7
(3134.8571428571427 bp)

contig00264-1608L-140.0D
[Scaffold264]

9
(1493.5555555555557 bp)

contig00345-1228L-97.8D
[Scaffold345]

18
(1774.2222222222222 bp)

contig00457-838L-97.2D
[Scaffold457]

5
(9.0 bp)

contig00489-778L-95.4D
[Scaffold489]

12
(628.3333333333334 bp)

contig00545-644L-116.9D
[Scaffold545]

8
(0.0 bp)

contig00514-737L-181.4D
[Scaffold514]

6
(3014.1666666666665 bp)

contig00688-384L-48.7D
[Scaffold688]

1
(1007.0 bp)

contig00018-8209L-95.6D
[Scaffold18]

53
(113.62264150943396 bp)

contig00101-3041L-96.2D
[Scaffold101]

4
(3335.5 bp)

contig00117-2756L-93.5D
[Scaffold117]

31
(77.48387096774194 bp)

contig00593-532L-190.4D
[Scaffold593]

1
(2761.0 bp)

contig00021-7630L-47.6D
[Scaffold21]

contig00020-7662L-47.3D
[Scaffold20]

contig00044-4462L-45.5D
[Scaffold44]

38
(932.5263157894736 bp)

contig00083-3515L-50.3D
[Scaffold83]

1
(1274.0 bp)

contig00194-2005L-45.1D
[Scaffold194]

25
(1265.0 bp)

contig00515-736L-41.3D
[Scaffold515]

5
(390.0 bp)

contig00590-529L-82.6D
[Scaffold590]

2
(312.5 bp)

contig00699-368L-95.1D
[Scaffold699]

3
(3321.3333333333335 bp)

contig00023-7385L-46.7D
[Scaffold23]

contig00022-7398L-48.3D
[Scaffold22]

49
(91.44897959183673 bp)

12
(447.4166666666667 bp)

2
(0.0 bp)

contig00024-7335L-93.7D
[Scaffold24]

42
(103.47619047619048 bp)

contig00143-2543L-95.2D
[Scaffold143]

2
(3293.0 bp)

contig00252-1656L-132.6D
[Scaffold252]

26
(718.0384615384615 bp)

contig00027-6746L-45.7D
[Scaffold27]

contig00026-6798L-100.8D
[Scaffold26]

contig00285-1475L-102.2D
[Scaffold285]

14
(1141.2857142857142 bp)

contig00375-1128L-99.2D
[Scaffold375]

17
(0.0 bp)

11
(2694.090909090909 bp)

contig00361-1184L-42.2D
[Scaffold361]

7
(3039.4285714285716 bp)

contig00501-765L-45.1D
[Scaffold501]

8
(1869.625 bp) contig00495-764L-94.8D

[Scaffold495]

7
(917.7142857142857 bp)

contig00578-565L-44.8D
[Scaffold578]

6
(435.0 bp)

contig00029-6683L-48.6D
[Scaffold29]

contig00028-6687L-48.1D
[Scaffold28]

contig00115-2809L-47.4D
[Scaffold115]

37
(494.4054054054054 bp)

contig00260-1615L-51.3D
[Scaffold260]

23
(355.82608695652175 bp)

contig00474-802L-48.6D
[Scaffold474]

9
(2821.222222222222 bp)

contig00620-476L-187.3D
[Scaffold620]7

(2286.4285714285716 bp)

contig00031-6228L-49.0D
[Scaffold31]

contig00030-6682L-48.3D
[Scaffold30]

contig00035-5724L-48.4D
[Scaffold35]

contig00182-2132L-42.7D
[Scaffold182]

1
(1502.0 bp)

contig00032-6106L-97.0D
[Scaffold32]

contig00152-2471L-96.2D
[Scaffold152]

31
(92.03225806451613 bp)

contig00251-1667L-87.1D
[Scaffold251]

22
(1661.5 bp)

contig00290-1445L-92.1D
[Scaffold290]

26
(111.26923076923077 bp)

contig00299-1405L-91.8D
[Scaffold299]

12
(2602.75 bp)

contig00033-5926L-95.9D
[Scaffold33]

contig00067-3750L-45.7D
[Scaffold67]

60
(0.0 bp)

11
(2885.5454545454545 bp)

17
(271.3529411764706 bp)

7
(1879.7142857142858 bp)

contig00038-5549L-97.5D
[Scaffold38]

contig00150-2483L-89.4D
[Scaffold150]34

(107.41176470588235 bp)

11
(2617.4545454545455 bp)

contig00315-1321L-96.1D
[Scaffold315]19

(88.63157894736842 bp)

13
(1441.7692307692307 bp)

contig00555-618L-197.7D
[Scaffold555]

7
(2901.285714285714 bp)

contig00218-1814L-46.8D
[Scaffold218]

2
(3290.0 bp)

contig00435-887L-43.7D
[Scaffold435]

7
(1991.5714285714287 bp) contig00523-715L-85.3D

[Scaffold523]

10
(132.8 bp)

contig00538-663L-44.4D
[Scaffold538]

8
(841.0 bp)

contig00036-5561L-50.0D
[Scaffold36]

contig00037-5559L-47.2D
[Scaffold37]

8
(3042.5 bp)

contig00062-3823L-96.1D
[Scaffold62]

47
(678.1063829787234 bp)

contig00490-772L-84.7D
[Scaffold490]

1
(145.0 bp)

contig00529-693L-76.3D
[Scaffold529]

1
(2064.0 bp) contig00597-531L-39.8D

[Scaffold597]

1
(849.0 bp)

contig00686-384L-41.8D
[Scaffold686]

2
(190.0 bp)

contig00168-2222L-87.9D
[Scaffold168]

26
(102.88461538461539 bp)

contig00209-1898L-87.3D
[Scaffold209]

23
(2410.304347826087 bp)

18
(1428.9444444444443 bp)

contig00575-578L-95.3D
[Scaffold575]

6
(847.1666666666666 bp)

contig00614-491L-191.3D
[Scaffold614]4

(425.75 bp)

contig00040-4830L-49.6D
[Scaffold40]

contig00102-3039L-47.0D
[Scaffold102]

43
(519.8604651162791 bp)

22
(2382.3636363636365 bp)

contig00379-1123L-49.2D
[Scaffold379]

14
(390.7142857142857 bp)

contig00500-766L-105.6D
[Scaffold500]

2
(1599.5 bp)

contig00629-467L-86.9D
[Scaffold629]

3
(0.0 bp)

contig00602-510L-97.7D
[Scaffold602]2

(40.5 bp)

contig00041-4829L-49.8D
[Scaffold41]

contig00126-2704L-44.9D
[Scaffold126]

24
(1698.75 bp)

contig00254-1637L-95.3D
[Scaffold254]

8
(0.0 bp)

8
(47.125 bp)

10
(2363.0 bp)

3
(1557.6666666666667 bp)

contig00047-4344L-92.6D
[Scaffold47]

35
(2071.6 bp)

contig00219-1810L-117.1D
[Scaffold219]

4
(190.5 bp)

36
(100.02777777777777 bp)

contig00283-1477L-143.7D
[Scaffold283]

2
(2202.0 bp)

contig00360-1187L-90.1D
[Scaffold360]

6
(3109.6666666666665 bp)

contig00433-914L-80.2D
[Scaffold433]

12
(105.0 bp)

6
(1596.0 bp)

contig00045-4456L-50.4D
[Scaffold45]

contig00051-4121L-47.7D
[Scaffold51]

contig00170-2204L-48.4D
[Scaffold170]28

(688.25 bp)

contig00304-1383L-55.7D
[Scaffold304]

14
(2689.0 bp)

contig00311-1339L-48.5D
[Scaffold311]

6
(2874.0 bp)

contig00399-1044L-44.3D
[Scaffold399]

11
(953.2727272727273 bp)

contig00422-958L-97.7D
[Scaffold422]

5
(2.6 bp)

8
(0.0 bp)

3
(286.3333333333333 bp)

contig00049-4317L-51.5D
[Scaffold49]

contig00048-4332L-47.6D
[Scaffold48]

17
(2203.0588235294117 bp)

contig00274-1554L-94.0D
[Scaffold274]

2
(2817.5 bp)

contig00287-1472L-45.7D
[Scaffold287]

12
(1419.5833333333333 bp)

contig00372-1145L-93.6D
[Scaffold372]

1
(0.0 bp)

contig00402-1039L-45.3D
[Scaffold402]

15
(267.06666666666666 bp)

contig00554-626L-49.0D
[Scaffold554]

4
(1111.75 bp)

contig00647-429L-90.7D
[Scaffold647]

1
(1743.0 bp)

contig00762-281L-97.8D
[Scaffold762]

2
(0.0 bp)

contig00055-4020L-48.8D
[Scaffold55]

contig00054-4022L-45.2D
[Scaffold54]

contig00153-2451L-46.9D
[Scaffold153]

9
(3021.3333333333335 bp)

contig00460-836L-78.3D
[Scaffold460]

8
(2155.125 bp)

contig00453-847L-66.6D
[Scaffold453]

8
(2510.375 bp)

contig00491-775L-90.7D
[Scaffold491]

2
(1207.5 bp)

contig00573-581L-45.7D
[Scaffold573]

6
(1184.5 bp)

contig00638-450L-47.1D
[Scaffold638]

