
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2015-04-01

Using Instance-Level Meta-Information to
Facilitate a More Principled Approach to Machine
Learning
Michael Reed Smith
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Smith, Michael Reed, "Using Instance-Level Meta-Information to Facilitate a More Principled Approach to Machine Learning"
(2015). All Theses and Dissertations. 5271.
https://scholarsarchive.byu.edu/etd/5271

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5271?utm_source=scholarsarchive.byu.edu%2Fetd%2F5271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Using Instance-Level Meta-Information to Facilitate a More

Principled Approach to Machine Learning

Michael Reed Smith

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Tony Martinez, Chair
Christophe Giraud-Carrier

Dan Ventura
Quinn Snell

Daniel Zappala

Department of Computer Science

Brigham Young University

April 2015

Copyright c© 2015 Michael Reed Smith

All Rights Reserved

ABSTRACT

Using Instance-Level Meta-Information to Facilitate a More
Principled Approach to Machine Learning

Michael Reed Smith
Department of Computer Science, BYU

Doctor of Philosophy

As the capability for capturing and storing data increases and becomes more ubiqui-
tous, an increasing number of organizations are looking to use machine learning techniques
as a means of understanding and leveraging their data. However, the success of applying
machine learning techniques depends on which learning algorithm is selected, the hyperpa-
rameters that are provided to the selected learning algorithm, and the data that is supplied
to the learning algorithm. Even among machine learning experts, selecting an appropriate
learning algorithm, setting its associated hyperparameters, and preprocessing the data can
be a challenging task and is generally left to the expertise of an experienced practitioner,
intuition, trial and error, or another heuristic approach. This dissertation proposes a more
principled approach to understand how the learning algorithm, hyperparameters, and data
interact with each other to facilitate a data-driven approach for applying machine learning
techniques. Specifically, this dissertation examines the properties of the training data and
proposes techniques to integrate this information into the learning process and for prepro-
cessing the training set. It also proposes techniques and tools to address selecting a learning
algorithm and setting its hyperparameters.

This dissertation is comprised of a collection of papers that address understanding the
data used in machine learning and the relationship between the data, the performance of a
learning algorithm, and the learning algorithms associated hyperparameter settings. Con-
tributions of this dissertation include:

• Instance hardness that examines how difficult an instance is to classify correctly.

• The hardness measures that characterize properties of why an instance may be mis-
classified.

• Several techniques for integrating instance hardness into the learning process. These
techniques demonstrate the importance of considering each instance individually rather
than doing a global optimization which considers all instances equally.

• Large-scale examinations of the investigated techniques including a large numbers of
examined data sets and learning algorithms. This provides more robust results that
are less likely to be affected by noise.

• The Machine Learning Results Repository, a repository for storing the results from
machine learning experiments at the instance level (the prediction for each instance is
stored). This allows many data set-level measures to be calculated such as accuracy,

precision, or recall. These results can be used to better understand the interaction
between the data, learning algorithms, and associated hyperparameters. Further, the
repository is designed to be a tool for the community where data can be downloaded and
uploaded to follow the development of machine learning algorithms and applications.

Keywords: machine learning, supervised learning, classification, meta-learning, instance
hardness, machine learning results repository

ACKNOWLEDGMENTS

I am indebted to many people who played a significant role in the completion of this

dissertation. First and foremost, I express my gratitude to my Heavenly Father for His tender

mercies in granting me light and knowledge in pursuing this research. I am grateful to have

had the opportunity of conducting research while living in relative comfort. I recognize that

this is not a blessing that everyone receives.

I thank my advisor, Dr. Tony Martinez, who took a chance on me and funded me through

out my graduate career. I am grateful for the many lessons in machine learning, doing good

research, writing, teaching, and life in general. I also thank Dr. Christophe Giraud-Carrier

who co-authored several papers and also provided counsel in regards to my research and the

way academia works. I am also grateful for the many other faculty members who take time

to work with me and discuss various topics, specifically, Dr. Dan Ventura and Dr. Mark

Clement.

Several portions of this dissertation would not have been completed were it not for the

support and efforts from several lab-mates and undergraduate students. In this context, I

thank (the now) Dr. Michael Gashler, Logan Mitchell, Andrew White, Daniel Saunders, and

Michael Walker.

I would be remiss if I did not thank my family, particularly my wife, Katie, who patiently

waited for me to finish my schooling while living on a college student’s income. I am grateful

for her support and encouragement. I thank my children, Jack, Max, Evelyn, and Lucy – for

the joy that they bring into my life, for accepting me with all of my flaws, and motivating

me to press forward.

Finally, I recognize that I am standing on shoulders of many researchers who have gone

before me. Without their work, I would not have been able to accomplish my research.

Table of Contents

List of Figures x

List of Tables xii

I Background and Motivation 1

1 Introduction 2

1.1 Supervised learning . 3

1.2 Noisy, Outlier, and Detrimental Instances . 4

1.3 Meta-learning . 8

1.4 Overview of the Dissertation . 9

1.5 Publications . 10

References 12

2 Related Work 14

2.1 Meta-Learning . 14

2.2 Data Complexity . 15

2.3 Instance Filtering/Selection . 15

2.4 Parameter Tuning/Modification . 17

References 18

3 An Instance Level Analysis of Data Complexity 22

v

3.1 Introduction . 22

3.2 Instance Hardness . 25

3.3 Hardness Measures . 29

3.4 Experimental Methodology . 34

3.5 Instance-level Analysis . 38

3.6 Integrating Instance Hardness into the Learning Process 47

3.6.1 Informative Error . 48

3.6.2 Filtering the data set . 51

3.7 Data Set-level Analysis . 55

3.8 Related Work . 60

3.9 Conclusions and Future Work . 64

References 66

II Improving Machine Learning by Integrating Meta-information

about Individual Training Examples into the Learning Process 72

4 Improving Classification Accuracy by Identifying and Removing Instances

that Should Be Misclassified 74

4.1 Introduction . 74

4.2 Experimental Methodology . 77

4.3 PRISM and Instance Types . 79

4.4 Results . 83

4.5 Related Work . 90

4.6 Conclusions . 91

References 93

5 Reducing the Effects of Detrimental Instances 97

vi

5.1 Introduction . 98

5.2 Related Work . 100

5.3 Modeling Detrimentality . 101

5.4 Estimating p(yi|xi) . 103

5.5 Methodology . 105

5.6 Results . 108

5.6.1 Weighting Schemes . 110

5.6.2 Weighting VS Filtering . 110

5.7 Conclusions . 114

References 114

6 A Comparative Evaluation of Curriculum Learning with Filtering and

Boosting in Supervised Classification Problems 118

6.1 Introduction . 119

6.2 Related Works . 122

6.3 Ordering the Instances . 125

6.4 Empirical Evaluation . 129

6.4.1 Curriculum Learning . 131

6.4.2 Comparison with Filtering and Boosting 140

6.5 Conclusions . 144

References 146

Appendix 150

6.A Accuracies from the Learning Algorithms used to Compute Instance Hardness 150

6.B Individual Results for Adjusting the Initial Complexity Level 152

6.C Methodology for Hyper-Parameter Optimization 161

vii

References 162

7 Becoming More Robust to Label Noise with Classifier Diversity 163

7.1 Introduction . 163

7.2 Noise Identification using Classifier Diversity 165

7.2.1 Identifying Noisy Instances . 165

7.2.2 Handling Noisy Instances . 168

7.3 Other Noise Handling Approaches . 169

7.3.1 Filtering Methods . 170

7.3.2 Weighting Methods . 172

7.4 Methodology . 173

7.5 Results . 175

7.5.1 Application of Noise Handling without Artificial Noise 175

7.5.2 Comparison of Noise Handling Techniques 179

7.5.3 Comparison with an Ensemble . 183

7.6 Conclusions . 185

References 186

III Conclusion 190

8 The Potential Benefits of Data Set Filtering and Learning Algorithm Hy-

perparameter Optimization 192

8.1 Introduction . 192

8.2 Related Work . 194

8.3 Preliminaries . 195

8.3.1 Hyperparameter Optimization . 197

8.3.2 Filtering . 198

8.4 Implementation Details . 199

viii

8.4.1 Bayesian Hyperparameter Optimization 199

8.4.2 Filtering . 200

8.5 Filtering and HPO . 204

8.5.1 Experimental Methodology . 204

8.5.2 Optimistic Approach . 205

8.5.3 Standard Approach . 207

8.6 Conclusion . 208

References 209

9 An Easy to Use Repository for Comparing and Improving Machine Learn-

ing Algorithm Usage 213

9.1 Introduction . 214

9.2 Meta-data Set Descriptions . 217

9.2.1 Experiment Information . 217

9.2.2 Meta-data sets . 220

9.3 Database Description . 222

9.4 Extending the Database . 225

9.5 Included Meta-features . 225

9.6 Conclusions and Future Work . 231

References 232

10 Conclusions, Contributions, and Remaining Challenges 236

10.1 Summary and Contributions . 236

10.2 Directions for Future Work . 238

ix

List of Figures

1.1 A 2-dimensional dataset demonstrating the effects of noisy instances. 6

3.1 Dendrogram of the considered learning algorithms clustered using UML. . . 28

3.2 Hypothetical 2-dimensional data set. 29

3.3 Percentage of instances that are misclassified by at least a percentage of the

learning algorithms. 39

3.4 Hypothetical 2-dimensional data set. 60

4.1 A 2-dimensional dataset demonstrating the effects of noisy instances. 76

5.1 A hypothetical 2-dimensional data set that shows the effects of detrimental

instances. 100

5.2 Graphical models for inferring a class label in machine learning. 102

5.3 Dendrogram of the considered learning algorithms clustered using unsuper-

vised metalearning. 105

6.1 A hypothetical 2-dimensional data set. 119

6.2 Dendrogram of the considered learning algorithms clustered using unsuper-

vised meta-learning. 128

7.1 The average percent reduction in error for each learning algorithm when using

a noise handling technique for various noise levels. 178

8.1 Hypothetical 2-dimensional data set that shows the potential effects of detri-

mental instances in the training data on a learning algorithm. 197

x

8.1 Dendrogram of the considered learning algorithms clustered using unsuper-

vised metalearning. 202

9.1 Hierarchical representation of how the results from machine learning experi-

ments are stored in the NoSQL database for the MLRR. 224

xi

List of Tables

3.1 Set L of ESLAs used to calculate instance hardness. 27

3.2 List of hardness measures and what they measure. 33

3.3 Datasets used. 35

3.4 Spearman correlation matrix for the hardness measures. 40

3.5 Spearman correlation coefficients relating hardness measures to the examined

methods for identifying hard instances. 41

3.6 The hardness measures and instance hardness values for an example set of

instances. 42

3.7 Correlation of the hardness measures with IH class. 44

3.8 Statistics for instances that belong to the majority class and those that do not. 46

3.9 Hardness measures and instance hardness values for an example set of instances. 47

3.10 Pairwise comparison of informative error with standard backpropagation, RENN,

FaLKNR, AdaBoost, and MultiBoost. 50

3.11 Average accuracy comparing the filtering techniques against not filtering. . . 53

3.12 Average accuracy comparing the adaptive filtering approach against IH 0.7. . 56

3.13 The frequency of selecting a learning algorithm when adaptively constructing

a filter set. 57

3.14 List of complexity measures from Ho and Basu. 58

3.15 Spearman correlation matrix comparing the hardness measures against the

complexity measures from Ho and Basu. 59

3.16 The Spearman correlation coefficients for each hardness measure and Ho and

Basu’s complexity measures relating to data set hardness. 59

xii

3.17 Comparison summary of the methods that identify hard instances. 61

4.1 List of learning algorithms. 78

4.2 Comparison of training with the original dataset and training without remov-

ing ISMs. 84

4.3 The average classification accuracy for each learning algorithm trained with

and without filtering. 86

4.4 The average rank for each learning algorithm on 48 data sets trained with and

without filtering. 87

4.5 The average classification accuracy for each learning algorithm trained with

various subsets of the data set. 87

4.6 The average classification accuracy for each learning algorithm trained with

various subsets of the additional data sets. 89

5.1 The diverse set of algorithms used to estimate p(yi|xi). 104

5.2 How instance weighting is integrated into the considered learning algorithms. 106

5.3 Average accuracy of the investigated noise handling approaches with no arti-

ficial noise added to the data sets. 109

5.4 Comparison of the average accuracy from the instance weighting methods. . 111

5.5 Comparison of RDIL-L with the L-filter. 113

6.1 Set L of ESLAs used to calculate instance hardness. 127

6.2 Datasets used organized by number of instances, number of attributes, and

attribute type. 130

6.3 Comparison of different strategies of when to add more complex instances in

curriculum learning for MLPs and DTs. 135

6.4 Comparison of different initial complexity levels for the training set. 137

6.5 Comparison of curriculum learning with parameter optimization for MLPs

and DTs. 139

xiii

6.6 Pair-wise comparison of curriculum learning with filtering and boosting MLPs. 141

6.7 Pair-wise comparison of curriculum learning with filtering and boosting DTs. 142

6.A.1The accuracies for each learning algorithm and for a voting ensemble. 151

6.B.1Comparison of different initial complexity levels for curriculum learning in

MLPs for each data set. 153

6.B.2Comparison of different initial complexity levels for curriculum learning in

DTs for each data set. 155

6.B.3A comparison of curriculum learning, filtering, and boosting for MLPs for

each data set. 157

6.B.4A comparison of curriculum learning, filtering, and boosting for DTs for each

data set. 159

6.C.1The parameters that were optimized using a random search and the distribu-

tions from which the parameter values were drawn. 162

7.1 Set of diverse learning algorithms. 168

7.2 How instance weighting is integrated into the examined learning algorithms. 169

7.1 Datasets used. 174

7.1 The results of using the investigated noise handling approaches with no arti-

ficial noise added to the data sets. 177

7.2 The percent reduction in error for the noise handling techniques. 180

7.3 A comparison of the effect of the instance weighting methods. 181

7.4 A comparison of L-filtering with the other filtering techniques. 182

7.5 A comparison of the L-ensemble against the investigated noise handling ap-

proaches. 184

8.1 Set of learning algorithms G used to estimate p(yi|xi). 202

8.1 The results for maximizing the 10-fold cross-validation accuracy for HPO and

filtering. 205

xiv

8.2 The frequency of selecting a learning algorithm when adaptively constructing

an ensemble filter. 206

8.3 The results comparing the performance of using the default hyperparameters,

HPO, and the G-filter. 208

9.1 The structure of the meta-data set that describes the hyperparameter settings

for the learning algorithms stored in the database. 218

9.2 The structure of the table for mapping learning algorithm hyperparameters

between different toolkits. 218

9.3 The structure of the meta-data set that indicates which instances were used

for training. 219

9.4 The structure of the meta-data set at the instance level. 221

9.5 The structure of the meta-data set at the data set level. 221

9.6 The structure of the table for mapping learning algorithm hyperparameters

among toolkits. 222

xv

Part I

Background and Motivation

Part I provides the background information and motivation for taking a more principled

approach to machine learning, the topic of this dissertation.

Chapter 1 provides a high-level overview of machine learning, provides the context for

this dissertation, and describes the motivation for this dissertation. Specifically, it presents

the dependencies of the induced hypothesis on the learning algorithm, its associated hyper-

parameters, and the training data. Meta-learning is then introduced including the difficulties

encountered in meta-learning. Finally, the remainder of the dissertation is outlined.

Most machine learning results and data complexity studies have been conducted at the

data set-level. Chapter 3 establishes instance hardness and the hardness measures as a

means of measuring and characterizing instance complexity. Chapter 3 was published under

the following reference.

Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. “An Instance Level

Analysis of Data Complexity”, Machine Learning, 95(2): 225–256, 2014.

Part II explores ways to incorporate the information from instance hardness into the

learning process. Part III concludes this dissertation and provides directions for future

research.

1

Chapter 1

Introduction

Machine learning is the science of facilitating computers to learn from past experience and

includes a set of learning algorithms to accomplish this task. Machine learning algorithms

allow computers to act without being explicitly programmed for a specific task and allow

computers to change their behaviors overtime. As such, machine learning algorithms are

used for complex tasks that are difficult to, or cannot be, explicitly programmed or modeled.

Machine learning algorithms are becoming more and more ubiquitous in many domains

and applications. For example, machine learning techniques are being used for individualized

spam filters that update the filters as spammers modify their spamming tactics [2]. They

are used to recommend items to customers on sites such as Amazon.com [5] or Netflix [7].

As more and more data is collected, making it less feasible for humans to analyze the data,

machine learning will be used in an increasing number of domains and further integrated

into everyday tasks. However, the success of the application of machine learning techniques

depends on which machine learning algorithm is being used, its associated hyperparameters,

and the data that is being used for training. Currently, learning algorithm selection, hyperpa-

rameter selection, and data preprocessing are generally done using a heuristic approach such

as trial and error or using the expertise of a machine learning practitioner. This dissertation

proposes a more principled approach to machine learning, where principled refers to first

understanding the relationship between the learning algorithms, their hyperparameters, and

the training data (the principles of machine learning) and then adhering to these principles

in the application of machine learning. This dissertation is not the first attempt at more

2

principled machine learning. This dissertation, however, is unique in that the examination of

the principles of machine learning begins at the instance-level. This dissertation shows that

understanding the data better and incorporating this knowledge into the learning process

significantly improves the performance of machine learning algorithms.

1.1 Supervised learning

Machine learning algorithms can use either supervised or unsupervised learning. In super-

vised machine learning, a learning algorithm is presented with a set of training examples or

instances consisting of a pair of vectors X and Y where X is the set of features representing

an object or instance and Y is the target output value. Given a set of training instances

< X, Y >, the goal of supervised machine learning algorithms is to induce a model or hy-

pothesis h from the space of possible hypotheses H such that h : X → Y . Depending on

the chosen learning algorithm, the hypothesis h can be inferred in a number of ways such

as generating a set of rules, calculating probabilities, or training the weights in a neural

network. This dissertation focuses on supervised learning algorithms for classification (as

opposed to regression).

To determine if a hypothesis h from H is better than another, some scoring measure is

also needed. Common scoring measures are accuracy, precision, and correlation. A common

problem faced in machine learning is overfit, where a model will learn the nuances of the data

rather than learn the underlying concepts of the task. One example of overfitting the data

is when a learning algorithm memorizes the training data. This is observed when a model

achieves a high score when evaluated on the data used for training, but produces low scores

when it is used on novel data. Thus, a set of test instances is also provided or is partitioned

from the training set for scoring. Ideally, the set of test instances is representative of the

task that is being modeled. With this assumption, the models are evaluated on the test

instances rather than on the training data. Because of overfit, there is a trade-off between

the complexity of the model and a model’s score (known as regularization [1]). As the model

3

becomes more complex, there is a greater risk of overfitting the data. Simpler models are

often better able to generalize on novel data instances.

The free parameters available for inducing a hypothesis include the learning algorithm

g, the training data T that g is trained on, and the learning algorithm’s associated hyper-

parameters λ. The hyperparameters refer to the user-set parameters available to a learning

algorithm such as the number of hidden nodes in a multilayer-perceptron or the kernel func-

tion for a support vector machine. Thus, an induced hypothesis h is the result of training g

on T with hyperparameters λ:

h = g(T, λ).

This dissertation primarily examines understanding the individual training instances and

then incorporating this information into the learning process. Selecting the learning algo-

rithm and setting its hyperparameters are also examined.

1.2 Noisy, Outlier, and Detrimental Instances

Real-world data sets are often noisy. The work in this dissertation seeks to identify and prop-

erly handle instances that result in lower performing induced models. However, the notion

of noisy instances and related notions of outlier and detrimental instances are not formally

defined. Noisy instances and outliers are similar concepts and are often used interchangeably.

Noise is introduced into the data by a system or process that corrupts the data in some way.

For example, noise can be introduced from hardware failures, faulty measurement readings,

typos, or precision errors. Therefore, noisy instances are those instances that have noise in

their measured features. Outliers are instances where the observed values are an abnormal

distance from the other observed values. For example, in statistics an abnormal distance is

often defined as being more than two or three standard deviations from the mean. Outliers

can occur for various reasons such as noise in the data or the instance is valid but an ex-

4

ception to the rule and is infrequently observed. To determine if an instance is noisy or an

exception, generally a domain expert is required.

One of the purposes of this dissertation is to identify and characterize instances that are

detrimental. Detrimental instances are those instances that result in a lower quality induced

model if they are used for training. The quality of the induced model h is characterized by

its empirical error for a specified error function E on a test set V :

E(h, V) =
1

|V |

∑

〈xi,yi〉∈V

E(h(xi), yi)

where V can be T or a disjoint set of instances. In k-fold cross-validation, the empirical error

is the average empirical error from the k folds (i.e., 1/k E(hi, Vi)). In many cases, outliers

or noisy instances are detrimental. However, other instances, such as exceptions, can be

detrimental for inducing a model of the data even if they are labeled correctly. Formally,

a set D of detrimental instances is a subset of the training data T that, when used in

training, increases the empirical error E(·, ·) on a validation set V , i.e., E(g(T, λ), V) >

E(g(T−D, λ), V) regardless of if the detrimental instances are outliers, exceptions, or neither.

The challenge, then, is how to identify detrimental instances. This dissertation addresses

this with instance hardness which is described below.

Generally in machine learning, a learning algorithm is trained on all of the training

instances. Seeking to increase the classification accuracy on all of the instances in the dataset

(when noisy/detrimental instances exist) encourages the learning algorithms to overfit the

data. As a result, most models have a mechanism to avoid overfitting such as early stopping

or pruning to avoid learning the noisy or outlier training instances. However, most learning

algorithms use all of the training instances to generate a model of the data, including the

detrimental instances. Thus, the detrimental instances influence the induced model. For

example, a decision tree will use all of the instances to determine which attribute to split on.

A detrimental instance could cause the learning algorithm to pick a sub-optimal attribute

5

Figure 1.1: A hypothetical 2-dimensional dataset that illustrates how noisy instances (circles
with striped fill) affect the model generated by a learning algorithm. The solid line represents
the true classification border and the dashed line represents the classification from a learning
algorithm that is affected by noisy instances. The filled in instances represent border points.

to split on. Also, when training, many learning algorithms focus on learning the instances

that are misclassified and thus seek to learn the noisy instances. For example, multilayer

perceptrons update the weights between perceptrons based on the error associated with a

given instance. Noisy instances have high error and will have more of an impact on the

weight values than the non-noisy instances.

The potential impact of training with detrimental instances is demonstrated in the hy-

pothetical two-dimensional data set shown in Figure 1.1. The solid line represents the true

classification boundary (separating the circles from the squares) and the dotted line repre-

sents the classification boundary that results from training with the noisy instances (circles

with striped fill). The instances with solid fill represent the instances that lie on the border

and are consequently most affected by the presence of the outliers. In this example, in-

stances 2 and 3 are outliers that “pull” the classification boundary as the learning algorithm

attempts to classify them correctly. As a consequence, two instances are misclassified. In

this case, it would be better to simply ignore the noisy instances. Instance 1, although tech-

nically an outlier as it is different from the other circle instances, illustrates the point that

there are many different types of noisy instances–some that affect classification and others

that do not (since it is not misclassified, many learning algorithms, such as a support vector

6

machine, will not penalize the model). In other learning algorithms, such as a multilayer

perceptron trained with backpropagation, instance 1 may shift the classification boundary

toward the circles. This will not affect the classification of the outlier instances but may

have an impact on the border points that are close to the classification boundary–causing

them to be misclassified. However, removing some of these border points that are close to

the classification boundary has the advantage of creating simpler classification boundaries

and can help avoid overfitting the training data [6].

Besides having a set of instances that are misleading, some instances are more important

for learning the hypothesis than other instances are. This is also illustrated in Figure 1.1.

The border points (filled-in instances) can be considered more important for defining the

classification boundary. In some learning algorithms, such as support vector machines, the

instances that define the border are explicitly found when inferring a model of the data.

However, the presence of noise and outliers affects the inferred classification boundary and,

in turn, the identification of the boundary points.

The question that then remains is how to identify detrimental instances. The brute

force approach would be to try every subset of possible training instances and observe which

subset performs the best. This approach, of course, is infeasible. This dissertation presents

instance hardness1 and uses instance hardness to identify detrimental instances automatically

(without the use of a domain expert). The underlying assumption of using instance hardness

is that instances that are frequently misclassified have the largest negative impact on the

induced model. To illustrate, consider a multilayer perceptron trained with backpropagation.

Instances that have the largest error (i.e. outliers or exceptions) will have the greatest

effect on the weight updates. Therefore, instances that have high degrees of error are likely

candidates for detrimental instances. When inferring a model from a data set, often all of

the instances are initially used indiscriminately, placing a dual task on the machine learning

algorithm of determining the importance of the instances while simultaneously inducing a

1Chapter 3

7

model of the data. This dissertation shows some techniques to deal with this issue including

filtering2, instance weighting3, and ordering the instances4.

The quantity and nature of the noise in the investigated data sets is unknown. It is

assumed that most real-world data sets are noisy to a certain degree, but without some

domain knowledge that assumption cannot be confirmed. Thus, in addition to examining

the proposed techniques on the unmodified data sets, the techniques are also examined on

data sets that have had artificial noise added to verify their effectiveness in the presence of

noise5 as well as without artificial noise.

1.3 Meta-learning

The field of meta-learning seeks to understand the interaction between the training data,

the learning algorithms, and their associated hyperparameters as they affect the induced

hypothesis. Like traditional machine learning, meta-learning learns from previous examples.

Meta-learning differs from traditional machine learning in that meta-learning learns from the

performance of multiple applications of a learning algorithm over many data sets. Traditional

machine learning learns from the experience on a specific task. Generally speaking, meta-

learning is concerned with learning how to learn and can guide the application of machine

learning techniques for a given problem. Ultimately, meta-learning aims to automate the

process of machine learning. Given a data set, a meta-learning system would determine

how to preprocess the training data and select a learning algorithm with its associated

hyperparameters that induces the most appropriate hypothesis for that task. Ideally, the

optimal hypothesis is desired. However, the optimal hypothesis is dependent on the test

data which may not be represented by the training data and finding the optimal hypothesis

is NP-hard [3]. Of course, intermediary steps in meta-learning include an advisory role in

suggesting step(s) to take.

2Chapter 4
3Chapter 5
4Chapter 6
5Chapters 5 and 7

8

Meta-learning faces several difficulties in reaching its goal, however. The search space

for meta-learning is at least exponential and usually infinite. The hypothesis space to search

includes all learning algorithms, all possible hyperparameter settings, and all possible vari-

ations of the training data. If a learning algorithm has a hyperparameter with continuous

values, there are an infinite number of settings to examine. Although generally not con-

sidered in meta-learning, this dissertation includes learning about the data and choosing a

subset of the training data in meta-learning since the training data has a large bearing on

the induced model. The variations of the training data include choosing a subset of the

instances to train on, selecting which features to include and/or creating additional features

using techniques such as principal component analysis [4]. Very little work in meta-learning

has focused on understanding the relationship between training instances which is what this

dissertation examines.

1.4 Overview of the Dissertation

Part I of this dissertation provides the background and motivation for this dissertation. It

consists of three chapters, including this one. Chapter 2 presents related work in the areas

of data complexity, data preprocessing, and meta-learning and how this dissertation falls

within the context of previous works. Chapter 3 introduces instance hardness which is used

to determine how difficult an instance is to correctly classify. It also presents several measures

that serve as instance-level meta-features describing characteristics about each instance.

With the exception of the final chapter, the remainder of this dissertation consists of a

collection of papers that have either been published or are in submission for publication in

journals or conference proceedings. The references for these papers are listed in the following

section and also appear at the beginning of the corresponding chapters.

Having established the problem of finding an appropriate hypothesis for a given prob-

lem and the notions of instance hardness and detrimental instances, Part II examines the

application of instance-level information into the learning process. Chapters 4 - 7 show sev-

9

eral results of integrating instance hardness into the learning process. Chapter 4 proposes

a method for filtering (removing instances), Chapter 5 proposes a method for weighting in-

stances, and Chapter 6 proposes a method for curriculum learning. Chapter 7 examines the

use of classifier diversity for being robust to class noise in filtering and ensembles.

Part III concludes this dissertation. It consists of a three chapters that further motivate

the study of instance-level features and a describes a repository to provide data for doing

meta-learning at the instance-level. Chapter 8 examines the potential benefits of hyperpa-

rameter selection and filtering and shows that the quality of the data has a much larger

potential impact than hyperparameter selection. Chapter 9 presents a repository for ma-

chine learning results. The goal of the repository is to be a community-based resource for

storing and accessing previous machine learning experiments. This data will facilitate the

promulgation of meta-learning at the instance and data set-levels. Chapter 10 provides a

summary of the contributions of this dissertation as well as some remaining challenges and

directions for future work.

In the chapters that follow, a large number of learning algorithms and data sets were

used for a more robust investigation. Some experiments were more computationally expen-

sive than others and the learning algorithms and data sets that were used were adjusted

accordingly. Data sets and learning algorithms were excluded if they did not finish running

due to memory overflow or running time6 on the Fulton super computer provided by Brigham

Young University7.

1.5 Publications

Chapters 3 - 9 of this dissertation are works that have been published or are in submission

for review as a results of this dissertation. The references for these works are listed here

according to the part and chapter in which they appear in this dissertation.

6The maximum runtime allowed was one week.
7https://marylou.byu.edu/

10

https://marylou.byu.edu/

I. Background and Motivation

2. Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. “An Instance Level

Analysis of Data Complexity”, Machine Learning, 95(2): 225–256, 2014.

II. Improving Machine Learning by Integrating Meta-information about

Individual Training Examples into the Learning Process

3. Michael R. Smith, and Tony Martinez. “Improving Classification Accuracy by Identify-

ing and Removing Instances that Should Be Misclassified”, In Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN 2011), pages 2690–2697,

August 2011.

4. Michael R. Smith, and Tony Martinez. “Reducing the Effects of Detrimental In-

stances”, In Proceedings of the 13th International Conference on Machine Learning

and Applications, pages 183–188, 2014.

5. Michael R. Smith, and Tony Martinez. “A Comparative Evaluation of Curriculum

Learning with Filtering and Boosting in Supervised Classification Problems”, Compu-

tational Intelligence, to appear, 2014.

6. Michael R. Smith, and Tony Martinez. “Becoming More Robust to Label Noise with

Classifier Diversity”, In Proceedings of the IEEE International Joint Conference on

Neural Networks (IJCNN 2015), to appear, July 2015.

Additional work that further examines filtering building on the methodology used to

calculate instance hardness can be found in the following references.

• Michael R. Smith, and Tony Martinez. “An Extensive Evaluation of Filtering Misclas-

sified Instances in Supervised Classification Tasks”, in submission, 2015.

III. Conclusion

11

7. Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. “The Potential

Benefits of Data Set Filtering and Learning Algorithm Hyperparameter Optimization”,

in submission 2015.

8. Michael R. Smith, Andrew White, Christophe Giraud-Carrier, and Tony Martinez.

“An Easy to Use Repository for Comparing and Improving Machine Learning Algorithm

Usage”, The ECAI Workshop on Meta-learning & Algorithm Selection (MetaSel), pages

41–48, 2014.

Finally, other work that deals with meta-learning at the data set-level that is tangential

to this work can be found in the following references.

• Michael R. Smith, Logan Mitchell, Christophe Giraud-Carrier, and Tony Martinez.

“Recommending Learning Algorithms and Their Associated Hyperparameters”, The

ECAI Workshop on Meta-learning & Algorithm Selection (MetaSel), pages 39–40, 2014.

• Michael R. Smith, Michael S. Gashler, and Tony Martinez. “A Hybrid Latent Vari-

able Neural Network Model for Item Recommendation”, In Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN 2015), to appear, July

2015.

References

[1] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learn-

ing, volume 1. springer New York, 2006.

[2] Enrico Blanzieri and Anton Bryl. A survey of learning-based techniques of email spam

filtering. Artificial Intelligence Review, 29(1):63–92, 2008.

[3] Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Agnostic

learning of monomials by halfspaces is hard. In 50th Annual IEEE Symposium on Foun-

dations of Computer Science, pages 385–394, 2009.

12

[4] Ian T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

[5] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-

item collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[6] D. Randall Wilson and Tony R. Martinez. Reduction techniques for instance-based

learning algorithms. Machine Learning, 38(3):257–286, 2000.

[7] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale parallel

collaborative filtering for the netflix prize. In Proceedings of the 4th International Con-

ference on Algorithmic Aspects in Information and Management, pages 337–348, Berlin,

Heidelberg, 2008. Springer-Verlag.

13

Chapter 2

Related Work

The work presented in this dissertation builds upon the work of others and would not

have been possible without their contributions. This chapter briefly surveys the related work

and places this dissertation within the context of previous work. More specific related works

are provided in each chapter of this dissertation.

2.1 Meta-Learning

The success of machine learning on a given task depends on, among other things, which

learning algorithm is selected and its associated hyperparameters. Selecting an appropri-

ate learning algorithm, setting its hyperparameters, and properly handling/preprocessing

the data for a specific task can be challenging, especially for users who are not experts

in machine learning. However, choosing a set of meta-features that are predictive of algo-

rithm performance is difficult. Most previous meta-learning work has focused on selecting a

learning algorithm or a set of hyperparameters based on meta-features used to characterize

datasets in isolation (e.g., see [1–3, 5, 24, 28]). Recent work, however, has begun to consider

them in tandem. For example, Auto-WEKA simultaneously chooses a learning algorithm

and sets its hyperparameters using Bayesian optimization over a tree-structured represen-

tation of the combined space of learning algorithms and their hyperparameters [29]. This

approach searches the search space, but does not learn from previous results. Also, most

of the previous work in meta-learning does not consider preprocessing the data or how to

14

handle the data. This dissertation provides a foundation for analyzing and understanding

the data in machine learning as well as a set of instance-level meta-features.

2.2 Data Complexity

This dissertation focuses on understanding data at the instance-level. Previous work has

presented measures to characterize the overall complexity of a data set (primarily using

binary classification problems) [13]. Complexity can be defined as theKolmogorov complexity,

which states that a pattern is simple if it can be generated by a short program or if it can

be compressed [17, 20]. Essentially, the Kolmogorov complexity measures if a pattern has

some regularity. In machine learning, the pattern refers to a data set. Further, the data

complexity measures have been used for data pruning, or removing complex instances, which

are assumed to be noise [19]. Data set measures have also been used in meta learning [6] as

well as to understand under what circumstances a particular learning algorithm will perform

well [22]. However, data complexity measures characterize the overall complexity of a data

set but do not look at the instance level and, thus, cannot say anything about why certain

instances are misclassified as examined in this dissertation.

2.3 Instance Filtering/Selection

Most of the previous work in analyzing data at the instance-level has been an implicit

evaluation of the data with instance filtering/selection. Identifying the instances that are

important has been extensively considered for instance-based (or nearest neighbor) learning

algorithms [7, 32]. Identifying the most important instances in the instance-based learning

algorithms is important because instance-based learning algorithms generally store all of the

instances and classify a new instance by calculating the distance from the new instance to

all of the other instances. Therefore, reducing the number of instances stored reduces the

storage and computational requirements of the algorithm. Initially, the goal of prior work

for instance-based algorithms was to reduce the storage and computational requirements

15

without loss in classification accuracy. This often included determining which instances are

detrimental and which ones are the most important. Smyth and McKenna [27] extended

this notion in case-based reasoning by defining for each instance i a coverage set (the set

of instances that i contributes to being correctly classified) and a reachability set (the set

of instances that contribute to i being correctly classified). In this manner, they identify

which instances are beneficial and detrimental in instance-based learning. Support vector

machines explicitly focus on identifying the instances that define the classification boundary

[9]. Once identified, only the border points are used to define the model. This dissertation

builds on this idea of determining how the instances in a data set affect each other in the

general context of machine learning rather than for a specific learning algorithm.

Prior work observed that outliers and noisy instances can be detrimental to inducing

a model of the data. While the work in instance-based and case-based reasoning focused

on competence preservation (same accuracy with less instances), other work has examined

competence enhancement (increase the accuracy with less instances). Some previous work

has examined how class noise and attribute noise affects the performance of various learning

algorithms [23, 33] and found that class noise is generally more harmful than attribute noise

and that noise in the training set is more harmful than noise in the test set. Generally,

outlier instances in the dataset are first identified and then filtered out of the data set. Next,

the filtered data set is used to train the learning algorithm. A popular approach to filtering

has been to filter out instances that are misclassified by a learning algorithm [15, 30] or an

ensemble of learning algorithms [8, 31]. The assumption is that if an instance is misclassified,

then it is an outlier. In general, there is an increase in classification accuracy by filtering out

the outlier instances [12, 25, 34]. However, the instances that are identified as being noisy or

outliers are dependent on the learning algorithm(s). Filtering can also be detrimental if too

many instances are removed from the data set or there are not a lot of instances to begin

with.

16

2.4 Parameter Tuning/Modification

Rather than filtering the outlier/noisy instances, another approach focuses on making the

learning algorithm more tolerant to noise. For example, there are a number of approaches

to make perceptrons and support vector machines more noise tolerant by introducing a slack

variable that allows for noisy instances [16]. However, in many cases a learning algorithm is

still affected by the presence of outliers since the outliers are used to induce the model. This is

because learning algorithms optimize the classification accuracy on the training instances, so

often outliers receive the most attention. This is especially apparent for boosting algorithms

[10, 26] that ensemble a group of trained models. Each model is trained on a subset of

the data sampled with more weight being placed on the misclassified instances (outliers

would receive more weight). This approach is susceptible to overfitting the outlier and noisy

instances. Long and Servedio [21] showed the severity of this problem by showing that

boosting algorithms are incapable of learning a convex potential function in the presence of

random noise. There have been several proposed modifications to boosting algorithms to

decrease focus on learning outliers [11].

Rather than modifying a learning algorithm, the hyperparameters can be optimized to

be robust to noise. The grid search and manual search are the most common types of

hyperparameter optimization techniques in machine learning and a combination of the two

approaches is commonly used [18]. Bergstra and Bengio [3] proposed to use a random

search of the hyperparameter space. The premise of random hyperparameter optimization

is that most machine learning algorithms have very few hyperparameters that considerably

affect the final model while the other hyperparameters have little to no effect. Random

search provides a greater variety of the hyperparameters that considerably affect the model.

Given the same amount of time constraints, random hyperparameter optimization has been

shown to outperform a grid search. Bayesian optimization has also been used to search the

hyperparameter space [28]. Bayesian optimization techniques model the dependence of an

17

error function E on the hyperparameters λ as p(E , λ) using, for example, a tree-structured

Parzen estimator [4] or Gaussian processes [14].

References

[1] Shawkat Ali and Kate A. Smith. On learning algorithm selection for classification.

Applied Soft Computing, 6(2):119–138, 2006.

[2] Shawkat Ali and Kate Amanda Smith-Miles. A meta-learning approach to automatic

kernel selection for support vector machines. Neurocomputing, 70:173–186, 2006.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

[4] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for

hyper-parameter optimization. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira,

and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,

pages 2546–2554. Curran Associates, Inc., 2011.

[5] Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. Ranking learning algo-

rithms: Using ibl and meta-learning on accuracy and time results. Machine Learning,

50(3):251–277, 2003.

[6] Pavel B. Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. Met-

alearning: Applications to Data Mining. Springer, 2009.

[7] Henry Brighton and Chris Mellish. Advances in instance selection for instance-based

learning algorithms. Data Mining and Knowledge Discovery, 6(2):153–172, 2002. ISSN

1384-5810.

[8] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

18

[9] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2:121–167, 1998.

[10] Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the

Third Annual Workshop on Computational Learning Theory, pages 202–216, 1990.

[11] Yoav Freund. An adaptive version of the boost by majority algorithm. Machine Learn-

ing, 43(3):293–318, 2001.

[12] Dragan Gamberger, Nada Lavrač, and Sašo Džeroski. Noise detection and elimination

in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence,

14(2):205–223, 2000.

[13] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:289–300, March

2002.

[14] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based opti-

mization for general algorithm configuration. In Proceedings of the International Learn-

ing and Intelligent Optimization Conference, pages 507–523, 2011.

[15] George H. John. Robust decision trees: Removing outliers from databases. In Knowledge

Discovery and Data Mining, pages 174–179, 1995.

[16] Roni Khardon and Gabriel Wachman. Noise tolerant variants of the perceptron algo-

rithm. Journal of Machine Learning Research, 8:227–248, May 2007. ISSN 1532-4435.

[17] Andrey Nikolaevich Kolmogorov. Three aproaches to the qualitative definition of infor-

mation. Problems of Information Transmission, 1:4–7, 1965.

[18] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio.

An empirical evaluation of deep architectures on problems with many factors of variation.

19

In Proceedings of the 24th International Conference on Machine Learning, pages 473–

480, 2007.

[19] Ling Li and Yaser S. Abu-Mostafa. Data complexity in machine learning.

Computer Science Technical Report Caltech CSTR:2006.004, May 2006. URL

http://resolver.caltech.edu/CaltechCSTR:2006.004.

[20] Ming Li and Paul M.B. Vitnyi. An Introduction to Kolmogorov Complexity and Its

Applications. Springer Publishing Company, Incorporated, 3 edition, 2008.

[21] Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex

potential boosters. Machine Learning, 78:287–304, March 2010.

[22] Ester Bernadó Mansilla and Tin Kam Ho. On classifier domains of competence. In

ICPR (1), pages 136–139, 2004.

[23] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of the effect of

different types of noise on the precision of supervised learning techniques. Artificial

Intelligence Review, 33(4):275–306, 2010.

[24] Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning

by landmarking various learning algorithms. In Proceedings of the 17th International

Conference on Machine Learning, pages 743–750, San Francisco, CA, USA, 2000. Mor-

gan Kaufmann Publishers Inc.

[25] J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo, and J. Badenas. Analysis of new

techniques to obtain quality training sets. Pattern Recognition Letters, 24:1015–1022,

April 2003. ISSN 0167-8655.

[26] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,

1990.

20

http://resolver.caltech.edu/CaltechCSTR:2006.004

[27] Barry Smyth and Elizabeth McKenna. Modelling the competence of case-bases. In

Advances in Case-Based Reasoning, 4th European Workshop on Case-Based Reasoning,

pages 208–220. Springer-Verlag, 1998.

[28] Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical bayesian optimization

of machine learning algorithms. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2951–

2959. 2012.

[29] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka:

combined selection and hyperparameter optimization of classification algorithms. In

proceedings of the 19th International Conference on Knowledge Discovery and Data

Mining, pages 847–855, 2013.

[30] Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions

on Systems, Man, and Cybernetics, 6:448–452, 1976.

[31] Sofie Verbaeten and Anneleen Van Assche. Ensemble methods for noise elimination in

classification problems. In Proceedings of the 4th international conference on multiple

classifier systems, pages 317–325, 2003.

[32] D. Randall Wilson and Tony R. Martinez. Reduction techniques for instance-based

learning algorithms. Machine Learning, 38(3):257–286, 2000.

[33] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: a quantitative study

of their impacts. Artificial Intelligence Review, 22:177–210, November 2004.

[34] Xingquan Zhu, Xindong Wu, and Qijun Chen. Eliminating class noise in large datasets.

In In Proceeding of International Conference on Machine Learning (ICML2003), pages

920–927, 2003.

21

Chapter 3

An Instance Level Analysis of Data Complexity

Machine Learning, vol. 95, no. 2, pp. 225-256 2014.

Abstract

Most data complexity studies have focused on characterizing the complexity of the en-

tire data set and do not provide information about individual instances. Knowing which

instances are misclassified and understanding why they are misclassified and how they con-

tribute to data set complexity can improve the learning process and could guide the future

development of learning algorithms and data analysis methods. The goal of this paper is to

better understand the data used in machine learning problems by identifying and analyzing

the instances that are frequently misclassified by learning algorithms that have shown utility

to date and are commonly used in practice. We identify instances that are hard to classify

correctly (instance hardness) by classifying over 190,000 instances from 64 data sets with 9

learning algorithms. We then use a set of hardness measures to understand why some in-

stances are harder to classify correctly than others. We find that class overlap is a principal

contributor to instance hardness. We seek to integrate this information into the training

process to alleviate the effects of class overlap and present ways that instance hardness can

be used to improve learning.

3.1 Introduction

It is widely acknowledged in machine learning that the performance of a learning algorithm

is dependent on both its parameters and the training data. Yet, the bulk of algorithmic de-

22

velopment has focused on adjusting model parameters without fully understanding the data

that the learning algorithm is modeling. As such, algorithmic development for classification

problems has largely been measured by classification accuracy, precision, or a similar metric

on benchmark data sets. These metrics, however, only provide aggregate information about

the learning algorithm and the task upon which it operates. They fail to offer any infor-

mation about which instances are misclassified, let alone why they are misclassified. There

is some speculation as to why some instances are misclassified, but, to our knowledge, no

thorough investigation (such as the one presented here) has taken place.

Previous work on instance misclassification has focused mainly on isolated causes. For

example, it has been observed that outliers are often misclassified and can affect the classi-

fication of other instances [2]. Border points and instances that belong to a minority class

have also been found to be more difficult to classify correctly [9, 43]. As these studies have

had a narrow focus on trying to identify and handle outliers, border points, or minority

classes, they have not generally produced an agreed-upon definition of what characterizes

these instances. At the data set level, previous work has presented measures to characterize

the overall complexity of a data set [18]. Data set measures have been used in meta learning

[6] as well as to understand under what circumstances a particular learning algorithm will

perform well [25]. As with the performance metrics, the data complexity measures charac-

terize the overall complexity of a data set but do not look at the instance level and thus

cannot say anything about why certain instances are misclassified. It is our contention that

identifying which instances are misclassified and understanding why they are misclassified

can lead to improvements in machine learning algorithm design and application.

The misclassification of an instance depends on the learning algorithm used to model

the task it belongs to and its relationship to other instances in the training set. Hence, any

notion of instance hardness, i.e., the likelihood of an instance being misclassified, must be

a relative one. However, generalization beyond a single learning algorithm can be achieved

by aggregating the results from multiple learning algorithms. We use this fact to propose

23

an empirical definition of instance hardness based on the classification behavior of a set of

learning algorithms that have been selected because of 1) their diversity, 2) their utility,

and 3) their wide practical applicability. We then present a thorough analysis of instance

hardness, and provide insight as to why hard instances are frequently misclassified. To the

best of our knowledge our research is the first at reporting on a systematic and extensive

investigation of the issue.

We analyze instance hardness in over 190,000 instances from 64 classification tasks classi-

fied by nine learning algorithms. We find that a considerable amount of instances are hard to

classify correctly–17.5% of the investigated instances are misclassified by at least half of the

considered learning algorithms and 2.3% are misclassified by all of the considered learning

algorithms. Seeking to improve our understanding of why these instances are misclassified

becomes a justifiable quest. To discover why these instance are hard to classify, we introduce

a set of measurements, (hardness measures). The results suggest that class overlap has the

strongest influence on instance hardness and that there may be other features that affect the

hardness of an instance. Although we focus on hardness at the instance level, the measures

can also be used at the data set level by averaging the values of the instances in the data

set. Further, we incorporate instance hardness into the learning process by modifying the

error function of a multilayer perceptron and by filtering instances. These methods place

more emphasis on the non-overlapping instances, alleviating the effects of class overlap. We

demonstrate that incorporating instance hardness into the learning process can significantly

increase classification accuracy.

The remainder of the paper is organized as follows. In Section 3.2, we introduce and

define instance hardness as an effective means of identifying instances that are frequently

misclassified. The hardness measures are presented in Section 3.3 as a means of providing

insight into why an instance is hard to classify correctly. Section 3.4 presents the experi-

mental methodology. An analysis of hardness at the instance level is provided in Section

3.5 followed by Section 3.6 which demonstrates that improved accuracy can follow from inte-

24

grating instance hardness into the learning process. Section 3.7 compares instance hardness

at the data set level with previous data set complexity studies. Section 3.8 provides related

works and Section 3.9 concludes the paper.

3.2 Instance Hardness

Our work posits that each instance in a data set has a hardness property that indicates the

likelihood that it will be misclassified. For example, outliers and mislabeled instances are

expected to have high instance hardness since a learning algorithm will have to overfit to

classify them correctly. Instance hardness seeks to answer the important question of what is

the probability that an instance in a particular data set will be misclassified.

As most machine learning research is focused on the data set level, one is concerned with

maximizing p(h|t), where h : X → Y is a hypothesis or function mapping input feature

vectors X to their corresponding label vectors Y , and t = {(xi, yi) : xi ∈ X ∧ yi ∈ Y } is a

training set. With the assumption that the pairs in t are drawn i.i.d., the notion of instance

hardness is found through a decomposition of p(h|t) using Bayes’ theorem:

p(h|t) =
p(t|h) p(h)

p(t)

=

∏|t|
i=1 p(xi, yi|h) p(h)

p(t)

=

∏|t|
i=1 p(yi|xi, h) p(xi|h) p(h)

p(t)
.

For a training instance 〈xi, yi〉, the quantity p(yi|xi, h) measures the probability that h assigns

the label yi to the input feature vector xi. The larger p(yi|xi, h) is, the more likely h is to

assign the correct label to xi, and the smaller it is, the less likely h is to produce the correct

label for xi. Hence, we obtain the following definition of instance hardness, with respect to

h:

IHh(〈xi, yi〉) = 1− p(yi|xi, h).

25

In practice, h is induced by a learning algorithm g trained on t with hyperparameters α,

i.e., h = g(t, α). Thus, the hardness of an instance is dependent on the instances in the

training data and the algorithm used to produce h. There are many approaches that could

be taken to calculate instance hardness (or equivalently p(yi|xi, g(t, α))) such as an analysis

of the distribution of instances in t according to their class. To gain a better understanding

of what causes instance hardness in general, the dependence on a specific hypothesis can be

lessened by integrating instance hardness over the set of hypotheses H:

IH(〈xi, yi〉) =

∫

H

1− p(yi|xi, h)dh

= 1−

∫

H

p(yi|xi, h)dh

= 1−

∫

H

p(yi|xi, t, h)dh

= 1−

∫

H

p(yi|xi, h)p(h|t)dh. (3.1)

Note that t can be added in the above derivation because yi is conditionally independent of

t given h. Practically, to integrate over H, one would have to integrate over the complete

set of hypotheses, or, since h = g(t, α), over the complete set of learning algorithms and

hyperparameters associated with each algorithm. This, of course, is not feasible. In practice,

instance hardness can be estimated by restricting attention to a carefully chosen set of

representative algorithms (and parameters). Also, it is important to estimate p(h|t) because

if all hypotheses were equally likely, then all instances would have the same instance hardness

value under the no free lunch theorem [45]. A natural way to approximate the unknown

distribution p(h|t), or equivalently p(g(t, α)), is to weigh a set of representative learning

algorithms, and their associated parameters, L, a priori with a non-zero probability while

treating all other learning algorithms as having zero probability. Given such a set L of

learning algorithms, we can then approximate Equation 3.1 to the following using stochastic

26

Table 3.1: Set L of ESLAs used to calculate instance hardness.

Learning Algorithms
* RIpple DOwn Rule learner (RIDOR) * Näıve Bayes
* Multilayer Perceptron trained with Back Propagation * Random Forrest
* Locally Weighted Learning (LWL) * 5-nearest neighbors (5-NN)
* Nearest Neighbor with generalization (NNge) * Decision Tree (C4.5 [30])
* Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

integration:

IHL(〈xi, yi〉) = 1−
1

|L|

|L|
∑

j=1

p(yi|xi, gj(t, α)) (3.2)

where p(h|t) is approximated as 1
|L|

and the distribution p(yi|xi, gj(t, α)) is estimated using

the indicator function and classifier scores, as described in Section 3.4. For simplicity, we

refer to IHL as simply IH proceeding forward.

In this paper, we estimate instance hardness by biasing the selection of representative

learning algorithms to those that 1) have shown utility, and 2) are widely used in practice.

We call such classification learning algorithms the empirically successful learning algorithms

(ESLAs). To get a good representation ofH, and hence a reasonable estimate of IH, we select

a diverse set of ESLAs using unsupervised metalearning [23]. Unsupervised metalearning

uses Classifier Output Difference (COD) [28] to measure the diversity between learning

algorithms. COD measures the distance between two learning algorithms as the probability

that the learning algorithms make different predictions. Unsupervised metalearning then

clusters the learning algorithms based on their COD scores with hierarchical agglomerative

clustering. Here, we considered 20 commonly used learning algorithms with their default

parameters as set in Weka [17]. The resulting dendrogram is shown in Figure 3.1, where the

height of the line connecting two clusters corresponds to the distance (COD value) between

them. A cut-point of 0.18 was chosen and a representative algorithm from each cluster was

used to create L as shown in Table 3.1.

27

0.
10

0.
15

0.
20

0.
25

0.
30

B
ay
es
N
et

D
ec
T
ab

le
R
IP

P
E
R

S
im

p
le
C
ar
t L
W

L
F
u
n
ct
io
n
al

T
re
e

L
og
is
ti
c

S
V
M

M
L
P

N
B

R
B
F
N
et
w
or
k

1-
N
N

5-
N
N
N
N
ge

C
4.
5

P
A
R
T

L
A
D
T
re
e

N
B
T
re
e

R
an

d
F
or
es
t R
id
or

C
la
ss
ifi
er

O
u
tp
u
t
D
iff
er
en
ce

Figure 3.1: Dendrogram of the considered learning algorithms clustered using unsupervised
metalearning.

