
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2013-04-03

Warping-Based Approach to Offline Handwriting
Recognition
Douglas J. Kennard
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Kennard, Douglas J., "Warping-Based Approach to Offline Handwriting Recognition" (2013). All Theses and Dissertations. 3991.
https://scholarsarchive.byu.edu/etd/3991

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3991?utm_source=scholarsarchive.byu.edu%2Fetd%2F3991&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Warping-Based Approach to Offline Handwriting Recognition

Douglas J. Kennard

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

William A. Barrett, Chair
Bryan S. Morse
Eric Ringger
Dan R. Olsen
Daniel Zappala

Department of Computer Science

Brigham Young University

April 2013

Copyright c© 2013 Douglas J. Kennard

All Rights Reserved

ABSTRACT

Warping-Based Approach to Offline Handwriting Recognition

Douglas J. Kennard
Department of Computer Science, BYU

Doctor of Philosophy

An enormous amount of the historical record is currently trapped in non-indexed
handwritten format. Even after being scanned into images, only a minute fraction of the
existing records can be manually transcribed / indexed with reasonable amounts of time and
cost. Although progress continues to be made with automatic handwriting recognition (HR),
it is not yet good enough to replace manual transcription or indexing. Much of the recent
HR work has focused on incremental improvements to methods based on Hidden Markov
Models (HMMs) and other similar probabilistic approaches. In this dissertation we present
a fundamentally new approach to HR based on 2-D geometric warping of word images.
The results of our experimentation indicate that our approach is significantly more accurate
than an existing whole-word approach used for word-spotting, and may also be better than
HMM-based HR approaches. Since it is a completely new method, we also believe there is
potential for improvement and future work that builds on this approach. In addition, we
demonstrate that the approach can be used effectively in the related application domain of
signature verification and forgery detection.

Keywords: Handwriting Recognition, Word Warping / Morphing, Signature Verification,
Forgery Detection

ACKNOWLEDGMENTS

I have had the rare opportunity of having two advisors, both of whom have contributed

significantly to my progress and learning. I would like to thank Dr. William A. Barrett

for his mentorship and guidance. In addition to providing direction, instruction, and advice

throughout my graduate school experience, he has also served as an example. His enthusiasm

for service and for research that benefits the mission of BYU and its sponsoring institution

— The Church of Jesus Christ of Latter-day Saints — has had a profound impact on my own

goals and aspirations. I would also like to thank Dr. Bryan S. Morse, who was my advisor for

the three years that Dr. Barrett was away as a mission president. I will always be grateful

that Dr. Morse was willing to take me on as a student during that time and I appreciate

the many things he has taught me. He has also been a great example and mentor, sharing

insights and wisdom that have been a great benefit to my research and to me personally.

I also thank the other members of my dissertation committee for their insights, feed-

back, and willingness to give of their time. Likewise, I thank the other members of the

faculty who have been great teachers and examples. I particularly wish to express thanks

to Dr. Thomas W. Sederberg for his collaboration with Dr. Barrett and me in the develop-

ment of the handwriting recognition algorithm described in this dissertation, for his inspiring

devotional address, and for his example of commitment and integrity.

I thank others who have provided data, expertise, collaboration, resources, funding,

or other support that has benefitted my dissertation research and my other projects. To

name just a few: FamilySearch and the Family History Department of the LDS Church

including Jake Gehring, Patrick Schone, Heath Nielson, Gordon Clarke, Jimmy Zimmerman,

and others; the BYU Harold B. Lee Library including Bill Lund, Don Campbell, Scott

Eldredge, and Russ Taylor; Professor Fred E. Woods in the BYU Religion Department;

Luke Hutchison for bootstrapping my literature search; Andrew Kent; Renae Bell; the BYU

Computer Science Department administrative staff; the Gene Powell BYU Fund for Family

History Research; a BYU Mentoring Grant awarded through the office of Graduate Studies;

all the people who traded their handwriting for candy and those who gave it up out of the

goodness of their hearts.

Special thanks to the people in the lab that kept me laughing when I needed to,

mainly Dave, Carson, and Josh, and to Seth and Kevin for our discussions about politics,

ethics, and how to solve the world’s problems. And biggest thanks to the family members,

friends, leaders, acquaintances, and others who have impacted my life outside of the lab

and classroom, making my experience at BYU a life-changing, memorable, and meaningful

experience. Thank you, all of you.

Contents

List of Figures viii

List of Tables xi

List of Algorithms xii

1 Introduction 1

1.1 The Offline Handwriting Recognition Problem 2

1.2 General Approach to HR . 6

1.3 Previous Work . 7

1.4 Recent Progress in HR . 13

1.5 Our Warping-Based Approach to Handwriting Recognition 13

1.6 Dissertation Organization . 14

2 Word-Warping for Offline Handwriting Recognition 16

2.1 Abstract . 16

2.2 Introduction . 17

2.3 Related Work . 19

2.4 Methods . 20

2.4.1 Preprocessing . 22

2.4.2 Distance Map and Medial Axis . 22

2.4.3 Dynamic Programming for Coarse Mesh Alignment 24

2.4.4 Warping Coordinates . 28

v

2.4.5 Morphing for Warp Mesh Improvement 28

2.4.6 Word Matching Cost . 31

2.5 Experiments . 32

2.6 Results and Discussion . 33

2.7 Conclusion and Future Work . 39

3 Offline Signature Verification and Forgery Detection Using a

2-D Geometric Warping Approach 40

3.1 Abstract . 40

3.2 Introduction . 41

3.3 Methods . 43

3.3.1 Preprocessing . 43

3.3.2 Comparing Signatures by 2-D Warping 44

3.3.3 Computing Classification Threshold 44

3.3.4 Accepting and Rejecting Signatures 46

3.4 Datasets . 47

3.5 Experiments . 47

3.6 Results . 48

3.7 Conclusion . 51

4 Additional Analysis, Experiments, and Improvements 53

4.1 Introduction . 53

4.2 Analysis of Smith Dataset Recognition Errors 54

4.3 Analysis of Washington Dataset Recognition Errors 60

4.4 Incorporation of Morphing Movement Cost into Word Difference Metric . . . 62

4.4.1 Morphing Movement Cost . 63

4.4.2 Results of Incorporating Movement Cost for Handwriting Recognition 64

4.4.3 Adding a Penalty to Movement Cost for Mismatched Word Lengths . 66

vi

4.4.4 Results of Incorporating Movement Cost for Signature Verification . . 68

4.5 Improved Cost Metric . 71

4.6 Improved Handling of Distance Map Boundaries 72

4.7 Using C0→1 Instead of Heuristic in placement costx,y 72

4.8 Correct Handling of the Last Row and Column of Warp Mesh 74

4.9 Analysis of the Effect of Warp Mesh Size . 75

4.10 Parameter Selection for Improved DP Alignment 79

4.11 Using C0↔1 = max(C0→1, C1→0) and C0↔1 = min(C0→1, C1→0) 82

4.12 Improved Results for Smith and Washington Datasets 82

4.13 IAMDB Dataset Results . 83

4.14 Comparison to Hidden Markov Model (HMM) Approach 85

4.15 Conclusion . 90

5 Conclusion and Future Work 91

A Datasets 94

A.1 Smith Dataset . 94

A.2 Washington Dataset . 97

A.3 IAM Database (IAMDB version 3.0) . 99

A.4 BYU English Signature Dataset (Blind and Casual Forgeries) 100

A.5 SigComp2011 Dutch and Chinese Signatures (Skilled Forgeries) 103

B Smith dataset errors with different shapes 105

C Washington dataset errors with different shapes 115

D Explanation of Code and Documentation 126

References 127

vii

List of Figures

1.1 Difficulty differentiating letters in a word . 2

1.2 HR technology for mail sorting . 3

1.3 HR technology for bank check processing . 4

1.4 Image degradations and aging artifacts that complicate HR 5

1.5 A typical HR system . 6

1.6 Whole word features used by Rath and Manmatha 8

2.1 Overview of HR by matching words with word warping 18

2.2 Reference key to symbols and notation . 21

2.3 Distance map and medial axis . 23

2.4 Whole word features for coarse alignment . 25

2.5 DP table, DP path, Sakoe-Chiba band, and DP alignment 26

2.6 Word profile feature for vertical DP alignment 27

2.7 Warping from rectangular to non-rectangular mesh quads 28

2.8 Improve step of the morphing algorithm . 30

2.9 Refine step of the morphing algorithm . 32

2.10 Experimental Results – Word Recognition Accuracy 34

2.11 Alignment of medial axes . 35

2.12 Examples of recognition errors (Smith dataset) 36

2.13 Examples of correct answer in top 3 matches 37

2.14 Correct answer in top-N results . 38

3.1 Various skill levels of forgeries . 41

viii

3.2 Inconsistent cropping for Chinese signatures 43

3.3 Comparing two signatures . 45

3.4 ROC curves of our method for blind, casual, and skilled forgery datasets . . 49

3.5 Accuracy of our method as t varies . 50

3.6 Comparison to methods from ICDAR 2011 competition 52

4.1 Types of recognition errors - Smith dataset 55

4.2 Smith dataset errors that only differ by capitalization 55

4.3 Smith dataset errors that only differ by one character 55

4.4 Smith dataset errors that have very similar shapes 56

4.5 Smith dataset errors that have moderately similar shapes 56

4.6 Smith dataset errors that have different shapes 56

4.7 Example of filled loops causing a recognition error 57

4.8 Examples of errors caused by poor coarse alignment 58

4.9 Illustration of how C0→1 can be low even with poor alignment 58

4.10 Types of recognition errors - Washington dataset 61

4.11 Washington dataset errors that only differ by punctuation or capitalization . 61

4.12 Washington dataset errors that only differ by one character 61

4.13 Washington dataset errors that have very similar shapes 61

4.14 Washington dataset errors that have moderately similar shapes 62

4.15 Washington dataset errors that have different shapes 62

4.16 Effect of including movement cost in the word difference metric 65

4.17 Example of the negative impact of movement cost on recognition 66

4.18 Example of how movement cost favors short words 67

4.19 Effect of word length mismatch penalty on accuracy when m = 1 68

4.20 Accuracy on Smith dataset as both movement cost and length penalty vary . 69

4.21 Signature verification accuracy for various values of m 70

4.22 Warped medial axis pixels outside of distance map 72

ix

4.23 Correction of how last row and column of mesh are handled 75

4.24 How initial mesh size ratio affects accuracy for Smith dataset 77

4.25 How initial mesh size ratio affects accuracy for Washington dataset 78

4.26 Adjustment of Sakoe-Chiba band constraint for Dynamic Programming . . . 80

4.27 Accuracy for a range of DP band width parameter values 81

A.1 A page image from the Smith diary . 95

A.2 Ground truthing program for Smith and Washington datasets 95

A.3 Example word images from the Smith dataset 96

A.4 A page image from the Washington letters 97

A.5 Example word images from the Washington dataset 98

A.6 Example pages from the IAMDB . 99

A.7 Genuine signature collection forms . 101

A.8 Examples of genuine English signatures . 101

A.9 Blind forgery collection forms . 102

A.10 Casual forgery collection forms . 102

A.11 Inconsistent cropping for Chinese signatures 104

B.1 Errors that have different shapes. (Smith dataset) 105

B.2 Layout of data in this Appendix . 106

C.1 Errors that have different shapes. (Washington dataset) 115

C.2 Layout of data in this Appendix . 116

x

List of Tables

3.1 Results of our method . 50

3.2 Comparison to methods from SigComp2011 52

4.1 Recognition Accuracy After Improvements and Tuning 83

4.2 Recognition Accuracy on IAMDB Dataset (large, many writers) 84

xi

List of Algorithms

2.1 Morphing algorithm for Word Warping . 29

xii

Chapter 1

Introduction

With the rise of digital libraries and other digital information portals, various govern-

ment, academic, and private organizations are undertaking massive digitization efforts to con-

vert non-digital materials into formats that can be instantly searched and accessed electroni-

cally. A few examples include the American Memory project of the U.S. Library of Congress

(http://memory.loc.gov/ammem/index.html), online exhibits of the U.S. National Archives

(http://www.archives.gov/exhibits), Google Book Search (http://books.google.com), Project

Gutenberg (http://www.gutenberg.org), and the FamilySearch Scanning / FamilySearch In-

dexing projects (http://indexing.familysearch.org) of The Church of Jesus Christ of Latter-

day Saints (the LDS Church).

A large amount of the material being digitized consists partially or entirely of hand-

written information. Most obstacles to digitization of handwriting have been overcome.

Scanning technology has advanced to the point that the quality of scans is sufficient, and

scanning cost has decreased while scanning speed has increased. Storage costs have decreased

dramatically and continue to fall. Preservation can be guaranteed for the foreseeable future

by using redundant storage at multiple sites and adhering to a reasonable schedule of mi-

grating data to the most current storage technology. But the cost of manually indexing or

transcribing handwritten data as digital text remains extremely high and is non-decreasing.

If manual transcription could be replaced with (or significantly reduced by) automatic tran-

scription, the cost for any organization to digitize and provide access to collections that

include handwritten materials would be reduced substantially.

1

The desired solution is to use offline handwriting recognition (HR) to index or tran-

scribe handwritten materials, much like Optical Character Recognition (OCR) is used for

materials that consist entirely of machine-printed text. However, HR is much less accurate

than OCR and is still largely an unsolved problem except in a few constrained applications,

despite the large amount of handwriting recognition research that has been done.

In this dissertation, we present a novel HR approach based on 2-D geometric warping

of word images. Our approach is fundamentally different than the Hidden Markov Model

(HMM) approaches that have dominated the literature over the past several years. Our

analysis and results indicate that our method is more accurate than an existing whole word

method used for word-spotting, and may also be more accurate than (or at least comparable

to) existing HMM-based HR approaches. We also show that our method can be applied

to the distinct problem of signature verification and forgery detection. Our method shows

promise as a basis for continued research in HR and related problems.

1.1 The Offline Handwriting Recognition Problem

Unlike machine-printed text with well-formed characters of a few common fonts and pre-

dictable spacing, handwriting is variable and often ambiguous. There are almost as many

handwriting styles as there are people who write, and even for a specific person, handwriting

varies somewhat from one occurrence of a word to another occurrence of the same word.

Spacing between words and within words is often inconsistent, and it is sometimes impossi-

ble to recognize letters within a word without the context of the whole word (Figure 1.1).

Sometimes even whole words cannot be reliably read by humans — much less machines —

(a) (b)

Figure 1.1: Difficulty differentiating letters in a word. It can be nearly impossible to differ-
entiate letters without the context of the entire word. a) i, r, m, and n look nearly identical.
b) word-level context disambiguates the letters in Birmingham. (Images from [47])

2

Figure 1.2: HR technology for mail sorting. HR works well because address layout is pre-
dictable, and the zip code reduces the lexicon size.

without the context of surrounding words or actual knowledge of the subject being written

about. And even contextual knowledge in free-form handwritten text may be of little use in

recognizing specific person or place names, which are the most important words in documents

such as those in the LDS Church’s collections of historical and genealogical materials.

Recognizing handwriting offline (after the fact, from scanned documents) is a more

difficult problem than recognizing it online (while it is written, from a stylus or other device)

because there is no temporal information about ink strokes. The difficulty of the offline

HR problem (and the accuracy of HR systems) varies widely, depending on the specific

application. Some factors that influence how hard a given problem is include:

• quality of the document images being processed

• neatness of penmanship in the images

• size of lexicon (or whether recognition is even constrained to a lexicon at all)

• amount and quality of training data

• whether the system can handle multiple writers or just a single writer

For some constrained applications, such as postal address processing for automatic

mail sorting, HR currently works well enough to be very useful. According to a 2012 fact sheet

printed by the U.S. Postal Service, sorting equipment is able to read 93% of handwritten letter

mail [39]. The layout and format of a postal address is relatively predictable (Figure 1.2),

3

Figure 1.3: HR technology for bank check processing. HR is simplified because the courtesy
amount (numerical) and legal amount (written) are redundant, the layout is predictable, and
the lexicon is small.

allowing approaches such as that reported by Srihari and Kuebert [43] to parse the address

into various components that can be recognized individually (zip code, street number, street

name or P.O. box, city, state). Context from one part of the address can be used to make

recognition of other parts simpler and more robust. For example, Srihari’s system [43]

recognizes the zip code and street number before trying to recognize the street name, since

knowledge of the two numbers reduces the lexicon to a small number of valid street names —

a single street in 69% of (zip,number) pairs, 2.21 streets per pair on average, and 542 streets

maximum [42].

Other applications in which HR is currently used very successfully are the processing

of bank checks and form processing (e.g., tax forms). With bank checks (Figure 1.3), the

numerical courtesy amount and written legal amount are redundant, the layout is predictable,

and the lexicon is limited to a few tens of words. In form processing, segmentation and

layout are typically not an issue, and the information is usually somewhat predictable, such

as individual digits or letters within a specific boxed area.

Recognizing unconstrained handwriting is a much more difficult problem. Segmen-

tation of unconstrained handwriting is difficult because layout is not known in advance.

Spacing may not be consistent between lines of text, between words, or even between letters

within the words. Words may be written with hand-printed letters, cursive, or a mixture of

4

Figure 1.4: Image degradations and aging artifacts that complicate HR. Historical docu-
ments can be very difficult to recognize due to fading, discoloration, bleed-through, or other
degradation. (Original image from [47])

both. Instead of a small, limited vocabulary, virtually any word or name may be written, as

well as abbreviations, acronyms, numbers, and misspellings that do not appear even in very

large lexicons. The HR problem becomes even harder when the system must recognize the

writing of multiple authors, especially if it must handle the writing of authors for whom it

does not have training data.

The difficulties of any HR problem are compounded when the documents being recog-

nized are historical documents, which may have ink that is faded or smeared, bleed-through

(or shine-through), unevenly discolored background, and other age-related degradations that

can make it extremely difficult to properly segment the handwriting from the background

and noise in the image (Figure 1.4).

Due to the many difficulties involved, it is not surprising that unconstrained HR is

still largely an unsolved problem. While much progress has been made, there is still great

room for improvement and innovation.

5

Preprocess Segment Extract Features Recognize Postprocess

Figure 1.5: A typical HR system.

1.2 General Approach to HR

Most HR systems (e.g., [13, 18, 38]) use some variation of the general method illustrated

in Figure 1.5. First, preprocessing tasks are performed, which may include steps such as

deskewing the document image, filtering it to remove noise, and binarization or thresholding

to separate foreground ink from the background. Next, segmentation of the foreground ink is

performed to find handwritten lines, words, or parts of words. Features are extracted at the

line, word, or sub-word level, and then recognition is performed. Finally, post-processing

using language models such as word bigram/trigram frequencies, spell-checkers, or other

methods, are used to correct errors or choose the most likely combination of several recogni-

tion hypotheses.

Each of the parts and tasks of an HR system could rightly be considered a research

area of its own, and many publications can be found relating to each, either directly or as

part of a larger system. For example, binarization (just one of many possible tasks performed

during preprocessing) is the focus of a significant amount of research for images in general [40],

and for document images specifically (e.g., [9, 10, 19, 51, 52]). Likewise, various methods

of segmenting documents into textlines and segmenting textlines into words, characters, or

smaller pieces are reported in the literature [14, 25, 48, 26].

Even though most HR systems follow the same general method, the steps of the

pipeline in Figure 1.5 are not always divided in the same way. For example, while some

systems use a lexicon or language model as a post-processing step to correct recognition

hypotheses (e.g., [30]), others use the lexicon or language model as a constraint during the

recognition process itself (e.g., [17]). In the case of our HR method, there is not a clear

separation of the feature extraction and recognition steps, because we compare whole words

to each other instead of extracting features from the words to use with a standard recognition

6

algorithm. In effect, the features for our method are entire words, and the recognition

algorithm is our algorithm for comparing words. However, we do extract features from the

words for the purpose of dynamic programming for coarse alignment of the words (discussed

in detail in Chapter 2).

