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ABSTRACT

Sensor-Driven Hierarchical Path Planning for Unmanned Aerial
Vehicles Using Canonical Tasks and Sensors

Spencer J. Clark
Department of Computer Science, BYU

Master of Science

Unmanned Aerial Vehicles (UAVs) are increasingly becoming economical platforms
for carrying a variety of sensors. Building flight plans that place sensors properly, temporally
and spatially, is difficult. The goal of sensor-driven planning is to automatically generate
flight plans based on desired sensor placement and temporal constraints. We propose a
simple taxonomy of UAV-enabled sensors, identify a set of generic sensor tasks, and argue
that many real-world tasks can be represented by the taxonomy. We present a hierarchical
sensor-driven flight planning system capable of generating 2D flights that satisfy desired
sensor placement and complex timing and dependency constraints. The system makes use of
several well-known planning algorithms and includes a user interface. We conducted a user
study to show that sensor-driven planning can be used by non-experts, that it is easier for
non-experts than traditional waypoint-based planning, and that it produces better flights
than waypoint-based planning. The results of our user study experiment support the claims
that sensor-driven planning is usable and that it produces better flights.

Keywords: Flight planning, unmanned aerial vehicles, UAVs
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) are frequently used as sensor platforms. They are

capable of carrying a wide variety of sensors. Cameras (visible and other spectra), radio

antennas, laser range finders, radars, and radiation and chemical detectors are all examples

of UAV-mounted sensors.

As illustrated in Table 1.1, there is a large set of sensors flown by a wide variety of users

including militaries [1], law enforcement agencies [2, 3], commercial interests, and hobbyists.

There are many different tasks that these users want to accomplish using the wide variety

of UAV-mounted sensors. A business, for example, may be interested in acquiring imagery

for cartography [4] or aerial survey [5]. They could use a UAV equipped with a camera or

synthetic aperture radar. Military users might need aerial video for reconnaissance [6] or

antennas for military signals intelligence purposes [7]. A research group might use a radiation

sensor to measure radiation levels over a wide area [8]. Police or rescue organizations can use

UAVs for search and rescue [9–12]. These are just a few possible UAV payloads.

Users Tasks Sensors

military perimeter monitoring camera
law enforcement topographical survey laser range finder
scientists aerial cinematography antenna
hobbyists cartography radiation sensor
businesses precision agriculture chemical sensor

infrastructure inspection

Table 1.1: Examples of UAV users, uses, and sensors.
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Although the sensors used on UAVs are diverse, we propose that they can be categorized

based on how a UAV must fly in order to position the sensors so that they can acquire

information from a target. Current sensor taxonomies are focused on how the sensors work

and what they measure rather than on the way they have to be positioned to be used. We

propose that a focus on how a UAV must use a particular sensor will yield a simple taxonomy

that is useful for sensor-based UAV path planning. We propose a simple taxonomy based on

one key feature: directionality. Some sensors sense well mainly in one direction (e.g. cameras),

while others sense well in most directions (e.g. omni-directional antennas).

Just as there are many different UAV-mounted sensors, there are also many potential

applications or tasks for those sensors. The huge variety of UAV tasks makes a unified

approach to UAV mission planning difficult. However, this problem can be approached

by devising a small set of more generic canonical sensor or payload tasks that UAVs can

accomplish. Specific real-world tasks can be expressed using combinations of canonical sensor

tasks, with directionality of the sensor a key aspect.

A successful UAV flight is one where sensors are properly used to accomplish tasks.

This requires that the UAV fly a route that places the relevant sensors effectively, both

temporally and spatially. A camera, for example, should be positioned so that targets are

within the frame. In the state of the art, this is accomplished by a human pilot flying

remotely or by an autopilot flying a series of waypoints. Often, two people must be involved:

one to operate the vehicle and one to manage the sensor payload. The planning process is

diagrammed in the top half of Figure 1.1.

Planning a path that places the sensors effectively isn’t easy. The operator (the pilot

or the person planning the waypoints) must imagine themselves in the position of the plane

(a process called “perspective taking” [13]) and then take into account sensor orientation with

respect to targets. Often, users will fly the UAV into their general area of interest and then

spend a lot of flight time trying to fine-tune the UAV’s position in order to place the sensing

2
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Figure 1.1: Currently, the bulk of the UAV flight process is handled by humans. We propose
that sensor-driven planning enables users to focus on sensor-based flight goals while allowing
automation to plan the flight.

volume correctly. This is a problem especially for fixed-wing UAVs that have a minimum

flight speed and turning radius.

Because of these challenges, planning and flying UAV missions currently require a

great deal of work and attention on the part of human operators. Before the flight, the flight

must be planned. During the flight, the UAV must be monitored for malfunctions or other

unforeseen problems and sensor information must be analyzed, put in context, and interpreted.

We believe that better automated planning can ease the burden of human operators and

propose that utilizing the directionality taxonomy combined with a set of canonical tasks

will yield better flight paths (see the bottom half of Figure 1.1).

We claim that:

1. Sensor-driven planning can be used by non-expert users.

2. Sensor-driven planning is easier to use than the state of the art (waypoint planning).

3



3. Sensor-driven planning produces better flights than the state of the art (waypoint

planning).

1.1 Delimitations

It is necessary to make several delimitations due to time and resource constraints. Our

limiting assumptions are as follows:

• We do not assign priorities to tasks. Adding priorities adds yet another dimension to a

problem that already has many dimensions. We do however, support dependencies be-

tween tasks which could be considered a type of “hard” or “strict” form of prioritization.

See Chapter 3 for more details on dependencies.

• We do not model most kinematic aspects of the UAV. Modeling the detailed pose of

the plane as it flies a candidate path would essentially require a general purpose flight

simulator. We assume a fixed-speed UAV with a bounded angular velocity.

• We do not plan 3D flights. Dealing with terrain modeling and elevation planning

increases dimensionality and complicates the kinematic model. This is an area of likely

future work (see 8.2).

• We do not do gimbal planning. Many UAV-carried sensors (cameras, usually) are

mounted on a servo-controlled movable gimbal. Gimbaling allows a UAV to point a

sensor towards objects of interest and to stabilize the sensor against the UAV’s pitch,

roll, and yaw. Gimbal planning adds another unwanted dimension to the problem. This

is also an area of likely future work (see 8.2).

4



Chapter 2

Related Work

In his PhD work, Morison states that sensor systems “do not provide persistent

observation without significant coordination, attentional, and cognitive costs, or guarantee

that the right sensor data will be available at the correct place and time” [13]. This problem

is central to UAVs as they are often used primarily as mobile sensor systems. Morison

proposes an approach to the problem of controlling a network of movable video cameras

using a custom input device called a “Perspective Controller.” It uses the idea of “control by

looking.” This is relevant to our work; we’d like a planner that plans based on what the user

wants to sense. This idea could be called “plan by looking,” and has been demonstrated for

fixed-wing UAVs in the context of wilderness search and rescue (WiSAR) [14].

The key to “planning by looking” is automation that can position the UAV’s sensor

in the right place at the right time. The primary constraint on sensor placement is the

directionality of the sensor; directional sensors must have line-of-sight to their targets. There

are many UAV path planning methods that could be considered. We’ll now review the

state-of-the-art in UAV path planning.

2.1 UAV Flight Planning

UAV path planning is a well-studied problem. A variety of approaches have been pursued

including A*, D*, evolutionary approaches, Rapidly-Exploring Random Trees (RRTs), Voronoi

graphs, etc. Most work has focused on the specific problem of getting a UAV from point A

to point B most efficiently, rather than planning flights that accomplish general goals. Those

5



that do plan flights to achieve a goal tend to be tailored to that specific goal and the sensors

available. We’d like a planner that can express many different goals or missions with any

kind of sensor(s).

Quigley et al. presented an A* planner meant for planning UAV flights from a start

point to an end point [15]. The planner is designed for flights in the mountains, especially

narrow canyons. The A* heuristic uses altitude change in addition to path length to avoid

unnecessary climbs. Unfortunately, the heuristic does not consider the maximum climb rate

of the UAV, so paths that climb too steeply can be generated.

Wu et al. demonstrated a D*-based planner for generating paths that comply with

civil aviation constraints on altitude, risk due to flying over populated areas, and fuel [16].

Although this approach is tailored to simply getting from a start point to an end point, its

handling of constraints besides path length is interesting.

Kothari et al. presented a real time multi-UAV planner based on RRTs that is robust

to dynamic obstacles [17]. It is a hybrid approach in that it combines RRTs with a greedy

line-of-sight strategy for “boring” stretches of flight. This planner plans flights from a start

to an end point through a field of obstacles and is not suitable for other goals.

Rathbun et al. demonstrated an evolutionary method for planning UAV paths in

dynamic, uncertain environments [18]. This method uses a genetic algorithm to plan around

dynamic obstacles with uncertain positions. The path is periodically re-planned to account

for moving obstacles. It does a good job of planning to a fixed destination from a fixed

starting point. Rathbun et al. use a spline-based representation. That is, an individual flight

is a concatenation of curves such that each successive curve starts at the ending point of the

previous curve and C1 continuity is maintained.

Building on the work by Rathbun et al. in [18], Rubio et al. presented a multi-UAV

mission planner for locating and tracking abandoned fishing nets in the Northeast Pacific

Ocean [19]. The fitness function for the evolutionary planner takes into account weather,

6



predicted icing conditions, performance degradation due to icing, and sun position. This

work is a good example of applying a UAV path planner to a non-trivial mission.

Hu and Yang presented a genetic algorithm for guiding a mobile robot through a

previously-known environment in the presence of obstacles [20]. Their genetic algorithm uses

a location-based representation. That is, an invididual is represented as a series of waypoints

in the robot’s environment. Individuals are ranked using the path’s distance and the portion

of the path that intersects obstacles.

Niedfeldt et al. [21] developed an image utility metric that estimates the utility of

video frames captured by a UAVs camera. With this metric, the authors developed a planner

for the the UAV’s path, its camera, and the camera’s zoom level. The planner, which builds

on chain-based methods demonstrated by Argyle et al. [22], seeks to fly the UAV and control

the camera so as to maximize the estimated utility of the images from the UAV.

Additionally, Niedfeldt et al. tested an “N-step look-ahead scheme” for planning

UAV paths that maximize probability of identification in video [23]. Essentially, the planner

generates many short N-step paths from the UAV’s current position and chooses the one

which is predicted to maximize the probability of identification. This work is interesting

because it is a greedy, moving horizon approach in constrast with many other planners,

including A* and D*-based planners, which attempt to find optimal paths.

Argyle et al. presented a chain-based path planning method for multiple UAVs [22].

This planner treats UAV waypoints as links in a chain on a fixed time horizon. The planner

works by moving the links in response to forces generated by the gradient of a reward function.

The links also have constraints on link-to-link distance and link-to-link angle. As the UAV

flies, visited waypoints (or links) are removed and new ones are appended to the end of the

current path.

Lin and Goodrich compared several planning methods, including variations on hill

climbing and genetic algorithms, in a simulated wilderness search and rescue (WiSAR)

scenario [24]. The algorithms take a start point, a probability distribution (which can be

7



multi-modal), and an optional end point and return flight paths that take the UAV from

the start point, through the probability distribution, and to the optional end point. The

algorithms try to plan paths that take the UAV through the high-probability parts of the

distribution without visiting the same place twice.

Yang and Kapila demonstrated a distance-optimal 2D path planning method [25].

The planner takes a starting and end position, the minimum turning radius of the UAV, and

the locations and radii of obstacles. Using Dubins curves, the authors prove several geometric

theorems to justify the optimality of their planner. This work is notable because we also use

Dubins curves (or the Dubins car) as the basis of our simple kinematic model.

Bortoff proposed a two-step planner that plans for a UAV flying from a start point

to an end point through an environment of enemy radar sites [26]. The first step builds a

rough path to the destination using Voronoi polygons created around the radar sites. The

second step considers the path from step one to be a series of masses connected by springs.

The radar sites act on the masses as repulsive forces. The planner moves the masses so

as to minimize the potential energy of the system. One benefit of this method is that the

weighting of spring vs. radar forces can be adjusted to choose a desired level of “stealthiness”

or radar-avoidance.