We recognize that instance hardness could be calculated with either more specific or

broader sets of learning algorithms, and each set would obtain somewhat different results.

We also recognize that the set of ESLAs is constantly evolving and thus no exact solution is

possible. As the set of ESLAs grows and evolves, instance hardness can follow this evolution

by simply adjusting L. The size and exact make up of L are not as critical as getting a

fairly representative sample of ESLAs. While more learning algorithms may give a more

accurate estimate of instance hardness, we demonstrate that both efficiency and accuracy

can be achieved with a relatively small and diverse set of learning algorithms.

With this approach, the instance hardness of an instance is dependent both on the

learning algorithm trying to classify it and on its relationship to the other instances in the

data set as demonstrated in the hypothetical two-dimensional data set shown in Figure 3.2.

Instances A, C, and D could be considered outliers, though they vary in how hard they

are to classify correctly: instance A would almost always be misclassified while instances C

and D would almost always be correctly classified. The instances inside of the dashed oval

represent border points, which would have a greater degree of hardness than the non-outlier

instances that lie outside the dashed oval. Obviously, some instances are harder for some

learning algorithms than for others. For example, some instances (such as instance B) are

28

A

B

C

D

Figure 3.2: Hypothetical 2-dimensional data set.

harder for a linear classifier than for a non-linear classifier because a non-linear classifier is

capable of producing more complex decision boundaries.

3.3 Hardness Measures

In this section, we present a set of measures that measure various aspects about the instance

hardness level of an individual instance. Instance hardness indicates which instances are

misclassified while the hardness measures are intended to indicate why they are misclassified.

Each hardness measure measures an aspect of why an instance may be misclassified (class

overlap, class skew, etc.) and, thus, gives key insights into: 1) why particular instances

are hard to classify, 2) how we could detect them, and 3) potentially creating improved

mechanisms to deal with them. In addition, a subset of the measures could be used as a less

expensive alternative to estimate instance hardness, although this is not investigated in this

paper.

The set of hardness measures was discovered by examining the learning mechanisms of

several learning algorithms. In compiling a set of hardness measures, we chose to use those

that are relatively fast to compute and are interpretable so as to provide an indication as to

why an instance is misclassified.

29

k-Disagreeing Neighbors (kDN). kDN measures the local overlap of an instance in the

original task space in relation to its nearest neighbors. The kDN of an instance is the

percentage of the k nearest neighbors (using Euclidean distance) for an instance that

do not share its target class value.

kDN(x) =
| {y : y ∈ kNN(x) ∧ t(y) 6= t(x)} |

k

where kNN (x) is the set of k nearest neighbors of x and t(x) is the target class for x.

Disjunct Size (DS). DS measures how tightly a learning algorithm has to divide the task

space to correctly classify an instance and the complexity of the decision boundary.

Some learning algorithms, such as decision trees and rule-based learning algorithms,

can express the learned concept as a disjunctive description. Thus, the DS of an

instance is the number of instances in a disjunct divided by the number of instances

covered by the largest disjunct in a data set.

DS(x) =
| disjunct(x) | −1

maxy∈D | disjunct(y) | −1

where the function disjunct(x) returns the disjunct that covers instance x, andD is the

data set that contains instance x. The disjuncts are formed using a slightly modified1

C4.5 [30] decision tree, created without pruning and setting the minimum number of

instances per leaf node to 12.

1The C4.5 algorithm stops splitting the data when a sufficient increase in information gain is not achieved.
The idea of the DS measure is to overfit the data. However, not splitting all the way down led to impure
disjuncts. Therefore, we modified the strictness of when to stop splitting such that all instances were carried
out as far as they could go. The only impure disjuncts that remained are those for instances that have the
same attribute values but differ in the class value.

2Note that C4.5 will create fractional instances in a disjunct for instances with unknown attribute values,
possibly leading to DS values less than 1. Such cases are treated as though the disjunct covered a single
instance.

30

Disjunct Class Percentage (DCP). DCP measures the overlap of an instance on a sub-

set of the features. Using a pruned C4.5 tree, the DCP of an instance is the number of

instances in a disjunct belonging to its class divided by the total number of instances

in the disjunct.

DCP (x) =
| {z : z ∈ disjunct(x) ∧ t(z) = t(x)} |

| disjunct(x) |

Tree Depth (TD). Decision trees also provide a way to estimate the description length, or

Kolmogorov complexity, of an instance. The depth of the leaf node that classifies an

instance can give an intuition of the description length required for an instance. For

example, an instance that requires 15 attribute splits before arriving at a leaf node

is more complex than an instance that only requires 1 attribute split. Therefore, tree

depth measures the depth of the leaf node for an instance in an induced C4.5 decision

tree (both pruned (TD P) and unpruned (TD U)) as an estimate of the minimum de-

scription length for an instance.

Class Likelihood (CL). CL provides a global measure of overlap and the likelihood of an

instance belonging to a class. The CL of an instance belonging to a certain class is

defined as:

CL(x) =

|x|
∏

i

P (xi|t(x))

where |x| is the number of attributes of instance x and xi is the value of instance

x’s ith attribute3. The prior term is excluded in order to avoid bias against instances

that belong to minority classes. CL assumes independence between the data attributes.

3Continuous variables are assigned a probability using a kernel density estimation [19].

31

Class Likelihood Difference (CLD). CLD captures the difference in likelihoods and

global overlap. It is the difference between the class likelihood of an instance and

the maximum likelihood for all of the other classes.

CLD(x) = CL(x)− argmax
y∈Y−t(x)

CL(x, y)

where Y represents set of possible labels in the data set.

Minority Value (MV). MV measures the skewness of the class that an instance belongs

to. For each instance, its MV is the ratio of the number of instances sharing its target

class value to the number of instances in the majority class.

MV (x) = 1−
| {z : z ∈ D ∧ t(z) = t(x)} |

maxy∈Y | {z : z ∈ D ∧ t(z) = y} |
.

Class Balance (CB). CB also measures the skewness of the class that an instance belongs

to and offers an alternative to MV. If there is no class skew, then there is an equal

number of instances for all classes. Hence, the CB of an instance is:

CB(x) =
| {z : z ∈ D ∧ t(z) = t(x)} |

| D |
−

1

| Y |
.

If the data set is completely balanced the class balance value will be 0.

For convenience, Table 3.2 summarizes the hardness measures and what they measure.

Although all of the hardness measures are intended to understand why an instance is hard

to classify, some of the measures indicate how easy an instance is to classify (they have a

negative correlation with instance hardness). For example, the class likelihood (CL) measures

how likely an instance belongs to a certain class. High values for CL would represent easier

32

Table 3.2: List of hardness measures and what they measure.

Abbr +/- Measure Insight
kDN + k -Disagreeing Neighbors Overlap of an instance using all of the data

set features on a subset of the instances.
DS - Disjunct Size Complexity of the decision boundary for an

instance.
DCP - Disjunct Class Percentage Overlap of an instance using a subset of the

features and a subset of the instances.
TD + Tree Depth The description length of an instance in an

induced C4.5 decision tree.
CL - Class Likelihood Overlap of an instance using all of the feat-

ures and all of the instances.
CLD - Class Likelihood Difference Relative overlap of an instance using all of

the features and all of the instances.
MV + Minority Value Class skew.
CB - Class Balance Class skew.

instances. In Table 3.2, the “+” and “-” symbols distinguish which instances are positively

and negatively correlated with instance hardness.

Class overlap and class skew are two commonly assumed and observed causes of instance

hardness that are measured with the hardness measures. Mathematically, the class overlap

of an instance for a binary task can be expressed as:

classOverlap(〈xi, yi〉) = p(ȳi|xi, t)− p(yi|xi, t). (3.3)

where ȳi represents an incorrect class for the input feature vector xi. The class skew of the

class of an instance can be expressed as:

classSkew(〈xi, yi〉) =
p(yi|t)

p(ȳi|t)
. (3.4)

There is no known method to measure class overlap or to determine when class skew affects

instance hardness. The hardness measures allow a user to estimate class overlap and class

33

skew as well as other uncharacterized sources of hardness. Equations 3.3 and 3.4 could be

extended to multi-class problems with a 1 vs. 1, or a 1 vs. all approach.

3.4 Experimental Methodology

In this section we provide our experimental methodology. Recall that to compute the instance

hardness of an instance x, we must compute the probability that x is misclassified when the

learner is trained on the other points from the dataset. Since this type of leave-one-out

procedure is computationally prohibitive, the learning algorithms are evaluated using 5 by

10-fold cross-validation4. We use five repetitions to better measure the instance hardness of

each instance and to protect against the dependency on the data used in each fold. We then

compare the hardness measures with instance hardness.

We examine instance hardness on a large and varied set of data sets chosen with the

intent of being representative of those commonly encountered in machine learning problems.

We analyze the instances from 57 UCI data sets [14] and 7 non-UCI data sets [31, 32, 39, 40].

Table 3.3 shows the data sets used in this study organized according to the number of

instances, number of attributes, and attribute type. The non-UCI data sets are in bold.

We compare calculating instance hardness using all of the learning algorithms in L with

calculating instance hardness using a single learning algorithm. In addition,

p(yi|xi, g(t, α)) is estimated using two methods: 1) the indicator function (IH ind) and 2)

the classifier scores (IH class). IH ind and IH class are calculated using 5 by 10-fold cross-

validation. Generally, classification learning algorithms classify an instance into nominal

classes. To produce a real-valued score, we calculate classifier scores for the nine investi-

gated learning algorithms. Obviously, the indicator function and the classifier scores do not

produce true probabilities. However, the classifier scores can provide the confidence of an

inferred model for the class label of an instance. Below, we present how we calculate the

classifier scores for the investigated learning algorithms.

45 by 10-fold cross-validation runs 10-fold cross-validation 5 times, each time with a different random
seed for selecting the 10 partitions of the data.

34

Table 3.3: Datasets used organized by number of instances, number of attributes, and at-
tribute type.

Instances # Attributes
Attribute Type

Categorical Numerical Mixed

M
<

10
0 k < 10

Balloons Post-Operative
Contact Lenses cm1 req

10 < k < 100
Lung Cancer desharnais Labor

Trains
Pasture

10
0
<

M
<

10
00

k < 10

Breast-w Iris Badges 2
Breast Cancer Ecoli Teaching-

Pima Indians Assistant
Glass
Bupa

Balance Scale

10 < k < 100

Audiology Ionosphere Annealing
Soybean(large) Wine Dermatology
Lymphography Sonar Credit-A
Congressional- Heart-Statlog Credit-G
Voting Records ar1 Horse Colic

Vowel Heart-c
Primary-Tumor Hepatitis

Zoo Autos
Heart-h

eucalyptus
k > 100 AP Breast Uterus Arrhythmia

10
00

<
M

<
10
00
0 k < 10

Car Evaluation Yeast Abalone
Chess
Titanic

k < 100

Mushroom Waveform-5000 Thyroid-
Splice Segment (sick &

Spambase hypothyroid)
Ozone level-
Detection

k > 100 Musk (version 2)

M
>

10
00
0 k < 10

Nursery MAGIC Gamma-
Telescope

k < 100

Chess- Adult-Census-
(King-Rook vs. Income (KDD)
King-Pawn) Eye movements

Letter

35

Multilayer Perceptron: For multiple classes, each class from a data set is represented

with an output node. The classifier score is the largest value of the output nodes

normalized between zero and one (the softmax [8]):

p̂(y|x) =
oi(x)

∑|Y |
i oi(x)

where y is a class from the set of possible classes Y and oi is the value from the output

node corresponding to class yi

Decision Tree: To calculate a classifier score, an instance first follows the induced set of

rules until it reaches a leaf node. The classifier score is number of training instances that

have the same class as the examined instance divided by all of the training instances

that also reach the same leaf node.

5-NN: 5-NN returns the percentage of the nearest-neighbors that agree with the class label

of an instance as the classifier score.

LWL: LWL finds the k -nearest neighbors for an instance from the training data and weights

them by their distance from the test instance. The weighted k -nearest neighbors are

then used to train a base classifier. Weka uses a decision stump as the base classifier. A

decision stump is a decision tree that makes a singe binary split on the most informative

attribute. A test instance is propagated to a leaf node. The sum of weights of the

training instances in the leaf node that have the same class value as the test instance

is divided by the sum of the weights of all of the training instances in the leaf node.

Näıve Bayes: Returns the probability of the most probable class by multiplying the prob-

ability of the class by the probabilities of the attribute values for an instance given the

class:

max
yj∈Y

p(yj)

|x|
∏

i

p(xi|yj).

36

NNge: Since NNge only keeps exemplars of the training data, a class score of 1 is returned

if an instance agrees with the class of the nearest exemplar, otherwise a 0 is returned.

Random Forest: Random forests return the class counts from the leaf nodes of each tree

in the forest. The counts for each class are summed together and then normalized

between 0 and 1.

RIDOR: RIDOR creates a set of rules, but does not keep track of the number of training

instances covered by a rule. A classifier score of 1 is returned if RIDOR predicts the

correct class for an instance, otherwise a 0 is returned (same as the indicator function).

RIPPER: RIPPER returns the percentage of training instances that are covered by a

rule and share the same class as the examined instance.

To our knowledge, instance hardness is the only measurement that seeks to identify

instances that are hard to classify. However, there are other methods that could be used

to identify hard instances that have not been examined for identifying hard instances. One

such method that we compare against is active learning. Active learning is a semi-supervised

technique that uses a mode inferred from the labeled instances to choose which unlabeled

instances are the most informative to be labeled by an external oracle. The informative scores

assigned by active learning techniques can be used as a hardness measure. This assumes that

the most informative instances are those that the model is least certain about, which would

include the border points. We implemented two active learning techniques: uncertainty

sampling (US) [24] and query-by-committee (QBC) [36]. For uncertainty sampling, we use

margin sampling [33]:

x∗ = argmin
x

p(ŷ1|x)− p(ŷ2|x)

where ŷ1 and ŷ2 are the first and second most probable class labels for the instance x. We

use näıve Bayes to calculate the probability of the classes for an instance. For query-by-

committee, we use a committee of five learning algorithms using query by bagging [1]. The

37

level of disagreement is determined using vote entropy [12]:

x∗ = argmax
x

−
∑

i

V (yi)

C
log

V (yi)

C

where yi ranges over all possible class labels, V (yi) is the number of votes that a class label

received from the committee, and C is the size of the committee. We examine QBC using

näıve Bayes and decision trees. Active learning requires that some labeled instances are

available to the models to produce the scores for the other instances. We divide the data set

in half, using one half of the instances to calculate the scores for the other half.

We emphasize the extensiveness of our analysis. We examine over 190,000 instances

individually. A total of 28,750 models are produced from 9 learning algorithms trained with

64 data sets using 5 by 10-fold cross-validation 5. With this volume and diversity, our results

can provide more useful insight about the extent to which hard instances exist and what

contributes to instance hardness.

3.5 Instance-level Analysis

In this section we examine the hardness measures to identify hard instances and the hardness

measures to discover what causes an instance to be misclassified. We use instance hardness

with the indicator function (IH ind) to establish the frequency of an instance being mis-

classified. Figure 3.3 shows the cumulative percentage of instances that are misclassified a

specified percentage of times by the learning algorithms in L (Table 3.1). The first pair of

columns shows that all of the instances were classified correctly by zero or more of the con-

sidered learning algorithms. The second pair of columns shows the percentage of instances

that were misclassified by at least one of the considered learning algorithms. Overall, 2.4%

of the instances from the UCI data sets are misclassified by all of the considered learning

algorithms and 16.8% are misclassified by at least half. For the instances from the non-UCI

5Ridor was not used on the Letter data set as it ran out of memory with 4 Gb of RAM. The remaining
8 learning algorithms still give a good indication of how difficult each instance is to correctly classify.

38

0

20

40

60

80

100

≥
0

>
0

≥
10

≥
20

≥
30

≥
40

≥
50

≥
60

≥
70

≥
80

≥
90

=
10
0

%
of

In
st
an

ce
s

Misclassified by % of Learning Algorithms

UCI
non-UCI

Figure 3.3: Percentage of instances that are misclassified by at least a percentage of the
learning algorithms.

data sets, 1.7% are misclassified by all of the considered learning algorithms and 22.7% are

misclassified by at least half. The trend of hardness is similar for the UCI and non-UCI

data sets. For the set of instances from the UCI and non-USI data sets, only 38.3% of

the instances are classified correctly 100% of the time by the examined learning algorithms.

These results show that a considerable amount of instances are hard to classify correctly.

Seeking to improve our understanding of why these instances are misclassified is the goal of

the hardness measures.

We calculate the hardness measures for all of the instances regardless of their instance

hardness. We first examine the relationship between the hardness measures. This will provide

insight into how similar the measures are with each other and detect possible overlap in what

they measure (see Table 3.2 for the hardness measures and what they measure). Next, we

examine the relationship of the hardness measures with the hardness measures. We first

normalize the measures by subtracting the mean and dividing by the standard deviation for

each measure before analyzing the results.

We first examine the correlation between the hardness measures. Table 3.4 shows a

pairwise comparison of the hardness measures using the Spearman correlation. Only (CL)

39

Table 3.4: Spearman correlation matrix for the hardness measures. The magnitude of only
one pair of measures is stronger than 0.95, showing that the measures measure different
aspects of instance hardness.

kDN DS DCP TD P TD U CL CLD MV CB
kDN 1.0 -0.519 -0.420 0.189 0.301 -0.715 -0.703 0.387 0.240
DS 1.0 0.570 -0.405 -0.348 0.571 0.559 -0.303 -0.139
DCP 1.0 -0.340 -0.202 0.452 0.432 -0.235 -0.051
TD P 1.0 0.859 -0.276 -0.312 0.030 0.113
TD U 1.0 -0.414 -0.441 0.162 0.293
CL 1.0 0.989 -0.386 -0.225
CLD 1.0 -0.359 -0.224
MV 1.0 0.783
CB 1.0

and class likelihood difference (CLD) are strongly correlated with a correlation coefficient of

0.989. This suggests that, besides CL and CLD, the hardness measures measure different

properties of the hardness of an instance.

The more interesting question to consider is how does instance hardness relate to the

considered hardness measures. Table 3.5 shows the Spearman correlation coefficients relat-

ing instance hardness to the other considered hardness measures for the UCI and non-UCI

data sets. The hardness measure with the strongest correlation with each instance hardness

method is in bold. The first section of the table uses the indicator function to calculate

instance hardness, the second section uses the classifier scores to calculate instance hardness,

and the third section shows the results for active learning. IH ind and IH class use the

indicator function and classifier scores respectively from all of the learning algorithms in L

to calculate instance hardness. The following rows use a single learning algorithm to calcu-

late instance hardness. For all of the hardness measures, kDN, DCP, CL, and CLD have

the strongest correlation with all of the hardness measures. Using PCA on the hardness

measures, kDN, CL, and CLD have the largest coefficients for the first principal component

(thus accounting for more variance than the other measures). kDN, CL, and CLD measure

class overlap using all of the features from the data set. The other measures (which measure

40

Table 3.5: The Spearman correlation coefficients for the hardness measures relating to the
examined methods for identifying hard instances.

kDN DS DCP TD P TD U CL CLD MV CB Lin

In
d
ic
at
or

F
u
n
ct
io
n

IH ind 0.830 -0.547 -0.475 0.324 0.475 -0.670 -0.660 0.522 0.436 0.885
MLP 0.668 -0.420 -0.397 0.270 0.354 -0.484 -0.476 0.367 0.287 0.725
C.5 0.625 -0.459 -0.453 0.262 0.353 -0.469 -0.458 0.361 0.299 0.801
5-NN 0.648 -0.307 -0.295 0.254 0.304 -0.319 -0.318 0.293 0.230 0.738
LWL 0.549 -0.363 -0.302 0.149 0.288 -0.484 -0.470 0.506 0.447 0.671
NB 0.545 -0.339 -0.302 0.162 0.284 -0.506 -0.499 0.405 0.328 0.626
NNge 0.716 -0.464 -0.432 0.304 0.394 -0.552 -0.543 0.359 0.277 0.753
RandFor 0.669 -0.490 -0.448 0.276 0.349 -0.487 -0.479 0.393 0.312 0.760
Ridor 0.711 -0.437 -0.391 0.216 0.355 -0.575 -0.558 0.473 0.398 0.761
RIPPER 0.675 -0.420 -0.387 0.172 0.306 -0.555 -0.538 0.496 0.350 0.747

C
la
ss
ifi
er

S
co
re

IH class 0.875 -0.615 -0.540 0.341 0.513 -0.782 -0.767 0.542 0.425 0.938
MLP 0.764 -0.515 -0.528 0.399 0.516 -0.679 -0.667 0.419 0.324 0.809
C4.5 0.680 -0.629 -0.711 0.452 0.483 -0.644 -0.627 0.391 0.234 0.874
5-NN 0.771 -0.316 -0.309 0.000 0.187 -0.574 -0.556 0.384 0.232 0.818
LWL 0.736 -0.538 -0.432 0.198 0.426 -0.745 -0.718 0.615 0.521 0.874
NB 0.698 -0.471 -0.411 0.205 0.382 -0.775 -0.762 0.411 0.273 0.779
NNge 0.716 -0.464 -0.432 0.304 0.394 -0.552 -0.543 0.359 0.277 0.753
RandFor 0.852 -0.611 -0.539 0.322 0.463 -0.724 -0.708 0.475 0.343 0.901
Ridor 0.711 -0.437 -0.391 0.216 0.355 -0.575 -0.558 0.473 0.398 0.761
RIPPER 0.717 -0.542 -0.583 0.417 0.486 -0.673 -0.649 0.398 0.263 0.854
US NB -0.656 0.451 0.374 -0.097 -0.310 0.889 0.881 -0.373 -0.187 0.859
QBC NB 0.440 -0.229 -0.169 0.083 0.222 -0.521 -0.534 0.265 0.201 0.500
QBC C4.5 0.672 -0.486 -0.358 0.362 0.542 -0.605 -0.597 0.357 0.322 0.726

overlap on a subset of the features, class skew, and the description length) are not as indica-

tive of an instance being hard to classify. We can infer that, in general, class overlap is a

principal contributor to instance hardness for the considered data sets whether considering

ESLAs in general (IH ind and IH class) or for a specific learning algorithm. This can be seen

by examining individual instances and their corresponding hardness measures. The hardness

measures and instance hardness values for a sample of instances are provided in Table 3.6.

The first instance is a clear example that exhibits class overlap and should be misclassified as

indicated by the values of the hardness measures (i.e. high value for kDN, CLD is negative,

etc.).

41

Table 3.6: The hardness measures and instance hardness values for an example set of in-
stances.

data id kDNDSDCPTDPTDU CL CLDMV CB IH ind IH claUS NBQBC NBQBC C4.5

1 yeast 1470 0.98 0 0.25 12 9 0.28 -0.32 0.47 0.06 1 0.84 0.20 0.09 0.60
2 colon 56 0.46 1 0.98 4 3 1 1 0 0.15 0.84 0.69 1 0 1
3 ar1 84 0.37 0 0.33 5 2 0.92 0.84 0 0.59 0.91 0.71 1 0.74 0.55

One of the difficulties of identifying hard instances is that hardness may arise from

several sources. For example, instances 2 and 3 in Table 3.6 have multiple possible reasons

for why they are misclassified, but no hardness measure strongly indicates that it should be

misclassified (i.e. the kDN values are less than 0.5, meaning that the instances agree with

the majority of their neighbors). The last column “Lin” in Table 3.5 shows the correlation

coefficients of a linear model of the hardness measures predicting the hardness measures.

The instance hardness and hardness measures from the UCI and non-UCI data sets for each

instance were compiled and linear regression was used to predict the hardness measures.

Apart from US NB and QBC NB, a linear combination of the hardness measures results in a

stronger correlation with instance hardness than any of the individual measures suggesting

that there is no one measure that sufficiently captures the hardness of an instance.

Comparing the hardness measures, IH class has the strongest correlation with the lin-

ear combination of the hardness measures and kDN. IH class also has a strong correlation

with CL and CLD. Only US NB has a stronger correlation with CL and CLD than IH class.

These strong correlations with IH class suggest that IH class may be a good candidate for

determining the hardness of an instance. The QBC methods are not as strongly correlated

with any of the hardness measures as the other hardness measures. The active learning

approaches select border points as the hardest instances, but do not indicate that the outlier

instances are hard. We also observe that using classifier scores has a stronger correlation

with the hardness measures than using the indicator function to calculate instance hard-

ness. For all of the considered learning algorithms, calculating instance hardness with the

classifier scores provide a stronger or equal correlation with the hardness measures than the

42

indicator function, suggesting that the classifier scores may provide a better indication of

which instances are hard to classify. Also, for our examination of when ESLAs misclassify

an instance, using an ensemble of learning algorithms to determine hardness has a stronger

correlation with the hardness measures than a single learning algorithm.

The previous results suggest that, in general, class overlap causes instance hardness.

However, in making this point, we realize that all data sets have different levels and causes

of hardness. Table 3.7 shows the correlation between IH class and the hardness measures for

the instances in each data set. The column “DSH” refers to the data set hardness and is the

average IH class value for the instances in the data set. The harder data sets have a higher

DSH value. The values in bold represent the hardness measures that have the strongest

correlation with IH class for the instances in the data set. The underlined values are the

hardness measures with a correlation magnitude greater than 0.75. The values in Table 3.7

indicate that the hardness of the majority of the data sets is strongly correlated with the

hardness measures that measure class overlap. There are a few data sets that have a strong

correlation between IH class and the measures that measure class skew (MV and CB). The

most notable are the post-opPatient and zoo data sets. For those data sets, in addition to

having a strong correlation with MV and CB, instance hardness is also strongly correlated

with other hardness measures that measure class overlap.

It is not surprising that class overlap is observed as a principal contributor to instance

hardness since outliers and border points, which exhibit class overlap, have been observed

to be more difficult to classify correctly. However, instances that belong to a minority class

have also been observed to be more difficult to classify correctly. This is confirmed as the

coefficients for the class imbalance measures (MV and CB) in the linear regression models

are statistically significant. Also, removing MV and CB from the linear model results in a

weaker correlation. To what extent does class skew affect instance hardness? One of the

core problems seen with class skew is that of data ambiguity, when multiple instances have

the same feature values but different classes. In these cases, the instances that belong to

43

Table 3.7: The correlation of the hardness measures with IH class for the instances in each
data set. DSH is the average IH class value of the instances in the data set

Dataset DSH kDN DS DCP TD P TD U CL CLD MV CB

abalone 0.815 0.859 -0.485 -0.287 -0.203 -0.085 -0.194 -0.141 0.323 0.323
adult-census 0.208 0.898 -0.722 -0.743 0.515 0.599 -0.737 -0.737 0.569 0.569
anneal.ORIG 0.108 0.658 -0.600 -0.349 0.326 0.416 -0.689 -0.687 0.425 0.425
AP BreastUterus 0.056 0.563 -0.615 -0.279 0.094 0.323 -0.168 -0.168 0.535 0.535
ar1 0.126 0.684 -0.814 -0.388 0.726 0.395 0.450 0.450 0.450 0.450
arrhythmia 0.416 0.845 -0.769 -0.334 -0.655 -0.478 -0.404 -0.407 0.687 0.687
audiology 0.339 0.836 -0.783 -0.262 -0.011 -0.010 -0.681 -0.668 0.653 0.653
autos 0.337 0.752 -0.405 -0.082 0.064 0.033 -0.450 -0.447 0.086 0.086
badges2 0.003 0.216 -0.563 NA NA NA -0.377 -0.377 0.563 0.563
balance-scale 0.259 0.935 -0.851 -0.578 0.792 0.749 -0.775 -0.797 0.466 0.466
balloons 0.072 0.746 -0.390 NA 0.035 0.035 -0.931 -0.931 -0.283 -0.283
breast-cancer 0.339 0.877 -0.632 -0.764 0.256 0.265 -0.490 -0.490 0.645 0.645
breast-w 0.059 0.627 -0.809 -0.610 0.746 0.804 -0.525 -0.533 0.598 0.598
bupa 0.396 0.715 -0.512 -0.358 0.395 0.404 0.191 0.191 0.389 0.389
carEval 0.140 0.924 -0.883 -0.561 0.886 0.873 -0.937 -0.912 0.705 0.705
chess 0.614 0.606 -0.245 -0.498 0.226 0.073 -0.310 -0.242 0.190 0.190
chess-KRVKP 0.087 0.608 -0.348 -0.317 0.725 0.726 -0.860 -0.860 0.126 0.126
cm1 req 0.324 0.628 -0.166 -0.710 0.548 NA 0.236 0.236 0.710 0.710
colic 0.223 0.796 -0.660 -0.644 0.325 0.296 -0.444 -0.443 0.282 0.282
colon 0.286 0.620 -0.528 0.391 -0.316 -0.342 -0.173 -0.173 0.495 0.495
contact-lenses 0.281 0.859 -0.880 -0.744 0.907 0.868 -0.877 -0.871 0.551 0.551
credit-a 0.197 0.755 -0.581 -0.743 0.367 0.574 -0.511 -0.511 0.360 0.360
credit-g 0.321 0.887 -0.595 -0.420 0.288 0.556 -0.620 -0.620 0.675 0.675
dermatology 0.099 0.757 -0.689 -0.444 0.494 0.457 -0.738 -0.744 0.526 0.526
desharnais 0.386 0.877 -0.714 -0.199 -0.024 -0.381 0.053 0.136 0.562 0.562
ecoli 0.229 0.870 -0.741 -0.234 -0.137 0.213 -0.831 -0.829 0.712 0.712
eucalyptus 0.467 0.845 -0.632 -0.506 0.380 0.352 -0.390 -0.381 0.298 0.298
eye movements 0.492 0.618 -0.459 -0.115 0.198 0.254 -0.289 -0.265 -0.159 -0.159
glass 0.399 0.816 -0.606 0.045 0.136 0.144 -0.477 -0.474 -0.055 -0.055
heart-c 0.244 0.816 -0.756 -0.314 0.413 0.368 -0.740 -0.743 0.046 0.046
heart-h 0.237 0.803 -0.751 -0.563 0.297 -0.181 -0.675 -0.681 0.394 0.394
heart-statlog 0.248 0.793 -0.672 -0.187 0.496 0.497 -0.719 -0.719 0.095 0.095
hepatitis 0.222 0.825 -0.888 -0.011 0.550 0.635 -0.715 -0.715 0.615 0.615
hypothyroid 0.039 0.655 -0.281 -0.144 0.284 0.272 -0.617 -0.619 0.449 0.449
ionosphere 0.138 0.350 -0.556 0.044 0.182 0.183 -0.265 -0.262 0.119 0.119
iris 0.071 0.598 -0.579 -0.463 0.870 0.846 -0.626 -0.626 NA NA
labor 0.177 0.667 -0.455 -0.514 0.336 -0.248 -0.553 -0.553 0.389 0.389
letter 0.347 0.752 -0.790 -0.244 0.518 0.588 -0.785 -0.769 0.040 0.040
lungCancer 0.537 0.736 -0.393 -0.251 0.283 0.203 -0.052 -0.057 -0.200 -0.200
lymphography 0.251 0.776 -0.759 -0.113 0.291 0.299 -0.546 -0.538 0.246 0.246
MagicTelescope 0.223 0.821 -0.624 -0.387 -0.116 0.088 -0.611 -0.612 0.435 0.435

Continued on next page

44

Table 3.7: (cont.) The correlation of the hardness measures with IH class for the instances
in each data set. DSH is the average IH class value of the instances in the data set

Dataset DSH kDN DS DCP TD P TD U CL CLD MV CB

mushroom 0.016 0.085 -0.342 NA -0.565 -0.565 -0.147 -0.140 0.451 0.451
nursery 0.110 0.569 -0.879 -0.384 0.896 0.904 -0.897 -0.892 0.717 0.717
ozone 0.071 0.550 -0.547 -0.217 0.224 0.587 -0.499 -0.503 0.290 0.290
pasture 0.295 0.745 -0.672 -0.133 0.569 0.667 -0.671 -0.673 NA NA
pimaDiabetes 0.305 0.895 -0.696 -0.625 0.510 0.659 -0.622 -0.622 0.481 0.481
post-opPatient 0.425 0.785 -0.573 -0.788 0.145 NA -0.079 -0.071 0.775 0.775
primary-tumor 0.678 0.887 -0.486 -0.754 0.260 0.311 -0.539 -0.489 0.476 0.476
segment 0.115 0.616 -0.911 -0.476 0.783 0.719 -0.636 -0.637 NA NA
sick 0.037 0.591 0.002 0.407 0.137 0.331 -0.772 -0.772 0.390 0.390
sonar 0.274 0.652 -0.568 -0.330 0.303 0.264 -0.715 -0.715 0.027 0.027
soybean 0.181 0.820 -0.718 -0.221 0.275 0.259 -0.586 -0.591 0.138 0.138
spambase 0.133 0.583 -0.655 -0.273 0.343 0.261 -0.603 -0.616 0.037 0.037
splice 0.158 0.373 -0.549 -0.402 0.520 0.504 -0.674 -0.673 0.283 0.283
teachingAssist 0.495 0.790 -0.629 -0.388 0.055 -0.161 -0.219 -0.218 0.066 0.066
titanic 0.305 0.356 0.272 -0.888 0.030 0.030 -0.140 -0.140 0.256 0.256
trains 0.411 0.756 -0.362 -0.241 0.071 NA -0.200 -0.200 NA NA
vote 0.070 0.674 -0.825 -0.622 0.811 0.691 -0.645 -0.654 0.549 0.549
vowel 0.287 0.364 -0.521 -0.190 0.343 0.320 -0.443 -0.403 NA NA
waveform-5000 0.268 0.805 -0.595 0.116 0.419 0.417 -0.651 -0.651 -0.184 -0.184
wine 0.079 0.711 -0.519 -0.242 -0.093 -0.368 -0.538 -0.539 -0.102 -0.102
yeast 0.523 0.893 -0.674 -0.342 0.081 0.285 -0.285 -0.222 -0.026 -0.026
zoo 0.134 0.900 -0.836 -0.392 0.690 0.684 -0.828 -0.821 0.830 0.830

the minority class will be misclassified. There are only 204 such instances, about 0.1% of

all of the instances used in this study. We removed all of the ambiguous instances and then

divided the instances into those that have a MV value of 0 (they belong to the majority

class) and those that have a value greater than 0. This considers any instance that does not

belong to the majority class as belonging to a minority class. There are 97,469 instances that

belong to the majority class and 92,669 instances that do not. We observe that instances

that belong to a minority class are harder to classify correctly than those that do not. The

average IH class value for the instances that belong to a majority class is 0.16 while the

average instance hardness value for the instances not belonging to the majority class is 0.41.

Table 3.8 compares the hardness measures for the instances that belong to a minority class

and those that belong to the majority class. The last column (easy) gives the value for the

45

Table 3.8: Various statistics for the hardness measures for instances that belong to the
majority class and those that do not. For the instances that belong to the minority class,
the values for the measures indicate higher levels of class overlap.

Minority Class Majority Class
Min. Mean Max. Std Dev Min. Mean Max. Std Dev easy

DN 0 0.348 1 0.307 0 0.172 1 0.236 0
DS 0 0.179 1 0.286 0 0.363 1 0.410 1
DCP 0 0.786 1 0.300 0.002 0.909 1 0.170 1
TD P 1 9.530 59.88 6.232 1 9.593 136.265 7.355 1
TD U 0 7.315 29 4.809 0 5.555 29 4.526 1
CL 0 0.563 1 0.375 0 0.886 1 0.188 1
CLD -1 0.297 1 0.602 -1 0.803 1 0.306 1
MV 1 0.308 0.910 0.278 0 0 0 0 1
CB -0.471 -0.026 0.189 0.111 0 0.213 0.213 0.155 1
IH class 0 0.410 0.999 0.269 0 0.163 0.994 0.200 0

hardness measures for the easiest instances (the instances that are always correctly classified).

Not including MV and CB (which are biased since all of the instances that belong to the

non-majority classes are separated from the majority class instances), all of the hardness

measures except for pruned tree depth (TD P) indicate that the instances that belong to

a minority class are harder to classify correctly as well. Thus, we observe that class skew

exacerbates the effects of the underlying causes for instance hardness. This coincides with

Batista’s conclusion that class skew alone does not hinder learning algorithm performance,

but rather class skew magnifies the hardness already present in the instances [4]. For example,

Table 3.9 gives the hardness measure values for two instances from the chess data set. The

hardness measures are similar for each measure except the first instance (id 22037) belongs

to the majority class while instance 26549 does not. The difference in the IH ind value for

the instances is considerable. The difference in IH class values does not vary considerably

since many of the class scores are similar to the hardness measures. This supports the fact

that class skew exacerbates the effects of class overlap and also shows that IH ind may be

better able to incorporate the effects of class skew than IH class. Given that class skew

exacerbates the effects of class overlap on instance hardness, the expected instance hardness

46

Table 3.9: The hardness measures and instance hardness values for an example set of in-
stances from the chess data set.

id kDN DS DCP TDP TDU CL CLD MV CB IH ind IH cla US NB QBC NB QBC C4.5

22037 0.64 0.29 1 5 5 0.09 -0.36 0 0.11 0.24 0.41 0.33 0.00 0.40
26549 0.64 0.29 1 5 5 0.12 -0.36 0.52 0.02 0.49 0.39 0.39 0.00 0.32

for an instance is related to the class overlap (Equation 3.3) and class skew (Equation 3.4)

of the instance:

E[IH(〈xi, yi〉)] ∼ f(classOverlap(〈xi, yi〉), classSkew(〈xi, yi〉)).

The exact form of f is unknown at this stage. Additionally, other factors not discussed here

may affect the hardness of an instance. Discovering the relationship between class overlap,

class skew, and instance hardness, as well as identifying other sources of hardness, is left for

future work.

3.6 Integrating Instance Hardness into the Learning Process

In this section we examine how to exploit instance hardness during the learning process to

alleviate the effects of class overlap and instance hardness. Incorporating instance hardness

into the learning process provides significant improvements in accuracy. Note that the im-

provement requires computing instance hardness for each instance. In the experiments, we

opt to use IH class instead of IH ind as they are strongly correlated and IH class produces

slightly better results. We also ran the experiments calculating instance hardness with the

same single learning algorithm that is inferring the model. This provides the opportunity to

compare whether it is more appropriate to use a specific measure of instance hardness rather

than a more general one. In addition, we ran the experiments using the active learning hard-

ness measures. The active learning techniques are not designed to identify hard instances

and using them as a hardness measure often resulted in poor results. In order to avoid a

deluge of data, we do not show their results.

47

3.6.1 Informative Error

Informative error (IE) is based on the premise of knowing if an instance should be misclas-

sified. We implement IE in multilayer perceptrons (MLPs) trained with backpropagation

using instance hardness computed using 1) all of the learning algorithms in L (IEESLA) and

2) only using a MLP (IEMLP). We use instance hardness to estimate if an instance should

be misclassified. A common approach for classification problems with MLPs is to create one

output node for every class value. If the data set has a class with three possible values, then

three output nodes are created. The target output value for each node is either 1 if the

instance belongs to that class or 0 if it does not. The error function of target − output for

each of the k output nodes can then be formulated as:

error(x) =

1− ok if t(x) = kclass

0− ok otherwise

where ok is the output value for node k, t(x) is the target value for instance x and kclass is

the class represented by node k.

We modify the error function such that it subtracts the instance hardness value of an

instance from the target value for the output node only.

error(x) =

1− IH(x, t(x))− ok if t(x) = kclass

0− ok otherwise

The instance hardness value is only subtracted from the output node that corresponds with

the target class value of an instance. If the instance hardness value were added to the output

value for the output nodes that do not correspond with the target class value of an instance

then this could potentially confuse the network as an instance is incorrect for one class value

yet correct for all of the others. For example, if an instance has an instance hardness value of

1, then the errors would essentially tell the network that the target value is wrong whereas

48

all of the other classes are correct. Also, if an instance had an instance hardness value of 0.5,

all output nodes would have the same target value and no information is gained. IE places

more emphasis on the non-overlapping instances by reducing the weight of the error from

instances with high instance hardness values.

Table 3.10 shows the results of using IE to train a MLP on 52 data sets (the data sets

that did not have instance hardness greater than 0.5 were not used) compared against two

filtering techniques (repeated edited nearest neighbor (RENN) [41] and fast local kernel

noise reduction (FaLKNR) [34]) and two boosting methods (AdaBoost [15] and MultiBoost

[44] using a MLP as the base algorithm). RENN repeatedly removes the instances that

are misclassified by a 3-nearest neighbor classifier and has produced good results. FaLKNR

removes any instances that disagree with the predicted class from a support vector machine

trained on the neighborhood of the selected instance. The average accuracy, the number of

times that the accuracy using IEMLP is better, the same, or worse than the other methods,

and the p-value calculated using the Wilcoxon signed-rank test are provided in the bottom

three rows as a summary of the table. There are 14 data sets on which IEMLP increases

accuracy by more than 5%, indicated by an asterisk. On the lung cancer data set, accuracy

increases by 21.9% and is 3 percentage points higher than the next best algorithm (FaLKNR).

On the labor data set, IEMLP increases accuracy by 10.5% and is 5 percentage points greater

than the next best algorithm. On average, IEMLP increases more than 3% in accuracy over

the original and 2% over RENN. The increases in accuracy are statistically significant. In

this case, IEMLP is significantly better than IEESLA. Thus, in this case, using a specific bias

from a learning algorithm is preferred. This is examined in more detail in the next section.

Although IE is described in the context of MLPs, it can also be applied to other learning

algorithms that are incrementally updated based on an error value such as the class of non-

closed form regression models (i.e., logistic regression and isotonic regression). Similar to

informative error, instance hardness could be used to weight the instances prior to training

49

Table 3.10: Pairwise comparison of informative error with standard backpropagation, RENN,
FaLKNR, AdaBoost, and MultiBoost. An asterisk indicates data sets on which IEMLP

improves accuracy more than 5%.

Dataset Orig RENN FaLKNR AdaBoost MultiBoost IEESLA IEMLP

abalone 26.24 27.80 28.78 26.24 26.24 27.84 29.12
adult-census 82.91 83.82 83.45 82.91 82.91 85.22 84.46
anneal.ORIG 98.78 98.33 97.55 98.89 98.89 99.33 96.82
arrhythmia 67.70 61.50 67.92 67.70 67.70 71.68 71.06
audiology 83.19 74.78 77.88 83.19 83.19 79.65 81.95
autos 80.00 76.10 68.29 79.51 78.05 78.05 80.39
balance-scale 90.72 89.45 90.72 92.64 92.80 90.40 91.71
breast-cancer* 64.69 74.48 73.08 70.28 69.93 75.87 74.34
breast-w 95.28 96.14 96.28 94.99 95.85 96.57 96.62
bupa 71.59 71.88 71.01 71.88 71.59 72.75 71.59
carEval 99.54 92.53 99.25 99.54 99.54 98.61 99.46
chess-KRvsKP 99.41 99.31 99.47 99.41 99.41 99.41 99.39
chess 62.25 56.94 62.18 65.75 67.60 51.49 61.31
colic* 80.43 83.70 85.33 80.98 82.07 85.33 86.25
contact-lenses* 70.83 91.67 83.33 70.83 70.83 91.67 87.50
credit-a 84.20 87.97 84.78 84.20 84.35 86.52 87.62
credit-g* 71.60 76.00 72.80 71.50 73.00 76.90 78.22
dermatology 96.17 96.45 97.81 96.17 96.17 97.54 98.69
ecoli 86.01 87.20 87.50 84.23 85.12 86.90 87.20
glass 67.76 70.09 68.22 71.50 67.29 70.56 71.96
heart-c* 80.86 82.51 79.54 77.56 79.87 84.16 86.20
heart-h 85.03 84.35 84.01 80.27 81.63 82.99 84.42
heart-statlog* 78.15 82.96 83.33 78.15 80.37 85.93 84.81
hepatitis* 80.00 86.45 82.58 79.35 79.35 87.10 89.68
hypothyroid 94.04 94.35 94.57 94.62 95.10 95.52 94.90
ionosphere 91.17 86.61 86.61 91.17 91.74 91.74 89.23
iris 97.33 96.67 96.67 96.67 96.67 96.67 96.80
labor* 85.96 85.97 91.23 85.96 85.96 96.49 91.93
letter 82.08 82.56 82.60 88.35 87.30 80.48 81.86
lungCancer* 37.50 50.00 56.25 37.50 37.50 59.38 60.00
lymphography 84.46 83.78 83.11 84.46 85.14 85.14 85.95
MagicTelescope 85.87 85.42 85.19 85.90 86.25 85.53 86.36
nursery 99.73 97.45 98.89 99.97 99.97 99.87 99.92
ozone 96.41 96.81 97.12 96.41 99.73 96.96 97.41
pimaDiabetes 75.39 76.69 75.91 75.26 75.13 77.08 78.07
post-opPatient* 55.56 71.11 71.11 52.22 54.44 66.67 72.22
primary-tumor* 38.35 47.20 46.02 43.07 43.07 49.56 51.27
segment 96.06 95.97 96.41 96.06 95.93 96.10 96.84
sick 97.27 97.27 96.85 97.27 97.11 97.51 97.42

Continued on next page

50

Table 3.10: (cont.)Pairwise comparison of informative error with standard backpropagation,
RENN, FaLKNR, AdaBoost, and MultiBoost. An asterisk indicates data sets on which
IEMLP improves accuracy more than 5%.

Dataset Orig RENN FaLKNR AdaBoost MultiBoost IEESLA IEMLP

sonar* 82.21 84.13 85.10 83.65 83.17 87.98 88.17
soybean 93.41 92.97 95.17 93.41 93.41 95.17 94.73
spambase 91.44 91.05 92.18 91.44 91.05 92.24 92.65
splice 95.96 95.24 95.36 95.96 95.96 96.80 96.78
teachingAssistant* 58.94 61.59 63.58 58.94 58.94 64.90 65.56
titanic 78.46 79.06 79.06 78.60 78.96 78.87 79.06
trains* 70.00 80.00 50.00 70.00 70.00 90.00 90.00
vote 94.71 94.71 96.55 94.48 94.48 95.17 95.95
vowel 92.73 93.84 93.64 96.26 96.67 91.62 91.94
waveform-5000 83.56 84.93 86.30 83.36 83.50 85.66 86.60
wine 97.19 96.63 96.63 97.19 97.19 97.75 98.65
yeast 59.43 59.03 60.31 59.43 59.10 59.97 60.77
zoo 96.04 94.06 94.06 96.04 96.04 96.04 95.84

Average 81.05 82.45 82.14 81.37 81.60 84.03 84.57
better-same-worse 40-1-11 43-0-9 43-1-8 40-0-12 38-1-13 36-1-15
p-Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.003

a model. This weight could then be used in a number of learning algorithms such as nearest-

neighbor or näıve Bayes algorithms.

3.6.2 Filtering the data set

A simple idea to handle hard instances and reduce overlap is to filter or remove them from a

data set prior to training. The idea of filtering is to remove the instances that are suspected

outliers or noise and thus increase class separation [37]. We use the IH class values to

determine which instances to filter from the data sets. We compare the results to those by

RENN and the majority and consensus filters proposed by Brodley and Friedl [10]. The

majority and consensus filters remove an instance if it is misclassified respectively by the

majority of, or all, three learning algorithms (C4.5, IB1, and thermal linear machine [11]).

When using the instance hardness values, we use the classifier scores from the five folds of

the nine learning algorithms as our ensemble and remove any instances with an IH class

value greater than a set threshold. We set the threshold at 0.5 (IH 0.5), 0.7 (IH 0.7) and

51

0.9 (IH 0.9). We also compare using each learning algorithm to filter the instances and as

the learning algorithm (IH LA). For example, IH LA for MLP uses a MLP to identify which

instances to filter prior to training a MLP. Each filtering technique was used on a set of 52

data sets evaluated using five by ten-fold cross-validation on the nine learning algorithms.

Testing is done on all of the data, including the instances that were removed.

For the nine learning algorithms, Table 3.11 shows the average accuracy, pairwise compar-

ison of the accuracies, and p-values from the Wilcoxon signed-rank statistical significance test

comparing the filtering method to the original accuracy. Only the averages are displayed to

avoid the overload of tables and much of the aggregate information is present in the pairwise

comparison of the algorithms (number of times that a learning algorithm increases-stays the

same-decreases the accuracy) and the p-value from the Wilcoxon signed rank significance

test. Filtering significantly increases classification accuracy for most of the filtering tech-

niques and learning algorithms. IH 0.7 achieves the greatest increase in accuracy, being

slightly better than the majority filter. One of the advantages of using instance hardness is

that various thresholds can be used to filter the instances. However, we note that there is

not one filtering approach that is best for all learning algorithms and data sets (as indicated

by the counts). For filtering, using the same learning algorithm to infer the model and to

determine which instances to filter is only better than using all of the learning algorithms in

L for C4.5 and 5-NN.

To examine the variability of each data set and learning algorithm combination, we

examine an adaptive filtering approach that generates a set of learning algorithms to calculate

instance hardness for a specific data set/learning algorithm combination [38]. We call the set

of learning algorithms used to calculate instance hardness a filter set. The adaptive approach

discovers the filter set through a greedy search of L. The adaptive approach iteratively adds

a learning algorithm from L to a filter set by selecting the learning algorithm that produces

the highest classification accuracy when added to the filter set, as shown in Algorithm 1.

A constant threshold value is set to filter instances in runLA(F) for all iterations. We

52

Table 3.11: The average accuracy values for the nine learning algorithms comparing filtering
techniques against not filtering the data (Orig). “count” gives the number of times that
a filtering algorithm improves, maintains, or reduces classification accuracy. On average,
filtering the data sets significantly improves the classification accuracy.

Algorithm Orig IH 0.5 IH 0.7 IH 0.9 RENN Majority Consen IH LA
MLP 81.05 83.12 83.58 81.86 82.45 82.52 81.92 82.95
count 35-1-16 37-0-15 30-2-20 28-3-21 25-0-27 24-0-28 36-0-16
p-value 0.001 < 0.001 0.025 0.047 0.151 0.246 0.002
C4dot5 80.11 80.23 81.46 80.53 80.51 81.48 81.11 82.06
count 32-0-20 41-2-9 25-2-25 25-4-23 32-3-17 36-3-13 38-2-12
p-value 0.054 < 0.001 0.226 0.122 0.002 0.001 < 0.0015
5-NN 79.03 81.42 82.14 80.21 82.28 81.62 81.05 82.34
count 39-1-12 38-3-11 37-4-11 39-2-11 36-5-11 32-9-11 41-2-9
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
LWL 69.36 71.05 69.65 69.80 69.75 70.80 70.32 67.69
count 32-11-9 26-12-14 23-13-16 24-14-14 33-8-11 22-18-12 21-13-18
p-value 0.002 0.127 0.103 0.091 0.002 0.009 0.634
NB 75.68 77.79 77.22 76.50 76.17 77.52 77.05 75.04
count 37-1-14 36-0-16 32-3-17 27-7-18 35-4-13 31-8-13 21-1-30
p-value < 0.001 < 0.001 0.008 0.083 0.001 < 0.001 0.871
NNge 79.45 81.69 82.16 80.05 81.16 81.40 81.10 81.57
count 34-0-18 41-0-11 29-2-21 30-3-19 31-4-17 29-7-16 36-0-16
p-value < 0.001 < 0.001 0.070 0.040 0.006 0.003 0.001
RandFor 81.59 82.52 83.07 81.83 82.44 82.37 81.97 82.80
count 28-3-21 36-0-16 29-1-22 26-6-20 24-5-23 25-8-19 27-4-21
p-value 0.009 0.001 0.081 0.045 0.051 0.026 0.031
Ridor 78.09 79.29 79.22 78.45 78.16 78.87 78.94 78.65
count 36-3-13 36-2-14 25-1-26 27-2-23 34-3-15 29-7-16 32-3-17
p-value < 0.001 0.001 0.173 0.419 0.003 0.021 0.013
RIPPER 77.83 79.21 79.16 78.44 77.52 79.79 78.89 78.83
count 37-1-14 38-0-14 32-1-19 26-4-22 36-1-15 32-7-13 37-2-13
p-value < 0.001 < 0.0015 0.019 0.464 0.001 0.001 0.003
Average 78.02 79.59 79.74 78.63 78.94 79.60 79.15 79.10
count 42-0-10 45-0-7 38-0-14 33-1-18 38-0-14 39-0-13 38-0-14
p-value < 0.001 < 0.001 < 0.001 0.003 < 0.001 < 0.001 0.001

53

Algorithm 1 Adaptively constructing a filter set.

1: Let F be the filter set used for filtering and L be the set of candidate learning algorithms
for F .

2: Initialize F to the empty set: F ← {}
3: Initialize the current accuracy to the accuracy from an empty filter set: currAcc ←

runLA({}). runLA(F) returns the accuracy from a learning algorithm trained on a
data set filtered with F .