1
(1942.0 bp)

contig00598-526L-41.3D
[Scaffold598]

3
(371.6666666666667 bp)

contig00680-388L-92.8D
[Scaffold680]2

(38.0 bp)

contig00662-408L-163.9D
[Scaffold662]

2
(894.5 bp)

contig00053-4065L-100.1D
[Scaffold53]

contig00069-3740L-100.5D
[Scaffold69]

51
(354.11764705882354 bp)

8
(2866.125 bp)

contig00147-2499L-97.7D
[Scaffold147]

32
(369.5625 bp)

contig00690-383L-189.9D
[Scaffold690]

1
(0.0 bp)

2
(0.0 bp)

contig00052-4116L-46.4D
[Scaffold52]

contig00059-3880L-45.2D
[Scaffold59]

contig00058-3936L-42.3D
[Scaffold58]

contig00057-3937L-94.0D
[Scaffold57]

contig00159-2288L-96.2D
[Scaffold159]

31
(116.6774193548387 bp)

contig00186-2084L-92.4D
[Scaffold186]

24
(97.04166666666667 bp)

contig00231-1766L-95.1D
[Scaffold231]

19
(2508.9473684210525 bp)

1
(3361.0 bp)

2
(1919.0 bp)

contig00751-299L-133.6D
[Scaffold751]

1
(2672.0 bp)

contig00056-3946L-50.9D
[Scaffold56]

1
(3371.0 bp)

11
(1944.1818181818182 bp)

contig00337-1258L-46.0D
[Scaffold337]

15
(656.8 bp)

contig00395-1078L-96.2D
[Scaffold395]

6
(2144.5 bp)

contig00391-1085L-54.1D
[Scaffold391]

16
(298.375 bp)

contig00537-669L-93.3D
[Scaffold537]

3
(38.0 bp)

contig00589-536L-96.8D
[Scaffold589]2

(1465.0 bp)

contig00601-513L-42.7D
[Scaffold601]

3
(3222.3333333333335 bp)

contig00756-287L-39.6D
[Scaffold756]

3
(2011.3333333333333 bp)

contig00063-3821L-47.8D
[Scaffold63]

contig00090-3293L-47.4D
[Scaffold90]

12
(2551.3333333333335 bp)

contig00142-2548L-48.9D
[Scaffold142]

35
(1344.2285714285715 bp)

contig00349-1223L-48.5D
[Scaffold349]

13
(597.1538461538462 bp)

contig00673-400L-48.9D
[Scaffold673]

3
(712.6666666666666 bp)

contig00706-355L-83.1D
[Scaffold706]

1
(1753.0 bp)

contig00364-1165L-94.5D
[Scaffold364]

5
(2948.6 bp)

contig00454-843L-98.4D
[Scaffold454]

13
(31.615384615384617 bp)

contig00547-638L-152.3D
[Scaffold547]

4
(2437.5 bp)

contig00520-718L-89.2D
[Scaffold520]

6
(1680.8333333333333 bp)

3
(0.0 bp)

contig00701-364L-194.8D
[Scaffold701]

2
(1222.5 bp)

contig00061-3839L-96.8D
[Scaffold61]

6
(2969.5 bp)

11
(2892.818181818182 bp)

contig00550-636L-98.0D
[Scaffold550]

8
(446.375 bp)

contig00563-594L-94.2D
[Scaffold563]

5
(2205.8 bp)

contig00518-722L-107.4D
[Scaffold518]

7
(487.14285714285717 bp)

contig00530-693L-89.3D
[Scaffold530]

9
(1839.5555555555557 bp)

contig00607-502L-105.1D
[Scaffold607]

5
(1071.6 bp)

2
(1224.5 bp)

contig00722-342L-366.1D
[Scaffold722]

1
(123.0 bp)

contig00060-3878L-48.9D
[Scaffold60]

contig00068-3744L-47.6D
[Scaffold68]

23
(827.4347826086956 bp)

contig00276-1536L-47.0D
[Scaffold276]

19
(1345.0526315789473 bp)

2
(3320.5 bp)

contig00470-813L-134.4D
[Scaffold470]

3
(50.666666666666664 bp)

contig00546-642L-90.3D
[Scaffold546]

3
(2563.3333333333335 bp)

contig00626-470L-46.5D
[Scaffold626]

2
(0.0 bp)

contig00718-345L-92.3D
[Scaffold718]

2
(518.0 bp)

11
(1974.7272727272727 bp)

9
(389.55555555555554 bp)

3
(1482.3333333333333 bp)

2
(93.0 bp)

contig00070-3738L-48.1D
[Scaffold70]

contig00071-3729L-49.1D
[Scaffold71]

contig00064-3805L-91.6D
[Scaffold64]

7
(3005.0 bp)

contig00233-1756L-51.1D
[Scaffold233]

23
(1313.695652173913 bp)

9
(1002.6666666666666 bp)

contig00397-1057L-48.1D
[Scaffold397]

17
(28.647058823529413 bp)

contig00444-862L-96.6D
[Scaffold444]

4
(3001.5 bp)

contig00544-647L-81.8D
[Scaffold544]

9
(2302.8888888888887 bp)

contig00524-714L-95.6D
[Scaffold524]

15
(325.8 bp)

contig00065-3805L-45.8D
[Scaffold65]

contig00066-3754L-47.7D
[Scaffold66]

2
(994.0 bp)

8
(420.625 bp)

contig00076-3656L-48.4D
[Scaffold76]

contig00077-3614L-49.0D
[Scaffold77]

contig00237-1739L-46.3D
[Scaffold237]

14
(2799.3571428571427 bp)

contig00246-1689L-50.1D
[Scaffold246]

33
(866.3030303030303 bp)

contig00297-1410L-51.0D
[Scaffold297]

18
(1782.7777777777778 bp)

contig00492-773L-52.4D
[Scaffold492]

12
(638.25 bp)

contig00569-585L-90.6D
[Scaffold569]

2
(23.5 bp)

contig00535-677L-91.6D
[Scaffold535]

5
(215.8 bp)

contig00656-413L-83.1D
[Scaffold656]

1
(1237.0 bp)

contig00078-3606L-47.2D
[Scaffold78]

29
(0.0 bp)

contig00072-3712L-45.6D
[Scaffold72]

contig00073-3690L-47.8D
[Scaffold73]

21
(2214.3333333333335 bp)

contig00363-1172L-50.8D
[Scaffold363]

15
(428.1333333333333 bp)

8
(2490.625 bp)

contig00466-821L-42.0D
[Scaffold466]

11
(125.81818181818181 bp)

2
(801.0 bp)

3
(1942.0 bp)

contig00657-411L-46.5D
[Scaffold657]

4
(1473.25 bp)

contig00707-356L-45.0D
[Scaffold707]

1
(1661.0 bp)

contig00074-3683L-46.8D
[Scaffold74]

contig00075-3659L-48.5D
[Scaffold75]

contig00106-2910L-100.0D
[Scaffold106]

21
(2117.904761904762 bp)

contig00257-1618L-46.6D
[Scaffold257]

21
(1828.4761904761904 bp)

contig00381-1105L-90.7D
[Scaffold381]

7
(711.0 bp)

contig00413-999L-125.4D
[Scaffold413]

14
(1185.0714285714287 bp)

contig00484-785L-46.7D
[Scaffold484]

11
(356.6363636363636 bp)

contig00572-582L-81.5D
[Scaffold572]

1
(181.0 bp)

contig00640-448L-85.1D
[Scaffold640]

1
(3242.0 bp)

contig00238-1734L-49.8D
[Scaffold238]

23
(2342.6521739130435 bp)

11
(5.818181818181818 bp)

contig00464-821L-49.5D
[Scaffold464]

8
(1335.375 bp)

contig00481-793L-86.0D
[Scaffold481]

3
(590.3333333333334 bp)

contig00084-3426L-46.3D
[Scaffold84]

contig00087-3341L-91.1D
[Scaffold87]

contig00201-1940L-101.6D
[Scaffold201]

26
(1388.2307692307693 bp)

contig00240-1729L-96.3D
[Scaffold240]

20
(122.7 bp)

contig00291-1440L-94.7D
[Scaffold291]

19
(1902.9473684210527 bp)

contig00335-1264L-109.2D
[Scaffold335]

14
(133.71428571428572 bp)

contig00086-3387L-50.2D
[Scaffold86]

contig00081-3539L-49.7D
[Scaffold81]

34
(120.58823529411765 bp)

4
(3261.5 bp)

contig00362-1180L-42.9D
[Scaffold362]

12
(1731.1666666666667 bp)

15
(645.2666666666667 bp)

contig00443-873L-46.0D
[Scaffold443]

5
(107.6 bp)

2
(3011.0 bp)

contig00691-382L-44.8D
[Scaffold691]

5
(973.8 bp)

contig00082-3529L-45.6D
[Scaffold82]

contig00093-3258L-96.7D
[Scaffold93]

contig00129-2696L-98.9D
[Scaffold129]

37
(596.8648648648649 bp)

33
(1390.121212121212 bp)

3
(487.0 bp)

contig00092-3282L-46.7D
[Scaffold92]

contig00095-3256L-93.5D
[Scaffold95]

contig00139-2574L-46.9D
[Scaffold139]

2
(3296.0 bp)

contig00279-1491L-88.8D
[Scaffold279]