Kaneshige and Krishnakumar described a tactical maneuvering system for aircraft

inspired by biological immune systems [27]. This interesting system generates maneuvers

that fulfill a set of requirements. e.g., “change course but keep the target in view.” Their

approach is reminiscent of evolutionary approaches like genetic algorithms. It is well-suited

to generating short maneuvers. This approach, if modified to generate long paths instead of

short maneuvers, could potentially plan flights that accomplish complex goals.

NASA’s EUROPA [28] and MAPGEN [29] provide a robust and flexible framework for

constraint-based planning. The systems were developed and used to plan missions for the Mars

rovers. MAPGEN provides “active constraint and rule enforcement,” meaning that the system

won’t allow plans which violate existing constraints to be generated. MAPGEN/EUROPA

8



use an incomplete backtracking search to complete partial mission plans. Our planning

method uses similar constraints to simplify the planning search space.

2.2 Sensor Taxonomies

There is not an overabundance of literature on categorizing UAV sensors. The categorization

that we would like, which divides sensors based on how a UAV uses them to sense a target,

does not seem to exist. There is, however, some work on more general sensor ontologies.

Russomanno et al. presented an approach to developing sensor ontologies [30]. They

also discuss problems with existing sensor ontologies and observe that: “...current computer

models of sensor ontologies are nonexistent or tend to be shallow, with only superficial aspects

of sensors expressed in taxonomies...”

White proposed a sensor classification scheme for the purposes of describing and

comparing sensors [31]. This ontology categorizes based on six aspects of sensors: measurands,

technological aspects of sensors, detection means used in sensors, sensor conversion phenomena,

sensor materials, and fields of application. While some of these aspects or dimensions are

relevant to UAV mission planning, such as measurands and technological aspects, most are

not useful for UAV planning. Sensor materials, for example, do not need to be considered

when planning for UAVs; for the purpose of path planning, whether a camera is made of

metal or plastic is not important.

9



Chapter 3

Taxonomy

Since the set of possible UAV flight plans is large and users need to be able to express

a huge variety of flights, it is necessary to come up with a small set of simple building blocks

that can describe a wide range of useful flight plans. In this section, we present a taxonomy of

sensors and tasks that serve as the basis for our general purpose sensor-driven planner. This

taxonomy is not only useful for specifying design requirements, it also enables the creation

of a hierarchical planner that uses task- and sensor-specific algorithms as needed by the

problem.

3.1 Sensors

As discussed previously, the sensors that UAVs can carry are varied. Fortunately, we can

classify them into more general canonical sensors based on how a UAV must fly in order

to use them effectively. Broadly speaking, a sensor is either directional (like a camera) or

omni-directional (like many antennas). Directional sensors need to be pointed at their target

whereas omni-directional sensors just need to be within range of it. There are, of course,

sensors that blur the distinction between directional and omni-directional, but we believe

that in such cases users can choose the classification that makes sense on a case-by-case basis.

Both sensor types are parameterized by a maximum usable distance, operationally defined

as the maximum distance at which flight tasks can be accomplished with the sensor, and a

“sensing volume.” For directional sensors, such as cameras, we can model the sensing volume

as a frustum (a flat-topped pyramid). The sensor-volumes of omni-directional sensors can
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Directional Omni-directional
Coverage Aerial photography Signals intelligence (SIGINT)
Sampling Pipeline construction monitoring Meteorology

Table 3.1: Examples of the combinations of canonical tasks and sensors.

be modeled as spheroids. For the purposes of UAV flight planning, we can use these simple

characteristics to represent almost any sensor. The planner doesn’t need to know anything

about the sensors beyond their directionality, maximum range, and sensing volume.

3.2 Tasks

There are a huge number of tasks that a user might want to accomplish with their UAV’s

sensors. We can’t enumerate all of them in a user interface, so instead we propose a set of

canonical tasks that can act as the building blocks for more complicated tasks. The most

commonly encountered canonical tasks for UAV applications are coverage and sampling. The

coverage task covers or senses an entire area using a sensor. Aerial photography, as in [32],

is an example of a coverage task. The sampling task uses a sensor to gather a number of

samples from an area as in [33]. For convenience, we have added a third task, fly-through,

in our implementation. A fly-through task simply requires that the UAV fly within its area

at least once. The addition of this task does not violate our taxonomy as it is really just a

degenerate coverage or sampling task. The set of canonical sensors crossed with the set of

canonical tasks provides four fundamental sensing options (see table 3.1). Although these

tasks seem simple, it is possible to represent a huge spectrum of UAV sensor tasks using the

canonical tasks (and a few scheduling parameters) as building blocks.

3.3 Constraints

The canonical tasks can be configured with constraints. We divide constraints into two

categories: temporal constraints and physical constraints. Temporal constraints inform when

the tasks need to be flown whereas physical constraints modify how the tasks must be flown.
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There are two temporal constraints: dependencies and valid time windows. When

a task α has a dependency on task β it means that α must not be performed until β has

been performed. Valid time windows are intervals of time specified by a starting time and an

ending time with the ending time strictly greater than the starting time. A flight task must

be configured with one or more valid time windows so that it has at least one period of time

in which it can be flown.

There are also two physical constraints: orientation constraints and distance constraints.

An orientation constraint specifies that a task area must be sensed from a certain direction.

Orientation constraints specify an arc section centered on the area being sensed. An orientation

constraint could specify, for example, that a task area must be sensed when the UAV is within

45° due north of the task area. A distance constraint specifies a minimum and maximum

distance from the area being sensed. To satisfy the constraint, the UAV must be within the

range specified by the minimum and maximum distance while sensing.

3.4 Areas

There is one final building block in our taxonomy, namely the type of area. We consider two

types of areas: task areas and no-fly (obstacle or hazard) areas. Task areas should be defined

over or around areas of interest by the operator. One or more canonical tasks (e.g., coverage

or sampling) can then be assigned to the area. Alternatively, an area can be assigned as a

no-fly zone. No-fly zones are obstacles that should be avoided by the UAV. Note that in the

planner described in this thesis, areas are limited to two dimensions. Future work should

extend them to three-dimensional volumes.

3.5 Summary

In summary, the taxonomy consists of canonical tasks, canonical sensors, scheduling con-

straints, and area types. The canonical tasks are coverage and sampling. The canonical

sensor types are directional and omni-directional. Constraints include temporal constraints
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(dependency and time window) and physical constraints (directional and distance). Areas

can be task areas (which contain one or more canonical tasks) or no-fly zones (obstacles).

We should clarify at this point that although the hierarchical planner implementation

discussed later in Chapter 5 supports all aspects of the taxonomy, the version used in

the user study doesn’t fully exploit the taxonomy since physical constraints were omitted

(see Chapter 7). With the omission of the physical constraints and our restriction to two

dimensions, there is effectively no difference between the directional and omni-directional

sensors — both sensors types are limited to sensing within some radius of the UAV’s position.

In three dimensions or in 2D with physical constraints, the distinction between sensors is

useful and dictates the way the UAV needs to fly to accomplish tasks.

Later, we will discuss how our prototype sensor-driven planner generates flights for

planning problems defined in terms of these building blocks, which can represent a variety of

UAV missions.1

1Although the taxonomy can express many UAV missions, there are limitations. It is not a good model
for missions with task areas of non-uniform importance or with other priority schemes, for example.
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Chapter 4

User Interface

Because users need a way to specifiy the elements of the taxonomy given in Chapter 3,

it is necessary to create a graphical user interface (GUI). A user interface is also useful for

viewing the output of the planning process.

We constructed a 2D prototype user interface using C++ and the Qt GUI toolkit (see

Figure 4.2). The GUI allows planning problems to be specified on an interactive map. The

user can define the UAV’s starting position and orientation, task areas, task’s within those

areas, and task scheduling constraints, such as dependency and time window constraints

(the means to adjust the physical constraints are not included since those constraints are

evaluated in the sub-flight algorithm comparison in Chapter 6 instead of in the user study).

No-fly zones (obstacles) can also be specified. Planning problems (encompassing the UAV’s

starting position, tasks areas, tasks, constraints, etc.) can be saved to or loaded from disk.

4.1 Dubins Curves

Dubins curves (or Dubins paths) are the shortest paths with bounded curvature connecting

two configurations (position and angle) in two-dimensional Euclidean space. L.E. Dubins

demonstrated in 1957 [34] that such curves consist solely of straight lines combined with

sections of maximum curvature.

Dubins curves provide a simple and convenient way to model 2D movement of objects

with a fixed speed and bounded angular velocity. Indeed, in the robotics and control

communities this model is often referred to as the “Dubins car” model.
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The Dubins car model can be described with:

ẋ = cos(θ)

ẏ = sin(θ)

θ̇ = u

where the position of the Dubins car is given by (x, y), its orientation (angle) is θ, and u

is bounded by the Dubins car’s minimum turning radius (or equivalently the maximum

curvature) [35]. The calculation of Dubins curves is beyond the scope of this thesis. It is

sufficient to say that there are well-studied methods of doing so [36, 37].

We use the Dubins car as an approximation for a fixed-wing UAV moving in two

dimensions. We believe that this is an acceptable approximation for the movement of fixed-

wing UAVs, which can be made to travel at a fixed speed and do in fact have bounds on

their angular velocity. Additionally, there is precedence for using Dubins curves in the UAV

planning literature [38, 39]. This model is utilized in our user interface to show the curved

path taken between two waypoints. We believe that connecting waypoints visually using

Dubins curves provides much better visual clues to the UAV’s actual performance than the

usual method of connecting waypoints using straight lines (see Figure 4.1).

We also utilize Dubins curves in the internals of the flight planner for interpolating

the configuration of the UAV between waypoints, for estimating path length, and for path

planning (see Chapter 5 for details).

4.2 Defining Planning Problems

The first element of a sensor-driven planning problem is the UAV’s initial pose, consisting

of its position and orientation. By pressing the “Place Start Point” button shown on the

left side of Figure 4.2, the user causes the starting position to be placed in the center of

the current view. The starting position is displayed in the GUI as a green circle with a line
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Figure 4.1: Dubins curves provide a much better approximation of the actual path a fixed-
wing UAV would take between waypoints than a simple straight line does. The straight line
method would require that waysets be much more dense to approximate the same path. We
believe that the Dubins curves provide the user with useful insight into the kinematics of the
UAV.

through half of it. The position of the green circle is the starting position. The angle of the

line is the starting orientation. Once added, the starting position can be changed by clicking

and dragging the green circle around the map. The starting orientation can be changed

by right-clicking and dragging away from the green circle. The distance dragged from the

center of the green circle determines the angle of the line and therefore the UAV’s starting

orientation. In Figure 4.2, for example, the starting position is the green circle toward the

bottom-right of the map view. The starting orientation is toward the northwest.

Next, the user can add one or more task areas by pressing the “Place Task Area”

button on the left side of Figure 4.2. When pressed, this button causes a rectangular polygon

to be added at the center of the current map view. The task area is defined by the enclosed

area of this editable polygon. The user can move or delete the polygon, add or remove vertices

from the polygon, and move individual vertices (see Figure 4.3). Through these means a user

can approximate any desired area to a desired degree of accuracy. In Figure 4.2, for example,

a user has created and edited two task areas. The colors of a task area’s polygon depends on

the task(s) it contains. Coverage tasks are green, sampling tasks are blue, fly through tasks

are yellow, and no-fly zones are red. Task areas containing two or more tasks of different

types are white.
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Figure 4.2: A screenshot of the graphical user interface (GUI). The GUI allows users to define
the elements of a sensor-driven planning problem. Task areas can be defined and edited as
polygons (see Figure 4.3) on an interactive map. The results of the planning process are
displayed on the map.

Figure 4.3: The GUI treats task areas as editable polygons. The polygons can be translated
by clicking and dragging in their interior. Individual vertices can be translated by clicking
and dragging a vertex control point. Vertices can be deleted by selecting a vertex control
point and pressing the “delete” key. Vertices can be inserted along any edge by clicking a
subdivision point.
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Figure 4.4: A screenshot of the GUI’s task area editor. Each task area can be configured
with a name and zero or more sensor tasks (coverage, sampling, or fly through). Task areas
can also be designated as a “no-fly zone,” or obstacle. When the “Edit” button next to a
task is pressed the dialog showed in Figure 4.5 is displayed.

After a task area is defined, it can to be configured with a descriptive name, one or

more tasks, or as a no-fly zone. Users can access a dialog like that in Figure 4.4 by double

clicking a task area polygon or by right-clicking on a polygon to access a context menu entry.