4: while L 6= {} do
5: bestAcc← currAcc;
6: bestLA← null;
7: for all g ∈ L do
8: tempF ← F + g;
9: acc← runLA(tempF);

10: if acc > bestAcc then
11: bestAcc← acc;
12: bestLA← g;
13: end if
14: end for
15: if bestAcc > currAcc then
16: L ← L− bestLA;
17: F ← F + bestLA;
18: currAcc← bestAcc;
19: else
20: break;
21: end if
22: end while

examine thresholds of 0.5, 0.7, and 0.9. The baseline accuracy for the greedy approach is the

accuracy of the learning algorithm without filtering. The search stops once adding one of

the remaining learning algorithms to the filter set does not increase accuracy. The running

time for the adaptive approach is O(N2) where N is the number of learning algorithms to

search over. The significant improvement in accuracy makes the increase in computational

time reasonable in most cases.

Table 3.12 gives the results for adaptively filtering for a specific data set/learning algo-

rithm combination. The adaptive approach significantly increases the classification accuracy

over IH 0.7 for all of the learning algorithms and thresholds. The accuracy increases for at

least 85% of the data sets regardless of which learning algorithm is being used for classifica-

54

tion. A 0.9 achieves the highest classification accuracy for the adaptive approach. Interest-

ingly, there is no one particular learning algorithm that is always included in a filter set for a

particular learning algorithm. The frequency for how often a learning algorithm is included

in a filter set for each learning algorithm and an aggregate count (overall) is given in Table

3.13. MLPs and random forests are included in more than 50% of the constructed filter sets

while RIPPER and NB are included in less than 2% of the filter sets. The remaining learning

algorithms are used in a filter set between 13% and 23% of the time. It is interesting that

some of the learning algorithms include a particular learning algorithm in the filter set for

most of the data sets while other learning algorithms never or rarely include it. For example,

MLP is always included in the filter set for NB, yet never for 5-NN. Also, only the MLP and

5-NN learning algorithms frequently include themselves in the filter set. Thus, hardness for

a learning algorithm is often better detected using a different learning algorithm.

3.7 Data Set-level Analysis

Our work has focused on hardness at the instance-level. However, prior work has been

done that examines what causes hardness at the data set level. The hardness measures and

hardness measures can be averaged together to measure hardness at the data set level. The

averaged hardness measures can provide insight into a data set’s characteristics and possibly

provide direction into which methods are the most appropriate for the data set. Previous

studies have primarily looked at only binary classification problems. We compare instance

hardness at the data set level with other data set complexity measures. We use a set of

complexity measures by Ho and Basu [18] (implemented with DCoL [27]). In this study we

do not limit our examination to two-class problems. Hence, we do not use the measurements

from Ho and Basu that are only for two-class problems. Ho and Basu’s complexity measures

that were used are shown in Table 3.14. Some of the original measures were adapted to

handle multi-class problems [27].

55

Table 3.12: The average accuracy values for nine learning algorithms comparing the adaptive
filtering approach against IH 0.7. “count” gives the number of times that a filtering algorithm
improves, maintains, or reduces classification accuracy. The adaptive filtering approach
significantly increases classification accuracy.

Algorithm IH 0.7 A 0.5 A 0.7 A 0.9
MLP 83.583 86.302 86.863 87.997
counts 51-1-0 52-0-0 52-0-0
p-value < 0.001 < 0.001 < 0.001
C4.5 81.459 84.854 86.023 86.875
counts 49-1-2 51-1-0 52-0-0
p-value < 0.001 < 0.001 < 0.001
5-NN 82.135 85.953 87.189 89.162
counts 49-3-0 51-1-0 52-0-0
p-value < 0.001 < 0.001 < 0.001
LWL 69.649 74.382 74.043 74.048
counts 46-4-2 43-7-2 43-7-2
p-value < 0.001 < 0.001 < 0.001
NB 77.220 80.368 80.637 80.345
counts 49-2-1 50-1-1 50-1-1
p-value < 0.001 < 0.001 < 0.001
NNge 82.158 85.876 87.145 88.892
counts 49-2-1 50-1-1 50-1-1
p-value < 0.001 < 0.001 < 0.001
RandForest 83.065 86.306 87.353 89.506
counts 49-2-1 51-0-1 51-0-1
p-value < 0.001 < 0.001 < 0.001
Ridor 77.699 81.802 82.509 83.494
counts 50-1-1 51-0-1 51-0-1
p-value < 0.001 < 0.001 < 0.001
RIPPER 79.163 84.418 85.197 86.197
counts 49-1-2 50-1-1 51-0-1
p-value < 0.001 < 0.001 < 0.001
Average 79.742 83.535 84.280 85.342
counts 51-0-1 51-0-1 51-0-1
p-value < 0.001 < 0.001 < 0.001

56

Table 3.13: The frequency of selecting a learning algorithm when adaptively constructing a
filter set. Each row gives the percentage of cases that the learning algorithm was included
in the filter set for the learning algorithm in the column.

Overall MLP C4.5 5-NN LWL NB Nnge RandF Ridor RIP
MLP 51.59 86.67 16.67 0 53.33 100 13.33 26.67 80.00 93.33
C4.5 17.46 13.33 16.67 6.67 26.67 0 13.33 20.00 26.67 33.33
5-NN 23.81 6.67 0 86.67 6.67 0 26.67 26.67 20.00 26.67
LWL 15.87 0 0 40.00 0 66.67 0 6.67 20.00 0
NB 1.59 0 0 0 13.33 0 0 0 0 0
NNge 18.25 26.67 16.67 20.00 13.33 0 46.67 93.33 13.33 0
RandF 55.56 26.67 100 80.00 6.67 0 80.00 0 86.67 53.33
Ridor 13.49 13.33 50.00 0 6.67 53.33 6.67 6.67 6.67 0
RIP 0.79 0 0 0 0 6.67 0 0 0 0

We first compare our measures to those used by Ho and Basu [18]. The matrix of

Spearman correlation coefficients comparing the hardness measures against those measures

used by Ho and Basu are shown in Table 3.15. The measures were normalized by subtracting

the mean and dividing by the standard deviation. The values in bold represent correlations

with a magnitude greater than 0.75. Ony N1 and N3 are strongly correlated with kDN, CL,

and CLD. N1 is the percentage of instances with at least one nearest neighbor of a different

class. N3 is the leave-one-out error of the one-nearest neighbor classifier. Both N1 and N3

are similar and can be categorized as measuring class separability. N1, N3, kDN, CL, and

CLD measure class overlap using all of the features in the data set.

We examined each hardness measure and complexity measure individually to determine

how well it predicts data set hardness (the average instance hardness of the instances in the

data set). The Spearman correlation coefficient for the hardness measures and the measures

from Ho and Basu with data set hardness are shown in Table 3.16. kDN, CL, CLD, N1,

and N3 all have a correlation coefficient greater than 0.8. Recall that kDN, CL, CLD are

strongly correlated with N1 and N3. Despite diversity in the measures, only these few are

strongly correlated with data set hardness and they measure class overlap.

We also apply linear regression to evaluate data set hardness as a combination of the

hardness measures and the measures from Ho and Basu. The correlation coefficients are

57

Table 3.14: List of complexity measures from Ho and Basu [18].

F2: Volume of overlap region:The overlap of the per-class bounding boxes calcu-
lated for each attribute by normalizing the difference of the maximum and mini-
mum values from each class.

F3: Max individual feature efficiency: For all of the features, the maximum ratio
of the number of instances not in the overlapping region to the total number of
instances.

F4: Collective feature efficiency: F3 only return the ratio for the attribute that
maximizes the ratio. F4 is a measure for all of the attributes.

N1: Fraction of points on class boundary: The fraction of instances in a data set
that are connected to their nearest neighbors that have a different class in a
spanning tree.

N2: Ratio of ave intra/inter class NN dist: The average distance to the nearest
intra-class neighbors divided by the average distance to the nearest inter-class
neighbors.

N3: Error rate of 1NN classifier: Leave-one-out error estimate of 1NN.
T1: Fraction of maximum covering spheres: The normalized count of the number

of clusters of instances containing a single class
T2: Ave number of points per dimension: Compares the number of instances to

the number of features.

shown in the column “Lin” in Table 3.16. For the linear model of the hardness measures,

only kDN is statistically significant for the hardness measures. For Ho and Basu’s complexity

measures, only N1 is statistically significant. The correlation of data set hardness with the

linear models of the hardness measures and the measures from Ho and Basu are weaker

than the correlation of data set hardness with an individual measure. When using both sets

of measures, the resulting correlation coefficient is 0.896 with none of the measures being

statistically significant. The linear model also has a weaker correlation coefficient than only

using kDN.

Based on correlation from a linear regression model, our aggregate hardness measures

are competitive with those from Ho and Basu. When the hardness measures are used in

combination with those from Ho and Basu, a slightly stronger correlation is achieved. This

is somewhat expected as there are many underlying and misunderstood factors that affect

58

Table 3.15: Spearman correlation matrix comparing the hardness measures against the com-
plexity measures from Ho and Basu. The strong correlation (bolded values) indicate that
there is some overlap between our measures and those by Ho and Basu.

F2 F3 F4 N1 N2 N3 T1 T2
DN 0.433 0.112 0.237 0.908 0.696 0.867 0.298 -0.142
DS -0.550 0.063 0.011 -0.523 -0.427 -0.464 -0.123 -0.445
DCP -0.542 0.086 0.107 -0.661 -0.456 -0.676 -0.147 -0.033
TD P 0.403 0.014 0.079 0.283 0.235 0.233 -0.040 0.340
TD U 0.306 0.121 0.233 0.336 0.221 0.240 -0.071 0.338
CL -0.490 0.008 -0.186 -0.797 -0.644 -0.763 -0.246 -0.078
CLD -0.463 -0.035 -0.162 -0.805 -0.649 -0.775 -0.272 -0.063
MV 0.424 0.336 0.162 0.307 0.304 0.318 0.163 -0.148
CB 0.148 0.201 0.008 -0.034 0.062 0.015 0.065 -0.027

Table 3.16: The Spearman correlation coefficients for each hardness measure and Ho and
Basu’s complexity measures relating to data set hardness. The measures that measure class
overlap have a strong correlation with data set hardness.

kDN DS DCP TD P TD U CL CLD MV CB Lin
0.901 -0.561 -0.758 0.427 0.354 -0.864 -0.868 0.313 0.088 0.882

F2 F3 F4 N1 N2 N3 T1 T2 Lin
0.455 0.078 0.190 0.860 0.675 0.828 0.222 -0.127 0.844

complexity. By measuring the complexity from many different angles, more perspective can

be found.

The averaged hardness measures at the data set level provide an indication of the source of

hardness and could further indicate which learning algorithms and/or methods for integrating

instance hardness into the learning process are the most appropriate to use for a particular

data set. A cursory examination of the correlation of the hardness measures with instance

hardness at the data set level (Table 3.16) does not reveal an obvious connection. Further

in depth analysis is left for future work.

59

A

B

C

D

Figure 3.4: Hypothetical 2-dimensional data set.

3.8 Related Work

There are a number of methods and approaches that can be used to identify instances that

are hard to classify correctly. In this section we review some previous work for identifying

hard instances. Fundamentally, instances that are hard to classify correctly are those for

which a learning algorithm has a low probability of predicting the correct class label after

having been trained on a training set. To compare the related works with instance hardness

we reference the hypothetical data set in Figure 3.2. For convenience, we reproduce Figure

3.2 in Figure 3.4. We also compare instance hardness (IH ind and IH class) with related

works in Table 3.17 on a subset of the examined instances. We will refer to Table 3.17

throughout this section.

Machine learning research has observed that data sets are often noisy and contain outliers,

and that noise and outliers are harder to classify correctly. Although we do not explicitly

search for outliers, outliers and noisy instances will constitute a subset of the hard instances.

Much work has been put forth to identify outliers and noise. Discovering outliers is important

in anomaly detection where an outlier may represent an important instance. For example,

an outlier in a database of credit card transactions may represent a fraudulent transaction.

Anomaly detection is generally unsupervised and looks at the data set as a whole. One

of the difficulties with outlier detection is that there is no agreed-upon definition of what

60

Table 3.17: Comparison summary of the methods that identify hard instances.

data IH Classifier Scores Active Learn Outlier Detection
set id ind class MLP C4.5 IB5 LWL NB NNg Rand Rid RIP USN QN QC LOP Maj Con REN
ecoli 263 1 0.85 1.00 0.78 1 0.91 1.00 1 0.92 1 0.96 0.99 0 0.72 0.26 yes no yes
ta 128 1 0.82 0.76 0.90 0.99 0.78 0.95 1 0.98 1 0.85 0.63 0.14 0.52 0 yes no yes
abal 4014 1 0.86 0.94 1 1 0.91 1.00 1 1 1 0.87 0.04 0.46 0.47 0.04 yes yes no
yeast 327 1 0.86 0.99 0.99 1 0.87 0.95 1 0.88 1 0.88 0.63 0.17 0.42 0.22 yes yes no
abal 720 1 0.89 1.00 1 1 1 1 1 1 1 1 0.99 0.08 0.32 1 yes yes no
spam 3913 0.07 0.09 0.59 0 0 0.20 0 0 0.02 0 0.05 1 0 0.15 1 no no no
yeast 6 0.76 0.75 0.91 0.86 1 0.61 0.95 1 0.88 0.40 0.89 0.80 0.09 0.47 1 yes yes yes
adult 30676 0.04 0.05 0.05 0.02 0 0.06 0.00 0.40 0.11 0 0.13 1 0 0 1 no no no
adult 30833 0 0.00 0.11 0.08 0 0.07 0.03 0 0 0 0.13 0.94 0 0 1 no no no
wave 3524 0.58 0.53 0.66 0.98 1 0.81 0.19 0 0.58 0.60 0.64 0.60 0 0.54 0.34 yes yes yes
chess 8691 0.53 0.53 0.82 0.72 0.58 0.87 0.81 0 0.46 0.40 0.48 0.04 0.57 0.38 0 yes no no
annea 715 0.53 0.56 0.02 0.64 1 0.56 0.67 0.80 0.76 0.40 0.16 0.18 0.68 0.73 0.01 yes yes yes
arrhy 69 0.51 0.57 0.92 0.45 1 0.43 0 1 0.76 0 0.22 1 0.95 0.42 0.18 yes yes yes

constitutes an outlier or noise. Thus, a variety of different outlier detection methods exist,

such as statistical methods [3], distance-based methods [20], and density-based methods

[7]. Anomaly detection methods identify anomalous instances as those that lie outside the

group(s) of the majority of the other instances in the data set. In the hypothetical two-

dimensional data set shown in Figure 3.4, instances C and D would be identified as anomalous

but not instances A and B.

Most anomaly detection methods do not have a continuous output and are not supervised.

One anomaly detection method that outputs continuous values is local outlier factor. Local

outlier factor (LOF) [7] suggests that each instance has a degree of “outlierness” rather

than a binary labeling. LOF seeks to overcome the problem facing most anomaly detection

methods–that the sub-spaces within many data sets have different densities. LOF considers

relative density rather than the global density of the data set. Instances with a LOF value

of 1 or less are not outliers. The values produced by LOF are somewhat hard to interpret as

there is no upper bound or any value that indicates when a LOF value represents an outlier.

For one data set, an LOF value of 1.1 may represent an outlier while a value of 2 could

represent an outlier in another data set.

61

There are a number of approaches that aim at overcoming the uninterpretability of LOF

[22]. One approach is local outlier probability (LoOP) [21]. LoOP builds on LOF with

statistical methods to produce a probability that an instance is a local density outlier. This

allows the values to be compared across data sets. There are two major assumptions that

LoOP makes: 1) that the k-nearest neighbors of an instance p are centered around p and

2) that the distances behave like the positive leg of a normal distribution. Despite being

more interpretable, LoOP often does not identify hard instances as outliers and identifies

easy instances as outliers as shown in Table 3.17 (LOP).

Filtering, or removing instances prior to training, is another approach that seeks to

identify mislabeled and/or noisy instances with the intent of improving an inferred model of

the data. Unlike anomaly detection, filtering is often supervised, removing instances that are

misclassified by a learning algorithm. In Figure 3.4, filtering would likely identify instances A,

B, and some of the border points as hard to classify. A popular approach to outlier detection

is repeated-edited nearest-neighbor (RENN) [41] which repeatedly removes the instances that

are misclassified by a 3-nearest neighbor classifier and has produced good results. Brodley

and Friedl [10] expanded this idea by removing the instances that were misclassified by all or

the majority of the learning algorithms in an ensemble of three learning algorithms. These

methods do not output a continuous value but they do take into account the class label. As

shown in Table 3.17, these methods (maj, con, and REN) do not often identify easy instances

as outliers, but they may not identify hard instances as outliers.

Some learning algorithms produce probabilistic output, such as näıve Bayes, Bayes nets,

and Gaussian processes. The output from probabilistic algorithms could naturally answer

the question of which instances are hard to classify correctly. However, there are often

assumptions that are made that are not true of the data distribution (i.e. the attributes are

independent or the data is normally distributed). Many other machine learning algorithms

do not produce a probabilistic output. In those cases, the probabilities can be approximated

by normalizing the output values or using some heuristic to produce pseudo probabilistic

62

values. The posterior classifier probabilities from the learning algorithms in L for a subset

of the instances are provided in Table 3.17. The posterior classifier probabilities provide a

good approximation for instance hardness, but, as discovered in Section 3.5, they have a

lower correlation with the hardness measures. This is apparent when examining instances

that have an instance hardness measure around 0.5 (the last four instances in Table 3.17).

Probabilistic outputs from a classifier are important when the outputs are combined with

other sources of information for making decisions, such as the outputs from other classifiers.

Probabilistic outputs are often not well calibrated, such as the output from näıve Bayes [13].

As such, a number of methods have been proposed to calibrate classifier scores [5, 29, 46, 47].

For binary classification problems, the calibration is usually done by training the learning

algorithm to get the classifier scores s(x) and then mapping these scores into a probability

estimate P̂ (y|x) by learning a mapping function. Platt [29] suggests finding the parameters

A and B for a sigmoid function of the form P̂ (y|x) = 1
1+eAs(x)+B to map the classifier scores

s(x) to the probability estimates minimizing the log-likelihood of the data. Multi-class

classification problems are broken down into binary classification problems such as 1 vs 1 or

1 vs all. 1 vs 1 creates a classifier for each pair of classes. 1 vs all creates a classifier that

discriminates between the instances of a particular class and all the instances that have a

different class. The calibrated probabilities from the binary classification problems are then

recombined back together. Classifier scores are supervised and produce continuous outputs

for identifying hard instances. In Figure 3.4, instances A, B, and the border points would

be identified as being hard to classify.

Active learning [35] seeks to find the most informative instances in a data set. Active

learning assumes that there is a set of labeled instances and an abundance of unlabeled

training data and that labeling the data is expensive, thus, the most informative instances

should be labeled first. In active learning, a learning algorithm chooses which instances to

use for training. Active learning assigns unlabeled instances a degree of how informative they

may be to a learning algorithm by optimizing a given criterion. This informative measure

63

could be used as a means of identifying hard instances. For example, uncertainty sampling

[24] selects an unlabeled instance x∗ whose labeling the learning algorithm is least certain

about:

x∗ = argmax
x

1− p(ŷ|x)

where ŷ is the class label with the highest posterior probability for the learning algorithm.

Other methods, such a query-by-committee [16, 36] and a Support Vector Machine method by

Tong and Koller [42], seek to reduce the size of the version space6 [26]. Query-by-committee

uses a committee of models trained on the labeled instances and selects the instances that

the committee disagrees about most. Thus, active learning identifies the border points as

being hard to classify. Table 3.17 shows that active learning scores vary widely for the same

instances. Active learning scores do not have a high correlation with instance hardness.

Clearly, none of the previous work was designed to better understand why instances

are misclassified as is the case with instance hardness. For example, filtering aims at re-

moving mislabeled instances from a data set, and the classifier scores are for applications

where a confidence on a prediction is required. Incorporating the ideas of previous work,

instance hardness provides a framework for identifying which instances are hard to classify

and understanding why they are hard to classify.

3.9 Conclusions and Future Work

In this paper we examined why instances are misclassified and how to characterize them.

We presented instance hardness to empirically discover which instances are hard to classify

correctly. We also presented a set of hardness measures to characterize why some instances

are difficult to classify correctly. We used a broad set of data sets and learning algorithms

and examined hardness at the instance level. We found that class overlap is a principal

contributor to instance hardness and data set hardness. Class skew has been observed to

increase instance hardness. We found that class skew alone does not cause instances to be

6Version space is the subset of parameters that correctly classifies the labeled examples.

64

misclassified. Rather, class skew exacerbates the other characteristics, such as class overlap,

that cause an instance to be misclassified. Continued study of instance hardness should lead

to additional insights regarding data complexity.

Being able to measure instance hardness and complexity has important ramifications

for future machine learning and meta-learning research. We briefly examined integrating

instance hardness into the learning process by filtering the data sets prior to training and

using informative error. In each case, integrating into the learning process the knowledge of

which instances are hard to classify correctly resulted in a significant increase in classification

accuracy. These techniques show that integrating into the learning process the knowledge

about which instances are hard can increase generalization accuracy. Future work includes

understanding the circumstances and situations which are most appropriate for each tech-

nique. There is no one technique for identifying hard instances that is best for all data sets

as demonstrated with the adaptive filter sets.

Calculating instance hardness and the hardness measures can be a computationally expen-

sive procedure requiring the computation of N learning algorithms. However, the instance

hardness values only need to be computed once and they can be used in a wide variety or

applications as was shown in Section 3.6. The hardness measures need to be calculated only

once as well. For many data sets, this additional computation complexity is acceptable. For

massive data sets, though, the additional computational complexity can be a significant con-

cern. In this case, the set of learning algorithms used to calculate instance and the hardness

measures can be altered to those that better handle massive data sets. Also, we showed

that there is no specific set of learning algorithms that is best for all data sets and learning

algorithms. Using the same learning algorithm to calculate instance hardness and to infer

the model of the data does not always result in the most accurate model.

Being able to better analyze data would allow a practitioner to select an algorithm more

suited to their purposes. Also, the evaluation of a learning algorithm could be enhanced by

knowing which instances are hard and, with a high likelihood, should be misclassified. This

65

could lead to a better stopping criterion. We expect that the exploration of instance hardness

and data complexity may lead to more in depth investigation and applications in new areas

of machine learning and data mining. Instance hardness and the hardness measures could

be used in combination with techniques from active learning to determine a subset of the

most important instances from a data set. Future work also includes work in meta-learning.

For example, the hardness measures could be used to estimate the performance of a learning

algorithm on a data set.

References

[1] Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and bag-

ging. In Proceedings of the 15th International Conference on Machine Learning, pages

1–9, 1998. ISBN 1-55860-556-8.

[2] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by active learning.

In Proceedings of the 12th international conference on Knowledge discovery and data

mining, pages 504–509, New York, NY, USA, 2006. ACM. ISBN 1-59593-339-5.

[3] Vic Barnett and Toby Lewis. Outliers in statistical data. John Wiley & Sons Ltd., 2nd

edition edition, 1978.

[4] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A study of

the behavior of several methods for balancing machine learning training data. SIGKDD

Explorations Newsletter, 6(1):20–29, 2004. ISSN 1931-0145.

[5] Paul N. Bennett. Assessing the calibration of naive bayes posterior estimates. Technical

Report CMU-CS-00-155, Carnegie Mellon University, 2000.

[6] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to

Data Mining. Springer, 2009.

66

[7] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: iden-

tifying density-based local outliers. SIGMOD Record, 29(2):93–104, June 2000. ISSN

0163-5808.

[8] John S. Bridle. Probabilistic interpretation of feedforward classification network outputs,

with relationships to statistical pattern recognition. In Neuro-computing: Algorithms,

Architectures and Applications, pages 227–236. Springer, 1989.

[9] Henry Brighton and Chris Mellish. Advances in instance selection for instance-based

learning algorithms. Data Mining and Knowledge Discovery, 6(2):153–172, 2002. ISSN

1384-5810.

[10] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

[11] Carla E. Brodley and Paul E. Utgoff. Multivariate decision trees. Machine Learning,

19(1):45–77, 1995.

[12] Ido Dagan and Sean P. Engelson. Committee-based sampling for training probabilistic

classifiers. In Proceedings of the 12th International Conference on Machine Learning,

pages 150–157, 1995.

[13] Pedro Domingos and Michael J. Pazzani. Beyond independence: Conditions for the

optimality of the simple bayesian classifier. In Lorenza Saitta, editor, ICML, pages

105–112. Morgan Kaufmann, 1996. ISBN 1-55860-419-7.

[14] A. Frank and Arthur Asuncion. UCI machine learning repository, 2010. URL

http://archive.ics.uci.edu/ml.

[15] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

Proceedings of the 13th International Conference on Machine Learning, pages 148–156,

1996.

67

http://archive.ics.uci.edu/ml

[16] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Information, predic-

tion, and query by committee. In Advances in Neural Information Processing Systems

(NIPS), pages 483–490, 1992.

[17] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[18] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:289–300, March

2002.

[19] George H. John. Robust decision trees: Removing outliers from databases. In Knowledge

Discovery and Data Mining, pages 174–179, 1995.

[20] Edwin M. Knorr and Raymond T. Ng. Finding intensional knowledge of distance-based

outliers. In Proceedings of the 25th International Conference on Very Large Data Bases,

pages 211–222, 1999.

[21] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Loop: local outlier

probabilities. In Proceedings of the 18th ACM Conference on Information and Knowl-

edge Management, pages 1649–1652, 2009.

[22] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Interpreting and

unifying outlier scores. In Proceedings of the 11th SIAM International Conference on

Data Mining, pages 13–24, 2011.

[23] Jun Lee and Christophe Giraud-Carrier. A metric for unsupervised metalearning. In-

telligent Data Analysis, 15(6):827–841, 2011.

68

[24] David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers.

In Proceedings of the 17th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 3–12, 1994. ISBN 0-387-19889-X.

[25] Ester Bernadó Mansilla and Tin Kam Ho. On classifier domains of competence. In

ICPR (1), pages 136–139, 2004.

[26] Tom M. Mitchell. Generalization as search. Artifical Intelligence, 18(2):203–226, 1982.

[27] Albert Orriols-Puig, Núria Macià, Ester Bernadó-Mansilla, and Tin Kam Ho. Docu-

mentation for the data complexity library in c++. Technical Report 2009001, La Salle

- Universitat Ramon Llull, April 2009.

[28] Adam H. Peterson and Tony R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75,

2005.

[29] J. Platt. Probabilistic outputs for support vector machines and comparison to regular-

ized likelihood methods. In Advances in Large Margin Classifiers, 2000.

[30] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, USA, 1993.

[31] Jarkko Salojärvi, Kai Puolamäki, Jaana Simola, Lauri Kovanen, Ilpo Kojo, and Samuel

Kaski. Inferring relevance from eye movements: Feature extraction. Technical Report

A82, Helsinki University of Technology, March 2005.

[32] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engi-

neering Databases. School of Information Technology and Engineering, University of

Ottawa, Canada, 2005. URL http://promise.site.uottawa.ca/SERepository/.

[33] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov mod-

els for information extraction. In Proceedings of the 4th International Conference on

69

http://promise.site.uottawa.ca/SERepository/

Advances in Intelligent Data Analysis, IDA ’01, pages 309–318, London, UK, UK, 2001.

Springer-Verlag. ISBN 3-540-42581-0.

[34] Nicola Segata, Enrico Blanzieri, and Pádraig Cunningham. A scalable noise reduction

technique for large case-based systems. In Proceedings of the 8th International Con-

ference on Case-Based Reasoning: Case-Based Reasoning Research and Development,

pages 328–342, 2009. ISBN 978-3-642-02997-4.

[35] Burr Settles. Active learning literature survey. Technical Report Computer Sciences

Technical Report 1648, University of Wisconsin-Madison, January 2010.

[36] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of

the fifth annual workshop on Computational learning theory, pages 287–294, 1992. ISBN

0-89791-497-X.

[37] Michael R. Smith and Tony Martinez. Improving classification accuracy by identify-

ing and removing instances that should be misclassified. In Proceedings of the IEEE

International Joint Conference on Neural Networks, pages 2690–2697, 2011.

[38] Michael R. Smith and Tony Martinez. Increasing task accuracy with adaptive filter sets.

In In Submission, 2012.

[39] Gregor Stiglic and Peter Kokol. GEMLer: Gene expression machine learning

repository. University of Maribor, Faculty of Health Sciences, 2009. URL

http://gemler.fzv.uni-mb.si/.

[40] Kirsten Thomson and Robert J. McQueen. Machine learning applied to fourteen agri-

cultural datasets. Technical Report 96/18, The University of Waikato, September 1996.

[41] Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions

on Systems, Man, and Cybernetics, 6:448–452, 1976.

70

http://gemler.fzv.uni-mb.si/

[42] Simon Tong and Daphne Koller. Support vector machine active learning with applica-

tions to text classification. Journal of Machine Learning Research, 2:45–66, November

2001.

[43] Jason van Hulse, Taghi M. Khoshgoftaar, and Amri Napolitano. Experimental per-

spectives on learning from imbalanced data. In Proceedings of the 24th international

conference on Machine learning, pages 935–942. ACM, 2007.

[44] Geoffrey I. Webb. Multiboosting: A technique for combining boosting and wagging.

Machine Learning, 40(2):159–196, 2000.

[45] David H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural

Computation, 8(7):1341–1390, 1996.

[46] Bianca Zadrozny and Charles Elkan. Learning and making decisions when costs and

probabilities are both unknown. In KDD, pages 204–213, 2001.

[47] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multi-

class probability estimates. In Proceedings of the 8th international conference on Knowl-

edge discovery and data mining, pages 694–699. ACM, 2002.

71

Part II

Improving Machine Learning by Integrating Meta-information about

Individual Training Examples into the Learning Process

Chapters 4 – 7 introduce several methods for integrating information about each instance

into the learning process. Chapter 4 introduces a filtering method that removes instances

that should be misclassified based on the values for their hardness measures. Chapter 5

introduces a method for weighting the instances in a training set. Chapter 6 introduces a

method for ordering the training instances from least complex to most complex and then

using this ordering in the learning process (curriculum learning). Curriculum learning is

then compared with boosting and filtering. Chapter 7 examines the use of classifier diversity

for being robust to class noise in filtering and ensembles. These chapters were published

under the following references.

Michael R. Smith, and Tony Martinez. “Improving Classification Accuracy by Identifying

and Removing Instances that Should Be Misclassified”, In Proceedings of the IEEE

International Joint Conference on Neural Networks (IJCNN 2011), pages 2690–2697,

August 2011.

Michael R. Smith, and Tony Martinez. “Reducing the Effects of Detrimental Instances”,

In Proceedings of the 13th International Conference on Machine Learning and Appli-

cations, pages 183–188, 2014.

72

Michael R. Smith, and Tony Martinez. “A Comparative Evaluation of Curriculum Learning

with Filtering and Boosting in Supervised Classification Problems”, Computational

Intelligence, to appear, 2014.

Michael R. Smith, and Tony Martinez. “Becoming More Robust to Label Noise with

Classifier Diversity”, In Proceedings of the IEEE International Joint Conference on

Neural Networks (IJCNN 2015), to appear, July 2015.

73

Chapter 4

Improving Classification Accuracy by Identifying and Removing Instances that

Should Be Misclassified

In Proceedings of the IEEE International Joint Conference on Neural Networks, pp

2690-2697, 2011.

Abstract

Appropriately handling noise and outliers is an important issue in data mining. In this paper

we examine how noise and outliers are handled by learning algorithms. We introduce a filter-

ing method called PRISM that identifies and removes instances that should be misclassified.

We refer to the set of removed instances as ISMs (instances that should be misclassified). We

examine PRISM and compare it against 3 existing outlier detection methods and 1 noise

reduction technique on 48 data sets using 9 learning algorithms. Using PRISM, the classi-

fication accuracy increases from 78.5% to 79.8% on a set of 53 data sets and is statistically

significant. In addition, the accuracy on the non-outlier instances increases from 82.8% to

84.7%. PRISM achieves a higher classification accuracy than the outlier detection methods

and compares favorably with the noise reduction method.

4.1 Introduction

It is common that noise and outliers exist in real world data sets due to errors such as

typographical errors or measurement errors. When the data is modeled using machine learn-

ing algorithms, the presence of noise and outliers can affect the model that is generated.

Improving how learning algorithms handle noise and outliers can produce better models.

74

Handling noise and outliers has been addressed in a number of different ways, beginning

with preventing overfit. A common approach to prevent overfit is adhering to Occam’s razor

which states that the simplest hypothesis that fits the data tends to be the best one. Using

Occam’s razor, a trade-off is made between accuracy on the training set and the complexity

of the model, preferring a simpler model that will not overfit the training set. Another

technique to prevent overfit is to use a validation set during training to ensure that noise

and outliers are not learned. Some learning algorithms have a built in method to remove

suspected outliers, such as C4.5 which prunes leaves that are thought to be insignificant [16].

Other approaches explicitly address noise and outliers by trying to identify them. One

difficulty, however, is that there is no agreed upon definition of what constitutes an outlier

or how to distinguish noise from an exception. Outlier detection aims a finding anomalies

in the data and has been done using a variety of approaches such as statistical methods [11],

rule creation [10], and clustering techniques [3]. Noise reduction methods attempt to identify

and remove mislabeled instances such as repeated edited nearest neighbor that removes any

instance that is misclassified by a 3-nearest neighbor classifier [24] or removing instances

misclassified by a voting ensemble [4].

In this paper, rather than attempting to identify anomalies or mislabeled instances, we

identify instances that should be misclassified and examine how they affect classification

accuracy. We introduce PRISM (PReprocessing Instances that Should be Misclassified), a

novel filtering method that removes instances that should be misclassified using heuristics

that predict how likely it is that an instance will be misclassified [21]. By “instances that

should be misclassified,” we mean that in the absence of additional information other than

what the data set provides, the label assigned by the learning algorithm to the instance is

the most appropriate one, even if it happens to be different from the instance’s target value.

We call the instances that are removed Instances that Should be Misclassified or ISMs to

distinguish them from outliers and class noise. ISMs exhibit a high degree of class overlap

where class overlap refers to how similar an instance is to other instances of different classes

75

Figure 4.1: A hypothetical 2-dimensional data set with that illustrates how outliers (circles
with striped fill) affect the model generated by a learning algorithm. The solid line represents
the true classification border and the dashed line represents the classification from a learning
algorithm that is affected by the outlier. The filled in instances represent border points.

in an area of the task space. This idea is portrayed in Figure 4.1 that shows a hypothetical

2-dimensional dataset with three outliers (instances with striped fill). In this paper, outlier

instances 2 and 3 are removed by PRISM since they should be misclassified. Traditional

outlier approaches that do not consider the class label would deem instances 1 and 3 as

outliers but would not consider instance 2 as an outlier since class is not taken into account.

Noise reduction techniques may not remove instance 3 since it is sufficiently different from

the square instances.

We also classify each instance as a ISM, border point, or other based on a set of heuristics

that predict how likely an instance is to be misclassified [21]. The presence of noise and

outliers affects the classification border, effectively pulling the classification border as the the

learning algorithm optimizes the squared error, or some other objective function. Removing

the noise and outliers during training allows the learning algorithm to learn a more accurate

classification boundary. This idea is also portrayed in Figure 4.1. The instances with a solid

fill represent border points. The solid line represents the true classification border and the

dashed line represents the classification from a learning algorithm that is affected by the

outlier.

76

Removing the ISMs prior to training increases the overall average accuracy from 78.5%

to 79.8%. In addition, the accuracy for instances that are not ISMs increases from 82.8% to

84.7% while the accuracy on ISMs decreases. In this manner, the learning algorithm models

the data more precisely. Removing the ISMs during training improves the classification

accuracy on the border points from 69.0% to 71.6% on all of the data sets and from 63.6%

to 69.0% on data sets that had more than 10% of the instances identified as ISMs.

We also broadly investigate how outliers (as defined using different outlier detection

methods) and noise affect the classification accuracy. In addition to PRISM, we use three

outlier detection methods and 1 noise reduction algorithm; a distance-based approach [17],

local outlier factor (LOF) [3], the enhanced class outlier distance based algorithm (ECODB)

[18], and repeated edited nearest neighbor (RENN) [24]. The distance approach and LOF

identify the traditional outliers and slightly decrease the classification accuracy. The other

methods take the class label into account and improve classification accuracy.

Section 4.2 describes the experimental methodology. Section 4.3 describes how PRISM

detects ISMs and, as an extension, how we identify instances as border points. The results

are then presented in Section 4.4. We review related works in Section 4.5 and conclude in

Section 4.6.

4.2 Experimental Methodology

We examine how filtering affects the classification accuracy of 53 data sets and 9 learning

algorithms trained with and without filtering. The learning algorithms were chosen with

the intent of being representative of a diverse set of learning algorithms commonly used in

practice. The algorithms that were used are shown in Table 4.1. No parameter optimization

was performed on any of the algorithms. They were used as implemented in Weka with

their default parameters since we are interested in the effect that filtering has rather than

parameter tuning [25]. The set of 53 data sets was selected from the UCI Machine Learning

Repository [2]. This set was built to include data sets that vary significantly along impor-

77

Table 4.1: List of learning algorithms.

Learning Algorithms
Decision Tree (C4.5 [16]) {C4.5}
Näıve Bayes {NB}
Multi-layer Perceptron trained with Back
Propagation {MLP}

Perceptron {Percep}
Support Vector Machine {SVM}
1-NN (1-nearest neighbor) {IB1}
5-NN (5-nearest neighbors) {IB5}
Repeated Incremental Pruning to Produce
Error Reduction) {RIPPER}

RBF Network {RBF}

tant dimensions such as the number of attributes, the types of the attributes, the number

of instances and the application domain. All of the data sets have a percentage of instances

that are identified as outliers ranging from 0.1% to 52%. Each data set and algorithm is eval-

uated using 10-fold cross-validation on the filtered data set. The instances that are filtered

(outliers/noise) are evaluated on a model trained using all of the non-filtered instances.

To examine the effect of filtering on classification accuracy, we first determine which

instances to filter and remove them from the training set. We use the following outlier

detection and noise reduction methods to filter instances:

• A distance-based approach as implemented by Rama-swamy et al [17] that ranks each

instance based on its distance to its k nearest neighbors. The instances with the top n

rankings are identified as outliers. This method partitions the data set to accommodate

large data sets.

• LOF (Local Outlier Factor) [3] is an approach loosely related to density-based cluster-

ing that assigns each instance a value representing its potential of being an outlier with

respect to the instances in its neighborhood. In this work, we identified the instances

with the top n LOF values as outliers.

78

• ECODB (Enhanced Class Outlier Distance Based) [18] is an outlier detection approach

that takes the class label into account. ECODB chooses as outliers the top n instances

that have the smallest distance to their k -nearest neighbors, the greatest deviation,

and a different class label from its k -nearest neighbors.

• RENN (Repeated Edited Nearest Neighbor) [24] repeatedly removes instances that are

misclassified by a 3-NN classifier until no instances are misclassified.

• PRISM (PReprocessing Instances that Should be Misclassified) removes instances that

should be misclassified by a learning algorithm. PRISM is described in Section 4.3.

We used RapidMiner [13] to implement the first three outlier detection methods. Once the

datasets are filtered, we evaluate each learning algorithm using 10-fold cross-validation using

the filtered dataset for training and the whole data set for testing. We then compare these

results to those obtained by training the learning algorithm using all of the instances. In

addition to filtering instances, we also identify instances as ISMs, border points or others as

described in Section 4.3.

4.3 PRISM and Instance Types

PReprocessing Instances that Should be Misclassified or PRISM filters instances that should

be misclassified. By “should be misclassified,” we mean that based on the information

in the dataset, the label assigned by the learning algorithm is the most appropriate even

though it is incorrect. PRISM uses heuristics from Smith et al [21] to identify instances

that should be misclassified. They conducted a comprehensive empirical analysis of what

causes instances to be misclassified and found that class overlap is the primary contributor

to misclassification. The work is summarized here to provide context for the heuristics that

are used to identify ISMs. First, each instance is assigned an instance hardness value to

determine which instances are intrinsically hard to correctly classify. The instance hardness

values for each instance in a set of 57 data sets was collected on 9 learning algorithms using

79

the following equation:

instance hardness(x) =

∑N

i incorrect(LAi, x)

N

where x is the data instance, N is the number of learning algorithms, and incorrect(LA, x)

is a function returning 1 if an instance x was misclassified by the learning algorithm LA, and

0 otherwise. The hardest instances are those which no learning algorithm correctly classifies

and are what PRISM attempts to filter. Their hardness value is 1. To avoid having to run

all nine learning algorithms over each novel instance and to generalize the instances that are

hard to correctly classify, we use five heuristics to predict instance hardness and to filter the

instances.

The first heuristic, k-Disagreeing Neighbors (kDN), measures the local overlap of an

instance in the original task space. The kDN of an instance is the percentage of that

instance’s k nearest neighbors (using Euclidean distance) that do not share its target class

value.

kDN(x) =
| {y : y ∈ kNN(x) ∧ t(y) 6= t(x)} |

k

where kNN (x) is the set of k nearest neighbors of x and t(x) is the target class value

associated with x.

The next heuristic examines the disjunct size and measures how tightly the learning

algorithm has to divide the task space to correctly classify an instance and the complexity

of the decision boundary. The Disjunct Size (DS) of an instance is the number of instances

in a disjunct divided by the number of instances covered by the largest disjunct in a data

set.

DS(x) =
| disjunct(x) | −1

maxy∈D | disjunct(y) | −1

where the function disjunct(x) returns the disjunct that covers instance x, and D is the data

set that contains instance x. The disjuncts are formed using a C4.5 decision tree, created

80

without pruning and setting the minimum number of instances per leaf node to 1 [16].1 In

a decision tree, the disjuncts are the leaf nodes.

The third heuristic measures an instance’s overlap on a subset of the features. C4.5 forms

disjuncts but uses pruning. Using a pruned tree, the Disjunct Class Percentage (DCP) of an

instance is the number of instances in a disjunct belonging to its class divided by the total

number of instances in the disjunct.

DCP (x) =
| {z : z ∈ disjunct(x) ∧ t(z) = t(x)} |

| disjunct(x) |

The fourth heuristic provides a global measure of overlap using all of the instances and

attributes and a measure of the likelihood of an instance belonging to a class. The Class

Likelihood (CL) of the attribute values for an instance belonging to a certain class is defined

as

CL(x, t(x)) =

|x|
∏

i

P (xi|t(x))

where xi is the value of instance x on its ith attribute. Continuous variables are assigned a

probability using a kernel density estimation [9].

The fifth heuristic captures the difference in likelihoods and global overlap. The Class

Likelihood Difference (CLD) is the difference between the class likelihood of an instance and

the maximum likelihood for all of the other classes.

CLD(x, t(x)) = CL(x, t(x))− argmax
y∈Y−t(x)

CL(x, y)

Using these heuristics we can identify instances that should be misclassified (ISMs) by

assuming that ISMs have high instance hardness values. We can also identify instances as

border points and other by assuming that the instance hardness values for border points range

1Note that C4.5 will create fractional instances in a disjunct for instances with unknown attribute values,
possibly leading to DS values less than 1. Such cases are treated as though the disjunct covered a single
instance.

81

between 0.11 and 1, and that other instances have a low instance hardness values. Based

on these observations and the correlation between instance hardness and the heuristics, we

identify an instance as a ISM or a border point using the following equation.

type(x) =

ISM if CLD(x, t(x)) < 0 &&

((DS(x) == 0 &&

DCP (x) < 0.5)||

DN(x) > 0.8)

border else if (DS(x) == 0 &&

DCP (x) < 1) ||

DN(x) > 0.2

other otherwise

That is, an instance is first identified as a ISM if the wrong class has the highest class

likelihood for the instance and it meets one of two conditions: 1) the average DN value2 is

greater than 0.8; or 2) the instance is the only instance covered by the unpruned disjunct

and the instance belongs to the minority class of the instances covered by a pruned disjunct.

Therefore, a ISM disagrees with at least 80% of its neighbors or it is the only instance

belonging to a disjunct and after pruning it is a minority class in the disjunct. If an instance

is not a ISM, it is evaluated to determine if it is a border point. An instance is a border

point if it satisfies one of the following two conditions: 1) the average DN value is greater

than 0.2; or 2) the instance is the only instance covered by an unpruned disjunct and all of

the instances covered by the pruned disjunct do not belong to the same class. If an instance

is neither a ISM nor a border point, it is identified as other signifying that there is no or

little class overlap. The values chosen in the heuristics were chosen based on empirical data

2To factor out the effect of neighborhood size, we use DN(x) rather than kDN(x), where DN(x) is the
average of kDN(x) over all values of k between 1 and 17. Setting DN above 0.8 implies that on average,
for every 5 instances in the neighborhood, at least 4 disagree with the instance under consideration.

82

to correlate with instance hardness [21]. In the following experiments, the other outlier

detection methods are set to identify the same number of outliers as PRISM detected.

4.4 Results

This section presents the results of the experiments. Removing ISMs by PRISM for training

increases the classification accuracy significantly. Only accuracy for the perceptron learning

algorithm is not significantly changed by training without the ISMs as shown in the top part

of Table 4.2. This may be due to the perceptron’s inability to overfit the data and causing it

to naturally ignore ISMs and hard instances. The change is most significant for the nearest

neighbor learning algorithms.

To further determine the effectiveness of training without the ISMs, we examine the

accuracy of the learning algorithms in the context of instance types. Table 4.2 shows the

average accuracy for each of the nine considered learning algorithms and for a voting ensemble

according to instance type on the datasets, where “>= 10%” averages the data sets with

at least 10% of the instances being ISMs, “< 10%” averages those data sets with less than

10% of the instances being ISMs and “Overall” averages all of the data sets. “Orig” uses

all of the data to train the learning algorithms and “NoISM” refers to training the learning

algorithms without ISMs. The p-values are from the Wilcoxon signed-rank test and values

in bold represent those that are not statistically significant with alpha equal to 0.05. The

average classification accuracy and the voting ensemble are included to provide insight at a

higher level than an individual learning algorithm. The change in classification accuracy by

removing the ISMs for training is statistically significant in the majority of the cases.

The classification accuracy on the ISMs decreases for all learning algorithms when filtering

with PRISM, which is expected since ISMs should not be learned by the learning algorithms

and ISMs should be misclassified. The change is not significant for C4.5 and näıve Bayes.

When 10% or more of the instances are ISMs, the change in accuracy is not significant for

C4.5, IB1, IB5, and näıve Bayes while C4.5, MLP, näıve Bayes, perceptron, and RIPPER

83

Table 4.2: The average accuracy for the nine considered learning algorithms and voting
ensemble on the data sets and the p-values using the Wilcoxon Signed-Ranks test comparing
training with the original dataset and training without ISMs. >= 10% averages the data
sets with at least 10% of the instances being ISMs according to instance type (ISMs, border
points, and other). < 10% averages the data sets with less than 10% of the instances being
ISMs and “Overall” averages all of the data sets. “Orig” uses all of the data to train the
learning algorithms and “NoISM” refers to training the learning algorithms without ISMs.

Classifier
>= 10%

p-value
<10%

p-value
Overall

p-value
Orig NoISM Orig NoISM Orig NoISM

A
ll

C4.5 0.601 0.617 0.0681 0.860 0.864 0.1170 0.802 0.808 0.0244
IB1 0.529 0.587 0.0032 0.834 0.851 <0.0001 0.765 0.792 <0.0001
IB5 0.577 0.617 0.0436 0.852 0.869 <0.0001 0.790 0.812 <0.0001
MLP 0.595 0.626 0.0571 0.871 0.883 0.0495 0.808 0.825 0.0113
NB 0.578 0.581 0.2451 0.804 0.815 0.0015 0.753 0.762 0.0017

Perceptron 0.574 0.597 0.0217 0.851 0.857 0.2358 0.788 0.798 0.0548
RBFNet 0.538 0.566 0.0392 0.850 0.856 0.0066 0.779 0.791 0.0021
RIPPER 0.545 0.584 0.0087 0.846 0.851 0.0436 0.778 0.790 0.0027
SVM 0.604 0.619 0.0571 0.856 0.862 0.0351 0.799 0.807 0.0089

Average 0.571 0.599 0.0040 0.847 0.856 <0.0001 0.785 0.798 <0.0001
Voting 0.573 0.599 0.0089 0.885 0.891 0.0778 0.814 0.825 0.0041

IS
M
s

C4.5 0.073 0.061 >0.05 0.186 0.158 0.4090 0.160 0.136 0.2843
IB1 0.104 0.086 >0.05 0.174 0.149 0.0003 0.158 0.135 0.0006
IB5 0.117 0.078 >0.05 0.150 0.133 0.0008 0.143 0.121 0.0033
MLP 0.184 0.082 0.0197 0.203 0.193 0.0582 0.198 0.168 0.0069
NB 0.051 0.044 >0.05 0.133 0.125 0.2005 0.115 0.107 0.1492

Perceptron 0.133 0.076 0.0037 0.141 0.128 0.2912 0.139 0.117 0.0329
RBFNet 0.103 0.066 0.0089 0.233 0.174 0.0011 0.204 0.149 0.0001
RIPPER 0.135 0.108 <0.01 0.216 0.157 0.0618 0.198 0.146 0.0179
SVM 0.192 0.149 0.0392 0.128 0.118 0.0287 0.143 0.125 0.0044

Average 0.121 0.083 0.0052 0.174 0.148 0.0016 0.162 0.134 0.0001
Voting 0.090 0.064 >0.05 0.183 0.128 0.0146 0.162 0.114 0.0045

B
or
d
er

p
oi
n
ts

C4.5 0.672 0.709 0.0485 0.755 0.751 0.4920 0.737 0.741 0.0853
IB1 0.567 0.664 0.0024 0.632 0.679 0.0001 0.617 0.675 <0.0001
IB5 0.641 0.719 0.0032 0.660 0.708 0.0001 0.656 0.710 <0.0001
MLP 0.659 0.729 0.0052 0.752 0.769 0.2005 0.731 0.760 0.0060
NB 0.676 0.683 0.3707 0.680 0.696 0.0197 0.679 0.693 0.0036

Perceptron 0.639 0.682 0.0068 0.720 0.724 0.3409 0.702 0.714 0.1038
RBFNet 0.603 0.654 0.0087 0.716 0.731 0.0485 0.691 0.713 0.0009
RIPPER 0.592 0.663 0.0051 0.722 0.735 0.2266 0.693 0.719 0.0071
SVM 0.676 0.708 0.0150 0.713 0.719 0.2451 0.705 0.717 0.0239

Average 0.636 0.690 0.0015 0.706 0.723 0.0008 0.690 0.716 <0.0001
Voting 0.662 0.711 <0.01 0.774 0.784 0.1190 0.749 0.767 0.0060

84

Table 4.2: cont. The average accuracy for the nine considered learning algorithms and voting
ensemble on the data sets and the p-values using the Wilcoxon Signed-Ranks test comparing
training with the original dataset and training without ISMs. >= 10% averages the data
sets with at least 10% of the instances being ISMs according to instance type (ISMs, border
points, and other). < 10% averages the data sets with less than 10% of the instances being
ISMs and “Overall” averages all of the data sets. “Orig” uses all of the data to train the
learning algorithms and “NoISM” refers to training the learning algorithms without ISMs.

Classifier
>= 10%

p-value
<10%

p-value
Overall

p-value
Orig NoISM Orig NoISM Orig NoISM

O
th
er

C4.5 0.878 0.991 0.0500 0.962 0.969 0.0028 0.945 0.973 0.0003
IB1 0.892 0.985 0.0050 0.988 0.993 0.0150 0.969 0.992 0.0002
IB5 0.943 1.000 NEI 0.997 0.999 0.0018 0.986 0.999 0.0002
MLP 0.922 0.982 0.0500 0.977 0.987 0.0006 0.966 0.986 0.0001
NB 0.882 0.990 NEI 0.912 0.918 0.0222 0.906 0.932 0.0052

Perceptron 0.959 0.876 >0.05 0.971 0.975 0.0307 0.969 0.955 0.0170
RBFNet 0.939 0.973 >0.05 0.961 0.968 0.0080 0.957 0.969 0.0024
RIPPER 0.914 0.928 NEI 0.956 0.958 0.1711 0.948 0.952 0.0668
SVM 0.990 0.992 NEI 0.977 0.981 0.0060 0.979 0.983 0.0044

Average 0.924 0.968 0.0027 0.967 0.972 0.0001 0.958 0.971 <0.0001
Voting 0.995 0.998 NEI 0.995 0.996 0.2420 0.995 0.997 0.1131

are not statistically significant when less than 10% of the instances are ISMs. The non-

significance is important as it shows that the learning algorithms correctly misclassify ISMs.

RBFNet and SVM appear to be most affected by ISMs as the change in classification accuracy

is always significant.

By removing the ISMs for training, there is significant improvement for all of the learning

algorithms on the border points except for C4.5 and perceptron. The increase is by as much

as 10% for the data sets where 10% or more of the instances are ISMs. Only the näıve Bayes

learning algorithm does not have a significant increase in classification on the border points

on datasets with 10% or more ISMs. The increase is less or not significant on the border

points on datasets with less than 10% ISMs and actually decreases slightly for C4.5.