10
(2750.2 bp)

contig00329-1277L-87.0D
[Scaffold329]

8
(159.5 bp)

contig00428-938L-89.2D
[Scaffold428]

3
(175.33333333333334 bp)

contig00418-970L-95.7D
[Scaffold418]

14
(1121.142857142857 bp)

contig00478-798L-103.0D
[Scaffold478]

4
(2584.0 bp)

contig00624-474L-85.7D
[Scaffold624]

4
(1563.25 bp)

contig00779-254L-189.2D
[Scaffold779]

1
(2335.0 bp)

2
(596.0 bp)

1
(313.0 bp)

3
(1614.6666666666667 bp)

1
(1498.0 bp)

2
(2520.0 bp)

contig00088-3311L-49.4D
[Scaffold88]

contig00091-3289L-46.9D
[Scaffold91]

contig00243-1702L-52.9D
[Scaffold243]

23
(564.5217391304348 bp)

12
(745.0 bp)

contig00389-1087L-92.4D
[Scaffold389]

5
(2285.0 bp)

1
(470.0 bp)

contig00145-2516L-45.6D
[Scaffold145]

25
(366.0 bp)

contig00403-1036L-42.5D
[Scaffold403]

11
(3002.0 bp)

contig00103-3036L-44.2D
[Scaffold103]

36
(528.3333333333334 bp)

contig00357-1198L-101.7D
[Scaffold357]

14
(1268.5 bp) contig00456-838L-93.6D

[Scaffold456]

4
(2546.25 bp)

6
(2465.5 bp)

6
(809.6666666666666 bp)

contig00098-3145L-50.4D
[Scaffold98]

contig00099-3096L-47.6D
[Scaffold99]

contig00188-2068L-53.3D
[Scaffold188]

16
(2494.625 bp)

11
(3023.7272727272725 bp)

contig00511-743L-46.1D
[Scaffold511]5

(606.8 bp)

contig00571-583L-50.8D
[Scaffold571]

7
(1996.857142857143 bp)

contig00623-474L-104.9D
[Scaffold623]

3
(1524.6666666666667 bp)

contig00587-545L-52.3D
[Scaffold587]

3
(1017.3333333333334 bp)

contig00712-350L-78.9D
[Scaffold712]

1
(1917.0 bp)

contig00725-337L-43.1D
[Scaffold725]

2
(1739.0 bp)

contig00096-3189L-49.7D
[Scaffold96]

contig00097-3187L-88.3D
[Scaffold97]

24
(2077.125 bp)

contig00223-1803L-92.3D
[Scaffold223]

16
(140.5 bp)

22
(130.77272727272728 bp)

contig00278-1493L-82.4D
[Scaffold278]

5
(3282.6 bp)

contig00356-1203L-87.7D
[Scaffold356]

12
(2017.6666666666667 bp)

contig00110-2846L-48.0D
[Scaffold110]

contig00111-2844L-49.5D
[Scaffold111]

contig00241-1720L-47.5D
[Scaffold241]

22
(1663.8181818181818 bp)

12
(729.75 bp)

contig00384-1100L-48.0D
[Scaffold384]

3
(314.6666666666667 bp)

5
(2495.2 bp)

1
(3125.0 bp)

1
(2299.0 bp)

contig00108-2872L-48.3D
[Scaffold108]

contig00109-2856L-98.4D
[Scaffold109]

1
(2789.0 bp)

4
(2160.75 bp)

contig00556-616L-82.3D
[Scaffold556]

6
(3190.3333333333335 bp)

contig00729-329L-92.4D
[Scaffold729]

2
(1606.5 bp)

13
(2242.230769230769 bp)

14
(439.07142857142856 bp)

11
(1047.090909090909 bp)

contig00107-2908L-46.3D
[Scaffold107]

contig00104-2989L-96.5D
[Scaffold104]

30
(112.16666666666667 bp)

26
(734.0 bp)

13
(2715.6923076923076 bp)

6
(3321.0 bp)

contig00105-2937L-47.7D
[Scaffold105]

contig00119-2746L-50.2D
[Scaffold119]

contig00118-2747L-47.6D
[Scaffold118]

contig00121-2744L-49.5D
[Scaffold121]

29
(397.41379310344826 bp)

contig00191-2043L-49.3D
[Scaffold191]

9
(3006.4444444444443 bp)

contig00451-849L-48.7D
[Scaffold451]

9
(1774.6666666666667 bp)

contig00612-496L-93.3D
[Scaffold612]

7
(2586.8571428571427 bp)

contig00643-437L-47.2D
[Scaffold643]

2
(1038.0 bp)

contig00116-2806L-51.2D
[Scaffold116]

contig00309-1344L-49.8D
[Scaffold309]

13
(295.38461538461536 bp)

contig00320-1299L-55.4D
[Scaffold320]

24
(2115.5416666666665 bp)

contig00639-450L-93.7D
[Scaffold639]2

(1641.5 bp)

contig00114-2812L-48.2D
[Scaffold114]

contig00113-2818L-43.7D
[Scaffold113]

contig00120-2744L-46.9D
[Scaffold120]

35
(556.3714285714286 bp)

contig00365-1164L-47.5D
[Scaffold365]

9
(492.44444444444446 bp)

contig00559-604L-48.5D
[Scaffold559]

4
(1798.5 bp)

contig00677-396L-39.7D
[Scaffold677]

1
(3098.0 bp)

contig00112-2836L-43.7D
[Scaffold112]

contig00127-2703L-44.6D
[Scaffold127]

contig00228-1773L-46.6D
[Scaffold228]

31
(1760.5806451612902 bp)

1
(53.0 bp)

contig00393-1080L-84.1D
[Scaffold393]1

(391.0 bp)

contig00125-2731L-46.0D
[Scaffold125]

contig00132-2630L-46.7D
[Scaffold132]

23
(1636.0869565217392 bp)

contig00198-1964L-53.2D
[Scaffold198]

8
(2209.875 bp)

contig00611-496L-51.9D
[Scaffold611]

3
(1550.0 bp)

20
(1468.8 bp)

9
(2978.5555555555557 bp)

1
(334.0 bp)

contig00123-2741L-47.0D
[Scaffold123]

contig00122-2742L-49.9D
[Scaffold122]

contig00133-2618L-47.9D
[Scaffold133]

31
(1379.8387096774193 bp)

contig00655-417L-49.0D
[Scaffold655]

3
(3279.6666666666665 bp)

contig00710-352L-96.9D
[Scaffold710]

3
(1047.3333333333333 bp)

contig00164-2241L-45.8D
[Scaffold164]

8
(3012.625 bp)

contig00371-1152L-45.7D
[Scaffold371]

7
(597.7142857142857 bp)

contig00536-678L-93.9D
[Scaffold536]

3
(2465.0 bp)

contig00621-476L-38.8D
[Scaffold621]

4
(1839.75 bp)

contig00137-2587L-47.3D
[Scaffold137]

contig00136-2600L-47.0D
[Scaffold136]

18
(1949.8333333333333 bp)

contig00374-1134L-48.1D
[Scaffold374]

9
(2824.4444444444443 bp)

contig00412-1003L-48.9D
[Scaffold412]

16
(957.125 bp)

contig00447-857L-48.8D
[Scaffold447]

8
(1985.875 bp)

4
(1333.0 bp)

contig00138-2585L-47.4D
[Scaffold138]

contig00226-1780L-97.0D
[Scaffold226]

4
(2631.75 bp)

contig00330-1275L-91.2D
[Scaffold330]

9
(1392.111111111111 bp)

contig00419-968L-47.1D
[Scaffold419]

1
(641.0 bp)

contig00675-394L-90.3D
[Scaffold675]

1
(1988.0 bp)

contig00141-2571L-50.1D
[Scaffold141]

contig00140-2572L-52.2D
[Scaffold140]

22
(1509.3636363636363 bp)

contig00249-1676L-48.0D
[Scaffold249]

6
(85.5 bp)

17
(2171.5882352941176 bp)

contig00177-2142L-49.2D
[Scaffold177]

14
(392.07142857142856 bp)

contig00281-1483L-42.8D
[Scaffold281]

24
(2612.5833333333335 bp)

contig00406-1021L-48.1D
[Scaffold406]

7
(895.1428571428571 bp)

1
(3131.0 bp)

1
(2014.0 bp)

contig00128-2700L-48.8D
[Scaffold128]

14
(2843.0 bp)

contig00176-2150L-43.7D
[Scaffold176]

1
(3288.0 bp)

2
(188.5 bp)

contig00368-1153L-48.1D
[Scaffold368]

18
(1561.4444444444443 bp)

8
(1444.75 bp)

contig00131-2631L-49.8D
[Scaffold131]

9
(124.88888888888889 bp)

12
(2666.9166666666665 bp)

19
(1016.3157894736842 bp)

22
(2143.3636363636365 bp)

4
(394.75 bp)

2
(1738.5 bp)

contig00135-2609L-44.6D
[Scaffold135]

contig00220-1811L-46.3D
[Scaffold220]

17
(97.11764705882354 bp)

contig00272-1571L-47.1D
[Scaffold272]

8
(2679.375 bp)

contig00316-1316L-49.7D
[Scaffold316]

20
(2529.05 bp)

contig00327-1285L-48.0D
[Scaffold327]