The “Edit Tasks” dialog shown in Figure 4.4 allows the user to add coverage, sampling, or

fly through tasks to the area by clicking one of the buttons at the bottom. Alternatively,

the user can configure the area as a no-fly zone (obstacle). Once a task is added to the area,

its constraints and options can be configured by pressing the “Edit” button to the right of

it in the dialog. Pressing “Edit” will display a dialog similar to that shown in Figure 4.5.

Intuitively, pressing the nearby “Delete” button will remove the appropriate task from the

task area.

Individual tasks are configured in a dialog like that shown in Figure 4.5. The task can

be optionally configured with a descriptive name. Dependencies on other tasks can be added

by accessing a dropdown menu by clicking the “Add Dependency” button. Timing constraints

(time windows during which the task can be accomplished) can be added, edited, or deleted.

Finally, options specific to the task’s type (coverage, sampling, etc.) can be specified. The
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Figure 4.5: A screenshot of the GUI’s coverage task editor. Each task type (coverage,
sampling, fly through) has its own specific options as well as some (timing constraints and
dependencies) that are common to all tasks.

dialog in Figure 4.5, for example, is configuring a coverage task and its task-specific options

(granularity and maximum distance) are displayed.

4.3 Planning

Once a planning problem has been defined (or loaded from disk) users can start the hierarchical

planner by pressing the “Plan Flight” button shown at the top-left of Figure 4.2. If the

hierarchical planner is successful, the generated flight is overlayed on the map and the

planning problem (see Figure 4.6). If the hierarchical planner is unable to generate a flight

that satisfies the tasks and constraints of the problem then the user is notified.

The flight is displayed as a series of waypoints strung together using Dubins curves [34].

Each waypoint has a defined longitude, latitude, and angle. The waypoints are displayed
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Figure 4.6: The sensor-driven planning GUI displays the results of successful planning
operations as a series of Dubins curves. Planned flights can be imported and exported in
several formats.

as arrows and the Dubins curves between them are drawn as black curves. The minimum

turning radius of the Dubins curves is set to be the same as that configured for the UAV in

the user interface. This allows the user to get a realistic idea of the actual flight that a real

UAV would fly given the series of waypoints.

After a flight is generated and displayed the user can test its performance by pressing

the “Test Flight” button on the left side of the interface or export it by pressing the “Export

Solution” button on the right side of the interface (see Figure 4.2). Flight testing is discussed

in Section 7. Flights can be exported to a custom binary format or to the XML-based GPS

Exchange Format (GPX) [40].

4.4 Alternative Planning Interfaces

Existing planning interfaces tend to be waypoint-based. That is, the user plans flights by

specifying a sequence of latitudes, longitudes, and altitudes.

Lockheed Martin Procerus Technologies develops and markets a UAV autopilot system

with an accompanying flight planning program called “Virtual Cockpit [41].” Virtual Cockpit

is representative of traditional waypoint-based planning. The interface features a map where
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Figure 4.7: Version 2.6 of Procerus’s “Virtual Cockpit” UAV flight planner.

series of waypoints and takeoff and landing positions are displayed and configured (see

Figure 4.7). The interface also displays the in-flight status of the UAV and feeds from UAV

sensors, such as cameras.

Previous work on UAV flight planning in our lab resulted in a 3D waypoint-based

planner called “Phairwell” [14, 42]. Phairwell uses 3D graphics to display terrain loaded

from National Elevation Dataset topography data. The terrain is textured using satellite

imagery of the area (see Figure 4.8). The display of terrain in 3D helps users gain context

for the UAV’s flight and to avoid obstacles such as mountains. Phairwell is also strongly

waypoint-based, but features automated assistance for creating common flight plans such as

a “lawnmower” or a spiral search pattern.

Another project from out lab produced the user interface pictured in Figure 4.9. This

interface was part of the “2nd generation” of the HCMI lab’s WiSAR (Wilderness Search

and Rescue) software. The overall system (see Figure 4.10) was notable for using a plugin

architecture to support diverse UAV hardware and radio links. The flight planning interface,

however, features fairly simple waypoint- and map-based planning.
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Figure 4.8: The Phairwell user UAV planning program created by the BYU HCMI lab.

Figure 4.9: Another flight system developed by the BYU HCMI lab. This system features
UAV hardware independence and network transparency. The planning interface pictured
here is waypoint-based.
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Figure 4.10: Relationships between the components of the 2nd-generation WiSAR interface.
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Chapter 5

Hierarchical Planning

The idea behind hierarchical planning is to break the planning problem into several

stages that are more tractable than the overall problem. This is necessary because generating

a flight that accomplishes all of its tasks, satisfies all of its constraints, and is optimal with

respect to flight length is quite challenging. Consider, for example, the problem posed by a

flight with n task areas, each with one assigned task to be completed. Generating a flight

that is optimal with respect to flight length and that handles all n task areas (and their

tasks) has essentially solved the traveling salesman problem by deciding the order in which

to visit the tasks [24]. In reality, since solutions to some sensor-driven planning problems can

require that tasks and task areas be revisited and we haven’t yet considered anything beyond

the ordering of the tasks, the problem is even more complex.

The taxonomy suggests that many problems can be decomposed into two sub-problems:

planning a sensor-appropriate flight path for an area/task and scheduling flight paths to

satisfy timing constraints. Therefore, the approach in this thesis breaks the problem into

pieces, plans “sub-flights” for each flight task in isolation, and then schedules the generated

flights into an overall solution. Figure 5.1 shows how the components of the hierarchical

planner generate different pieces of a flight. This chapter discusses the overall hierarchical

planning process including planning sub-flights and scheduling them into an overall flight. In

Chapter 6 we discuss and objectively compare various methods of planning sub-flights.

Broken up in this manner, the problem of flight planning closely resembles scheduling

processes on a computer. Flight tasks can be thought of as processes and the UAV can be
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Figure 5.1: Each part of the hierarchical planner plays a different role in generating the
overall flight. In this example, C and E are sub-flights generated by the sub-flight planner
to fly tasks in the shaded areas. B and D are intermediate or connecting flights generated
by the intermediate planner, which runs as a subroutine of the scheduler. The scheduler is
responsible for deciding when to schedule sub flights. A is the UAV’s starting position.

thought of as a CPU which runs them. Just as a running process on a CPU can be preempted,

sensor-driven planning problems sometimes require a flight task to be interrupted before

completion. Just as preempting processes on a CPU has overhead, interrupting flight tasks

to handle another has the cost of travel between tasks.

The hierarchical approach has some tradeoffs and limitations. It makes the problem

tractable and the algorithm generalizable, but it sacrifices optimality in several places to do

so. One limitation with the hierarchical approach and the CPU scheduling metaphor is that

the UAV cannot fly more than one task at a time. Thus, we sacrifice optimality when flight

tasks are co-located.

At a high level, the hierarchical planner follows these easily-understood steps:

1. For each flight task:

(a) Select a task-specific starting position and orientation on or near the task area’s

boundary.

25



(b) Generate a “sub-flight” that accomplishes the flight task with its task constraints

independent of all other flight tasks. This sub-flight must start at the previously-

generated starting position and pose.

2. Generate a schedule that determines when to fly each sub-flight.

3. Using the schedule, build an overall flight by stringing the sub-flights together with

intermediate flights.

The next sections will discuss the hierarchical planner in more detail and Chapter 6 will focus

on various algorithms that attempt to plan “sub-flights.”

5.1 Task Start Position and Pose

Before the planner can generate sub-flights for each of the flight tasks, positions and orienta-

tions from which to start each sub-flight must be chosen. Choosing a good starting position

and pose is important and non-trivial. Choosing the optimal starting position and pose

(those that will result in the shortest satisfying flight) requires knowing where the UAV will

be coming from. Since the schedule isn’t computed until after all sub-flights are generated, it

is not possible to choose the optimal starting position and orientation. We can however, use

a heuristic to choose a starting position and orientation that are likely to give good results.

The goal of this heuristic (pictured in Figure 5.2) is to choose a starting position

and orientation that are close to other tasks and are likely to allow the UAV to fly for a

while without turning. This latter condition seeks to minimize path length by avoiding

potentially-costly turns, which are constrained by the rate of turning dictated by the Dubins

curves. First, we approximate the center of mass of the area by finding the center of the

area’s bounding box. We then create a set of 179 line segments that pass through the center

of mass and are one degree apart. The endpoints of the longest line segment within the task

area (which sit on edges of the task area) are examined as candidate starting positions. The

endpoint which is closest to the average of all task areas’ centers is chosen as the starting

position in an attempt to minimize the expected distance between any preceeding tasks and
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Figure 5.2: Choosing a starting position for a task area. A bounding box is calculated around
the area in question. Line segments intersecting the center of the bounding box are calculated
at one degree angle intervals. The end points of the line with the most length within the
area’s polygon are candidates for the task area’s starting position. The candidate point that
is closest to the average of all task area’s bounding box centers is selected. The orientation
points along the line.

the starting point. The starting orientation is chosen to point towards the center of mass

of the task area (i.e., the orientation follows the line segment in the direction towards the

center of mass).

5.2 Sub-Flight Planning

The sub-flight planner is the part of the hierarchical planner responsible for planning the

portions of the overall flight that accomplish tasks. The sub-flights must begin in their start

position and orientation, accomplish their tasks, and satisfy all physical constraints.

This part of the hierarchical planning process can be done a variety of different ways. In

Chapter 6 we will discuss the set of algorithms that we investigated and benchmarked during

this thesis. We found that, in general, a best-first search in a discretized location/orientation

statespace performs better than the other alternatives. See Chapter 6 for explanation and

comparison of all attempted sub-flight planners.
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Task Type Reward Function

Coverage The task area is discretized on latitude/longitude aligned grid with spacing
controlled by granularity parameter. Candidate sub-flights are given 1.0
unit of reward for each discretized point they are able to sense with the
assigned sensor type (directional or omnidirectional) within the bounds of
the task’s physical constraints (direction and distance).

Sampling The sampling task is parameterized by s, the number of seconds that
the sub-flight must spend within the task area. Candidate sub-flights are
rewarded the amount of time spent sampling in a location that obeys the
physical constraints and limitations of the assigned sensor type.

Fly-Through Returns a fixed reward when candidate sub-flights fly within it at all. This
is essentially a degenerae sampling or coverage task.

Table 5.1: Descriptions of the canonical tasks’ reward functions, which are used by the
sub-flight planner to generate sub-flights.

One feature shared by all of the sub-flight planning algorithms we’ve examined is

that they all require reward functions for the canonical tasks. These reward functions are

summarized in Table 5.1. The reward functions are fitness functions that return a numeric

value in proportion to how well a sub-flight accomplishes a task within the bounds of the

task’s physical constraints and assigned canonical sensor type. The reward functions are used

by the sub-flight planning algorithms to generate and optimize flights. The sum of the reward

functions of all tasks in a scenario can also be used as a measure of overall flight quality.

5.3 Scheduler

Once a sub-flight has been generated for each flight task, a scheduler must decide when to fly

each one and how to string them together. Scheduling is not a trivial task due to scheduling

and dependency constraints on flight tasks.

Sometimes, one task must be interrupted to fly another due to time window constraints.

In a scenario with two tasks α and β each requiring 10 seconds to complete, for example,

task α may have the constraint that it must be completed entirely after 5 seconds but before

20 seconds (a window longer than 10 seconds is required due to the time taken to fly between

tasks). Task β would be scheduled for at least the first 5 seconds, after which a transition to
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task α would be made. After task α is completed at around 15-20 seconds, task β would be

scheduled again and finished.

We attack the problem by returning to the CPU scheduling metaphor. Flight tasks

are processes and the UAV is a CPU. The UAV can fly a task to completion or it can run

it in time slices with other tasks, “context-switching” between them. However, flight task

scheduling has two key differences from CPU scheduling: First, we know exactly how much

time each flight task needs since sub-flights which satisfy them were calculated previously,

whereas the run time of a program cannot generally be predicted. Second, the time required to

transition or “context switch” between flight tasks is highly variable and must be considered.