The 2-D warping-based method of HR presented in this dissertation encompasses only

the feature extraction and recognition portions of an HR system. Although improvements to

preprocessing, segmentation, or postprocessing are not within the scope of this dissertation,

a complete system that incorporates our HR method would almost certainly benefit from

improvements to those parts of the recognition pipeline.

1.3 Previous Work

Since early attempts at automatic HR almost 50 years ago (e.g., [22]), researchers have

reported numerous approaches in the literature. Many of the approaches can be loosely

grouped into a few broad categories, which we describe in the following subsections. The

categories we choose are based primarily on categories mentioned in surveys and other liter-

ature, although not all authors categorize the methods in exactly the same way. In reality,

there is often significant overlap between categories and approaches, so a strict partitioning

of HR approaches into categories may not really be possible. As our list is not exhaus-

tive, we refer the interested reader to several excellent survey papers that provide additional

references [5, 20, 30, 44, 49].

Whole Word Recognition

Approaches that perform recognition at the word level are sometimes referred to as holistic

approaches (as opposed to the analytical approaches that recognize based on smaller units

such as letters or graphemes). These methods may make use of prominent word features

such as ascenders, descenders, loops, dots, and t-crossings [44]. Other word level features

7

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

(a) (c) (e)

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

(b) (d)

Figure 1.6: Whole word features used by Rath and Manmatha. a) Word image. b) Projection
profile. c) Upper indentation profile (inverted for display). d) Lower indentation profile.
e) Background-to-ink transition count. (Word image originally from [35])

such as contours, projection profiles, and aspect ratio may also be used. Madhvanath and

Govindaraju [24] discuss holistic HR in more detail.

Of particular note in this dissertation is the method used by Rath and Manmatha in

their word-spotting research [34]. To compare words, they use dynamic time warping (DTW)

with word-level features, including word projection profiles, upper and lower indentation

profiles, and background-to-ink transition counts (Figure 1.6).

Current whole word recognition approaches reportedly do not extend well to large

vocabularies. As lexicon size increases, there are more words that are similar to each other

and are easily confused when using word-level features. As a result, whole word methods

have largely been abandoned as stand-alone recognizers. However, whole word methods are

often used in large vocabulary systems for lexicon reduction [49]. Lexicon reduction means

limiting the lexicon used for recognizing any given word to a (usually much smaller) subset of

the entire lexicon based on some criteria (e.g., word length, general shape, or other word-level

features).

The HR method that we present in this dissertation is a whole word method. We find

that it is more accurate than previous whole word methods by comparing it to an approach

based on the DTW method used by Rath and Manmatha in their word-spotting research

(Chapter 2). We also find that it does extend to larger vocabularies (Sections 4.13–4.14),

whereas other holistic methods apparently do not.

8

Offline HR as Online HR

There are some attempts to transform the offline HR problem into an online HR problem

by inferring the order in which ink was written so that online HR methods can be used

to recognize the words. Such a strategy seems attractive since online recognition is an

easier problem to solve and since there has been success using online methods in devices

such as Personal Digital Assistants (PDAs). Some success is seen in restoring writing order

in constrained cases. For example, Qiao, et al. report high rates (90%-96%) of restoring

writing order using very clean input images of single-stroke data [32], and rates of 94.5%

using multi-stroke data [33]. However, we are not aware of any HR systems so far that

obtain high recognition rates based on such an offline-to-online conversion strategy for the

noisier, more general images that are encountered in practice when performing offline HR.

Segmentation-Based Recognition

Perhaps the most intuitive approach to handwriting recognition is to formulate it into a

problem very similar to that of OCR— that is, to segment words into characters (explicit

segmentation) and recognize the individual characters. One system using this approach for

English and Greek handwriting is presented by Kavallieratou, et al. [13]. Results vary from

65.6% to 100% accuracy in their experiments, depending on which image database is used

and which experiment is performed. The accuracy is measured at the character level, which

means that actual word accuracy is significantly lower than the character accuracy reported.

Many researchers agree that character-level recognition is only practical for hand

print, because cursive writing cannot be reliably segmented into individual letters without

knowledge of what those letters are (Figure 1.1). This “chicken and egg” problem is noted

by many authors ([44] and [49], for example), and is referred to as Sayre’s Paradox.

Instead of attempting to explicitly split words into individual characters, many ap-

proaches oversegment words into graphemes that are at least as small as letters (but often

smaller). The results of this implicit segmentation are then used to determine the most

9

likely recognition result. For example, Hidden Markov Models (HMMs) or other statistical

frameworks can be used with the oversegmented data to determine the likelihood that the

given sequence of graphemes corresponds to a particular word or sequence of letters.

One manner of using implicit segmentation results is to merge neighboring graphemes

into segmentation hypotheses, and use dynamic programming to determine the optimal

segmentation (based on recognition scores using a character recognizer). Camastra proposes

a character recognizer for such a system in [6], based on support vector machine (SVM)

character classification.

Whether segmenting explicitly or implicitly, segmentation-based recognition methods

are limited by the accuracy of their segmentation approaches and how well the segmented

pieces can be combined into recognizable chunks. They also depend entirely on local features

by design. We believe it is important to take advantage of more global word-level shape

information instead of ignoring it as these methods do.

Segmentation-Free Recognition

Some HR approaches do not depend on segmenting words into characters or graphemes.

For example, Vinciarelli, Bengio, and Bunke [50] report on an HR system that uses HMMs

integrated with N -gram word models. Instead of splitting words into graphemes, a fixed-

width sliding window is used to extract features in each column of the line of handwritten

text. The window is 16 pixels wide, so features are again very local in nature. For three

different data sets and using no N -gram word models, word recognition accuracy ranges

from about 76-80%, 29-35%, and 33-43% over a range of lexicon sizes from 10,000 to 50,000

words for the first two data sets and from 10,000 to 30,000 words for the third data set.

Accuracy improves significantly to about 88-91%, 45-46%, and 64-65% when using trigram

word models for the same data sets and lexicon sizes. As we mention in Section 1.4, many

current HR systems are based on segmentation-free HMM approaches such as this.

10

Multiple Classifier and Ensemble Methods

Some HR work combines more than one HR approach instead of using a single classifier. For

example, Bertolami, Halter and Bunke [3] combine three HMM classifiers that individually

have recognition rates of 63.06%, 58.71%, and 55.33%. Combining the classifiers results

in very slight recognition improvement to 63.85%. When using the authors’ rejection and

re-recognition strategy, further improvement is seen (64.69% recognition rate).

Classifiers may be combined using voting schemes, weighting the results from all of

the classifiers, or using other strategies. It is not necessary that all classifiers work at the

same level. For example, in the systems reported by Plessis, et al. [31], a whole word classifier

is combined with two different segmentation-based classifiers.

Günter and Bunke [11] test some ensemble methods (bagging, AdaBoost, half-and-

half bagging, random subspace, and architecture variation) that have been successfully used

for other machine learning applications. They report that improvements are seen for all

ensemble methods when certain of the voting schemes they test are used. Their original

classifier recognition rate is 66.23% and their best ensemble recognition rate is 68.95%.

Additional HR research that uses ensemble or multiple classifier methods is cited in

the survey by Bunke [5].

Human-Inspired HR Models

A significant amount of research exists on how humans read [46]. Although the process is not

completely understood, it is evident that we use both holistic and analytical approaches as

we read, not just one or the other. Some HR methods take a similar approach, attempting

to combine whole word recognition with analytical methods, or top-down with bottom-up

approaches [49].

As already mentioned, some systems simply use holistic recognition for lexicon re-

duction and some use holistic and analytical approaches in a multiple classifier framework.

There are also a small number of methods that integrate the two more tightly. One example

11

is the PERCEPTO system reported by Côté, et al. [7], in which top-down and bottom-up

approaches interact with each other by activating hypotheses at the word, letter, and feature

level. The cycle is repeated several times to converge toward a solution, at which point a

ranked list of candidate words is available. This and other perception-oriented HR models

are described in the survey by Steinherz, et al. [44].

Shape Morphing

Although not really a separate category, two papers should be mentioned because of their

relevance to our approach in the respect that they use morphing for recognition. In [29],

Pavlidis, Singh, and Papanikolopoulos directly use shape metamorphosis (morphing) costs

as a metric of how different words and shapes are from each other. The morphing costs

are based on those presented by Sederberg and Greenwood [37]. On a small number of

handwritten words and simple shapes (107 reference, 428 test), the recognition rate ranges

from 86.2% to 99.0%, depending on the handwriting of the author used for the test. The

tests are single-author tests, and the method is for online handwriting instead of offline

handwritten word images.

In [41], Singh and Papanikolopoulos generalize the method for use with any contour-

encoded 2-D shapes, including those extracted from offline images. Tests were performed

with extremely small shape vocabulary sizes (15 templates, 50 test shapes) resulting in

93.33% shape recognition. For handwritten words, 4 authors were tested individually using

only 10 reference words and 40 test words each. Recognition rates for the 4 authors were,

90.0%, 92.5%, 97.5%, and 100.0%.

Our method also uses morphing for recognition, but in a very different manner than

these two papers. In our early work, we experimented with using a morphing cost directly

(as these papers do), but we found that we achieved much better accuracy when we only

used morphing to align the words and then computed the difference between the aligned

words using distance maps (Chapter 2). The morphing algorithm that we use is also very

12

different than the morphing algorithm used by these two papers. Our morphing algorithm

is inspired by later image morphing work of Gao and Sederberg [8] instead of the earlier

shape/contour morphing work in [37]. Although the iterative nature of our algorithm is

similar to the iterative process in the Gao and Sederberg paper, our morphing algorithm for

aligning handwritten words is actually very different even from that paper. This is easily

seen by comparing the Gao and Sederberg paper with our algorithm, which we describe

in great detail in Chapter 2 of this dissertation. Their morphing algorithm centers around

work-based equations, while ours centers around medial axis alignment, measured by using

distance maps.

1.4 Recent Progress in HR

For the past several years, almost all significant progress that we find in the HR literature

for Latin scripts is primarily due to language models, combinations of recognizers / multiple

classifiers, and ensemble methods. The underlying recognizers themselves are usually HMM-

based approaches, such as the HMM-based recognizer used by Vinciarelli et al. [50] in their

segmentation-free approach (Section 1.3) and the three HMM-based recognizers used by

Bertolami et al. [3] in their multiple classifier system (Section 1.3). Very little recent progress

is actually due to improvements in the recognition step of the pipeline in Figure 1.5, and few

papers introduce fundamentally new recognition algorithms.

1.5 Our Warping-Based Approach to Handwriting Recognition

Our novel approach to HR is based on using 2-D geometric warping to align ink strokes of

words, and then using distance maps to compute how different the aligned words are. This is

a fundamentally different approach than the HMM-based methods that have dominated the

literature over the past several years. The warping approach thereby lays the groundwork

for additional research based on our method.

13

The scope of this dissertation is limited completely to the feature extraction and

recognition tasks of the HR pipeline (Figure 1.5). As such, we do not directly address

preprocessing, segmentation, or postprocessing with language models in our HR approach.

However, improvements to those other tasks in the HR pipeline would benefit our method

as part of a complete recognition system.

1.6 Dissertation Organization

In addition to the introductory material in Chapter 1, the conclusions and future work in

Chapter 5, and the Appendices, the remainder of this dissertation is organized as follows.

Chapter 2 is based on the paper “Word Warping for Offline Handwriting Recognition,”

published in the proceedings of the 11th International Conference on Document Analysis

and Recognition (ICDAR 2011) [15]. The chapter introduces our novel approach to HR and

reports experimental results using two single-author datasets. The chapter also compares

our results to those of another whole word recognition method that is based on the word-

spotting research of Rath and Manmatha [35, 34], and shows that our method is significantly

more accurate.

Chapter 3 is based on the paper “Offline Signature Verification and Forgery Detection

Using a 2-D Geometric Warping Approach,” published at the 21st International Conference

on Pattern Recognition (ICPR 2012) [16]. The chapter shows that our base HR approach

is not limited strictly to the problem of HR, but can be applied to the related application

area of signature verification and forgery detection. With virtually no specific optimization

for various languages, our method is competitive with other methods found in the literature

for both Dutch and Chinese signatures.

Chapter 4 includes significant additional analysis of our HR method. It answers

several questions we had about the strengths and weaknesses of our method, reports experi-

mental results for various minor modifications to the method and to the system parameters,

and reports the accuracy of our method on a much larger, publicly available, many-author

14

dataset. Using the experimental results from this larger dataset, we estimate how accurate

our method is compared to the base HMM recognizers used in some recent literature. Some

portions of the material in Chapter 4 will be used in a future journal article submission to

the International Journal on Document Analysis and Recognition (IJDAR).

15

Chapter 2

Word-Warping for Offline Handwriting Recognition

In this chapter, we present our word recognition method that uses a novel morphing

correspondence algorithm for handwritten words, 2-D geometric warping, and distance maps

to compare unknown test words with known training examples. This chapter is based on

the paper “Word Warping for Offline Handwriting Recognition,” published in the proceed-

ings of the 11th International Conference on Document Analysis and Recognition (ICDAR

2011) [15]. Some minor modifications have been made to the version in this chapter. Of

particular note are: 1) inclusion of the ∆ term in Equation 2.4, which was inadvertantly om-

mitted in the original paper, 2) updated results that reflect a few corrections in the dataset

groundtruth labels and some minor code corrections and improvements, and 3) additional

figures, text, and modifications that help clarify our method and results.

2.1 Abstract

We present a novel method of offline whole-word handwriting recognition. We use automatic

image morphing to compute 2-D geometric warps that align the strokes of each word image

with the strokes of word images of training examples. Once the strokes of a given word are

aligned to a training example, we use distance maps to quantify the similarity of the two

words. Like 1-D Dynamic Programming (DP) methods, our warp-based method is robust

to limited variation in word length and letter spacing. However, due to its 2-D nature,

our method is also more robust than 1-D DP methods in handling variations caused by

additional inconsistencies in character shape and stroke placement. Although we use DP

16

for coarse alignment, the novel contribution of this paper is not 2-D DP, but morphing to

automatically discover an actual 2-D mesh-based warp, followed by the use of distance maps

to compute similarity between words. Early results are encouraging. On two datasets (1,000

training and 1,000 test words each), we achieve 88.90% and 89.38% recognition accuracy for

in-vocabulary words. These are increases of 7.88% and 17.19% above the results of a 1-D

DP approach.

2.2 Introduction

We present a novel offline whole-word recognition method that uses 2-D warping and distance

maps to compare words. Our method, “word warping,” successfully handles some of the

local variation inherent in handwriting such as inconsistent ink thickness and letters that

are unevenly spaced, stretched, compressed, or similarly distorted.

For a given pair of images, we create a regularly-spaced rectangular mesh on the first

image and a corresponding warp mesh that defines how to push, pull, bend, and stretch the

ink of the first image to align it with the ink in the second image (Figure 2.1b). Aligning the

ink allows us to ignore many of the local differences and variations inherent in handwriting

and instead compare words at a more structural level. Once the ink is aligned by warping,

we use distance maps to quantify the similarity of the two words.

To define the warp mesh used in alignment, we first coarsely align the warp mesh

by using 1-D Dynamic Programming (DP) in both the horizontal and vertical directions

(Figure 2.1a). After coarse alignment, we perform a more detailed alignment by using an

image morphing algorithm (Section 2.4.5) to increase the mesh resolution and iteratively

adjust the control points (vertices) of the warp mesh (Figure 2.1b). We only use full-thickness

word images (Figure 2.1a) for the coarse alignment. We use medial axis pixels of the words

throughout the rest of the process to simplify our morphing algorithm and the distance

metric we use to compare words.

17

(a) Step 1: Coarse alignment (b) Step 2: Warp mesh by morphing

(c) Medial axes (d) Coarse alignment of medial axes

(e) Step 3: Red medial axis morphed to blue medial axis (f) Red medial axis morphed to wrong word (“toast”)

(g) Overlay of red and blue medial axes from green
rectangle in (e)

(h) Step 5: Word matching cost = “distance”from red
medial axis (normalized sum of blue squares)

Figure 2.1: Handwriting recognition by matching two instances of the word “Bacon” using
word warping. a) Step 1: Coarse alignment of warp mesh using DP with full thickness word
images; b) Step 2: Improve warp mesh by morphing using medial axis pixels; c) Medial axis
pixels of each image: red=first/top instance, blue=second/bottom; d) Using only coarse
alignment to warp the first instance – not as good as morphing; e) Step 3: Warping with
mesh improved by morphing gives good alignment; f) Warping “Bacon” to wrong word
“toast” does not align as well. g) Overlay of medial axes from rectangular region in e;
h) Step 4: Compute distance map from (red) warped medial axis pixels (0=medial axis).
Numbers=distance map with respect to red medial axis. Step 5: Compute word matching
cost (normalized sum of blue squares) = “distance” from red medial axis.

18

2.3 Related Work

Numerous HR approaches appear in the literature ([20, 30, 44]), including some whole-

word recognition methods such as those described by Madhvanath and Govindaraju in [24].

Whole-word approaches exist that use everything from ascenders, descenders, and loops to

contour-based features, profile-based features, and graph-based word descriptions.

Rath and Manmatha [35, 34] show that Dynamic Time Warping (DTW) — a 1-D DP

method — can be used to match whole words in the context of word-spotting. We see from

their work that DTW is robust to some variation in character spacing, width, and shape in

the horizontal direction – the direction of the 1-D alignment. Features from two words are

aligned using DTW, and the DP cost for the alignment is used as a metric of how different

the words are.

We use their DTW method for the coarse alignment of our warp mesh (Section 2.4.3).

We also use DTW as the baseline 1-D DP approach for evaluating the performance of our

2-D warping-based recognizer, as described in Section 2.5. From this evaluation, we see the

benefit of moving from 1-D to a recognition method that handles additional 2-D variation.

Pavlidis et al. [29] perform online (not offline) HR by comparing blending costs cal-

culated using the physics based approach to shape blending developed by Sederberg and

Greenwood [37] – an algorithm originally used to automatically create smooth graphical

blends from one shape to another. Sometimes called shape morphing, the approach models

a polygonal shape as a wire that can be bent or stretched into a second shape. The algorithm

determines how to manipulate the wire into the second shape using the least amount of work.

Singh et al. [41] extend the work of Pavlidis et al. to use shape blending costs to recognize

2-D shapes in general, including a small number of cursive words.

Like shape morphing, image morphing is a graphical technique, but is used to morph

one image into another instead of just polygonal shapes. We use principles derived from

the work minimization approach to image morphing by Gao and Sederberg [8] in our HR

method to improve the warp mesh alignment as described in Section 2.4.5.

19

Unlike the previous recognition methods that just use DTW cost or shape blending

cost as a direct metric of how different words are, we use these methods to align words, but

then compute a distinct metric of how different the words are. We describe the metric in

Section 2.4.6.

2.4 Methods

For a given pair of word images, I0 and I1, with width/height w0/h0 and w1/h1, we create

corresponding rectangular meshes, M0 and M1 (Figure 2.2). Initial control point spacing for

M0 is max(h0, 4), except for the last row and column of control points, which are placed

at y = h0 − 1 and x = w0 − 1. The control points of M1 (the warp mesh) are not spaced

evenly, but instead are coarsely aligned by 1-D DP (Section 2.4.3). Morphing (Section 2.4.5)

is then used to adjust the control points so that the warped medial axis pixels, A′0, align

more closely to the medial axis pixels (A1) of I1. We then use D′0, the distance map from

A′0, to compute C0→1 (Section 2.4.6). C0→1 is the cost to match I0 to I1.