6
(401.1666666666667 bp)

contig00585-547L-51.1D
[Scaffold585]

4
(2074.5 bp)

contig00134-2610L-44.4D
[Scaffold134]

contig00256-1622L-93.1D
[Scaffold256]

19
(1624.3157894736842 bp)

contig00622-475L-144.6D
[Scaffold622]

2
(3361.0 bp)

26
(2130.269230769231 bp)

1
(1341.0 bp)

contig00154-2419L-52.4D
[Scaffold154]

contig00155-2373L-90.8D
[Scaffold155]

3
(3109.3333333333335 bp)

contig00216-1839L-98.4D
[Scaffold216]

6
(225.16666666666666 bp)

7
(275.14285714285717 bp)

3
(2541.3333333333335 bp)

contig00574-579L-100.5D
[Scaffold574]

4
(2360.5 bp)

1
(3297.0 bp)

contig00695-374L-85.9D
[Scaffold695]

2
(1916.5 bp)

contig00663-409L-191.6D
[Scaffold663]

2
(2874.0 bp)

1
(2214.0 bp)

contig00727-332L-204.3D
[Scaffold727]

1
(1912.0 bp)

13
(1529.1538461538462 bp)

4
(2788.5 bp)

contig00157-2318L-44.8D
[Scaffold157]

contig00158-2306L-90.4D
[Scaffold158]

contig00286-1473L-88.1D
[Scaffold286]24

(1036.75 bp)

contig00331-1274L-47.6D
[Scaffold331]

4
(3177.0 bp)

14
(1336.642857142857 bp)

contig00551-629L-95.8D
[Scaffold551]

7
(3068.1428571428573 bp)

contig00627-469L-84.6D
[Scaffold627]

4
(2562.75 bp)

3
(2495.0 bp)

3
(148.66666666666666 bp)

contig00144-2537L-51.2D
[Scaffold144]

24
(1592.9166666666667 bp)

3
(3335.3333333333335 bp)

contig00146-2508L-45.8D
[Scaffold146]

1
(784.0 bp)

6
(776.8333333333334 bp)

7
(2031.0 bp)

8
(1916.25 bp)

contig00151-2471L-104.2D
[Scaffold151]

contig00224-1793L-50.7D
[Scaffold224]

5
(2163.6 bp)

1
(3125.0 bp)

contig00613-495L-104.9D
[Scaffold613]

3
(1780.3333333333333 bp)

contig00738-308L-41.5D
[Scaffold738]

1
(2432.0 bp)

contig00171-2175L-43.6D
[Scaffold171]

contig00207-1907L-47.0D
[Scaffold207]2

(3177.5 bp)

contig00342-1244L-46.6D
[Scaffold342]

18
(1661.0555555555557 bp)

contig00439-878L-49.4D
[Scaffold439]

13
(1670.4615384615386 bp)

contig00605-507L-82.1D
[Scaffold605]

6
(2901.1666666666665 bp)

4
(2056.5 bp)

contig00448-853L-44.8D
[Scaffold448]

6
(1523.6666666666667 bp)

contig00637-450L-52.8D
[Scaffold637]

2
(2840.5 bp)

15
(1211.0 bp)

4
(101.75 bp)

contig00175-2156L-46.6D
[Scaffold175]

contig00405-1025L-48.0D
[Scaffold405]

8
(2940.375 bp)

contig00497-769L-83.7D
[Scaffold497]

11
(2168.3636363636365 bp)

contig00173-2161L-47.8D
[Scaffold173]

9
(359.8888888888889 bp)

contig00267-1587L-47.0D
[Scaffold267]

24
(2213.5416666666665 bp)

7
(2692.8571428571427 bp)

contig00172-2163L-45.9D
[Scaffold172]

contig00163-2242L-42.8D
[Scaffold163]

contig00162-2253L-49.0D
[Scaffold162]

2
(294.5 bp)

11
(2709.6363636363635 bp)

contig00369-1153L-48.4D
[Scaffold369]

11
(2656.5454545454545 bp)

contig00161-2279L-47.3D
[Scaffold161]

contig00160-2281L-49.1D
[Scaffold160]

contig00167-2232L-47.4D
[Scaffold167]

contig00166-2237L-46.7D
[Scaffold166] 7

(214.71428571428572 bp)

contig00268-1586L-45.6D
[Scaffold268]

13
(2582.5384615384614 bp)

12
(2945.5833333333335 bp)

contig00711-351L-33.9D
[Scaffold711]

1
(1691.0 bp)

contig00648-427L-48.2D
[Scaffold648]

3
(2026.3333333333333 bp)

13
(1290.3076923076924 bp)

contig00566-589L-91.3D
[Scaffold566]

3
(2492.0 bp)

1
(1696.0 bp)

18
(1259.3333333333333 bp)

contig00187-2070L-50.8D
[Scaffold187]

contig00314-1324L-46.1D
[Scaffold314]

18
(2233.8333333333335 bp)

contig00367-1156L-94.7D
[Scaffold367]

3
(1099.6666666666667 bp)

contig00664-409L-84.9D
[Scaffold664]

1
(1670.0 bp)

contig00742-305L-148.0D
[Scaffold742]

1
(3423.0 bp)

11
(1506.8181818181818 bp)

19
(2655.9473684210525 bp)

contig00185-2114L-48.1D
[Scaffold185]

contig00284-1476L-50.0D
[Scaffold284]

23
(1764.4782608695652 bp)

2
(1208.5 bp)

contig00213-1858L-93.9D
[Scaffold213]

8
(3181.75 bp)

contig00421-963L-49.1D
[Scaffold421]

13
(2272.0 bp)

2
(2512.5 bp)

1
(3288.0 bp)

contig00580-561L-97.5D
[Scaffold580]

2
(1836.0 bp)

contig00189-2065L-46.4D
[Scaffold189]

contig00178-2139L-50.4D
[Scaffold178]

contig00179-2138L-49.3D
[Scaffold179]

25
(2008.84 bp)

8
(1748.375 bp)

contig00625-473L-48.6D
[Scaffold625]

2
(3092.5 bp)

contig00705-357L-83.6D
[Scaffold705]

2
(1708.5 bp)

17
(1740.8235294117646 bp)

1
(759.0 bp)

contig00416-986L-38.9D
[Scaffold416]

2
(3367.0 bp)

contig00552-628L-55.1D
[Scaffold552]

7
(2478.1428571428573 bp)

contig00649-427L-103.0D
[Scaffold649]

3
(2028.0 bp)

contig00193-2007L-49.2D
[Scaffold193]

29
(1939.1379310344828 bp)

2
(3206.0 bp)

contig00307-1381L-97.7D
[Scaffold307]

6
(3039.1666666666665 bp)

contig00293-1435L-52.1D
[Scaffold293]

11
(1558.4545454545455 bp)

1
(906.0 bp)

1
(2148.0 bp)

contig00183-2121L-46.8D
[Scaffold183]

contig00180-2137L-47.8D
[Scaffold180]

contig00181-2132L-48.2D
[Scaffold181]

contig00277-1503L-89.5D
[Scaffold277]

9
(3059.777777777778 bp)

contig00461-822L-97.8D
[Scaffold461]

4
(1595.0 bp)

contig00763-277L-80.2D
[Scaffold763]

4
(2675.75 bp)

contig00204-1916L-51.1D
[Scaffold204]

contig00382-1097L-94.4D
[Scaffold382]

14
(1745.7857142857142 bp)

contig00471-807L-47.0D
[Scaffold471]

7
(2578.8571428571427 bp)

contig00633-462L-40.6D
[Scaffold633]

5
(2825.0 bp)

contig00206-1910L-51.0D
[Scaffold206]

18
(2010.0 bp)

1
(1455.0 bp)

contig00200-1948L-44.8D
[Scaffold200]

contig00203-1924L-94.8D
[Scaffold203]

4
(2901.25 bp)

12
(1617.5833333333333 bp)

10
(2672.9 bp)

contig00641-445L-98.4D
[Scaffold641]

4
(3127.5 bp)

contig00202-1933L-49.2D
[Scaffold202]

11
(1076.6363636363637 bp)

17
(1635.1176470588234 bp) 4

(3234.25 bp)

contig00197-1989L-43.7D
[Scaffold197]

12
(2015.5 bp)

contig00409-1015L-47.6D
[Scaffold409]

6
(3092.1666666666665 bp)

6
(3069.0 bp)

contig00465-821L-73.2D
[Scaffold465]

3
(1992.6666666666667 bp)

contig00196-1996L-46.0D
[Scaffold196]

contig00199-1953L-47.9D
[Scaffold199]

7
(1706.7142857142858 bp)

2
(2695.5 bp)

1
(3434.0 bp)

contig00229-1769L-49.0D
[Scaffold229]

17
(2277.235294117647 bp)

contig00192-2040L-48.5D
[Scaffold192]

contig00195-2000L-48.6D
[Scaffold195]

14
(2447.9285714285716 bp)

2
(1891.0 bp)

1
(928.0 bp)

4
(2976.75 bp)

contig00321-1294L-89.4D
[Scaffold321]

1
(3204.0 bp)

contig00548-640L-56.3D
[Scaffold548]

5
(2771.8 bp)

contig00221-1811L-49.6D
[Scaffold221]

contig00222-1808L-43.1D
[Scaffold222]

6
(1423.8333333333333 bp)