We treat the scheduling problem as a graph search through an n-dimensional scheduling

space where n is the number of flight tasks in the planning problem. Our approach is inspired

by previous work in CPU and manufacturing scheduling that also uses graph search [43, 44],

although there are some key differences between those problems and ours (we know in advance

the exact durations of the task and our “context-switching” costs vary). The goal of the

search is to find a least-cost path from (01, ..., 0n) to (c1, ..., cn) where ci is the amount of

time required to complete sub-flight i. A problem of three tasks each taking 10.5 seconds, for

example, requires the scheduler to find a least-cost path from (0, 0, 0) to (10.5, 10.5, 10.5).

Note that the total time required to fly the resulting flight plan will be greater than the sum

of the sub-flights’ required times because flying transitions between tasks takes time.

Solving the scheduling problem can be done optimally (given that we are discretizing

time into fixed-size chunks) using A*. This is a good choice because we can use the estimated

time remaining from any state to the goal state as an admissible heuristic. Since the CPU

scheduling metaphor restricts the UAV to flying one sub-flight at a time, the scheduler

can only do state transitions along one dimension at a time within the scheduling space.

This means that all A* distance calculations in the scheduler, including the heuristic, use a

Manhattan rather than Euclidean distance. See Figure 5.3.
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Figure 5.3: The scheduling state space of an imaginary two-task planning problem. Both
tasks (α and β) take five seconds to be completed. In this example, task α has a time window
constraint specifying that it must be finished by no later than seven seconds. Edges that
would allow task α to make progress outside of its valid time window have been cut. The A*
heuristic is Manhattan distance to the goal. Each transition in the graph corresponds to the
passing of time.
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When the A* scheduler considers transitioning from one flight task α to another task

β it must generate a transition (or intermediate) flight from the current state’s progress along

α’s sub-flight to the generated state’s progress along β’s sub-flight. If the A* scheduler for

two tasks α and β had reached node (3,0) and wanted to explore node (3,1), for example,

it would use the intermediate planner to generate a flight from the UAV’s configuration 3

seconds into α’s sub-flight to the beginning (time 0) of β’s sub-flight. The length of the

intermediate flight is used to calculate how long it will take to transition from α to β and is

A*’s “cost to move”. Intermediate flights are stored during scheduling so that they can be

used as components of the overall flight when scheduling is completed.

Flight task scheduling constraints such as dependencies and valid time windows are

encoded in the state space as obstacles, which A* can easily deal with. Specifically, the

search is not allowed to expand into states where any task’s dependency constraints or valid

time windows are violated. It is important to note that it is very easy to create unsolvable

planning problems by creating a dependency loop among two or more tasks or by specifying

unrealistic time windows. In this situation the scheduler will search as far as it can before

detecting that the problem is overconstrained. At that point, the user is informed that the

problem is overconstrained and is invited to relax or adjust constraints.

5.4 Intermediate Planner

The intermediate planner is responsible for planning flights from the start position to task

areas and in-between task areas. Intermediate flights are planned solely to get the UAV

from one configuration to another rather than to accomplish any of the flight tasks. The

intermediate planner takes as input the positions of no-fly zones and starting and ending

positions/orientations. It outputs a series of positions or waypoints.

The requirements for the intermediate planner are challenging. First, it must be very

efficient because it runs as a subroutine of the scheduler’s A* search. Second, it must be able

to plan over long distances. Third, it must avoid no-fly zones. Finally, it has to be able to
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plan intermediate flights that are valid according to the UAV’s kinematic constraints (the

Dubins car model) and that start and end in the correct orientations (not just positions).

Our intermediate planner, like the overall hierarchical planner, takes a hierarchical

approach. First, it builds a path using Dubins curves [34]. If this initial path does not violate

any no-fly zones then the planner has succeeded. Otherwise, the intermediate planner falls back

to using A* to generate a coarse, high-level, obstacle-avoiding path without consideration for

desired orientation or UAV kinematics. The A* search is carried out on a coarse 4-connected

graph with node spacing of 75 meters so that it will run quickly. The search is not allowed to

expand into no-fly zones. Next, it strings the nodes of the A* search together using Dubins

curves [34], which ensure that the desired starting and ending orientations are honored and

that UAV kinematic constraints are obeyed. Future work should explore how the subjective

granularity parameters used in the A* planner would need to be adjusted for different types

of planning problems, e.g., those that span tens or hundreds of kilometers instead of only a

few kilometers.

5.5 Performance Considerations

The performance of the hierarchical planner depends on several factors. In order of importance

these are the number of tasks, the duration of the tasks, timing constraints and dependencies,

and the relative locations of tasks and obstacles. The number of tasks is the largest factor

because it is also the dimensionality of the scheduler’s search space (see Section 5.3). When

generating a flight plan for a problem with three tasks, for example, the scheduler must

search a three-dimensional space. As can be expected, the scheduling space for a problem

with twenty tasks is very large.

There are several simple techniques for shrinking or pruning the scheduler’s statespace.

First and foremost, the user can add more scheduling constraints. As discussed in 5.3, the

result of dependency and timing constraints is cut edges in the scheduling graph. This is

akin to adding more information to an under-determined mathematical formula; the number
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of possible solutions greatly decreases. Second, for scenarios with no time window constraints

the scheduler can forbid task interruption. That is, the scheduler prunes edges that transition

from a task that has not yet been scheduled to completion. This “interruption optimization”

is acceptable since there is little reason to consider interrupting a task α unless some task

β must be scheduled immediately based on a timing constraint. However, the optimization

may cause suboptimal performance on some edge cases (e.g., a small task area adjacent to a

very large task area). Third, the time-granularity of the scheduler (the duration of the “time

chunks” that the scheduler works with) can be increased. This can result in the scheduler

failing to find solutions for problems which are schedulable with smaller “time chunks,” or

finding a less efficient schedule. Finally, the A* heuristic can be multiplied by some weight

w : w ∈ (1,∞) as in Weighted A* [45]. This has the effect of emphasizing the estimated

“cost-to-move” vs. the cost already incurred, which encourages Weighted A* to find a (likely

sub-optimal) solution more quickly than normal A* can find the optimal solution. Weighted

A* has the useful guarantee that the cost of solutions must be within a factor of w of the

optimal solution’s cost [46].

We benchmarked the scheduler’s performance on randomly-generated scenarios with

number of tasks ranging from 1-13. The generated task areas were rectangular with widths

and heights drawn uniformly from [300, 350] meters. Each task area was assigned with equal

probability as either a coverage, sampling, or fly-through task. The placement of task areas

was constrained to be non-overlapping. We tested two of the optimizations listed above:

increasing the scheduler granularity and forbidding task interruption. The scheduler was

given 900 seconds (15 minutes) to schedule each scenario. The results of the benchmarks are

summarized in Figure 5.4.

The results of the benchmarks indicate that without scheduling constraints or optimiza-

tions the scheduler can reasonably handle five or six tasks. Increasing the time granularity to

30 seconds allows a slight improvement to seven or eight tasks. Enabling the interruption

optimization (forbidding task interruption) results in a large speed-up, enabling the scheduler
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Figure 5.4: Results of the scheduler performance benchmarks. The performance of individual
simulations are plotted as points on the graph. The lines pass through the medians. The
curves increase exponentially, which is to be expected of A*. With a time granularity of
15 seconds and with the interruption optimization disabled, the scheduler is able to handle
approximately seven tasks in a reasonable amount of time (less than 15 minutes). Increasing
the time granularity to 30 seconds allows the scheduler to handle eight or perhaps nine tasks
reasonably. The interruption optimization (forbidding task interruption) allows the scheduler
to handle up to thirteen tasks within 15 minutes. Interestingly, the change in scheduler time
granularity seems to have little effect when the interruption optimization is enabled.
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Figure 5.5: A contrived scenario with fifteen tasks, all but two of which depend on another
task such that no task depends on the same task as another and there are no cycles in the
dependency graph. The A* scheduler completed this scenario in approximately four seconds.

to handle twelve or thirteen tasks in under fifteen minutes. We believe that the pair of curves

without the interruption optimization represent the worst-case scenario for the scheduler:

several tasks with no temporal constraints to prune the statespace. Perhaps, then, the pair

of curves generated with the interruption optimization enabled represent a more optimistic

scenario with a few temporal constraints. The far end of the optimism spectrum is represented

by the contrived scenario pictured in Figure 5.5, which has thirteen dependency constraints

and can be scheduled in approximately four seconds.

The scenarios used in the user study (see Figures A.1, A.2, A.3, and A.4) each contain

four tasks and are moderately constrainted (they have a couple timing and dependency

constraints). The scheduler is able to complete them in about 5-10 seconds with a time

granularity of 15 seconds.

In summary, the performance of the scheduler varies. When tasks are unconstrained

the scheduler can cope with 6-8 moderately-sized tasks. Temporal constraints allow the

scheduler to handle more tasks. In a contrived scenario (see Figure 5.5) with fifteen tasks
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and thirteen dependency constraints, for example, the scheduler completes in approximately

four seconds. Without temporal constraints, a scenario with fifteen tasks is unlikely to be

schedulable in a reasonable amount of time. We believe that real-world users are likely to

add temporal (dependency or time window) constraints to their scenarios and that most

real-world scenarios do not require many tasks. Therefore, we believe that the scheduler’s

performance is likely to be adequate.

36



Chapter 6

Sub-Flight Planning

In this section we compare and benchmark various sub-flight planning algorithms.

Based on the analysis, we show that a best-first search in a discretized position/orientation

statespace performs well. First, we discuss the discretized position/orientation statespace,

which is used by several of the algorithms in this chapter. Then, we describe the various

sub-flight planning algorithms. Finally, we present the results of benchmarks of the algorithms’

performance.

6.1 Discretized Position/Orientation Statespace

Several of the sub-flight planning algorithms described in this section operate in a statespace

based on a grid of positions and a set of valid UAV orientations at those positions. We refer

to this as a position/orientation statespace.

Calculating this statespace is simple. First, positions are generated by discretizing

(calculating a grid within) the task area polygon’s bounding box. Second, all positions which

are not inside of the task area polygon are eliminated. Next, the positions are translated in

the direction of the task’s directional constraint (if any) by the task’s distance constraint

(if any). Finally, a set of valid orientation angles are calculated at the translated positions

based on the directional constraint of the task and the directional sensor’s angle-of-view (if

applicable). If, for example, a task’s directional constraint stipulates that it must be sensed

from the south (270°), then the calculated orientations will point roughly north (90°), within

the bounds of the directional sensor’s angle-of-view, if applicable (see Figure 6.1).
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Directional constraint
causes translation to 
the south.

Caluclated orientations
point north so that a
UAV's directional sensor
would be able to sense the 
task area.

Figure 6.1: Calculating the position/orientation space requires translating discretized points
within the task area by a distance no less than the minimum distance constraint in the
direction of the directional constraint. If the task is configured to be sensed using a directional
sensor, then the translated points must be assigned orientations. This process yields a set
of positions and orientations which are guaranteed to conform to the physical (directional
and distance) constraints when flown by the UAV. Sub-flight planning algorithms can search
through the transformed set without worrying about the physical constraints. This figure
illustrates a pentagonal task area whose discretized points have been translated to the south
to conform to a distance constraint. The points have been assigned north-facing orientations
for directional sensing.

38



A sequence of these position/orientation pairs can always be combined into a kinematically-

viable sub-flight using Dubins curves provided that the distance between successive positions

is greater than zero.

6.2 Best-First Tree Search

The best-first tree search sub-flight planner searches a tree with nodes defined by a position

and a pose. The root node, for example, is the task area’s starting position and pose. The

search generates child nodes by making valid moves (according to the UAV’s kinematic

constraints) from the best current node. Each task type (sampling, coverage, etc.) defines a

reward function (see Table 5.1) that rates prospective sub-flights, which are represented by

the position and poses of the nodes from root to leaf.

At each iteration the node with the highest reward is removed from a work list. New

orientation vectors are calculated based on the current node’s orientation and the UAV’s

kinematic parameters. In addition, new positions are generated by translating the current

node’s position by each of the previously generated angles. New nodes are created as children

of the current node with the generated orientations and positions. Score values are generated

for the new nodes using the flight task’s reward function and the new nodes are inserted into

the work list. This process is summarized in Algorithm 1.