For the other instances, there was not enough information (NEI in the table) to determine

if the change in classification accuracy was significant for some of the learning algorithms.

This is due in part to both methods being equivalent on some data sets. The change is

significant for all of the learning algorithms except for RIPPER and the voting ensemble,

although removing the outliers does not decrease the classification either. For all of the

85

Table 4.3: The average classification accuracy for each learning algorithm trained with and
without filtering.

Orig Dist LOF ECODB RENN PRISM

C4.5 0.803 0.794 0.802 0.807 0.805 0.809
IB1 0.771 0.773 0.773 0.784 0.809 0.797
IB5 0.791 0.789 0.793 0.802 0.822 0.814
MLP 0.813 0.814 0.814 0.822 0.829 0.831
NB 0.765 0.773 0.767 0.772 0.774 0.776

Percept 0.801 0.803 0.798 0.808 0.811 0.812
RBFNet 0.796 0.791 0.792 0.797 0.807 0.806
RIPPER 0.787 0.787 0.788 0.792 0.790 0.798
SVM 0.805 0.803 0.801 0.810 0.808 0.814
Overall 0.792 0.792 0.792 0.799 0.806 0.806

other learning algorithms, there is a significant increase in classification accuracy. Thus, the

presence of ISMs does affect non-ISM instances.

We also compared PRISM with other filtering techniques. When comparing the other

filtering methods, only 48 of the 53 data sets are used. Five of the data sets were omitted

because the distance approach, LOF, and/or ECODB ran out of memory (15 GB) when

running on them. To determine statistical significance, we used the Friedman test and

post-hoc tests as well as the Wilcoxon Signed-Ranks test as suggested by Demšar [5].

Table 4.3 shows the average classification accuracy on the test sets with and without

filtering for each learning algorithm trained on the different subsets of data used for train-

ing. “Orig” refers to using the whole data set for training. The “Dist,” “LOF,” “ECODB,”

“RENN,” and “PRISM” columns remove instances that were identified as outliers for training

using the distance approach, LOF, ECODB, RENN, and PRISM methods respectively. The

values in bold are the highest classification accuracy or within 0.5% of the highest classifi-

cation accuracy for each learning algorithm. RENN and PRISM achieve the highest overall

classification accuracy and a higher classification accuracy than Orig for all of the learning

algorithms.

The effectiveness of each method is further shown by ranking the classification accuracy

for each filtering method as shown in Table 4.4. The lowest rank is desired. The values in

86

Table 4.4: The average rank for each learning algorithm on 48 data sets trained with and
without filtering.

Algorithm Orig Dist LOF ECODB RENN PRISM

C4.5 3.38 4.33 3.58 3.44 3.46 2.81
IB1 4.30 4.29 4.10 3.38 2.24 2.69
IB5 4.08 4.48 4.08 3.51 2.43 2.42
MLP 3.47 4.10 3.88 3.65 3.08 2.82
NB 4.06 3.53 3.67 3.5 3.33 2.91

Percept 3.44 3.75 3.79 3.76 3.30 2.96
RBFNet 3.63 3.94 3.84 3.74 3.01 2.84
RIPPER 3.98 3.83 3.77 3.02 3.72 2.68
SVM 3.54 3.73 3.70 3.5 3.64 2.90

Overall 3.76 4.00 3.82 3.50 3.13 2.78

Table 4.5: The average classification accuracy for each learning algorithm trained with vari-
ous subsets of the data set.

Data Set % ISMs Orig Dist p-value LOF p-value ECODB p-value RENN p-value PRISM p-value

Breast Uterus 0.009 0.961 0.959 >0.05 0.962 >0.05 0.961 >0.05 0.966 >0.05 0.972 <0.025
ar1 0.05 0.901 0.917 0.005 0.881 0.025 0.907 >0.05 0.926 <0.05 0.915 0.05

cm1 req 0.056 0.725 0.734 >0.05 0.742 >0.05 0.74 >0.05 0.775 0.01 0.774 0.025
desharnais 0.148 0.641 0.664 >0.05 0.636 >0.05 0.641 >0.05 0.665 >0.05 0.661 >0.05
eucalyptus 0.179 0.578 0.56 >0.05 0.553 <0.025 0.576 >0.05 0.612 >0.05 0.600 <0.05
pasture 0.056 0.713 0.698 >0.05 0.688 >0.05 0.71 >0.05 0.772 0.01 0.744 <0.05
Average 0.083 0.753 0.755 >0.05 0.744 >0.05 0.756 >0.05 0.786 0.05 0.778 0.01

bold indicate the best average rank. Removing outliers using PRISM has the lowest rank

overall and for each learning algorithm except for IB1. PRISM is the only outlier detection

method that is ranked lower than using the original dataset for every learning algorithm.

PRISM’s overall ranking is the furthest away from 3.5 and only PRISM and RENN have

a ranking lower than 3.5. The Friedman test rejects the null hypothesis that each subset

of the original dataset used for training is equivalent with a p-value less than 0.01. Thus,

classification accuracy is affected by removing outliers. The Friedman test only rejects the

null hypothesis that every method should have the same rank (3.5 in this case). To compare

the different methods for identifying outliers, we perform post-hoc tests as described by

Demšar [5].

87

The Bonferroni-Dunn significance test was used to compare training the learning algo-

rithms trained with filtered data sets against using the original data set for training. The test

indicated that the distance approach (decrease in classification accuracy) and RENN and

PRISM (increase in classification accuracy) are statistically different from training with the

original data set with an alpha value of 0.05. We also compared PRISM against the distance

approach, LOF and ECODB. The difference in classification accuracy between using PRISM

to remove outliers and the other approaches is statistically significant with an alpha value

of 0.05. These results were confirmed using Holm’s and Hochenberg’s procedures.

This shows that preprocessing a dataset before training affects classification accuracy.

Filtering by PRISM and RENN do the best at increasing the classification accuracy overall.

To a lesser extent, ECODB in general also increases classification accuracy and is statistically

significant using the Wilcoxon signed-ranks test. Also, the increase in classification accuracy

by PRISM and RENN is statistically significant and the decrease in accuracy by the distance

approach and LOF are statistically insignificant with alpha equal to 0.05.

We also examined removing outliers during training on a test set of six non-UCI datasets

drawn from a number of different fields: bioinformatics [22], agriculture [23], and software

engineering [19] to demonstrate that PRISM is effective on novel data sets. Because the

heuristics were discovered on UCI datasets, this set of data sets was used as a test set to

ensure that the heuristics generalize well. The percentage of ISMs in the data sets range from

0.9% to 17.9%. The results are summarized in Table 4.5. Each row gives the percentage of

ISMs that each data set contains, the average accuracy for each training set and the p-value

for the change in accuracy using the Wilcoxon signed-rank test. The highest classification

accuracies and the p-values that are statistically significant are in bold with alpha equal to

0.05. PRISM and RENN achieve the highest classification accuracy on each data set and

provide an average increase of 2.5%. The other methods often result in lower classification

accuracy. The change in accuracy by PRISM is also statistically significant for all of the

data sets except for desharnais where as RENN is statistically significant for only three of

88

Table 4.6: The average classification accuracy for each learning algorithm trained with vari-
ous subsets of the additional data sets.

Orig Dist LOF ECODB RENN PRISM

C4.5 0.780 0.769 0.751 0.775 0.781 0.808
IB1 0.733 0.734 0.718 0.736 0.792 0.769
IB5 0.737 0.753 0.729 0.748 0.792 0.771
MLP 0.745 0.758 0.771 0.766 0.806 0.796
NB 0.727 0.721 0.720 0.744 0.760 0.763

Percept 0.746 0.761 0.751 0.752 0.787 0.769
RBFNet 0.751 0.733 0.725 0.736 0.767 0.747
RIPPER 0.785 0.789 0.749 0.772 0.787 0.805
SVM 0.774 0.780 0.779 0.775 0.801 0.772
Overall 0.753 0.755 0.744 0.756 0.786 0.778

the datasets. Table 4.6 shows how each learning algorithm performed on the additional set

of data sets. PRISM and RENN provide the highest classification accuracy for all of the

learning algorithms.

Finally, we examine the effect of traditional outliers. We have shown that ISMs affect the

classification accuracy of a data set by pulling the classification boundary toward the wrong

class. Outliers could also pull the classification boundary in the other direction. Could the

accuracy be increased even more by handling the outliers as well as the ISMs? To determine

the effect of removing both ISM and outliers for training, we combine the set of ISMs from

PRISM with the outliers using the distance method, LOF, and ECODB. 32.7%, 36.7%, and

37.8% of the outliers identified by the distance approach, LOF, and ECODB overlap with

the set of ISMs found by PRISM.

Combining the instances identified by PRISM and an outlier detection method results in

a loss of accuracy compared to using PRISM by itself. The loss, however, is only 0.8% on

average and is not statistically significant with an alpha of 0.05 using the Wilcoxon signed-

rank test. Outliers are typically considered to be instances that are different than other

instances and/or are in an underrepresented area of the task space. By removing the outliers,

there is no information for the learning algorithm to generalize well on them. Thus, removing

them can be detrimental to the classification accuracy. However, removing the combination

89

of outliers identified by PRISM and another outlier detection method resulted in a higher

classification accuracy than just using the other outlier detection method. For each outlier

detection method, the increase in accuracy is statistically significant with a p-value less than

or equal to 0.0001. Thus, ISMs most directly affect the classification boundaries produced

by the learning algorithms.

4.5 Related Work

Outlier detection has received growing attention, especially from the data mining community

where outliers may represent anomalies or points of focus [1, 11, 15]. One difficulty in outlier

detection is that there is no agreed upon definition of what constitutes an outlier. As such,

outlier detection methods have used synthetic data sets or have injected noisy instances into

a data set to establish which instances are outliers, thereby making assumptions about the

characteristics of outliers. Also, there are many outlier detection algorithms from a variety

of fields using different approaches; a few techniques are reviewed here. Khoshgoftaar et

al [10] use a rule-based outlier detection method to remove outliers. They analyzed their

approach by artificially injecting noise into clean data from software measurement data of

a NASA software project. Liu et al [12] present an ensemble method for detecting outliers

similar to boosting. In boosting, each training instance is assigned a weight. This method is

augmented by adding a weight to each attribute (information gain) and outliers are detected

by comparing the weights of the training instances. Finally, rules are generated that result in

the largest attribute weight information gain. An approach loosely related to density-based

clustering is Local Outlier Factor (LOF) [3]. LOF assigns each instance a value representing

its potential of being an outlier with respect to the instances in its neighborhood. A thorough

survey of outlier detection methodologies is provided by Hodge and Austin [8].

The concept of class outlier mining has also been examined [7, 14]. The goal of class

outlier mining is to detect outliers taking into account the class label. For example, Semantic

Outlier Factor (SOF) [6] is a class outlier mining approach based on applying a clustering

90

technique that takes the class label into account. ECODB [18], used in this work, is another

example of class outlier mining. PRISM is similar to these approaches in that it takes the

class label into account. PRISM differs from the other methods in that it also takes into

account the expected classification of the instance.

Closely related to class outlier mining is noise reduction [20, 24] that attempts to identify

and remove mislabeled instances. For example, Brodley and Friedl [4] attempt to identify

mislabeled instances using an ensemble of classifiers. Rather than determining if an instance

is mislabeled, PRISM filters instances that should be misclassified. The sets of removed

instances from the PRISM and other noise reduction techniques will expectedly be similar.

A different approach by Zeng and Martinez [26] uses multi-layer perceptrons that changes

the class label on suspected outliers assuming that the wrong label was assigned to that

instance. Our work does not focus on a single learning algorithm, but rather examines the

effects of instances that should be misclassified in a broader context.

4.6 Conclusions

In this paper we introduced PRISM, a novel filtering method that identifies instances that

should be misclassified (ISMs). We used a composite heuristic to identify ISMs that combines

ideas from multiple learning algorithms. We have shown that noise and outliers do affect

how learning algorithms model the data. However, noise and outlier detection and removal

is difficult because there is no universal definition of what an outlier actually is or if an

instance is noisy. In addition to PRISM, we used 3 outlier detection approaches and 1 noise

reduction method to train 9 learning algorithms with filtering and compared the results to

those from the learning algorithms trained using the original data set. RENN and PRISM

both resulted in higher classification accuracy and consistently ranked better than the other

approaches. PRISM consistently ranked the best among all of the filtering approaches. The

distance-based approach and LOF did not show an improvement in classification accuracy

91

but did allow a speed up in training by having less instances to train. The distance-based

approach and LOF both ranked worse than training with the original data set.

Removing instances identified by RENN and PRISM for training achieved the highest

overall classification accuracy compared with the learning algorithms trained on the original

data sets as well as with outliers removed by the other methods. With PRISM, we were

able to achieve improvements in classification accuracy regardless of the learning algorithm

being evaluated. On average, the increase in accuracy was about 1.3%. However, on data sets

where more than 10% of the instances are ISMs, the increase on average is 2.8% compared to

1.2% for data sets with less than 10% ISMs. Rather than focusing on correctly classifying the

instances that should be misclassified and arbitrarily adjusting the classification boundary,

removing the ISMs for training allows the learning algorithms to focus on the instances that

can be correctly classified. Removing the ISMs allows a more appropriate decision surface

to be discovered since the ISMs do not arbitrarily pull the decision surface from its more

optimal position. This leads to higher classification accuracy.

The presence of noise and outliers affects the learned model as the accuracy on border

points and other instances increases when the model is trained on filtered data. Learning al-

gorithms such as C4.5 and multi-layer perceptrons are more robust to outliers in the training

data than other models but removing the outliers for training improved their classification

accuracy as well as the less robust learning algorithms. Examining each instance type, the

accuracy for the ISMs decreased as would be expected, but the accuracy of the border points

and other instances increased sufficiently to provide an overall increase in accuracy despite

the decrease on the ISMs.

Another advantage to identifying ISMs is for evaluation. The instances that should be

misclassified can be handled differently. For example, all of the outliers can be ignored when

calculating classification accuracy since the outliers should be misclassified. The accuracy

would then give more insight as to how closely the learning algorithms models the data. Using

this approach for evaluation, ignoring the ISMs during training increases the classification

92

accuracy on average by 1.94% as compared to when training using all of the instances.

Ignoring outliers during training is most effective with a high percentage of instances being

outliers. When 10% or more of the instances are outliers, the average increase in classification

accuracy is 5.0% compared to 1.1% for data sets with less than 10% outliers.

Outliers and noise affect how learning algorithms model a data set. By filtering noise and

outliers for training, the classification accuracy can be improved and the model will more

effectively model the data.

References

[1] Naoki Abe, Bianca Zadrozny, and John Langford. Outlier detection by active learning.

In Proceedings of the 12th international conference on Knowledge discovery and data

mining, pages 504–509, New York, NY, USA, 2006. ACM. ISBN 1-59593-339-5.

[2] Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007. URL

http://www.ics.uci.edu/~mlearn/.

[3] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: iden-

tifying density-based local outliers. SIGMOD Record, 29(2):93–104, June 2000. ISSN

0163-5808.

[4] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

[5] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

[6] Zengyou He, Shengchun Deng, and Xiaofei Xu. Outlier detection integrating semantic

knowledge. In Proceedings of the 3rd International Conference on Advances in Web-Age

Information Management, pages 126–131, 2002.

93

http://www.ics.uci.edu/~mlearn/

[7] Zengyou He, Joshua Zhexue Huang, Xiaofei Xu, and Shengchun Deng. Mining class

outliers: Concepts, algorithms and applications. In Proceedings of the 5th International

Conference on Advances in Web-Age Information Management, pages 589–599, 2004.

[8] Victoria Hodge and Jim Austin. A survey of outlier detection methodologies. Artificial

Intelligence Review, 22(2):85–126, 2004.

[9] George H. John. Robust decision trees: Removing outliers from databases. In Knowledge

Discovery and Data Mining, pages 174–179, 1995.

[10] Taghi M. Khoshgoftaar, Naeem Seliya, and Kehan Gao. Rule-based noise detection for

software measurement data. In Proceedings of the IEEE International Conference on

Information Reuse and Integration, pages 302–307, 2004.

[11] Jeremy Kubica and Andrew Moore. Probabilistic noise identification and data cleaning.

In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 131–

138, 2003.

[12] Xiao-Dong Liu, Chun yi Shi, and Xue-Dao Gu. A boosting method to detect noisy

data. In Proceedings of the 4th International Conference on Machine Learning and

Cybernetics, volume 4, pages 2015–2020, 2005.

[13] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. Yale:

Rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

935–940, New York, NY, USA, 2006. ACM.

[14] Spiros Papadimitriou and Christos Faloutsos. Cross-outlier detection. In Proceedings of

the 8th International Symposium on Advances in Spatial and Temporal Databases, pages

199–213, 2003.

94

[15] Mikhail I. Petrovskiy. Outlier detection algorithms in data mining systems. Program-

ming and Computer Software, 29(4):228–237, 2003.

[16] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, USA, 1993.

[17] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for min-

ing outliers from large data sets. Int. Conf. on Management of Data (SIGMOD), 29(2):

427–438, 2000.

[18] Motaz K. Saad and Nabil M. Hewahi. A comparative study of outlier mining and class

outlier mining. CS Letters, 1(1), 2009.

[19] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engi-

neering Databases. School of Information Technology and Engineering, University of

Ottawa, Canada, 2005. URL http://promise.site.uottawa.ca/SERepository/.

[20] Nicola Segata and Enrico Blanzieri. Fast and scalable local kernel machines. Journal

of Machine Learning Research, 11:1883–1926, August 2010. ISSN 1532-4435.

[21] Michael R. Smith. An empirical study of instance hardness. Master’s thesis, Brigham

Young University, April 2010.

[22] Gregor Stiglic and Peter Kokol. GEMLer: Gene expression machine learning

repository. University of Maribor, Faculty of Health Sciences, 2009. URL

http://gemler.fzv.uni-mb.si/.

[23] Kirsten Thomson and Robert J. McQueen. Machine learning applied to fourteen agri-

cultural datasets. Technical Report 96/18, The University of Waikato, September 1996.

[24] Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions

on Systems, Man, and Cybernetics, 6:448–452, 1976.

95

http://promise.site.uottawa.ca/SERepository/
http://gemler.fzv.uni-mb.si/

[25] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, San Fransisco, 2nd edition, 2005.

[26] Xinchuan Zeng and Tony R. Martinez. An algorithm for correcting mislabeled data.

Intelligent Data Analysis, 5:491–502, 2001.

96

Chapter 5

Reducing the Effects of Detrimental Instances

In Proceedings of the 13th International Conference on Machine Learning and Applications,

pp 183-188, 2014.

Abstract

Not all instances in a data set are equally beneficial for inducing a model of the data.

Some instances (such as outliers or noise) can be detrimental. However, at least initially,

the instances in a data set are generally considered equally in machine learning algorithms.

Many current approaches for handling noisy and detrimental instances make a binary de-

cision about whether an instance is detrimental or not. In this paper, we 1) extend this

paradigm by weighting the instances on a continuous scale and 2) present a methodology for

measuring how detrimental an instance may be for inducing a model of the data. We call

our method of identifying and weighting detrimental instances reduced detrimental instance

learning (RDIL). We examine RDIL on a set of 54 data sets and 5 learning algorithms and

compare RDIL with other weighting and filtering approaches. RDIL is especially useful

for learning algorithms where every instance can affect the classification boundary and the

training instances are considered individually, such as multilayer perceptrons trained with

backpropagation (MLPs). Our results also suggest that a more accurate estimate of which

instances are detrimental can have a significant positive impact for handling them.

97

5.1 Introduction

The goal of supervised machine learning is to induce an accurate generalizing function from

a set of labeled training instances. Given that in most cases, all that is known about a

task is contained in the set of training instances, at least initially, the instances in a data

set are generally considered equally. However, some instances are more detrimental than

others for inducing a model of the data. For example, outliers or mislabeled instances are

not as beneficial as border instances and are often detrimental in many cases. In addition,

other instances can be detrimental for inducing a model of the data even if they are labeled

correctly and are not outliers.

A possible effect of considering all instances equally, including the detrimental instances,

when inducing a model of the data is shown in the hypothetical two-dimensional data set in

Figure 5.1a. The solid line represents the “actual” classification boundary and the dashed line

represents a potential induced classification boundary. Instances A and B are detrimental

instances that “pull” the decision boundary away from the true boundary and cause the

instances in the space between the true boundary and induced boundary to be misclassified.

A learning algorithm can more precisely model the data by considering instances differently

during training to suppress the effects of detrimental training instances.

This is especially true for learning algorithms such as backpropagation for training multi-

layer perceptrons (MLP). Detrimental instances (e.g. instance A) have the greatest effect on

the classification boundary since they can have the largest error value. As shown by Elman

[5], this is particularly important during the early stages of training a MLP when the initial

gradient is calculated. Elman proposes a method to initially train the MLP with simpler

instances then gradually increase to more complex instances. This procedure has developed

into curriculum learning and has had success in deep learning [1]. However, it is not as

successful for shallow MLPs [22]. The impact of detrimental instances is lessened in other

learning algorithms since the influence of a particular instance is localized. For example,

k -NN only considers the k nearest neighbors of an instance.

98

Assuming that all that is known about a task is contained in the training set, how

detrimental an instance is for inducing a model of the data can be estimated based on

its relationship with the other instances in the data set. For example, instance A from

Figure 5.1a represents a detrimental instance as an outlier–being in a region with instances

of a differing class. In contrast, instance A in the data set shown in Figure 5.1b is not as

detrimental given additional instances of the same class in the same region. As determining

if an instance is detrimental exhibits a degree of uncertainty, we examine weighting the

instances in a data set by their likelihood of being misclassified. Instance A from Figure

5.1a, for example, has a high likelihood of being misclassified while instance B may have

a lower likelihood of being misclassified. Weighting the instances limits the influence of an

instance proportionate to its detrimentality measure. We present a theoretically-motivated

methodology for estimating the likelihood that an instance will be misclassified that lessens

the dependence on any one model. We call this approach of weighting the instances by their

probability of being misclassified reduced detrimental instance learning (RDIL). Filtering or

removing detrimental instances prior to training can be viewed as a special case of instance

weighting. We show that both filtering and weighting are viable solutions and examine when

each is most beneficial.

We examine RDIL on a set of 5 learning algorithms and 54 data sets. We compare mul-

tiple versions of RDIL with another weighting scheme, pair-wise expectation maximization

(PWEM) [17], as well as several filtering algorithms: misclassification filters and an ensem-

ble filter [3], and repeated-edited nearest-neighbor (RENN) [24]. We find that some learning

algorithms benefit more from filtering and others from instance weighting. Specifically, filter-

ing is more beneficial for decision trees, rule-based learners, and nearest neighbor algorithms.

Weighting the instances has a more significant impact on multilayer perceptrons. In cases

with high amounts of noise, weighting the instances is generally preferable to filtering as it

generally achieves higher accuracy and does not require a threshold to be set if filtering is

based on a continuous value.

99

A

B

A

B

a b

Figure 5.1: Hypothetical, 2-dimensional data set with two detrimental instances (instances
A and B) that shows a) that treating all instances equally in a data set with detrimental
instances can adversely affect the classification boundary and b) that how detrimental an
instance may be is dependent on the other instances in a data set.

The remainder of the paper is organized as follows. Section 5.2 reviews related work in

handling noise. Section 5.3 motivates weighting the instances. The detrimentality measure

is presented in Section 5.4. Our experimental methodology is presented in Section 5.5. The

results of RDIL are provided in Section 5.6. Section 5.7 concludes the paper.

5.2 Related Work

Many real-wold data sets contain detrimental instances that arise from noise (typos, measure-

ment errors, etc.) or from the stochastic nature of the task. Noise is a subset of detrimental

instances. Previous work has examined how class noise and attribute noise affects the per-

formance of various learning algorithms [14]. They found that class noise is generally more

harmful than attribute noise. The consequences of class noise, as summarized by Frénay and

Verleysen [6], include 1) a deterioration of classification performance, 2) increased learning

requirements and model complexity, and 3) a distortion of observed frequencies.

Most learning algorithms are designed to tolerate a certain degree of detrimental instances

by making a trade-off between the complexity of the induced model and minimizing error

on the training data to prevent overfit. For example, to avoid overfit many algorithms use a

validation set for early stopping and/or regularization by adding a complexity penalty to the

loss function [2]. Some learning algorithms have been adapted specifically to better handle

noise. Boosting algorithms [18], for example, assign more weight to misclassified instances–

100

which often include mislabeled and noisy instances. To address this, Servedio [20] presented

a boosting algorithm that does not place too much weight on any training instance.

Preprocessing the data set explicitly handles detrimental instances by removing, weight-

ing, or correcting them. Filtering detrimental instances has received much attention and

has generally been shown to result in an increase in classification accuracy, especially when

there are large amounts of noise [7, 21]. One frequently used filtering technique removes

any instance that is misclassified by a learning algorithm [9] or set of learning algorithms [3].

Other approaches use information theoretic or machine learning heuristics to remove noisy

instances. Segata et al. [19], for example, remove instances that are too close or on the

wrong side of the decision surface generated by a support vector machine. However, filtering

has the potential downside of discarding useful instances and/or too many instances.

Rather than making a binary decision about the detrimentality of in instance, weighting

allows a continuous scale. Filtering can be considered a special case of weighting where each

instance is assigned a weight of 0 or 1. Rebbapragada and Brodley [17] weight the instances

using expectation maximization to cluster instances that belong to a pair of the classes. The

probabilities between classes for each instance is compiled and used to weight the influence

of each instance.

Data cleaning does not discard any instances, but rather strives to correct the noise in

the instances. As in filtering, the output from a learning algorithm has been used to clean

the data. Polishing [23] trains a learning algorithm (in this case a decision tree) to predict

the value for each attribute (including the class). The predicted (i.e. corrected) attribute

values for the instances that increase generalization accuracy on a validation set are used

instead of the uncleaned attribute values.

5.3 Modeling Detrimentality

Lawrence and Schölkopf [11] model a data set using a generative model that also models the

noise. Let T be a training set composed of instances 〈xi, ŷi〉 drawn i.i.d. from the underlying

101

y

x ŷ

y

x ŷ

y

x ŷ

y

x ŷ

a b c d

Figure 5.2: Graphical model of a a) generative probabilistic model, b) the generative model
proposed by Lawrence and Schölkopf [11] and a discriminative probabilistic model for c)
p(ŷ|x)p(x) and d) p(ŷ|x, y)p(y|x)p(x).

data distribution D. Each instance has an associated latent random variable/feature yi.

Thus, xi is the set of input features, ŷi is the possibly noisy class label given in the training

set, and yi is the true unknown class label. Lawrence and Schölkopf assume that the joint

distribution p(xi, yi, ŷi) is factorized as p(ŷi|yi)p(xi|yi)p(yi) as shown in Figure 5.2a. Since

modeling the prior distribution of the unobserved random variable yi is not feasible, they

estimate the prior distribution of p(ŷi) with some assumptions about the noise as shown in

Figure 5.2b.

Following the premise of Lawrence and Schölkopf, we explicitly model the possibility that

an instance is mislabeled (i.e. y 6= ŷ). Rather than using a generative model, though, we use

a discriminative model since we are focusing on classification tasks and do not require the full

joint distribution. Also, discriminative models have been shown to yield better performance

on classification tasks [15]. A generative model, which models the full joint distribution of

p(x, y, ŷ), differs from a discriminative model which is mostly concerned with modeling the

likelihood of the class: p(ŷ|x). Given a training set T , a discriminative model generally seeks

to find the most probable hypothesis h that maps each xi 7→ ŷi–ignoring the fact that ŷi may

not equal yi. This is shown graphically in Figure 5.2c where p(ŷi|xi)p(xi) is estimated using

a discriminative approach such as a neural network or a decision tree to induce a hypothesis

of the data. The possibility of label noise is not explicitly modeled in this form (i.e. p(yi)

is ignored). Label noise is generally handled by avoiding overfit such that more probable,

simpler hypotheses are preferred.

102

Label noise can be more explicitly modeled by considering that ŷi may be noisy by

associating a latent random variable yi with each instance. In this context, a supervised

learning algorithm seeks to maximize p(ŷi|xi, yi)p(yi|xi)p(xi)–modeled graphically in Figure

5.2d. This factorization of the likelihood for the observed class label for an instance sug-

gests that it should be weighted by the probability that yi is the actual class. Thus, when

considering the possibility that ŷi 6= yi, it is natural to weight the instances by p(yi|xi).

This provides the motivation for reduced detrimental instance learning (RDIL). RDIL takes

two passes through the data set. In the first pass, p(yi|xi) is calculated. Next, a learning

algorithm is trained with the training instances weighted by p(yi|xi). However, calculating

p(yi|xi) is not trivial. A method to estimate p(yi|xi) is described in the following section.

5.4 Estimating p(yi|xi)

In this paper, p(yi|xi) is used as the detrimentality measure for each training instance. In

general, p(yi|xi) does not make sense outside the context of an induced hypothesis. Thus,

using an induced hypothesis h from a learning algorithm trained on T , the quantity p(yi|xi, h)

can be approximated as p(ŷi|xi, h) assuming that p(yi|ŷi) is represented in h. In other words,

the induced discriminative model is able to model if one class label is more likely than

another class label given an observed noisy label. After training a learning algorithm on

T , the class distribution for an instance xi can be calculated based on the output from the

learning algorithm.

The dependence of p(yi|xi) on a particular hypothesis h can be removed by summing

over all possible hypotheses h in H and multiplying each p(ŷi|xi, h) by p(h):

p(yi|xi) ≈ p(ŷi|xi) =
∑

h∈H

p(ŷi|xi, h)p(h). (5.1)

This formulation is infeasible, though, because 1) it is not practical (or possible) to sum over

the set of all hypotheses, 2) calculating p(h) is non-trivial, and 3) not all learning algorithms

103

Table 5.1: The diverse set of algorithms (as determined by unsupervised meta-learning) used
to estimate p(yi|xi).

Learning Algorithms
* Multilayer Perceptron trained with Back Propagation (MLP)
* Decision Tree (C4.5)
* Locally Weighted Learning (LWL)
* 5-Nearest Neighbors (5-NN)
* Nearest Neighbor with generalization (NNge)
* Näıve Bayes (NB)
* RIpple DOwn Rule learner (RIDOR)
* Random Forest (Random Forest)
* Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

produce a probability distribution. These limitations make probabilistic generative models

attractive, such as the kernel Fisher discriminant algorithm [11]. However, for classification

tasks, discriminative models generally have a lower asymptotic error than generative models

[15].

In this paper we approximate p(ŷi|xi) using a diverse subset of H. The diversity of the

subset of H refers to a set of hypotheses that differ in their classification of novel instances.

The diverse subset of H is created using unsupervised meta-learning (UML) [12]. UML

first uses classifier output difference (COD) [16] to measure the diversity between learning

algorithms. COD measures the distance between two learning algorithms as the probability

that the learning algorithms make different predictions. UML then clusters the learning

algorithms based on their COD scores with hierarchical agglomerative clustering. We con-

sidered 20 learning algorithms from Weka with their default parameters [8]. The resulting

dendrogram is shown in Figure 5.3, where the height of the line connecting two clusters

corresponds to the distance (COD value) between them. A cut-point of 0.18 was chosen to

create 9 clusters and a representative algorithm from each cluster was chosen to create a

diverse set of H. Other numbers of clusters could have been used. The learning algorithms

that are used to estimate p(ŷi|xi) are listed in Table 5.1.

p(ŷi|xi) is estimated for each training instance using 10-fold cross-validation (the instance

〈x,ŷi〉 is not used to induce the hypothesis h). Using a set of diverse hypotheses induced by

104

0.
10

0.
15

0.
20

0.
25

0.
30

B
ay
es
N
et

D
ec
T
ab

le
R
IP

P
E
R

S
im

p
le
C
ar
t L
W

L
F
u
n
ct
io
n
al

T
re
e

L
og
is
ti
c

S
V
M

M
L
P

N
B

R
B
F
N
et
w
or
k

1-
N
N

5-
N
N
N
N
ge

C
4.
5

P
A
R
T

L
A
D
T
re
e

N
B
T
re
e

R
an

d
F
or
es
t R
id
or

C
la
ss
ifi
er

O
u
tp
u
t
D
iff
er
en
ce

Figure 5.3: Dendrogram of the considered learning algorithms clustered using unsupervised
metalearning based on their classifier output difference.

the learning algorithms in L, we approximate p(ŷi|xi) as:

p(ŷi|xi) ≈ p(ŷi|xi,L) =
1

|L|

|L|
∑

j=1

p(ŷi|xi, lj(T)) (5.2)

where lj(T) is the hypothesis induced by the jth learning algorithm trained on T . From

Equation 5.1, p(h) is estimated as 1
|L|

for the hypotheses induced by the learning algorithms

in L and as zero for all of the other hypotheses in H.

5.5 Methodology

We investigate the effects of filtering and weighting on the C4.5, 5NN, MLP, Random Forest,

and RIPPER learning algorithms (abbreviated in Table 5.1). Table 5.2 summarizes how an

instance is weighted by p(yi|xi) for the examined learning algorithms. For MLPs trained

with backpropagation, the error ((t − o)f ′(net)) is scaled by p(yi|xi) where (t − o) is the

difference between the target value and the output of the network, f ′(net) is the derivative

of the activation function f and net is the sum of the product of each input ij and its

corresponding weight wj: net =
∑

j wjij. For Random Forests, the distribution for selecting

105

Table 5.2: How instance weighting is integrated into the considered learning algorithms.

LA Orig RDIL
MLP (t− o)f ′(net) p(yi|xi)(t− o)f ′(net)
Random Forest Uniform dist Weighted by p(yi|xi)
C4.5, Count number of instances, i.e. Sum p(yi|xi)
5-NN,

∑
ci

1
∑

T 1

∑
ci

p(yi|xi)
∑

T p(yi|xi)RIPPER

instances in the random trees is weighted by p(yi|xi) rather than being uniformly weighted.

For the other learning algorithms that keep track of counts, each instance is weighted by

p(yi|xi).
∑

ci
represents summing over instances that meet some criterion ci and

∑

T sums

over all of the instances in the data set.

We consider three weighting schemes: RDIL-L, RDIL-Biased, and PWEM described

below. 1) RDIL-L uses p(ŷi|xi,L). Since not all learning algorithms in Table 5.1 produce

a probability distribution, the Kronecker delta function δ(g(xi), yi) is used in this paper

instead of p(ŷi|xi, h) where h(xi) returns the predicted class from the induced hypothesis

h given input features xi. 2) RDIL-Biased approximates p(yi|xi) as p(ŷi|xi, h) where the

hypothesis h is induced by the same learning algorithm that is used to induce a model of

the data. To get a real-value from a single hypothesis, we compute a classifier score for

each instance from the learning algorithm. Below, we present how we calculate the classifier

scores for the investigated learning algorithms.

MLP: For multiple classes, each class from a data set is represented with an output node.

After training a MLP with backpropagation, the classifier score is the largest value of the

output nodes normalized between zero and one: p̂(y|x) = oi(x)
∑|Y |

i oi(x)
where y is a class from

the set of possible classes Y and oi is the value from the output node corresponding to class

yi.

C4.5: To calculate a classifier score, an instance first follows the induced set of rules until

it reaches a leaf node. The classifier score is the number of training instances that have the

106

same class as the examined instance divided by all of the training instances that also reach

the same leaf node.

5-NN: The percentage of the nearest-neighbors that agree with the class label of an instance

as the classifier score.

Random Forest: For each tree, an instance follows the induced set of rules until it reaches

a leaf node. The counts from the reached leaf nodes for each class are summed together and

then normalized between 0 and 1.

RIPPER: The percentage of training instances that are covered by a rule and share the

same class as the examined instance.

Obviously, a classifier score does not produce a true probability. However, the classifier scores

approximate the confidence of p(yi|xi). 3) Pair-wise expectation maximization (PWEM)

[17] weights each instance using the EM algorithm. For each pair of classes, the instances

that belong to the two classes are clustered using EM where the number of clusters is

determined using the Bayesian Information Criterion [10]. Given the Y − 1 clusterings (Y

is the number of classes in the data set), p(y|x) is calculated as:

p(yi|xi) =
∑

θ

p(θ)p(yi|xi,θ) =
∑

θ

p(θ)
k

∑

c=1

p(yi|c,θ)p(c|xi,θ)

where θ is a clustering model induced using the EM algorithm, c is a cluster in θ, and k is

the number of clusters in θ.

We also compare weighting with three filtering techniques. 1) Filter-L uses p(ŷi|x,L)

for filtering, similar to the three learning algorithm ensemble filter examined by Brodley and

Friedl [3]. Instances that are misclassified by 50% of the learning algorithms in the ensemble

are filtered from the training set. Note that other percentages could also be used. We found

that 50% generally produces good results compared to values of 70% and 90%. In practice

a validation set could be used to determine the percentage that would be used. 2) Filter-

Biased removes any instance that is misclassified by the same learning algorithm that is

107

being used to induce a model from the training set. 3) Repeated-edited nearest-neighbor

(RENN) [24] repeatedly removes the instances that are misclassified by a 3-nearest neighbor

classifier.

Each noise handling method is evaluated by averaging the results from ten runs of each

experiment. For each experiment, the data is shuffled and then split into 2/3 for training

and 1/3 for testing. The training and testing sets are stratified. Random noise is introduced

by randomly changing n% of the training instances to a new label chosen uniformly from

the possible class labels (noisy completely at random). The noise levels are examined at

0%, 10%, 20%, 30%, and 40%. We examine noise handling using the 5 chosen learning

algorithms on a set of 54 data sets from the UCI data repository [13]. Statistical significance

between pairs of algorithms is determined using the Wilcoxon signed-ranks test as suggested

by Demšar [4].

As there is no way to determine if an instance is noisy or mislabeled without the use of

a domain expert, most previous work adds artificial noise to show the impact of noise and

how handling noise improves the accuracy. Generally, once there are large amounts of noise,

a noise handling approach significantly increases the classification accuracy. In the following

experiments, artificial noise is added to the data sets.

5.6 Results

In this section, we present the results of our experiments. For the tables in this section, the

algorithm in the first row is the baseline algorithm that the algorithms in the subsequent

rows are compared against. The values in the “g,e,l” rows represent the number of times

that the accuracy from the baseline algorithm is greater than, equal to, or less than the

compared algorithm. A ✗ represents cases where the baseline algorithm achieves significantly

higher classification accuracy. A ✓ represents cases where the accuracy from the compared

algorithm is significantly higher than the baseline algorithm.

108

Table 5.3: The average accuracy over the 54 data sets for the 5 considered learning algorithms
using the investigated noise handling approaches with no artificial noise added to the data
sets. A ✓ to the left represent cases where the noise handling approach significantly increases
the accuracy and ✗ where the noise handling approach significantly decreases the accuracy.

C4.5 5-NN MLP Rand For RIPPER
Orig 79.31 79.37 81.67 81.18 78.35
RDIL-L 78.19 78.72 82.26 ✓ 80.82 77.86
g,e,l 27,1,26 27,4,23 18,3,33 28,2,24 26,2,26
RDIL-Biased 79.29 78.34 ✗ 81.49 80.94 77.98
g,e,l 23,7,24 32,7,15 23,5,26 26,4,24 29,4,21
PWEM 76.41 78.02 ✗ 82.79 81.51 74.17
g,e,l 30,3,21 33,3,18 23,3,28 34,1,19 39,1,14
Filter-L 79.55 79.40 81.80 81.66 78.98
g,e,l 25,11,18 23,9,22 23,4,27 28,2,24 27,5,22
Filter-Biased 79.34 76.99 ✗ 81.39 81.16 77.20
g,e,l 25,7,22 35,4,15 24,10,20 21,12,21 30,7,17
RENN 76.83 ✗ 76.99 ✗ 78.80 ✗ 78.20 ✗ 76.65 ✗

g,e,l 32,3,19 35,4,15 38,1,15 35,2,17 34,2,18

Table 5.3 compares no noise handling (Orig) with the considered noise handling tech-

niques. The only noise handling technique that significantly increases classification accuracy

is a MLP using RDIL-L. In contrast, no noise handling achieves significantly higher accu-

racy than using a noise handling technique in several cases. RENN achieves significantly

lower classification accuracy for all of the considered learning algorithms. This highlights a

point that is often overlooked in the noise handling literature–noise handling can be detri-

mental if used in all cases. Previous work has generally considered only a few data sets

where noise handling is beneficial. The impact of filtering or weighting is also dependent on

which learning algorithm is used to induce a model of the data. As expected, MLPs achieve

the most significant increase in accuracy with instance weighting. On the other hand, C4.5,

5-NN, Random Forests, and RIPPER achieve the most significant increase in accuracy with

filtering.

Examining the performance of the considered learning algorithms without noise handling

(“orig” in Tables 5.4 and 5.5), we note that MLPs and random forests generally achieve the

highest classification accuracy and may be the most tolerant to the inherent detrimental

109

instances in each data set. However, MLPs and Random Forests also appear to be the

least robust to noise as they obtain the lowest average classification accuracy when more

than 10% of the instances are corrupted with noise. With no artificial noise, MLPs and

Random Forests achieve about 81% accuracy. With 20% artificial noise, the average accuracy

decreases to about 72%. On the other hand, C4.5, 5-NN, and RIPPER achieve an average

accuracy of about 79% with no artificial noise and an average accuracy of about 74% with

20% artificial noise. With high degrees of noise, the built-in noise handling mechanisms of

learning algorithms become more beneficial.

5.6.1 Weighting Schemes

As instance weighting is not as well explored as filtering, we now examine various weighting

schemes to handle class noise. Table 5.4 compares RDIL-L with RDIL-Biased and PWEM.

The accuracies from the algorithms with no weighting are given to better measure the effec-

tiveness of the methods. RDIL-L significantly outperforms the other weighting schemes in

most cases (represented by bold p-values): 24 out of the 25 cases for PWEM, and 18 out of

the 25 cases for RDIL-Biased. In no case does a competing weighting scheme achieve signifi-

cantly higher classification accuracy than RDIL-L. Recall that the nine learning algorithms

were chosen to be diverse so as to represent more of the hypothesis space H. This suggests

that a better estimation of p(ŷi|xi) produces better results for weighting and filtering. This is

shown empirically as RDIL-L and Filter-L have the most significant increase in accuracy for

each learning algorithm (Table 5.3). However, there is an obvious trade-off since obtaining

a more accurate estimate of p(ŷi|xi) is more computationally expensive.

5.6.2 Weighting VS Filtering

We now compare weighting against filtering. Weighting and filtering are both viable and

significantly increase the classification accuracy when noise is added. The difference be-

tween filtering and weighting techniques depends on the estimation of p(yi|xi). Generally,

110

Table 5.4: A comparison of the average accuracy from the investigated instance weighting
methods on the considered learning algorithms. Bold values with a ✓ represent cases where
RDIL-L (R-L) acheives significantly higher accuracy than RDIL-Biased (R-B) or PWEM
(PW).

C4.5 5-NN
0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

R-L 78.19 77.03 76.33 74.32 71.08 78.72 77.86 77.01 75.07 70.63
R-B 79.29 77.14 75.20✓ 71.06✓ 65.74✓ 78.34✓77.41✓ 75.39✓ 71.59✓ 64.92✓

g,e,l 25,4,25 32,2,19 38,0,16 44,0,10 43,1,10 34,7,13 41,3,9 43,1,10 46,1,7 44,1,9
PW76.41✓ 74.50✓ 73.34✓ 70.94✓ 68.28✓ 78.02✓ 77.54✓ 76.12✓ 73.56✓ 67.18✓

g,e,l 35,4,15 39,3,11 38,4,12 41,0,13 37,0,17 34,4,16 36,2,15 37,1,16 37,3,14 37,3,14
orig 79.31 76.92 74.32 69.709 63.08 79.37 77.63 74.42 69.96 62.54

MLP Random Forest
R-L 82.26 80.7 78.40 75.17 69.30 80.82 79.72 78.06 75.89 70.78
R-B81.49✓ 78.19✓ 73.84✓ 69.14✓ 62.10✓ 80.94 78.24✓ 74.01✓ 68.25✓ 60.93✓

g,e,l 34,2,18 41,1,11 46,1,6 48,0,6 47,1,6 25,1,28 42,2,9 48,0,5 48,1,5 49,1,4
PW82.79✓ 79.67✓ 76.42✓ 71.9✓ 65.95✓ 81.51 78.69✓ 76.37✓ 72.54✓ 65.87✓

g,e,l 34,4,16 37,2,14 38,1,14 42,0,12 42,0,12 33,4,17 34,4,15 40,4,9 47,1,6 48,1,5
orig 81.67 77.46 72.25 67.17 60.46 81.18 77.75 72.72 66.87 59.63

RIPPER
R-L 77.86 76.54 75.54 73.46 69.63
R-B 77.98 76.28 74.50✓ 70.70✓ 65.97✓

g,e,l 27,3,24 31,2,20 36,3,15 46,2,6 45,0,9
PW74.17✓ 71.94✓ 70.68✓ 68.57✓ 64.82✓

g,e,l 36,4,14 44,2,7 45,4,5 40,2,12 41,1,12
orig 78.35 76.32 73.45 69.87 65.10

111

estimating p(yi|xi) with the set of learning algorithms L achieves greater classification ac-

curacy than using a biased estimate. Table 5.5 compares RDIL-L with Filter-L. With no

noise, RDIL-L achieves significantly higher accuracy than Filter-L for the MLP. Since each

instance can affect the classification boundary for MLPs (as shown in Figure 5.1), weighting

the instances in the training set has a more significant impact in MLPs than the other learn-

ing algorithms which partition the input space. On the other hand, the Filter-L achieves a

significantly higher accuracy than RDIL-L for the four other learning algorithms. Note that

MLP with RDIL-L achieves the highest overall average accuracy for noise levels 0%-20%

(RDIL-L achieves the highest accuracy for 30% and 40% noise using Random Forest and

C4.5 respectively). Except for MLPs, the significance of the impact of RDIL-L increases as

the noise level increases except for all of the examined learning algorithms. RDIL-L signifi-

cantly increases the classification accuracy for C4.5, 5-NN, and Random Forests when there

are high amounts of noise.

Over all noise levels, RDIL-L compared with Filter-L achieves significantly higher classifi-

cation accuracy in 6 of the 25 cases and the filter-L achieves significantly higher classification

accuracy in 7 cases. (In the other 12 cases, there is no significant difference). The Filter-L

has a more significant effect than RDIL-L for RIPPER at noise levels 0, 0.1 and 0.2 and

RDIL-L never achieves significantly higher classification accuracy than the Filter-L. There-

fore, instance weighting is not the best option for every learning algorithm. However, with

the Filter-L we chose the threshold that produced the highest classification accuracy on the

test set, which is not always possible to do. Instance weighting avoids the overhead of having

to determine a threshold for filtering when using an ensemble filter. Instance weighting is

better for learning algorithms that consider each instance individually and each instance can

affect the classification boundary (e.g. MLP).

112

Table 5.5: A comparison of RDIL-L (R-L) with the L-filter (F-L) on the considered learning
algorithms. Bold values with a ✓ represent cases where RDIL-L (R-L) acheives significantly
higher accuracy than the L-filter. The ✗ represents cases where the L-filter acheives signifi-
cantly higher accuracy.

C4.5 5-NN
0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

R-L 78.19 77.03 76.33 74.32 71.08 78.72 77.86 77.01 75.07 70.63
F-L79.55 ✗ 78.35 ✗ 76.79 73.58 69.30 ✓ 79.40 ✗ 78.35 76.6 74.35 ✓ 69.64 ✓

g,e,l 19,2,33 21,1,31 30,1,23 33,0,21 36,0,18 19,4,31 28,2,2326,4,24 31,0,23 31,0,23
orig 79.31 76.92 74.32 69.709 63.08 79.37 77.63 74.42 69.96 62.54

MLP Random Forest
R-L 82.26 80.7 78.4 75.17 69.30 80.82 79.72 78.06 75.89 70.78
F-L 81.80 80.66 78.24 74.85 69.46 81.66 ✗ 79.91 78.06 75.29 ✓ 69.94 ✓

g,e,l 37,2,15 30,3,20 31,1,21 33,0,21 29,1,24 18,4,32 31,0,2226,1,26 33,0,21 34,3,17
orig 81.67 77.46 72.25 67.17 60.46 81.18 77.75 72.72 66.87 59.63

RIPPER
R-L 77.86 76.54 75.54 73.46 69.63
F-L78.98 ✗ 77.82 ✗ 76.40 ✗ 73.92 69.84
g,e,l 15,3,36 18,3,32 18,0,36 27,1,26 25,1,28
orig 78.35 76.32 73.45 69.87 65.10

113

5.7 Conclusions

In this paper we examined handling detrimental instances using the hypotheses from multi-

ple learning algorithms. We introduced reduced detrimental instance learning (RDIL) which

weights each instance based on an approximation of p(ŷi|xi). We examined RDIL on a set

of 5 learning algorithms and 54 data sets. We found that a better estimate of p(ŷi|xi) leads

to better detrimentality handling in both instance weighting and filtering. Weighting the

instances avoids having to spend extra computational time and having to use training in-

stances to select a threshold for filtering when using an ensemble filter. Instance weighting

has the greatest effect on learning algorithms where every instance can affect the classifi-

cation boundary and the training instances are considered individually, such as multilayer

perceptrons trained with backpropagation (MLPs). On the other hand, instance filtering

had a more significant impact on the C4.5, 5-NN, Random Forest, and RIPPER learning

algorithms with no artificial noise. However, instance weighting was shown to be preferable

to filtering for the examined learning algorithms when there are high amounts of noise. An

analysis of when to use a particular noise handling technique is a direction for future work.

References

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th International Conference on Machine Learning,

pages 41–48. ACM, 2009.

[2] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine

Learning, volume 1. springer New York, 2006.

[3] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

114

[4] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

[5] Jeffery L. Elman. Learning and development in neural networks: The importance of

starting small. Cognition, 48:71–99, 1993.

[6] Benoit Frénay and Michel Verleysen. Classification in the presence of label noise: a

survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5):845–869,

2014.

[7] Dragan Gamberger, Nada Lavrač, and Sašo Džeroski. Noise detection and elimination

in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence,

14(2):205–223, 2000.

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[9] George H. John. Robust decision trees: Removing outliers from databases. In Knowledge

Discovery and Data Mining, pages 174–179, 1995.

[10] Robert E. Kass and Larry Wassermann. A reference Bayesian test for nested hypothe-

ses and its relationship to the Schwarz criterion. Journal of the American Statistical

Association, 90(431):928–934, 1995.

[11] Neil D. Lawrence and Bernhard Schölkopf. Estimating a kernel fisher discriminant in

the presence of label noise. In In Proceedings of the 18th International Conference on

Machine Learning, pages 306–313, 2001.

[12] Jun Lee and Christophe Giraud-Carrier. A metric for unsupervised metalearning. In-

telligent Data Analysis, 15(6):827–841, 2011.

115

[13] Moshe Lichman. UCI machine learning repository, 2013. URL

http://archive.ics.uci.edu/ml.

[14] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of the effect of

different types of noise on the precision of supervised learning techniques. Artificial

Intelligence Review, 33(4):275–306, 2010.

[15] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. In Advances in Neural Information

Processing Systems 14, pages 841–848, 2001.

[16] Adam H. Peterson and Tony R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75,

2005.

[17] Umaa Rebbapragada and Carla E. Brodley. Class noise mitigation through instance

weighting. In Proceedings of the 18th European Conference on Machine Learning, pages

708–715, 2007.

[18] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,

1990.

[19] Nicola Segata, Enrico Blanzieri, and Pádraig Cunningham. A scalable noise reduction

technique for large case-based systems. In Proceedings of the 8th International Con-

ference on Case-Based Reasoning: Case-Based Reasoning Research and Development,

pages 328–342, 2009. ISBN 978-3-642-02997-4.

[20] Rocco A. Servedio. Smooth boosting and learning with malicious noise. Journal of

Machine Learning Research, 4:633–648, 2003.

116

http://archive.ics.uci.edu/ml

[21] Michael R. Smith and Tony Martinez. Improving classification accuracy by identify-

ing and removing instances that should be misclassified. In Proceedings of the IEEE

International Joint Conference on Neural Networks, pages 2690–2697, 2011.

[22] Michael R. Smith and Tony Martinez. A comparative evaluation of curriculum learn-

ing with filtering and boosting in supervised classification problems. Computational

Intelligence, page to appear, 2014. URL http://arxiv.org/pdf/1312.4986.

[23] ChohMan Teng. Combining noise correction with feature selection. In Data Warehous-

ing and Knowledge Discovery, volume 2737 of Lecture Notes in Computer Science, pages

340–349. 2003.

[24] Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions

on Systems, Man, and Cybernetics, 6:448–452, 1976.