10
(2873.4 bp)

contig00344-1235L-100.4D
[Scaffold344]

14
(2033.4285714285713 bp)

contig00714-350L-186.3D
[Scaffold714]

1
(3227.0 bp)

contig00217-1815L-48.0D
[Scaffold217]

8
(2746.25 bp)

3
(2052.3333333333335 bp)

3
(3148.0 bp)

1
(1598.0 bp)

contig00318-1310L-96.5D
[Scaffold318]

21
(1808.6666666666667 bp)

contig00769-264L-81.9D
[Scaffold769]

1
(2934.0 bp)

contig00212-1861L-42.8D
[Scaffold212]

contig00271-1574L-46.8D
[Scaffold271]

8
(1626.125 bp)

contig00427-951L-47.0D
[Scaffold427]

1
(2170.0 bp)

contig00506-747L-54.1D
[Scaffold506]

1
(2657.0 bp)

contig00560-602L-66.5D
[Scaffold560]

8
(2220.375 bp)

contig00634-461L-44.2D
[Scaffold634]

2
(2839.0 bp)

contig00214-1853L-44.3D
[Scaffold214]

2
(553.5 bp)

15
(1857.7333333333333 bp)

2
(3384.0 bp)

contig00438-881L-39.5D
[Scaffold438]

9
(3107.5555555555557 bp)

contig00215-1852L-51.6D
[Scaffold215]

contig00208-1901L-45.1D
[Scaffold208]

2
(3408.5 bp)

contig00211-1874L-86.2D
[Scaffold211]

contig00247-1688L-48.1D
[Scaffold247]

2
(2200.5 bp)

contig00385-1099L-46.3D
[Scaffold385]

7
(2432.5714285714284 bp)

contig00239-1730L-42.8D
[Scaffold239]

7
(2512.714285714286 bp)

5
(1947.6 bp)

contig00236-1739L-47.0D
[Scaffold236]

contig00235-1747L-48.0D
[Scaffold235]

contig00234-1756L-48.2D
[Scaffold234]

7
(3173.0 bp)

3
(2211.3333333333335 bp)

contig00232-1758L-51.0D
[Scaffold232]

5
(3228.8 bp)

contig00230-1768L-47.1D
[Scaffold230]

11
(2483.4545454545455 bp)

contig00724-342L-94.0D
[Scaffold724]

1
(1979.0 bp)

contig00227-1774L-48.1D
[Scaffold227]

5
(2109.4 bp)

contig00225-1791L-48.5D
[Scaffold225]

contig00302-1395L-44.5D
[Scaffold302]

6
(2714.6666666666665 bp)

contig00503-755L-85.7D
[Scaffold503]

1
(1952.0 bp)

contig00255-1638L-45.7D
[Scaffold255]

contig00250-1676L-47.8D
[Scaffold250]

4
(3297.75 bp)

12
(2358.9166666666665 bp)

contig00248-1684L-47.0D
[Scaffold248]

4
(1842.0 bp)

11
(2417.2727272727275 bp)

1
(3446.0 bp)

4
(2018.5 bp)

contig00323-1294L-48.4D
[Scaffold323]

5
(3214.0 bp)

contig00588-540L-95.5D
[Scaffold588]

2
(2684.0 bp)

contig00244-1694L-44.0D
[Scaffold244]

contig00245-1691L-51.7D
[Scaffold245]

contig00242-1717L-49.5D
[Scaffold242]

7
(2319.8571428571427 bp)

contig00446-860L-51.4D
[Scaffold446]

2
(1560.5 bp)

8
(2974.0 bp)

contig00493-772L-93.6D
[Scaffold493]

4
(1805.25 bp)

3
(2550.3333333333335 bp)

contig00313-1337L-46.9D
[Scaffold313]

3
(1173.3333333333333 bp)

contig00275-1544L-39.6D
[Scaffold275]

3
(1753.6666666666667 bp)

1
(2719.0 bp)

contig00273-1568L-49.7D
[Scaffold273]

4
(1645.75 bp)

4
(1775.0 bp)

14
(1957.0 bp)

1
(1596.0 bp)

contig00761-281L-91.8D
[Scaffold761]

2
(2715.5 bp)

contig00764-277L-183.2D
[Scaffold764]

1
(2400.0 bp)

contig00322-1295L-48.4D
[Scaffold322]

16
(2484.0625 bp)

1
(3077.0 bp)

contig00596-531L-73.9D
[Scaffold596]

3
(2217.3333333333335 bp)

contig00681-390L-196.8D
[Scaffold681]

3
(2713.6666666666665 bp)

contig00282-1480L-46.4D
[Scaffold282]

12
(2694.0 bp)

contig00280-1483L-93.9D
[Scaffold280]

contig00333-1270L-45.6D
[Scaffold333]

13
(2698.5384615384614 bp)

1
(2367.0 bp)

contig00355-1208L-49.7D
[Scaffold355]

4
(3317.75 bp)

5
(2401.2 bp)

contig00258-1618L-49.6D
[Scaffold258]

contig00259-1618L-96.9D
[Scaffold259]

contig00449-851L-86.3D
[Scaffold449]

12
(2425.25 bp)

4
(1315.25 bp)

3
(2493.0 bp)

contig00262-1613L-49.8D
[Scaffold262]

contig00263-1611L-50.7D
[Scaffold263]

3
(3265.3333333333335 bp)

2
(3098.0 bp)

contig00521-718L-45.2D
[Scaffold521]7

(2318.1428571428573 bp)

contig00652-421L-93.7D
[Scaffold652]

6
(2177.3333333333335 bp)

2
(2223.0 bp)

2
(2654.5 bp)

1
(3183.0 bp)

contig00261-1613L-48.3D
[Scaffold261]

contig00266-1588L-46.7D
[Scaffold266]

14
(2819.285714285714 bp)

contig00270-1580L-53.0D
[Scaffold270]

11
(2661.4545454545455 bp)

4
(2209.5 bp)

1
(3427.0 bp)

18
(2325.0555555555557 bp)

2
(1688.0 bp)

contig00269-1582L-43.7D
[Scaffold269]

contig00305-1382L-47.4D
[Scaffold305]

13
(2218.769230769231 bp)

contig00486-785L-48.8D
[Scaffold486]

1
(1975.0 bp)

contig00517-735L-51.1D
[Scaffold517]

5
(2243.8 bp)

3
(2187.3333333333335 bp)

contig00306-1381L-43.2D
[Scaffold306]

contig00308-1374L-50.0D
[Scaffold308]

18
(2609.277777777778 bp)

1
(1627.0 bp)

contig00498-767L-43.9D
[Scaffold498]

6
(3071.8333333333335 bp)

contig00562-595L-52.4D
[Scaffold562]

4
(2375.5 bp)

contig00310-1343L-42.4D
[Scaffold310]

3
(3213.6666666666665 bp)

contig00312-1338L-46.8D
[Scaffold312]

3
(3012.3333333333335 bp)

contig00496-768L-40.4D
[Scaffold496]

1
(2042.0 bp)

2
(3205.0 bp)

contig00319-1300L-49.0D
[Scaffold319]

6
(3351.5 bp)

8
(2304.375 bp)

contig00288-1472L-45.2D
[Scaffold288]

contig00289-1470L-40.9D
[Scaffold289]

6
(2648.8333333333335 bp)

1
(3417.0 bp)

contig00292-1435L-46.1D
[Scaffold292]

1
(3466.0 bp)

3
(2472.6666666666665 bp)

1
(3144.0 bp)

contig00295-1432L-51.9D
[Scaffold295]

contig00296-1431L-43.9D
[Scaffold296]

contig00298-1410L-39.8D
[Scaffold298]

contig00359-1189L-93.6D
[Scaffold359]

14
(2332.714285714286 bp)

contig00301-1398L-47.6D
[Scaffold301]

7
(2114.5714285714284 bp)

contig00424-955L-55.7D
[Scaffold424]

1
(3359.0 bp)

contig00615-489L-43.8D
[Scaffold615]

7
(2566.714285714286 bp)

contig00676-397L-90.4D
[Scaffold676]

1
(3204.0 bp)

contig00642-444L-47.6D
[Scaffold642]

4
(3117.25 bp)

contig00567-589L-82.7D
[Scaffold567]

4
(2876.25 bp)

contig00303-1393L-44.9D
[Scaffold303]

contig00343-1244L-49.5D
[Scaffold343]

contig00414-994L-82.7D
[Scaffold414]

4
(2843.25 bp)

contig00340-1248L-48.3D
[Scaffold340]

contig00339-1250L-52.8D
[Scaffold339]

contig00513-739L-50.9D
[Scaffold513]

11
(2837.4545454545455 bp)

contig00338-1255L-49.8D
[Scaffold338]

contig00351-1221L-53.4D
[Scaffold351]

17
(2652.4117647058824 bp)

contig00604-507L-97.7D
[Scaffold604]

1
(3351.0 bp)

contig00646-433L-40.9D
[Scaffold646]

5
(2877.6 bp)

contig00350-1221L-47.5D
[Scaffold350]

contig00348-1224L-49.2D
[Scaffold348]

contig00730-329L-104.7D
[Scaffold730]

1
(2742.0 bp)

contig00326-1288L-54.7D
[Scaffold326]

contig00324-1292L-50.0D
[Scaffold324]

contig00325-1291L-48.7D
[Scaffold325]