6.3 Best-First Search in Discretized Position/Orientation Statespace

This algorithm is similar to that of the best-first tree search described above (see 6.2) except

that, instead of limiting transitions based on kinematic constraints, all locations in the

discretized statespace described in 6.1 are considered for transitions. The series of nodes

representing a sub-flight in this planner are combined using Dubins curves to ensure kinematic

viability. See Algorithm 2 for details.
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Data: Priority queue W, Flight task T, Branch factor B, Max. turn angle θ, Waypoint
interval δ

Result: Sequence of positions (a sub-flight)
W.insert(0, node(T.startPosition, T.startOrientation));
while W not empty do

node,score = W.pop();
if score ≥ T.desiredScore then

return Traceback(node);
end
for i in [−B,B] do

newOrientation = node.orientation + θ * ( i
B

);
newPosition = node.position + δ(cos(newOrientation), sin(newOrientation));
newNode = (newPosition, newOrientation);
newNode.parent = node;
newScore = T.rewardFunction(newNode);
W.insert(newScore, newNode);

end

end
Algorithm 1: Pseudocode for the best-first tree search sub-flight planner. The branch
factor parameter, B, controls how finely the algorithm divides the feasible range of turning
angles. The max turn angle parameter, θ, controls how much the UAV’s orientation can
change during one iteration of the algorithm (see Figure 6.2).

θθ

θ * (  )-1
B

θ * (  )-2
B

θ * (  )0
B

θ * (  ) 1
B

θ * (  )2
B

B=2

Figure 6.2: Illustration of the parameters of the best-first tree search. The branch factor
parameter, B, controls how many child nodes will be generated, each with different angles
subject to the maximum turn angle θ. The algorithm will create 2B + 1 children; B turning
to the left, B turning to the right, and one that goes straight.
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Data: Starting position P , starting orientation φ0, Flight Task T
locations = discretized and transformed positions inside the task area (see 6.1);
orientations = discretized valid orientations for the UAV (see 6.1);
W = new PriorityQueue();
W.insert(0, new Wayset(P , φ0));
bestScoreSoFar = 0.0;
Wayset bestSoFar;
while !W.isEmpty() and bestScoreSoFar < T.maxScore() do

bestScoreSoFar = W.bestKey();
bestSoFar = W.bestVal();
foreach Position p in locations do

foreach Orientation φ in orientations do
Wayset candidate = bestSoFar;
candidate.append(p,φ);
score = T.rewardFunction(candidate);
score += score / candidate.lengthInMeters();
W.insert(score, candidate);

end

end

end
return bestSoFar;

Algorithm 2: Pseudocode for the best-first search in the discretized position/orientation
statespace.
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6.4 Genetic Algorithm in Discretized Position/Orientation Statespace

A genetic algorithm can be used to find a sequence of position/orientation pairs that, when

combined using Dubins curves, make a good sub-flight. The “genome” for individuals in

this genetic algorithm is simply a sequence of position/orientation pairs. Generations of

individuals are created, evaluated, and bred in a loop until a viable sub-flight is generated. By

default, each individuals’s genome length is the number of positions in the position/orientation

statespace (this is a good default for coverage tasks which will want to visit each position)

but as individuals are bred together this number can increase or decrease. See Algorithm 3

for details.

In our testing the genetic algorithm used a generation size of twenty. Of the twenty

individuals in each generation, half (ten) are culled. To bring the count back to twenty,

eight new individuals are bred from the ten survivors and two new “mutant” individuals are

generated randomly (to ensure genetic diversity). These parameters were chosen subjectively.

We believe that a survival rate of one-half strikes a good balance between removing bad

individuals and keeping diversity in the “gene pool.” Similarly, our 4:1 breed-to-mutate ratio

was chosen to strike a balance between taking advantage of the best-scoring individuals and

searching new parts of the space.

6.5 Simple Greedy Search in Discretized Position/Orientation Statespace

This method greedily builds a flight by choosing the best option at each step. In constrast to

the best-first methods discussed above, it does not use a work list or priority queue. Once

this method travels down a branch the decision is permanent. See Algorithm 4 for details.

6.6 Comparison

Based on the four combinations of {Coverage, Sampling} × {Directional,Omnidirectional},

we constructed four simple one-task scenarios, each with easy and hard parameter settings
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Data: Starting position P , starting orientation φ0, Flight Task T
locations = discretized and transformed positions inside the task area (see 6.1);
orientations = discretized valid orientations for the UAV (see 6.1);
bestScore = 0.0;
Wayset bestFlight;
W = new PriorityQueue();
while bestScore < T.maxScore() do

while W.size() < 20 do
Wayset candidate;
candidate.append(P ,φ0);
for 0 ≤ i < locations.size() do

candidate.append(locations[randInt() % locations.size()],
orientations[randInt() % orientations.size()]);

end
score = T.rewardFunction(candidate);
score += score / candidate.lengthInMeters();
W.insert(score, candidate);

end
bestScore = W.bestKey();
bestFlight = W.bestVal();
for 0 ≤ i < 10 do

W.removeWorst();
end
for 0 ≤ i < 8 do

Wayset A = W.randomValue();
Wayset B = W.randomValue();
startA = randInt() % A.size();
endA = startA + randInt() % (A.size() - startA);
startB = randInt() % B.size();
endB = startB + randInt() % (B.size() - startB);
Wayset candidate;
candidate.append(P ,Θ);
for startA ≤ j < endA do

candidate.append(A[j]);
end
for startB ≤ j < endB do

candidate.append(B[j]);
end
score = T.rewardFunction(candidate);
score += score / candidate.lengthInMeters();
W.insert(score, candidate);

end

end
return W.bestVal();

Algorithm 3: Pseudocode for the best-first search in the discretized position/orientation
statespace.
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Data: Starting position P , starting orientation φ0, Flight Task T
locations = discretized and transformed positions inside the task area (see 6.1);
orientations = discretized valid orientations for the UAV (see 6.1);
Wayset current;
current.append(P ,φ0);
bestScore -500.0;
while !locations.isEmpty() and bestScore < T.maxScore() do

bestScore = -500.0;
bestBinIndex = -1;
UAVOrientation bestOrientation;
for 0 ≤ i < locations.size() do

Position pos = locations[i];
Wayset toTest = current;
foreach approachAngle in orientations do

toTest.append(pos, approachAngle);
score = T.rewardFunction(toTest);
if score > bestScore then

bestScore = score;
bestOrientation = approachAngle;
bestBinIndex = i;

end

end

end
Position toAdd = locations[bestBinIndex];
current.append(toAdd,bestOrientation);

end
return current;

Algorithm 4: Pseudocode for the greedy search in the discretized position/orientation
statespace.
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Parameter Easy Difficult
Directional sensor angle-of-view 100° 100°
Directional constraint 0.0°± 10.0° 0.0°± 10.0°
Min. distance constraint 50.0 meters 40.0 meters
Max. distance constraint 100.0 meters 50.0 meters
Coverage task granularity 100.0 meters 75.0 meters
Sampling task duration 50.0 seconds 50.0 seconds

Table 6.1: Parameters for sub-flight algorithm comparison and benchmarking. The differences
between the easy and difficult parameters are that the distance constraints are more restrictive
and the coverage tasks are more granular. Directional sensor angle-of-view refers to the size
of the directional sensor’s sensing volume. Directional constraint is the direction from which
the task area must be sensed. A directional constraint of 0.0° ± 10.0° means that the UAV
must fly to the east (± 10.0°) of the location being sensed. The Minimum and maximum
distance constraints require that the UAV be within that range of distance from the location
being sensed. Coverage task granularity and sampling task duration are task-specific options.

(see Table 6.1). One scenario, for example, has a single coverage task, is assigned the easy

parameters, and is configured to use a directional sensor. We tested all of the above-described

sub-flight planning algorithms on each of the four scenarios at the two difficulty levels. The

algorithms were given one minute and five minute time limits to complete on the easy and

difficult levels, respectively. An algorithm is considered to have been successful at planning

a flight for a problem if it completes within the time limit for the difficulty level and the

generated sub-flight receives full points from the task’s reward function.

The results of benchmarks on the “easy” scenarios are summarized in Table 6.2. All

algorithms except for the best-first tree search are successful at generating flights for all four

easy scenarios in under one minute. The genetic algorithm performs most quickly at this

level but the flights it generates tend to be longer and therefore less efficient. The simple

greedy algorithm is slower than Genetic, but it generates shorter flights. The best-first tree

search fails to complete within the one minute time limit while planning for the tasks with a

directional sensor. The simple greedy and best-first search both take an unusually long time

building sub-flights for the sampling task with directional sensors.

The results of benchmarks on the “difficult” scenarios are summarized in Table 6.3.

Results for the best-search tree search algorithm are not included since it fails on several of
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Algorithm Task Sensor Success Planning Time Flight Length
Genetic Coverage Directional TRUE 2.01 s 6.02 km
Genetic Coverage Omnidirectional TRUE 0.68 s 3.43 km
Genetic Sampling Directional TRUE 7.64 s 4.53 km
Genetic Sampling Omnidirectional TRUE 6.75 s 2.20 km
Simple Greedy Coverage Directional TRUE 1.02 s 3.51 km
Simple Greedy Coverage Omnidirectional TRUE 1.45 s 2.07 km
Simple Greedy Sampling Directional TRUE 40.88 s 3.89 km
Simple Greedy Sampling Omnidirectional TRUE 3.32 s 1.23 km
Best-First Tree Coverage Directional FALSE
Best-First Tree Coverage Omnidirectional TRUE 5.33 s 1.62 km
Best-First Tree Sampling Directional FALSE
Best-First Tree Sampling Omnidirectional TRUE 5.13 s 1.14 km
Best-First Coverage Directional TRUE 0.67 s 1.90 km
Best-First Coverage Omnidirectional TRUE 1.10 s 1.43 km
Best-First Sampling Directional TRUE 20.60 s 2.71 km
Best-First Sampling Omnidirectional TRUE 5.55 s 1.02 km

Table 6.2: Results of sub-flight comparison on the “easy” scenarios. The best results for each
task/sensor combination are bolded.

the easy scenarios. The simple greedy algorithm fails to finish (within the five-minute time

limit) the sampling task with a directional sensor. The genetic and best-first algorithms are

able to complete all the difficult scenarios within the allotted time limit. However, best-first

takes a lot of time on the sampling tasks. There seems to be a tradeoff between the genetic

and best-first algorithms. Genetic is very quick to find an inefficient solution. Best-first takes

longer, but generates more efficient sub-flights. There is an exception with the Directional

sampling task, where the genetic algorithm is able to find a shorter flight than best-first does.

Of all the sub-flight algorithms we tested, only two, genetic and best-first, are able to

successfully plan sub-flights for the easy and difficult scenarios. Restricting the analysis to

these two algorithms, it can be seen that there is a tradeoff between computation time and

minimization of flight length, or efficiency (see Figure 6.3). The choice of which algorithm

to use in practice can be made on a case-by-case basis based on the relative importance of

computation time and flight efficiency. We believe that in most cases, the best-first method

is preferable by virtue of it generating much shorter flights.
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Algorithm Task Sensor Success Planning Time Flight Length
Genetic Coverage Directional TRUE 38.49 s 19.18 km
Genetic Coverage Omnidirectional TRUE 39.70 s 13.06 km
Genetic Sampling Directional TRUE 9.47 s 1.11 km
Genetic Sampling Omnidirectional TRUE 8.29 s 10.58 km
Simple Greedy Coverage Directional TRUE 12.74 s 6.77 km
Simple Greedy Coverage Omnidirectional TRUE 15.49 s 3.85 km
Simple Greedy Sampling Directional FALSE
Simple Greedy Sampling Omnidirectional TRUE 141.70 s 5.53 km
Best-First Coverage Directional TRUE 9.93 s 4.52 km
Best-First Coverage Omnidirectional TRUE 27.80 s 3.59 km
Best-First Sampling Directional TRUE 258.98 s 7.92 km
Best-First Sampling Omnidirectional TRUE 103.96 s 4.56 km

Table 6.3: Results of sub-flight comparison on the “difficult” scenarios. The best results for
each task/sensor combination are bolded. Results for the best-first tree search algorithm are
not included for the difficult scenarios since it fails to complete all easy scenarios.
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Figure 6.3: Boxplots comparing the runtime and solution length of the genetic and best-first
sub-flight planning algorithms on the “difficult” scenarios. The best-first method often takes
longer to plan than the genetic planner, but nearly always produces a much shorter flight.
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Chapter 7

User Study

In order to validate our claims or hypotheses (see Chapter 1) it is necessary to conduct

a user study. The claim that sensor-driven planning can be used by non-expert users simply

required that we conduct an experiment where non-experts use the graphical user interface to

plan some flights. The claims that sensor-driven planning is easier to use and creates better

flights, however, required a comparison with the state of the art. Since waypoint planning is

currently the most common method of UAV flight planning, we constructed a simple but

adequate waypoint-based planning interface, which will be discussed in Section 7.2.