117

http://arxiv.org/pdf/1312.4986

Chapter 6

A Comparative Evaluation of Curriculum Learning with Filtering and Boosting

in Supervised Classification Problems

Computational Intelligence, accepted, 2014. (DOI: 10.1111/coin.12047)

Abstract

Not all instances in a data set are equally beneficial for inferring a model of the data and some

instances (such as outliers) can be detrimental. Several machine learning techniques treat

the instances in a data set differently during training such as curriculum learning, filtering,

and boosting. However, it is difficult to determine how beneficial an instance is for inferring a

model of the data. In this paper, we present an automated method that orders the instances

in a data set by complexity based on their likelihood of being misclassified (instance hardness)

for supervised classification problems that generates a hardness ordering. The underlying

assumption of this method is that instances with a high likelihood of being misclassified

represent more complex concepts in a data set. Using a hardness ordering allows a learning

algorithm to focus on the most beneficial instances. We integrate a hardness ordering into

the learning process using curriculum learning, filtering, and boosting. We find that focusing

on the simpler instances during training significantly increases generalization accuracy. Also,

the effects of curriculum learning depend on the learning algorithm that is used. In general,

filtering and boosting outperform curriculum learning and filtering has the most significant

effect on accuracy.

118

A

B

C

D

Figure 6.1: A hypothetical 2-dimensional data set.

6.1 Introduction

The goal of supervised machine learning is to model a task by “teaching” a learning algorithm

through the presentation of labeled instances from a data set. The training instances are

generally presented to a learning algorithm in no particular order and are generally treated

as being equally important for inferring a model of the data. This can be problematic for

many machine learning algorithms in deciding which initial search direction will lead to the

optimal solution. Without guidance, the learning algorithm may choose an inappropriate

initial direction to search the hypothesis space from which it may never be able to fully

correct due to an inability to unlearn previously learned concepts.

Consider the hypothetical two-dimensional data set in Figure 6.1. Instances A, B, C,

and D could be considered outliers and represent differing degrees of their extent of being

an outlier. The instances in the dotted oval represent the border points, which could be

used to define the classification boundary. Many learning algorithms have a built in mecha-

nism to avoid overfitting the outliers, however, the presence of outliers could still affect the

inferred classification border. Knowing before training begins which instances are the most

informative instances could improve learning.

A number of methods have been developed that treat individual instances in a dataset

differently during training to focus on the most informative ones. Filtering identifies and

119

removes noisy instances and outliers from a data set prior to training and generally results in

an increase in classification accuracy on non-filtered test data [5, 11, 24]. Boosting also treats

instances differently during training by incrementally adjusting the weights of the instances

during training [9, 23]. Boosting iteratively trains m base learners and reweights the training

data after each model is inferred such that the probability for selecting instances that are

misclassified increases. Boosting, however, has been shown to be prone to overfitting outliers

and noisy instances.

Curriculum learning was recently formalized by Bengio et al. [2] as a means of using

an ordering of the training data from simplest to most complex to train a learning algo-

rithm. Instances representing simple concepts are given a weight of 1 while instances that

represent complex concepts are initially given a weight of 0, similar to filtering. As train-

ing progresses and the simper training instances are learned, a subset of the more complex

training instances receive a weight of 1. This process continues until all of the training in-

stances receive a weight of 1. From a cognitive point of view, curriculum learning is based

on how humans acquire knowledge. For example, in schools, subject matter is organized into

curricula such that simpler or foundational ideas are presented first. As learning progresses,

more complex concepts and ideas can be learned by using the already learned simpler ideas.

The main deficiencies of most previous work in curriculum learning are: 1) that there is no

general method for ordering the instances by complexity and 2) that there is no method

for determining when to add more complex instances to the training set. In previous work

for curriculum learning, the ordering was done by hand or by some heuristic specific to the

learning task (e.g., the number of words in a sentence).

In this paper, we present an automated method for ordering the instances in a data

set based on their likelihood of being misclassified (instance hardness [26]) which we call a

hardness ordering. The underlying assumption of ordering the instances by their hardness is

that harder instances represent more complex and/or outlier instances. We use a hardness

ordering to examine curriculum learning, filtering, and avoiding overfitting in boosting using

120

multilayer perceptrons (MLPs) and decision trees (DTs) on a set of 52 supervised classi-

fication problems from the UCI data repository. As filtering and boosting have received

considerable attention [14, 17], we focus primarily on developing curriculum learning and

comparing curriculum learning with filtering and boosting.

We find that ordering the instances in a data set by complexity significantly improves

classification accuracy. Specifically, curriculum learning significantly increases classification

accuracy for MLPs and significantly decreases the classification accuracy for DTs. Curricu-

lum learning is better suited to learning algorithms that can be incrementally updated and

learning algorithms that are more prone to getting stuck in local optima such as MLPs

and especially in deeper networks. To examine the effectiveness of curriculum learning in

common supervised classification tasks we limit our investigation to curriculum learning in

MLPs with a single hidden layer in contrast to most other curriculum learning work that

has examined curriculum learning in deeper networks. Filtering the most complex instances

achieves higher classification accuracy than curriculum learning and boosting. We also exam-

ine boosting and curriculum learning with filtering. Boosting and curriculum learning with

filtering significantly increases the accuracy over boosting and curriculum learning without

filtering. Filtering has the most significant effect on the accuracy. We postulate that the

significant change in accuracy when filtering is due to the fact that filtering creates a simpler

surface for a learning algorithm to model by removing outliers and noisy instances. This,

in turn, increases the generalization accuracy. By contrast, curriculum learning assumes

that previously unlearnable complex instances become learnable once the simpler and foun-

dational instances are learned. By adding the more complex instances into the training

process, curriculum learning generates more complex models and the generalization accu-

racy decreases. Curriculum learning can also be seen as a regularization method where the

amount of regularization is controlled by the relative weight given to early easy instances

versus the hard instances introduced late in the training process.

121

The contributions of this paper include: 1) an automated method for ordering the in-

stances in a data set based on their likelihood of being misclassified, 2) an examination of

curriculum learning in a large number of supervised classification problems, whereas, previ-

ously, curriculum learning has only been examined in limited situations, and 3) a comparison

of curriculum learning, filtering and boosting.

The remainder of the paper is organized as follows: In Section 6.2, we review related

works. In Section 6.3, we present how to generate a hardness ordering. Implementation

details of how we implement curriculum learning using a hardness ordering and a comparison

with filtering and boosting are presented in Section 6.4. Section 6.5 gives conclusions and

directions for future work.

6.2 Related Works

Emphasizing the most important instances has led to success in a number of previous works.

Our work is motivated by the lack of a method to order the instances in curriculum learning

and the importance of the early stages of training a learning algorithm. Elman [7] realized

that the early stages of training dictate what solutions are possible in multilayer percep-

trons. This is true for most gradient descent or greedy learning algorithms. During the

early stages of training, the initial direction to search the hypothesis space is chosen. All

practical machine learning algorithms avoid the computational cost of storing all possible

hypotheses consistent with the training data by choosing a promising hypothesis at step t.

The hypothesis space is then searched in a step-wise fashion, meaning that the hypothesis

found at step t+1 is a continuation of the search of the hypothesis space at step t. It can also

be difficult for most machine learning algorithms to backtrack and unlearn learned concepts.

This adds more importance to the initial search direction that is chosen to follow. To aid

in this problem, Elman introduced the idea of “starting small” meaning that only simple

concepts should be used during the early stages of training. The simple concepts guide the

initial search direction of the learning algorithm and can facilitate learning more complex

122

concepts for some situations (Elman used grammar rules). Other work has demonstrated

the utility of starting small in specific application areas [18, 22, 27, 28]. Each approach

shares the idea of breaking the learning task into subcomponents and then, starting with

the simplest concepts, train by gradually increasing concept complexity.

Bengio et al. [2] formalized these ideas in curriculum learning. The idea behind cur-

riculum learning is to first optimize a smoothed objective function and gradually reduce

the degree of smoothing during the training process. At a more concrete level, curriculum

learning is a weighting scheme for training. Each training instance is assigned a weight

which controls how the instance is used in training. Initially, the weights on the training

instances favor the “easier” instances or those that represent simpler concepts. As training

proceeds, the weights on the training instances are updated such that “harder” instances

and more complex concepts are introduced into the training set. This continues until all

of the instances in the target training set are uniformly weighted. Bengio et al. examined

curriculum learning in a couple of toy data sets where there was a clear distinction between

harder and easier instances (i.e. the number of irrelevant features that do not have a zero

value). In another experiment that built a language model from fixed-size sequences of text,

they ordered the instances based on the frequency of the words in the text sequences.

Kumar et al. [15] recently presented self-paced learning for latent variable models, build-

ing on the idea of curriculum learning. In self-paced learning, a set of latent variables are

learned that indicate which instances should be included for training for a specific latent-

variable model. The choice of which instances are used in training is left to the optimization

technique and the number of instances used is controlled with a variable which is annealed

to eventually use all of the instances. Although self-paced learning creates an ordering, it

is limited to latent variable models. Most latent variable models have been used to model

observations in generative probabilistic models. However, discriminative models have been

shown to yield better performance on classification tasks [19]. As we are focusing on clas-

sification tasks and do not require the full joint distribution we use discriminative models

123

but the use of latent variables in discriminative models is not well explored [31]. Thus, the

primary shortcomings of previous work in curriculum learning are that there is no automated

method for discriminative models without latent variables that produces a general ordering

of the instances in a data set by complexity and that there is no method to determine when

to add more complex instances to the training set.

Boosting is another approach that incrementally adjusts the weights of the instances dur-

ing training [9, 23]. Boosting is an algorithm designed to target misclassified instances during

training such that as training continues, uninformative instances that are well-classified are

suppressed. Boosting iteratively trains m base learners on a subset of the training data to

form an ensemble. After an iteration of training, the data is weighted such that the probabil-

ity of selecting instances that are misclassified increases and the probability of selecting the

instances that are classified correctly decreases. These techniques assume that the misclassi-

fied instances are the most informative and should be weighted more. However, this can lead

to overfitting noise and new methods were proposed to ignore suspected outliers and weight

the more informative or boundary instances higher [14]. Boosting differs from curriculum

learning in that it is an ensemble method and the influence of the easier instances decrease

as training progresses.

Filtering (removing outlier or noisy instances prior to training) is a similar approach to

curriculum learning. Outliers and noisy instances have been observed to adversely affect an

induced model [24]. Thus, the goal of filtering is to reduce the effects of outlier or noisy

instances by removing them prior to training. One of the difficulties with outlier and noise

identification is that there is no agreed-upon definition of what constitutes an outlier or noise.

As such, a variety of different noise and outlier detection methods exist, such as statistical

methods [1], density-based clustering [4], and classification-based methods [5, 13]. These

methods have been used to identify and remove outliers prior to training, resulting in higher

classification accuracy [5, 11, 17].

124

6.3 Ordering the Instances

Many machine learning techniques could benefit from knowing how beneficial an instance

is to inferring a model of the data. In this paper, we use instance hardness [26] to order

the instances by complexity. Instance hardness posits that each instance in a data set has

a hardness property that indicates the likelihood that it will be misclassified. For example,

outliers and mislabeled instances are expected to have high instance hardness since a learning

algorithm will have to overfit to classify them correctly.

Instance hardness analyzes classification problems at the instance level rather than the

data set level as is the case with most machine learning problems that seek to maximize

p(h|t), where h : X → Y is a hypothesis or function mapping input feature vectors X to

their corresponding label vectors Y , and t = {(xi,yi) : xi ∈ X ∧ yi ∈ Y } is a training set.

With the assumption that the pairs in t are drawn i.i.d., the notion of instance hardness is

found through a decomposition of p(h|t) using Bayes’ theorem:

p(h|t) =
p(t|h) p(h)

p(t)

=

∏|t|
i=1p(xi,yi|h) p(h)

p(t)

=

∏|t|
i=1p(yi|xi,h) p(xi|h) p(h)

p(t)
.

For an instance 〈xi,yi〉, the quantity p(yi|xi,h) measures the probability that h assigns the

label yi to the input feature vector xi. The larger p(yi|xi,h) is, the more likely h is to assign

the correct label to xi, and the smaller it is, the less likely h is to produce the correct label

for xi. Hence, we obtain the following definition of instance hardness, with respect to h:

IHh(〈xi,yi〉) = 1− p(yi|xi,h).

125

In practice, h is induced by a learning algorithm g trained on t with hyperparameters α, i.e.,

h = g(t,α). Thus, the hardness of an instance is dependent on the instances in the training

data and the algorithm used to produce h. To gain a better understanding of what causes

instance hardness in general, the dependence of instance hardness on a specific hypothesis

can be lessened by summing instance hardness over the set of hypotheses H and weighting

each h ∈ H by p(h|t):

IH(〈xi,yi〉) =
∑

H

(1− p(yi|xi,h))p(h|t)

=
∑

H

p(h|t)−
∑

H

p(yi|xi,h)p(h|t)

= 1−
∑

H

p(yi|xi,h)p(h|t). (6.1)

When calculating instance hardness, the instance 〈xi,yi〉 is not included in t to induce h.

Practically, to sum overH, one would have to sum over the complete set of hypotheses, or,

since h = g(t,α), over the complete set of learning algorithms and hyperparameters associated

with each algorithm. This, of course, is not feasible. In practice, instance hardness can

be estimated by restricting attention to a carefully chosen set of representative algorithms

(and parameters). Also, it is important to estimate p(h|t) because if all hypotheses were

equally likely, then all instances would have the same instance hardness value under the no

free lunch theorem [30]. A natural way to approximate the unknown distribution p(h|t),

or equivalently p(g(t,α)), is to weight a set of representative learning algorithms, and their

associated parameters, L, a priori with a non-zero probability while treating all other learning

algorithms as having zero probability. Given such a set L of learning algorithms, we can

then approximate Equation 6.1 with the following:

IHL(〈xi,yi〉) = 1−
1

|L|

|L|
∑

j=1

p(yi|xi,gj(t,α)) (6.2)

126

where p(h|t) is approximated as 1
|L|

for the learning algorithms in L1 and the distribution

p(yi|xi,gj(t,α)) is estimated using the indicator function since not all learning algorithms

return a probability distribution. For simplicity, we refer to IHL as simply IH proceeding

forward.

In this paper, we estimate instance hardness by biasing the selection of representative

learning algorithms to those that 1) have shown utility, and 2) are widely used in practice.

We call such classification learning algorithms the empirically successful learning algorithms

(ESLAs). To get a good representation ofH, and hence a reasonable estimate of IH, we select

a diverse set of ESLAs using unsupervised metalearning [16]. Unsupervised metalearning

uses Classifier Output Difference (COD) [20] to measure the diversity between learning

algorithms. COD measures the distance between two learning algorithms as the probability

that the learning algorithms make different predictions. Unsupervised metalearning then

clusters the learning algorithms based on their COD scores with hierarchical agglomerative

clustering. Here, we considered 20 commonly used learning algorithms with their default

parameters as set in Weka [12]. The resulting dendrogram is shown in Figure 6.2, where the

height of the line connecting two clusters corresponds to the distance (COD value) between

them. A cut-point of 0.18 was chosen and a representative algorithm from each cluster was

used to create L as shown in Table 6.1.

Table 6.1: Set L of ESLAs used to calculate instance hardness.

* RIpple DOwn Rule learner (RIDOR)
* Näıve Bayes
* Multilayer Perceptron trained with Back Propagation
* Random Forrest
* Locally Weighted Learning (LWL)
* 5-nearest neighbors (5NN)
* Nearest Neighbor with generalization (NNge)
* Decision Tree (C4.5 [21])
* Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

1The quantity p(h|t) is set to zero for all other learning algorithms and parameter settings.

127

0.
10

0.
15

0.
20

0.
25

0.
30

B
ay
es
N
et

D
ec
T
ab

le
R
IP

P
E
R

S
im

p
le
C
ar
t L
W

L
F
u
n
ct
io
n
al

T
re
e

L
og
is
ti
c

S
V
M

M
L
P

N
B

R
B
F
N
et
w
or
k

1-
N
N

5-
N
N
N
N
ge

C
4.
5

P
A
R
T

L
A
D
T
re
e

N
B
T
re
e

R
an

d
F
or
es
t R
id
or

C
la
ss
ifi
er

O
u
tp
u
t
D
iff
er
en
ce

Figure 6.2: Dendrogram of the considered learning algorithms clustered using unsupervised
meta-learning.

We recognize that instance hardness could be calculated with either more specific or

broader sets of learning algorithms, and each set would obtain somewhat different results.

We also recognize that the set of ESLAs is constantly evolving and thus no exact solution is

possible. As the set of ESLAs grows and evolves, instance hardness can follow this evolution

by simply adjusting L. The size and exact make up of L are not as critical as getting a

representative sample of ESLAs. While more learning algorithms may give a more accurate

estimate of instance hardness, we demonstrate that both efficiency and accuracy can be

achieved with a relatively small and diverse set of learning algorithms.

With this approach, the instance hardness of an instance is dependent both on the

learning algorithm trying to classify it and on its relationship to the other instances in the

data set as demonstrated in the hypothetical two-dimensional data set shown in Figure 6.1.

Instances A, C, and D could be considered outliers, though they vary in how hard they

are to classify correctly: instance A would almost always be misclassified while instances C

and D would almost always be correctly classified. The instances inside of the dashed oval

represent border points, which would have a greater degree of hardness than the non-outlier

instances that lie outside the dashed oval. Obviously, some instances are harder for some

learning algorithms than for others. For example, some instances (such as instance B) are

128

harder for a linear classifier than for a non-linear classifier because a non-linear classifier is

capable of producing more complex decision boundaries.

6.4 Empirical Evaluation

With the ordering of the instances provided by instance hardness, we examine how to use

a hardness ordering in the learning process. We examine using a hardness ordering on

a set of 52 UCI data sets [8] for supervised classification problems shown in Table 6.2.

We use a hardness ordering in curriculum learning, filtering and boosting. As curriculum

learning is less fully explored, we focus on developing curriculum learning. We then compare

curriculum learning with filtering and boosting. We implement the methods using multilayer

perceptrons (MLPs) trained with backpropagation and decision trees (DTs) trained using

C4.5 [21]. We chose a MLP because the training set can be augmented during training,

which is a natural fit for curriculum learning. Other incremental learning algorithms could

also be used. We train a MLP until convergence, where convergence is determined by a

diminishing learning rate. Initially, the learning rate is set to 0.3 and it is reduced by 70%

if the error on the training data does not decrease over an entire epoch. Training continues

until the learning rate is less than 0.001. This helps protect against the choice of learning

rate. We also examine curriculum learning in DTs to show that curriculum learning is

not appropriate for all learning algorithms and to demonstrate the effects of filtering and

boosting in multiple learning algorithms. Curriculum learning could also be implemented

in other learning algorithms besides MLPs and DTs. However, curriculum learning requires

1) that the training set for a learning algorithm can be augmented during training and 2)

that training with the augmented training set is a continuation of what was already learned

by the learning algorithm. For most learning algorithms, meeting these requirements is a

non-trivial task. Developing other learning algorithms that meet these requirements and

incorporating curriculum learning into them is left as future work.

129

Table 6.2: Datasets used organized by number of instances, number of attributes, and at-
tribute type.

Inst # Att
Attribute Type

Categorical Numerical Mixed

<
10
0 k < 10 Contact Lenses Post-Operative

10 < k < 100
Lung Cancer Labor

Trains

10
0
<

M
<

10
00

k < 10

Breast-w Iris Teaching-
Breast Cancer Ecoli Assistant

Pima Indians
Glass
Bupa

Balance Scale

10 < k < 100

Audiology Ionosphere Annealing
Soybean(large) Wine Dermatology
Lymphography Sonar Credit-A
Congressional- Heart-Statlog Credit-G
Voting Records Horse Colic

Vowel Heart-c
Primary-Tumor Hepatitis

Zoo Autos
Heart-h

k > 100 Arrhythmia

10
00

<
M

<
10
00
0

k < 10
Car Evaluation Yeast Abalone

Chess
Titanic

k < 100

Splice Waveform-5000 Thyroid-
Segment (sick &
Spambase hypothyroid)

Ozone level-
Detection

M
>

10
00
0 k < 10

Nursery MAGIC Gamma-
Telescope

k < 100

Chess- Adult-Census-
(King-Rook vs. Income (KDD)
King-Pawn)

Letter

130

Hyperparameter optimization for MLPs, DTs, and curriculum learning uses 10 random

searches of the parameter space rather than a grid search. Filtering, boosting and curriculum

learning use the same hyperparameters that are found from optimization as well as the default

parameters. We choose to use random parameter selection based on the work by Bergstra and

Bengio [3]. The premise of the work by Bergstra and Bengio is that most machine learning

algorithms have very few parameters that considerably affect the final model while most of

the other parameters have little to no effect on the final model. Random search provides a

greater variety of the parameters that considerably affect the model, thus allowing for better

parameter selection of these parameters. For reproducibility, the exact process of parameter

optimization for the learning algorithms is provided in the appendix.

For the experiments, we report the average accuracy obtained over the 52 data sets. As

average accuracy is not very meaningful across multiple data sets, we also compare pairs of

algorithms using the Wilcoxon signed-ranks test as suggested by Demšar [6] and include a

count of the number of times an algorithm achieves an accuracy greater than, equal to, or

less than a compared algorithm on the set of data sets. We also provide the accuracy for each

individual data set. To get a better idea of the impact of curriculum learning and filtering

using instance hardness, the accuracies for each data set from the learning algorithms used

to compute instance hardness (ESLAs) are provided in Table 6.A.1 in the appendix. Table

6.A.1 also reports the accuracy from using the ESLAs as the base classifiers for an equally-

weighted voting ensemble. Overall, using instance hardness, whether for curriculum learning

or filtering, significantly improves the classification accuracy over each individual ESLA.

With parameter optimization, curriculum learning and filtering also achieve a significantly

higher classification accuracy than the voting ensemble.

6.4.1 Curriculum Learning

Curriculum learning trains a learning algorithm on the simplest concepts prior to training

on the more complex instances, analogous to teaching a child a subject such as mathematics:

131

addition and subtraction are taught prior to algebra which is taught prior to calculus, etc.

In general, one of the shortcomings of curriculum learning is that there is no automated way

to generate curricula for curriculum learning, although some work generates a curriculum for

a specific objective function for latent variable models [15]. Instance hardness is a natural

fit for curriculum learning, providing an ordering of the instances from easiest to hardest.

Ordering the instances with instance hardness requires the computational resources and time

to compute a curriculum. After the curriculum is created, however, it is available to any

algorithm that makes use of a hardness ordering.

Implementation Details

Even with an ordering for curriculum learning, a couple of questions need to be addressed

for general supervised machine learning classification problems: 1) the initial complexity of

the training instances, and 2) when to add more complex training instances.

The complexity of the initial training instances has a high likelihood of affecting the final

model since the initial training instances determine the search direction that will be continued

as more instances are added to the training set. Providing a learning algorithm with instances

that are too easy and uninformative could lead to a learning algorithm choosing an arbitrary

and/or incorrect gradient to follow. On the other hand, if the initial complexity is too

complex, subconcepts may not be learned since they are grouped with the concepts that

build on them.

As training begins, instances with an instance hardness value below a threshold are added

to the training set. To gain insight into curriculum learning, we try different values for the

initial complexity of the training set: 0, 0.25, 0.5, and 0.75. Each time new instances are

added to the training set, the instance hardness threshold (IH) is incremented by 0.1 until

all of the training instances are used for training.

When to add more complex instances to a training set could also have an impact on the

final outcome of the induced model. If a learning algorithm does not train on the initial

132

instances long enough, a learning algorithm may not find the optimal gradient to follow.

Training too long on a subset of the instances has the potential for a learning algorithm

to overfit the subset. This could hinder learning the more complex instances that will be

introduced later in the training process.

For MLPs, we consider two techniques of when to add more complex instances to the

training set.

Every n epochs. For this method, instances with increasing instance hardness values are

added to the training set every n epochs. This method is simple and it provides an

indication of whether it may be better to let the MLP train more or less before adding

more instances to the training set. We set n to 25, 50, 100, 200, 300, 400, and 500

to give an indication of how long to train before adding more instances. Other values

could have been used as well.

Convergence. This method trains the MLP to convergence on the training set before

adding more complex instances to the training set.

For DTs, more complex instances are added to the training set after a DT is induced

using the given training set. Once more complex instances are added to the training set,

the more complex training instances are propagated to a leaf node and the instances are

evaluated to determine if the tree should be expanded at this leaf node. As the training

set is augmented, the previously trained portions of the DT are not modified. For DTs,

we consider pruning and not pruning the tree before adding more complex instances to the

training set. For pruning at a given node, the error is estimated for its descendant branches

as well as if the node was a leaf node. If the estimated error of the node as a leaf node is lower

that the estimated error of the descendant branches, the node’s descendants are pruned.

Results

The results from implementing curriculum learning in MLPs and DTs with default parame-

ters are shown in Table 6.3. The bottom rows of Table 6.3 provide the aggregate statistics for

133

each method of adding more complex instances to the training set (average over all datasets,

p-value from the Wilcoxon signed-rank test, and number of times that the accuracy from

curriculum learning is greater than, equal to, or less than the original).

For MLPs, curriculum learning significantly increases classification accuracy with an al-

pha value of 0.05 for all of the methods of when to add more complex instances to the

training set examined in this work. Adding more complex instances to the training set after

training for 100 epochs is the most significant and results in the highest average classifica-

tion accuracy. The average accuracy increases from 81.41% to 82.32% when more complex

instances are added to the training set after training for 100 epochs. It is interesting to

note that curriculum learning considerably decreases the classification accuracy on some of

the datasets. The nursery dataset decreases in accuracy from 99.87% to around 97.42%

regardless of when more complex training instances are added to the training set. The chess

dataset decreases in accuracy as well. The reasoning behind this could be that there are no

subconcepts in the dataset. On other datasets, curriculum learning increases classification

accuracy considerably. For example, the post-operativePatient dataset increases in accuracy

from 55.11% to 71.11% and the contact lenses dataset increases from 72.49% to 81.66%.

For DTs, curriculum learning significantly decreases classification accuracy. Despite this,

on a few datasets, curriculum learning considerably increases classification accuracy. The

labor dataset increases from 73.68%, to 85.26% and the anneal.ORIG dataset increases from

90.98% to 94.32%. However, other datasets show a considerable decrease in classification

accuracy such as the breast-cancer dataset which decreases from 75.52% to less than 69%.

Clearly, DTs are not as well suited for curriculum learning as MLPs are. This may be due

to the use of entropy in C4.5 and the inability to backtrack and recover from splitting on

a suboptimal attribute. MLPs, on the other hand, can partially recover from this through

weight updates.

The poor performance of curriculum learning in DTs is more likely a result of the way

that curriculum learning is implemented in DTs rather than the DTs themselves. DTs are

134

Table 6.3: Comparison of different strategies of when to add more complex instances in
curriculum learning for MLPs and DTs.

MLP DT
Dataset Orig 25 50 100 200 400 500 conv Orig Prune noPr
abalone 27.23 27.34 27.70 27.50 27.40 27.29 27.11 27.49 21.16 20.18 21.55
adult 84.15 84.74 84.88 85.00 84.86 84.91 84.89 84.26 86.23 84.64 84.42
anneal 98.79 98.15 98.24 98.28 98.26 98.24 98.24 98.35 90.98 94.32 92.43
arrhyth 68.45 69.29 69.38 68.98 68.49 69.46 69.42 68.71 64.38 63.19 62.30
audio 83.18 82.12 82.03 81.15 79.82 79.82 79.38 81.59 77.88 75.22 67.61
autos 76.00 78.24 78.14 78.82 78.04 78.04 77.65 79.41 81.95 84.29 77.27
balance 90.81 90.75 91.23 91.00 91.04 91.64 91.96 90.91 76.64 77.98 79.20
breast 67.62 71.53 71.81 72.65 73.21 73.84 74.19 71.32 75.52 68.81 65.31
breast-w 95.27 96.19 96.62 96.82 96.79 96.79 96.88 96.30 94.56 93.88 93.36
bupa 69.91 70.55 71.47 70.66 71.47 71.53 71.01 71.36 68.70 64.93 64.00
carEval 99.44 99.24 99.28 99.05 99.20 99.09 99.16 99.30 92.36 93.09 93.03
chess 63.18 54.78 54.38 53.83 53.57 52.88 52.88 60.97 56.58 58.33 55.45
KRvKP 99.32 99.39 99.32 99.39 99.37 99.31 99.39 99.32 99.44 99.47 98.39
colic 81.52 84.40 84.83 84.29 84.18 83.91 84.51 84.72 85.33 81.90 81.68
contact 72.49 75.83 74.99 75.83 80.00 81.66 81.66 80.83 83.33 75.00 64.17
credit-a 83.33 85.01 85.47 86.28 85.73 86.55 86.28 84.86 86.09 80.93 82.43
credit-g 71.96 74.20 74.72 74.92 74.22 74.88 75.26 74.78 70.50 68.22 68.94
derma 96.17 96.44 96.44 96.44 96.55 96.72 96.66 92.02 93.99 93.17 91.58
ecoli 84.76 85.65 85.71 85.17 85.53 85.77 86.07 83.03 84.23 83.57 81.01
glass 68.31 69.15 67.57 67.57 68.78 69.15 71.12 68.97 66.82 68.04 65.23
heart-c 80.92 82.31 83.10 82.64 82.44 83.36 82.50 81.91 77.56 76.57 74.13
heart-h 79.59 79.86 80.95 82.44 82.24 82.44 82.65 81.36 80.95 78.98 83.20
heart-s 79.55 80.07 82.51 83.18 83.55 83.03 82.81 80.66 76.67 77.70 73.78
hepa 81.80 83.22 83.74 84.64 84.38 84.64 84.77 82.58 83.87 77.29 74.19
hypo 97.55 97.64 97.55 97.59 97.43 97.32 97.30 97.56 99.58 99.53 97.68
iono 91.05 90.76 90.08 89.97 89.40 89.74 90.02 90.88 91.45 89.80 89.57
iris 96.80 96.66 96.53 96.80 96.66 96.40 96.66 96.40 96.00 94.67 95.20
labor 89.12 89.47 89.12 89.12 89.12 88.77 88.77 92.63 73.68 78.25 85.26
letter 83.12 81.70 81.80 81.85 81.84 81.64 81.47 82.57 87.98 87.40 81.97
lungCan 44.37 43.75 46.25 48.12 48.75 48.12 48.12 45.00 50.00 46.25 38.13
lympho 83.64 82.56 83.24 84.05 84.18 83.64 83.64 82.56 77.03 74.19 70.95
MagicTel 86.13 86.15 86.28 86.30 86.33 86.34 86.27 86.20 85.06 85.01 84.34
nursery 99.87 97.43 97.43 97.43 97.42 97.43 97.42 97.43 97.05 98.63 97.59
ozone 96.26 96.24 96.25 96.19 96.28 97.12 97.12 97.12 96.33 96.11 95.54
pimaDia 75.98 76.90 76.43 76.84 76.53 76.87 77.00 76.82 73.83 74.06 71.09
post-op 55.11 57.33 59.11 61.33 60.83 57.55 55.33 71.11 70.00 50.22 45.56
prim-tu 39.29 42.24 42.24 42.65 43.18 43.36 43.42 44.89 39.82 40.65 38.64
segment 97.04 96.98 96.96 96.72 96.94 96.88 96.84 96.86 96.93 96.67 94.99

Continued on next page

135

Table 6.3: (Cont.) Comparison of different strategies of when to add more complex instances
in curriculum learning for MLPs and DTs.

MLP DT
Dataset Orig 25 50 100 200 400 500 conv Orig Prune noPr
sick 97.63 97.45 97.51 97.43 97.49 97.39 97.55 97.50 98.81 98.81 97.68
sonar 80.19 85.09 84.90 84.80 84.90 84.61 84.90 81.24 71.15 73.75 70.10
soyb 93.49 93.64 93.79 93.64 94.05 93.82 93.52 91.12 91.51 90.69 79.21
spam 93.51 93.54 93.56 93.44 93.45 93.49 93.49 93.62 92.98 92.36 90.56
splice 95.57 95.66 95.68 95.68 95.54 95.74 95.82 95.56 94.36 91.50 86.41
ta 61.05 61.72 60.66 64.50 64.10 66.22 63.97 63.84 52.98 49.01 46.89
titanic 78.77 78.86 78.90 78.91 78.89 78.91 78.94 78.74 78.92 78.89 78.89
trains 70.00 80.00 80.00 80.00 70.00 70.00 70.00 70.00 80.00 70.00 70.00
vote 94.66 95.21 95.03 95.08 94.98 95.31 95.26 94.98 96.32 95.82 94.48
vowel 92.70 90.52 89.79 87.61 85.97 85.01 85.07 91.27 81.52 81.66 78.75
wave 83.80 84.70 85.14 85.32 85.57 85.48 85.26 84.13 75.08 74.72 72.78
wine 97.86 97.86 97.64 97.75 97.75 97.75 97.75 97.75 93.82 92.81 90.56
yeast 59.69 59.73 59.59 60.18 60.29 59.95 59.85 59.98 56.00 53.94 53.33
zoo 95.24 95.04 94.65 94.85 94.65 94.45 94.65 82.17 92.08 93.27 90.30
Ave 81.41 81.99 82.13 82.32 82.15 82.20 82.15 82.02 80.11 78.62 76.56
p-values 0.004 0.004 0.001 0.002 0.002 0.003 0.034 0.998 1
>,=,< 35,1,16 31,3,18 35,2,15 34,2,16 33,2,17 33,2,17 31,2,19 15,1,36 7,0,45

not designed to be incrementally updated as MLPs are. Thus, using curriculum learning is

more natural and effective in learning algorithms that can be incrementally updated.

One potential problem is that there may not be enough information provided in the initial

training set to infer a model of the data. To test this, we adjusted the instance hardness

value of the initial instances in the training set. (Originally, only instances with an instance

hardness of 0 were used in the initial training set). The aggregate results from setting the

instance hardness value of the initial training instances to 0, 0.25, 0.5, and 0.75 are shown in

Table 6.4 for adding more complex instances to the training set after 100 training epochs and

training until convergence for MLPs and for pruning and not pruning before adding more

complex instances in DTs. The p-values and counts are with respect to the initial training

instances having an instance hardness value of 0. The results for each data set are provided

in the appendix.

136

Table 6.4: Comparison of different initial complexity levels (instance hardness) for the train-
ing set.

Inital IH: 0 0.25 0.5 0.75

M
L
P

10
0

Average 82.32 82.16 82.42 82.33
p-values 0.382 0.100 0.334
greater-equal-less 26-2-24 28-1-23 25-2-25

C
on

v Average 82.02 82.51 82.84 83.09
p-values 0.107 0.006 < 0.001
greater-equal-less 29-3-20 32-3-17 36-3-13

D
T

P
ru
n
e Average 78.62 78.62 78.62 79.61

p-values 1 1 0.605
greater-equal-less 0-52-0 0-52-0 2-49-1

N
oP

Average 76.55 77.72 78.80 79.22
p-values < 0.001 < 0.001 < 0.001
greater-equal-less 34-3-15 43-3-6 44-2-6

For MLPs, increasing the instance hardness value of the initial training set significantly

increases the classification accuracy with an alpha value of 0.05 when training until conver-

gence before adding more complex instances. When adding more complex instances to the

training set after 100 epochs, increasing the initial complexity did not significantly increase

the classification accuracy. For DTs with pruning, the initial instance hardness value has

very little effect–all of the datasets have the same accuracy for initial instance hardness val-

ues of 0.25 and 0.5 and only three datasets change in classification accuracy with an initial

hardness value of 0.75. Thus, pruning before adding more complex instances to the training

set appears to lessen the effects of the initial instance hardness value. When DTs are not

pruned before adding more complex instance to the training set, an initial instance hardness

of 0.75 significantly increases classification accuracy over having an initial instance hardness

value of 0. (It should be remembered that the original classification accuracy for DTs is

80.12%, thus, any form of curriculum learning for DTs examined so far does not increase the

accuracy over the original).

The decrease in accuracy in curriculum learning could be lessened by including a hy-

perparameter that indicates whether to use curriculum learning or not. The value of this

137

hyperparameter could be based on the performance of curriculum learning on a validation

set. Thus, neutral results could be obtained when curriculum learning decreases the classi-

fication accuracy. However, the focus of this paper is on the positive and negative results

of curriculum learning. Therefore, we use curriculum learning for all of the data sets and

learning algorithms but recognize that first determining whether to use curriculum learning

or not for certain data sets and learning algorithms could improve the overall performance

of curriculum learning.

Hyper-Parameter Optimization

The hyperparameters of a learning algorithm can have a drastic impact on their performance.

In this section, we examine curriculum learning with hyperparameter optimization. The

purpose of the previous section without hyperparameter optimization is to examine the effects

of curriculum learning independent of hyperparameter optimization. As hyperparameter

optimization is important for real-world problems, we examine curriculum learning with

hyperparameter optimization in the context of what was learned from the results of using

the default hyperparameter values. We follow the procedure by Bergstra and Bengio [3]–our

methodology is contained in the appendix. For curriculum learning, we also optimize the

values of the initial complexity of the training instances, and the number of epochs to train

for MLPs. The results are shown in Table 6.5. The values in bold represent the highest

accuracy value for each dataset and learning algorithm. The last three rows summarize the

table–giving the average accuracy for each method, the p-values comparing when curriculum

learning is used and when it is not used, and the number of times that using curriculum

learning is greater than, equal to, or less than not using curriculum learning.

As expected, parameter optimization significantly increases the classification accuracy for

MLPs and DTs. Also, curriculum learning significantly increases the classification accuracy

for MLPs, increasing the average accuracy from 83.21% to 84.07%. The most significant in-

crease in accuracy occurs for the lung cancer dataset which increases from 46.88% to 60.00%.

138

Table 6.5: Comparison of curriculum learning with parameter optimization for MLPs and
DTs.

Dataset MLP MLP w/ CL DT DT w/ CL
abalone 27.75 27.65 25.44 23.76
adult 84.86 85.65 86.33 85.12
anneal 99.55 99.35 93.83 95.43
arrhyth 70.58 69.87 70.71 70.66
audio 83.19 83.54 77.35 82.57
autos 77.07 78.63 84.39 84.29
balance 87.20 87.94 79.52 78.24
breast 69.58 74.62 74.69 73.08
breast-w 95.99 96.82 94.96 94.54
bupa 72.17 71.07 67.25 66.72
carEval 99.94 99.80 93.99 93.09
chess 69.73 68.76 59.85 58.30
KRvKP 99.50 99.39 99.65 99.65
colic 82.34 85.98 85.87 85.16
contact 75.00 75.83 87.50 75.00
credit-a 85.94 87.25 86.35 86.52
credit-g 74.40 76.68 72.74 72.52
derma 97.27 97.81 93.06 93.33
ecoli 85.42 85.42 83.33 82.26
glass 72.90 72.06 69.53 69.53
heart-c 84.82 84.55 77.69 76.96
heart-h 82.65 84.01 81.43 81.29
heart-s 82.96 84.37 83.19 82.89
hepa 86.45 86.97 80.39 83.61
hypo 97.85 97.99 99.53 99.57
iono 91.74 90.88 90.03 89.80
iris 96.67 96.53 94.93 94.67
labor 89.47 92.98 82.11 82.11
letter 89.70 88.79 88.18 88.44
lungCan 46.88 60.00 65.00 65.00
lympho 84.46 83.78 76.08 75.54
MagicTel 86.95 86.95 85.29 85.02
nursery 99.78 99.29 97.27 98.84
ozone 97.24 97.15 97.07 96.77
pimaDia 77.60 77.24 75.03 75.03
post-op 62.22 71.11 71.11 71.11
prim-tu 44.84 46.37 43.13 42.48

Continued on next page

139

Table 6.5: (Cont.) Comparison of curriculum learning with parameter optimization for
MLPs and DTs.

Dataset MLP MLP w/ CL DT DT w/ CL
segment 97.49 97.52 97.05 96.99
sick 97.69 97.47 98.83 98.82
sonar 82.69 84.62 75.77 76.35
soyb 94.29 93.65 91.89 91.22
spam 93.46 93.59 92.93 92.56
splice 95.77 96.16 94.24 92.15
ta 62.91 62.52 63.84 63.05
titanic 79.06 79.06 79.06 78.89
trains 80.00 80.00 90.00 90.00
vote 96.09 96.74 96.55 96.00
vowel 95.76 95.98 84.67 84.46
wave 86.22 87.19 76.07 75.70
wine 97.19 98.43 93.60 93.03
yeast 59.64 60.19 58.06 57.88
zoo 96.04 95.64 94.06 93.27
Average 83.21 84.07 81.93 81.52
p-values 0.009 0.999
>,=,< 29,3,20 9,8,36

Similar to using the default parameters, not using curriculum learning is significantly better

for DTs. However, in the few cases in which curriculum learning does increase the classifica-

tion accuracy, the increase can be considerable–the audiology dataset increases from 77.35%

to 82.57% and the hepatitis dataset increases from 80.39% to 83.61%. Thus, curriculum

learning is dependent on both the dataset and the learning algorithm that is being used.

6.4.2 Comparison with Filtering and Boosting

In this section, we compare curriculum learning with filtering and boosting. The filtering

technique employed removes any instance with an instance hardness value greater than or

equal to a threshold (we use 0.75) [25]. We denote the filtering method as IH.75. Evaluation

for filtering is done on unfiltered test data. We compare curriculum learning with two boost-

140

Table 6.6: A pair-wise comparison of curriculum learning with filtering and boosting for
MLPs. The first row gives the p-values from the Wilcoxon signed-rank test for statistical
significance. The second row gives the number of data sets with greater, equal, or lower
classification accuracy.

Orig IH.75 AB MB CL AB.75 MB.75 CL.75

Average 83.21 84.83 82.80 82.82 84.07 85.07 84.87 85.07

Orig
1 1 0.116 0.085 0.991 1 0.999 1

0,52,0 14,3,35 26,7,19 23,10,19 20,3,29 12,6,34 16,7,29 15,2,35

IH.75
< 0.001 1 < 0.001 < 0.001 0.007 0.435 0.289 0.721
35,3,14 0,52,0 36,3,13 34,4,14 31,3,18 23,6,23 25,6,21 22,3,27

AB
0.886 1 1 0.812 0.997 1 1 1
19,7,26 13,3,36 0,52,0 13,22,17 20,1,31 10,4,38 15,3,34 13,1,38

MB
0.917 1 0.194 1 0.999 1 1 1

19,10,23 14,4,34 17,22,13 0,52,0 18,1,33 12,3,37 16,2,34 15,1,36

CL
0.009 0.993 0.003 0.001 1 0.987 0.979 1
29,3,20 18,3,31 31,1,20 33,1,18 0,52,0 21,1,30 20,2,30 15,1,36

AB.75
< 0.001 0.569 < 0.001 < 0.001 0.013 1 0.062 0.771
34,6,12 23,6,23 38,4,10 37,3,12 30,1,21 0,52,0 13,29,10 20,6,26

MB.75
0.001 0.715 < 0.001 < 0.001 0.022 0.941 1 0.923
29,7,16 21,6,25 34,3,15 34,2,16 30,2,20 10,29,13 0,52,0 18,5,29

CL.75
< 0.001 0.282 < 0.001 < 0.001 < 0.001 0.232 0.079 1
35,2,15 27,3,22 38,1,13 36,1,15 36,1,15 26,6,20 29,5,18 0,52,0

ing techniques: AdaBoost [10] (AB) and MultiBoost [29] (MB). In all of the experiments,

hyperparameter optimization is used.

For curriculum learning with DTs, pruning is not done before adding more complex

instances to the training set since it achieves higher classification accuracy. A statistical

comparison of curriculum learning, filtering, and boosting for MLPs and DTs is given in

Tables 6.6 and 6.7 respectively. The results for each data set are included in the appendix.

The first row shows the average accuracy for each method. Each following pair of rows

gives the p-value from the Wilcoxon signed-rank test and the number of times that a method

achieved an accuracy greater than-equal to-less than the method in the column heading.

Curriculum learning (CL) significantly increases classification accuracy over boosting for

MLPs.

141

Table 6.7: A pair-wise comparison of curriculum learning with filtering and boosting for
DTs. The first row gives the p-values from the Wilcoxon signed-rank test for statistical
significance. The second row gives the number of data sets with greater, equal, or lower
classification accuracy.

Orig IH.75 AB MB CL AB.75 MB.75 CL.75

Average 81.93 85.03 83.90 84.14 81.52 85.64 85.03 83.26

Orig
1 1 1 1 < 0.001 1 1 1

0,52,0 8,5,39 10,3,39 4,4,44 36,7,9 1,4,47 4,3,45 7,4,41

IH.75
< 0.001 1 0.979 0.998 < 0.001 1 1 0.812
39,5,8 0,52,0 16,2,34 14,4,34 41,4,7 3,5,44 6,5,41 22,3,27

AB
< 0.001 0.021 1 0.844 < 0.001 1 1 0.095
39,3,10 34,2,16 0,52,0 19,11,22 44,2,6 6,6,40 16,2,34 30,2,20

MB
< 0.001 0.002 0.159 1 < 0.001 1 1 0.016
44,4,4 34,4,14 22,11,19 0,52,0 46,2,4 7,5,40 11,4,37 31,3,18

CL
0.999 1 1 1 1 1 1 1
9,7,36 7,4,41 6,2,44 4,2,46 0,52,0 2,2,48 4,1,47 6,1,45

AB.75
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 1 < 0.001 < 0.001
47,4,1 44,5,3 40,6,6 40,5,7 48,2,2 0,52,0 29,10,13 43,4,5

MB.75
< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.999 1 < 0.001
45,3,4 41,5,6 34,2,16 37,4,11 47,1,4 13,10,29 0,52,0 41,5,6

CL.75
< 0.001 0.191 0.907 0.984 < 0.001 1 1 1
41,4,7 27,3,22 20,2,30 18,3,31 45,1,6 5,4,43 6,5,41 0,52,0

We also examined filtering prior to boosting and curriculum learning. Curriculum learn-

ing with filtering is denoted as CL.75 and boosting with filtering is denoted as AB.75 and

MB.75 for AdaBoost and MultiBoost. When a method is augmented with filtering, the

filtered method significantly outperforms (in terms of classification accuracy) the method

without filtering. This is particularly apparent with AdaBoost. AdaBoost does not signifi-

cantly increase the classification accuracy over any of the other methods for MLPs and only

over the original for DTs. Yet, with filtering, AB.75 significantly increases the classification

accuracy over the other non-filtered methods. This shows how prone AdaBoost is to overfit-

ting. These results also show the importance of treating instances differently during training,

particularly in the case of AdaBoost and filtering. Filtering has the most significant effect

on accuracy, achieving higher classification accuracy than the original algorithm, curriculum

142

learning, and boosting. Applying filtering to curriculum learning and boosting also increases

the classification accuracy. AB.75 achieves the highest classification accuracy out of all of the

investigated methods increasing the accuracy to 85% for MLPs and DTs.

Concerning curriculum learning, these results lead to the question of what is gained by

using curriculum learning and under what circumstances is using curriculum learning most

appropriate. Originally, curriculum learning was proposed as a continuation method for

training deep networks (i.e. a MLP with more than a single hidden layer) used in specific

tasks that could be divided into subconcepts. Curriculum learning helps avoid local minima

which are prevalent in deeper networks. This correlates to why curriculum learning has a

greater impact on MLPs than DTs since the problem of local minima is more severe for

MLPs. We further investigate when curriculum learning is appropriate to use by examining

the linearity of the data sets and data set hardness value. This investigates the perceived

notion that curriculum learning may be better suited for more difficult tasks. The linearity

of a dataset is estimated by taking the difference in accuracy between a linear classifier and

a nonlinear classifier. We used the relative percentage difference between the accuracy of a

MLP trained with backpropagation and a perceptron (MLP-per) and between the accuracy

of a random forest and a linear SVM (RF-SVM). Data set hardness is the average of the

instance hardness values for the instances in a data set.

We compared the linearity and data set hardness measures for each data set with the

accuracies from curriculum learning with filtering and boosting. The difficulty measures are

inconclusive. For example, for the autos dataset, curriculum learning provides a boost in

accuracy as is expected since both MLP-per and RF-SVM are positive. The classification

accuracy for the autos dataset is considerably higher for CL Prune (using a DT), increasing

almost 5 percent On the other hand, an increase in accuracy is expected on the colic dataset,

yet the classification accuracy decreased from about 86% to 82%. The difficulty of a data

set, therefore, is not a sufficient condition for curriculum learning to outperform filtering the

143

dataset. It is difficult to know when to use curriculum learning for general machine learning

tasks, especially when a simple method such as filtering produces similar results.

6.5 Conclusions

In this paper we presented a method for ordering the instances in a data set by complexity

(hardness ordering) for supervised classification problems. A hardness ordering uses instance

hardness to order the instances in a data set based on the their likelihood of being misclas-

sified. The hardness ordering allows a learning algorithm to focus on the most informative

instances. Using instance hardness to order the instances provides an explicit ordering of

the easy instances to difficult instances and can be used in any algorithm that uses an or-

dering of the instances. However, computing instance hardness requires running N learning

algorithms, which can be expensive for large data sets. Future work includes discovering a

less expensive method for ordering the instances.

We integrated the hardness ordering for a data set into the learning process in curricu-

lum learning. One of the main shortcomings of curriculum learning is the lack of a method

for developing curricula. As curriculum learning is a relatively new approach, we examined

using a hardness ordering as a general approach to implement curriculum learning. We ex-

amined curriculum learning on a set of 52 UCI data sets using MLPs and DTs and compared

curriculum learning with filtering and boosting.

Our exploration with curriculum learning has shed interesting, and unexpected, light that

curriculum learning performs strikingly similar to filtering and boosting in shallow MLPs.

The similarity of curriculum learning in MLPs to filtering is somewhat expected. Elman [7]

pointed out that one of the reasons starting small is so important is due to backpropagation’s

inflexibility of learning late in the learning process. As training progresses, weights become

rigid and only very small changes are made during training. As complex instances are not

trained on in curriculum learning until late in the learning process, they will only have a

very minor (if any) effect on the trained model, especially with a large number of training

144

epochs between adding more instances. Thus, the harder instances are not expected to have

a large impact on the final model.

For the DTs, the hope was that by starting with easier instances, more appropriate

attribute splits would be chosen early in the learning process. As more difficult (and possibly

noisy) instances are added later they would have less of an effect on the tree. DTs may not

be an ideal candidate for curriculum learning because they are somewhat robust to noise

due to using entropy to choose which attribute to split on and because pruning helps avoid

overfitting the data.

The claim that curriculum learning is well suited for more difficult problems may or may

not be true. Curriculum learning has an intuitive motivation and has proven to work well in

specific past applications. For general supervised classification problems, however, it would

appear that the benefits may not be as great as originally intended. Curriculum learning

may be well suited for tasks that can be broken down into subtasks.

Our finding that curriculum learning does not out perform filtering and boosting in

general classification problems may be an artifact of how we ordered the instances in a data

set and of the particular training schedule used here. Using instance hardness to develop

curricula orders the instances based on how hard they are to correctly classify but may not

take into account if some concepts are sub-concepts, how concepts are related, etc. A better

understanding of how the concepts in a data set are related could aid in creating more

appropriate curricula for a data set. Future work for curriculum learning includes better

understanding of how the instances in a data set are related to each other and developing

curricula that accounts for the concepts contained in the instances.

We showed the positive impact of filtering instances prior to training. Filtering the noisy

and outlier instances prior to training significantly increases the accuracy for the original

learning algorithm as well as for curriculum learning and boosting. In fact, filtering prior to

using AdaBoost produces significantly higher classification accuracy than all other methods

investigated for MLPs and DTs. By filtering the noisy and outlier instances prior to training,

145

AdaBoost does not overfit the noise since it is no longer in the training data. AdaBoost

further increases classification accuracy by focusing on the instances that are hardest to

correctly classify.

References

[1] Vic Barnett and Toby Lewis. Outliers in statistical data. John Wiley & Sons Ltd., 2nd

edition edition, 1978.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th International Conference on Machine Learning,

pages 41–48. ACM, 2009.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

[4] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: iden-

tifying density-based local outliers. SIGMOD Record, 29(2):93–104, June 2000. ISSN

0163-5808.

[5] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

[6] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

[7] Jeffery L. Elman. Learning and development in neural networks: The importance of

starting small. Cognition, 48:71–99, 1993.

[8] A. Frank and Arthur Asuncion. UCI machine learning repository, 2010. URL

http://archive.ics.uci.edu/ml.

146

http://archive.ics.uci.edu/ml

[9] Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the

Third Annual Workshop on Computational Learning Theory, pages 202–216, 1990.

[10] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

Proceedings of the 13th International Conference on Machine Learning, pages 148–156,

1996.

[11] Dragan Gamberger, Nada Lavrač, and Sašo Džeroski. Noise detection and elimination

in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence,

14(2):205–223, 2000.

[12] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[13] George H. John. Robust decision trees: Removing outliers from databases. In Knowledge

Discovery and Data Mining, pages 174–179, 1995.

[14] Nir Krause and Yoram Singer. Leveraging the margin more carefully. In Proceedings of

the 21st International Conference on Machine Learning, pages 63–70, 2004.

[15] M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent

variable models. In Advances in Neural Information Processing Systems, pages 1189–

1197. 2010.

[16] Jun Lee and Christophe Giraud-Carrier. A metric for unsupervised metalearning. In-

telligent Data Analysis, 15(6):827–841, 2011.

[17] Hancong Liu, Sirish Shah, and Wei Jiang. On-line outlier detection and data cleaning.