Since the cost to match I0 to I1 is not necessarily the same as the cost to match I1 to

I0, we repeat the steps with I0 and I1 swapped to compute C1→0. The total word matching

cost, C(I0, I1), is the sum:

C(I0, I1) = C0→1 + C1→0 (2.1)

Adding the two costs ensures that C(I0, I1) is symmetric for a given pair of images regardless

of order. C(I0, I1) is the distance metric we use for word comparison. We call it “cost” to

avoid confusion with distances in distance maps.

Recognition of a word is performed by computing the word matching cost between

the word and each training example and using the label from the training example resulting

in the minimum word matching cost.

20

I0, I1: The two images being compared
w0, h0, w1, h1: Width, height of I0 and I1
M0, M1: Meshes defining the 2-D warp from I0 to I1
P 0
c,r: Control point (vertex) in M0 at col c, row r

P 1
c,r: Control point (vertex) in M1 at col c, row r

A0, A1: Medial Axis pixels of I0 and I1
A′0: Pixels of A0 after being warped (using M0 to M1)
D′0: Distance map created from A′0
D1: Distance map created from A1

F0, F1: Feature vectors for DP alignment
C0→1: Cost of matching I0 to I1
C1→0: Cost of matching I1 to I0
C(I0, I1): Total word matching cost between I0 and I1

I0

� -w0

?

6
h0

M0

�	
A0a�

�

P 0

4,1

a���
P 0

6,3

M1 (after morphing)
aH

P 1

0,0

I1

� -w1

?

6

h1

M1 (initialized by DP)

�	 @R
A1a�

�

P 1

8,0

A′0

?

6

D1 (darker = greater distance) D′0 (distance from A′

0
)

Figure 2.2: Reference key to symbols and notation, with illustrations for clarity.

21

2.4.1 Preprocessing

We preprocess manually-segmented word images by performing background removal, slant

correction, crop/pad, and binarization. Background estimation for background removal is

computed with a large median kernel as described in [12]. After background removal, a global

threshold value for each page is determined for later binarization using a method described

in [14]. Slant correction consists of shearing the image horizontally after estimating the slant

angle over the central region of each page image. The angle estimation uses ink runlengths

accumulated into a histogram based on angle bins. Baseline estimation is used to determine

whether to pad the top or bottom of the image. The image is then cropped to the left-most

/ right-most ink pixel after the slant removal. After all other preprocessing, the word image

is binarized using the previously selected threshold.

2.4.2 Distance Map and Medial Axis

We compute distance maps for bitonal images (Figure 2.3a) using a forward-backward al-

gorithm very similar to the distance transform introduced by Rosenfeld and Pfaltz in [36].

Each pixel in the resulting distance map (Figure 2.3b) contains the Manhattan distance (in

number of pixels) to the nearest edge of an ink component. The greater the distance from ink,

the higher the value of the pixel in the distance map. Values within an ink component are

zero (on the border with the background) or negative (within the component) – progressively

increasing in magnitude as the center of the ink component is approached.

Medial axis pixels are those in the distance map with values less than or equal to zero

that do not have any 4-connected neighbors more negative than themselves (Figure 2.3c).

We remove from the result any pixels (shown in darker red) for which the North, Northwest,

and West neighbors are all also medial axis pixels. This results in our final medial axis

(Figure 2.3d).

22

(a) (b)

(c) (d)

Figure 2.3: Distance map and medial axis. a) Original– ink pixels are black; b) Distance
map; c) Medial axis pixels are red (dark red are removed); d) Final medial axis pixels.

23

2.4.3 Dynamic Programming for Coarse Mesh Alignment

For horizontal alignment of M1, we use the DTW algorithm described in [35]. Feature

vectors F0 and F1 are computed from the normalized ink profile, upper word profile, lower

word profile, and background to ink transition counts of the respective word images, I0 and

I1 (Figure 2.4). The DTW function to build the DP alignment table (Figure 2.5a) is

D(i, j) = min

D(i− 1, j)

D(i, j)

D(i, j − 1)

+ d(i, j), (2.2)

where d(i, j) is the cost to align F0(i) with F1(j), and is defined as

d(i, j) =
4

∑

k=1

(F0(i, k)− F1(j, k))
2, (2.3)

where k is the index to access the four features in the vector at the alignment position

(profile, upper/lower indention profile, transition count). We also use the same Sakoe-Chiba

band DP constraint with radius 15 as the authors of [35]. The Sakoe-Chiba constraint is

a locality constraint that limits how much warping the dynamic programming algorithm

permits when aligning the features of one word with those of another. This is accomplished

by setting D(i, j) to infinity (or a very high value) for all table positions outside of the

Sakoe-Chiba band (the gray area in Figure 2.5a).

The alignment of F0 and F1 is found by following the DP path backward through the

DP table when the DTW algorithm is complete. The alignment is used to map x-coordinates

of the control points in M0 to the corresponding x-coordinate to be assigned to the corre-

sponding control point in M1. The same is done for y-coordinates of the control points (using

the DTW result for vertical alignment) except that we only use a single-dimensional feature

vector – just the ink profile of the word images projected onto the vertical axis, normalized

to values between 0 and 255 (Figure 2.6). Therefore, the summation in Equation 2.3 is only

for k = 1 when aligning y-coordinates of the control points.

24

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

(a) (d)

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

(b) (e)

 0

 0.5

 1

 0 20 40 60 80 100 120 140 160

(c)

Figure 2.4: Whole word features. a) Word image. b) Projection profile. c) Background-to-ink
transition count. d) Upper indentation profile (inverted for display). e) Lower indentation
profile. (Word image from the Washington dataset – Appendix A.2)

25

(a)

(b)

Figure 2.5: DP alignment of two instances of the same word. a) DP table and alignment
path with some points along the path (and corresponding marks on edges of table) colored
for easy reference (Sakoe-Chiba band is gray); b) DP alignment of two instances of “they”
using colored points for reference.

26

 0

 5
0

 1
0

0

 1
5

0

 2
0

0

 2
5

0

 0
 2

0
 4

0
 6

0
 8

0
 1

0
0

 1
2

0

Figure 2.6: Word profile feature for vertical DP alignment. We project the word profile onto
the vertical axis. The length of the feature vector is equal to the height of the word image.
Values in the feature vector are from 0 to 255.

27

Figure 2.7: Warping from rectangular to non-rectangular mesh quads. The warped position,
x′, y′, of any point s, t within a quad is easily computed by bilinear interpolation of the point
within the warped quad vertices.

2.4.4 Warping Coordinates

Since quads in M0 are rectangular, the relative coordinate s, t within a quad (s and t having

range [0, 1]) is easy to calculate for any corresponding image point x, y that is within the quad

(Figure 2.7). The values are calculated as s = (x− x0)/(x1 − x0) and t = (y − y0)/(y1 − y0).

The warped image coordinate x′, y′ is then computed by bilinear interpolation of s, t within

the vertices of the corresponding quad of the warp mesh, M1.

2.4.5 Morphing for Warp Mesh Improvement

In image morphing, a start and end mesh define a warp from one image to another. Inter-

polating positions and pixel colors at evenly-spaced time slices between the start and end

results in a series of images forming a graphical morph from one image to the other. The

warp mesh is often defined by manually specifying points of correspondence between the

images. The work minimization approach to image morphing by Gao and Sederberg [8] can

automatically generates an end mesh. It does so by iteratively improving the mesh (adjust-

ing its control points to reduce the overall morph cost according to a work equation), and

refining the mesh (subdividing it into more detailed quads). The work equation they use for

improving the mesh includes costs for work due to angle change, stretching, and pixel color

change.

28

Algorithm 2.1 Morphing algorithm for Word Warping

Inputs:
h0 // height of image I0 (to calculate how many refinments to do)
M0 // unwarped mesh (together with M1, this defines the warp function)
M1 // warp mesh (with its control points, P 1, initialized by DTW algorithm)

Outputs:
M1 // final warp mesh (after morphing)

00 refine count= 0 // lines 00 – 04 heuristically
01 m = max(4, h0/4) // determine refine count
02 while m > 16 // based on h0 (image height)
03 m = m/2;
04 refine count=refine count+1

05 for mesh level=1 to refine count
06 for imp=1 to improve count // (we use improve count=3)
07 // improve:
08 for each P 1

c,r in M1 // (control point at col c row r)
09 x, y = P 1

c,r

10 min = placement costx,y // (Equation 2.4)
11 XYmin = x, y
12 for each x, y in search area of P 1

c,r

13 if placement costx,y < min then
14 min = placement costx,y
15 XYmin = x, y
16 P 1

c,r = XYmin // (update control pt c, r in M1)
17 if mesh level < refine count
18 // refine:
19 increase resolution of M0, M1 by factor of 2

We adapt the automatic morphing algorithm of Gao and Sederberg to the application

of aligning handwritten words. Algorithm 2.1 describes how we compute the warp mesh to

align the handwritten words.

In lines 00–04 of the algorithm, we use the height, h0, of the image to heuristically

determine how many times to refine (subdivide) the mesh. For each refinement level of the

mesh (lines 05–19), we first improve the mesh a few times (lines 06–16) and then refine

the mesh if more refinement levels of the mesh still are still needed (lines 17–19). We now

describe these sections of code in more detail.

29

(a) (b)

(c) (d)

Figure 2.8: Improve step of the morphing algorithm. Each control point is moved to every
position within a nearby search area and then assigned to the lowest cost position (the
position that resulted in the best alignment of the medial axes). We illustrate with control
point P 1

2,2. a) The search area (green) of P 1
2,2 before the improve step; b) Moving P 1

2,2 to
the top-left of its search area pushes the red pixels closer to the blue; c) Moving P 1

2,2 to the
bottom-right pulls red away from blue; d) The improved mesh after choosing the lowest cost
position of all control points, and iterating several times.

In the improve step (lines 07–16), each control point, P 1
c,r, is in turn moved to the

lowest cost position within its current search area (Figure 2.8). The search area is constrained

to a rectangular region surrounding the current position of the control point. The region

extends 0.4δ in each direction, where δ is the current control point spacing in M0 (δ gets

halved every time a refine occurs). The search area is also constrained by the control points

around it. For example, P 1
c,r cannot go above any of the 3 control points above it in its

8-neighborhood.

30

The cost of placing P 1
c,r at any given search position x, y within the search area is:

placement costx,y = d∆x,y +
1

n+ 1

n
∑

k=1

D1(A
′
0[k]), (2.4)

where A′0 are warped using the search position as the position of P 1
c,r in M1, n = ‖A′0‖,

D1(A
′
o[k]) is the value in D1 at the position of the kth warped medial axis point in A′0, ∆x,y

is the Euclidean distance from x, y to the current position of P 1
c,r, and d is a constant used

to weight the ∆ term (we currently use d = 0.01). In effect, the cost of placing P 1
c,r at

this search position is the average distance the medial axis points of I0 would be from the

nearest medial axis pixels of I1 if we were to place P 1
c,r at this search position. The ∆ term

introduces a small preference for keeping P 1
c,r at or near its current position when multiple

search positions are otherwise of equally low cost.

We actually do not use the entire set A′0 of medial axis pixels during cost calculation

for search positions. Since only the pixels within the four mesh quads sharing control point

P 1
c,r as a vertex move when the control point is adjusted, only the costs associated with those

points will affect the cost at any given search position for that control point. To speed up

processing, we ignore all A′0 points outside of the four adjacent quads.

The refine step (lines 18–19) doubles mesh resolution by adding control points at the

midpoints of each quad/edge in M0 and M1 (Figure 2.9). Although refinement, itself, does

not change the warped position of pixels, it does allow subsequent improve steps to work at

a finer level of detail.

2.4.6 Word Matching Cost

After M1 has been aligned using DP and morphing, we compute the warped medial axis,

A′0, of I0 (red-shaded pixels in Figure 2.1g). We then compute the distance map, D′0, of

the warped medial axis A′0 (Figure 2.1h). Most of the A′0 pixels should be closely aligned to

pixels of A1 due to morphing. What tells us if the words are actually similar or not is if the

31

(a) (b)

Figure 2.9: Refine step of the morphing algorithm. The resolution of the mesh is increased
by a factor of two. a) Mesh before refine step; b) after refine step.

pixels of A1 (blue-bordered pixels in Figure 2.1h) also align well to pixels of A′0, or whether

their values in the distance map are high, suggesting that the words are not similar. We

compute C0→1, the cost to match I0 to I1, as

C0→1 =
1

‖A0‖+ 1

‖A1‖
∑

i=1

D′0(A1[i]), (2.5)

where D′0(A1[i]) is the value in D′0 of the location of the ith medial axis pixel in A1.

2.5 Experiments

We perform experiments on two datasets of labeled word images. The first dataset consists

of words from a set of 20 pages of George Washington’s manuscripts [21]. The second

consists of words from pages of Jennie Leavitt Smith’s diary, downloaded from the “Mormon

Missionary Diaries” online collection of the Brigham Young University Harold B. Lee Library,

available at http://www.lib.byu.edu/dlib/mmd/. We manually segment and label each word

to provide ground truth for our experiments (Appendix A).

For each dataset, we select the first 1,000 word images as training examples for which

the recognition system is allowed to look at the labels. We use the next 1,000 words (which

are not used as training examples) as test data. We compare each test word with the training

words and assign it the label from the training word that it most closely matches. This is

32

done both using our 2-D word warping method and also using just the 1-D Dynamic Time

Warping alignment cost [35]. We also record the word warping results when using only

coarsely-aligned meshes without morphing.

We assess the recognition accuracy of each method by comparing the ground truth

labels with the labels assigned by the recognizer. Recognition accuracy is calculated as the

number of test words labeled correctly by the recognizer (the number given the same label as

its ground truth), divided by the total number of test words. The string comparison between

the label and ground truth is case-sensitive.

Since many of the test words are Out of Vocabulary (OoV) words, meaning no training

examples have the same label as their ground truth, we also report the recognition accuracy

with respect to the number of in-vocabulary words (total test words minus the number of

OoV test words).

2.6 Results and Discussion

Our word warping method is noticeably more accurate than DTW (the baseline 1-D DP

method) on both datasets (Figure 2.10). Even without using morphing to improve the warp

mesh, word warping with coarsely-aligned meshes results in an increase in recognition accu-

racy of 6.41% for in-vocabulary words with the Washington manuscripts dataset and 9.61%

with the Smith diary dataset. Recognition is even better when we include the morphing

step. For the Washington dataset, in-vocabulary accuracy is 88.90%, an increase of 7.88%

from the baseline (DTW). For the Smith dataset, we see a larger improvement of 17.19% to

89.38%.

Morphing only contributes 1.47% (7.88%−6.41%) to the accuracy of the Washington

dataset, however, it contributes 7.58% (17.19%−9.61%) to the accuracy of the Smith dataset.

We observe that the the Washington penmanship is exceptionally consistent but there is more

variation in the Smith dataset, requiring better alignment in order to recognize words. We

are encouraged by this result because it suggests that word warping with morphing is adept

33

Washington Dataset - 1,000 test words (748 in-vocabulary)

Method Total Accuracy In-Vocab Accuracy

(# correct / # possible) (# correct / # possible)

DTW (1-D DP) 60.60% 81.02%

(606 / 1000) (606 / 748)

Word Warping 65.40% 87.43%

(only coarse aligned) (654 / 1000) (654 / 748)

Word Warping 66.50% 88.90%

(morphing aligned) (665 / 1000) (665 / 748)

Smith Dataset - 1,000 test words (791 in-vocabulary)

Method Total Accuracy In-Vocab Accuracy

DTW (1-D DP) 57.10% 72.19%

(571 / 1000) (571 / 791)

Word Warping 64.70% 81.80%

(only coarse aligned) (647 / 1000) (647 / 791)

Word Warping 70.70% 89.38%

(morphing aligned) (707 / 1000) (707 / 791)

Figure 2.10: Experimental Results – Word Recognition Accuracy

34

(a)

(b)

Figure 2.11: Alignment of medial axes. a) Top: two occurrences of the word “Billings”
(Smith dataset); Bottom: corresponding medial axes before alignment (left) and after (right).
b) “Winchester” (Washington dataset).

at handling local variation and should generalize to datasets with multiple authors. We

revisit this hypothesis in Chapter 4, testing our method on a dataset with many authors.

This ability to handle variation may even allow us to use synthetically-created training data

to improve the OoV recognition accuracy, which we leave for future work. Figure 2.11 shows

our medial axis alignment using morphing. As these examples show, our algorithm is often

able to align different instances of a word quite well, even when the words do not align well

to begin with. Good alignment results in low word matching costs for the words, which is

exactly the desired result.

Many of the recognition errors that we see with our method are very minor. For

example, some words differ only by the capitalization of the initial character (Figure 2.12a).

Others differ only by a single letter, such as “come” vs. “came” and “them” vs. “then”

(Figure 2.12b). In Figure 2.12c, we see an example of “Winward” vs. “Winwards” in which

the only difference is the final “s”. In all of these cases (and many others), the differences

between the mismatched words are very small, and in a few cases it is even difficult for us

35

(a)

(b)

(c)

(d)

Figure 2.12: Examples of recognition errors (Smith dataset). Test words followed by the
erroneous best match. a) Errors only because of capitalization differences; b) Very similar
words: “come” vs. “came” and “them” vs. “then”; c) “Winward” vs “Winwards”; d) Some
more obvious errors.

(humans) to difinitively say which word we are looking at when the word is isolated instead

of in context. It is not at all surprising that such similar words are sometimes confused with

each other by our automatic HR method. However, some errors are more conspicuous, and

the mistakes are more surprising to us (Figure 2.12d). In Chapter 4, we provide significant

additional analysis of the recognition errors from both the Washington dataset and Smith

dataset. We examine the types of errors that occur, and why they occur. We pay special

attention to the more conspicuous types of errors, such as those in Figure 2.12d. We also

experiment with some minor modifications to our algorithm and parameters to improve our

recognition accuracy.

As a final observation, we find that for many recognition errors the correct match is

ranked very near the top (Figure 2.13). In fact, the correct result is ranked in the top 3

matches more than 94% of the time for both datasets (Figure 2.14). This makes us optimistic

that our accuracy will improve in the future when we incorporate language models (e.g., word

tri-grams) to use surrounding context in selecting the most likely of the top few matches.

36

Test word Best match 2nd-best match 3rd-best match
word word (cost) word (cost) word (cost)

doctored lessons (1.990952) decided (2.168316) doctored (2.271915)

also all (1.960903) all (2.173552) also (2.197479)

We we (1.355442) We (1.676988) we (1.856132)

them then (1.642179) then (1.931055) them (1.953888)

got Got (1.914398) got (2.369706) gave (2.522078)

I a (1.391941) I (1.706861) 9 (1.871795)

practise practised (2.270567) practise (2.356809) practise (2.489450)

at we (2.277729) at (2.280873) we (2.352892)

Figure 2.13: Examples of correct answer (green) in top 3 matches.

37

Washington Dataset - 1,000 test words (748 in-vocabulary)

Method Top-1 Top-3 Top-5 Top-10

DTW (1-D DP) 81.02% 89.17% 91.58% 93.98%

(606 / 748) (667 / 748) (685 / 748) (703 / 748)

Word Warping 88.90% 94.52% 96.26% 96.93%

(665 / 748) (707 / 748) (720 / 748) (725 / 748)

Smith Dataset - 1,000 test words (791 in-vocabulary)

Method Top-1 Top-3 Top-5 Top-10

DTW (1-D DP) 72.19% 82.43% 86.35% 91.02%

(571 / 791) (652 / 791) (683 / 791) (720 / 791)

Word Warping 89.38% 94.31% 94.82% 96.84%

(707 / 791) (746 / 791) (750 / 791) (766 / 791)

Figure 2.14: Correct answer in top-N results

38

2.7 Conclusion and Future Work

We have presented a 2-D warping method for comparing words to each other for offline

handwriting recognition. Our method takes advantage of 2-D warping to get better word

matching results. Our early tests on this method are encouraging, showing noticeable im-

provement over 1-D DP methods. We also find that many of the errors made by our method

are very minor, and the correct result is within the top few matching words. This leads

us to believe that minor modifications to our algorithm and the incorporation of language

models to leverage word context will increase our accuracy in the future. While this paper

introduces our novel approach and provides initial results, we anticipate that future work

will allow us to build on the groundwork of this paper to improve our method and achieve

even better results.