We should clarify that the 2D hierarchical planner used for the user study is a

“stripped down” version that does not include the physical constraints. Excluding the physical

constraints from the user study simplified user training, allowed each participant to finish in

a reasonable amount of time, and simplified the statistical design of the study.

We created four scenarios with which to test both planning methods (sensor-driven

and waypoint-based). Each scenario utilizes every feature of the planning taxonomy 1 —

coverage, sampling, and fly through tasks, dependency and timing constraints, and obstacles

(see Table 7.1). However, two of the four scenarios emphasize coverage tasks whereas the

other two emphasize sampling tasks. Each scenario includes a briefing document that users

can reference before and during the planning process. The briefings contain a map of the

vicinity, approximate outlines of the task areas (and obstacles) of interest, a written summary

of the tasks and constraints required, and a wilderness search and rescue-inspired “story” to

motivate the scenario and for ecological validity. An example briefing document is shown in

1With the above-noted exception of the physical constraints.
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Scenarios
Taxonomy Elements A B C D

Coverage Task(s) 2 1 2 1
Sampling Task(s) 1 2 1 2

Fly-Through Task(s) 1 1 1 1
No-Fly Zone(s) 1 1 1 1

Dependency Constraint(s) 4 1 3 6
Timing Constraint(s) 1 1 1 1

Table 7.1: A summary of the four scenarios and the elements of the taxonomy that each
features.

Figure 7.1 and the other briefing documents are given in Appendix A. The task areas shown

in the briefings are coarse so that users are forced to draw their own rectangles based on the

contents of the briefing rather than copying the areas that are shown.

Since we have two planning methods to compare (sensor-driven and waypoint-based),

four scenarios in which to test them, and we test all users on each planning method, our

experiment is a 2x4 within-subjects experiment. To minimize the potential negative effects

of a within-subjects design (effects due to fatigue and learning/practice), we counterbalance

users’ exposure to the sensor-driven and waypoint-based planning techniques. The order in

which scenarios are performed and the planning method used are also counterbalanced (see

Table 7.2). The scenarios are designed in such a way that A is comparable in difficulty to C

and B is comparable to D. This allows us to always group A with B and C with D in the

counterbalancing permutations, which reduces the number of permutations required.

7.1 Secondary Task

During each scenario with either planner, the users are required to manage a secondary

task. Our secondary task takes the form of simulated text-based commications (chat) with

a wilderness search and rescue (WiSAR) team. Users are required to monitor the chat for

messages from the WiSAR “incident commander” (the leader in a search and rescue situation),

each of which requires that the user respond with a two-digit numeric response code. Users

have to monitor the chat for messages from the incident commander, which are dispersed
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A - Midway 

 

NOTES 

● Field 

○ Must be completed before River 

● South River 

○ Must be completed during the time window 300 - 620 seconds. 

○ Must be sampled for at least 30 seconds. 

● Landing Zone 

○ Must be completed last 

● Do not fly over the spiral hill! 

DETAILS 

Yesterday morning a thirteen year-old boy left home to walk to the River to go fishing. The river is in early spring 

flood stage and his family has not heard or seen him since. Search and Rescue was called in last night. The boy 

often cut through the large circular Field, which is marked on your map, on his way to the River.  

 

We need a flight plan to gather complete photo coverage of the circular field and the boy’s usual fishing ground. In 

addition, we’d like to gather photo samples of the marked South River area in case any evidence of the boy’s 

passing has been washed downstream. Your flight plan should start at the marked position (near the family’s home). 

In order to conserve fuel, be sure to not fly over the large hill. 

 

  
Figure 7.1: An example briefing document from the user study. The briefings featured a map
of the overall area annotated with areas of interest (task areas). The annotations are done
very coarsely, as if drawn by hand on a paper map. This forces users to create their own
task areas based on context rather than copying the ones in the briefing. It also helps set the
mood of an actual search scenario (ecological validity).
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A1 B1 C2 D2
C1 D1 A2 B2
C2 D2 A1 B1
A2 B2 C1 D1

B1 A1 D2 C2
D1 C1 B2 A2
D2 C2 B1 A1
B2 A2 D1 C1

A1 B1 D2 C2
C1 D1 B2 A2
C2 D2 B1 A1
A2 B2 D1 C1

B1 A1 C2 D2
D1 C1 A2 B2
D2 C2 A1 B1
B2 A2 C1 D1

Table 7.2: We use sixteen different permutations of experiment order to provide counterbal-
ancing. Since scenarios A and B are roughly equivalent to scenarios B and D we can always
group A with B and C with D. Otherwise, all other permutations are considered.

among other distracting and unimportant messages from other simulated members of the

WiSAR team.

The frequency of messages, both the important incident commander messages and

the distracting messages, is modeled using normal distributions. The frequency between each

incident commander message is drawn from a normal distribution with µ = 15 seconds and

σ = 13 seconds. The frequency between each distractor message was drawn from a normal

with µ = 7.5 seconds and σ = 5.5 seconds. The program discards and re-draws in the case of

drawing a negative number. These parameters were chosen by trial and error so that the

secondary task was neither too easy nor too difficult and so that the incident commander

messages are relatively rare compared to the distracting messages.

During each scenario, users’ performance on the secondary task is recorded. Specifically,

we record the time between incident commander messages and users’ correct responses

(latency) and the ratio of good responses to missed/invalid responses. As a reminder to

the users and to incentivize them, color-coded statistics about secondary task performance
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Figure 7.2: A screenshot of the secondary task (a simulated chat with a search and rescue
team) for the user study. The interface displays statistics about users’ performance on the
chat to incentivize them.

are displayed below the chat display and the outgoing chat line entry. When a user does

not respond to an incident commander message before a new one is generated, a “missed

responses” counter (see Figure 7.2) is incremented and flashes red. Correct responses cause

a “good responses” counter to increment and flash green. The user’s response rate (%) and

average response latency are highlighted green when they are doing well, yellow when they

are performing marginally, and red when they are performing poorly.

The secondary task chat display can be seen at the bottom of the sensor-driven

planning GUI in Figure 4.2, at the bottom of the comparison waypoint-based interface in

Figure 7.3, and close-up in Figure 7.2.

7.2 Waypoint Planner

A screenshot of the waypoint planner is shown in Figure 7.3. We developed the waypoint

planner with the goal of keeping as much functionality in common with the sensor-driven

planner as possible, both to save development effort and to minimize differences between the

two besides the planning method used (sensor-driven vs. waypoint-based). The waypoint

planner has the same map display and secondary task display as the sensor-driven planner.
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The location, appearance, and functionality of common buttons such as “Export Flight”,

“Import Flight”, “Reset,” and ”Exit” are the same.

The waypoint interface allows user to create and edit a series of waypoints. Waypoints

can be appended, inserted, deleted, and moved. The waypoints are connected using Dubins

curves which give the user a good idea of where an idealized fixed-wing UAV with a bounded

angular velocity and fixed speed would actually fly. The angle of each waypoint is an average

of the angles to the previous and next waypoint weighted (or linearly interpolated) by the

distance to them, respectively. The interface also features a timeline which shows how long

(from the beginning of flight) a UAV would take to reach each waypoint at a configured speed.

7.3 Flight Testing

It is necessary during the experiments for users to be able to test the flights they generate

(using either planning method) to ensure that they accomplish the tasks and satisfy the

constraints of the scenarios. This enables users to receive feedback on their performance and

helps us to measure flight quality.

The sensor-driven planner and the waypoint-based comparison planner both have a

“Test Flight” button that users can use to verify that the flights they generate accomplish the

tasks and satisfy the constraints of the scenario. Since each scenario is defined as a planning

problem, the planners can load them as needed for flight testing. The scenarios loaded into

the planning interfaces are loaded into the background only for testing. That is, the task

area polygons defined in the scenario are not displayed. This is to ensure that users have to

create their own polygons or waypoints based on the scenario briefing.

The flight test functionality assigns a score to the user’s discretized flight by summing

up the scores returned by the sub-flights’ reward functions (see Table 5.1). In addition to

performance on the sub-flights, the flight tester evaluates compliance with dependencies,

timing constraints, and no-fly zones. The flight score is reported to the user (as a percentage
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Figure 7.3: A screenshot of the waypoint-based comparison planning interface. The interface
allows users to create and edit a series of waypoints which are connected using Dubins curves.
The Dubins curves give the user a good idea of where an idealized fixed-wing UAV with
a bounded angular velocity and fixed speed would actually fly. The interface features a
timeline which shows how long (from the beginning of flight) a UAV would take to reach
each waypoint at a configured speed.
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of possible performance) along with the number of dependency, timing constraint, and no-fly

violations.

7.4 Measurements and Procedures

In this section we discuss the procedure used for each user study participant as well as the

information that we collect at each stage. Figure 7.4 summarizes the experiment procedure

for sequence A1—B1—C2—D2.

First, users are instructed to read and sign an institution review board-approved

consent form. Next, users are instructed to sit at a computer and are given a general verbal

introduction and some general verbal instructions.

When a user is ready, the automated user study sequence is started. The user is

presented with a pre-user study survey, the purpose of which is to obtain general demographic

information such as gender and age (see Figure A.8). Next, the user is shown a video that

introduces the general concept of UAV flight planning and experiment procedures common to

both planning methods, such as the secondary (chat) task. After the introduction video, the

user is shown a training video for the first planning interface in their experiment sequence

(see Table 7.2)

Next, the user is given a practice scenario and an opportunity to practice the first

planning interface on the practice scenario. The practice scenarios are similar to the full

scenarios discussed in Table 7.1, but are less complicated and easier. During the practice

scenarios (and the real scenarios) we record the time taken to plan, secondary task performance

(response rate and latency), number of mouse clicks, and the performance of each flight

generated (task performance and scheduling constraint violations). Users are instructed to

plan until they are satisfied with the performance of their flight as measured by the “flight

test” functionality discussed in section 7.3. When they are satisfied, they simply exit the

planning interface to proceed to the next step.
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1. Take pre-survey
2. View introduction video
3. View training video for planning interface 1
4. Practice with planning interface 1

(a) View briefing for practice scenario
(b) Perform practice scenario with planning interface 1

5. A1
(a) View briefing for scenario A
(b) Perform scenario A with planning interface 1
(c) Take NASA-TLX survey for A1

6. B1
(a) View briefing for scenario B
(b) Perform scenario B with planning interface 1
(c) Take NASA-TLX survey for B1

7. Take a break
8. View training video for planning inerface 2
9. Practice with planning interface 2

(a) View briefing for practice scenario
(b) Perform practice scenario with planning interface 2

10. C2
(a) View briefing for scenario C
(b) Perform scenario C with planning interface 2
(c) Take NASA-TLX survey for C2

11. D2
(a) View briefing for scenario D
(b) Perform scenario D with planning interface 2
(c) Take NASA-TLX survey for D2

12. Take post-survey

Figure 7.4: User study procedure for experiment sequence A1—B1—C2—D2.
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After the practice scenario for the first planning interface the experiment proceeds

to the two scenarios (A and B or B and D) for the first planning interface. After each

scenario, users are asked to rank task difficulty using a web-based implementation of NASA-

TLX [47] (see Figure A.7). NASA-TLX, or the NASA Task Load Index, is a well-studied

and accepted way of measuring workload using a survey of six dimensions (mental, physical,

temporal, performance, effort, and frustration) on a 100-point scale. Normally, users perform

a pairwise comparison between the dimensions to produce a weight for each of the dimensions,

which are used to combine them into an overall score on a 100-point scale. We do not have

users perform the normal pairwise comparison between dimensions to generate weights. We

found that this process confuses and frustrates users and takes too much time during the user

study. Instead, we sum the dimensions’ sub-scores to arrive at an overall score on a 600-point

scale, a variation referred to as “raw TLX” [48]). Because the secondary task acts as another

way to measure workload, correlations between raw TLX and secondary task performance

allow us to determine if any differences are the result of actual workload or rather an artifact

of using raw TLX.