Computers & Chemical Engineering, 28(9):1635–1647, 2004.

147

[18] Gerhard Neumann, Wolfgang Maass, and Jan Peters. Learning complex motions by se-

quencing simpler motion templates. In Proceedings of the 26th International Conference

on Machine Learning, pages 753–760, 2009.

[19] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. In Advances in Neural Information

Processing Systems 14, pages 841–848, 2001.

[20] Adam H. Peterson and Tony R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75,

2005.

[21] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, USA, 1993.

[22] Terence D. Sanger. Neural network learning control of robot manipulators using grad-

ually increasing task difficulty. IEEE Transactions on Robotics and Automation, 10(3),

June 1994.

[23] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,

1990.

[24] Michael R. Smith and Tony Martinez. Improving classification accuracy by identify-

ing and removing instances that should be misclassified. In Proceedings of the IEEE

International Joint Conference on Neural Networks, pages 2690–2697, 2011.

[25] Michael R. Smith and Tony Martinez. An extensive evaluation of filtering mis-

classified instances in supervised classification tasks. In submission, 2014. URL

http://arxiv.org/abs/1312.3970.

[26] Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance level

analysis of data complexity. Machine Learning, 95(2):225–256, 2014.

148

http://arxiv.org/abs/1312.3970

[27] Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. From baby steps to leapfrog:

“how less is more” in unsupervised dependency parsing. In Proceedings of Human Lan-

guage Technologies: The 11th Annual Conference of the North American Chapter of the

Association for Computational Linguistics, pages 751–759, 2010.

[28] Kewei Tu and Vasant Honavar. On the utility of curricula in unsupervised learning of

probabilistic grammars. In Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, 2011.

[29] Geoffrey I. Webb. Multiboosting: A technique for combining boosting and wagging.

Machine Learning, 40(2):159–196, 2000.

[30] David H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural

Computation, 8(7):1341–1390, 1996.

[31] Chun-Nam John Yu and Thorsten Joachims. Learning structural svms with latent

variables. In Proceedings of the 26th International Conference on Machine Learning,

pages 1169–1176, 2009.

149

Appendix for “A Comparative Evaluation of Curriculum Learning with
Filtering and Boosting in Supervised Classification Problems”

6.A Accuracies from the Learning Algorithms used to Compute Instance Hard-

ness

This section presents the accuracies for each individual learning algorithm used to calculate

instance hardness (ESLAs) for curriculum learning and filtering (listed in Table 6.1). Each

ESLA uses the default parameters as set in Weka [2]. This section also presents the accuracies

from a voting ensemble composed of the ESLAs. The results are presented in Table 6.A.1.

Note that Ridor did not finish on the letter data set. In that case, instance hardness was

calculated using the results from all of the other ESLAs.

150

Table 6.A.1: The accuracies for each learning algorithm (ESLA) on the examined data sets
that were used to compute instance hardness as well as the accuracy for a voting ensemble
composed of the ESLAs.

Data set MLP DT 5NN LWL NB NNge RF Rid RIP Vote
abalone 27.23 21.16 20.54 22.84 23.84 20.40 22.41 20.64 19.03 25.01
adult 84.15 86.23 79.42 75.92 83.43 79.05 84.34 83.19 84.54 84.96
anneal 98.79 90.98 95.66 91.54 75.84 92.32 95.55 97.44 95.32 97.57
arrhyth 68.45 64.38 52.88 57.30 62.39 65.93 66.81 68.36 70.80 70.79
audio 83.18 77.88 77.88 47.79 73.45 71.24 78.76 73.01 73.01 75.39
autos 76.00 81.95 76.10 48.29 56.10 80.00 83.90 70.73 73.17 75.94
balance 90.81 76.64 86.56 55.20 90.40 81.92 80.48 79.52 80.80 86.32
breast 67.62 75.52 72.38 72.38 71.68 65.04 68.53 70.98 70.98 72.71
breast-w 95.27 94.56 95.14 90.27 95.99 95.99 96.42 95.85 95.42 96.78
bupa 69.91 68.70 62.90 59.13 55.36 66.67 68.41 63.19 64.64 68.78
carEval 99.44 92.36 93.52 70.02 85.53 94.50 92.77 96.30 86.46 95.52
chess 63.18 56.58 73.05 26.41 36.06 58.83 65.13 48.53 43.56 63.50
KRvKP 99.32 99.44 96.28 71.87 87.89 98.53 98.72 98.59 99.19 99.30
colic 81.52 85.33 81.25 81.52 77.99 80.43 85.60 83.70 84.24 85.85
contact 72.49 83.33 79.17 70.83 70.83 70.83 70.83 75.00 75.00 70.00
credit-a 83.33 86.09 81.16 85.51 77.68 82.61 85.22 83.33 85.80 86.61
credit-g 71.96 70.50 72.00 70.00 75.40 70.50 72.60 71.90 71.70 74.64
derma 96.17 93.99 94.54 87.70 97.27 96.17 94.81 93.17 86.89 97.38
ecoli 84.76 84.23 80.36 64.58 85.42 85.42 83.63 81.55 81.25 87.68
glass 68.31 66.82 70.56 44.86 48.60 70.09 72.90 63.08 68.69 70.56
heart-c 80.92 77.56 76.24 73.60 83.50 80.86 81.52 79.54 81.52 81.39
heart-h 79.59 80.95 76.87 79.25 83.67 79.59 78.23 80.95 78.91 81.73
heart-s 79.55 76.67 75.19 71.85 83.70 78.15 78.15 78.15 78.89 82.89
hepa 81.80 83.87 80.65 73.55 84.52 84.52 83.87 78.71 78.06 83.27
hypo 97.55 99.58 91.52 95.39 95.28 98.70 99.07 99.44 99.34 99.28
iono 91.05 91.45 86.32 82.34 82.62 90.03 92.88 88.03 89.74 92.22
iris 96.80 96.00 95.33 93.33 96.00 96.00 95.33 94.00 94.00 95.00
labor 89.12 73.68 82.46 85.96 89.47 77.19 87.72 80.70 77.19 93.68
letter 83.12 87.98 96.03 41.25 64.12 91.43 94.56 DNF 82.34 94.78
lungCan 44.37 50.00 37.50 46.88 50.00 62.50 56.25 43.75 43.75 50.91
lympho 83.64 77.03 82.43 73.65 83.11 78.38 81.08 85.14 77.70 84.20
MagicTel 86.13 85.06 80.94 72.53 72.69 82.19 86.95 82.73 84.77 86.31
nursery 99.87 97.05 98.38 87.83 90.32 96.27 98.25 95.69 96.84 98.33
ozone 96.26 96.33 95.27 97.12 70.78 97.04 97.16 97.04 96.10 97.01
pimaDia 75.98 73.83 70.18 71.22 76.30 73.96 74.09 75.00 76.04 74.92
post-op 55.11 70.00 53.33 67.78 67.78 60.00 62.22 71.11 70.00 71.67
prim-tu 39.29 39.82 39.23 38.94 50.15 40.71 41.89 37.17 38.35 48.32

Continued on next page

151

Table 6.A.1: (Cont.) The accuracies for each learning algorithm (ESLA) on the examined
data sets that were used to compute instance hardness as well as the accuracy for a voting
ensemble composed of the ESLAs.

Data set MLP DT 5NN LWL NB NNge RF Rid RIP Vote
segment 97.04 96.93 97.14 80.48 80.22 96.28 97.75 96.15 95.71 97.19
sick 97.63 98.81 96.18 96.55 92.60 96.90 98.09 98.17 98.22 98.37
sonar 80.19 71.15 86.54 73.56 67.79 72.12 80.77 73.56 73.08 78.86
soyb 93.49 91.51 91.22 57.83 92.97 91.80 93.12 89.31 91.95 94.21
spam 93.51 92.98 90.78 78.46 79.29 92.13 94.72 91.83 92.39 94.36
splice 95.57 94.36 74.67 76.49 95.36 86.52 89.31 92.10 94.14 96.16
ta 61.05 52.98 66.23 54.30 50.33 65.56 64.24 39.74 39.07 55.49
titanic 78.77 78.92 78.92 77.74 77.87 67.61 79.06 78.42 78.33 77.90
trains 70.00 80.00 60.00 60.00 60.00 60.00 70.00 50.00 50.00 70.00
vote 94.66 96.32 92.41 95.63 90.11 96.09 96.55 94.25 95.40 95.86
vowel 92.70 81.52 99.29 36.36 63.74 87.47 96.06 77.68 69.70 92.67
wave 83.80 75.08 73.62 57.26 80.00 77.86 81.80 77.72 79.20 84.27
wine 97.86 93.82 94.94 88.76 97.19 97.75 97.19 91.01 91.57 98.00
yeast 59.69 56.00 52.29 40.70 57.61 54.25 58.02 53.50 58.09 61.45
zoo 95.24 92.08 96.04 86.14 95.05 95.05 89.11 94.06 86.14 95.59
Average 81.41 80.11 79.03 69.36 75.68 79.45 81.59 78.09 77.83 82.53

6.B Individual Results for Adjusting the Initial Complexity Level

This section provides the accuracy for the 52 investigated data sets when adjusting the initial

complexity level of the training instances and for comparing curriculum learning, filtering,

and boosting. The results for adjusting the initial complexity level of the training instances

are shown in Tables 6.B.1 and 6.B.2 for MLPs and DTs respectively. Tables 6.B.1 and 6.B.2

are an expansion of Table 6.4 in the paper. The results for comparing curriculum learning,

filtering, and boosting are shown in Tables 6.B.3 and 6.B.4 for MLPs and DTs and are

an expansion of Tables 6.6 and 6.7 in the paper. The bold values represent the greatest

classification accuracy for each dataset and learning algorithm.

152

Table 6.B.1: Comparison of different initial complexity levels (instance hardness) for the
training set for curriculum learning in MLPs for each data set.

MLP 100 MLP Conv
Dataset 0 0.25 0.5 0.75 0 0.25 0.5 0.75
abalone 27.50 27.45 27.53 27.59 27.49 27.73 27.00 27.74
adult 85.00 84.88 84.87 84.74 84.26 84.83 84.31 84.77
anneal 98.28 98.64 99.15 98.37 98.35 98.77 99.15 98.41
arrhyth 68.98 69.07 69.20 69.29 68.71 69.07 70.26 69.64
audio 81.15 82.56 82.47 83.00 81.59 77.43 79.91 80.97
autos 78.82 78.14 78.92 79.70 79.41 76.97 78.43 78.92
balance 91.00 90.84 90.65 90.81 90.91 90.24 90.27 90.11
breast 72.65 73.21 72.44 71.81 71.32 74.33 72.93 73.91
breast-w 96.82 96.59 96.79 95.56 96.30 96.36 96.82 96.02
bupa 70.66 71.13 72.00 69.27 71.36 72.17 72.05 71.24
carEval 99.05 99.16 99.28 99.32 99.30 99.15 99.36 99.47
chess 53.83 54.87 59.61 62.94 60.97 59.32 59.88 62.45
KRvKP 99.39 99.33 99.25 99.33 99.32 99.24 99.23 99.37
colic 84.29 84.94 84.23 84.13 84.72 84.61 84.83 83.96
contact 75.83 73.33 76.66 76.66 80.83 78.33 82.50 80.83
credit-a 86.28 85.91 85.50 84.98 84.86 85.15 84.57 85.44
credit-g 74.92 74.98 75.26 74.68 74.78 75.88 75.12 76.32
derma 96.44 96.33 96.28 96.17 92.02 96.66 96.33 96.28
ecoli 85.17 85.71 85.83 84.99 83.03 86.66 86.13 86.19
glass 67.57 68.97 70.18 69.34 68.97 67.94 72.71 71.02
heart-c 82.64 83.10 83.56 83.63 81.91 82.50 82.04 84.42
heart-h 82.44 81.76 82.04 81.63 81.36 82.78 80.34 83.87
heart-s 83.18 82.81 82.59 84.14 80.66 84.59 82.66 84.66
hepa 84.64 86.06 84.00 85.80 82.58 84.77 84.51 87.48
hypo 97.59 97.68 97.55 97.58 97.56 97.69 97.58 97.62
iono 89.97 91.28 90.54 90.54 90.88 90.48 90.37 90.82
iris 96.80 96.80 96.80 96.66 96.40 95.59 95.86 96.40
labor 89.12 88.77 89.47 89.12 92.63 90.87 90.52 89.12
letter 81.85 82.08 82.73 83.41 82.57 81.14 82.47 83.26
lungCan 48.12 46.25 45.00 42.50 45.00 48.12 47.50 46.87
lympho 84.05 83.64 83.64 83.10 82.56 83.37 86.08 83.37
MagicTel 86.30 86.24 86.45 86.23 86.20 86.17 86.35 86.22
nursery 97.43 97.44 98.56 99.87 97.43 97.44 98.58 99.87
ozone 96.19 96.24 96.45 96.50 97.12 97.12 96.31 96.64
pimaDia 76.84 75.93 76.17 76.61 76.82 77.29 76.17 77.21
post-op 61.33 60.66 60.88 62.88 71.11 71.11 71.11 70.66
prim-tu 42.65 43.42 42.83 42.77 44.89 46.96 46.60 48.84

Continued on next page

153

Table 6.B.1: (Cont.) Comparison of different initial complexity levels (instance hardness)
for the training set for curriculum learning in MLPs for each data set.

MLP 100 MLP Conv
Dataset 0 0.25 0.5 0.75 0 0.25 0.5 0.75
segment 96.72 97.01 97.08 97.10 96.86 96.91 97.09 97.14
sick 97.43 97.48 97.50 97.52 97.50 97.57 97.46 97.50
sonar 84.80 84.61 86.44 82.11 81.24 82.49 85.38 82.98
soyb 93.64 93.58 93.67 93.82 91.12 94.31 94.20 94.31
spam 93.44 93.59 93.51 93.32 93.62 93.61 93.51 93.51
splice 95.68 95.67 95.67 95.56 95.56 95.67 95.80 95.63
ta 64.50 61.32 61.58 61.05 63.84 62.64 63.31 63.70
titanic 78.91 78.91 78.89 79.00 78.74 78.53 79.05 79.00
trains 80.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00
vote 95.08 94.75 94.75 95.21 94.98 95.54 95.49 95.26
vowel 87.61 90.02 92.82 93.03 91.27 89.29 92.52 92.98
wave 85.32 85.47 85.12 84.70 84.13 84.17 84.75 84.76
wine 97.75 97.52 97.64 97.75 97.75 97.30 97.75 97.97
yeast 60.18 60.37 60.41 60.16 59.98 59.25 60.24 60.70
zoo 94.85 96.03 95.44 95.24 82.17 94.65 94.45 94.85
Average 82.32 82.16 82.42 82.33 82.02 82.51 82.84 83.09
p-values 0.382 0.100 0.334 0.107 0.006 < 0.001
>,=,< 26,2,24 28,1,23 25,2,25 29-3-20 32-3-17 36-3-13

154

Table 6.B.2: Comparison of different initial complexity levels (instance hardness) for the
training set for curriculum learning in DTs for each data set.

DT Prune DT no Prune
Dataset 0 0.25 0.5 0.75 0 0.25 0.5 0.75
abalone 20.18 20.18 20.18 20.18 21.55 21.01 21.90 21.14
adult 84.64 84.64 84.64 84.64 84.42 84.31 84.70 84.80
anneal 94.32 94.32 94.32 94.32 92.43 94.12 94.16 94.21
arrhyth 63.19 63.19 63.19 63.19 62.30 64.78 64.34 66.19
audio 75.22 75.22 75.22 75.22 67.61 68.76 72.21 75.84
autos 84.29 84.29 84.29 84.29 77.27 74.05 81.17 79.90
balance 77.98 77.98 77.98 77.98 79.20 80.06 79.10 77.95
breast 68.81 68.81 68.81 68.81 65.31 67.55 67.48 68.39
breast-w 93.88 93.88 93.88 93.88 93.36 92.19 92.90 94.05
bupa 64.93 64.93 64.93 64.93 64.00 65.57 65.10 67.59
carEval 93.09 93.09 93.09 93.09 93.03 93.18 93.14 93.06
chess 58.33 58.33 58.33 58.33 55.45 60.32 62.54 62.56
KRvKP 99.47 99.47 99.47 99.47 98.39 99.34 99.31 99.35
colic 81.90 81.90 81.90 81.90 81.68 83.32 83.48 82.99
contact 75.00 75.00 75.00 75.00 64.17 72.50 75.00 75.00
credit-a 80.93 80.93 80.93 80.93 82.43 83.07 82.58 83.39
credit-g 68.22 68.22 68.22 68.22 68.94 70.08 70.14 71.00
derma 93.17 93.17 93.17 93.28 91.58 93.17 93.39 93.22
ecoli 83.57 83.57 83.57 83.57 81.01 80.95 83.87 84.76
glass 68.04 68.04 68.04 68.04 65.23 64.21 67.48 69.16
heart-c 76.57 76.57 76.57 76.57 74.13 76.17 76.63 77.76
heart-h 78.98 78.98 78.98 78.98 83.20 78.10 79.52 79.86
heart-s 77.70 77.70 77.70 77.70 73.78 76.52 77.04 77.63
hepa 77.29 77.29 77.29 77.29 74.19 79.61 82.19 80.00
hypo 99.53 99.53 99.53 99.53 97.68 99.20 99.48 99.50
iono 89.80 89.80 89.80 89.80 89.57 89.52 89.80 90.37
iris 94.67 94.67 94.67 94.67 95.20 94.40 94.00 93.33
labor 78.25 78.25 78.25 77.19 85.26 85.26 82.81 77.19
letter 87.40 87.40 87.40 87.40 81.97 83.73 86.60 87.36
lungCan 46.25 46.25 46.25 46.25 38.13 41.25 54.38 60.00
lympho 74.19 74.19 74.19 74.19 70.95 77.30 76.49 77.03
MagicTel 85.01 85.01 85.01 85.01 84.34 84.40 84.70 85.06
nursery 98.63 98.63 98.63 98.63 97.59 98.51 98.79 98.63
ozone 96.11 96.11 96.11 96.11 95.54 95.95 95.79 95.56
pimaDia 74.06 74.06 74.06 74.06 71.09 70.68 72.47 73.91
post-op 50.22 50.22 50.22 50.22 45.56 44.89 45.56 44.89
prim-tu 40.65 40.65 40.65 40.65 38.64 37.46 41.06 40.71

Continued on next page

155

Table 6.B.2: (Cont.) Comparison of different initial complexity levels (instance hardness)
for the training set for curriculum learning in DTs for each data set.

DT Prune DT no Prune
Dataset 0 0.25 0.5 0.75 0 0.25 0.5 0.75
segment 96.67 96.67 96.67 96.67 94.99 95.55 96.55 96.60
sick 98.81 98.81 98.81 98.81 97.68 98.02 98.18 98.66
sonar 73.75 73.75 73.75 73.75 70.10 70.87 69.23 75.00
soyb 90.69 90.69 90.69 90.69 79.21 90.98 89.99 91.42
spam 92.36 92.36 92.36 92.36 90.56 91.09 91.82 92.43
splice 91.50 91.50 91.50 91.50 86.41 91.33 91.37 91.59
ta 49.01 49.01 49.01 49.01 46.89 46.89 48.21 49.67
titanic 78.89 78.89 78.89 78.89 78.89 78.89 78.89 78.89
trains 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00
vote 95.82 95.82 95.82 95.82 94.48 94.85 95.59 95.77
vowel 81.66 81.66 81.66 81.66 78.75 79.52 82.75 81.82
wave 74.72 74.72 74.72 74.72 72.78 73.02 74.66 74.90
wine 92.81 92.81 92.81 92.92 90.56 88.88 91.91 92.36
yeast 53.94 53.94 53.94 53.94 53.33 52.95 53.96 54.04
zoo 93.27 93.27 93.27 93.27 90.30 93.27 93.27 93.27
Average 78.62 78.62 78.62 78.61 76.56 77.72 78.80 79.23
p-values 1 1 0.605 < 0.001 < 0.001 < 0.001
>,=,< 0,52,0 0,52,0 2,49,1 34-3-15 43,3,6 44,2,6

156

Table 6.B.3: A comparison of curriculum learning, filtering, and boosting for MLPs for each
data set.

Data set Orig IH.75 AB MB CL AB.75 MB.75 CL.75

abalone 27.75 28.99 27.82 27.82 27.65 28.30 28.39 28.54
adult 84.86 85.66 83.01 83.38 85.65 85.36 82.71 85.71
anneal 99.55 99.55 99.67 99.55 99.35 99.67 99.44 99.29
arrhyth 70.58 72.12 66.81 67.92 69.87 70.58 70.58 70.62
audio 83.19 79.65 84.51 84.51 83.54 80.53 80.53 80.27
autos 77.07 82.44 78.05 77.07 78.63 80.49 80.49 80.49
balance 87.20 86.72 95.20 91.84 87.94 90.88 89.76 87.10
breast 69.58 75.17 70.63 70.63 74.62 75.52 75.87 76.01
breast-w 95.99 96.28 95.85 96.14 96.82 96.57 96.57 96.97
bupa 72.17 74.20 70.43 71.01 71.07 70.14 72.17 71.94
carEval 99.94 99.71 99.88 99.88 99.80 99.71 99.71 99.77
chess 69.73 71.03 55.98 57.88 68.76 64.90 62.28 68.74
KRvKP 99.50 99.53 99.44 99.44 99.39 99.37 99.37 99.52
colic 82.34 85.60 82.34 82.34 85.98 85.33 85.60 86.41
contact 75.00 87.50 75.00 75.00 75.83 87.50 87.50 87.50
credit-a 85.94 88.12 84.35 85.51 87.25 86.81 86.96 87.77
credit-g 74.40 78.20 74.50 75.00 76.68 77.10 76.90 78.90
derma 97.27 97.54 96.17 96.17 97.81 97.27 97.27 97.92
ecoli 85.42 87.50 84.23 83.93 85.42 87.20 87.20 87.56
glass 72.90 73.36 71.50 71.96 72.06 70.56 70.56 72.43
heart-c 84.82 86.14 80.20 83.83 84.55 86.14 86.14 86.14
heart-h 82.65 84.69 82.99 81.63 84.01 84.35 84.35 84.56
heart-s 82.96 85.56 80.37 80.37 84.37 85.56 85.56 85.19
hepa 86.45 88.39 81.94 82.58 86.97 87.74 87.74 87.10
hypo 97.85 97.83 98.04 97.91 97.99 98.09 97.75 97.88
iono 91.74 90.88 92.31 92.02 90.88 88.89 88.89 91.00
iris 96.67 97.33 97.33 97.33 96.53 98.00 98.00 96.67
labor 89.47 89.47 89.47 89.47 92.98 89.47 89.47 92.63
letter 89.70 84.68 92.32 88.52 88.79 93.92 91.61 88.16
lungCan 46.88 62.50 46.88 46.88 60.00 65.63 65.63 61.88
lympho 84.46 85.81 84.46 84.46 83.78 86.49 86.49 87.16
MagicTel 86.95 86.83 86.77 86.70 86.95 86.80 86.94 86.82
nursery 99.78 98.71 99.96 99.96 99.29 99.70 99.41 99.64
ozone 97.24 97.12 96.41 96.88 97.15 97.24 97.32 97.12
pimaDia 77.60 79.04 77.34 77.21 77.24 78.26 77.47 77.86
post-op 62.22 71.11 61.11 62.22 71.11 73.33 73.33 72.44
prim-tu 44.84 51.62 44.54 45.13 46.37 51.92 51.92 51.39
segment 97.49 97.62 97.75 97.75 97.52 97.45 97.45 97.64
sick 97.69 97.53 97.67 97.72 97.47 97.24 97.27 97.62

Continued on next page

157

Table 6.B.3: (Cont.) A comparison of curriculum learning, filtering, and boosting for MLPs
for each data set.

Data set Orig IH.75 AB MB CL AB.75 MB.75 CL.75

sonar 82.69 85.10 83.17 83.17 84.62 84.13 84.62 86.25
soyb 94.29 94.88 94.14 94.14 93.65 94.73 94.73 94.70
spam 93.46 93.68 93.63 93.72 93.59 93.70 93.70 93.64
splice 95.77 95.92 95.42 95.42 96.16 95.96 95.96 96.26
ta 62.91 68.87 66.89 65.56 62.52 68.87 66.89 67.95
titanic 79.06 78.96 78.92 79.24 79.06 79.06 79.06 79.06
trains 80.00 80.00 80.00 80.00 80.00 90.00 90.00 90.00
vote 96.09 96.78 94.25 94.25 96.74 95.86 95.86 96.60
vowel 95.76 94.95 98.38 98.08 95.98 98.48 97.68 94.99
wave 86.22 86.04 85.26 85.44 87.19 86.24 86.20 87.12
wine 97.19 97.75 98.31 98.31 98.43 98.31 97.19 98.31
yeast 59.64 61.66 58.15 57.75 60.19 62.06 62.53 61.13
zoo 96.04 95.05 96.04 96.04 95.64 96.04 96.04 95.45
Average 83.21 84.83 82.80 82.82 84.07 85.07 84.87 85.07

158

Table 6.B.4: A comparison of curriculum learning, filtering, and boosting for DTs for each
data set.

Data set Orig IH.75 AB MB CL AB.75 MB.75 CL.75

abalone 25.44 27.85 26.79 26.79 23.76 30.81 29.73 28.99
adult 86.33 86.62 85.37 86.45 85.12 86.89 86.91 86.57
anneal 93.83 94.72 95.55 96.33 95.43 95.77 95.99 96.33
arrhyth 70.71 70.62 72.79 73.89 70.66 75.66 74.56 71.15
audio 77.35 80.00 84.07 84.07 82.57 81.86 81.86 82.04
autos 84.39 84.88 85.85 86.83 84.29 87.32 87.32 85.46
balance 79.52 79.84 85.92 84.16 78.24 87.84 85.76 81.06
breast 74.69 75.87 72.38 75.52 73.08 77.27 75.87 76.57
breast-w 94.96 94.99 96.14 96.71 94.54 97.42 97.00 95.22
bupa 67.25 69.10 72.75 72.75 66.72 73.91 75.36 71.88
carEval 93.99 94.79 96.76 95.08 93.09 96.82 95.54 93.14
chess 59.85 62.71 63.44 60.28 58.30 68.09 64.78 63.22
KRvKP 99.65 99.62 99.69 99.69 99.65 99.56 99.59 99.55
colic 85.87 85.87 82.34 85.87 85.16 86.41 86.68 85.92
contact 87.50 87.50 83.33 87.50 75.00 87.50 87.50 87.50
credit-a 86.35 86.26 86.67 86.67 86.52 88.12 87.68 86.87
credit-g 72.74 75.84 74.20 75.50 72.52 77.10 76.00 75.02
derma 93.06 95.30 97.27 96.99 93.33 97.54 98.36 93.11
ecoli 83.33 84.88 85.71 85.42 82.26 87.80 88.69 83.87
glass 69.53 73.36 77.57 76.17 69.53 78.50 75.70 71.78
heart-c 77.69 79.74 82.51 83.50 76.96 84.82 84.49 81.45
heart-h 81.43 82.59 80.95 83.67 81.29 84.01 83.33 82.65
heart-s 83.19 85.26 82.59 83.33 82.89 85.93 84.81 83.85
hepa 80.39 84.52 83.87 83.23 83.61 88.39 86.45 85.55
hypo 99.53 99.62 99.71 99.71 99.57 99.68 99.66 99.66
iono 90.03 90.03 94.02 94.30 89.80 93.45 92.02 91.11
iris 94.93 96.00 95.33 95.33 94.67 96.00 96.00 96.00
labor 82.11 82.11 89.47 91.23 82.11 89.47 92.98 79.65
letter 88.18 88.45 95.50 94.58 88.44 95.42 94.16 88.83
lungCan 65.00 68.75 56.25 59.38 65.00 68.75 68.75 68.13
lympho 76.08 80.41 84.46 81.76 75.54 86.49 82.43 80.00
MagicTel 85.29 86.11 86.39 87.26 85.02 87.73 87.62 86.00
nursery 97.27 97.32 99.64 99.08 98.84 99.67 99.14 98.85
ozone 97.07 97.12 97.32 97.20 96.77 97.20 97.24 97.12
pimaDia 75.03 76.43 75.65 76.04 75.03 78.26 78.26 77.89
post-op 71.11 71.11 71.11 71.11 71.11 71.11 72.22 72.00
prim-tu 43.13 46.67 41.89 44.84 42.48 49.85 49.85 46.37
segment 97.05 97.21 98.31 98.01 96.99 98.40 97.84 97.17
sick 98.83 98.82 98.99 99.07 98.82 98.99 98.65 98.45

Continued on next page

159

Table 6.B.4: (Cont.) A comparison of curriculum learning, filtering, and boosting for DTs
for each data set.

Data set Orig IH.75 AB MB CL AB.75 MB.75 CL.75

sonar 75.77 75.19 83.17 83.17 76.35 85.58 85.10 77.31
soyb 91.89 92.53 94.29 93.70 91.22 95.17 94.73 92.09
spam 92.93 93.57 95.35 95.37 92.56 95.61 95.63 93.34
splice 94.24 94.48 95.02 94.61 92.15 95.08 95.11 93.22
ta 63.84 67.68 63.58 60.93 63.05 64.24 54.97 67.81
titanic 79.06 79.05 79.06 78.92 78.89 79.06 78.92 79.06
trains 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
vote 96.55 97.10 96.09 95.86 96.00 96.78 96.55 96.55
vowel 84.67 84.97 93.43 92.12 84.46 94.34 92.42 84.65
wave 76.07 78.51 81.84 82.62 75.70 83.22 83.44 77.35
wine 93.60 93.60 97.19 97.19 93.03 97.19 97.19 92.36
yeast 58.06 59.78 59.03 60.51 57.88 64.02 63.75 62.16
zoo 94.06 95.05 96.04 95.05 93.27 97.03 97.03 97.43
Average 81.93 83.08 83.90 84.14 81.52 85.64 85.03 83.26

160

6.C Methodology for Hyper-Parameter Optimization

The method for selecting hyper-parameters for MLPs, DTs, and curriculum learning are

included here for reproducibility. We followed the process outlined by [1] for hyper param-

eter optimization using a random search of the parameter space. The premise of using a

random search for parameter selection is that most machine learning algorithms have very

few parameters that considerably affect the final model while most of the other parameters

have little to no effect on the final model. However, different parameters considerably affect

the final model for different data sets. Random search provides a greater variety of the

parameters that considerably affect the model, thus, allowing for better parameter selection

of these parameters. The random values were sampled from distributions that give appropri-

ate and reasonable values for each parameter. For example, having a multilayer perceptron

with 0 or 10,000 hidden nodes is not as reasonable as having 10 hidden nodes. We used 10

random parameter settings for each learning algorithm, exploring more of the effects of each

parameter than a typical grid search, which would only evaluate 3-4 parameter settings to

maintain reasonable computational costs. Table 6.C.1 shows which parameter values were

optimized and the distribution that they were sampled from. The distributions that were

sampled from are:

Normal Distribution (∼ N (µ,σ2)). A value drawn from a normal distribution with mean

µ and variance σ2. The values were chosen such that reasonable values were drawn but

also allowing for a search of the hyper-parameter space. For cases were the values were

outside the permissible range (i.e. between 0 and 1), the value was wrapped around

(if -0.03 was chosen it would become 0.03).

Geometrically (∼ G(min,max)). Sampling a hyper-parameter value geometrically from

min to max means drawing a value uniformly in the log domain between log(min) and

log(max), exponentiating to get a number between A and B, and then rounding to the

nearest integer. This distribution favors values that are closer to the min value.

161

Discrete Uniform Distribution (∼ U). A value drawn uniformly gives equal probability

to each possible value.

The exact values for the distribution parameters (i.e. µ and σ2 for the normal distribution)

are not critical as long as the values are reasonable and the distribution provides sufficient

variability to search the hyper-parameter space.

Table 6.C.1: The parameters that were optimized using a random search and the distributions
from which the parameter values were drawn.

Multilayer Perceptron trained with Back Propagation (MLP)
Parameter Distribution
Learning Rate ∼ N (0.3,0.167))
Momentum ∼ N (0.2,0.167)
Number of hidden nodes ∼ G(2,124)
Whether to decay the learning rate ∼ U

Decision Tree (DT)
Parameter Distribution
Whether to prune the tree ∼ U
If the tree is pruned, the confidence value ∼ N (0.3, 0.167)
Minimum number of items in each leaf node ∼ G(1,32)
Whether to use Laplacian smoothing ∼ U

Curriculum Learning
Parameter Distribution
Initial Complexity Level ∼ N (0.5, 0.125)
Number of epochs to train (for MLPs) ∼ N (100, 50)

References

[1] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

[2] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

162

Chapter 7

Becoming More Robust to Label Noise with Classifier Diversity

In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN

2015),to appear, 2015.

Abstract

It is widely known in the machine learning community that class noise can be (and often is)

detrimental to inducing a model of the data. Many current approaches use a single, often

biased, measurement to determine if an instance is noisy. A biased measure may work well

on certain data sets, but it can also be less effective on a broader set of data sets [22]. In

this paper, we conduct a large empirical evaluation of noise handling techniques; examining

12 noise handling techniques on a set of 54 data sets and 5 learning algorithms. The chosen

set of noise handling techniques includes biased and ensembled approaches. Included in the

investigation is the proposed noise identification using classifier diversity (NICD). NICD

lessens the bias of the noise measure by selecting a diverse set of classifiers to determine

which instances are noisy. We examine NICD as a technique for filtering, instance weighting,

and selecting the base classifiers of a voting ensemble. We find that lessening the bias of the

noise handling techniques significantly improves performance over a broad set of data sets.

7.1 Introduction

The goal of supervised machine learning is to induce an accurate generalizing function from

a set of labeled training instances. However, most real-world data sets are noisy. Generally,

two types of noise are considered: attribute noise and label noise. Previous work has found

163

that label noise is generally more harmful than attribute noise [17, 29]. The consequences

of label noise include 1) a deterioration of classification performance, 2) increased learning

requirements and model complexity, and 3) a distortion of observed frequencies [8]. Filtering

noisy instances generally increases classification accuracy [10, 23]. Knowing which instances

are noisy and/or detrimental is non-trivial as, in most cases, all that is known about a task

is contained in the set of training instances.

Prior work has examined handling label noise using a variety of approaches that are

generally specific to, or inspired by, an individual learning algorithm or information theoretic

measure. One commonly used approach removes the instances that are misclassified by a

learning algorithm [26]. Although such an approach is biased towards the learning algorithm

that is used, it has generally been shown to work well on the examined data sets and learning

algorithms especially with the addition of artificial noise. However, it has also been shown

that in some cases, using a noise handling technique reduces the classification accuracy –

especially in the absence of artificial noise [22]. As ensembles often perform better than any

one of its constituent base classifiers in classification [5], other prior work has used ensemble

techniques to improve handling class noise [2]. For an ensemble to be more accurate than

any individual classifier of the ensemble, the base classifiers need to be accurate (better than

random) and diverse [12]. As in classification, using an ensemble technique for identifying

noise implicitly lessens the dependence on a single hypothesis.

None of the previous work in noise handling has explicitly focused on selecting diverse

base classifiers when using an ensemble approach. We propose noise identification using clas-

sifier diversity (NICD). NICD builds on previous work that use ensembles to identify noisy

instances by using classifier diversity. NICD first explicitly selects a set of diverse learning

algorithms where diversity is determined by the predictions of the classifiers. The diversity

lessens the dependence of a noise measure on a specific hypothesis. Without diversity, the

same hypothesis could be over-represented if two hypotheses always classify the same way.

164

We examine using the set of diverse learning algorithms to 1) filter the instances, 2) weight

the instances, and 3) as the base classifiers for a voting ensemble.

One of our primary contributions is a comprehensive empirical evaluation of noise han-

dling techniques on a set of 54 data sets and 5 learning algorithms: C4.5, 5-NN, MLP trained

with backpropagation, random forest, and RIPPER. We examine NICD and 9 other noise

handling techniques, and a voting ensemble composed of diverse base classifiers We find

that NICD has the most significant impact on the performance of a classifier across a broad

set of data sets, learning algorithms and noise levels – demonstrating a robustness to label

noise. The term broad refers to the characteristic that the noise handling method was not

developed specifically for a given set of data sets and learning algorithms. Overall, using

NICD in a voting ensemble to select a diverse set of base classifiers achieves significantly

higher classification accuracy then using a standard noise handling technique. This finding

is in contrast to previous work [2] that found that a voting ensemble does not perform as

well as filtering in the presence of noisy data. Related works will be discussed through out

the paper.

7.2 Noise Identification using Classifier Diversity

Noise identification using classifier diversity (NICD) is the process of selecting and using

a diverse set of learning algorithms and then using this set of learning algorithms in the

learning process to handle class noise. In this paper, NICD uses the diverse set of learning

algorithms for 1) filtering, 2) weighting, and 3) as the set of base classifiers for a voting

ensemble.

7.2.1 Identifying Noisy Instances

The first step in any noise handling technique is to identify noisy instances. A variety of

approaches have been used to remove noisy instances, often using heuristics or biases from

current learning algorithms or information theoretic measures.

165

In this paper, the probability p(y|x) that an instance 〈x,y〉 will be correctly classified

is used to determine how noisy each training instance is. In practice, p(y|x) is generally

estimated using a specific hypothesis h induced from a learning algorithm (i.e. p(y|x) ≈

p(y|x,h)) – which is a biased approximation. The dependence of p(y|x) on a specific h can

be removed by summing over all possible hypotheses h in H and multiplying each p(y|x,h)

by the prior p(h):

p(y|x) =
∑

h∈H

p(y|x,h)p(h) (7.1)

where p(h) denotes the probability of the hypothesis h before observing the training data.

This formulation is infeasible, though, because 1) it is not practical (or possible) to sum over

the set of all hypotheses, 2) calculating p(h) is non-trivial, and 3) not all learning algorithms

produce a probability distribution. The use of probabilistic generative models, such as

the kernel Fisher discriminant algorithm, can mitigate these issues [15]. However, because

discriminative models generally have a lower asymptotic error than generative models for

classification tasks [18] and because our examination focuses on the behavior of discriminative

models on classification tasks, we use discriminative models to model p(y|x).

To approximate p(y|x) independent of a specific h, we estimate p(y|x) using a diverse

set of learning algorithms. The reasoning for using a diverse set of learning algorithms is

to lessen the bias that each algorithm has for handling noise. The diversity of the learning

algorithms refers to the learning algorithms not having the same classification for all of the

instances and is determined using unsupervised meta-learning (UML) [16]. UML clusters

learning algorithms based on their performance. One of the underlying ideas of UML is that

by clustering the learning algorithms by their performance similarity, only one of the member

learning algorithms from a cluster needs to be examined to gain an intuition of how the other

learning algorithms in the cluster will perform. Thus, we use UML to identify clusters of

similar learning algorithms and then select a learning algorithm from each cluster. UML

first uses classifier output difference (COD) [19] to measure the diversity between learning

algorithms. COD measures the distance between two learning algorithms as the probability

166

that the learning algorithms make different predictions:

COD(l1,l2) =
|{x : l1(x,T) 6= l2(x,T)}|

N

where lj is a learning algorithm, lj(x,T) returns the prediction for x from lj trained on T ,

and N is the number of test instances. UML then clusters the learning algorithms based

on their COD scores with hierarchical agglomerative clustering. UML uses 20 learning

algorithms from Weka [11] selected to be representative of several model classes: Bayesian-

based, function-based, instance-based, tree-based, and rule-based. The learning algorithms

are implemented with their default parameters. The COD values for the learning algorithms

are then calculated using 129 data sets: 72 UCI data sets [7], 45 from the Gene Expression

Machine Learning Repository [6], and 12 data sets from ASUs Multi-class Protein Fold

Recognition data [25]. A cut-point of 0.18 was chosen to create 9 clusters and a representative

algorithm from each cluster was chosen to create a diverse set of learning algorithms. The

set of learning algorithms L that are used to approximate p(y|x) are listed in Table 7.1.

Using 10-fold cross-validation on the training set, p(y|x) is first approximated for each

training instance (the instance 〈x,y〉 is not used to induce the model h). Using the set of

hypotheses induced by the diverse set of learning algorithms in L, p(y|x) is approximated

as:

p(y|x) ≈ p(y|x,L) =
1

|L|

|L|
∑

j=1

p(y|x,lj(T)) (7.2)

where lj(T) is the hypothesis from the jth learning algorithm trained on training set T .

Following Equation 7.1, p(h) is estimated as 1
|L|

for the hypotheses generated from training

the learning algorithms in L on T and as zero for all of the other hypotheses in H as it is

nontrivial to compute p(h) for many learning algorithms. Since not all learning algorithms

produce a probability distribution and to be consistent, we use the Kronecker delta function

δ(h(x),y) instead of p(y|x,lj(T)) (from Equation 7.2) to produce a real-valued score for

167

Table 7.1: Set of diverse learning algorithms sampled from the clusters generated by UML.

Learning Algorithms
* Multilayer Perceptron trained with Back Propagation (MLP)
* Decision Tree (C4.5) [20]
* Locally Weighted Learning (LWL)
* 5-Nearest Neighbors (5-NN)
* Nearest Neighbor with generalization (NNge)
* Näıve Bayes (NB)
* RIpple DOwn Rule learner (RIDOR)
* Random Forest (RandForest)
* Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

p(y|x,L). The Kronecker delta function is:

δ(h(x),y) =

h(x) = y : 1

h(x) 6= y : 0

where h is an induced hypothesis and h(x) returns the predicted class given the input features

x. Thus, here p(y|x) is not a true probability but more of a confidence score.

7.2.2 Handling Noisy Instances

After noisy instances have been identified, the next step is to handle the noisy instances. In

this paper, NICD uses the diverse set of learning algorithms for 1) filtering, 2) weighting,

and 3) as the set of base classifiers for a voting ensemble.

For filtering the training instances using p(y|x,L) (L-filter), training instances that are

misclassified by 50 percent of the learning algorithms in the L are filtered from the training

set. The remaining training instances are then used by the learning algorithm to induce

a model of the data. Note that other percentages could also be used. We found that 50%

generally produces good results compared to values of 70% and 90%. In practice a validation

set is often used to determine the percentage that would be used.

168

Table 7.2: How instance weighting is integrated into the examined learning algorithms.

Learn Alg Orig NICD
MLP (t− o)f ′(net) p(y|x)(t− o)f ′(net)
Random Forest Uniform dist Weighted by p(y|x,L)
C4.5, 5-NN, Count number Sum p(y|x,L)
RIPPER of instances, i.e.

∑
ci
1

∑
T 1

∑
ci
p(yi|xi)

∑
T p(yi|xi)

For weighting the training instances with p(y|x,L) (L-weighting), a training instance is

weighted in the investigated learning algorithms as follows:

MLPs. For MLPs trained with backpropagation, the error ((t − o)f ′(net)) is scaled by

p(y|x,L) where (t − o) is the difference between the target value and the output of the

network, f ′(net) is the derivative of the activation function f and net is the sum of the

product of each input ij and its corresponding weight wj: net =
∑

jwjij.

Random Forests. For Random Forests, the distribution for selecting instances in the

random trees is weighted by p(y|x,L) rather than being uniformly weighted.

Other algorithms. For the other learning algorithms that keep track of counts, each

instance is weighted by p(y|x,L).

Table 7.2 summarizes how an instance is weighted. Although we estimate p(y|x) as

p(y|x,L), other methods could be used.

For an ensemble using p(y|x,L) (the L-ensemble), the ensemble is composed of the learn-

ing algorithms in the set L. Each learning algorithm has an equally-weighted vote for the

classification of an instance.

7.3 Other Noise Handling Approaches

There are many techniques for handling noise. In this section, we describe the noise handling

methods that are included in our examination. The compared noise handling techniques are

listed below with a brief explanation. For additional details, consult the cited work. All

169

of the previous techniques were used with their default parameters as implemented in the

KEEL toolkit [1] except for the biased approaches, RENN and PWEM.

7.3.1 Filtering Methods

Listed below are the investigated instance filtering methods that include both biased (using a

single noise identification measure) and less biased (ensembled noise identification measures)

methods. In general, the methods differ in how noisy instances are identified.

Biased Filter. For a biased filtering approach, instances that are misclassified by the same

learning algorithm that are being used to induce a model of the data is filtered from the

training set. An instance from the training set is determined to be misclassified using 10-fold

cross-validation on the training set.

Repeated-edited nearest neighbor (RENN) [26]. RENN repeatedly removes the in-

stances that are misclassified by a nearest neighbor classifier and has been shown to produce

good results. Here we set the number of nearest neighbors to 5.

Saturation filter [10]. The saturation filter is based on the premise that removing noisy

instances reduces the complexity of the least correct hypothesis (CLCH) while removing

correctly labeled instances does not. The instance whose removal from the training set

decreases the CLCH the most is filtered from the training set. This process continues until

the CLCH can no longer be reduced or there are no training instances.

Classification filter [9]. The classification filter removes instances that are misclassified by

a learning algorithm using 10-fold cross-validation on the training set. The default learning

algorithm is a 1-nearest neighbor.

Ensemble filter [2]. The ensemble filter removes instances that are misclassified by n%

of the base classifiers. For the ensemble filter, the authors chose three well-known learning

algorithms (C4.5, IB1, and thermal linear machine [3]). They then examined removing

instances that were misclassified by the majority or all of the learning algorithms. In this

paper, instances are removed that are misclassified by all of the learning algorithms following

170

Brodley and Friedl that the majority filter tends to perform better than the consensus filter

on average. The L-filter is distinguished from the ensemble filter in that the L-filter uses

more learning algorithms and that the learning algorithms were specifically chosen to be

diverse.

Automatic noise removal filter (ANR) [28]. ANR estimates the probability of each

possible class for the training instances. The probabilities are used during training such that

an instance that has a low probability for its assigned class is “corrected” to the class that

has the highest probability. Instances that were corrected during training are then filtered

from the data set.

Cross-validated committees filter [27]. The cross validated committees filter partitions

a data set into n subsets of approximately equal size and a learning algorithm is induced

n times, each time leaving out one of the subsets from the training data. Instances that

are misclassified by all of the n classifiers are then filtered from the training set. The base

classifier used is a decision tree. The diversity of the learning algorithms is determined by

the data that is used to induce the base classifier rather than using different algorithms.

Iterative-partitioning filter [14]. The iterative partitioning filter first partitions the

training data into n subsets and a model is induced on each subset. Instances that are

misclassified by all of the induced models are filtered. This process is repeated until the

number of noisy instances that are removed is less than 1% of the size of the original training

set. The base classifier used is a decision tree trained using C4.5. We use the consensus filter

(misclassified by all of the models) rather than the majority filter following their findings

that the majority filter did not significantly improve the performance of the induced models.

Like the cross-validated committees filter, this filter uses an ensemble based on training a

learning algorithm on different subsets of the training data.

171

7.3.2 Weighting Methods

Listed below are the investigated instance weighting methods. Instance weighting is much

less explored compared to filtering, thus, there are fewer methods. The following methods

differ from L-weighting in how the weights are calculated.

Biased Weighting. For a biased weighting approach, p(y|x) is approximated as p(y|x,h)

where the hypothesis h is induced by the same learning algorithm that is used to induce a

model of the data. To get a real-value for biased instance weighting from a single hypothesis,

we compute a classifier score for each instance from the learning algorithm that induces h.

The quantity p(y|x,h) is estimated using 10-fold cross validation on the training set. Below,

we present how we calculate the classifier scores for the investigated learning algorithms.

Multilayer Perceptron (MLP): For multiple classes, each class from a data set is

represented with an output node. After training with backpropagation, the classifier score

is the largest value of the output nodes normalized between zero and one:

p̂(y|x) =
oi(x)

∑|Y |
i oi(x)

where y is a class from the set of possible classes Y and oi is the value from the output node

corresponding to class yi.

Decision Tree: To calculate a classifier score, an instance first follows the induced set

of rules until it reaches a leaf node. The classifier score is the number of training instances

that have the same class as the examined instance divided by all of the training instances

that also reach the same leaf node.

5-NN: The classifier score is the percentage of the nearest-neighbors that agree with the

class label of an instance.

Random Forest: Random forests return the class counts from the leaf nodes of each

tree in the forest. The counts for each class are summed together and then normalized

between 0 and 1.

172

RIPPER: RIPPER returns the percentage of training instances that are covered by a

rule and share the same class as the examined instance.

Obviously, a classifier score does not produce a true probability. However, the classifier

scores approximate the confidence of an induced model for the class label of an instance.

Pair-wise expectation maximization (PWEM) [21]. PWEM weights each instance

using the EM algorithm. First each data set is binarized. For each pair of classes, the

instances that belong to the two classes are clustered using EM where the number of clusters

is determined using the Bayesian Information Criterion [13]. Given the Y − 1 clusterings (Y

is the number of classes), p(y|x) is calculated as:

p(y|x) =
∑

θ

p(θ)p(y|x,θ) =
∑

θ

p(θ)
k

∑

c=1

p(y|ck,θ)p(ck|x,θ) (7.3)

where θ is a clustering model induced using the EM algorithm, c is a cluster in θ and k is

the number of clusters.

7.4 Methodology

In this section, we present our experimental methodology. We conduct a large empirical

investigation allowing for general observations to be made. We examine noise handling

using C4.5, 5-NN, MLP trained with backpropagation, random forest, and RIPPER on a

set of 54 data sets from the UCI data repository [7]. Table 7.1 shows the data sets used in

this study including the number of instances, number of attributes, and attribute type. The

LWL, NNge, and Ridor learning algorithms are not used for analysis because they do not

scale well, not finishing due to memory overflow or large amounts of running time on the

larger data sets.1

Each method for handling noise is evaluated by averaging the results from ten runs of each

experiment. Following the methodology used to evaluate PWEM [21], for each experiment,

1For the data sets on which the learning algorithms did finish, the effects of filtering on LWL, NNge, and
Ridor are consistent with the other algorithms.

173

Table 7.1: Datasets used in our study as well as the number of instances, the number of
attributes, and the attribute type.

Name #Inst #Att Att Type Name #Inst #Att Att Type
abalone 4177 8 Mixed hypothyroid 3772 29 Cat
adult-census 32561 14 Cat ionosphere 351 34 Mixed
anneal.ORIG 898 38 Cat iris 150 4 Cat
arrhythmia 452 279 Cat labor 57 16 Mixed
audiology 226 69 Mixed letter 20000 16 Mixed
autos 205 25 Real lungCancer 32 56 Real
badges2 294 10 Mixed lymphography 148 18 Mixed
balance-scale 625 4 Mixed MagicTele 19020 10 Real
balloons 20 4 Mixed nursery 12963 8 Cat
breast-cancer 286 9 Real ozone 2536 72 Cat
breast-w 699 9 Real pimaDiabetes 768 8 Cat
bupa 345 6 Cat post-opPatient 90 8 Mixed
carEval 1728 6 Mixed primary-tumor 339 17 Real
chess 28056 6 Mixed segment 2310 19 Cat
chess-KRvKP 3196 36 Cat sick 3772 29 Real
colic 368 25 Real sonar 208 60 Cat
colon 63 2000 Real soybean 683 35 Cat
contact-lenses 24 4 Cat spambase 4601 57 Cat
credit-a 690 15 Real splice 3190 60 Mixed
credit-g 1000 24 Cat TA 151 5 Mixed
dermatology 366 34 Real titanic 2201 3 Real
ecoli 336 7 Cat vote 435 16 Real
glass 214 9 Real vowel 990 13 Mixed
heart-c 303 13 Real waveform-5000 5000 40 Mixed
heart-h 294 13 Mixed wine 178 13 Cat
heart-statlog 270 13 Mixed yeast 1484 8 Cat
hepatitis 155 19 Mixed zoo 101 17 Mixed

the data is shuffled and then split into 2/3 for training and 1/3 for testing. The training and

testing sets are stratified. Random noise is then introduced by randomly changing the class

label of n% of the training instances where a new label is chosen uniformly from the possible

class labels (noisy completely at random [8]). The random noise levels are examined at 0%,

10%, 20%, 30%, and 40%. As suggested by Demšar [4], statistical significance is determined

using the Friedman test to reject the null hypothesis that algorithms perform the same at

a 0.05 confidence level. If the null hypothesis is rejected, statistically significant differences

between the methods are identified using the Nemenyi post-hoc test.

174

7.5 Results

In this section, we present the results of our experiments. We compare L-filtering with the

biased-filter and seven other filtering approaches presented in Section 7.3. L-weighting is

compared with biased-weighting and PWEM. In some cases, an algorithm did not finish

running on all of the data sets. For example, since the saturation filter iteratively removes

one instance, it requires large amounts of memory/time to run on large data sets and did not

finish in some cases. Rather than remove the large data sets from the entire examination, we

include the comparison on the data sets on which the algorithms did finish. For the tables

in this section, the algorithm in the first row is the baseline algorithm that the algorithms

in the subsequent rows are compared against. The values in the “better,equal,worse” (or

“b,e,w”) rows represent the number of times that the accuracy from the baseline algorithm

is greater than, equal to, or less than the compared algorithm.