3
(2476.3333333333335 bp)

5
(2812.2 bp)

1
(3076.0 bp)

1
(2616.0 bp)

6
(3228.1666666666665 bp)

contig00577-577L-99.7D
[Scaffold577]

2
(2233.5 bp)

2
(2923.0 bp)

4
(2027.25 bp)

contig00458-836L-82.5D
[Scaffold458]

7
(2158.0 bp)

1
(3375.0 bp)

contig00328-1278L-45.0D
[Scaffold328]

1
(3422.0 bp)

contig00373-1140L-49.9D
[Scaffold373]

contig00370-1152L-39.4D
[Scaffold370]

contig00674-398L-96.0D
[Scaffold674]

1
(2638.0 bp)

contig00383-1100L-40.5D
[Scaffold383]

contig00410-1007L-52.3D
[Scaffold410]

3
(3035.0 bp)

contig00377-1126L-47.7D
[Scaffold377]

contig00376-1127L-48.6D
[Scaffold376]

3
(3297.0 bp)

contig00378-1125L-45.6D
[Scaffold378]

7
(2438.714285714286 bp)

5
(2687.6 bp)

contig00352-1221L-46.5D
[Scaffold352]

1
(3319.0 bp)

contig00606-504L-40.1D
[Scaffold606]

1
(2467.0 bp)

3
(2208.3333333333335 bp)

4
(2156.75 bp)

contig00728-329L-80.8D
[Scaffold728]

1
(3289.0 bp)

8
(2259.0 bp)

contig00584-551L-83.0D
[Scaffold584]

1
(3236.0 bp)

contig00665-409L-91.2D
[Scaffold665]

1
(3121.0 bp)

contig00366-1163L-49.5D
[Scaffold366]

1
(3353.0 bp)

1
(3450.0 bp)

1
(3424.0 bp)

6
(2151.8333333333335 bp)

contig00426-954L-49.3D
[Scaffold426]

10
(3086.3 bp)

2
(2450.5 bp)

7
(2576.1428571428573 bp)

contig00682-387L-92.4D
[Scaffold682]

2
(3275.0 bp)

1
(2780.0 bp)

contig00595-532L-80.4D
[Scaffold595]

5
(3025.0 bp)

contig00411-1007L-44.3D
[Scaffold411]

contig00479-795L-47.6D
[Scaffold479]

2
(2351.5 bp)

2
(2619.5 bp)

contig00475-802L-51.1D
[Scaffold475]

1
(3226.0 bp)

contig00463-822L-38.4D
[Scaffold463]

5
(2852.4 bp)

2
(2645.0 bp)

contig00415-991L-44.8D
[Scaffold415]

4
(3076.0 bp)

6
(2922.8333333333335 bp)

contig00400-1043L-50.1D
[Scaffold400]

contig00401-1040L-45.6D
[Scaffold401]

contig00645-434L-90.2D
[Scaffold645]

1
(3337.0 bp)

contig00407-1019L-45.6D
[Scaffold407]

9
(2403.3333333333335 bp)

2
(2483.0 bp)

contig00531-691L-97.0D
[Scaffold531]

2
(3004.5 bp)

contig00404-1036L-41.4D
[Scaffold404]

8
(2762.0 bp)

contig00394-1080L-51.3D
[Scaffold394]

5
(2558.6 bp)

contig00430-924L-49.1D
[Scaffold430]

13
(2632.769230769231 bp)

contig00398-1057L-48.9D
[Scaffold398]

7
(2856.714285714286 bp)

contig00387-1093L-48.4D
[Scaffold387]

contig00386-1098L-48.0D
[Scaffold386]

contig00568-586L-86.8D
[Scaffold568]

1
(2948.0 bp)

2
(3344.5 bp)

8
(2893.25 bp)

3
(2609.6666666666665 bp)

contig00390-1085L-48.0D
[Scaffold390]

1
(3372.0 bp)

contig00440-878L-99.9D
[Scaffold440]

contig00441-875L-47.3D
[Scaffold441]

contig00442-874L-47.7D
[Scaffold442]

2
(3151.0 bp)

contig00445-860L-54.2D
[Scaffold445]

1
(2845.0 bp)

1
(3221.0 bp)

4
(2850.5 bp)

contig00436-884L-47.6D
[Scaffold436]

contig00437-881L-48.4D
[Scaffold437]

contig00425-955L-46.4D
[Scaffold425]

1
(3184.0 bp)

7
(2934.5714285714284 bp)

contig00429-930L-41.2D
[Scaffold429]

contig00417-983L-45.0D
[Scaffold417]

12
(2698.5833333333335 bp)

contig00507-746L-49.2D
[Scaffold507]

9
(3117.777777777778 bp)

contig00420-968L-49.3D
[Scaffold420]

contig00423-956L-46.0D
[Scaffold423]

contig00700-367L-102.3D
[Scaffold700]

1
(2938.0 bp)

4
(3099.25 bp)

contig00476-800L-95.4D
[Scaffold476]

contig00477-799L-36.2D
[Scaffold477]

contig00472-805L-46.8D
[Scaffold472]

contig00473-804L-48.5D
[Scaffold473]

contig00732-320L-90.1D
[Scaffold732]

1
(2995.0 bp)

contig00468-819L-47.0D
[Scaffold468]

contig00469-815L-46.6D
[Scaffold469]

3
(2955.6666666666665 bp)

contig00467-821L-41.3D
[Scaffold467]

8
(2757.625 bp)

contig00459-834L-92.3D
[Scaffold459]

4
(2865.0 bp)

3
(2862.0 bp)

contig00455-839L-48.7D
[Scaffold455]

contig00452-849L-49.4D
[Scaffold452]

contig00450-848L-94.4D
[Scaffold450]

5
(3251.0 bp)

8
(2642.75 bp)

3
(3292.6666666666665 bp)

contig00508-744L-47.3D
[Scaffold508]

contig00509-744L-43.9D
[Scaffold509]

contig00510-744L-48.6D
[Scaffold510]

contig00504-756L-42.8D
[Scaffold504]

contig00505-754L-44.4D
[Scaffold505]

contig00635-456L-50.3D
[Scaffold635]

3
(3015.6666666666665 bp)

2
(3431.5 bp)

contig00499-766L-84.0D
[Scaffold499]

2
(2865.0 bp)

contig00494-771L-46.2D
[Scaffold494]

contig00488-780L-41.6D
[Scaffold488]

contig00485-785L-47.5D
[Scaffold485]

contig00487-783L-44.9D
[Scaffold487]

7
(2919.714285714286 bp)

contig00480-794L-52.4D
[Scaffold480]

contig00483-786L-50.2D
[Scaffold483]

1
(3209.0 bp)

1
(3392.0 bp)

contig00549-638L-39.3D
[Scaffold549]

contig00558-612L-92.4D
[Scaffold558]

contig00557-614L-42.4D
[Scaffold557]

1
(3091.0 bp)

contig00667-406L-91.7D
[Scaffold667]

2
(3324.5 bp)

contig00740-306L-47.1D
[Scaffold740]

1
(3450.0 bp)

contig00553-626L-37.0D
[Scaffold553]

contig00565-593L-47.3D
[Scaffold565]

2
(3285.5 bp)

3
(3107.6666666666665 bp)

1
(3356.0 bp)

contig00561-596L-83.9D
[Scaffold561]

contig00579-564L-108.3D
[Scaffold579]

2
(3268.5 bp)

2
(3315.0 bp)

contig00570-584L-49.5D
[Scaffold570]

contig00516-736L-41.4D
[Scaffold516]

contig00519-720L-98.7D
[Scaffold519]

1
(2778.0 bp)

6
(3189.1666666666665 bp)

2
(3420.0 bp)

contig00512-743L-51.1D
[Scaffold512]

contig00527-697L-46.2D
[Scaffold527]

contig00522-717L-51.5D
[Scaffold522]

contig00533-687L-90.7D
[Scaffold533]

contig00532-688L-104.4D
[Scaffold532]

contig00534-681L-95.9D
[Scaffold534]

contig00540-657L-46.3D
[Scaffold540]

contig00543-646L-82.5D
[Scaffold543]

contig00689-383L-51.8D
[Scaffold689]

1
(3322.0 bp)

contig00539-664L-92.5D
[Scaffold539]

contig00610-496L-100.1D
[Scaffold610]

contig00608-501L-36.4D
[Scaffold608]

contig00609-500L-95.3D
[Scaffold609]

contig00618-481L-93.5D
[Scaffold618]

contig00619-477L-45.3D
[Scaffold619]

contig00616-487L-75.1D
[Scaffold616]

contig00617-486L-38.8D
[Scaffold617]

contig00631-463L-42.6D
[Scaffold631]

contig00630-466L-57.4D
[Scaffold630]

contig00628-469L-96.8D
[Scaffold628]

contig00632-463L-92.7D
[Scaffold632]

contig00636-453L-91.9D
[Scaffold636]

2
(3158.0 bp)

contig00581-559L-96.7D
[Scaffold581]

contig00582-557L-46.0D
[Scaffold582]

contig00685-383L-95.8D
[Scaffold685]

1
(3135.0 bp)

3
(3195.0 bp)

contig00583-557L-38.7D
[Scaffold583]

contig00586-545L-47.1D
[Scaffold586]

contig00592-533L-38.1D
[Scaffold592]

contig00594-532L-38.7D
[Scaffold594]