39

Chapter 3

Offline Signature Verification and Forgery Detection Using a

2-D Geometric Warping Approach

In this chapter we show how our word comparison approach can be applied to sig-

nature verification and forgery detection, an application area with the potential to prevent

enormous amounts of fraud, including fraudulent financial transactions which can total hun-

dreds of millions of dollars in a year [1, 4, 45]. This chapter is based on the paper “Offline

Signature Verification and Forgery Detection Using a 2-D Geometric Warping Approach,”

published at the 21st International Conference on Pattern Recognition (ICPR 2012) [16].

This chapter contains some modifications from the published version of the paper. Of par-

ticular note are: 1) expanded analysis and discussion of our results, and 2) the addition of

Figures 3.1, 3.2, and 3.4.

3.1 Abstract

We present a method of discriminating between authentic and forged signatures using 2-D

geometric warping. After an initial coarse-alignment step, we use an automatic morphing

correspondence algorithm to compute 2-D geometric warps that align the strokes of a ques-

tioned signature with those of known reference examples. We use distance maps to compute

a difference metric, and then either accept the signature as genuine or reject it as a forgery

depending on how different it is from the reference examples.

Our method achieves equal error rate (EER) accuracies of about 94%–96% on our

English dataset of blind forgeries and 87%–91% on casual forgeries (unpracticed imitations).

40

(a)

(b)

(c)

(d)

Figure 3.1: Various skill levels of forgeries. a) Genuine signature; b) Blind forgery; c) Casual
forgery; d) Skilled forgery.

Further evaluation of our method using the SigComp2011 competition dataset shows that

our accuracies for skilled forgeries are comparable to those of several other recent methods.

We are particularly encouraged by the performance of our method on the Chinese portion

of the dataset, in which our EER accuracy (74%) is better than all but one of the systems

that participated in the 2011 competition.

3.2 Introduction

Forged signatures are used for a variety of illicit purposes, including falsifying documents,

identify theft, and fraudulent check or credit card transactions. While some are skilled

forgeries created after practicing, many are casual forgeries created by imitating a genuine

signature without practice, or even blind forgeries made without ever seeing the genuine

signature (Figure 3.1). Systematic detection of forgeries using automatic signature verifica-

tion has the potential to save banks and businesses enormous amounts of money, and save

individuals the inconvenience of dealing with the aftermath of their accounts or identities

being misused by criminals.

41

We present a signature verification method based on a 2-D geometric warping ap-

proach that we originally developed for whole-word offline handwriting recognition. [15] For

handwriting recognition, we used the approach to compute a difference metric between an

unknown word image and examples of known (labeled) word images. We used minimum

difference to classify the unknown word image and assign it a textual label.

In this paper, we adapt the approach to the task of signature verification. Given a

few reference examples known to be written by a particular person, we compare a questioned

signature to the reference signatures of that person. The difference metric from [15] is used

to quantify how different the questioned signature is from each reference signature. If the

questioned signature is similar enough (on average) to the references, it is considered to be

genuine. Otherwise, it is rejected as a forgery. We compute the threshold for classification

as a function of the variance of the reference signatures, combined with a tuning parameter

that allows the system to be biased either against false accepts or false rejects depending on

the needs of the user.

We evaluate our method with our own dataset of English signatures, and also with

the publicly available dataset that was used in the ICDAR 2011 Signature Verification Com-

petition for Online and Offline Skilled Forgeries (SigComp2011). [23] In addition to genuine

signatures, our English dataset has both blind forgeries and casual forgeries. We created this

dataset in the absence of any known publicly available dataset of blind and casual forgeries.

The SigComp2011 dataset has skilled forgeries in both Dutch and Chinese. We use only the

offline portion of that dataset.

Our early results are encouraging (Section 3.6). Our method yields good results for

both blind and casual forgeries. It is also comparable to several other methods for Dutch

skilled forgeries and outperforms all but one method from the ICDAR 2011 competition for

Chinese skilled forgeries. We believe we can improve our accuracy even more with future

work.

42

(a) (b) (c)

Figure 3.2: Illustration of inconsistent cropping for Chinese signatures (using our own images,
since we are not permitted to reproduce images from the dataset). a) Form box properly
cropped from image; b) form box not cropped from image; c) form box only partially cropped
from image.

3.3 Methods

Besides some minimal preprocessing (Section 3.3.1), our method consists of two main parts:

1. Computing a classification threshold (Section 3.3.3)

2. Classifying questioned signatures as genuine or forgeries (Section 3.3.4)

Central to both of these parts is the difference metric described in Section 3.3.2.

3.3.1 Preprocessing

We preprocess signatures by scaling them down to half their original width and height and

then performing binarization using a method we introduced in [14].

For Chinese signatures in the SigComp2011 dataset, we perform additional prepro-

cessing before scaling and binarizing because some of the images have the form box around

the signature, while some do not, and others have only portions of the box (Figure 3.2). We

reduce noise with a 3x3 median filter, compute horizontal and vertical projection profiles,

and then analyze the profiles to detect if and where box lines are present. Box lines are de-

tected at positions where the smoothed profile passes a threshold of 0.85 (empirically chosen

for the Chinese dataset) on either side of the ink. We crop the image just inside of detected

box lines.

43

3.3.2 Comparing Signatures by 2-D Warping

To quantify the difference between two signatures, we use the difference metric that we

introduced and described in detail in [15]. The metric, referred to as the word matching cost,

is written as C(I0, I1), where I0 and I1 are the two word images (signatures) being compared.

We extract the medial axes (centers) of I0 and I1 (Figure 3.3a), and coarsely align

them using Dynamic Time Warping [35]. A more complete alignment is performed (Fig-

ure 3.3c) with our word-morphing correspondence algorithm (details available in [15]):

1: For each control point (mesh intersection), P :

2: For each x, y location around P :

3: Warp red medial axis (using P at x, y)

4: Measure alignment (use distance map)

5: Place control point P at x, y of best-alignment

6: Iterate / refine mesh until morph complete

Genuine signatures tend to align better than forgeries (Figure 3.3d). After aligning the

medial axes, we use distance maps to compute the “difference,” C(I0, I1).

3.3.3 Computing Classification Threshold

The classification threshold, T , is used in Section 3.3.4 to classify signatures as forgeries

or genuine. T is computed independently for each person from reference examples of their

genuine signature.

Given a set, R, of reference signatures (with the number of reference signatures being

‖R‖), each reference signature, Ri, is compared to each of the other reference signatures,

Rj, for that same person. The comparison is done by using the difference metric, C(Ri, Rj),

described in Section 3.3.2.

44

(a)

(b)

(c)

(d)

Figure 3.3: Comparing two signatures. a) Medial axes of two genuine signatures; b) Overlay
of both medial axes and unwarped mesh; c) After warping red to align with blue using our
word-morphing correspondence algorithm. Better alignment is lower “difference”; d) Warp-
ing red to this (blue) forgery gives poor alignment, resulting in a higher “difference” value.

45

For each Ri, its average difference from the other reference signatures is

Ci =
1

‖R‖

‖R‖
∑

j=1

C(Ri, Rj). (3.1)

Once we compute Ci for each Ri in R, we then compute the variance, σ2, of all of the

Ci’s. Finally, we compute T as a function of the variance:

T = t
√
σ2 = tσ, (3.2)

where t is a parameter that allows the user to tune the system to be more lenient or strict

on what is considered to be a genuine signature. For some applications, the user may want

to make the system more lenient to avoid false rejects, while for other applications the user

may want to avoid false accepts.

As a refinement step, we check for reference signatures that are very different from

the others (those for which Ci > T). If there are any, we recompute the average differences

and the variance while ignoring them. We also ignore them when we compare questioned

signatures to the reference signatures for classification (Section 3.3.4).

3.3.4 Accepting and Rejecting Signatures

To classify a questioned signature, Q, as either genuine or as a forgery, we compute the

average difference between Q and each reference signature, Ri:

CQ =
1

‖R‖

‖R‖
∑

i=1

C(Q,Ri), (3.3)

where C(Q,Ri) is the difference metric in Section 3.3.2. We then compare CQ to the clas-

sification threshold, T , (Section 3.3.3). If CQ <= T , we accept Q as a genuine signature.

Otherwise, Q is rejected as a forgery.

46

3.4 Datasets

We use two datasets for our experiments (Sections A.4 and A.5 of Appendix A). The first

is our own dataset of English signatures. It contains 192 genuine signatures (16 authors, 12

signatures each) and 256 forgeries (8 authors, 16 blind and 16 casual forgeries each). For

each author, we collected the 16 genuine signatures in a single session. We collected forgeries

from a set of volunteers who did not see the genuine signatures in advance. For the random

forgeries, we provided them with typed names to forge. We then allowed them to look at

the genuine signatures while they wrote the casual forgeries without any practice.

The other dataset is the offline portion from the ICDAR 2011 Signature Verification

Competition for Online and Offline Skilled Forgeries (SigComp2011). The participants were

allowed to practice forging these signatures before the forgeries were collected for the dataset.

The Chinese test set has 116 genuine reference signatures by 10 authors and 487 questioned

signatures (120 genuine, 367 forgeries). The Dutch test set has 648 reference signatures by

54 authors and 1286 questioned (648 genuine, 638 forgeries). [23]

3.5 Experiments

To test the accuracy of our method for blind forgeries, we use our English signature dataset.

For each author, we select 6 of the 12 genuine signatures as the author’s reference signatures.

We use the other 6 genuine signatures and 8 blind forgeries as questioned signatures for that

author. We repeat the test using the other 6 genuine signatures as references and the original

6 reference signatures as questioned signatures. We report the results of both tests (“split

1” and “split 2” of the genuine signatures used for reference, respectively). We test casual

forgeries in a similar manner, again using two splits of genuine signatures for reference.

Since accuracy and error rates are dependent upon the classification threshold (Sec-

tion 3.3.3), we test across a range of values for the system parameter t. For each value of

t, we calculate classification accuracy (ACC), false accept rate (FAR), and false reject rate

47

(FRR) of the system. We use the results to report the value of t that (approximately) results

in equal error rate (EER). EER is when FAR is equal to FRR. EER can also be visualized

on receiver operator characteristic (ROC) curves as the point on the ROC curve through

which the (yellow) diagonal line passes (Figure 3.4).

We evaluate our system for both Dutch and Chinese skilled forgeries using the Sig-

Comp2011 dataset. The genuine signatures in the dataset are already designated as either

reference or questioned, so we do not test multiple splits. For these skilled forgeries, we

compare our EER accuracy to the EER accuracies reported in [23] that were achieved by

the systems that participated in the ICDAR 2011 competition.

3.6 Results

ROC curves for each dataset are shown in Figure 3.4. These curves illustrate how the system

performs in the trade-off between catching more forgeries versus triggering fewer false alarms.

In general, the closer a curve approaches to the top-left corner of an ROC curve, the better

the system is considered to perform. It is clear that our system performs best on blind

forgeries, followed by casual forgeries, and worst on skilled forgeries, as would be expected.

For skilled forgeries, it performs better on Dutch than on Chinese. While it is common

in ROC analysis to consider a point near the “knee” of the curve as the best point of the

trade-off, the actual choice is very dependent on the particular application. For the purpose

of comparison with other methods, we use a value of t that is near EER (visualized by the

yellow diagonal), which is also reasonably close to the knee of the curve for these datasets.

We report the EER accuracy of our method in Table 3.1 and Figure 3.5. When the

tuning parameter, t, of our system is adjusted approximately for equal error rate (EER),

the accuracy of our system is 93.75%–95.98% for blind English forgeries and 86.61%–91.07%

on casual English forgeries. Even for skilled forgeries, our system performs quite well. On

the Dutch signatures with skilled forgeries, the EER accuracy is 80%, and on the Chinese

signatures with skilled forgeries, the EER accuracy of our method is 74%.

48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ru

e
 A

c
c
e

p
t

R
a

te
 (

T
A

R
)

False Accept Rate (FAR)

split 1
split 2

@
@
@

@
@
@
@

@
@
@

@
@
@@

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T

ru
e

 A
c
c
e

p
t

R
a

te
 (

T
A

R
)

False Accept Rate (FAR)

split 1
split 2

@
@
@

@
@
@

@
@
@
@

@
@
@@

English (blind) English (casual)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ru

e
 A

c
c
e

p
t

R
a

te
 (

T
A

R
)

False Accept Rate (FAR)

@
@
@

@
@
@
@

@
@
@

@
@
@
@

@
@@ 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ru

e
 A

c
c
e

p
t

R
a

te
 (

T
A

R
)

False Accept Rate (FAR)

@
@
@

@
@
@

@
@
@
@

@
@
@

@
@
@@

Dutch (skilled) Chinese (skilled)

Figure 3.4: ROC curves of our method for datasets with blind, casual, and skilled forgeries.
Equal error rate (EER) is where a curve intersects the yellow diagonal.

49

Table 3.1: Results of our method
Dataset (forgery type) ACC FRR FAR
English (blind) split 1 93.75% .0625 .0625
English (blind) split 2 95.98% .0417 .0391
English (casual) split 1 86.61% .1354 .1328
English (casual) split 2 91.07% .0833 .0938
Dutch (skilled) 80.19% .1960 .2003
Chinese (skilled) 74.33% .2583 .2561

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

t (tuning parameter)

EEREER

split 1
split 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

t (tuning parameter)

EER
EER

split 1
split 2

English (blind) English (casual)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

t (tuning parameter)

EER

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

A
c
c
u

ra
c
y

t (tuning parameter)

EER

Dutch (skilled) Chinese (skilled)

Figure 3.5: Accuracy of our method as t varies. Points at which equal error rates (EER)
occur are marked with arrows.

50

In Table 3.2 and Figure 3.6, we compare our skilled forgery results to the results

reported in [23] for the methods that competed in the ICDAR 2011 competition. For Dutch

signatures, we see that the EER accuracy of our method is better than half of the systems

that were in the competition. For Chinese signatures, only one system is reported to have a

higher EER accuracy than ours.

It is important to note that we achieve these results with virtually no language-specific

tuning or algorithmic modifications except for necessary preprocessing. The accuracy of our

method seems relatively consistent from Dutch to Chinese (a difference in accuracy of only

5.86%). In contrast, some of the other methods seem less adaptable across languages. For

example, the method that performed best in SigComp2011 on Dutch signatures (method

6/7), actually performed worst on the Chinese signatures. In fact, the numbers reported

in Table 3.2 for method 6/7 are for when the method is specifically optimized for Chinese

or Dutch, respectively. Only methods 1 and 2 are more consistent in their accuracy when

moving from Dutch to Chinese, with differences of 2.87% and 4.89%, respectively.

3.7 Conclusion

We have presented a method of discriminating between authentic and forged signatures using

2-D geometric warping. In the absence of a known dataset for blind and casual forgeries, we

have created one and made it available so that other methods can be compared to ours in

the future. Our method performs well on blind and casual forgeries, and even shows promise

for skilled forgeries when compared with methods reported in the SigComp2011 competition.

Without language-specific tuning, our basic method performs reasonably well on datasets of

multiple languages (English, Dutch, Chinese). These early results are very encouraging. We

believe that future work will allow us to further improve our method and its accuracy.

51

Table 3.2: Comparison of our method to methods from SigComp2011 [23]
Method ACC Dutch ACC Chinese
1 82.91% 80.04%
2 77.99% 73.10%
3 87.80% 72.90%
6/7 97.67% 56.06%
8 75.84% 62.01%
9 71.02% 61.81%

Ours 80.19% 74.33%

Difference
2.87%
4.89%
14.90%
41.61%
13.83%
9.21%

5.86%

Dutch (skilled) Chinese (skilled)

Figure 3.6: Comparison of EER accuracy of our method (red) to the methods from the
ICDAR 2011 competition (yellow).

52

Chapter 4

Additional Analysis, Experiments, and Improvements

In this chapter, we report significant additional analysis of our handwriting recogni-

tion method. The analysis includes a detailed look at the types and causes of recognition

errors, results after some minor modifications to our method, and results of tuning various

system parameters. To aid with comparisons of our method to other methods, we also in-

clude experimental results of testing our system’s accuracy on a large, publicly available,

multi-author dataset. While some of the analysis in this chapter is suitable for publication

and will be included in a future journal article submission, the rest of the details augment

our understanding of the current strengths and weaknesses of our method and inform our

search for ways to improve the method in the future.

4.1 Introduction

In Chapters 2 and 3, we introduce a novel 2-D geometric warping based method of comparing

handwritten words, and show that the method is applicable to both offline handwriting

recognition and offline signature verification. Those early results are very encouraging and

lead us to believe that our method shows significant promise and also the potential to be

improved and built upon in the future. However, those chapters include only limited analysis

of the method itself, leaving us with several unanswered questions regarding which of our

initial implementation decisions and parameter choices can be improved. In addition, our

recognition results in Chapter 2 are based on relatively small single-author datasets that are

not used to test most other handwriting recognition methods, making it difficult to compare

53

our method to other methods. In this chapter, we analyze our method and parameter choices

in more detail and report results for a larger, more general dataset that is well-known in the

handwriting recognition community — the IAM database (IAMDB) [28].

In order to make significant improvements to our method, it is important to under-

stand its current limitations, including what types of recognition errors our method makes

and why it makes those errors. In Sections 4.2 and 4.3, we analyze the recognition errors

and their causes.

In Section 4.4 through Section 4.11, we report our experimentation with several minor

modifications to the recognition algorithm itself and to the system parameters. We find that

some of the modifications increase recognition accuracy, including the improved cost metric

(Section 4.5), the word length mismatch penalty (Section 4.4.3), and the improved handling

of distance map boundaries (Section 4.6). We report our final results after algorithmic

improvements and tuned parameters for the Smith and Washington datasets in Section 4.12.

We test our handwriting recognition method on the IAMDB in Section 4.13. This

allows us to analyze our results in the context of results for some other HR methods found in

the literature and show that our method is competitive with other methods (Section 4.14).

4.2 Analysis of Smith Dataset Recognition Errors

In this section, we augment our analysis from Section 2.6 by looking more carefully at the

recognition errors that occur when using our recognition method on the Smith dataset from

Chapter 2. We do similar analysis for the Washington dataset in Section 4.3.

In Figure 4.1, we classify the in-vocabulary words that are recognized incorrectly

by the type of recognition error that occurs. We see that 9 of the 84 errors (11%) are

simply a matter of capitalization (Figure 4.2), and another 29 (35%) differ from the most

similar training example only by a single character (Figure 4.3). We subjectively classify

the rest of the errors based on how similar the overall shape of the word is to the closest

matching training example. Of the errors, 12 (14%) are very similar in shape to the closest

54

Figure 4.1: Types of recognition errors - Smith dataset.

Figure 4.2: Smith dataset errors that only differ by capitalization. For each word pair, the
incorrectly recognized word is on the left and the training example it matches is on the right.
(These account for 11% of the errors.)

Figure 4.3: Smith errors that only differ by one character. (Account for 35% of the errors)

training example (Figure 4.4), 13 (15%) are moderately similar (Figure 4.5), and 21 (25%)

are significantly different (Figure 4.6).