7.5.1 Application of Noise Handling without Artificial Noise

Many of the previous works in noise handling were inspired by and, often, biased towards

a given learning algorithm or measure. Most previous work added artificial noise to the

data sets to evaluate their techniques and showed significant improvements on the data sets

with artificial noise. Due to the biased nature of the noise handling techniques, it is not

surprising that the broad application of a noise handling approach to data sets without

artificial noise has been shown be detrimental in some cases [22, 24]. We briefly re-examine

the application of noise handling to a broad set of data sets and learning algorithms. Table

7.1 compares no noise handling with the considered noise handling techniques averaged over

all 54 data sets with no artificially added noise. The value in parentheses is the average rank

for the technique. The percent reduction in error (%RE) is the percentage of error that is

reduced when a noise handling technique is used compared to the error obtained with no

175

noise handling:

%RE =
noise− orig

100− orig
∗ 100

where noise is the accuracy achieved when using a noise handling technique and orig is the

accuracy obtained when not using a noise handling technique. The values in parentheses

represent the average rank for the method. There is only one case for which noise handling

significantly increases the classification accuracy – L-Weighting in a MLP. On the other hand,

RENN, ANR, and the classification filter significantly decrease the classification accuracy

for many/all of the investigated learning algorithms. This is an important example that

highlights a point that is often overlooked in the noise handling literature – noise handling

can be detrimental if used in all cases. In most cases, however, on average, there is no

significant difference when using a noise handling technique with no added noise. Previous

work has generally considered only a few data sets where noise handling is beneficial.

Most previous work in noise handling has shown significant improvement when there is

a high amount of noise in the data. As there is no way to determine if an instance is noisy

or mislabeled without the use of a domain expert, most previous work has added artificial

noise to show the impact of noise and how handling noise improves the accuracy. Generally,

once there are large amounts of noise, using a noise handling approach significantly increases

the classification accuracy. In addition to not adding artificial noise, we also examine the

effectiveness of the noise handling techniques with the addition of artificial noise. Figure

7.1 graphs the percent reduction in error for each learning algorithm and noise handling

method for the considered artificial noise levels of 0%, 10%, 20%, 30%, and 40%. The x-axis

represents no change in error from not using a noise handling technique, negative values

represent an increase in error when using a noise handling technique and positive values

represent a decrease in error compared to not using noise handling. In general, the reduction

in the percentage of error increases as the amount of noise increases. With the exception of

ANR and the classification filter all of the noise handling techniques significantly increase the

classification accuracy as the noise level increases. In the cases of ANR and the classification

176

Table 7.1: The results of the 5 considered learning algorithms using the investigated noise
handling approaches with no artificial noise added to the data sets averaged over the 54 data
sets. Bold accuracy values represent cases where noise handling significantly increases the
accuracy; underlined, gray cells represent cases where noise handling significantly decreases
the accuracy.

C4.5 5-NN MLP RF RIP
Orig 79.31(6.8) 79.37(5.7) 81.67(6.7) 81.18(6.4) 78.35(6.3)
NICD: L-Weighted 78.36(6.6) 78.72(6.0) 82.26(4.3) 80.82(6.5) 77.86(6.9)
%RE -0.05 -0.03 0.03 -0.02 -0.02
better,equal,worse 26,1,27 27,4,23 18,3,33 28,2,24 26,2,26
Biased-Weighted 79.29(6.5) 78.34(7.8) 81.49(6.5) 80.94(6.8) 77.98(7.0)
%RE 0.00 -0.05 -0.01 -0.01 -0.02
better,equal,worse 23,7,24 32,7,15 23,5,26 26,4,24 29,4,21
PWEM 76.41(8.1) 78.02(7.7) 82.79(6.6) 81.51(7.7) 74.17(8.9)

%RE -0.14 -0.07 0.06 0.02 -0.19
better,equal,worse 30,3,21 33,3,18 23,3,28 34,1,19 39,1,14
NICD: L-Filter 79.55(5.5) 79.40(4.9) 81.80(6.2) 81.66(5.3) 78.98(5.4)
%RE 0.01 0.00 0.01 0.03 0.03
better,equal,worse 25,11,18 23,9,22 23,4,27 28,2,24 27,5,22
Biased-Filter 79.34(6.6) 76.99(9.2) 81.39(6.9) 81.16(6.3) 77.20(7.9)
%RE 0.00 -0.12 -0.02 0.00 -0.05
better,equal,worse 25,7,22 35,4,15 24,10,20 21,12,21 30,7,17
RENN 76.83(8.5) 76.99(9.2) 78.80(9.4) 78.20(9.4) 76.65(8.2)

%RE -0.12 -0.12 -0.16 -0.16 -0.08
better,equal,worse 32,3,19 35,4,15 38,1,15 35,2,17 34,2,18
ANR 67.25(9.3) 67.64(9.6) 69.17(9.4) 68.20(9.8) 68.18(10.0)

%RE -0.58 -0.57 -0.68 -0.69 -0.47
better,equal,worse 34,3,17 34,7,13 37,2,15 36,3,15 40,1,12
ClassificationFilter 73.65(8.2) 73.09(8.6) 75.65(9.4) 75.11(8.2) 72.48(8.2)

%RE -0.27 -0.30 -0.33 -0.32 -0.27
better,equal,worse 32,3,19 36,4,14 34,2,18 32,1,21 34,3,17
CVCommittees 79.41(6.5) 79.37(5.3) 82.33(5.6) 81.72(5.3) 78.83(5.3)
%RE 0.00 0.00 0.04 0.03 0.02
better,equal,worse 18,10,26 22,14,18 20,4,30 21,2,31 16,8,30
EnsembleFilter 79.53(5.5) 79.06(5.6) 81.62(7.0) 80.91(6.8) 78.87(5.6)
%RE 0.01 -0.01 0.00 -0.01 0.02
better,equal,worse 24,2,28 32,1,21 28,1,25 31,1,22 23,3,28
IterPartitionFilter 79.31(6.7) 79.27(5.3) 82.18(6.0) 81.51(5.7) 78.78(5.6)
%RE 0.00 0.00 0.03 0.02 0.02
better,equal,worse 16,13,25 23,10,21 21,4,29 24,4,26 23,5,26
SaturationFilter 78.70(6.6) 79.08(6.3) 81.07(7.5) 80.28(7.3) 78.46(6.1)
%RE -0.01 -0.01 -0.03 -0.03 0.02
better,equal,worse 21,9,20 24,9,18 26,4,20 29,2,19 22,7,21

177

-30

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4
-30

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4

C4.5 5-NN

-30

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4
-30

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4

MLP Random Forest

-30

-20

-10

0

10

20

30

0 0.1 0.2 0.3 0.4

orig
NICD:L-W
B-Weight
PWEM

NICD:L-F
B-Filter
RENN

ANR
Classif-F
CVC-F
Ens-F

IterPart-F
Sat-F

RIPPER

Figure 7.1: The average percent reduction in error (y-axis) for each learning algorithm when
using the investigated noise handling techniques for various noise levels (x-axis).

filter, a broad application of the techniques is detrimental although they may be beneficial

in specific tasks. The decrease in error is greatest for L-weighting and L-filtering for each

learning algorithm. Recall that the learning algorithms in L were chosen to be diverse so

as to represent more of the hypothesis space H. This suggests that a better estimation

of p(y|x) produces more significant results for instance weighting and filtering. This is

shown empirically as L-weighting and L-filtering have the greatest reduction in error for

each learning algorithm (Figure 7.1 and Table 7.2). However, there is an obvious trade-off

since obtaining a more accurate estimate of p(y|x) is more computationally expensive.

178

Examining the performance of the considered learning algorithms, we note that MLPs and

random forests generally achieve the highest classification accuracy and may be the most

tolerant to the noise inherent in each data set. However, MLPs and random forests also

appear to be the least robust as they obtain the lowest average classification accuracy when

more than 10% of the instances are corrupted with noise. With no artificial noise, MLPs and

random forests achieve about 81% accuracy. With 20% artificial noise, the average accuracy

decreases to about 72%. Bear in mind, however, that the default number of trees in the

random forest is 10. With more trees, a random forest may be more robust to noise. On the

other hand, C4.5, 5-NN, and RIPPER achieve an average accuracy of about 79% with no

artificial noise and an average accuracy of about 74% with 20% artificial noise. With high

degrees of noise, the built-in noise handling mechanisms of learning algorithms become more

beneficial.

7.5.2 Comparison of Noise Handling Techniques

Comparison of Weighting Methods

We compare the L-weighting with the weighting techniques that do not use classifier diversity.

Table 7.3 compares L-weighting using the learning algorithms listed in Table 7.1 with biased

weighting (B-W), and PWEM. The values in bold represent the cases where L-weighting

achieves significantly higher classification accuracy than the compared weighting method.

The row “Rank” refers to the average rank of the method. L-weighting significantly out-

performs the other weighting schemes in most cases: 24 out of the 25 cases for PWEM and

20 out of the 25 for B-W. Biased-weighting and PWEM never achieve a significantly higher

classification accuracy than L-weighting.

Comparison of Filtering Methods

The results are similar for filtering. Table 7.4 compares L-filtering (L-F) with 1) the biased

filter (B-F), 2) the cross-validated committees filter (CVC), 3) the ensemble filter (Ens),

179

Table 7.2: The percent reduction in error for the investigated noise handling techniques for
each learning algorithm. The values correspond with Figure 7.1.

C4.5
L-W B-W PEM L-F B-F REN ANR CF CVC Ens IPF Sat

0 -4.6 -0.1 -14.0 1.1 0.1 -12.0 -58.3 -27.4 0.4 1.0 0.0 -3.0
10 1.4 0.7 -11.2 5.6 1.9 -4.2 -48.4 -21.6 1.2 3.5 1.1 -0.1
20 7.7 3.2 -4.4 8.5 2.7 0.9 -40.6 -19.0 0.5 6.5 1.4 -0.4
30 14.7 3.9 3.5 11.7 4.8 6.9 -24.9 -11.1 0.7 12.4 1.7 2.0
40 20.5 6.6 13.5 15.9 6.2 8.1 -11.4 -7.4 0.9 14.6 2.7 3.4

5-NN
L-W B-W PEM L-F B-F REN ANR CF CVC Ens IPF Sat

0 -3.1 -5.0 -6.5 0.1 -11.5 -11.5 -56.8 -30.4 0.0 -1.5 -0.5 -1.4
10 0.7 -2.4 -1.8 1.9 -8.9 -8.9 -51.9 -27.8 2.0 0.2 1.2 -3.0
20 8.0 2.5 5.4 7.4 -1.7 -1.7 -38.0 -21.6 6.9 6.2 6.2 0.3
30 15.1 4.3 10.9 13.7 5.1 5.1 -23.9 -11.5 9.8 10.8 11.2 0.4
40 19.9 5.3 11.4 18.2 8.6 8.6 -7.9 -4.6 9.2 16.1 13.4 2.1

MLP
L-W B-W PEM L-F B-F REN ANR CF CVC Ens IPF Sat

0 3.2 -1.0 6.1 0.7 -1.6 -15.7 -68.2 -32.9 3.6 -0.3 2.7 -3.3
10 14.1 2.9 9.5 13.9 2.8 1.2 -46.9 -16.5 10.2 11.1 11.3 2.8
20 22.6 5.2 14.5 20.9 9.5 13.7 -27.1 -4.3 15.5 18.2 17.8 9.0
30 24.3 5.3 13.8 22.7 9.7 18.1 -15.6 0.3 12.5 19.8 17.2 6.3
40 21.2 3.3 13.1 22.0 9.0 16.9 -4.8 1.0 10.7 18.5 15.8 6.1

Random Forest
L-W B-W PEM L-F B-F REN ANR CF CVC Ens IPF Sat

0 -1.9 -1.3 1.8 2.5 -0.1 -15.8 -69.0 -32.3 2.8 -1.5 1.7 -4.8
10 8.0 1.2 3.5 8.8 0.8 -3.3 -50.8 -21.7 7.1 7.0 8.1 0.9
20 19.0 4.0 12.7 19.6 4.9 10.0 -29.0 -9.2 14.6 16.2 17.3 6.0
30 26.7 3.6 16.6 25.5 6.8 19.0 -13.1 1.5 16.2 21.1 21.1 7.3
40 27.1 2.8 15.5 25.6 7.5 19.2 -1.3 2.3 12.9 22.5 18.9 5.5

RIPPER
L-W B-W PEM L-F B-F REN ANR CF CVC Ens IPF Sat

0 -2.3 -1.7 -19.3 2.9 -5.3 -7.9 -47.0 -27.1 2.2 2.4 2.0 0.5
10 0.9 -0.5 -18.9 6.0 -3.0 -2.2 -40.4 -23.2 3.3 3.7 3.5 0.3
20 7.5 3.6 -10.8 10.9 -0.2 4.0 -35.6 -17.3 4.9 8.9 7.1 3.3
30 11.5 2.5 -4.5 13.4 1.5 6.2 -24.5 -10.9 4.0 10.8 8.0 2.9
40 12.8 2.6 -0.7 13.8 2.1 5.2 -15.1 -10.6 6.2 11.9 8.0 -1.2

180

Table 7.3: A comparison of the effect of the investigated instance weighting methods on
the considered learning algorithms averaged over the 54 data sets. Bold accuracy values
represent cases where L-weighting achieves significantly higher accuracy than the compared
technique.

C4.5 5-NN
noise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
L-W 78.19 77.03 76.33 74.32 71.08 78.72 78.09 76.77 74.8 70.30
Rank 1.8 1.6 1.6 1.4 1.5 1.6 1.5 1.5 1.4 1.5
B-W 79.29 77.14 75.20 71.06 65.74 78.34 77.41 75.39 71.59 64.92
Rank 1.9 2.0 2.2 2.4 2.5 2.1 2.4 2.5 2.6 2.5
b,e,w 26,4,2433,2,1938,0,16 44,1,9 43,1,10 34,7,1341,3,1043,1,10 46,1,7 44,1,8
PWEM 76.41 74.50 73.34 70.94 68.28 78.02 77.54 76.12 73.56 67.18
Rank 2.3 2.4 2.3 2.2 2.0 2.2 2.2 2.0 2.0 2.0
b,e,w 35,4,1540,3,1139,4,1141,0,1337,0,16 34,4,1636,2,1637,1,1637,3,1436,3,14

MLP Random Forest
noise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
L-W 82.26 80.71 78.64 75.33 69.12 80.82 79.73 78.08 75.87 70.7
Rank 1.7 1.5 1.4 1.3 1.3 1.9 1.5 1.3 1.2 1.2
B-W 81.49 78.19 73.84 69.14 62.1 80.94 78.24 74.01 68.25 60.93
Rank 2.1 2.4 2.6 2.6 2.6 1.9 2.4 2.7 2.8 2.7
b,e,w 34,2,1842,1,11 47,1,6 48,0,6 47,1,5 25,1,2842,2,10 48,0,6 48,1,4 48,1,4
PWEM 82.79 79.67 76.42 71.90 65.95 81.51 78.73 76.37 72.54 66.03
Rank 2.2 2.1 2.0 2.0 2.0 2.2 2.1 2.0 2.0 2.1
b,e,w 34,4,1638,2,1439,1,1442,0,1241,0,12 33,4,1734,4,1640,4,10 47,1,5 48,1,4

RIPPER
noise 0% 10% 20% 30% 40%
L-W 77.86 76.62 75.53 73.38 69.53
Rank 1.8 1.5 1.4 1.4 1.4
B-W 77.98 76.28 74.5 70.7 65.97
Rank 1.8 1.8 2.0 2.3 2.3
b,e,w 27,3,2431,2,2136,3,15 45,2,6 44,0,9
PWEM 74.17 71.94 70.68 68.57 64.82
Rank 2.4 2.6 2.5 2.4 2.3
b,e,w 36,4,14 45,2,7 45,4,5 39,2,1240,1,12

181

Table 7.4: A comparison of L-filtering with the other filtering techniques for the 5 considered
learning algorithms averaged over the 54 data sets. Bold accuracy values represent cases
where L-filtering achieves significantly higher accuracy than the compared technique.

C4.5 5-NN
noise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
L-F 79.55 78.35 76.65 73.42 69.14 79.4 78.35 76.62 74.38 69.67
Rank 2.7 2.0 1.7 1.9 1.8 2.5 2.6 2.4 2.3 2.3
B-F 79.34 77.49 75.17 71.32 65.58 76.99 75.98 74.33 71.82 66.12
Rank 3.2 3.5 3.6 3.4 3.3 4.2 4.3 3.9 3.6 3.6
b,e,w 31,8,15 42,1,11 44,4,6 44,1,9 46,0,8 41,4,9 45,0,9 43,0,11 37,1,16 39,1,14
CVC 79.41 77.35 74.60 70.11 63.64 79.37 78.38 76.5 73.21 66.36
Rank 3.1 3.4 3.8 4.0 4.1 2.6 2.7 3.0 3.4 3.5
b,e,w 25,8,21 43,1,10 50,1,3 47,3,4 48,2,4 26,7,21 26,5,23 34,2,18 37,2,15 39,2,13
Ens 79.53 77.88 76.15 73.62 68.66 79.06 77.99 76.33 73.51 68.92
Rank 2.8 2.8 2.4 2.0 2.0 3.0 2.8 2.9 2.9 2.7
b,e,w 27,2,25 34,3,17 35,3,16 26,1,27 30,1,23 32,7,15 29,3,22 29,4,21 34,1,19 32,0,22
IterP 79.31 77.33 74.82 70.41 64.31 79.27 78.2 76.33 73.63 67.90
Rank 3.1 3.5 3.6 3.6 3.8 2.7 2.6 2.8 2.8 2.9
b,e,w 25,10,19 42,0,12 44,1,9 45,0,9 49,0,5 24,4,26 25,4,25 31,3,20 35,1,18 38,1,15

MLP RandForest
noise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
L-F 81.80 80.66 78.17 74.82 69.44 81.66 79.91 78.23 75.45 70.11
Rank 2.9 2.2 2.0 2.0 1.8 2.8 2.6 2.1 1.8 1.8
B-F 81.39 78.16 75.04 70.57 64.35 81.16 78.13 74.25 69.32 62.80
Rank 3.3 4.1 3.9 3.7 3.8 3.1 4.0 4.3 4.2 4.3
b,e,w 25,4,25 46,0,8 44,1,9 44,0,10 46,1,7 28,1,25 42,1,11 47,1,6 50,0,4 50,0,4
CVC 82.33 79.83 76.68 71.5 65.02 81.72 79.53 76.88 72.40 64.97
Rank 2.6 2.9 3.4 3.8 3.7 2.7 3.0 3.2 3.6 3.6
b,e,w 22,3,29 33,2,19 43,2,9 46,0,8 48,1,5 23,4,27 31,2,21 40,1,13 47,1,6 47,1,6
Ens 81.62 80.02 77.44 73.85 68.04 80.91 79.52 77.32 74.01 68.86
Rank 3.3 2.9 2.9 2.5 2.6 3.5 2.9 3.0 2.8 2.4
b,e,w 32,3,19 36,2,16 32,2,20 30,1,23 34,0,20 38,1,15 31,1,22 39,2,13 38,1,15 34,0,20
IterP 82.18 80.08 77.31 73.02 67.02 81.51 79.75 77.61 74.02 67.40
Rank 2.8 2.9 2.9 3.0 3.1 2.9 2.5 2.6 2.5 2.9
b,e,w 25,4,25 35,0,19 38,2,14 40,1,13 44,1,9 23,6,25 25,1,28 35,0,19 36,3,15 44,0,10

RIPPER
noise 0% 10% 20% 30% 40%
L-F 78.98 77.82 76.43 73.97 69.90
Rank 2.7 2.4 2.0 1.9 2.2
B-F 77.20 75.70 73.48 70.39 65.78
Rank 3.8 3.8 4.0 4.0 4.0
b,e,w 37,3,14 44,1,9 46,0,8 44,1,9 44,2,8
CVC 78.83 77.19 74.85 71.15 67.24
Rank 2.8 3.0 3.3 3.8 3.4
b,e,w 26,4,24 32,1,21 40,2,12 50,1,3 41,1,12
Ens 78.87 77.29 75.90 73.19 69.22
Rank 2.9 2.9 2.6 2.3 2.1
b,e,w 28,3,23 32,4,18 36,1,17 32,1,21 24,1,29
IterP 78.78 77.23 75.41 72.36 67.87
Rank 2.8 2.9 3.1 3.0 3.3
b,e,w 27,3,24 30,2,22 38,3,13 42,1,11 43,1,10

182

and 4) the iterative partitioning filter (IterP). The CVC, Ens and IterP filters were chosen

as representative filtering algorithms as they achieved the highest increase in classification

accuracy. For filtering, no filtering approach significantly outperforms the L-filter, yet the

L-filter achieves significantly higher classification accuracy in most cases (bold accuracy

values in Table 7.4). The L-filter is an expansion of the ensemble filter. The additional

diverse learning algorithms can significantly improve the accuracy, however, in most cases,

the difference in performance between the L-filter and the ensemble filter is not significant.

7.5.3 Comparison with an Ensemble

Table 7.5 compares the L-ensemble with L-weighting, L-filtering, and the ensemble filter for

the five learning algorithms. These noise handling methods were chosen to be representa-

tive as they achieved the highest and most significant gains in classification accuracy in a

single learning algorithm. Despite the significant increase in classification accuracy over the

original learning algorithm by the noise handling method, the L-ensemble achieves signifi-

cantly higher classification accuracy over all of the considered learning algorithms at all of

the noise levels. This demonstrates the L-ensemble’s robustness to label noise. This also

contradicts the finding by Brodley and Friedl that while an ensemble outperforms a single

learning algorithm, it cannot replace filtering [2].

The increase in accuracy by the voting ensemble is not too surprising as ensembles have

been shown to perform better than any one of their constituent base classifiers [5]. We

focus our attention on the MLP and random forest learning algorithms since they obtain the

highest classification accuracy of the considered learning algorithms. Although the increase

in accuracy by a voting ensemble is significant, it is generally within 1 to 2 percent of the

average accuracy achieved by a MLP or a random forest with L-weighting or L-filtering.

Noise handling does increase the classification accuracy, but the L-ensemble is a safe choice

to use in general.

183

Table 7.5: A comparison of the L-ensemble against the investigated noise handling ap-
proaches for the 5 considered learning algorithm averaged over the 54 data sets.

noise 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
L-Ens 83.36 82.06 79.87 77.09 72.04

C4.5 5-NN
Ens Rank 1.4 1.6 1.7 1.7 2.1 1.4 1.6 1.7 1.8 2.0
L-Weight 78.36 77.39 76.44 74.32 70.84 78.72 78.09 76.77 74.80 70.30
Rank 3.1 2.9 2.5 2.4 2.2 3.0 2.7 2.6 2.4 2.4
b,e,w 46,1,7 44,0,1039,0,1537,0,1729,0,24 44,4,6 44,0,1038,2,1437,1,1633,3,17
L-Filter 79.55 78.35 76.65 73.42 69.14 79.40 78.35 76.62 74.38 69.67
Rank 2.7 2.6 2.7 3.0 2.8 2.6 2.8 2.7 2.7 2.7
b,e,w 45,3,6 44,0,1042,0,12 46,1,7 37,0,17 47,2,5 42,2,1042,2,1042,1,1136,0,18
Ens Filt 79.53 77.88 76.15 73.62 68.66 79.06 77.99 76.33 73.51 68.92
Rank 2.8 3.0 3.1 2.9 3.0 3.0 2.9 3.0 3.1 2.9
b,e,w 46,1,7 45,0,9 42,0,1243,0,1140,0,14 44,1,9 45,0,9 42,0,1241,1,1237,0,17

MLP Random Forest
Ens Rank 1.7 1.7 1.7 1.7 1.8 1.5 1.5 1.5 1.7 1.8
L-Weight 82.26 80.71 78.64 75.33 69.12 80.82 79.73 78.08 75.87 70.7
Rank 2.2 2.5 2.4 2.4 2.4 2.9 2.5 2.6 2.3 2.1
b,e,w 37,3,1442,0,1236,2,1636,1,1736,0,17 44,0,1041,3,1041,2,1135,1,1730,0,23
L-Filter 81.80 80.66 78.17 74.82 69.44 81.66 79.91 78.23 75.45 70.11
Rank 2.9 2.6 2.8 2.8 2.6 2.5 2.9 2.6 2.7 2.8
b,e,w 40,5,9 39,1,1441,0,1340,2,1236,0,18 41,4,9 49,0,5 45,0,9 42,1,1140,0,14
Ens Filt 81.62 80.02 77.44 73.85 68.04 80.91 79.52 77.32 74.01 68.86
Rank 3.2 3.2 3.2 3.1 3.2 3.1 3.1 3.3 3.4 3.3
b,e,w 42,1,11 44,2,8 46,0,8 46,2,6 46,1,7 45,1,8 47,0,7 47,1,6 44,4,6 45,2,7

RIPPER
Ens Rank 1.3 1.3 1.6 1.7 2.0
L-Weight 77.86 76.62 75.53 73.38 69.53
Rank 3.2 3.1 3.0 2.6 2.6
b,e,w 47,2,5 48,0,6 41,1,1239,0,1432,1,20
L-Filter 78.98 77.82 76.43 73.97 69.90
Rank 2.6 2.7 2.5 2.7 2.7
b,e,w 47,2,5 49,0,5 44,0,1042,1,1137,1,16
Ens Filt 78.87 77.29 75.90 73.19 69.22
Rank 2.8 3.0 3.0 3.0 2.6
b,e,w 50,1,3 48,0,6 45,1,8 40,1,1335,1,18

184

The finding that the L-filter is robust to noise is somewhat surprising, especially in light

of the findings by Brodley and Friedl [2] that noise filtering is generally preferable to a

voting ensemble. We differ from Brodley and Friedl in the scope of our investigation (we

studied noise over a much larger set of data sets), we used classifier diversity to select the

set of learning algorithms, and we used a larger set of learning algorithms to identify noisy

instances (3 vs. 9). Classifier diversity may have a larger impact on the voting ensemble

rather than on filtering or weighting. It may also be due to the larger number of learning

algorithms used. Thus, there is a trade-off between the computational resource required for

a larger ensemble and the higher accuracy of the induced model. We chose nine learning al-

gorithms for the ensemble as a reasonable trade-off between performance and computational

complexity. Further, more ensembled learning algorithms could lead to more improvements

in performance.

7.6 Conclusions

In this paper we examined handling class noise using the hypotheses from a diverse set of

learning algorithms through a large set of experiments. We introduced noise identification

using classifier diversity (NICD) which uses a diverse set of learning algorithms to approx-

imate p(y|x). On a set of 5 learning algorithms and 54 data sets, we examined NICD as a

filtering technique (L-filtering), a weighting technique (L-weighting), and as the base clas-

sifiers in a voting ensemble (L-ensemble) . We also examined several other noise handling

techniques. We found that the ensembled noise handling approaches significantly outperform

other less diverse noise handling techniques. Our results suggest that a less biased estimate

of p(y|x) leads to better noise handling. Compared to no noise handling, L-weighting and

L-filtering often achieve a significantly higher classification accuracy and never achieve a

significantly lower classification accuracy. Thus, ensembled approaches for handling noise

are able to be applied across a broad set of data sets and learning algorithms.

185

Despite the increase in accuracy exhibited by many of the noise handling techniques,

the L-ensemble achieves a significantly higher classification accuracy for all of the learning

algorithms and noise handling techniques for all of the examined noise levels – in contrast to

previous work. The L-ensemble is a voting ensemble composed of a diverse set of learning

algorithms (Section 7.2) with each learning algorithm having an equally-weighted vote. Thus,

a voting ensemble of diverse learning algorithms exhibits a robustness to noise that the

individual constituent learning algorithms do not possess. The diversity of the base classifiers

produces a robustness against label noise.

References

[1] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. J. Del Jesus, S. Ventura, J. M. Garrell,

J. Otero, J. Bacardit, V. M. Rivas, J. C. Fernández, and F. Herrera. Keel: A software

tool to assess evolutionary algorithms for data mining problems. Soft Computing, 13

(3):307–318, October 2008. ISSN 1432-7643.

[2] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

[3] Carla E. Brodley and Paul E. Utgoff. Multivariate decision trees. Machine Learning,

19(1):45–77, 1995.

[4] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

[5] Thomas G. Dietterich. Ensemble methods in machine learning. In Multiple Classifier

Systems, volume 1857 of Lecture Notes in Computer Science, pages 1–15. Springer, 2000.

ISBN 3-540-67704-6.

[6] Chris H. Q. Ding and Inna Dubchak. Multi-class protein fold recognition using support

vector machines and neural networks. Bioinformatics, 17(4):349–358, 2001.

186

[7] A. Frank and Arthur Asuncion. UCI machine learning repository, 2010. URL

http://archive.ics.uci.edu/ml.

[8] Benoit Frénay and Michel Verleysen. Classification in the presence of label noise: a

survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5):845–869,

2014.

[9] D. Gamberger, N. Lavrac, and C. Groselj. Experiments with noise filtering in a medical

domain. In Proceedings of the 16th International Conference on Machine Learning,

pages 143–151, 1999.

[10] Dragan Gamberger, Nada Lavrač, and Sašo Džeroski. Noise detection and elimination

in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence,

14(2):205–223, 2000.

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[12] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on

Pattern Analysis Machine Intelligence, 12(10):993–1001, October 1990.

[13] Robert E. Kass and Larry Wassermann. A reference Bayesian test for nested hypothe-

ses and its relationship to the Schwarz criterion. Journal of the American Statistical

Association, 90(431):928–934, 1995.

[14] T.M. Khoshgoftaar and P. Rebours. Improving software quality prediction by noise

filtering techniques. Journal of Computer Science and Technology, 22:387–396, 2007.

[15] Neil D. Lawrence and Bernhard Schölkopf. Estimating a kernel fisher discriminant in

the presence of label noise. In In Proceedings of the 18th International Conference on

Machine Learning, pages 306–313, 2001.

187

http://archive.ics.uci.edu/ml

[16] Jun Lee and Christophe Giraud-Carrier. A metric for unsupervised metalearning. In-

telligent Data Analysis, 15(6):827–841, 2011.

[17] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of the effect of

different types of noise on the precision of supervised learning techniques. Artificial

Intelligence Review, 33(4):275–306, 2010.

[18] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. In Advances in Neural Information

Processing Systems 14, pages 841–848, 2001.

[19] Adam H. Peterson and Tony R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75,

2005.

[20] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, USA, 1993.

[21] Umaa Rebbapragada and Carla E. Brodley. Class noise mitigation through instance

weighting. In Proceedings of the 18th European Conference on Machine Learning, pages

708–715, 2007.

[22] José A. Sáez, Julián Luengo, and Francisco Herrera. Predicting noise filtering efficacy

with data complexity measures for nearest neighbor classification. Pattern Recognition,

46(1):355–364, 2013.

[23] Michael R. Smith and Tony Martinez. Improving classification accuracy by identify-

ing and removing instances that should be misclassified. In Proceedings of the IEEE

International Joint Conference on Neural Networks, pages 2690–2697, 2011.

188

[24] Michael R. Smith and Tony Martinez. An extensive evaluation of filtering mis-

classified instances in supervised classification tasks. In submission, 2014. URL

http://arxiv.org/abs/1312.3970.

[25] G. Stiglic and P. Kokol. Stability of ranked gene lists in large microarray analysis studies.

Journal of biotechnology, page 9 pages, 2010. , 616385.

[26] Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions

on Systems, Man, and Cybernetics, 6:448–452, 1976.

[27] Sofie Verbaeten and Anneleen Van Assche. Ensemble methods for noise elimination in

classification problems. In Proceedings of the 4th international conference on multiple

classifier systems, pages 317–325, 2003. ISBN 3-540-40369-8.

[28] Xinchuan Zeng and Tony R. Martinez. A noise filtering method using neural networks.

In Proc. of the int. Workshop of Soft Comput. Techniques in Instrumentation, Measure-

ment and Related Applications, 2003.

[29] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: a quantitative study

of their impacts. Artificial Intelligence Review, 22:177–210, November 2004.

189

http://arxiv.org/abs/1312.3970

Part III

Conclusion

Part III concludes this dissertation and is composed of three chapters. Chapter 8 com-

pares the current and potential accuracies obtainable by filtering instances and hyperpa-

rameter optimization. As filtering achieves a much higher potential, Chapter 8 motivates

the continued study of learning the interaction of the data. The chapter is currently under

review and can be referenced as follows.

Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. “The Potential Bene-

fits of Data Set Filtering and Learning Algorithm Hyperparameter Optimization”, in

submission 2015.

Chapter 9 presents the framework for a repository of results from machine learning exper-

iments. The repository is designed to provide information at the instance-level to facilitate

instance-level investigations and to provide various data set-level measurements that can be

computed from the instance-level measurements. The end goal is to facilitate meta-learning

at the instance-level as well as the data set-level. The reference for the corresponding paper

is given below.

Michael R. Smith, Andrew White, Christophe Giraud-Carrier, and Tony Martinez. “An

Easy to Use Repository for Comparing and Improving Machine Learning Algorithm

Usage”, The ECAI Workshop on Meta-learning & Algorithm Selection (MetaSel), pages

41–48, 2014.

190

Chapter 10 summarizes this work including its contributions and directions for future

work.

191

Chapter 8

The Potential Benefits of Data Set Filtering and Learning Algorithm

Hyperparameter Optimization

Submitted to: The European Conference on Machine Learning and Principles and Practice

of Knowledge Discovery in Databases (ECMLPKDD 2015), 2015.

Abstract

The quality of a model induced by a learning algorithm is dependent upon the training data

and the hyperparameters supplied to the learning algorithm. Prior work has shown that

a model’s quality can be significantly improved by filtering out low quality instances or by

tuning the learning algorithm hyperparameters. However, the potential impact of filtering

and hyperparameter optimization (HPO) is largely unknown. In this paper, we estimate and

compare the potential benefits of instance filtering and HPO. While both HPO and filtering

significantly improve the quality of the induced model, we find that filtering has a greater

potential effect on the quality of the induced model than HPO, motivating future work in

filtering.

8.1 Introduction

Given a set of training instances composed of input feature vectors and corresponding la-

bels, the goal of supervised machine learning is to induce an accurate generalizing function

(hypothesis) that maps feature vectors to labels. The quality of the induced function is

dependent on the learning algorithm’s hyperparameters and the quality of the training data.

It is known that no learning algorithm or hyperparameter setting is best for all data sets (no

192

free lunch theorem [26]) and that the performance of many learning algorithms is sensitive

to their hyperparameter settings. It is also well-known that real-world data sets are typically

noisy.

Prior work has shown that the generalization performance of an induced model can be

significantly improved through hyperparameter optimization (HPO) [1], or by increasing

the quality of the training data using techniques such as noise correction [11], instance

weighting [17], or instance filtering [20]. Searching the hyperparameter space and improving

the quality of the training data have generally been examined in isolation and the potential

impact of their usage has not been examined. In this paper, we compare the effects of HPO

with the effects of improving the quality of the training data through filtering. The results

of our experiments provide insight into the potential effectiveness of both HPO and filtering.

We evaluate 6 commonly used learning algorithms and 46 data sets. We examine the

effects of HPO and filtering by: 1) using a standard approach that sets the hyperparameters

of an algorithm by maximizing the accuracy on a validation set and 2) using an optimistic

approach that sets the hyperparameters for an algorithm using the 10-fold cross-validation

accuracy. The standard and optimistic approaches are explained in more detail in Section

8.4. Essentially, the optimistic approach indicates how well a technique could perform if the

training set were representative of the test set and provides insight into the potential benefit

of a given technique. The standard approach provides a representative view of HPO and

filtering in their present state and allows an evaluation of how well current HPO and filtering

techniques fulfill their potential.

Using the standard approach, we find that in most cases both HPO and filtering sig-

nificantly increase classification accuracy over using a learning algorithm with its default

parameters trained on unfiltered data. For the optimistic estimates of HPO and filtering, we

find that filtering significantly improves the classification accuracy over HPO for all of the

investigated learning algorithms–increasing the accuracy more than HPO for almost all of

the considered data sets. HPO achieves an average accuracy of 84.8% while filtering achieves

193

an average accuracy of 89.1%. The standard approach for HPO and filtering achieves an av-

erage accuracy of 82.6% and 82.0% respectively. These results provide motivation for further

research into developing algorithms that improve the quality of the training data.

8.2 Related Work

Smith et al. [21] found that a significant number of instances are difficult to classify correctly,

that the hardness of each instance is dependent on its relationship with the other instances

in the training set and that some instances can be detrimental. Thus, there is a need for

improving the how detrimental instances are handled during training as they affect the

classification of other instances. Improving the quality of the training data has typically

fallen into three approaches: filtering, cleaning, and instance weighting [7].

Each technique within an approach differs in how detrimental instances are identified. A

common technique for filtering removes instances from a data set that are misclassified by a

learning algorithm or an ensemble of learning algorithms [3]. Removing the training instances

that are suspected to be noise and/or outliers prior to training has the advantage that they

do not influence the induced model and generally increase classification accuracy. A negative

side-effect of filtering is that beneficial instances can also be discarded and produce a worse

model than if all of the training data had been used [18]. Rather than discarding the in-

stances from a training set, noisy or possibly corrupted instances can be cleaned or corrected

[11]. However, this could artificially corrupt valid instances. Alternatively, weighting weights

suspected detrimental instances rather than discards them and allows for an instance to be

considered on a continuum of detrimentality rather than making a binary decision [17].

Other methods exist for improving the quality of the training data, such as feature

selection/extraction [8]. While feature selection and extraction can improve the quality of

the training data, we focus on improving quality via filtering – facilitating a comparison

between filtering and HPO on the same feature set.

194

Much of the previous work in improving the quality of the training data artificially

corrupts training instances to determine how well an approach would work in the presence

of noisy or mislabeled instances. In some cases, a given approach only has a significant impact

when there are large degrees of artificial noise. In contrast, we do not artificially corrupt a

data set to create detrimental instances. Rather, we seek to identify the detrimental instances

that are already contained in a data set and show that correctly labeled, non-noisy instances

can also be detrimental for inducing a model of the data. Properly handling detrimental

instances can result in significant gains in classification accuracy.

The grid search and manual search are the most common types of HPO techniques in

machine learning and a combination of the two approaches are commonly used [12]. [1]

proposed to use a random search of the hyperparameter space. The premise of random HPO

is that most machine learning algorithms have very few hyperparameters that considerably

affect the final model while the other hyperparameters have little to no effect. Random

search provides a greater variety of the hyperparameters that considerably affect the model.

Given the same amount of time constraints, random HPO has been shown to outperform a

grid search. Bayesian optimization has also been used to search the hyperparameter space

[23]. Bayesian optimization techniques model the dependence of an error function E on the

hyperparameters λ as p(E ,λ) using, for example, a tree-structured Parzen estimator [2] or

Gaussian processes [10].

8.3 Preliminaries

In this section, we examine the effects of HPO and the quality of the training data mathemat-

ically. Let T represent a training set composed of a set of input vectors X = {x1,x2,...,xn}

and corresponding label vectors Y = {y1,y2,...,yn}, i.e., T = {〈xi,yi〉 : xi ∈ X ∧ yi ∈ Y }.

Given that in most cases, all that is known about a task is contained in the set of training

instances T , at least initially, the training instances are generally considered equally. Most

machine learning algorithms seek to induce a hypothesis h : X → Y that minimizes a spec-

195

ified loss function L(·). As most real-world data sets contain some level of noise, there is

generally a model-dependent regularization term R(·) added to L(·) that penalizes more

complex models and aids in overfit avoidance. The noise in T may arise from errors in the

data collection process such as typos or errors in data collection equipment. In addition to

noise from errors, there may be non-noisy outlier instances due to the stochastic nature of the

task. A hypothesis h is induced by a learning algorithm g trained on T with hyperparameters

λ (h = g(T,λ)), such that:

h∗ = argmin
h∈H

1

|T |

∑

〈xi,yi〉∈T

L(h(xi),yi) + αR(h) (8.1)

where α is a regularization parameter greater than or equal to 0 that determines how much

weight to apply to the regularization term and h(·) returns the predicted class for a given

input. The quality of the induced hypothesis h is characterized by its empirical error for a

specified error function E on a test set V :

E(h,V) =
1

|V |

∑

〈xi,yi〉∈V

E(h(xi),yi)

where V can be T or a disjoint set of instances. In k-fold cross-validation, the empirical error

is the average empirical error from the k folds (i.e., 1/k E(hi,Vi)).

Characterizing the success of a learning algorithm at the data set level (e.g., accuracy

or precision) optimizes over the entire training set and marginalizes the impact of a single

training instance on an induced model. Some sets of instances can be more beneficial than

others for inducing a model of the data and some can even be detrimental. By detrimental

instances, we mean instances that have a negative impact on the induced model. For example,

outliers or mislabeled instances are not as beneficial as border instances and are detrimental

in many cases. In addition, other instances can be detrimental for inducing a model of

the data even if they are labeled correctly. Formally, a set D of detrimental instances is a

196

A

B

Figure 8.1: Hypothetical 2-dimensional data set that shows the potential effects of detrimen-
tal instances in the training data on a learning algorithm.

subset of the training data that, when used in training, increases the empirical error, i.e.,

E(g(T,λ),V) > E(g(T −D,λ),V).

The effect of training with detrimental instances is demonstrated in the hypothetical two-

dimensional data set shown in Figure 8.1. Instances A and B represent detrimental instances.

The solid line represents the “actual” classification boundary and the dashed line represents

a potential induced classification boundary. Instances A and B adversely affect the induced

classification boundary because they “pull” the classification boundary and cause several

other instances to be misclassified that otherwise would have been classified correctly.

Despite most learning algorithms having a mechanism to avoid overfitting, the presence

of detrimental instances may still affect the induced model for many learning algorithms.

Mathematically, the effect of each instance on the induced hypothesis is shown in Equation

8.1. The loss from each instance in T , including detrimental instances, is equally weighted.

Detrimental instances have the most significant impact during the early stages of training

where it is difficult to identify them [6]. The presence of D may also affect the value of R(h).

For example, removing D from T could produce a “simpler” h that reduces R(h).

8.3.1 Hyperparameter Optimization

The quality of an induced model by a learning algorithm depends in part on the learning al-

gorithm’s hyperparameters. With hyperparameter optimization (HPO), the hyperparameter

197

space Λ is searched to minimize the empirical error on V :

argmin
λ∈Λ

E(g(T,λ),V). (8.2)

The hyperparameters can have a significant effect on the quality of the induced model as

well as suppressing the effects of detrimental instances. For example, in a support vector

machine, [4] use the ramp-loss function which limits the penalty on instances that are too

far from the decision boundary rather than the more typical 0-1 loss function to handle

detrimental instances. Suppressing the effects of detrimental instances with HPO improves

the induced model, but does not change the fact that detrimental instances still affect the

model. Each instance is still considered during the learning process though its influence may

be lessened. We describe the method we use for HPO in Section 8.4.1.

8.3.2 Filtering

The quality of an induced model also depends on the quality of the training data where, for

example, the quality of the training data can be measured by the amount of detrimental

instances present. Low quality training data results in lower quality induced models. Im-

proving the quality of the training data involves searching the training set space to find an

optimal subset that minimizes the empirical error:

argmin
t∈P(T)

E(g(t,λ),V)

where t is a subset of T and P(T) is the power set of T . The removed instances obviously have

no effect on the induced model. In Section 8.4.2, we describe how we identify detrimental

instances and search for an optimal subset of the training data that minimizes empirical

error.

198

8.4 Implementation Details

8.4.1 Bayesian Hyperparameter Optimization

In this paper, we use Bayesian optimization for HPO. Specifically, we use sequential model-

based optimization (SMBO) [10] as it has been shown to yield better performance than grid

and random search [23, 24]. SMBO is a stochastic optimization framework that builds a

probabilistic model M that captures the dependence of E on λ. SMBO first initializes M.

After initializingM, SMBO searches the search space by 1) queryingM for a promising λ

to evaluate, 2) evaluating the loss E of using configuration λ, and then 3) updatingM with

λ and E . Once the budgeted time is exhausted, the hyperparameter configuration with the

minimal loss is returned.

To select a candidate hyperparameter configuration, SMBO relies on an acquisition func-

tion aM : Λ → R which uses the predictive distribution of M to quantify how useful

knowledge about λ would be. SMBO maximizes aM over Λ to select the most useful hyper-

parameter configuration λ to evaluate next. One of the most prominent acquisition functions

is the positive expected improvement (EI) over an existing error rate Emin [19]. If E(λ) rep-

resents the error rate of hyperparameter configuration λ, then the EI function over Emin

is:

EIEmin
(λ) = max{Emin − E(λ),0}.

As E(λ) is unknown, the expectation of E(λ) with respect to the current model M can be

computed as:

EM[EIEmin
(λ)] =

∫ Emin

−∞

max{Emin − E ,0} · p(E|λ)dE .

SMBO is dependent on the model class used for M. Following [24], we use sequential

model-based algorithm configuration (SMAC) [10] for M with EI as aM, although others

could be used such as the tree-structured Parzen estimator. To model p(E|λ), we use random

forests as they tend to perform well with discrete and continuous input data. Using random

199

forests, SMAC obtains a predictive mean µλ and variance σ2
λ of p(E|λ) calculated using the

predictions from the individual trees in the forest for λ. p(E|λ) is then modeled as a Gaussian

distribution N (µλ,σ
2
λ). To create diversity in the evaluated configurations, every second con-

figuration is selected at random as suggested [24]. For k-fold cross-validation, the standard

approach finds the hyperparameters that minimize the error for each of the k validation

sets as shown in Equation 8.2. The optimistic approach finds the hyperparameters that

minimize the k -fold cross-validation error:

argmin
λ∈Λ

1

k
E(g(Ti,λ),Vi)

where Ti and Vi are the training and validation sets for the ith fold. The hyperparameter

space Λ is searched using Bayesian hyperparameter optimization for both approaches.

8.4.2 Filtering

Identifying detrimental instances is a non-trivial task. Fully searching the space of subsets

of training instances generates 2N subsets of training instances where N is the number of

training instances. Even for small data sets, it is computationally infeasible to induce 2N

models to determine which instances are detrimental. There is no known way to determine

how a set of instances will affect the induced classification function from a learning algorithm

without inducing a classification function with the investigated set of instances removed from

the training set.

The Standard Filtering Approach

Previous work in noise handling has shown that class noise (e.g. mislabeled instances) is more

detrimental than attribute noise [15]. Thus, searching for detrimental instances that are likely

to be misclassified is a natural place to start. In other words, we search for instances where

the probability of the class label is low given the feature values (i.e., low p(yi|xi)). In general,

200

p(yi|xi) does not make sense outside the context of an induced hypothesis. Thus, using an

induced hypothesis h from a learning algorithm trained on T , the quantity p(yi|xi) can be

approximated as p(yi|xi,h). After training a learning algorithm on T , the class distribution

for an instance xi can be estimated based on the output from the learning algorithm. Prior

work has examined removing instances that are misclassified by a learning algorithm or an

ensemble of learning algorithms [3]. We filter instances using an ensemble filter that removes

instances that are misclassified by more than x% of the algorithms in the ensemble.

The dependence of p(yi|xi,h) on a particular h can be lessened by summing over the

space of all possible hypotheses:

p(yi|xi) =
∑

h∈H

p(yi|xi,h)p(h|T). (8.3)

However, this formulation is infeasible to compute in most practical applications as p(h|T)

is generally unknown and H is large and possibly infinite. To sum over H, one would have

to sum over the complete set of hypotheses, or, since h = g(T,λ), over the complete set of

learning algorithms and hyperparameters associated with each algorithm.

The quantity p(yi|xi) can be estimated by restricting attention to a diverse set of repre-

sentative algorithms (and hyperparameters). The diversity of the learning algorithms refers

to the likelihood that the learning algorithms classify instances differently. A natural way

to approximate the unknown distribution p(h|T) is to weight a set of representative learn-

ing algorithms, and their associated hyperparameters, G, a priori with an equal, non-zero

probability while treating all other learning algorithms as having zero probability. We select

a diverse set of learning algorithms using unsupervised metalearning (UML) [13] to get a

good representation of H, and hence a reasonable estimate of p(yi|xi). UML uses Classifier

Output Difference (COD) [16] measures the diversity between learning algorithms as the

probability that the learning algorithms make different predictions. UML clusters the learn-

ing algorithms based on their COD scores with hierarchical agglomerative clustering. Here,

201

0.
10

0.
15

0.
20

0.
25

0.
30

B
ay
es
N
et

D
ec
T
ab

le
R
IP

P
E
R

S
im

p
le
C
ar
t L
W

L
F
u
n
ct
io
n
al

T
re
e

L
og
is
ti
c

S
V
M

M
L
P

N
B

R
B
F
N
et
w
or
k

1-
N
N

5-
N
N
N
N
ge

C
4.
5

P
A
R
T

L
A
D
T
re
e

N
B
T
re
e

R
an

d
F
or
es
t R
id
or

C
la
ss
ifi
er

O
u
tp
u
t
D
iff
er
en
ce

Figure 8.1: Dendrogram of the considered learning algorithms clustered using unsupervised
metalearning based on their classifier output difference. The dashed line represents the cut-
off value of 0.18 that was used to create 9 clusters of learning algorithms. One learning
algorithm was selected from each cluster to create G.

Table 8.1: Set of learning algorithms G used to estimate p(yi|xi).

Learning Algorithms

*Multilayer Perceptron trained with Back Propagation (MLP)
*Decision Tree (C4.5)
* Locally Weighted Learning (LWL)
* 5-Nearest Neighbors (5-NN)
*Nearest Neighbor with generalization (NNge)
*Näıve Bayes (NB)
*RIpple DOwn Rule learner (RIDOR)
*Random Forest (RandForest)
*Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

we consider 20 commonly used learning algorithms with their default hyperparameters as set

in Weka [9]. The resulting dendrogram is shown in Figure 8.1, where the height of the line

connecting two clusters corresponds to the distance (COD value) between them. A cut-point

of 0.18 was arbitrarily chosen to create nine clusters and a representative algorithm from

each cluster was used to create G as shown in Table 8.1.

202

Given a set G of learning algorithms, we can approximate Equation 8.3 to the following:

p(yi|xi) ≈
1

|G|

|G|
∑

j=1

p(yi|xi,gj(T,λ)) (8.4)

where p(h|T) is approximated as 1
|G|

and gj is the jth learning algorithm from G. As not

all learning algorithms produce probabilistic outputs, the distribution p(yi|xi,gj(T,λ)) is

estimated using the Kronecker delta function in this paper.

The Optimistic Filtering Approach

To measure the potential impact of filtering, we need to know how removing an instance

or set of instances affects the generalization capabilities of the model. We measure this by

dynamically creating an ensemble filter from G using a greedy algorithm for a given data

set and learning algorithm. This allows us to find a specific ensemble filter that is best for

filtering a given data set and learning algorithm combination. The adaptive ensemble filter is

constructed by iteratively adding the learning algorithm g from G that produces the highest

cross-validation classification accuracy when g is added to the ensemble filter. Because

we are using the probability that an instance will be misclassified rather than a binary

yes/no decision (Equation 8.4), we also use a threshold φ to determine which instances are

detrimental. Instances with a p(yi|xi) less than φ are discarded from the training set. A

constant threshold value for φ is set to filter the instances for all iterations. The baseline

accuracy for the adaptive approach is the accuracy of the learning algorithm without filtering.

The search stops once adding one of the remaining learning algorithms to the ensemble filter

does not increase accuracy, or all of the learning algorithms in G have been used.

Even though all of the detrimental instances are included for evaluation, the adaptive

filter (A-Filter) overfits the data since the cross-validation accuracy is used to determine

which set of learning algorithms to use in the ensemble filter. This allows us to find the

detrimental instances to examine the effects that they can have on an induced model. This

203

is not feasible in practical settings, but provides insight into the potential improvement

gained from filtering.

8.5 Filtering and HPO

In this section, we compare the effects of filtering with those of HPO using the optimistic

and standard approaches presented in Section 8.4. The optimistic approach provides an

approximation of the potential of HPO and filtering. In addition to reporting the average

classification accuracy, we also report the average rank of each approach. The average accu-

racy and rank for each algorithm is determined using 5 by 10-fold cross-validation. Statistical

significance between pairs of algorithms is determined using the Wilcoxon signed-ranks test

(as suggested by [5]) with an alpha value of 0.05.

8.5.1 Experimental Methodology

For HPO, we use the version of SMAC implemented in auto-WEKA [24] as described in

Section 8.4.1 Auto-WEKA searches the hyperparameter spaces for the learning algorithms

in the Weka machine learning toolkit [9] for a specified amount of time. To estimate the

amount of time required for a learning algorithm to induce a model of the data, we ran our

selected learning algorithms with ten random hyperparameter settings and calculated the

average and max running times. On average, a model was induced in less than 3 minutes.

The longest time required to induce a model was 845 minutes. Based on this analysis, we run

auto-WEKA for one hour for most of the data sets. An hour long search explores more than

512 hyperparameter configurations for most of the learning algorithm/data set combinations.

The time limit is adjusted accordingly for the larger data sets. Following [24], we run four

runs with different random seeds provided to SMAC.

For filtering using the ensemble filter (G-filter), we use thresholds φ of 0.5, 0.7, and 0.9.