When a user has completed the first two non-practice scenarios with the first planning

interface they are given the opportunity to take a break to use the restroom, walk around,

etc. When the user is ready to proceed, they are shown a training video for the second

planning interface of their experiment sequence and given the opportunity to practice with

it on another practice scenario. After the practice, they perform the last two non-practice

scenarios (with accompanying NASA-TLX surveys).

After all scenarios have been completed users are asked to complete a post-survey.

The purpose of the post-survey is to gather subjective information and comments on users’

experiences during the study. See Figure A.9 for the post-survey questions.

57



7.5 Pilot Study

We performed a power analysis using the assumption that we wanted to detect a practically

significant difference of 10 (two “pips”) on the 100-point NASA-TLX scale with an estimated

standard deviation of 10. The analysis revealed that we would need about eight participants

to achieve statistical significance with α = 0.05 and β = 0.2 (type-one and type-two error

parameters). Due to the counterbalancing requirements, however, this number was raised to

sixteen.

We performed a pilot study with four users to make sure that experimental procedures

were sound and to get an (unbalanced) idea of the statistical properties of the measurements.

In the piloty study, the overall NASA-TLX scores showed a within-participant standard

deviation of 30 on a 100-point scale. This number was well above our threshold for practical

significance (10 points). Extrapolating the results of the user study indicated that the number

of required partipants estimated in the power analysis (eight) was reasonable, so we proceeded

with the full user study.

7.6 Results

We needed sixteen participants (one for each experiment counterbalancing as seen in Table 7.2).

We had to throw out data for four users who did not complete all scenarios and surveys, so

twenty people were required to reach the required sixteen. The average participant was 25

years old (σ = 5.98 years). Five participants were female (31.25%) and eleven were male

(68.75%).

The recorded data for NASA-TLX, time to plan, chat performance, chat latency,

mouse clicks, and flight performance were analyzed using mixed-model analysis of variance

(ANOVA). Incidence of timing violations, dependency violations, and no-fly violations were

analyzed using Fisher’s Exact Test [49]. Flight lengths were analyzed per-scenario using a

single-factor ANOVA.
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Measurement Sensor-Driven Mean Waypoint-Based Mean p-value
NASA-TLX—Overall 309.38 points 283.75 points p = 0.332
Time to Plan 555.25 seconds 359.25 seconds p = 0.026
Chat Performance 67.74% 67.52% p = 0.95
Avg. Chat Latency 5.86 seconds 5.99 seconds p = 0.67
# Mouse Clicks 202.47 clicks 147.16 clicks p = 0.11
Flight Performance 94.4% 90.6% p = 0.169
Timing Violations 9.38% 31.25% p = 0.059
Dependency Violations 9.38% 28.13% p = 0.107
No-Fly Violations 25.00% 6.25% p = 0.082
Flight Length—A 9,653.75 m 14,037.88 m p � 0.01
Flight Length—B 12,323.63 m 17,599.53 m p = 0.031
Flight Length—C 10,742.80 m 13,366.08 m p = 0.0603
Flight Length—D 11,212.50 m 14,591.10 m p � 0.01

Table 7.3: The means of the measurements for sensor-driven planning and waypoint-based
planning methods. Significant results in bold.

The results of the user study are summarized in Tables 7.3 and 7.4 with significant

results in bold. Contrary to expectations based on the pilot study, we did not observe any

real difference (practically or statistically) between the NASA-TLX measurements of the two

planning types. The difference between the means was only 25.63 points on the 600-point

raw TLX scale, which is equivalent to 4.27 points on the normal 100-point scale. This is less

than one “pip” on the TLX survey (see Figure A.7). Waypoint-based planning was found to

take an average of 196 seconds (p = 0.026) less than than sensor-driven planning. There was

no practical or statistical difference between users’ secondary task performance with the two

planning methods. User study participants required, on average, 50 more clicks of the mouse

when using sensor-driven planning. Since the sensor-driven interface uses mouse clicks and

drags to create and edit polygons, this suggests that some of the workload of sensor-driven

planning is related to editing polygons.

7.6.1 Usability

One of our claims is that sensor-driven planning is usable. The results of the user study

support this claim for two reasons: First, users were able to plan flights using the sensor-driven
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Measurement Difference Between Means Pract. Signif. p-value
NASA-TLX—Overall 25.63 points No p = 0.332
Time to Plan 196 seconds Yes p = 0.026
Chat Performance 0.22 percentage points No p = 0.95
Avg. Chat Latency 0.13 seconds No p = 0.67
# Mouse Clicks 50 clicks Yes p = 0.11
Flight Performance 3.8 percentage points No p = 0.169
Timing Violations 21.87 percentage points Yes p = 0.059
Dependency Violations 18.75 percentage points Yes p = 0.107
No-Fly Violations 18.75 percentage points Yes p = 0.082
Flight Length—A 4,384.13 m Yes p � 0.01
Flight Length—B 5,275.90 m Yes p = 0.031
Flight Length—C 2,623.28 m Yes p = 0.0603
Flight Length—D 3,378.60 m Yes p � 0.01

Table 7.4: A summary of the practical and statistical significance of the user study results.
Significant results in bold.

planner. Second, the analysis of the NASA-TLX surveys and secondary task performance,

which indicates that sensor-driven planning is no more difficult than waypoint-based planning.

The difference between the means of the NASA-TLX overall scores for the planners is

only 25.63 points on the 600-point raw TLX scale (or 4.27 points on the 100-point NASA-TLX

scale). This difference is not practically significant as it is less than even one “pip” on the

survey’s scale, which is divided twenty-ways into five-point pips (see Figure A.7). This

difference was not statistically significant, with a p-value of 0.3320.

There is no appreciable difference between users’ secondary (chat) task performance

with sensor-driven planning and their performance with waypoint-based planning. Specifically,

users’ average response latencies are 5.86 seconds and 5.99 seconds with sensor-driven

and waypoint-based planning, respectively for a difference of 0.13 seconds. Average chat

performance (ratio of valid responses to total incident commander messages) is 67.74% with

sensor driven and 67.52% with waypoint-based for a difference of 0.22 percentage points.

Neither measurement of secondary task performance shows practical or statistical significance

between planning methods.
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Since there is no practical or statistical significance in the NASA-TLX measurements

and in secondary task performance, we have no evidence that either planning method imposes

a higher workload than the other.

7.6.2 Ease of Use

Another hypothesis is that sensor-driven planning is easier than traditional (waypoint-based)

methods. The results of the user study do not support this hypothesis. As discussed in 7.6.1,

there is no practical or statistical difference between the NASA-TLX scores or secondary

task performance with the two planning methods. Therefore, there is no evidence that either

planning method imposes a higher workload than the other.

Workload, however, is not the only element of difficulty. Analysis of the user study

results reveals that sensor-driven planning required an average of 196 seconds (about three

minutes) longer per scenario than waypoint-planning. We believe that this result is practically

significant as three minutes is not an insignificant amount of time considering that the average

planning time (across both planning methods) was 527.52 seconds, or about nine minutes.

The difference between planning times was statistically significant with p = 0.026.

Results from the post-survey indicate that user preferences are roughly-split. When

asked “Which planning method was easier to use (sensor-driven, waypoint-based, or neither)?”

8 users responded with sensor-driven planning, 6 with waypoint-based planning, and two said

“neither.”

Taken together, these results suggest that sensor-driven planning (in its current state

of development) is actually a little more difficult than traditional waypoint-based planning,

which does not support the hypothesis.

7.6.3 Quality of Flights

The final user-centered hypothesis is that sensor-driven planning produces better flights

than traditional planning. The results of the user study support this hypothesis. There are
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three measurements in the user study that are relevant to flight quality: flight performance

(measured as a percentage of summed task completion), constraint violations, and flight

length support the hypothesis.

Flight performance scores for sensor-driven planning were 3.8 percentage points higher,

on average, than those of waypoint-based planning. This result is not practically or statistically

significant, which indicates that the two planning methods are equivalent in this respect.

The results for constraint violations are statistically and/or practically inconclusive.

User study scenarios planned using sensor-driven planning experienced timing, dependency,

and no-fly violations (based on the “background” scenario used for flight testing, not the user-

specified areas and constraints; see 7.3) at a rate of 9.38%, 9.38%, and 25.00%, respectively

(that is, out of all user study scenarios planned using sensor-driven planning, these percentages

of them violated constraints). Those planned using waypoint-based planning experienced

the same constraint violations (timing, dependency, and no-fly) at rates of 31.25%, 28.13%,

and 6.25%, respectively. To summarize, fewer flights generated with sensor-driven planning

violated timing and dependency constraints than those planned with waypoint-based planning.

Flights generated by the waypoint-based planner, on the other hand, violated fewer no-fly

zones.

Regardless, none of the differences in constraint-violation are statistically significant.

The results for timing and no-fly violations have p-values of 0.059 and 0.0816, which suggests

that there may be a difference that could be teased out with more data. Based on the data

available, however, we are forced to conclude that neither planning method holds a clear

advantage over the other with regards to constraint satisfaction.

The results of the user study show a large difference between the length of flights

generated using sensor-driven planning and the length of those generated using waypoint-

based planning. Flights generated using sensor-driven planning during the user study were,

on average, much shorter than their counterparts generated using waypoint planning (see
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Scenario

Mean
Sensor-Driven

Length

Mean
Waypoint-Based

Length Difference p-value
A 9,653.75 m 14,037.88 m 4,384.13 m p� 0.01
B 12,323.63 m 17,599.53 m 5,275.90 m p = 0.031
C 10,742.80 m 13,366.08 m 2,623.28 m p = 0.0603
D 11,212.50 m 14,591.10 m 3,378.60 m p� 0.01

Table 7.5: A comparison of the length of flights generated using the two planning methods.
Flights generated during the user study using sensor-driven planning are considerably shorter
than those generated using waypoint-based planning. Results on scenarios A,B, and D are
statistically significant while those of scenario C are merely suggestive.

Table 7.5). In this respect, flights generated using sensor-driven planning are superior, as a

shorter flight that accomplishes the same tasks is preferable to a longer one.

Taken together, the fact that we observe no real difference between the planning

methods in terms of summed task completion and constraint violations but do see a significant

difference in the length of the generated flights leads us to believe that our hypothesis is correct

and that sensor-driven planning does indeed produce better flights than waypoint-based

planning.

7.7 Summary

The results of the user study allow us to evaluate our claims. Again, these are:

1. Sensor-driven planning can be used by non-expert users.

2. Sensor-driven planning is easier to use than the state of the art (waypoint planning).

3. Sensor-driven planning produces better flights than the state of the art (waypoint

planning).

The results of the user study support the first and third claims. Users are able to

use sensor-driven planning to produce flights and there is evidence, based on the significant

difference in the length of flights generated by the two planning methods, that sensor-driven

planning produces better flights than waypoint-based planning.
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Results indicate that the second claim is incorrect. While there is no evidence that

either planning method imposes a higher workload than the other (based on NASA-TLX

and secondary task performance), there is a significant difference between the two planning

methods in terms of time taken to plan flights. On average, users took about three minutes

longer to plan flights using sensor-driven planning. This is evidence that, in its current state

of development, sensor-driven planning is more difficult than traditional waypoint planning.

Feedback from participants’ post-user study surveys revealed a common complaint

regarding polygon editing in the sensor-driven interface. When asked “What would improve

the sensor-driven planning method?” three participants responded as follows:

• “If I could draw a testing area instead of just having rectangular that I have to stretch.”

• “Changing the shape of the task area.”

• “A shape creation tool more like the coverage [helper] where you clicked on the vertices

of the shape you were trying to create would work much better than the current

re-shaping idea.”

When asked “What are some weaknesses of the sensor-driven planning method?” two users

responded as follows:

• “Hard to draw.”

• “Adding new vertices was extremely difficult.”

Based on the feedback about the sensor-driven interface’s polygon editing functionality,

we’ve modified it to allow users to simply draw the polygons they want while holding down

the right mouse button. As the user draws their polygon, small red dots appear behind the

mouse to mark the path of the mouse drawing so far. When a user releases the mouse, a task

area is created in the shape of the drawing (see Figure 7.5).