3
(3274.6666666666665 bp)

contig00599-526L-91.5D
[Scaffold599]

contig00600-518L-100.6D
[Scaffold600]

contig00603-509L-53.1D
[Scaffold603]

contig00687-384L-45.0D
[Scaffold687]

contig00684-386L-35.7D
[Scaffold684]

contig00683-387L-88.2D
[Scaffold683]

contig00679-393L-87.8D
[Scaffold679]

contig00678-394L-98.1D
[Scaffold678]

contig00672-400L-48.3D
[Scaffold672]

contig00702-363L-87.2D
[Scaffold702]

contig00703-360L-85.2D
[Scaffold703]

contig00698-370L-95.6D
[Scaffold698]

contig00696-374L-102.9D
[Scaffold696]

contig00697-373L-90.3D
[Scaffold697]

contig00692-379L-41.8D
[Scaffold692]

contig00693-378L-53.1D
[Scaffold693]

contig00716-351L-70.8D
[Scaffold716]

1
(3366.0 bp)

contig00653-420L-86.0D
[Scaffold653]

1
(3249.0 bp)

contig00654-419L-38.9D
[Scaffold654]

contig00651-421L-99.9D
[Scaffold651]

contig00650-424L-48.1D
[Scaffold650]

contig00644-435L-60.7D
[Scaffold644]

contig00668-405L-100.3D
[Scaffold668]

contig00669-405L-96.2D
[Scaffold669]

contig00671-400L-94.1D
[Scaffold671]

contig00666-408L-89.9D
[Scaffold666]

contig00660-409L-78.3D
[Scaffold660]

contig00661-408L-90.5D
[Scaffold661]

contig00658-410L-58.6D
[Scaffold658]

contig00747-302L-102.4D
[Scaffold747]

contig00746-303L-97.0D
[Scaffold746]

contig00745-303L-103.4D
[Scaffold745]

contig00744-303L-104.6D
[Scaffold744]

contig00749-300L-85.3D
[Scaffold749]

contig00748-301L-77.2D
[Scaffold748]

contig00739-308L-43.6D
[Scaffold739]

contig00737-309L-37.3D
[Scaffold737]

contig00736-309L-72.7D
[Scaffold736]

contig00743-305L-91.4D
[Scaffold743]

contig00741-306L-102.2D
[Scaffold741]

contig00760-282L-89.5D
[Scaffold760]

contig00766-272L-79.9D
[Scaffold766]

contig00767-265L-86.1D
[Scaffold767]

contig00765-275L-101.3D
[Scaffold765]

contig00754-296L-97.0D
[Scaffold754]

contig00752-298L-94.8D
[Scaffold752]

contig00753-295L-131.1D
[Scaffold753]

contig00758-286L-92.1D
[Scaffold758]

contig00759-283L-82.1D
[Scaffold759]

contig00757-285L-99.6D
[Scaffold757]

contig00713-352L-83.3D
[Scaffold713]

contig00715-349L-48.4D
[Scaffold715]

contig00717-345L-78.2D
[Scaffold717]

contig00719-344L-88.1D
[Scaffold719]

contig00704-357L-75.9D
[Scaffold704]

contig00709-356L-95.3D
[Scaffold709]

contig00708-356L-93.4D
[Scaffold708]

contig00731-326L-98.5D
[Scaffold731]

contig00733-317L-88.5D
[Scaffold733]

contig00734-314L-46.2D
[Scaffold734]

contig00735-313L-55.0D
[Scaffold735]

contig00720-342L-94.4D
[Scaffold720]

contig00721-342L-94.8D
[Scaffold721]

contig00723-341L-83.4D
[Scaffold723]

contig00726-336L-52.2D
[Scaffold726]

contig00821-184L-76.2D
[Scaffold821]

contig00820-185L-27.1D
[Scaffold820]

contig00823-181L-30.2D
[Scaffold823]

contig00822-182L-32.4D
[Scaffold822]

contig00817-188L-95.0D
[Scaffold817]

contig00816-189L-46.1D
[Scaffold816]

contig00819-186L-53.8D
[Scaffold819]

contig00818-188L-76.2D
[Scaffold818]

contig00829-167L-47.8D
[Scaffold829]

contig00828-172L-138.8D
[Scaffold828]

contig00831-161L-133.4D
[Scaffold831]

contig00830-164L-70.0D
[Scaffold830]

contig00825-178L-61.0D
[Scaffold825]

contig00824-180L-30.2D
[Scaffold824]

contig00827-177L-100.3D
[Scaffold827]

contig00826-177L-79.8D
[Scaffold826]

contig00804-221L-105.4D
[Scaffold804]

contig00805-217L-74.2D
[Scaffold805]

contig00806-215L-92.7D
[Scaffold806]

contig00807-210L-40.0D
[Scaffold807]

contig00800-225L-40.0D
[Scaffold800]

contig00801-225L-61.1D
[Scaffold801]

contig00802-224L-55.4D
[Scaffold802]

contig00803-223L-99.8D
[Scaffold803]

contig00812-201L-59.8D
[Scaffold812]

contig00813-198L-68.0D
[Scaffold813]

contig00814-193L-90.9D
[Scaffold814]

contig00815-191L-85.9D
[Scaffold815]

contig00808-210L-59.8D
[Scaffold808]

contig00809-207L-98.8D
[Scaffold809]

contig00810-205L-86.4D
[Scaffold810]

contig00811-202L-50.3D
[Scaffold811]

contig00791-242L-202.5D
[Scaffold791]

contig00790-245L-84.9D
[Scaffold790]

contig00789-245L-96.2D
[Scaffold789]

contig00788-247L-136.0D
[Scaffold788]

contig00787-248L-91.3D
[Scaffold787]

contig00786-249L-87.3D
[Scaffold786]

contig00785-249L-42.9D
[Scaffold785]

contig00784-251L-88.2D
[Scaffold784]

contig00799-234L-96.3D
[Scaffold799]

contig00798-234L-92.7D
[Scaffold798]

contig00797-236L-141.9D
[Scaffold797]

contig00796-236L-118.9D
[Scaffold796]

contig00795-234L-85.1D
[Scaffold795]

contig00794-238L-191.2D
[Scaffold794]

contig00793-238L-87.2D
[Scaffold793]

contig00792-240L-81.4D
[Scaffold792]

contig00774-259L-95.1D
[Scaffold774]

contig00775-257L-54.9D
[Scaffold775]

contig00772-260L-92.3D
[Scaffold772]

contig00773-260L-74.2D
[Scaffold773]

contig00770-261L-83.6D
[Scaffold770]

contig00771-261L-91.2D
[Scaffold771]

contig00768-265L-101.7D
[Scaffold768]

contig00782-253L-99.8D
[Scaffold782]

contig00783-253L-62.0D
[Scaffold783]

contig00780-254L-92.1D
[Scaffold780]

contig00781-253L-43.1D
[Scaffold781]

contig00778-255L-159.8D
[Scaffold778]

contig00776-255L-49.9D
[Scaffold776]

contig00777-255L-100.7D
[Scaffold777]

contig00881-47L-52.5D
[Scaffold881]

contig00880-48L-123.1D
[Scaffold880]

contig00883-47L-52.8D
[Scaffold883]

contig00882-47L-85.5D
[Scaffold882]

contig00885-44L-306.6D
[Scaffold885]

contig00884-45L-154.5D
[Scaffold884]

contig00887-41L-155.8D
[Scaffold887]

contig00886-42L-50.0D
[Scaffold886]

contig00889-37L-100.5D
[Scaffold889]

contig00888-40L-194.0D
[Scaffold888]

contig00891-34L-52.0D
[Scaffold891]

contig00890-35L-188.6D
[Scaffold890]

contig00893-29L-52.8D
[Scaffold893]

contig00892-29L-38.6D
[Scaffold892]

contig00895-27L-106.0D
[Scaffold895]

contig00894-28L-52.0D
[Scaffold894]

contig00864-67L-130.8D
[Scaffold864]

contig00865-67L-88.8D
[Scaffold865]

contig00866-66L-93.2D
[Scaffold866]

contig00867-64L-47.8D
[Scaffold867]

contig00868-62L-35.4D
[Scaffold868]

contig00869-62L-57.0D
[Scaffold869]

contig00870-60L-47.0D
[Scaffold870]

contig00871-59L-56.2D
[Scaffold871]

contig00872-59L-170.3D
[Scaffold872]

contig00873-59L-48.0D
[Scaffold873]

contig00874-58L-73.5D
[Scaffold874]

contig00875-57L-52.6D
[Scaffold875]

contig00876-56L-47.7D
[Scaffold876]

contig00877-52L-47.8D
[Scaffold877]

contig00878-50L-40.1D
[Scaffold878]

contig00879-49L-49.2D
[Scaffold879]

contig00851-101L-71.3D
[Scaffold851]

contig00850-101L-63.9D
[Scaffold850]

contig00849-102L-145.5D
[Scaffold849]

contig00848-102L-139.6D
[Scaffold848]

contig00855-90L-84.5D
[Scaffold855]

contig00854-90L-138.7D
[Scaffold854]

contig00853-91L-56.2D
[Scaffold853]

contig00852-97L-50.8D
[Scaffold852]

contig00859-81L-82.9D
[Scaffold859]