We observe that the incorrect match is often visually more similar to the word being

recognized than any training examples of the word itself, so it is not surprising that our

method occasionally chooses incorrect training examples. However, when incorrect matches

55

Figure 4.4: Smith errors that have very similar shapes. (Account for 14% of the errors)

Figure 4.5: Smith errors that have moderately similar shapes. (Account for 15% of errors)

Figure 4.6: Smith errors that have different shapes. (Account for 25% of errors). Even these
shapes are not always wildly different (e.g., girls/gave, good/gave, and mail/music).

are significantly different than the word being recognized (such as those in Figure 4.6 that

comprise the red category of the pie chart in Figure 4.1), we want to understand why. To

this end, we analyze each of those errors more carefully. Details for the causes of each

individual error are included in Appendix B. We summarize the main causes of the errors

in the following paragraphs.

We find that there are several causes of errors. In some cases the loops of letters are

filled in or indistinct, resulting in a medial axis through the center of the ink blob instead

of around the loop strokes themselves. An unknown word image with malformed loops may

not match well to a training example with well-formed loops (and vice versa). We show

56

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Example of filled loops causing a recognition error. a) Original word image
“school”; b) loops of “c” and both “o”s are filled in binarized image; c) medial axis through
center of filled loops instead of desired loop strokes; d) training image; e) binarized training
image; f) filled loops and true loops do not align well after morphing (yellow regions).

one such example in Figure 4.7 (from Appendix B #12). Due to the close proximity of

some ink strokes, such as the “c”, the area within the loop is actually a darker shade of

gray than the page background and becomes filled in when the image is thresholded for

binarization (Figure 4.7b). Better binarization algorithms (which are outside the scope of

this dissertation) may help in some such cases. However, both “o”s in Figure 4.7b are also

filled in — not due to binarization problems, but because the up-strokes and down-strokes

actually retrace the same locations instead of forming a distinct loop. Improved binarization

will not help at all in such cases.

Another common cause of recognition errors is when the coarse alignment step of our

algorithm (Section 2.4.3) fails to align letters or strokes well enough for the subsequent mor-

phing step to finish aligning them. We show two examples in Figure 4.8 (see Appendix B #13

and Appendix B #6). In Figure 4.8a the coarse (DP) alignment of the letters “Sun” of the

red word are too far away from the corresponding letters of the blue word. In Figure 4.8b,

the horizontal DP alignment is fine, but the vertical alignment is poor. In both cases, the

coarse alignment of the words is too poor for the morphing step of our algorithm to align

the strokes in the manner that we would hope. Since the effectiveness of DP warping is

influenced somewhat by the value chosen for the Sakoe-Chiba band width constraint (de-

fined in Section 2.4.3), we experiment with various values for this parameter to attempt to

57

(a) (b)

Figure 4.8: Examples of errors caused by poor coarse alignment. a) Horizontal coarse align-
ment of first three letters of “Sunday” is poor, b) Poor vertical coarse alignment of “got”.

Figure 4.9: Illustration of how C0→1 can be low even with poor alignment. All blue pixels
are only a distance of 1 from red, even though red is not aligned well with blue.

reduce the number of errors caused by poor coarse alignment. We report these experiments

in Section 4.10.

Occasionally, an error occurs because the matching cost (C0→1) is low despite the fact

that the warped medial axis (A′0) and the other medial axis (A1) do not align well. Since

C0→1 (Equation 2.5) uses only the distance map values corresponding to the A1 (blue) pixels,

if they are all close to the nearest A′0 (red) pixel then the aggregate distance is low even if

there are many pixels of A′0 (red) that are far from the nearest A1 (blue) pixel. We illustrate

this problem in Figure 4.9. In an attempt to avoid these types of errors, we modify our cost

metric in Section 4.5 to include both the distances of red pixels from blue, and blue from red

instead of just one or the other. As we describe in that section, we find that our modification

does indeed reduce the frequency of this type of recognition error and slightly improves our

overall recognition accuracy.

58

We notice a couple of recognition errors at least partially caused by strange behavior of

pixels in the last row or column of the warp mesh (Appendix B #13 and #14). Investigation

of these errors reveals minor bugs in our implementation that only affect the last row and

column, and only occasionally causing an actual recognition error. We address these errors

in Section 4.8.

We observe many recognition errors in which C0→1 is low but C1→0 is high, or vice

versa. This means that the morphing alignment of one word to the other works very well,

but morphing the other direction does not. Since errors can result from an unlucky failed

morph in one direction, we speculate that it might be better to only use the better of the

two morphs, min(C0→1, C1→0) (the minimum of the two costs), to discriminate between

words. Conversely, we recognize that sometimes words that are different actually align quite

well when morphing in one direction. For example, one word may collapse onto the other,

morphing better than we would have hoped and leaving us with a low cost from the distance

map. In those cases, we speculate it may be better to instead only use the worse of the

two costs, max(C0→1, C1→0), so that we only consider costs in which an incorrect word did

not just happen to align well with the other because our morphing was “too good.” In

Section 4.11 we experiment using only the minimum or maximum. We find that it is much

better in practice to add both costs as we already do (C0↔1 = C0→1 +C1→0), instead of just

using the minimum or maximum.

Some recognition errors occur when the word being recognized is simply shaped dif-

ferently than the training examples of that word. For example, the handwriting is sloppy

or compacted, letters are shaped differently or written with a different slant, or parts of the

word are out of place enough that the morphing algorithm is unable to align them. Finding

solutions for these types of more difficult errors is left as future work.

As described in the preceeding paragraphs, we find many common causes of recogni-

tion errors in the Smith dataset. Often, errors are not necessarily due to a single cause, but

are instead the result of a multiple causes combined. We also find that in many cases, a

59

recognition error occurs by a very small margin — the cost to match to the incorrectly chosen

training example is almost identical to the cost to match to a correct training example, and

the incorrect example just happens to be the slightly better match of the two.

4.3 Analysis of Washington Dataset Recognition Errors

In Figure 4.10, we classify the in-vocabulary words that are recognized incorrectly by the

type of recognition error that occurs. There are 83 errors total. Of those, 4 (5%) differ from

the most similar training example only by minor punctuation (the Washington dataset labels

include some hyphenation, periods, and apostrophes whereas the Smith dataset is scrubbed

of all punctuation). Another 7 (8%) differ only by capitalization (Figure 4.11). Another 11

(13%) differ from the most similar training example only by a single character (Figure 4.12).

We subjectively classify the rest of the errors based on how similar the overall shape of the

word is from the closest matching training example. Of all errors, 24 (29%) are very similar

in shape (Figure 4.13), 20 (24%) are moderately similar (Figure 4.14), and 17 (20%) are

significantly different (Figure 4.15).

Comparing Figure 4.10 to Figure 4.1, we see that the proportion of minor errors

(blue/green) is very similar in both the Washington dataset and the Smith dataset. The

proportions of moderate errors (yellow) and more obvious errors (red) are also fairly similar

for both authors. This suggests that our method is consistent and predictable in the types

of errors it makes, independent of the specific author.

When we look closely at the causes of errors in the Washington dataset (Appendix C),

we find that they are very similar to the causes of errors in the Smith dataset described in

Section 4.2. However, we do notice that the Washington dataset has many more filled loops

than the Smith dataset due to thicker ink strokes.

60

Figure 4.10: Types of recognition errors - Washington dataset.

Figure 4.11: Errors that only differ by punctuation (left) or capitalization (right).

Figure 4.12: Errors that only differ by one character. (Washington dataset)

Figure 4.13: Errors that have very similar shapes. (Washington dataset)

61

Figure 4.14: Errors that have moderately similar shapes. (Washington dataset)

Figure 4.15: Errors that have different shapes. (Washington dataset)

4.4 Incorporation of Morphing Movement Cost into Word Difference Metric

We measure the “difference” between two words using a distance metric, C(I0, I1), that we

call the word matching cost (Section 2.4). This metric is computed using distance maps to

determine how far apart the medial axes of two words are after one is warped to the other and

vice versa. While this metric gives impressive results, we speculated that our results might

be even better if we also include a cost for how much work is required to warp the words

to their morphed positions instead of just how similar they are after warping is complete.

The intuition behind our speculation is that there may be cases in which two very different

words are able to be warped almost exactly into each others’ likenesses, resulting in a very

low word matching cost even though there is a significant amount of warping of the words to

get them into that final warped position. Incorporating a cost for the warping itself would

mitigate those sorts of errors.

62

However, we also see cases in which adding an additional cost for warping would be

harmful instead of beneficial. In many cases, words are very similar in the characteristics that

matter (stroke direction, stroke shape, stroke order, etc.) but because of stretched/condensed

characters, inconsistent slant between parts of the word, or other variations that are spatially

significant but subjectively unimportant, there is significant warping required to match them

together. In these cases, it is better to ignore how much work is required to warp the words

and focus only on the difference in the final result of the warping.

Without experimentation, it is unclear whether or not it is better in practice to

incorporate the warping work into the cost metric as we speculated, and if so, how much

weight should be given to the warping work versus the cost calculated from the distance

maps. To test our speculation and answer these questions, we incorporate into C(I0, I1) a

metric of how much warping work is required and test on a range of weights from 0 to 1 (in

reasonably small increments) on several datasets.

In general, we find that movement cost alone does not increase accuracy in our ex-

periments, and in fact decreases it. This is true both for handwriting recognition and for

signature verification. We report the methods and results of our experiments in Sections 4.4.1

through 4.4.4.

4.4.1 Morphing Movement Cost

In the image morphing correspondence algorithm developed by Gao and Sederberg [8], the

morphing work equation includes weighted terms representing the amount of stretching of

the warp grid, the changes in angles at the grid vertices, and the change in actual color

information within a grid rectangle. When dealing with handwritten ink strokes we are not

interested in how much the grid mesh moves or vertex angles change because those metrics

are only indirectly indicative of the effort involved in aligning one word’s medial axis to that

of another. What matters is how much the medial axis pixels themselves are moved during

the warping operation, not how the grid was changed to make them move.

63

We define the movement cost, M0→1, for a warped medial axis as the average Eu-

clidean distance between each warped medial axis pixel and the pixel’s position when it is

only coarsely-aligned (warped with dynamic programming alignment but not the morphing

correspondence algorithm). That is, for medial axis A0 with coarse (DP) alignment A′′0 and

final warped position A′0, the movement cost is

M0→1 =
1

‖A0‖

‖A0‖
∑

i=1

|A′0[i]− A′′0[i]|. (4.1)

For the experiments in this section, we modify Equation 2.5 to include M0→1:

C0→1 = (m)M0→1 + (1−m)Ĉ0→1, (4.2)

where Ĉ0→1 is the original version of Equation 2.5 that calculates costs using only distance

maps and m is a weight (from 0 to 1) that specifies how much the movement cost should be

used relative to the distance map cost.

4.4.2 Results of Incorporating Movement Cost for Handwriting Recognition

In Figure 4.16, we plot the in-vocabulary accuracy of the Smith diary and Washington

manuscript datasets (Section 2.5). For each dataset, we use the first 1000 words as training

examples and the following 1000 words as test data (“Split 1”). We vary m, the movement

cost weight, in increments of 0.1 from 0 (movement cost not considered) to 1 (only movement

cost considered). In areas of interest, we use higher resolution (smaller increments of m).

We repeat the process using the second 1000 words as training examples and the first 1000

words as test data (“Split 2”).

We find that incorporating movement cost tends to decrease recognition accuracy

instead of increasing it. For the Smith dataset, accuracy is lower for all m > 0 than when

movement cost is ignored. This is true for both splits of the data. For the Washington

dataset, there are some values of m that result in small improvements in accuracy. However,

64

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
-v

o
c
a
b
 W

o
rd

 R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

m (weight of movement cost)

Smith dataset

Smith - split 1
Smith - split 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
-v

o
c
a
b
 W

o
rd

 R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

m (weight of movement cost)

Washington dataset

Washington - split 1
Washington - split 2

(a) (b)

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
-v

o
c
a
b
 W

o
rd

 R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

m (weight of movement cost)

Washington dataset - Closeup (stretched vertically)

Washington - split 1
Washington - split 2

(c)

Figure 4.16: Effect of including movement cost in the word difference metric. Overall, as
more weight is given to the movement cost, word recognition accuracy decreases. a) Smith
dataset accuracy is lower for allm > 0. b) Full range ofm for Washington dataset. c) Closeup
of the Washington dataset graph - slight improvement for some small m values can be seen,
but the best m value is inconsistent between splits of the dataset.

the improvements are not consistent, the general trend is still a decrease in accuracy as m

increases, and the optimal value of m varies even between two splits of the same dataset.

For an unknown dataset, we do not know how to predict whether any non-zero value of m

exists that will increase recognition accuracy, and if so, what the best value of m is.

65

l

Ĉ0→1 = 0.81 Ĉ1→0 = 1.58
M0→1 = 2.21 M1→0 = 2.75

C0→1 = (m)M0→1 + (1−m)Ĉ0→1

C1→0 = (m)M1→0 + (1−m)Ĉ1→0

C0↔1 = C0→1 + C1→0 = 3.17m+ 2.42

l

Ĉ0→1 = 0.80 Ĉ1→0 = 2.14
M0→1 = 1.63 M1→0 = 1.99

C0→1 = (m)M0→1 + (1−m)Ĉ0→1

C1→0 = (m)M1→0 + (1−m)Ĉ1→0

C0↔1 = C0→1 + C1→0 = .90m+ 2.91
 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

T
o
ta

l
W

o
rd

 M
a
tc

h
in

g
 C

o
s
t

m (weight of movement cost)

doctored - doctored
doctored - decided

(a) (b) (c)

Figure 4.17: Example of the negative effect of movement cost on recognition. Test word
“doctored” is incorrectly recognized as “decided” when movement cost is weighted with
m > 0.22. a) As m varies, C0↔1 to match to training example of “doctored” is equation of
a line (green). b) C0↔1 to match to “decided” (red). c) “doctored” is the lowest cost match
for small values of m, but when m is greater than 0.22, “decided” is the lowest cost match.

It is interesting to observe that movement cost negatively impacts the Smith dataset

more than it impacts the Washington dataset, as evidenced by the lower accuracy of the

Smith dataset at m = 1 and the shorter flat part of the curve before accuracy drops sig-

nificantly in Figure 4.16a. We notice that there is correlation with the fact that we see

more variation in the penmanship of the Smith dataset, whereas the penmanship of the

Washington dataset seems more consistent.

We inspect recognition errors introduced by incorporating movement cost into the

word difference metric C0↔1. Figure 4.17 shows an example of a word (“doctored”) that

is recognized correctly with the original word difference metric (or m = 0), but incorrectly

recognized as “decided” when movement cost is heavily-weighted. In fact, any weight greater

than 0.22 results in a recognition error because the word matching cost for “decided” will

always be lower than the word matching cost of the training instance of “doctored” when

m > 0.22 (Figure 4.17c).

4.4.3 Adding a Penalty to Movement Cost for Mismatched Word Lengths

If we completely disregard the cost computed from distance maps and use only the movement

cost (i.e., set m = 1.0), we notice an interesting trend accompanying the very low recognition

66

0

8

M0↔1 = 3.17
C0↔1 = 60.54

(a) (b) (c) (d) (e)

0

8

M0↔1 = 6.63
C0↔1 = 1.70

(f) (g) (h) (i) (j)

Figure 4.18: Example of how movement cost favors short words. Warping the medial axis
of a) to b) results in c), the warped medial axis points color-coded by how far they moved
from coarse-aligned positions (blue is less, red is more). Warping b) to a) results in d).
e) The total movement cost, M0↔1, is low even though C0↔1 is high. f) through j) show
that matching to a second instance of “August” results in higher movement cost, but very
low distance map cost.

rate. Almost all words are recognized as very short words such as “a,” “on,” or “the,” even

if the actual word is much longer. For example, the word “August” is incorrectly recognized

as “a” when m = 1 but is correctly recognized as “August” when m = 0 (Figure 4.18).

Furthermore, when m = 1 the top 10 best matches are all relatively short words but when

m = 0 the top 10 best matches are all instances of the word “August.”

The word “a” does not warp well to “August,” resulting in a very high cost from the

distance maps (C0↔1). Despite that fact, the medial axis pixels move very little from their

coarse-aligned positions to arrive at their final warped positions, so M1→0 is very low.

In order to compensate for the fact that movement cost favors short words in this

manner, we introduce another term into Equation 4.2 as a penalty for difference in word-

lengths:

C0→1 = (m)M0→1 + (1−m)Ĉ0→1 + (p)
wlong − wshort

wlong

, (4.3)

where p is a weighting constant for the new penalty term, and wlong and wshort are the widths

of the longer and shorter word images, respectively. Thus, the penalty is small when two

words are close to the same length, and large when one word is much longer than the other.

67

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.5 1 1.5 2 2.5 3 3.5 4
in

-v
o
c
a
b
 a

c
c
u
ra

c
y

p

In-vocab Accuracy

Figure 4.19: Effect of word length mismatch penalty on Smith dataset accuracy when m = 1.
Penalty term increases accuracy when only movement cost is considered.

Considering only movement cost and the new penalty term (m = 1.0 and p varies over

a range) for the Smith dataset, we see that the penalty term does increase the recognition

accuracy (Figure 4.19). In addition, the results are not consistently skewed toward very

short words as is the case without using the penalty term (i.e., when p=0). Instead, the top

10 matches tend to be words of a length similar to that of the word being compared.

In Figure 4.20 we report the in-vocabulary word recognition accuracy for the Smith

dataset as we vary both m and p. We find that accuracy consistently improves slightly

at p = 0.5 for all values of m tested (including m = 0). This leads us to believe that

incorporating the penalty for mismatched word-lengths is useful, and should be explored in

more detail in future work. However, we see that even with the penalty term, accuracy still

decreases when we incorporate movement cost. This is the case for all m > 0. We conclude

that it is better not to use the movement cost term at all for handwriting recognition.

4.4.4 Results of Incorporating Movement Cost for Signature Verification

We test incorporating movement cost into signature verification / forgery detection for all

of the signature datasets used in Chapter 3. We compute the verification accuracies of each

dataset while holding the user-tunable system parameter (Section 3.3.3) constant at t = 2.5,

68

 0
 0.1

 0.2
 0.3

 0.4
 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

 70

 75

 80

 85

 90

 95

In-vocab Accuracy

m

p

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90

(a)

Smith dataset in-vocabulary recognition accuracy as m and p vary
0.0 89.35 89.48 89.23 88.09 86.31 85.04 82.89 81.62 80.86
0.1 88.34 89.35 88.34 86.95 85.30 83.52 81.37 80.61 79.72

m 0.2 86.95 88.09 87.33 85.68 83.78 82.13 80.35 79.09 78.07
0.3 84.79 85.80 85.04 84.28 82.26 80.10 78.45 77.06 76.55
0.4 81.88 82.64 83.14 81.37 79.47 78.45 76.30 75.79 75.03
0.5 79.21 79.97 78.33 77.95 76.93 75.54 73.89 73.00 71.36

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

p
(b)

Figure 4.20: Smith dataset recognition accuracy as both movement cost and length penalty
vary. a) graphical representation. b) numerical values used for the graph.

and computing word differences using Equation 4.2, which includes movement cost weighted

by m. We show the resulting signature verification accuracies in Figure 4.21.

While there are some small bumps in the graphs, generally the more weight is given

to movement cost instead of cost from the distance maps, the lower the accuracy. This holds

true for both splits of the blind forgery dataset, both splits of the casual forgery dataset,

and both datasets of skilled forgeries. Interestingly, we see that the more variation and

less consistency there is in a dataset’s signatures, the more pronounced the downward trend

69

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ig

n
a

tu
re

 V
e

ri
fi
c
a

ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

m (weight of movement cost)

Signature Datasets

Blind - split 1
Blind - split 2

Casual - split 1
Casual - split 2

Skilled - Dutch
Skilled - Chinese

Figure 4.21: Signature verification accuracy for various values of m. There is a general
downward trend in accuracy as m increases. The downward trend is more pronounced for
unskilled forgeries (with more variation in the handwriting) than skilled forgeries.

is in the corresponding graph as m increases. Incorporating movement cost for the blind

forgeries results in an average of more than 20% decrease in accuracy, whereas the decrease

is less than 15% for casual forgeries, and less than 5% for skilled forgeries in which there

is much less variation in the handwriting. This is reminiscent of the correlation we see in

Section 4.4.2 between the amount of variation in handwriting and the amount of negative

impact movement cost has on recognition accuracy.