Instances that are misclassified by more than φ% of the learning algorithms are removed

from the training set. The G-filter uses all of the learning algorithms in the set G (Table 8.1).

204

Table 8.1: The results for maximizing the 10-fold cross-validation accuracy for HPO and
filtering.

MLP C4.5 kNN

Orig 82.28 (2.98) 81.30 (2.91) 80.56 (2.74)

HPO 86.37 (1.87) 84.25 (1.96) 83.89 (2.22)
VS orig 45,0,1 42,1,3 34,1,11

A-Filter 89.96 (1.13) 88.74 (1.09) 91.14 (1.02)
VS orig 46,0,0 46,0,0 46,0,0
VS HPO 39,1,6 41,1,4 45,0,1

NB RF RIP

Orig 77.66 (2.70) 82.98 (2.89) 79.86 (2.96)

HPO 80.89 (1.96) 86.81 (1.85) 82.08 (1.80)
VS orig 34,0,12 44,0,2 46,0,0

A-Filter 82.74 (1.30) 91.02 (1.20) 88.16 (1.24)
VS orig 44,2,0 43,3,0 44,2,0
VS HPO 32,0,14 37,0,9 37,0,9

The accuracy on the test set from the value of φ that produces the highest accuracy on the

training set is reported.

To show the effect of filtering detrimental instances and HPO on an induced model, we

examine filtering and HPO in six commonly used learning algorithms (MLP trained with

backpropagation, C4.5, kNN, Näıve Bayes, Random Forest, and RIPPER) on a set of 46

UCI data sets [14]. The LWL, NNge, and Ridor learning algorithms are not used for analysis

because they do not scale well with the larger data sets–not finishing due to memory overflow

or large amounts of running time.1

8.5.2 Optimistic Approach

The optimistic approach indicates how well a model could generalize on novel data. Max-

imizing the cross-validation accuracy is a type of overfitting. However, using 10-fold cross-

validation accuracy for HPO and filtering, essentially measures the generalization capability

of a learning algorithm for a given data set.

1For the data sets on which the learning algorithms did finish, the effects of HPO and filtering on LWL,
NNge, and Ridor are consistent with the other learning algorithms.

205

Table 8.2: The frequency of selecting a learning algorithm when adaptively constructing an
ensemble filter. Each row gives the percentage of cases that an algorithm was included in
the ensemble filter for the learning algorithm in the column.

ALL MLP C4.5 kNN NB RF RIP

None 5.36 2.69 2.95 3.08 5.64 5.77 1.60
MLP 18.33 16.67 15.77 20.00 25.26 23.72 16.36
C4.5 17.17 17.82 15.26 22.82 14.49 13.33 20.74
5NN 12.59 11.92 14.23 1.28 10.00 17.18 16.89
LWL 6.12 3.59 3.85 4.36 23.72 3.33 3.59
NB 7.84 5.77 6.54 8.08 5.13 10.26 4.92
NNge 19.49 26.67 21.15 21.03 11.15 24.74 23.40
RF 21.14 22.95 26.54 23.33 15.77 15.13 24.20
Rid 14.69 14.87 16.79 18.33 11.92 16.54 12.77
RIP 8.89 7.82 7.69 8.85 13.08 7.44 4.39

The results comparing the potential benefits of HPO and filtering are shown in Table

8.1. Each section gives the average accuracy and average rank for each learning algorithm as

well as the number of times the algorithm is greater than, equal to, or less than a compared

algorithm. HPO and the adaptive filter significantly increase the classification accuracy for

all of the investigated learning algorithms. The values in bold represent if HPO or the

adaptive filter is significantly greater than the other. For all of the investigated learning

algorithms, the A-filter significantly increases the accuracy over HPO. The closest the two

techniques come to each other is for NB, where the A-filter achieves an accuracy of 82.74%

and an average rank of 1.30 while HPO achieves an accuracy of 80.89% and an average rank

of 1.96. For all learning algorithms other than NB, the average accuracy is about 89% for

filtering and 84% for HPO. Thus, filtering has a greater potential for increase in generalization

accuracy. The difficulty lies in how to find the optimal set of training instances.

As might be expected, there is no set of learning algorithms that is the optimal ensemble

filter for all algorithms and/or data sets. Table 8.2 shows the frequency for which a learning

algorithm with default hyperparameters was selected for filtering by the A-filter. The great-

est percentage of cases an algorithm is selected for filtering for each learning algorithm is in

bold. The column “ALL” refers to the average from all of the learning algorithms as the base

206

learner. No instances are filtered in 5.36% of the cases. Thus, given the right filter, filtering

to some extent increases the classification accuracy in about 95% of the cases. Furthermore,

random forest, NNge, MLP, and C4.5 are the most commonly chosen algorithms for inclusion

in the ensemble filter. However, no one learning algorithm is selected in more than 27% of

the cases. The filtering algorithm that is most appropriate is dependent on the data set and

the learning algorithm. This coincides with the findings from [18] that the efficacy of noise

filtering in the nearest-neighbor classifier is dependent on the characteristics of the data set.

Understanding the efficacy of filtering and determining which filtering approach to use for a

given algorithm/data set is a direction of future work.

Analysis. In some cases HPO achieves a lower accuracy than orig, showing the com-

plexity of HPO. The A-Filter, on the other hand, never fails to improve the accuracy. Thus,

higher quality data can compensate for hyperparameter settings and suggests that the in-

stance space may be less complex and/or richer than the hyperparameter space. Of course,

filtering does not outperform HPO in all cases, but it does so in the majority of cases.

8.5.3 Standard Approach

The previous results show the potential impact of filtering and HPO. We now examine

HPO and filtering using the standard approach to highlight the need for improvement in

filtering. The results comparing the G-filter, HPO, and using the default hyperparameters

trained on the original data set are shown in Table 8.3. HPO significantly increases the

classification accuracy over not using HPO for all of the learning algorithms. Filtering

significantly increases the accuracy for all of the investigated algorithms except for random

forests. Comparing HPO and the G-Filter, only HPO for näıve Bayes and random forests

significantly outperforms the G-filter.

Analysis. In their current state, HPO and filtering generally improve the quality of the

induced model. The results justify the computational overhead required to run HPO. Despite

these results, using the default hyperparameters result in higher classification accuracy for

207

Table 8.3: The results comparing the performance of using the default hyperparameters,
HPO, and the G-filter.

MLP C4.5 kNN

Orig 82.28 (2.54) 81.3 (2.13) 80.56 (2.26)

HPO 83.08 (1.78) 82.42 (1.76) 82.85 (1.59)
VS orig 32,0,14 29,1,16 31,5,10

G-Filter 84.17 (1.61) 81.9 (1.96) 81.61 (2.00)
VS orig 39,0,7 23,5,18 27,1,18
VS HPO 22,3,21 19,1,26 17,1,28

NB RF RIP

Orig 77.66 (2.28) 82.98 (2.28) 79.86 (2.46)

HPO 81.11 (1.63) 84.72 (1.54) 81.15 (1.74)
VS orig 31,2,13 34,0,12 30,2,14

G-Filter 79.49 (2.02) 83.49 (2.17) 81.25 (1.72)
VS orig 28,1,17 25,0,21 37,0,9
VS HPO 16,0,30 13,0,33 20,2,24

11 of the 46 data sets for C4.5, 12 for kNN, and 12 for NB, highlighting the complexity of

searching over the hyperparameter space Λ. The effectiveness of HPO is dependent on the

data set as well as the learning algorithm. Typically, as was done here, a single filtering

technique is used for a set of data sets with no model of the dependence of a learning

algorithm on the training instances. The accuracies for filtering and HPO are significantly

lower than the optimistic estimate given in Section 8.5.2 motivating future work in HPO and

especially in filtering.

8.6 Conclusion

In this paper, we compared the potential benefits of filtering with HPO. HPO may reduce

the effects of detrimental instances on an induced model but the detrimental instances are

still considered in the learning process. Filtering, on the other hand, removes the detrimental

instances–completely eliminating their effects on the induced model.

We used an optimistic approach to estimate the potential accuracy of each method. Using

the optimistic approach, both filtering and HPO significantly increase the classification accu-

208

racy for all of the considered learning algorithms. However, filtering has a greater potential

effect on average, increasing the classification accuracy from 80.8% to 89.1% on the observed

data sets. HPO increases the average classification accuracy to 84.8%. Future work includes

developing models to understand the dependence of the performance of learning algorithms

given the instances used for training. To better understand how instances affect each other,

we are examining the results from machine learning experiments stored in repositories that

include which instances were used for training and their predicted class [22, 25]. We hope

that the presented results provide motivation for improving the quality of the training data.

References

[1] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

[2] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for

hyper-parameter optimization. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira,

and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,

pages 2546–2554. Curran Associates, Inc., 2011.

[3] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of

Artificial Intelligence Research, 11:131–167, 1999.

[4] Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Trading convexity for

scalability. In Proceedings of the 23rd International Conference on Machine learning,

pages 201–208, 2006.

[5] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.

[6] Jeffery L. Elman. Learning and development in neural networks: The importance of

starting small. Cognition, 48:71–99, 1993.

209

[7] Benoit Frénay and Michel Verleysen. Classification in the presence of label noise: a

survey. IEEE Transactions on Neural Networks and Learning Systems, 25(5):845–869,

2014.

[8] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.

Journal of Machine Learning Research, 3:1157–1182, 2003.

[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[10] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based opti-

mization for general algorithm configuration. In Proceedings of the International Learn-

ing and Intelligent Optimization Conference, pages 507–523, 2011.

[11] Jeremy Kubica and Andrew Moore. Probabilistic noise identification and data cleaning.

In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 131–

138, 2003.

[12] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio.

An empirical evaluation of deep architectures on problems with many factors of variation.

In Proceedings of the 24th International Conference on Machine Learning, pages 473–

480, 2007.

[13] Jun Lee and Christophe Giraud-Carrier. A metric for unsupervised metalearning. In-

telligent Data Analysis, 15(6):827–841, 2011.

[14] Moshe Lichman. UCI machine learning repository, 2013. URL

http://archive.ics.uci.edu/ml.

210

http://archive.ics.uci.edu/ml

[15] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of the effect of

different types of noise on the precision of supervised learning techniques. Artificial

Intelligence Review, 33(4):275–306, 2010.

[16] Adam H. Peterson and Tony R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75,

2005.

[17] Umaa Rebbapragada and Carla E. Brodley. Class noise mitigation through instance

weighting. In Proceedings of the 18th European Conference on Machine Learning, pages

708–715, 2007.

[18] José A. Sáez, Julián Luengo, and Francisco Herrera. Predicting noise filtering efficacy

with data complexity measures for nearest neighbor classification. Pattern Recognition,

46(1):355–364, 2013.

[19] Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus local search

in constrained optimization of computer models, volume Volume 34 of Lecture Notes–

Monograph Series, pages 11–25. Institute of Mathematical Statistics, Hayward, CA,

1998.

[20] Michael R. Smith and Tony Martinez. Improving classification accuracy by identify-

ing and removing instances that should be misclassified. In Proceedings of the IEEE

International Joint Conference on Neural Networks, pages 2690–2697, 2011.

[21] Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance level

analysis of data complexity. Machine Learning, 95(2):225–256, 2014.

[22] Michael R. Smith, Andrew White, Christophe Giraud-Carrier, and Tony Martinez. An

easy to use repository for comparing and improving machine learning algorithm usage.

In Proceedings of the 2014 International Workshop on Meta-learning and Algorithm

Selection (MetaSel), pages 41–48, 2014.

211

[23] Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical bayesian optimization

of machine learning algorithms. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q.

Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 2951–

2959. 2012.

[24] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka:

combined selection and hyperparameter optimization of classification algorithms. In

proceedings of the 19th International Conference on Knowledge Discovery and Data

Mining, pages 847–855, 2013.

[25] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Net-

worked science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[26] David H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural

Computation, 8(7):1341–1390, 1996.

212

Chapter 9

An Easy to Use Repository for Comparing and Improving Machine Learning

Algorithm Usage

In the ECAI Workshop on Meta-learning & Algorithm Selection (MetaSel), pp41-48, 2014.

Abstract

The results from most machine learning experiments are used for a specific purpose and then

discarded. This causes significant loss of information and requires rerunning experiments to

compare learning algorithms. Often, this also requires a researcher or practitioner to imple-

ment another algorithm for comparison, that may not always be correctly implemented. By

storing the results from previous experiments, machine learning algorithms can be compared

easily and the knowledge gained from them can be used to improve the performance of future

machine learning experiments. The purpose of this work is to provide easy access to previous

experimental results for learning and comparison. These stored results are comprehensive –

storing the prediction for each test instance as well as the learning algorithm, hyperparam-

eters, and training set that were used in the experiment. Previous experimental results are

particularly important for meta-learning, which, in a broad sense, is the process of learning

from previous machine learning results such that the learning process is improved. While

other experiment databases do exist, one of our focuses is on easy access to the data, eliminat-

ing any learning curve required to acquire the desired information. We provide meta-learning

data sets that are ready to be downloaded for meta-learning experiments. Easy access to

previous experimental results aids other researchers looking to do meta-learning and helps in

comparing meta-learning algorithms. In addition, simple queries to the underlying database

213

can be made if specific information is desired. We also differ from previous experiment

databases in that our database is designed at the instance level, where an instance is an

example in a data set. We store the predictions of a learning algorithm trained on a specific

training set for each instance in the test set. Data set level information can then be obtained

by aggregating the results from the instances. The instance level information can be used for

many tasks such as determining the diversity of a classifier or algorithmically determining

the optimal subset of training instances for a learning algorithm.

9.1 Introduction

The quality of an induced model is dependent on, among other aspects, the learning algo-

rithm that is chosen, the hyperparameter settings for the chosen learning algorithm, and the

quality of the training set. Choosing a learning algorithm for a given task, setting its hyper-

parameters, and selecting which instances to train on, however, is non-trivial. Meta-learning

deals with the problem of how to select a learning algorithm and set its hyperparameters

based on previous experience (results from previous machine learning experiments). Al-

though some research from the machine learning community has focused on meta-learning

(e.g., see [2, 3, 5, 8, 17]), much of the focus of machine learning research has been on devel-

oping more learning algorithms and/or applying machine learning in specific domains.

Part of the difficulty of meta-learning is due to the lack of accessible results. As meta-

learning requires running several learning algorithms and hyperparameter settings over many

data sets, gathering results requires large amounts of computational resources. In addition

to the computational requirements, results from the learning algorithms may differ due to

slight differences in their implementations. Thus, comparing results among meta-learning

studies becomes difficult.

To aid in further research in meta-learning, we have developed the machine learning

results repository (MLRR) that provides data sets ready for download for meta-learning

problems, akin to the UCI data repository for machine learning problems. We refer to the

214

data sets for meta-learning as meta-data sets to distinguish them from the data sets that

are used in the machine learning experiments. The meta-data sets provide a snapshot of

an underlying database that stores the results of machine learning experiments. Users can

update the database with new results from machine learning experiments and then update

the meta-data sets for meta-learning. A revision history is kept so that comparisons among

meta-learning algorithms is facilitated. As a starting point, meta-data sets are provided by

MLRR for typical meta-learning tasks, such as, given a set of meta-features, predict which

learning algorithm and/or hyperparameter setting to use.

The MLRR stores instance level meta-features and the predictions made on each instance

by the learning algorithms. Providing information at the instance level allows studies to be

performed on the instances themselves. Studying the effects of machine learning on a single

instance and/or the effects of a single instance on the performance of an algorithm has gen-

erally been overlooked. Instance-level information is important in several areas of machine

learning, however. In ensembles, computing the classifier diversity of the ensembled clas-

sifiers using the predictions for each instance is important in determining the effectiveness

of the ensembling technique [1, 6, 12]. In curriculum learning, the training set is incremen-

tally augmented such that “easier” instances are presented to the learning algorithm first,

thus creating a need to understand and identify the easier instances [4]. Smith et al. used

instance-level predictions to identify and characterize instances that are likely to be mis-

classified [23] and used this information to create a curriculum [22]. Other work has also

used the instance-level predictions for meta-learning. The classifier output difference (COD)

measures the distance between two learning algorithms as the probability that the learning

algorithms make different predictions on test instances [16]. Unsupervised meta-learning

(UML) clusters learning algorithms based on their COD scores (rather than accuracy) to ex-

amine the behavior of the learning algorithms [13]. Meta-learning for algorithm selection can

then be done over the clusters rather than a larger set of learning algorithms to recommend a

cluster of learning algorithms that all behave similarly [14]. Additionally, several techniques

215

treat instances individually during the training process, such as filtering instances from the

training set based on their instance-level meta-features [21] or weighting the instances [18].

Other attempts have been made at creating a repository for machine learning experiments

from which learning can be conducted [20, 24]. However, we feel that they lack simplicity

and/or extensibility. In addition to providing instance-level information, we hope to bridge

this gap with the MLRR. Probably the most prominent and well-developed data repository

is ExpDB, an experiment database that provides a framework for reporting experimental

results and their associated workflow [24]. The purpose of ExpDB is to comprehensively

store the workflow process of all experiments for reproducibility. One of the results of

storing the experiments is that the results can be used for meta-learning. Unfortunately,

there is a relatively steep learning curve to access the data due to the inherent complexity

involved in storing all of the details about exact reproducibility. Because of this complexity

and formality, it is difficult to directly access the information that would be most beneficial

for meta-learning, which may deter some potential users. Additionally, ExpDB does not

currently support storage and manipulation of any instance level features.

We acknowledge that maintaining a database of previous experiments is not a trivial prob-

lem. We do, however, add our voice to support the importance of maintaining a repository

of machine learning results and offer an effective solution for storing results from previous ex-

periments. Our primary goal is to maintain simplicity and provide easily accessible data for

meta-learning to 1) help promote more research in meta-learning, 2) provide a standard set

of data sets for meta-learning algorithm comparison, and 3) continue to stimulate research

at the instance level.

We next describe our approach for providing a repository for machine learning meta-data

that emphasizes ease of access to the meta-data. MLRR currently has the results from 72

data sets, 9 learning algorithms and 10 hyperparameter settings for each learning algorithm.

The database description is provided in Section 9.3. How to add new experimental results

to the database is detailed in Section 9.4. We then give a more detailed description of the

216

data set level and instance level meta-features that are used in the MLRR. Conclusions and

directions for future work are provided in Section 9.6.

9.2 Meta-data Set Descriptions

The purpose of the machine learning results repository (MLRR) is to provide easy access to

the results of previous machine learning experiments for meta-learning at the data set and

instance levels. This, in turn, would allow other researchers interested in meta-learning and

in better understanding machine learning algorithms direct access to prior results without

having to re-run all of the algorithms or learn how to navigate a more complex experiment

database. The quality of an induced model for a task is dependent on at least three things:

1. the learning algorithm chosen to induce the model,

2. the hyperparameter settings for the chosen learning algorithm, and

3. the instances used for training.

When we refer to an experiment, we mean the results from training a learning algorithm

l with hyperparamter settings λ on a training set t. We first describe how we manage

experiment information, and then describe the provided meta-data sets.

9.2.1 Experiment Information

The information about each experiment is provided in three tables in MLRR. Which learn-

ing algorithm and hyperparameters were used is provided in a file structured as shown in

Table 9.1. It provides the toolkit including the version number that was ran, the learning

algorithm, and the hyperparameters that were used. This allows for multiple learning algo-

rithms, hyperparameters, and toolkits to be compared. In the examples in Table 9.1, the

class names from the Weka machine learning toolkit [9] and the Waffles machine learning

toolkit [7] are shown. LA seed corresponds to the learning algorithm that was used (LA)

and to a seed that represents which hyperparameter setting was used (seed). The LA seed

217

Table 9.1: The structure of the meta-data set that describes the hyperparameter settings for
the learning algorithms stored in the database.

LA S Toolkit Version Hyperparameters

BP 1 weka 3.6.11 weka.classifiers.functions.MultilayerPerceptron\
– -L 0.261703 -M 0.161703 -H 12 -D

BP 2 weka 3.6.11 weka.classifiers.functions.MultilayerPerceptron\
– -L 0.25807 -M 0.15807 -H 4

BP 3 waffles 13-12-09 neuralnet -addlayer 8 -learningrate 0.1 \
-momentum 0 -windowsepochs 50

...
...

...
...

C4.5 1 weka 3.6.11 weka.classifiers.trees.J48 – -C 0.443973 -M 1
...

...
...

...

Table 9.2: The structure of the table for mapping learning algorithm hyperparameters be-
tween different toolkits for the backpropagation learning algorithm.

Command line parameters
toolkit LR Mo HN DC WE

weka -L -M -H -D ?
waffles -learningrate -momentum -addlayer ? -windowsepochs
...

...
...

...
...

...

will be used in other tables as a foreign key to map back to this table. A seed of -1 represents

the default hyperparameter settings as many studies examine the default behavior as given

in a toolkit and the default parameters are commonly used in practice.

As the parameter values differ between toolkits, there is a mapping provided to distinguish

hyperparameter settings. For example, Weka uses the “-L” parameter to set the learning rate

in backpropagation while the Waffles toolkit uses “-learningrate”. Also, some toolkits have

hyperparameters that other implementations of the same learning algorithm do not include.

In such cases, an unknown value will be provided in the meta-data set. This mapping is

shown in Table 9.2 for the backpropagation learning algorithm. The first row contains the

values used by MLRR. The following rows contain the command-line parameter supplied to

a specific toolkit to set that hyperparameter.

218

Table 9.3: The structure of the meta-data set that indicates which instances were used for
training given a random seed.

toolkit seed # folds fold 1 2 3 . . .

weka 1 10 1 1 1 1 . . .
weka 1 10 2 1 0 1 . . .

...
...

...
...

weka 1 10 10 0.74 1 ? . . .
weka 2 1 10 ? 1 1 . . .

...
...

...
...

A mapping of which instances are used for training is also provided in a separate file.

The structure of this table is shown in Table 9.3. Each row represents an experiment as

toolkit seed numFolds fold. The toolkit represents which toolkit was used, the seed repre-

sents the random seed that was provided to the toolkit, numFolds represents how many folds

were ran, and fold represents in which fold an instance was included for testing. The values

in the following columns represent if an instance was used for training or testing. There is

one column for each instance in the data set. They are stored as real values. This allows

for the situations when training instances have associated weights. In the file, an unknown

value of “?” represents a testing instance, otherwise a real value represents a training in-

stance. A value of 0 represents a filtered instance, a value of 1 represents an unweighted

training instance and any value between 0 and 1 represents the weight for that training

instance. In the cases where there are specific training and testing sets, then the row will

be labeled as toolkit 0 0 1 and information for the training set can be entered as before.

A random test/training split of the data is represented as toolkit seed percentSplit 1 where

“percentSplit” represents the percentage of the data set that was used for testing as generated

by the toolkit.

219

9.2.2 Meta-data sets

One of the features of MLRR is its focus on storing and presenting instance level information,

namely, instance level characteristics and associated predictions from previous experiments.

Indeed, the MLRR is designed intentionally from the instance level perspective, from which

data set level information can be computed (e.g., accuracy or precision).

As one of the purposes of the MLRR is ease of access, the MLRR stores several data

sets in attribute-relation file format (ARFF) which is supported by many machine learning

toolkits. In essence, ARFF is a comma or space separated file with attribute information

and possible comments. The precomputed meta-data sets include instance level meta-data

sets and data set level meta-data sets.

At the instance level, MLRR provides for each data set a meta-data set that stores

the instance level meta-features and the prediction from each experiment. This allows for

analyses to be done exploring the effects of hyperparameters and learning algorithms at the

instance-level, which is currently mostly overlooked. For each data set, a meta-data set is

provided that gives the values for the instance level meta-features, the actual class value

(stored as a numeric value), and the predicted class value for each experiment. The training

set and learning algorithm/hyperparameter information is stored in the column heading

as “LA seed/hyperparameter” where LA is a learning algorithm and hyperparameter is the

hyperparameter setting for the learning algorithm. Together, they map to the entries in

Table 9.1. The seed represents the seed that was used to partition the data (see Table 9.3).

The structure of the instance level meta-data set is shown in Table 9.4. In the given example,

instance 77 is shown. The “inst meta” section provides the instance level meta-features for

that instance. The actual class label is 2. The predictions from the experiments on this data

set are provided in the following columns (i.e., experiment BP 1/1 predicted class 3, BP N/1

predicted class 2, etc.).

At the data set level, several meta-data sets are provided:

220

Table 9.4: The structure of the meta-data set at the instance level.

inst meta predictions
kAN MV . . . act BP 1/1 . . . BP N/1 . . . BP N/M C4.5 1/1 . . .

77 0.92 0 . . . 2 3 . . . 2 . . . 2 3 . . .
...

...
...

...
...

...
...

...

Table 9.5: The structure of the meta-data set at the data set level.

data set meta-features LA accuracies
data set numInst numAttr . . . BP 1 BP 2 . . . BP N C4.5 1 . . .

iris 150 4 . . . 96.80 95.07 . . . 93.47 95.60 . . .
abalone 4177 8 . . . 20.27 29.84 . . . 21.91 23.24 . . .
...

...
...

...
...

...
...

...

• a general meta-data set that stores the data set meta-features and the average N by

10-fold cross-validation accuracy for all of the data sets from a learning algorithm with

a given hyperparameter setting.

• for each learning algorithm a meta-data set that stores the data set meta-features,

the learning algorithm hyperparameter settings, and the average N by 10-fold cross-

validation accuracy for all of the data sets for the given hyperparameter setting.

The structure for the general meta-data set is provided in Table 9.5. The structure and in-

formation of this meta-data set is typical of that used in previous meta-learning studies that

provides a mapping from data set meta-features to accuracies obtained by a set of learning

algorithms. Most previous studies have been limited to only using the default hyperparam-

eters, however. The MLRR includes the accuracies from multiple hyperparameter settings.

The hyperparameter settings from each learning algorithm are denoted by a “LA #” where

LA refers to a learning algorithm and # refers to which hyperparameter setting was used

for that learning algorithm.

The meta-data sets for each learning algorithm are designed to aid in algorithmic hyper-

parameter estimation, i.e., given a data set, can we predict which hyperparameter setting

will give the highest classification accuracy. For each learning algorithm, a meta-data set is

221

Table 9.6: The structure of the table for mapping learning algorithm hyperparameters among
toolkits.

DS meta features toolkit hyperparameters
data set numInst numAttr . . . weka LR Mo . . . acc

iris 150 4 . . . weka 0.71 0.61 . . . 96.80
iris 150 4 . . . weka 0.11 0.25 . . . 97.04
...

...
...

...
...

...
...

provided that contains the data set meta-features, the toolkit that was used, the hyperparam-

eter setting and the average accuracy for each unique tool kit/hyperparameter combination.

The structure of the meta-data set for each learning algorithm is provided in Table 9.6. The

accuracy (“acc”) represents the average accuracy for all k-fold validation runs (i.e., multi-

ple runs of the same learning algorithm with different random seeds to partition the folds).

The toolkit is also provided to allow a user to compare toolkits or only do hyperparameter

estimation for a single toolkit.

MLRR provides easy access for researchers and practitioners to a large and varying set

of meta-data information as shown in the tables above. The provided meta-data sets are a

snapshot of an underlying database that stores all of the previous experimental results that

can be updated as more results are obtained. A revision history of the data sets is provided

so that results can be compared even if the meta-data set has been updated.

9.3 Database Description

MLRR uses MongoDB as the database to store the results from machine learning experiments.

MongoDB is a NoSQL database that allows for adding new features (such as new learning

algorithms and/hyperparameters), thus, escaping the rigidity of the more traditional SQL

databases. This allows for easily expanding the database with new learning algorithms

and/or hyperparameters. Of course, this is theoretically also possible in a relational database,

provided the database has been designed adequately. For example, one could certainly have,

and that would indeed be following good design principles, one table for the algorithms and

222

one table for the hyper parameters with appropriate foreign keys. However, such design

requires some amount of foresight. In traditional relational databases, the information that

needs to be stored (and how) has to be planned for in advance. Otherwise, when new features

are desired, a new schema needs to be created and then the database has to be migrated over

to the new schema. With a NoSQL database, new learning algorithms/hyperparameters and

other pieces of information can easily be added into the MLRR.

The data is stored as a document database as collections of key-value pairs. Each collec-

tion represents the experimental results on a particular data set. In each collection, the keys

are LA hyperparameterSetting. The value then is a JSON text document that stores the

results of an experiment (e.g., the results of 10-fold cross-validation on the iris data set using

C4.5). These documents also contain pointers to other documents that hold information

about training/testing sets for each experiment. The data set/instance level meta-features

are stored in separate documents in their respective data set collection. A separate collection

stores information about the learning algorithms and their hyperparameters.

The best way to visualize the database is as a hierarchy of key-value pairs as shown

in Figure 9.1. At the top-level, there are collections - these are the individual data sets

in the database. Each of them holds a collection of documents that represent an output

file, or experiment, named by its learning algorithm with two numbers that correspond

to the random seed used to partition the data and the hyperparameter setting. In these

documents, the predictions for each instance is stored. Collections for which instances were

used for training hyperparameter settings are also included.

223

Figure 9.1: Hierarchical representation of how the results from machine learning experiments are stored in the NoSQL database
for the MLRR. Each data set has a collection containing the predictions for each instance from a learning algorithm as well
as its meta-features. A separate collection stores all of the information for the learning algorithms and which hyperparameters
were used. Another collection stores the information for which instances were used for training.

224

9.4 Extending the Database

The data provided by MLRR only contains a snapshot of current machine learning results.

To allow more machine learning results to be added and to allow the MLRR to evolve as the

state of machine learning evolves, MLRR provides a method to upload new machine learning

results. The MLRR also stores the original data sets to allow a user to add results from

additional experiments on the current set of data sets. The results from experimentation on

a new data set require that the new data set be uploaded as well as the experimental results.

Scripts are provided to calculate the meta-features for the new data set. In the case where

a data set is proprietary or has other privacy/licensing issues that prevent it from being

posted, the meta-features can be calculated on the data set without storing the actual data

set.

Currently, scripts are provided to upload the output from running Weka. This provides a

simple way to upload experimental results from a commonly used toolkit. The file is slightly

modified such that the first line provides which learning algorithm and hyperparameters were

used. The database will have the ability to upload files generated by other toolkits in the

future.

Of course, there are issues of data reliability. Currently, all of the results stored in the

MLRR are from our experiments. To help with data reliability, we require that the script(s)

and executable(s) required to reproduce the results are uploaded along with the results.

This allows the results to be verified if their validity is questioned. If the results from an

experiment are thought to be invalid, they can can be flagged, and inspected for possible

removal from the MLRR.

9.5 Included Meta-features

In this section, we detail the meta-features that are included in the machine learning results

repository (MLRR). We store a set of data set meta-features that have been commonly used

225

in previous meta-learning studies. Specifically, we used the meta-features from Brazdil et

al. [5], Ho and Basu [10], Pfahringer et al. [17], and Smith et al. [23]. As the underlying

database is a NoSQL database, additional meta-features can be easily added in the future.

We now describe the meta-features from each study.

The study by Brazdil et al. [5] examined ranking learning algorithms using instance-based

learning. The meta-features are designed to be quickly calculated and to represent properties

that affect algorithm performance.

• Number of examples. This feature helps identify how scalable an algorithm is based on

the size of its input.

• Proportion of symbolic attributes. This feature can be used to consider how well an

algorithm deals with symbolic or numeric attributes.

• Proportion of missing values. This features can be used to consider how robust an

algorithm is to incomplete data.

• Proportion of attributes with outliers. An attribute is considered to have an outlier if

the ratio of variances of the mean value and the α-trimmed mean is smaller than 0.7

where α = 0.05. This feature can be used to consider how robust an algorithm is to

outlying numeric values.

• Entropy of classes. This feature measures one aspect of problem difficulty in the form

of whether one class outnumbers another.

Ho and Basu [10] sought to measure the complexity of a data set to identify areas of

the data set that contribute to its complexity focusing on the geometrical complexity of the

class boundary.

• Measures of overlap of individual feature values:

226

– The maximum Fisher’s Discriminant ratio. This is the Fisher’s discriminant ratio

for an attribute:

f =
(µ1 − µ2)

2

σ2
1 + σ2

2

,

where µi and σ2
i represent the mean and variance for a class. The maximum

Fisher’s discriminant value over the attributes is used for this measure. For mul-

tiple classes, this measure is expanded to:

f =

∑C

i=1

∑C

j=i+1pipj(µi − µj)
2

∑C

i=1piσ
2
i

where C is the number of classes and pi is the proportion of instances that belong

to the ith class.

– The overlap of the per-class bounding boxes. This feature measures the overlap of

the tails of the two class-conditional distributions. For data sets with more than

2 classes, the overlap of the per-class bounding boxes is computed for each pair

of classes and the sum over all pairs of classes is returned.

– The maximum (individual) feature efficiency. This feature measures how discrim-

inative a single feature is. For each attribute, the ratio of instances with differing

classes that are not in the overlapping region is returned. The attribute that

produces the largest ratio of instances is returned.

– The collective feature efficiency. This measure builds off of the previous one.

The maximum ratio is first calculated as before. Then, the instances that can

be discriminated are removed and the maximum (individual) feature efficiency is

recalculated with the remaining instances. This process is repeated until no more

instances can be removed. The ratio of instances that can be discriminated is

returned.

• Measures of class separability:

227

– The minimized sum of the error distance of a linear classifier. This feature mea-

sures to what extent training data is linearly separable and returns the difference

between a linear classifier and the actual class value.

– The training error of a linear classifier. This feature also measures to what extent

the training data is linearly separable.

– The fraction of points on the class boundary. This feature estimates the length of

the class boundary by constructing a minimum spanning tree over the entire data

set and returning the ratio of the number of nodes in the spanning tree that are

connected and belong to different classes to the number of instances in the data

set.

– The ratio of average intra/inter class nearest neighbor distance. This measure

compares the within class spread with the distances to the nearest neighbors of

the other classes. For each instance, the distance to its nearest neighbor with

the same class (intraDist(x)) and to its nearest neighbor with a different class

(interDist(x)) is calculated. Then the measure returns:

∑N

i intraDist(xi)
∑N

i interDist(xi)

where N is the number of instances in the data set.

– The leave-one-out error rate of the one-nearest neighbor classifier. This feature

measures how close the examples of different classes are.

• Measures of geometry, topology, and density of manifolds

– The nonlinearity of a linear classifier. Following Hoekstra and Duin [11], given a

training set, a test set is created by linear interpolation with random coefficients

between pairs of randomly selected instances of the same class. The error rate of

a linear classifier trained with the original training set on the generated test set

is returned.

228

– The nonlinearity of the one-nearest neighbor classifier. A test set is created as

with the previous feature, but the error rate of a 1-nearest neighbor classifier is

returned.

– The fraction of maximum covering spheres. A covering sphere is created by cen-

tering on an instance and growing as much as possible before touching an instance

from another class. Only the largest spheres are considered. The measure returns

the number of spheres divided by the number of instances in the data set and

provides an indication of how much the instances are clustered in hyperspheres

or distributed in thinner structures.

– The average number of points per dimension. This measure is the ratio of instances

to attributes and roughly indicates how sparse a data set is.

Multi-class modifications are made according to the implementation of the data complexity

library (DCoL) [15].

Pfahringer et al. [17] introduced the notion of using performance values (i.e., accuracy) of

simple and fast classification algorithms as meta-features. The landmarkers that are included

in the MLRR are listed below.

• Linear discriminant learner. Creates a linear classifier that finds a linear combination

of the features to separate the classes.

• One nearest neighbor learner. Redundant with the leave-one-out error rate of the

one-nearest neighbor classifier from Ho and Basu [10].

• Decision node learning. A decision stump that splits on the attribute that has the

highest information gain. A decision stump is a decision tree with only one node.

• Randomly chosen node learner. A decision stump that splits on a randomly chosen

attribute.

• Worst node learner. A decision stump that splits on the attribute that has the lowest

information gain.

229

• Average node learner. A decision stump is created for each attribute and the average

accuracy is returned.

The use of landmarkers has been shown to be competitive with the best performing meta-

features with a significant decrease in computational effort [19].

Smith et al. [23] sought to identify and characterize instances that are difficult to classify

correctly. The difficulty of an instance was determined based on how frequently it was

misclassified. To characterize why some instances are more difficult than others to classify

correctly, the authors used different hardness measures. They include:

• k-Disagreeing Neighbors. The percentage of k nearest neighbors that do not share

the target class of an instance. This measures the local overlap of an instance in the

original space of the task.

• Disjunct size. This feature indicates how tightly a learning algorithm has to divide

the task space to correctly classify an instance. It is measured as the size of a disjunct

that covers an instance divided by the largest disjunct produced, where the disjuncts

are formed using the C4.5 learning algorithm.

• Disjunct class percentage. This features measure the overlap of an instance on a subset

of the features. Using a pruned C4.5 tree, the disjunct class percentage is the number

of instances in a disjunct that belong to the same class divided by the total number of

instances in the disjunct.

• Tree depth (pruned and unpruned). Tree depth provides a way to estimate the descrip-

tion length, or Kolmogorov complexity, of an instance. It is the depth of the leaf node

that classifies an instance in an induced tree.

• Class likelihood. This features provides a global measure of overlap and the likelihood

of an instance belonging to the target class. It is calculated as:

|x|
∏

i

p(xi|t(x))

230

where |x| represents the number of attributes for the instance x and t(x) is the target

class of x.

• Minority value. This feature measures the skewness of the class that an instance

belongs to. It is measured as the ratio of instances sharing the target class of an

instance to the number of instances in the majority class.

• Class balance. This feature also measures the class skew. First, the ratio of the number

of instances belonging the target class to the total number of instances is calculated.

The difference of this ratio with the ratio of one over the number of possible classes is

returned. If the class were completely balanced (i.e. all class had the same number of

instances), a value of 0 would be returned for each instance.

The hardness measures are designed to capture the characteristics of why instances are hard

to classify correctly. Data set measures can be generated by averaging the hardness measures

over the instances in a data set.

9.6 Conclusions and Future Work

In this paper, we presented the machine learning results repository (MLRR) an easily acces-

sible and extensible database for meta-learning. MLRR was designed with the main goals

of providing an easily accessible data repository to facilitate meta-learning and providing

benchmark meta-data sets to compare meta-learning experiments. To this end, the MLRR

provides ready to download meta-data sets of previous experimental results. One of the

important features of MLRR is that it provides meta-data at the instance level. Of course,

the results could also be used as a means of comparing one’s work with prior work as they

are stored in the MLRR. The MLRR can be accessed at http://axon.cs.byu.edu/mlrr.

The MLRR allows for reproducible results as the data sets are stored on the server and

as the class names and toolkits are provided. The ExpDB tends to be a lot more rigid in its

design as it is based on relational databases and PMML (predictive model markup language),

231

http://axon.cs.byu.edu/mlrr

thus exhibiting a relatively steep learning curve to import and extract data. The MLRR is

less rigid in its design allowing for easier access to the data and more extensibility, with the

trade-off of less formality.

One direction for future work is to integrate the API provided at OpenML1 (an imple-

mentation of an experiment database) to incorporate their results with those that are in the

MLRR. This will help provide easy access to the results that are already stored in OpenML

without having to incur the learning cost associated with understanding the database schema.

Another open problem is how to store information about how a data set is preprocessed.

Currently, the MLRR can store the instance level information resulting from preprocessing,

but it lacks a mechanism to store the preprocessing process. Integrating this information in

an efficient way is a direction of current research.

References

[1] Matti Aksela and Jorma Laaksonen. Using diversity of errors for selecting members of

a committee classifier. Pattern Recognition, 39(4):608–623, 2006.

[2] Shawkat Ali and Kate A. Smith. On learning algorithm selection for classification.

Applied Soft Computing, 6(2):119–138, 2006.

[3] Shawkat Ali and Kate Amanda Smith-Miles. A meta-learning approach to automatic

kernel selection for support vector machines. Neurocomputing, 70:173–186, 2006.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th International Conference on Machine Learning,

pages 41–48. ACM, 2009.

[5] Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. Ranking learning algo-

rithms: Using ibl and meta-learning on accuracy and time results. Machine Learning,

50(3):251–277, 2003. doi: http://dx.doi.org/10.1023/A:1021713901879.

1www.openml.org

232

www.openml.org

[6] Gavin Brown, Jeremy L. Wyatt, and Peter Tino. Managing diversity in regression

ensembles. Journal of Machine Learning Research, 6:1621–1650, 2005.

[7] Michael S. Gashler. Waffles: A machine learning toolkit. Journal of Machine Learning

Research, MLOSS 12:2383–2387, July 2011. ISSN 1532-4435.

[8] Taciana A. F. Gomes, Ricardo Bastos Cavalcante Prudncio, Carlos Soares, Andr L. D.

Rossi, and Andr C. P. L. F. Carvalho. Combining meta-learning and search techniques

to select parameters for support vector machines. Neurocomputing, 75(1):3–13, 2012.

[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and

Ian H. Witten. The weka data mining software: an update. SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

[10] Tin Kam Ho and Mitra Basu. Complexity measures of supervised classification problems.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:289–300, March

2002.

[11] Aarnoud Hoekstra and Robert P.W. Duin. On the nonlinearity of pattern classifiers. In

Proceedings of the 13th International Conference on Pattern Recognition, pages 271–275,

1996.

[12] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):

181–207, 2003.

[13] Jun Lee and Christophe Giraud-Carrier. A metric for unsupervised metalearning. In-

telligent Data Analysis, 15(6):827–841, 2011.

[14] Jun Lee and Christophe Giraud-Carrier. Automatic selection of classification learning

algorithms for data mining practitioners. Intelligent Data Analysis, 17(4):665–678, 2013.

233

[15] Albert Orriols-Puig, Núria Macià, Ester Bernadó-Mansilla, and Tin Kam Ho. Docu-

mentation for the data complexity library in c++. Technical Report 2009001, La Salle

- Universitat Ramon Llull, April 2009.

[16] Adam H. Peterson and Tony R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning, pages 68–75,

2005.

[17] Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning

by landmarking various learning algorithms. In Proceedings of the 17th International

Conference on Machine Learning, pages 743–750, San Francisco, CA, USA, 2000. Mor-

gan Kaufmann Publishers Inc. ISBN 1-55860-707-2.

[18] Umaa Rebbapragada and Carla E. Brodley. Class noise mitigation through instance

weighting. In Proceedings of the 18th European Conference on Machine Learning, pages

708–715, 2007.

[19] M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel. Automatic classifier

selection for non-experts. Pattern Analysis & Applications, 17(1):83–96, 2014.

[20] Matthias Reif. A comprehensive dataset for evaluating approaches of various meta-

learning tasks. In Proceedings of the 1st International Conference on Pattern Recognition

Applications and Methods, pages 273–276. SciTePress, 2012.

[21] Michael R. Smith and Tony Martinez. Improving classification accuracy by identify-

ing and removing instances that should be misclassified. In Proceedings of the IEEE

International Joint Conference on Neural Networks, pages 2690–2697, 2011.

[22] Michael R. Smith and Tony Martinez. A comparative evaluation of curriculum learn-

ing with filtering and boosting in supervised classification problems. Computational

Intelligence, page to appear, 2014. URL http://arxiv.org/pdf/1312.4986.

234

http://arxiv.org/pdf/1312.4986

[23] Michael R. Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance level

analysis of data complexity. Machine Learning, 95(2):225–256, 2014.

[24] Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, and Geoffrey Holmes. Ex-

periment databases - a new way to share, organize and learn from experiments. Machine

Learning, 87(2):127–158, 2012.

235

Chapter 10

Conclusions, Contributions, and Remaining Challenges

This dissertation addresses understanding the dependency between the training data used

in machine learning problems, the learning algorithms, and their associated hyperparameter

settings. The ultimate goal of using this knowledge would be to, given a data set, automat-

ically 1) preprocess the data set, 2) select a learning algorithm, and 3) set the associated

hyperparameters for the selected learning algorithm such that the induced hypothesis is most

appropriate for the task. The most appropriate hypothesis is determined by the results from

previous machine learning experiments that was used for meta-learning. This dissertation

has established a foundation and tools upon which future research can be built to take a

more principled approach to machine learning.

10.1 Summary and Contributions

The quality of an induced hypothesis in machine learning is dependent on 1) the quality of

the training data, 2) the learning algorithm selected, and 3) the associated hyperparameters

for the selected learning algorithm, as discussed in Chapter 1. Preprocessing the training

data, selecting a learning algorithm, and setting its hyperparameters is a challenging task,

even for machine learning experts and is often done heuristically. Most of the previous works

have only considered learning algorithm selection or hyperparameter selection/optimization

in isolation. This approach was shown to be beneficial, but was often criticized because

the performance a learning algorithm is dependent on the hyperparameter settings and

because some learning algorithms are better suited for certain tasks. An examination of the

236

quality of the data at the instance-level has received very little attention in previous work.

Understanding the principles of how individual instances affect the induced hypothesis allows

for a more principled approach for applying machine learning to a specific task.

Chapter 3 introduces instance hardness and the hardness measures, which identify and

characterize instances that are hard to correctly classify. This is, to our knowledge, the first

work that examines systematically the influence of each training instance on the induced

model. The work on instance hardness confirms many of the reasons for an instance being

misclassified, namely due to class overlap and dispels the magnitude of impact for class

imbalance, which has a minor impact if there is no class overlap. This chapter lays the

ground work for Chapters 4 through 6.

Chapters 4, 5, and 6 present methods for integrating the instance-level information into

the learning process through filtering instances that should be misclassified, weighting the

instances, and curriculum learning respectively. Chapter 7 shows the that incorporating

classifier diversity in ensembles and filtering is more robust to noise.

Chapter 8 compares the potential and current state of filtering and hyperparameter opti-

mization. In their current state, both techniques perform similarly. However, when examin-

ing their potential, filtering has a much greater potential than hyperparameter optimization.

This is because most learning algorithms do not consider instances individually and they do

a global optimization.

Chapter 9 presents the Machine Learning Results Repository, a repository for the machine

learning community for storing the results of previous experiments. The repository addresses

the problem of obtaining data for meta-learning problems. It also is the first repository to

store results at the instance-level – allowing for instance-level meta-learning. Storing the

results at the instance-level also allows for a wide variety of data set-level measures to be

calculated.

237

10.2 Directions for Future Work

This dissertation lays the groundwork for facilitating a more principled approach to machine

learning. This dissertation presents one method (instance hardness) for analyzing instances.

One direction for future work includes examining how each instance affects the induced model.

The brute force method would be to train on each subset of instances in the power set of

the training data. A more feasible solution would be to induce hypotheses on overlapping

subsets of the training data such that each instance is included in multiple subsets. The

hypotheses can then be analyzed when each instance was used for training.

One area that this dissertation did not cover is feature selection/extraction. The features

have a large impact on the quality of the training data. Thus, in addition to selecting which

instances to use for training, the features should also be considered.

One disadvantage of the current approaches for integrating instance information into

the learning process is that it requires a two-step process: 1) calculate the instance-level

information, and then 2) integrate this information into the learning process. Developing

a one-step process would be beneficial. However, detrimental instances have the greatest

impact in the early stages of training. One possible solution would be to use the hardness

measures to determine how to handle each instance. The action to be taken for the instances

in a new data set could be learned using the results from previous experiments.

Of course understanding how the instances affect each other and which features are the

most predictive involves a very large search space. Thus, in our estimation, the development

of tools such as the machine learning results repository are of great worth moving forward.

The repository represents a large collection of results that can be used to do meta-learning.

This will facilitate more researchers with the resources for conducting research in meta-

learning. Additionally, we hope that the repository will bring researchers together and

facilitate collaboration. Of course, there are a number of issues revolving around the machine

learning results repository that need to be addressed.

238

1. Easy access of data. Most researchers are busy and do not want to have to learn one

more thing to access data. The repository was designed to be simple so that researchers

do not have to learn how to use the web site.

2. Validity of the data. Having a community-based resource, there needs to be some

way to determine the quality of the data and protect against faulty data. There are a

number of approaches ranging from running the experiments on our own servers follow-

ing our specified protocols to a community-based validation system when questionable

results can be flagged.

3. Incentive to users. Using the repository is obviously optional. Thus, how can we

motivate other researchers to upload their results to repository for the greater good of

the community as a whole? Currently, we are looking at partnering with conferences

to help in creating reproducible results that would require the use of the repository.

We are also examining the development of plug-ins for popular machine learning tool

kits.

4. Accommodating various formats. Each user will store their results in different formats.

How can the repository be robust enough to handle a variety of results formats and

provide a simple method for uploading results?

These are a few of the challenges facing the repository.

Once data is accumulated, meta-learning can be pursued more efficiently. Additional

tools can be created specifically for meta-learning. One such work is the use of collaborative

filtering techniques for meta-learning. The latent neural network (LNN) was developed as

a means for addressing the issue of non-predictive meta-features. However, the LNN only

exploits the learning algorithms and associated hyperparameters that it has information

about. The LNN cannot explore or suggest to explore new options. Thus, a combination

of exploitation and exploration can be examined. One starting point could be to provide

239

a learning mechanism to Bayesian optimization techniques to leverage the exploitation of

previous results while also being able to explore new areas of the hypothesis space.

While meta-learning is still in its infancy, taking a more principled approach to machine

learning is already starting to take hold. The importance of meta-learning will increase as

more institutions look to use machine learning techniques to address their problems.

240

	Brigham Young University
	BYU ScholarsArchive
	2015-04-01

	Using Instance-Level Meta-Information to Facilitate a More Principled Approach to Machine Learning
	Michael Reed Smith
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I Background and Motivation
	1 Introduction
	1.1 Supervised learning
	1.2 Noisy, Outlier, and Detrimental Instances
	1.3 Meta-learning
	1.4 Overview of the Dissertation
	1.5 Publications

	References
	2 Related Work
	2.1 Meta-Learning
	2.2 Data Complexity
	2.3 Instance Filtering/Selection
	2.4 Parameter Tuning/Modification

	References
	3 An Instance Level Analysis of Data Complexity
	3.1 Introduction
	3.2 Instance Hardness
	3.3 Hardness Measures
	3.4 Experimental Methodology
	3.5 Instance-level Analysis
	3.6 Integrating Instance Hardness into the Learning Process
	3.6.1 Informative Error
	3.6.2 Filtering the data set

	3.7 Data Set-level Analysis
	3.8 Related Work
	3.9 Conclusions and Future Work

	References

	II Improving Machine Learning by Integrating Meta-information about Individual Training Examples into the Learning Process
	4 Improving Classification Accuracy by Identifying and Removing Instances that Should Be Misclassified
	4.1 Introduction
	4.2 Experimental Methodology
	4.3 PRISM and Instance Types
	4.4 Results
	4.5 Related Work
	4.6 Conclusions

	References
	5 Reducing the Effects of Detrimental Instances
	5.1 Introduction
	5.2 Related Work
	5.3 Modeling Detrimentality
	5.4 Estimating p(yi|xi)
	5.5 Methodology
	5.6 Results
	5.6.1 Weighting Schemes
	5.6.2 Weighting VS Filtering

	5.7 Conclusions

	References
	6 A Comparative Evaluation of Curriculum Learning with Filtering and Boosting in Supervised Classification Problems
	6.1 Introduction
	6.2 Related Works
	6.3 Ordering the Instances
	6.4 Empirical Evaluation
	6.4.1 Curriculum Learning
	6.4.2 Comparison with Filtering and Boosting

	6.5 Conclusions

	References
	Appendix
	6.A Accuracies from the Learning Algorithms used to Compute Instance Hardness
	6.B Individual Results for Adjusting the Initial Complexity Level
	6.C Methodology for Hyper-Parameter Optimization

	References
	7 Becoming More Robust to Label Noise with Classifier Diversity
	7.1 Introduction
	7.2 Noise Identification using Classifier Diversity
	7.2.1 Identifying Noisy Instances
	7.2.2 Handling Noisy Instances

	7.3 Other Noise Handling Approaches
	7.3.1 Filtering Methods
	7.3.2 Weighting Methods

	7.4 Methodology
	7.5 Results
	7.5.1 Application of Noise Handling without Artificial Noise
	7.5.2 Comparison of Noise Handling Techniques
	7.5.3 Comparison with an Ensemble

	7.6 Conclusions

	References

	III Conclusion
	8 The Potential Benefits of Data Set Filtering and Learning Algorithm Hyperparameter Optimization
	8.1 Introduction
	8.2 Related Work
	8.3 Preliminaries
	8.3.1 Hyperparameter Optimization
	8.3.2 Filtering

	8.4 Implementation Details
	8.4.1 Bayesian Hyperparameter Optimization
	8.4.2 Filtering

	8.5 Filtering and HPO
	8.5.1 Experimental Methodology
	8.5.2 Optimistic Approach
	8.5.3 Standard Approach

	8.6 Conclusion

	References
	9 An Easy to Use Repository for Comparing and Improving Machine Learning Algorithm Usage
	9.1 Introduction
	9.2 Meta-data Set Descriptions
	9.2.1 Experiment Information
	9.2.2 Meta-data sets

	9.3 Database Description
	9.4 Extending the Database
	9.5 Included Meta-features
	9.6 Conclusions and Future Work

	References
	10 Conclusions, Contributions, and Remaining Challenges
	10.1 Summary and Contributions
	10.2 Directions for Future Work