After adding the ability to draw polygons, we conducted a small, informal case study

with the users from our pilot study. We instructed the users to use the sensor-driven planning

interface (with polygon drawing improvements) to plan flights for the same scenarios that

they planner for during the user study. Their reactions to the improved polygon drawing
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Figure 7.5: An illustration of drawing a circular task area using the improved polygon drawing
functionality. The left side of the figure shows the circular area as it is being drawn. Small
red dots mark the path the mouse has taken during the drawing. When the mouse is released,
the task area is completed, as shown on the right.

method were positive. Additionally, the median time to plan using the sensor-driven interface

dropped from 333 seconds in the pilot study to 248 seconds in the case study. Although

some of this effect can certainly be ascribed to learning effect, we believe that the improved

polygon drawing method improves the usability of and reduces the time required by the

sensor-driven planner.
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Chapter 8

Conclusions

In this chapter we discuss the conclusions of all aspects of the thesis including the

taxonomy, hierarchical planning, sub-flight planning, and the user study. We also discuss

some interesting or useful areas of future work.

8.1 Conclusions

We’ve presented a taxonomy of sensors, tasks, and constraints for sensor-driven UAV flight

planning. Using the taxonomy, we’ve developed a hierarchical flight planner that is capable

of quickly planning effective flights for sensor-driven planning problems with complex tasks

and constraints. We performed an objective comparison of algorithms that can be used as

the sub-flight planner, which is a component of the overall hierarchical design. In order to

evaluate the concept of sensor-driven planning and our hierarchical planner, we conducted a

user study to evaluate our usability claims, specifically, that sensor-driven planning is usable,

easier to use than traditional waypoint-based planning, and produces better flights than

waypoint-planning.

The taxonomy consists of canonical tasks, canonical sensors, scheduling constraints,

and area types. The canonical tasks are coverage and sampling. The canonical sensor types

are directional and omni-directional. Constraints include temporal constraints (dependencies

and time windows) and physical constraints (directional and distance constraints). Areas can

be task areas (which contain one or more canonical tasks) or no-fly zones (obstacles).
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Since the problem of building time- or distance-optimal flights for sensor-driven

planning problems is, in general, intractable, our hierarchical flight planner exploits the

taxonomy by breaking the overall problem into planning and scheduling components. The

hierarchical planner builds short “sub-flights,” which satisfy physical constraints, for each

flight task and then uses a scheduler to put them together in a way that satisfies timing and

dependency constraints. Generated flights are also viable kinematically based on the simple

Dubins car model.

Evaluation of potential sub-flight planning algorithms in Chapter 6 shows that either

a genetic or best-first search algorithm, searching in a discretized position/orientation state

space, is the best choice for sub-flight planning. Results indicate a tradeoff between flight

efficiency and computation time. The genetic algorithm converges to a satisfying but lengthy

flight quickly. The best-first method takes longer when planning for certain task/sensor

configurations, but finds much shorter, and therefore more efficient, flights in general. We

believe that the best-first method is preferable in general for that reason.

The results of the user study support the hypothesis that sensor-driven planning is

usable since there is no discernable difference between the NASA-TLX scores of the two

planning methods and user study participants were indeed able to use it. Results also support

the hypothesis that sensor-driven planning produces superior flights since (a) those produced

by sensor-driven planning during the user study were significantly shorter than those created

using waypoint planning and (b) the quality of the flights were otherwise comparable. On

the other hand, results from the user study did not support the hypothesis that sensor-

driven planning is easier. In fact, the results indicate that sensor-driven planning, although

comparable in terms of NASA-TLX workload, requires more time than waypoint-based

planning. However, analysis of participant feedback indicated that a large component of

workload for the sensor-driven planner was the polygon editing technique. The results of a

small case study suggest that improvements in polygon editing (specifically, the ability to

draw task area polygons) make sensor-driven planning easier to use.
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To conclude, we believe that sensor-driven planning represents a useful shift in the

way people think about planning flights for unmanned aircraft. Traditional (waypoint-based)

methods force users to mentally juggle UAV kinematics, sensor capabilities, and physical and

temporal constraints, all while “perspective taking” to estimate the perspective of sensors

at each position. We believe that sensor-driven planning, inspired by the idea of “planning

by looking,” has the power to free users from worries about everything except their desired

sensor goals by leveraging automation and autonomy in areas that users don’t want to worry

about.

8.2 Future Work

In this section we discuss some of the most important or interesting avenues that future

work could take. Some of these research directions consist of improvements to what we’ve

accomplished, while others are ideas sparked during the process of completing this thesis.

We believe that the sensor-driven planning interface can be improved to increase

usability. User study results indicate that users spend a great deal of time and effort editing

polygons in the current sensor-driven planning interface. We believe that much time and

effort could be saved by making these tasks easier by, for example, allowing users to draw

polygons rather than clicking and dragging to edit them. We’ve implemented an improved

polygon editing method and conducted a small case study, the results of which indicate

that this technique is likely to enhance user experience. Future work should include these

improvements as well as a more formal user-focused analysis of their benefits.

One intriguing avenue of research could be a “hybrid” planning approach which

combines the best of sensor-driven and waypoint-based planning. Users could utilize waypoint-

planning to quickly “sketch out” portions of a flight that are easy or that they are particular

about, reserving sensor-driven planning to fill in the gaps and to handle the scheduling.

The Dubins car has been extended to a three-dimensional Dubins airplane in [50]. The

Dubins airplane has bounded control over vertical or altitude velocity as well as the standard
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Dubins car control of angular velocity. Future work could utilize the Dubins airplane to help

extend sensor-driven planning to the third dimension.

With extension to three dimensions, modeling terrain using a digital elevation model

(DEM) or similar would be extremely useful for planning flights in places where terrain is

mountainous.

Support for “gimbal planning” would be an interesting addition since many UAV-

mounted cameras are mounted on movable gimbals. Gimbal planning would add another

non-trivial dimension to an already difficult problem, but would support for it would increase

applicability.

It’s possible that the performance of the A* search used for planning obstacle-avoiding

intermediate flights could be optimized using techniques such as jump point search [51].
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Appendix A

User Study Briefings, Surveys, etc.
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A - Midway 

 

NOTES 

● Field 

○ Must be completed before River 

● South River 

○ Must be completed during the time window 300 - 620 seconds. 

○ Must be sampled for at least 30 seconds. 

● Landing Zone 

○ Must be completed last 

● Do not fly over the spiral hill! 

DETAILS 

Yesterday morning a thirteen year-old boy left home to walk to the River to go fishing. The river is in early spring 

flood stage and his family has not heard or seen him since. Search and Rescue was called in last night. The boy 

often cut through the large circular Field, which is marked on your map, on his way to the River.  

 

We need a flight plan to gather complete photo coverage of the circular field and the boy’s usual fishing ground. In 

addition, we’d like to gather photo samples of the marked South River area in case any evidence of the boy’s 

passing has been washed downstream. Your flight plan should start at the marked position (near the family’s home). 

In order to conserve fuel, be sure to not fly over the large hill. 

 

  

Figure A.1: Briefing document for user study scenario A.
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B - Cabins 

 

NOTES 
● West Forest 

○ Must be completed after East Forest. 
○ Must be sampled for at least 300 seconds. 

● East Forest 
○ Must be sampled for at least 300 seconds. 

● Southeast Meadow 
○ Must be completed within the time window 300 - 500 seconds. 

● Don’t fly over the Forbidden Cabins! 

DETAILS 
Early this morning an elderly man left his cabin to go bird watching (as he often does). His wife became worried 
when he did not return by the afternoon. The man was carrying a cell phone but coverage in the area is spotty at 
best. 
 
Starting from the point-last-seen near the man’s cabin, plan a flight to obtain radio samples of the forest to the east 
and west of the cabin (his usual bird-watching haunts). With luck, the UAV will detect signals from his cellular phone. 
Sample for at least 300 seconds in both forest areas. His wife thinks that he headed east, so sample the East Forest 
before the West Forest. We’d also like to get aerial photography coverage of the Southeast Meadow within 300 - 
500 seconds of launch. Finally, at some point, do a simple flyover of the red-roofed cabin, which belongs to a friend 
of the man.  Please do not fly over the Forbidden Cabins (at the landowners’’ request). 

 

  

Figure A.2: Briefing document for user study scenario B.
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C - River 

 

NOTES 
● Southeast River 

○ Must take place during the time window 350 - 600 seconds. 
○ Must sample at least 200 seconds. 

● Landing Zone 
○ Must be last! 

● Do not fly through the danger zone! 

DETAILS 
Earlier this afternoon three teenage boys went rafting on the river. At about 3:15pm, witnesses from the road saw 
their raft capsize in an area of class IV rapids. Witnesses say the boys and the raft became separated.  
 
Hydrodynamical models indicate the Northern Island and the Southwest Arm as likely places where the boys and/or 
the raft may have come ashore. Obtain complete aerial photo coverage of those areas. Based on the speed of the 
river and the time elapsed since 3:15pm, it is possible that some sign of the boys or the raft will be visible in the 
Southeast River area at 350 - 600 seconds. Sample that area with the camera for at least 200 seconds during that 
time frame. 
 
After completing all of the tasks, bring the UAV back to the Landing Zone. 
 
Be sure to not fly through the marked “Danger Zone” as it is a known area of high winds. 

 

 

  Figure A.3: Briefing document for user study scenario C.
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D - Uintah 

 

NOTES 
● Northern Lake 

○ Must be completed before Eastern Clearing 
● Western Lake 

○ Must be completed after Eastern Clearing 
○ Must be completed after Northern Lake 
○ Must sample at least 100 seconds 

● Eastern Clearing 
○ Must be completed within time window 0 - 475 seconds. 
○ Must sample at least 100 seconds 

● Landing Zone 
○ Must be completed last 

● Do not fly over Danger Ridge! 

DETAILS 
A woman was backpacking in the Uintah’s. She was known to be camping at the Northern Lake as of three days 
ago. Late last night her personal emergency locator beacon was activated. Due to interference and multipath effects 
in the area, we haven’t been able to get an exact read on the beacon’s location. 
 
Plan a flight to gather aerial photographs around the Northern Lake (her last known position) and then to scan for 
signals from her locator beacon around the Western Lake and the Eastern Clearing. The signal from the beacon is 
intermittent, so you need to listen for at least 100 seconds in each location.  
 
Prioritize coverage of the Northern Lake first. Be sure to complete sampling of the Eastern Clearing before 475 
seconds. Sample the Western Lake last. After completing all the tasks, your flight should return the UAV to the 
Landing Zone. 

 

  

Figure A.4: Briefing document for user study scenario D.
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E - Cemetery (Training) 

 

NOTES 
● Cemetery 

○ Must be completed between 20 seconds and 200 seconds 
● Blue Building 

○ Must be completed after Cemetery 
○ Must sample for at least 60 seconds 

● Do not fly over the Dangerous Building! 

 

 

  Figure A.5: Briefing document for user study practice scenario E.

 

F - Other (Training) 

 

NOTES 
● Neighborhood 

○ Must be completed before 375 seconds 
● Ponds 

○ Must sample for at least 60 seconds 
○ Must be completed after Neighborhood 

● Do not fly over the Dangerous Building! 

 

Figure A.6: Briefing document for user study practice scenario F.
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Figure A.7: Screenshot of the web-based NASA-TLX[47] survey used after each user study
scenario.

1. Gender
2. Age
3. Do you have normal or corrected-to-normal vision?
4. Do you have color blindness?
5. What is your level of experience working or playing with robots (a scale from 1-5,

inclusive)?
6. What is your level of experience playing video games (a scale from 1-5, inclusive)?

Figure A.8: The questions used in the demographics survey.
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1. Which planning method did you prefer (sensor-driven, waypoint-based, or neither)?
2. Which planning method was easier to learn (sensor-driven, waypoint-based, or neither)?
3. Which planning method was easier to use (sensor-driven, waypoint-based, or neither)?
4. Which planning method produced better flights (sensor-driven, waypoint-based, or

neither)?
5. With which planning method(s) can you effectively create flights (sensor-driven,

waypoint-based, both, neither)?
6. Which interface made it easier to satisfy constraints (sensor-driven, waypoint-based,

neither)?
7. What are some strengths of the sensor-driven planning method?
8. What are some weaknesses of the sensor-drivenn planning method?
9. What are some strengths of the waypoint-based planning method?

10. What are some weaknesses of the waypoint-based planning method?
11. What would improve the sensor-driven planning method?
12. What would improve the waypoint-based planning method?
13. Any other comments?

Figure A.9: The questions used in the post-user study survey.
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