70

Where small accuracy increases do occur in the graphs, the m values at which they

occur are not consistent between datasets, or even between splits of the same dataset where

more than one split is tested. On unknown datasets, it would not be possible to predict what

value of m would result in a small increase in accuracy, and since the general trend of all of

the curves is downward as m increases, we conclude that using m = 0 is the best option for

signature verification / forgery detection, just like it is for handwriting recognition.

4.5 Improved Cost Metric

As described in Section 4.2 and illustrated in Figure 4.9, our word matching cost metric will

have a small value if all of the (blue) medial axis pixels of A1 are near (red) pixels of A′0,

even if there are many (red) pixels of A′0 that are far away from the (blue) pixels of A1. In

practice, such cases are not very frequent, but we do see them occur occassionally. In a few

cases recognition errors result.

In this section, we change the cost metric to include the average distance of the (red)

A′0 pixels to the (blue) A1 pixels in addition to the average distance of the (blue) A1 pixels

to the (red) A′0 pixels. This more accurately measures the mutual alignment of both medial

axes instead of just one to the other or vice versa. We also eliminate the “+1” smoothing

term and explicitly prevent dividing by zero instead. Our modified cost metric equation is:

C0→1 =
1

‖A0‖

‖A0‖
∑

i=1

D1(A
′
0[i]) +

1

‖A1‖

‖A1‖
∑

i=1

D′0(A1[i]). (4.4)

We find that the modified cost metric improves our recognition accuracy slightly for

both the Smith and Washington datasets. For the Smith dataset, in-vocabulary recognition

accuracy improves from 89.38% to 90.0% (a net gain of 5 correctly-recognized words). For

the Washington dataset, in-vocabulary accuracy improves from 88.90% to 89.44% (a net gain

of 4 correctly-recognized words).

71

(a) (b) (c) (d) (e)

Figure 4.22: Example of warped medial axis pixels outside of distance map D1 being ignored.
a) Medial axis pixels to be warped; b) Medial axis of other word; c) Other word and its
distance map, D1; d) Overlay after DP warping; e) As control points are moved, pixels that
warp outside of D1 (such as the red pixels in the top-right corner) are ignored in calculations.

4.6 Improved Handling of Distance Map Boundaries

For the purpose of simplicity in implementation, we ignore any medial axis points that fall

outside of distance map boundaries when we calculate C0→1 (Equations 2.5 and 4.4) and

placement costx,y (Equation 2.4). In Figure 4.22, we illustrate how warped points may fall

outside the distance map as control points of warp mesh are moved during morphing. In

this section, we test the accuracy when handling those pixels correctly for distance map D1

instead of ignoring them. Since we cannot extract distance values directly from the distance

map if the position of the point is outside of the boundaries, we compensate by adding

the nearest boundary value of the distance map to the actual 4-connected (“Manhattan”)

distance between that boundary position and the position of the out-of-bounds point.

We find that handling out-of-bounds points correctly for D1 does improve our recogni-

tion accuracy slightly. Combined with the improved cost metric in Section 4.5, this correction

brings our in-vocabulary recognition accuracy up to 90.27% for the Smith dataset and 90.78%

for the Washington dataset.

4.7 Using C0→1 Instead of Heuristic in placement costx,y

The placement costx,y equation used by our morphing algorithm (Equation 2.4) is intended

to allow us to choose a good x, y location to place a control point within the nearby neigh-

borhood of its current location. Ideally, this would be the position within the neighborhood

72

at which C0→1 is minimized, meaning that the medial axes will be aligned at least as well

by choosing to place the control point there as if any other candidate x, y position were to

be chosen instead. However, since C0→1 requires us to calculate a distance map based on

A′0, using C0→1 as placement costx,y would require a new distance map to be calculated for

each each candidate x, y position after warping A0 to compute A′0 for that x, y position. In

order to run at a reasonable speed, placement cost is actually a hueristic estimate of C0→1

that uses only D1. Since D1 does not depend on A′0, it is only computed one time, not once

for every candidate x, y position of every control point during every iteration.

While a heuristic placement costx,y is necessary for our algorithm to run at reasonable

speeds on current hardware, we want to know how much our accuracy suffers due to the

hueristic. Since hardware performance historically improves very rapidly, it is possible that

using the full distance metric will be feasible within a relatively short amount of time on

newer hardware. In this section, we test the accuracy of our method with placement cost

changed from Equation 2.4 to

placement costx,y = d∆x,y +
1

‖A0‖

‖A0‖
∑

i=1

D1(A
′
0[i]) +

1

‖A1‖

‖A1‖
∑

i=1

D′0(A1[i]). (4.5)

We find that the in-vocabulary recognition accuracy for the Smith dataset using

Equation 4.5 is unchanged from that in Section 4.6, remaining at 90.27%, so our accuracy

does not suffer at all by using the heuristic, at least for this dataset.

Computation, however, is much slower when using Equation 4.5. We split the com-

putation over 20 nodes of the m6 cluster in the BYU Fulton Supercomputing Lab. Nodes

have hex-core Intel Westmere 2.67 GHz processors, 24GB of 1066 MHz DDR3 RAM, and

support 12 threads of execution simultaneously. Running the Smith dataset takes a cumula-

tive walltime total of 327,045 seconds (90.85 hours), or about 4.5 hours of walltime per node

on average. For comparison, running on 20 nodes of the supercomputer using the heuristic

takes only 1,568 seconds of cumulative walltime (26.13 minutes), or about 1.3 minutes per

73

node on average. Using the full calculation in Equation 4.5 takes more than 200 times as

long as using the heuristic without any increase in recognition accuracy.

When performing a similar test with the full calculation in Equation 4.5 for the

Washington dataset, again split over 20 nodes of the supercomputer, many of the jobs do not

even finish before the walltime allotment of 30 hrs per node (600 hours total) elapses. Since

this is already an unreasonable amount of time — even for hardware over the next several

years, we see no value in expending additional computing resources on the supercomputer

to complete the test for the Washington dataset, especially since we already see that there

is no improvement for the Smith dataset.

4.8 Correct Handling of the Last Row and Column of Warp Mesh

In our analysis of what causes recognition errors (Section 4.2), we observe that occasionally

some pixels at the very right or bottom of words do not morph as expected. For example,

in Figure 4.23b (from Appendix B #13), we see that the descender of the final “y” collapses

during morphing even though both sides of the descender are previously aligned quite well

by the coarse (DP) alignment step of the algorithm (Figure 4.23a).

The morphing error is caused by minor implementation errors in how the last row

and column of the warp mesh are handled. Although the bug is present in many images,

it is only noticeable in rare cases because the improvement step of the morphing algorithm

usually compensates enough to fix any resulting problem. However, we correct the bug so

that the mesh is refined and morphed properly in the last row and column (Figure 4.23c).

Fixing this minor bug has very little impact on our overall accuracy. On the Smith

dataset, the word “girls” (Appendix B #14) is correctly recognized after the bugfix, but the

accuracy for the dataset stays the same because a different word is recognized incorrectly.

On the Washington dataset, four additional words are correctly recognized after the fix, but

seven new errors occur, so the recognition accuracy actually decreases just slightly from

88.9% to 88.5% of in-vocabulary words. For both datasets, the newly recognized words and

74

(a)

(b)

(c)

Figure 4.23: Correction of how the last row and column of the mesh are handled, demon-
strated for words in Appendix B #13. a) DP coarse alignment. b) Before bug fix, the
descender of “y” unexpectedly collapses to the left side of the loop. c) Descender morphs
correctly after fix.

the new errors all occur on words for which the cost of matching to an erroneous training

example is very close to the cost of matching to the desired training word.

4.9 Analysis of the Effect of Warp Mesh Size

In this section, we look at how the size of quads in the warp mesh affects the accuracy

of our method on the Smith and Washington datasets. We look at the effect of both the

initial mesh size used when the algorithm starts and the number of times the mesh is refined

(subdivided) during the morphing algorithm.

In Section 2.4.5, our morphing algorithm sets the initial width and height of each mesh

quad to h0/4, where h0 is the height of word image I0.
1 Our choice of 4 in the denominator

is based partially on the intuition that characters (at least in Latin script) can be generally

1While all other quads are the same size, quads in the last row or column of the mesh actually have a
height or width less than h0/4 if the width or height of the word image is not an even multiple of h0/4.

75

divided into three zones — those for the main body of a lower-case character, ascenders (or

the top part of capital letters), and descenders — and those three parts of a given letter

may need to be stretched, bent, and pulled somewhat independently to align well with the

same letter in another word. We choose 4 instead of 3 in the denominator because h0 for any

given image is not necessarily evenly divisible by 3, often resulting in the fourth row being

very small and of little use in the morphing. Even when the fourth row of the warp mesh is

nearly the same height as the other rows, using four zones instead of three intuitively allows

for some additional flexibility in the length of ascenders / descenders, and variation from

top to bottom of the main body of the character.

By default, our system automatically selects the number of mesh refinements to per-

form during the morphing algorithm for a given word. The number of refinements selected

is the number of times it takes for the mesh size (width and height of each quad) to be less

than 16 pixels. Alternatively, we can explicitly set the number of mesh refinements for every

word in an entire datset.

We test the accuracy of our system over a range of denominator values to see if there

is a better value than 4 that we should use. We also test various settings for the number of

refinements. Figure 4.24 shows the in-vocabulary recognition accuracy for each value used

in the denominator, and for each setting for the number of mesh refinesments. We perform

similar tests for the Washington dataset and graph the results in Figure 4.25. All tests in

this section incorporate the algorithm improvements from Sections 4.5 and 4.6, in addition

to a bug fix from Section 4.8.

As is apparent from Figure 4.24a, the initial size of the mesh quads and the number of

refinements only have a subtle effect on the overall accuracy for the Smith dataset. Viewing

the same graph at a more precise scale (Figure 4.24b) reveals that there is a small peak

where the denominator is 4, and a general trend toward lower accuracy as the denominator

values move away from 4 in either direction.

76

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8 9 10

in
-v

o
c
a

b
 a

c
c
u

ra
c
y

Mesh Ratio Denominator

#refines=auto
#refines=0
#refines=1

(a)

 86

 88

 90

 92

 94

 2 3 4 5 6 7 8 9 10

in
-v

o
c
a

b
 a

c
c
u

ra
c
y

Mesh Ratio Denominator

#refines=auto
#refines=0
#refines=1

(b)

Figure 4.24: How initial mesh size ratio affects accuracy for Smith dataset. a) Overall effect
is subtle. b) Peak at 4.0 with less accuracy elsewhere.

77

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8 9 10

in
-v

o
c
a

b
 a

c
c
u

ra
c
y

Mesh Ratio Denominator

#refines=auto
#refines=0
#refines=1
#refines=2

(a)

 86

 88

 90

 92

 94

 2 3 4 5 6 7 8 9 10

in
-v

o
c
a

b
 a

c
c
u

ra
c
y

Mesh Ratio Denominator

#refines=auto
#refines=0
#refines=1
#refines=2

(b)

Figure 4.25: How initial mesh size ratio affects accuracy for Washington dataset. a) Overall
effect is subtle. b) General trend is not clear, but the range 3.0 to 6.4 gives the best accuracy.

78

In Figure 4.25a, we see that the effect of initial mesh size and number of refinements

is also subtle for the Washington dataset. More precise inspection in Figure 4.25b reveals

that the peak and general trend of the graph are not as clear for this dataset as they are for

the Smith dataset. However, we see that denominator values in the range from 3.0 to 6.4

generally result in higher accuracies than denominator values outside of that range.

For both the Smith dataset and Washington dataset, we see that automatically select-

ing the number of mesh refinements generally performs at least as well as explicitly setting

a specific number of refinements for the peak ranges of denominator values.

Overall, we see that the amount of noise in the graphs of Figures 4.24 and 4.25 is

almost as large as the slight difference in accuracy that is made by different settings for

the mesh size ratio denominator and the number of refinements. We conclude that our

choice of parameters (denominator=4.0 and #refines=auto) is a reasonable default setting

for our system. It would be difficult to select better parameters for any given dataset without

performing a similar experiment (using a range of parameter settings) on a representative

training subset of that dataset.

4.10 Parameter Selection for Improved DP Alignment

In our analysis of recognition errors in Sections 4.2 and 4.3, we find that many recognition

errors are at least partially caused by improper coarse (dynamic programming) alignment

of the word images. The effectiveness of DP warping is influenced somewhat by the value

chosen for the Sakoe-Chiba band width constraint (defined in Section 2.4.3). The Sakoe-

Chiba band width constraint limits how much warping the dynamic programming algorithm

permits when aligning the features of one word with those of another.

As shown in Figure 4.26, tightening or relaxing the constraint may help or hurt the

alignment, depending on the word images being aligned. Using a constraint value of 15

does not allow enough leeway for the first three letters of the red “Sunday” to horizontally

align with the blue training example in the horizontal direction (Figure 4.26a). Using a

79

(a) (b)

(c) (d)

Figure 4.26: Adjustment of Sakoe-Chiba band constraint for Dynamic Programming (coarse
alignment) step. a) Poor alignment of first half of word with constraint=15, b) better
alignment with constraint=100, c) good alignment with constraint=15, d) descender of “g”
aligns poorly with constraint=100.

value of 100 allows proper alignment (Figure 4.26b). The opposite is true for the vertical

alignment of the descender of the blue “got” to the red example. Using a value of 15 works

well (Figure 4.26c), but relaxing the constraint to 100 allows the descender to collapse too

much (Figure 4.26d).

We experiment with various values for the Sakoe-Chiba band width constraint param-

eter to attempt to reduce the number of errors caused by poor coarse alignment. Our results

are shown in Figure 4.27. We find that the best value is 14 for the Smith dataset and 22 for

the Washington dataset. Since the Smith images are scaled smaller than the Washington

images, it makes sense that the best constraint for the Smith dataset is smaller because less

warping is needed at a smaller scale to keep a similar proportionality.

80

 86

 88

 90

 92

 94

 0 10 20 30 40 50 60 70

in
-v

o
c
a

b
 a

c
c
u

ra
c
y

Sakoe-Chiba band width

Smith dataset

(a)

 86

 88

 90

 92

 94

 0 10 20 30 40 50 60 70

in
-v

o
c
a
b
 a

c
c
u
ra

c
y

Sakoe-Chiba band width

Washington dataset

(b)

Figure 4.27: Accuracy for a range of values of the Sakoe-Chiba DP band width parameter.
a) Smith; b) Washington.

81

4.11 Using C0↔1 = max(C0→1, C1→0) and C0↔1 = min(C0→1, C1→0)

In Section 4.2, we observe that there are many cases in which the value of C0→1 is low but

C1→0 is high, or vice versa. In that section, we also speculate that it might be better to

use either the maximum of the two or the minimum of the two as our word matching cost,

instead of the sum of both C0→1 and C1→0.

We experiment using both C0↔1 = max(C0→1, C1→0) and C0↔1 = min(C0→1, C1→0).

When we use the maximum, we find that our in-vocabulary recognition accuracy decreases

from 89.38% to 85.97% for the Smith dataset and from 88.50% to 85.03% for the Washington

dataset. When we use the minimum, our system is completely ineffective. Accuracy for the

Smith dataset decreases from 89.38% to 0.13%, with only a single word being recognized

correctly. We conclude that we should continue to use the sum of both C0→1 and C1→0

instead of just the maximum or minimum of the two.

4.12 Improved Results for Smith and Washington Datasets

In Sections 4.4 through 4.11, we experiment with various modifications to our algorithm and

parameter settings. In this section, we incorporate all of the modifications that we find to

be improvements, including the changes in Sections 4.4.3, 4.5, 4.6, and 4.8. Our final cost

metric that replaces Equation 2.5 is

C0→1 =
1

‖A0‖

‖A0‖
∑

i=1

D1(A
′
0[i]) +

1

‖A1‖

‖A1‖
∑

i=1

D′0(A1[i]) + (p)
wlong − wshort

wlong

, (4.6)

where the first two terms are the improved metric from Equation 4.4 (Section 4.5), and the

last term is the term from Equation 4.3 (Section 4.4.3) that penalizes mismatched word

lengths.

For the tests in this section, we use p = 0.1 for the mismatched word length penalty

parameter for both the Smith dataset and Washington dataset. For the Smith dataset, we

set the Sakoe-Chiba band width constraint to 14 and the mesh size ratio denominator to 4.0.

82

Table 4.1: Recognition Accuracy After Improvements and Tuning
Previous Accuracy Improved Accuracy

Dataset Total In-Vocabulary Total In-Vocabulary
(# correct/# possible) (# correct/# possible) (# correct/# possible) (# correct/# possible)

Smith 70.70% 89.38% 71.70% 90.64%
(707/1000) (707/791) (717/1000) (717/791)

Washington 66.50% 88.90% 68.50% 91.58%
(665/1000) (665/748) (685/1000) (685/748)

For the Washington dataset, we set the Sakoe-Chiba band width constraint to 22 and the

mesh size ratio denominator to 4.8. The resulting word recognition accuracies are shown in

Table 4.1, along with the previous accuracies from Figure 2.10 in Chapter 2.

After the algorithm and parameter improvements, we see that in-vocabulary recog-

nition accuracy is over 90% for both datasets, and total recognition accuracy (including

out-of-vocabulary words) is 68.5%–71.7%. These are small, but noticeable, improvements

over the previous accuracies. Since the parameters are optimized based on actual recognition

results, these accuracies represent an upper bound on how well our algorithm can perform

on these two datasets without either making additional improvements to the algorithm itself

or taking additional processing steps (such as incorporating language models).

4.13 IAMDB Dataset Results

The IAM Handwriting Database (IAMDB) is a large, multiple-author dataset of English

handwritten text, made available by Marti and Bunke at the University of Bern [28]. The

database has examples of handwriting by 657 different writers over 1,539 pages (13,353 text

lines) for a total of 115,320 labeled words. We divide the database according to the “Large

Writer Independent Text Line Recognition Task” defined in version 3.0 of the IAMDB. The

task specifies a training set, two validation sets, and a test set for this task. There are

multiple writers for each set, and none of the writers from any set are used for data in any

83

Table 4.2: Recognition Accuracy on IAMDB Dataset (large, many writers)
IAMDB # writers # words Total Accuracy In-Vocab Accuracy
Dataset (# correct/# possible) (# correct/# possible)

Train 283 46,947 — —
Validation 1 46 7,894 55.30% 67.14%

(4,365/7,894) (4,365/6,501)

Validation 2 43 8,556 56.88% 67.45%
(4,867/8,556) (4,867/7,216)

Test 128 17,584 55.53% 65.93%
(9,764/17,584) (9,764/14,809)

other set, so the words used for testing are written by completely different people than the

words used for training.

To tune our system parameters, we use a small subset of the training and validation

sets, but none from the test set. We arbitrarily select 819 correctly segmented words from

the full training set as training examples for tuning, and 1106 words (some of which are

not correctly segmented) from the two validation sets as test words for tuning. On this

tuning subset, we find that our best accuracy occurs when using 15 for the Sakoe-Chiba

band width constraint and 3.8 for the mesh size ratio denominator. For the word length

mismatch penalty, we use p = 0.28.

For our experiments, we use all of the words from correctly segmented text lines of

the training set as training examples for our system (46,947 words2). We test each of the

validation sets and the test set using the parameters selected from our tuning subset. We

include all words in the tests involving the validation sets and test set, including those from

incorrectly segmented textlines. Results of our experiments are shown in Table 4.2.