contig00858-83L-42.2D
[Scaffold858]

contig00857-84L-65.6D
[Scaffold857]

contig00856-88L-64.7D
[Scaffold856]

contig00863-68L-54.1D
[Scaffold863]

contig00862-73L-139.2D
[Scaffold862]

contig00861-74L-47.4D
[Scaffold861]

contig00860-76L-102.1D
[Scaffold860]

contig00834-151L-64.3D
[Scaffold834]

contig00835-150L-35.7D
[Scaffold835]

contig00832-160L-159.2D
[Scaffold832]

contig00833-153L-61.9D
[Scaffold833]

contig00838-134L-67.1D
[Scaffold838]

contig00839-131L-55.5D
[Scaffold839]

contig00836-144L-76.1D
[Scaffold836]

contig00837-135L-66.5D
[Scaffold837]

contig00842-113L-55.3D
[Scaffold842]

contig00843-113L-24.5D
[Scaffold843]

contig00840-120L-175.6D
[Scaffold840]

contig00841-116L-71.5D
[Scaffold841]

contig00846-109L-56.3D
[Scaffold846]

contig00847-104L-46.3D
[Scaffold847]

contig00844-112L-59.2D
[Scaffold844]

contig00845-108L-51.5D
[Scaffold845]

contig00916-3L-36.3D
[Scaffold916]

contig00914-4L-36.2D
[Scaffold914]

contig00915-4L-43.0D
[Scaffold915]

contig00912-5L-38.4D
[Scaffold912]

contig00913-4L-40.8D
[Scaffold913]

contig00911-10L-39.0D
[Scaffold911]

contig00910-12L-54.2D
[Scaffold910]

contig00909-15L-44.4D
[Scaffold909]

contig00908-15L-28.7D
[Scaffold908]

contig00907-15L-92.5D
[Scaffold907]

contig00906-16L-47.2D
[Scaffold906]

contig00905-16L-42.0D
[Scaffold905]

contig00904-17L-40.3D
[Scaffold904]

contig00903-20L-48.8D
[Scaffold903]

contig00902-21L-297.4D
[Scaffold902]

contig00901-23L-42.9D
[Scaffold901]

contig00900-23L-49.0D
[Scaffold900]

contig00899-24L-47.8D
[Scaffold899]

contig00898-24L-32.2D
[Scaffold898]

contig00897-25L-45.1D
[Scaffold897]

contig00896-25L-90.4D
[Scaffold896]

(b)

qseqid! sseqid! pident! length! mismatch gapopen! qstart ! qend!! sstart ! send!evalue

contig591!Ref! 100.00! 532! ! 0! ! 0! ! 1! ! 532! ! 737796! 737265  0.0
contig591!Ref! 100.00! 532! ! 0! ! 0! ! 1! ! 532! ! 741567! 742098  0.0

qseqid! ! sseqid! pident! length! mismatch gapopen! qstart ! qend!  sstart ! send   eval

contig593-rep  Ref       100.00  ! 532     ! 0       ! 0       ! 1       ! 532     737796  737265  0.0
contig593-rep  Ref       100.00  ! 532     ! 0       ! 0       ! 1       ! 532     741567  742098  0.0
contig593-rep  Var       99.62   ! 532     ! 2       ! 0       ! 1       ! 532     741567  742098  0.0
contig593-rep  Var       99.25   ! 532     ! 4       ! 0       ! 1       ! 532     737796  737265  0.0
contig456-hap  Ref       100.00  ! 838     ! 0       ! 0       ! 1       ! 838     743297  744134  0.0
contig456-hap  Var       99.76   ! 838     ! 2       ! 0       ! 1       ! 838     744134  743297  0.0
contig694-rep  Ref       100.00  ! 375     ! 0       ! 0       ! 1       ! 375     811544  811170  0.0
contig694-rep  Ref       99.47   ! 376     ! 1       ! 1       ! 1       ! 375     816180  816555  0.0
contig694-rep  Var       100.00  ! 375     ! 0       ! 0       ! 1       ! 375     811544  811170  0.0
contig694-rep  Var       99.20   ! 376     ! 2       ! 1       ! 1       ! 375     816180  816555  0.0

(c)

Figure 4.17: (a) The inversion report shows contig 456 whose edges and depth distinguish it as a
probable inverted haplotype. (b) A graphic representation of the subgraph at contig 456 showing two
excluded edges. (c) The BLAST result of all three inversions from the inversion report, verifying
their correct identification and classification.

coverage (e.g., Figure 4.15b). Inverted haplotype candidates also require that each of two adjacent

contigs be linked via edges from both ends of the candidate.

We tested our new predictive module using a synthesized diploid genome (heterozygosity

rate ≈0.2%) from the zebra finch chromosome 25 containing an inverted haplotype. We generated

error-free reads for assembly with Newbler and a graph was created using ScaffoldScaffolder and

Bowtie. Using our greedy heuristic algorithm, we assigned orientations to the contigs which resulted

in a subgraph which excluded 12 edges. The potential inversion report listed two inverted repeats

and an inverted haplotype (see Figure 4.17a). We manually verified that all three inversions were

accurate using BLAST and verified that the inverted haplotype aligned at the expected location in

the reference haplotype genomes (see Figure 4.17c).
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Significantly more testing and research is required to assess the efficacy of this method

on graphs of varying sizes and complexities, with inverted elements of varying lengths, and in

the presence of errors; however, both the theory and our small test confirm that edges which are

excluded in solving the contig orientation problem can be used to detect inverted repeats and inverted

haplotypes in de novo assemblies, particularly when such sequences are adjacent to multiple or

heavily supported excluded edges.

4.7 Conclusion

The contig orientation problem, which we have formally framed as the MAX-DIR-SUBGRAPH

problem, has been heretofore treated only cursorily in the literature. While several algorithms make

reference to the problem, few (e.g., [38]) explicitly acknowledge it as an NP-complete optimization

problem, a fact which we have formally proven. The problem has traditionally been addressed

(somewhat apologetically) using a greedy heuristic algorithm, similar to that which we have herein

presented. We have set forth a linear-time reduction from the MAX-DIR-SUBGRAPH problem

to the MAX-CUT problem and have assessed the relative performance of the traditional greedy

approach with a more advanced MAX-CUT heuristic solution and with a random heuristic solution.

Our results suggest that the greedy heuristic algorithm outperforms other algorithms due to the

nature of scaffold graphs. In such graphs, heavier-weighted edges are inherently pre-disposed

towards being included in the optimal solution, and thus a greedy algorithm, which maximally

favors such edges, approximates an ideal solution.

One unanticipated outcome of this study has been the discovery of a novel method for

identifying inverted repeats and inversion variants, both of which contradict the basic single-

orientation assumption. Such inversions have previously been noted as being difficult to detect and

are directly involved in the genetic mechanisms of several diseases. Thus this method, which we

have implemented as a module of ScaffoldScaffolder, has the potential to assist in the automated

discovery of biologically significant features in de novo genome assembly.
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Chapter 5

Overview

5.1 Contributions

In considering the problem of heterozygous diploid genome assembly, we have focused primarily on

what is termed the contig orientation problem. We have been able to formally define this problem

using bidirected graph theory, and have shown it to be equivalent to existing graph decision problems

(weighted MAX-2-XORSAT and weighted MAX-CUT). The problem has traditionally been solved

(somewhat apologetically) using a greedy heuristic algorithm, similar to that which we have herein

presented. We have set forth a linear-time reduction from the MAX-DIR-SUBGRAPH problem

to the MAX-CUT problem and have assessed the relative performance of the traditional greedy

approach with a more advanced MAX-CUT heuristic solution and with a random heuristic solution.

Our results suggest that the greedy heuristic algorithm actually outperforms other algorithms due to

the nature of scaffold graphs. In such graphs, heavier-weighted edges are inherently pre-disposed

towards being included in the optimal solution, and thus a greedy algorithm, which maximally

favors such edges, approximates an ideal solution.

We have demonstrated how this approach to the contig orientation problem facilitates de

novo feature extraction in diploid genomes, specifically inverted sequences. This illustrates that

adaptation of existing graph algorithms to the problem of diploid genome assembly does aid in

the resolution of haplotype-specific variation. Furthermore, we have created ScaffoldScaffolder, a

highly-configurable standalone heterozygous genomic scaffolder, which includes a module for this

diploid feature extraction.
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5.2 Future Work

The contig orientation problem is preliminary to the task of scaffold formation. Future work focuses

on the creation of linear, haplotype-specific scaffolds via further edge reduction in the scaffold graph.

An algorithm has been developed and implemented which uses one of several linear classifiers (e.g.,

multilayer perceptron, support vector machine, etc.) to classify pairs of contigs as homologous or

non-homologous. The classifier is trained on characteristics of homologous sequences as found in

what are termed “bubble structures”, which tend to accurately indicate homologous, heterozygous

genomic regions. Feature values are based on sequence depths, lengths, and similarities. Once

homologous contigs are identified, haplotype-specific scaffolds can be formed from each homolog.

An important follow-up will then be the phasing of haplotypes, which refers to the process of

correctly scaffolding the correct combination of haplotype-specific variants in each homologous

linear scaffold. This novel approach to heterozygous genomic scaffolding, in tandem with the

research already completed, promises to provide leading solutions in diploid genome assembly.
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