Recognition accuracy on this dataset is significantly lower than on the Smith and

Washington datasets. This is expected because instead of recognizing the words of a single

writer, we are recognizing words from many different writers, none of whom are the same

2The task specifies 6,161 text lines (53,807 words) for training, but we ignore words from 742 text lines
that are segmented incorrectly. We only ignore lines with segmentation errors for training, not for testing.

84

people used to train the system. In addition, the vocabulary is much larger, requiring more

words to be distinguished from each other.

It is important to note that these raw recognition results are obtained without using

any sort of language models (word trigrams, for example). Such models have been shown to

increase recognition accuracy significantly by leveraging the context of surrounding words,

and will undoubtedly increase our accuracy in future work. Our results are also from this

one recognition method, whereas some recent work reporting higher accuracy uses multiple

recognizers or ensemble methods to improve accuracy. In future work, there is no reason our

method could not also be used in consort with other methods to improve overall accuracy.

It is also important to note that our results are measured on test sets that include word

segmentation errors (about 5.08% of the words if the count in [28] is consistent for the entire

dataset). These words will almost certainly be recognized incorrectly by our method, even

though the errors are caused by the segmentation algorithm, not our recognition method

itself. While this gives us a realistic idea of how our recognizer would perform in an end-to-

end system, it should be noted that improvements in segmentation (which are outside the

scope of this dissertation) will also improve our accuracy.

In Section 4.14, we show that our raw recognition results are better or at least close to

other results for the IAMDB dataset found in the literature, when ignoring the improvements

made by language models and ensembles.

4.14 Comparison to Hidden Markov Model (HMM) Approach

Using the results of our method on the IAMDB dataset (Section 4.13), we are able to estimate

how accurate our method is compared to the Hidden Markov Model (HMM) approach used

by other authors who use the IAMDB dataset. Since our method does not yet incorporate

language models and other planned improvements, we attempt to compare our raw results

to those of the HMM methods before language models are applied to those methods. Due to

differences in experimental setup, metrics, versions of the dataset, and the way the dataset

85

is used in the various papers, an exact comparison is not possible. However, the indirect

comparison gives us a reasonable idea of how our method performs in the context of other

methods found in the literature.

Marti and Bunke (IJPAI 2001)

Marti and Bunke present their initial HMM approach to HR in [27], and report their recogni-

tion rate when incorporating various statistical language models. When using word bigram

language models, they achieve recognition rates as high as 63.39% and as low as 60.05% for

different sizes of vocabulary. However, when using only a lexicon without additional language

models, they only achieve recognition rates from 40.47% to 51.44%, depending on vocabulary

size (higher recognition rates are achieved with smaller vocabularies, as expected).

For comparison, we achieve 55.30% to 56.88% total accuracy (Table 4.2). This is not

a direct comparison for two reasons. The first reason is that Marti and Bunke use an earlier

version of the IAMDB that has less data overall, and does not use the same breakdown of

training / validation / test data. However, the results of our method are quite consistent

over multiple mutually-exclusive subsets of the data (validation 1, validation 2, and test are

all are within 1.6% of each other), so it is probably safe to assume that our accuracy would

be fairly consistent on the data used by Marti and Bunke.

The second reason this is not a direct comparison is that Marti and Bunke do not

specifically define how they calculate their recognition rate metric. We use # correct / #

possible, where # possible is the number of pre-segmented word images (including those

that have been segmented incorrectly). They appear to be using the number of words in

the ground-truth transcription as the # possible instead of the number of word images, in

which case they are dividing by a slightly different number than we are. According to [28],

3.62% of the words in the IAMDB are over-segmented and 1.46% are undersegmented, as

calculated on a small subset of the database. If those numbers hold for the entire database,

there are approximately 2.16% more pre-segmented word images than actual ground-truth

86

transcription words, meaning our accuracy numbers would compare even more favorably

with theirs than our current metric shows, although by a small amount. Using that metric,

our total accuracy on the test set would be about 56.75% (9,764/17,205) instead of the

55.53% reported in Table 4.2.

Vinciarelli, Bengio, and Bunke (TPAMI 2004)

Vinciarelli, Bengio, and Bunke [50] report their results with HMM and language models,

including word trigrams in addition to unigrams and bigrams. In this paper, a much larger

vocabulary is used than in [27] (from 10,000 to 50,000 words instead of about 7,000), and the

vocabulary is no longer closed, meaning there are words in the test data that are not in the

lexicon or language model. The baseline method without language models achieves between

about 29% accuracy (lexicon size = 50,000 words) and 35% accuracy (lexicon size = 10,000).

Even with trigrams, their best accuracy is less than 46.5%, much lower than ours.

As with the previous comparison, only an indirect comparison can be made with

these results because the authors only use a subset of the IAMDB data for their training,

validation, and tests sets, and they do not specify exactly which textlines are used for each.

For the sake of comparison, we again assume that our results would be consistent for the

subsets of the database used by those authors, since our results are consistent for the test

set and both validation sets specified in Version 3.0 of the IAMDB.

Zimmermann, Chappelier, and Bunke (TPAMI 2006)

Zimmermann, Chappelier, and Bunke [53] use an “enhanced and optimized version” of the

HMM recognizer used by Marti and Bunke in the IJPAI 2001 paper. [27] Zimmermann et

al. report word recognition rates up to 79.4% when using language models and Stochastic

Context-Free Grammars (SCFG), and nearly as high — 79.3% — when using the language

model but no SCFG. Word recognition rate is defined as (N − D − S)/N , where D is the

number of deletion errors (when a space between words is missed), S is the number of words

87

recognized incorrectly, and N is the number of words in the transcription. Thus, word

recognition rate is the percentage of words recognized correctly. They also report a metric

they call word level accuracy, defined as (N − D − S − I)/N , where I is the number of

insertion errors (when a single word is erroneously split into two). The word level accuracy

is 77.6% with language models and SCFG, and 76.8% with only language models but no

SCFG.

When the HMM method is used without any language models or SCFG, their results

are much worse. They report a word level accuracy of only 49.1%. Since they report only

word level accuracy and do not report recognition rate, we cannot do a direct comparison

of our results with those of their HMM approach using no language models. However, if

we assume that the difference between accuracy and recognition rate is about 2.5% (as it is

when using the language models), then their recognition rate is about 51.6%, lower than our

estimated rate of 56.75%. Assuming that the difference is within 2.5% may be conservative,

since in the Vinciarelli et al. TPAMI 2004 paper [50] there is greater difference between

the metrics (about 15%) when no language model is used than when language models are

used (about 4%). Using that additional information, we adjust our estimate to a difference

of 9.38% between the metrics (15%/4% = 9.38%/2.5%), meaning the Zimmermann et al.

method may achieve a recognition rate of up to about 58.48%, slightly better than our

estimated 56.75%. Again, we assume that the results on version 3.0 of the dataset are

consistent with those on the version they use. Their test set is only about 22.5% as large as

the test set specified in version 3.0 of the IAMDB that we use.

Since several assumptions and estimates must be made to compare our method to

that of Zimmermann et al., we cannot be completely confident that comparison is correct,

but this at least gives us a reasonable estimate of how our method compares. It seems likely

that if our recognition method is not more accurate, then it is at least close.

88

Bertolami and Bunke (PR 2008)

Bertolami and Bunke [2] achieve accuracies as high as 67.17% using HMM-based ensemble

methods and combinations of recognizers. They appear to use the same version of the

IAMDB that we use, but they use a different division of data for validation and testing.

Their baseline recognizer (a single optimized recognizer) achieves 64.48% accuracy, where

the accuracy metric is the same as the word level accuracy metric in the Zimmermann et al.

paper in the previous subsection. Unfortunately, they do not report accuracy for their HMM

system without language models. However, we can again estimate the accuracy by making

some assumptions.

Assuming that language models increase accuracy in this case by the same amount

that they do in the Zimmermann paper (76.8% − 49.1% = 27.7%), the accuracy of the

baseline system without language models would be about 36.78% (64.48% − 27.7%). If

recognition rate is from 2.5% to 9.38% better than word level accuracy, then the recognition

rate of Bertolami and Bunke would be from 39.28% to 46.16%, well below our estimated

recognition rate of 56.75%. Since we are not completely certain that the assumptions we

are making are correct, we cannot positively say that our method is better than their HMM

method. However, we are confident that if our recognition rate is not better then it is at

least close to theirs.

Analysis of Comparisons

Since using language models and multiple recognizers to improve our accuracy is not currently

implemented for our handwriting recognition method, we are unable to perform direct com-

parisons between our method and HMM methods found in the literature that do use those

improvements. However, we are able to make indirect comparisons based on some assump-

tions of consistency, as described in the previous subsections. We compare our method to the

results (or estimates of the results) that those methods achieve without the improvements

of language models, ensembles, and multiple recognizers. We find that when ignoring the

89

improvements, our method seems to be either more accurate or at least almost as accurate

as existing methods that report results for the IAMDB. Assuming that improvements such

as language models and multiple recognizers will improve our accuracy as much as the ac-

curacy of those methods, we conclude that our method compares favorably with methods in

the literature that report results for the IAMDB.

4.15 Conclusion

In this chapter, we have reported significant additional analysis of our handwriting recogni-

tion method. We have analyzed the types of recognition errors that occur and the causes of

those errors. We have experimented with various modifications to our algorithm and found

that some of those modifications improve our recognition results. In particular, we found

that the improved word matching cost metric in Section 4.5), the word length mismatch

penalty (Section 4.4.3), and the improved handling of distance map boundaries (Section 4.6)

are all improvements to our method. We also experimented with different parameter settings

to gauge their effect on the accuracy of our method. We find that our final improved results,

including tuned parameters, allow us to achieve in-vocabulary recognition rates of greater

than 90% for both the Smith and the Washington datasets.

In addition, we have tested our method on the IAMDB, a large, multi-author dataset

that is publicly available. Our method achieves in-vocabulary accuracies of over 65% (over

55% including out-of-vocabulary words). We presume that when we add language models

and multiple recognizers, we will achieve similar accuracy improvements as other authors.

Under that assumption and other assumptions of consistency specified in Section 4.14, we

find that our method compares favorably with HMM methods reported in the literature that

also report results for the IAMDB data.

Some of the information in this chapter will be included in a future journal submission.

The rest has helped us to understand the strengths and weaknesses of our method and will

inform our search for ways to improve the method in the future.

90

Chapter 5

Conclusion and Future Work

In this dissertation, we have presented a novel method of offline handwriting recogni-

tion. The method consists of using 1-D dynamic programming for coarse-alignment of word

medial axes in both the horizontal and vertical directions, improved medial axis alignment

using an automatic word morphing algorithm, and distance maps to compute how different

the aligned medial axes are. Our method provides an entirely new approach to handwriting

recognition that can be used as a basis for future research and improvement.

We have found that our method (after improvements and tuning) achieves greater

than 90% in-vocabulary recognition accuracy (about 70% accuracy when counting errors

due to out-of-vocabulary words) on two different pre-segmented single-author datasets. We

also find that our method achieves greater than 65% in-vocabulary accuracy (about 55%

when including errors due to out-of-vocabulary words) for a large, many-author dataset.

These results are all raw recognition rates achieved without using any language models or

other postprocessing, which would improve our accuracy significantly. Indirect comparisons

indicate that these rates may be higher (or at least similar to) the rates achieved by HMM-

based recognizers found recently in the literature, if improvements due only to language

models, multiple recognizers, and other postprocessing steps are discounted for those meth-

ods. Since the scope of this dissertation does not include preprocessing, segmentation, or

postprocessing using language models and combinations of recognizers, inclusion of those

steps to create an entire HR system that uses our recognition method is left as future work.

91

We have also shown that our word comparison method is flexible enough to be ap-

plied to at least one other related problem area — that of signature verification and forgery

detection. In fact, our method performs competitively with other methods designed specifi-

cally for that purpose, and even performs competitively across both Dutch and Chinese with

virtually no language-specific optimizations.

Due to its good performance in HR and signature verification combined with the

intuition we gained from the additional analysis in Chapter 4, we believe that our HR method

will extend well to other related application areas, including word-spotting and general 2-D

shape recognition. Since it handles Dutch and Chinese signatures competitively without

any language-specific tuning, we also believe that our method may work well for recognition

with non-English languages, including some not using Roman/Latin-based scripts such as

Chinese and Arabic. We anticipate future work to explore these lines of research.

One limitation of our HR method is that it compares each test word to every training

word in order to choose which training example the test word matches best. As training sets

become very large (tens of thousands to millions of training examples), our method becomes

unreasonably slow on current hardware. Having done some preliminary research with word

clustering and hierarchical recognition, we anticipate additional future work along these lines

to address the issue of limited scalability using our HR approach.

Another limitation of our method is that it can never correctly recognize out-of-

vocabulary words. It can only recognize words that it has seen training examples of, and

then only if the training example is similar enough to the test word. If the author of the

training example has very different handwriting than the author of the test word, it is unlikely

that a word will be recognized correctly even if it is in the vocabulary. As future work, one

possible solution is to use synthetic training data — artificially simulated training data — to

expand the dataset to include examples of words for which no handwritten training examples

exist, or only training examples from very few authors. Training data could be simulated by

combining pre-segmented handwritten characters of various authors or by using handwriting

92

text fonts to create word images for the words in the lexicon that need to be artificially

simulated.

In the future, we also consider investigating the possibility of using our morphing-

based recognition algorithm as a subword matching strategy (in addition to matching entire

words) by performing localized stretching to match parts of words. This may allow dis-

crimination between some of the very minor differences between words that are currently

problematic for our method (such as “m” and “n” in “them” vs. “then”).

As future work, we also consider possible improvements to the recognition method, it-

self. Many of the errors it currently makes are at least partially due to poor coarse alignment,

from which the morphing algorithm sometimes cannot recover. There may be a way to use

the global distribution of ink of the words being matched to guide the morphing algorithm,

instead of just locally perturbing mesh control points. Such a guided approach might prove

helpful in preventing strokes from becoming trapped in the wrong part of the word when

coarse alignment is incorrect, and may also prevent multiple distinct strokes from collapsing

into the same local area. It might even be possible to improve the initial coarse alignment

by taking into account the global distribution of ink in the words being aligned.

One final item of future work that should be mentioned is the combination of our

whole word HR approach with subword analytic approaches. Whole word methods depend

on the overall shape of a word and its strokes, while analytic approaches (such as the HMM-

based methods) depend more on local features and their context. We believe that using our

2-D warping based HR method in consort with HMM-based approaches would provide even

better accuracy than either approach achieves on its own by taking advantage of both the

local features and the entire word.

93

Appendix A

Datasets

In this appendix, we describe the datasets that we use in the dissertation. When

possible, we also show examples of some representative data from the datasets.

A.1 Smith Dataset

The Smith dataset is a single-author dataset consisting of handwritten word images extracted

from an online diary of Jane (Jennie) Hill Leavitt Smith. Specifically, the words are extracted

from a few sequential pages beginning at page 80 in volume 1 (1916–1917) of Smith’s mission

journals, available at the BYU Harold B. Lee Library website in the Mormon Missionary

Diaries collection at URL http://lib.byu.edu/dlib/mmd (Figure A.1).

We created an interactive “lasso”-style selection tool that allows us to manually trace

around individual words in document page images using a stylus on a Wacom tablet (Fig-

ure A.2). We manually assign each word its ground truth label (transcription).

Before creating word images from the lasso regions, we remove the background from

grayscale versions of each page image using the background removal method of Hutchison

and Barrett [12]. A large median filter is used to approximate the background that should be

removed, and histogram stretching is performed for contrast enhancement after background

removal. We determine a binarization threshold of the background-removed page image using

the method we introduced in [14]. We then estimate the average slant of the handwriting

on the page using a smoothed histogram of (squared) maximum runlengths of black pixels

94

Figure A.1: A page image from the Smith diary.

Figure A.2: Ground truthing program for Smith and Washington datasets. We mark words
with a “lasso”-style tool and then enter ground truth labels (transcriptions) for each word.

95

Figure A.3: Example word images from the Smith dataset. Grayscale and binarized versions
of the first ten word images are shown.

in each possible direction, across the image. We ignore the image border areas where page

edges, noise, and margin lines may introduce error into the slant angle estimate.

To create each word image, we ignore any ink outside of the lasso region for that word.

We remove handwriting slant by performing a geometric shear in the horizontal direction,

using the page-level estimate of average handwriting slant to determine how much to shear

the word. We estimate where the upper and lower baselines of the word are using a profile-

based method, and then crop / pad the unslanted word image based on where the baselines

are found. The page-level threshold value is used to binarize the word image, and meta

data (including the ground truth label) is saved as comments within the image. The first

few word images of the dataset are shown in Figure A.3, both in grayscale and thresholded

black-and-white format.

96

Figure A.4: A page image from the Washington letters [21].

A.2 Washington Dataset

Original page images for the Washington dataset come from a few pages of George Washing-

ton’s manuscripts, downloaded from http://ciir.cs.umass.edu/downloads [21]. An example

of one page image is shown in Figure A.4. We create individual word images and ground

truth labels using the same tool and preprocessing steps as we do for the Smith dataset.

97

Figure A.5: Example word images from the Washington dataset. Grayscale and binarized
versions of the first ten word images are shown.

Grayscale and binarized versions of the first few word images of the dataset are shown

in Figure A.5. The slant removal is more noticeable in this dataset than in the Smith dataset

because the handwriting is consistently more slanted to begin with than in the Smith dataset.

98

Figure A.6: Example pages from the IAMDB [28], made available by Marti and Bunke at
the University of Bern.

A.3 IAM Database (IAMDB version 3.0)

The IAM Handwriting Database (IAMDB) is a large, multiple-author dataset of English

handwritten text, made available by Marti and Bunke at the University of Bern [28]. The

database has examples of handwriting by 657 different writers over 1,539 pages for a total

of 115,320 labeled words. The neatness and penmanship of the writing varies widely. Each

page has typed sentences at the top that are handwritten below by the writer (Figure A.6).

99

The database includes significant metadata, including the ground truth labels of words and

the coordinates of bounding boxes for each ink component belonging to any given word. The

meta data also contains an annotation for each textline specifying whether or not the entire

textline is separated correctly into words.

Instead of using our lasso tool to segment words, we use the list of ink component

bounding boxes for each word and set pixels that are not within any of the bounding boxes to

the background color (white). We perform background removal, binarization, slant removal,

and cropping of the image. For slant removal, we calculate the slant of any given word as a

weighted combination of the slant estimates for the entire form, for the textline, and for the

individual word. For ground truth labels, we use the ground truth that is already provided

with the dataset.

A.4 BYU English Signature Dataset (Blind and Casual Forgeries)

The BYU English Signature Dataset includes 192 genuine signatures (16 authors, 12 signa-

tures each) and 256 forgeries (8 authors, 16 blind and 16 casual forgeries each). The 16

genuine signatures of each author were collected in a single session on a printed form that

allowed us to easily separate the ink of the signature from the form lines after scanning the

completed form (Figure A.7). One example of each genuine signature is shown in Figure A.8.

The 8 forgers are not the same people as those who provided genuine signatures. Each

of the forgers provided 16 blind forgeries (Figure A.9) and 16 casual forgeries (Figure A.10).

The blind forgeries were collected first from each forger while he or she could only see a

machine-printed version of each name to forge. Then, the forger was given the pages of

genuine signatures so he or she could see all of the genuine examples of each signature while

creating the casual forgery for that signature. The forger was not allowed to practice the

signature in advance since that would constitute a skilled forgery instead of a casual forgery.

100

Figure A.7: Genuine signature collection forms.

Figure A.8: Examples of genuine English signatures for all 16 authors.

101

Figure A.9: Blind forgery collection forms for two forgers.

Figure A.10: Casual forgery collection forms for the same two forgers.

102

A.5 SigComp2011 Dutch and Chinese Signatures (Skilled Forgeries)

We use the offline portion of the dataset from the ICDAR 2011 Signature Verification Com-

petition for Online and Offline Skilled Forgeries (SigComp2011) [23]. The dataset contains

Chinese signatures and Dutch signatures. Forgeries in this dataset are skilled forgeries, mean-

ing not only that the forgers could see the genuine signatures while forging them, but the

forgers also had the opportunity to practice forging each signature before forging it for the

dataset. The Chinese portion of the dataset has 116 genuine forgeries by 10 authors and

487 questioned signatures (120 genuine, 367 forgeries). The Dutch portion of the dataset

has 648 reference signatures by 54 authors and 1286 questioned signatures (648 genuine, 638

forgeries).

Due to a strict license agreement required to use this dataset, we are not allowed

to reprint any of the signature images. Dutch signatures seem to be visually fairly similar

to English signatures, in general. Like with English signatures, it is often difficult to tell

what a name actually is, due to the creative way in which people sign their names. Chinese

signatures are visually quite different than English or Dutch signatures, as one might expect.

While still stylized by each individual, Chinese characters form the basis of the signatures

instead of Roman script.

Signature images in this dataset are pre-cropped from the collection forms. The

cropping for the Dutch signatures is good, properly extracting the signatures from within

the form boxes. However, the cropping for the Chinese portion of the dataset is inconsistent.

Sometimes the form box is properly removed, sometimes it is still in the image, and sometimes

part of the form box (but not the whole box) is removed from the image. We illustrate the

inconsistent cropping of Chinese signatures in Figure A.11, using signatures that are not

actually from the SigComp2011 dataset.

103

(a)

(b)

(c)

Figure A.11: Illustration (with our own images) of inconsistent cropping for Chinese sig-
natures. a) Form box properly cropped from image; b) form box not cropped from image;
c) form box only partially cropped from image.

104

Appendix B

Smith dataset errors with different shapes

In this appendix, we include details for each recognition error in the “different shapes”

class of the Smith dataset, which are used in the analysis in Section 4.2. We replicate

Figure 4.6 below as Figure B.1. For each word pair in Figure B.1, we show the details for the

closest (erroneous) match in the left side of the corresponding details box and the nearest

correct match in the right side of the box (i.e., the training word that we would want to

match in order to avoid a recognition error). For each pair of word images, we provide the

medial axes, ground-truth labels, and word image numbers. We show the coarse-aligned

positions of the medial axes and the final morph-aligned positions, warping each direction

(aligning from one to the other and then vice versa). Finally, we show the word matching cost

for each direction, as well as the total word matching cost. The layout is shown graphically

in Figure B.2, followed by the details for each word-pair from Figure B.1 numbered from 1

to 21 in left-to-right, top-to-bottom order.

Figure B.1: Errors that have different shapes. (Smith dataset)

105

Left: Closest Match (Error)

A: Test Word

(medial axis)

B: Training Word

(medial axis)

ground-truth label[word #] training label[word #]

B aligned to A

(coarse only)

A aligned to B

(coarse only)

coarse-alignment (DP warp)

B aligned to A

(full morph)

A aligned to B

(full morph)

C1→0 = CB→A C1→0 = CA→B

C0↔1 = C0→1 + C1→0

Right: Desired Match

A: Test Word

(medial axis)

B: Training Word

(medial axis)

ground-truth label[word #] training label[word #]

B aligned to A

(coarse only)

A aligned to B

(coarse only)

coarse-alignment (DP warp)

B aligned to A

(full morph)

A aligned to B

(full morph)

C1→0 = CB→A C1→0 = CA→B

C0↔1 = C0→1 + C1→0

Word pair #: Observations about why the error occurs instead of the desired match.

Figure B.2: Layout of data in this Appendix

doctored[#1061] lessons[#0680]

coarse-alignment (DP warp)

C1→0 = 1.14 C0→1 = 0.85

C0↔1 = 1.99

doctored[#1061] doctored[#0953]

coarse-alignment (DP warp)

C1→0 = 0.86 C0→1 = 1.41

C0↔1 = 2.27

#1: Error in coarse-alignment results in poor morph for the desired match.

at[#1280] we[#0463]

coarse-alignment (DP warp)

C1→0 = 0.64 C0→1 = 1.64

C0↔1 = 2.28

at[#1280] at[#0587]

coarse-alignment (DP warp)

C1→0 = 1.44 C0→1 = 0.84

C0↔1 = 2.28

#2: Cost for the desired match is almost identical.

106

I[#1286] to[#0018]

coarse-alignment (DP warp)

C1→0 = 1.41 C0→1 = 1.16

C0↔1 = 2.57

I[#1286] I[#0398]

coarse-alignment (DP warp)

C1→0 = 1.78 C0→1 = 0.81

C0↔1 = 2.59

#3: Cost for the desired match is almost identical.

regular[#1309] supper[#0794]

coarse-alignment (DP warp)

C1→0 = 1.35 C0→1 = 1.88

C0↔1 = 3.23

regular[#1309] regular[#0810]

coarse-alignment (DP warp)

C1→0 = 0.60 C0→1 = 2.87

C0↔1 = 3.47

#4: Bad ‘e’, filled ‘g’, and collapsed ‘l’ of #1309 leave loops of #810 far way for C0→1.

bed[#1396] read[#0026]

coarse-alignment (DP warp)

C1→0 = 0.75 C0→1 = 1.30

C0↔1 = 2.05

bed[#1396] bed[#0911]

coarse-alignment (DP warp)

C1→0 = 1.82 C0→1 = 0.58

C0↔1 = 2.40

#5: Costs are close, but loop on red ‘b’ makes the difference in C1→0.

107

got[#1399] and[#0204]

coarse-alignment (DP warp)

C1→0 = 1.82 C0→1 = 1.42

C0↔1 = 3.24

got[#1399] got[#0404]

coarse-alignment (DP warp)

C1→0 = 1.87 C0→1 = 3.00

C0↔1 = 4.87

#6: “and” spreads into grid,“got” compresses (left); malformed letters and bad vertical DP.

26[#1419] all[#0002]

coarse-alignment (DP warp)

C1→0 = 1.08 C0→1 = 1.43

C0↔1 = 2.51

26[#1419] 26[#0366]

coarse-alignment (DP warp)

C1→0 = 2.81 C0→1 = 0.54

C0↔1 = 3.34

#7: Filled ‘6’ loop and collapsed ‘2’ loop leave strokes far away in C1←0.

108

going[#1560] July[#0308]

coarse-alignment (DP warp)

C1→0 = 2.20 C0→1 = 0.97

C0↔1 = 3.17

going[#1560] going[#0653]

coarse-alignment (DP warp)

C1→0 = 1.82 C0→1 = 1.67

C0↔1 = 3.50

#8: Filled ‘g’ and ‘o’, collapsed g, unaligned tittles, final descender loop.

Saturday[#1421] Wednsday[#0072]

coarse-alignment (DP warp)

C1→0 = 2.54 C0→1 = 1.97

C0↔1 = 4.51

Saturday[#1421] Saturday[#0774]

coarse-alignment (DP warp)

C1→0 = 3.32 C0→1 = 1.81

C0↔1 = 5.13

#9: Poor coarse-alignment of word beginning, partially-collapsed loops at end.

109

duties[#1455] SL[#0030]

coarse-alignment (DP warp)

C1→0 = 2.31 C0→1 = 0.75

C0↔1 = 3.05

duties[#1455] duties[#0811]

coarse-alignment (DP warp)

C1→0 = 1.81 C0→1 = 1.99

C0↔1 = 3.81

#10: Filled ‘d’, ‘es’ run-together/filled, tittle, bad slant mismatch, recovers from bad DP.
Stretches/compresses well to S.L.

at[#1508] we[#0623]

coarse-alignment (DP warp)

C1→0 = 0.65 C0→1 = 1.44

C0↔1 = 2.09

at[#1508] at[#0904]

coarse-alignment (DP warp)

C1→0 = 0.96 C0→1 = 1.38

C0↔1 = 2.34

#11: Close costs, but filled loop on ‘a’ makes the difference.

school[#1588] saints[#0462]

coarse-alignment (DP warp)

C1→0 = 1.00 C0→1 = 1.42

C0↔1 = 2.42

school[#1588] school[#0477]

coarse-alignment (DP warp)

C1→0 = 0.70 C0→1 = 1.87

C0↔1 = 2.58

#12: Filled ‘c’ and two filled ‘o’s on red, one filled ‘o’ on blue.

110

Sunday[#1452] Thursday[#0127]

coarse-alignment (DP warp)

C1→0 = 1.74 C0→1 = 1.67

C0↔1 = 3.41

Sunday[#1452] Sunday[#0808]

coarse-alignment (DP warp)

C1→0 = 4.60 C0→1 = 2.02

C0↔1 = 6.61

#13: Very poor DP at beginning of word, descender loop collapses due to bug (Section 4.8)

girls[#1593] gave[#0313]

coarse-alignment (DP warp)

C1→0 = 2.59 C0→1 = 0.64

C0↔1 = 3.23

girls[#1593] girls[#0628]

coarse-alignment (DP warp)

C1→0 = 1.53 C0→1 = 1.77

C0↔1 = 3.30

#14: DP fails for ‘ir’ both directions. ‘s’ jumps at mesh refine due to bug (Section 4.8)

111

good[#1646] gave[#0313]

coarse-alignment (DP warp)

C1→0 = 1.42 C0→1 = 1.13

C0↔1 = 2.55

good[#1646] good[#0502]

coarse-alignment (DP warp)

C1→0 = 0.98 C0→1 = 1.98

C0↔1 = 2.96

#15: Filled loops on ‘o’s and ‘d’.

outfit[#1641] helped[#0261]

coarse-alignment (DP warp)

C1→0 = 2.06 C0→1 = 1.59

C0↔1 = 3.66

outfit[#1641] outfit[#0381]

coarse-alignment (DP warp)

C1→0 = 2.36 C0→1 = 1.93

C0↔1 = 4.28

#16: ‘f’ and ‘t’ morph to each other (slanted ascender on ‘f’ causes the jump).

112

mail[#1796] music[#0314]

coarse-alignment (DP warp)

C1→0 = 0.90 C0→1 = 1.49

C0↔1 = 2.39

mail[#1796] mail[#0709]

coarse-alignment (DP warp)

C1→0 = 1.16 C0→1 = 1.88

C0↔1 = 3.05

#17: DP too far off.

Humphreys[#1858] oranges[#0090]

coarse-alignment (DP warp)

C1→0 = 1.84 C0→1 = 1.88

C0↔1 = 3.71

Humphreys[#1858] Humphreys[#0940]

coarse-alignment (DP warp)

C1→0 = 1.05 C0→1 = 7.64

C0↔1 = 8.69

#18: Red word is malformed and very different from desired training example.

on[#1825] we[#0498]

coarse-alignment (DP warp)

C1→0 = 0.64 C0→1 = 1.26

C0↔1 = 1.90

on[#1825] on[#0197]

coarse-alignment (DP warp)

C1→0 = 0.92 C0→1 = 1.02

C0↔1 = 1.94

#19: Costs are almost equal.

113

duties[#1966] Saints[#0825]

coarse-alignment (DP warp)

C1→0 = 1.42 C0→1 = 1.76

C0↔1 = 3.18

duties[#1966] duties[#0811]

coarse-alignment (DP warp)

C1→0 = 4.32 C0→1 = 0.86

C0↔1 = 5.18

#20: Poor DP.

girls[#1977] gave[#0313]

coarse-alignment (DP warp)

C1→0 = 2.10 C0→1 = 0.57

C0↔1 = 2.67

girls[#1977] girls[#0628]

coarse-alignment (DP warp)

C1→0 = 1.60 C0→1 = 2.83

C0↔1 = 4.44

#21: Poor DP, likely caused by an interfering descender from textline above.

114

Appendix C

Washington dataset errors with different shapes

In this appendix, we include details for each recognition error in the “different shapes”

class of the Smith dataset, which are used in the analysis in Section 4.2. We replicate

Figure 4.15 below as Figure C.1. For each word pair in Figure C.1, we show the details

for the closest (erroneous) match in the left side of the corresponding details box and the

nearest correct match in the right side of the box (i.e., the training word that we would want

to match in order to avoid a recognition error). For each pair of word images, we provide

the medial axes, ground-truth labels, and word image numbers. We show the coarse-aligned

positions of the medial axes and the final morph-aligned positions, warping each direction

(aligning from one to the other and then vice versa). Finally, we show the word matching cost

for each direction, as well as the total word matching cost. The layout is shown graphically

in Figure C.2, followed by the details for each word-pair from Figure C.1 numbered from 1

to 17 in left-to-right, top-to-bottom order.

Figure C.1: Errors that have different shapes. (Washington dataset)

115

Left or Top: Closest Match (Error)

A: Test Word

(medial axis)

B: Training Word

(medial axis)

ground-truth label[word #] training label[word #]

B aligned to A

(coarse only)

A aligned to B

(coarse only)

coarse-alignment (DP warp)

B aligned to A

(full morph)

A aligned to B

(full morph)

C1→0 = CB→A C1→0 = CA→B

C0↔1 = C0→1 + C1→0

Right or Bottom: Desired Match

A: Test Word

(medial axis)

B: Training Word

(medial axis)

ground-truth label[word #] training label[word #]

B aligned to A

(coarse only)

A aligned to B

(coarse only)

coarse-alignment (DP warp)

B aligned to A

(full morph)

A aligned to B

(full morph)

C1→0 = CB→A C1→0 = CA→B

C0↔1 = C0→1 + C1→0

Word pair #: Observations about why the error occurs instead of the desired match.

Figure C.2: Layout of data in this Appendix

Provisions[#1489] Return[#0981]

coarse-alignment (DP warp)

C1→0 = 1.71 C0→1 = 2.50

C0↔1 = 4.21

Provisions[#1489] Provisions[#0814]

coarse-alignment (DP warp)

C1→0 = 2.76 C0→1 = 1.75

C0↔1 = 4.51

#1: “P” is similar to the “R”, loops are filled, costs are close.

116

Recruit[#1003] Repair[#0366]

coarse-alignment (DP warp)

C1→0 = 3.20 C0→1 = 2.14

C0↔1 = 5.34

Recruit[#1003] Recruit[#0771]

coarse-alignment (DP warp)

C1→0 = 2.02 C0→1 = 5.56

C0↔1 = 7.58

#2: “R”s shaped very differently, loop filled on “e”, noise introduced by binarization.

also[#1266] do[#0114]

coarse-alignment (DP warp)

C1→0 = 2.17 C0→1 = 0.73

C0↔1 = 2.91

also[#1266] also[#0918]

coarse-alignment (DP warp)

C1→0 = 0.63 C0→1 = 2.44

C0↔1 = 3.07

#3: Most loops are filled.

117

Lieutenant[#1946] therefore[#0551]

coarse-alignment (DP warp)

C1→0 = 4.34 C0→1 = 2.31

C0↔1 = 6.65

Lieutenant[#1946] Lieutenant[#0848]

coarse-alignment (DP warp)

C1→0 = 4.20 C0→1 = 7.33

C0↔1 = 11.54

#4: Poor DP alignment, letters shaped differently so they don’t morph well, filled loops.

private[#1580] enlisted[#0581]

coarse-alignment (DP warp)

C1→0 = 2.55 C0→1 = 2.47

C0↔1 = 5.01

private[#1580] private[#0186]

coarse-alignment (DP warp)

C1→0 = 1.45 C0→1 = 6.89

C0↔1 = 8.34

#5: Filled loops on #0581 look more similar than unfilled loops on #0186.

118

his[#1769] also[#0918]

coarse-alignment (DP warp)

C1→0 = 1.06 C0→1 = 2.39

C0↔1 = 3.45

his[#1769] his[#0322]

coarse-alignment (DP warp)

C1→0 = 0.77 C0→1 = 2.72

C0↔1 = 3.49

#6: Filled in loops. Costs almost identical.

Subaltern[#1570] Captain[#0368]

coarse-alignment (DP warp)

C1→0 = 2.30 C0→1 = 3.03

C0↔1 = 5.34

Subaltern[#1570] Subaltern[#0176]

coarse-alignment (DP warp)

C1→0 = 3.53 C0→1 = 4.48

C0↔1 = 8.01

#7: Different loops filled in, “S” shaped differently, poor DP (“l” aligns with “a”).

119

yourself[#1396] must[#0917]

coarse-alignment (DP warp)

C1→0 = 3.21 C0→1 = 1.50

C0↔1 = 4.71

yourself[#1396] yourself[#0462]

coarse-alignment (DP warp)

C1→0 = 0.97 C0→1 = 6.45

C0↔1 = 7.42

#8: The extra rule line (diagonal stroke) at the left of #0462 causes high cost.

also[#1746] de[#0214]

coarse-alignment (DP warp)

C1→0 = 2.27 C0→1 = 0.97

C0↔1 = 3.24

also[#1746] also[#0918]

coarse-alignment (DP warp)

C1→0 = 0.96 C0→1 = 2.96

C0↔1 = 3.91

#9: All loops are filled, costs are relatively close.

120

Lieutenant[#1632] Return[#0981]

coarse-alignment (DP warp)

C1→0 = 3.87 C0→1 = 0.95

C0↔1 = 4.83

Lieutenant[#1632] Lieutenant[#0782]

coarse-alignment (DP warp)

C1→0 = 2.27 C0→1 = 2.95

C0↔1 = 5.21

#10: Filled loops are the main problem.

Guard[#1583] fered[#0295]

coarse-alignment (DP warp)

C1→0 = 4.65 C0→1 = 1.94

C0↔1 = 6.59

Guard[#1583] Guard[#0191]

coarse-alignment (DP warp)

C1→0 = 3.63 C0→1 = 5.88

C0↔1 = 9.51

#11: Filled loops, DP alignment of “G” causes ascender to collapse, diagonal rule line.

121

all[#1117] Orders[#0752]

coarse-alignment (DP warp)

C1→0 = 1.54 C0→1 = 1.44

C0↔1 = 2.97

all[#1117] all[#0894]

coarse-alignment (DP warp)

C1→0 = 2.81 C0→1 = 0.87

C0↔1 = 3.68

#12: Slants of leading/trailing ligatures don’t match well, loop of “a” filled.

Lieutenant[#1642] Letters[#0490]

coarse-alignment (DP warp)

C1→0 = 2.37 C0→1 = 4.06

C0↔1 = 6.43

Lieutenant[#1642] Lieutenant[#0848]

coarse-alignment (DP warp)

C1→0 = 2.73 C0→1 = 7.28

C0↔1 = 10.01

#13: Horizontal DP poor for first “t”, vertical DP poor for last “t”, filled loops.

122

Parole[#1567] Breeches[#0954]

coarse-alignment (DP warp)

C1→0 = 2.15 C0→1 = 2.40

C0↔1 = 4.55

Parole[#1567] Parole[#0080]

coarse-alignment (DP warp)

C1→0 = 1.13 C0→1 = 5.37

C0↔1 = 6.50

#14: Main problem is top of “P” does not morph well, also loop of “o” filled.

go[#1395] are[#0139]

coarse-alignment (DP warp)

C1→0 = 2.14 C0→1 = 3.95

C0↔1 = 6.09

go[#1395] go[#0096]

coarse-alignment (DP warp)

C1→0 = 4.64 C0→1 = 2.09

C0↔1 = 6.72

#15: #0139 spreads across #1395 like a grid (DP), “g” descenders don’t align well.

123

Cumberland[#1890] Captain[#0301]

coarse-alignment (DP warp)

C1→0 = 4.05 C0→1 = 1.43

C0↔1 = 5.48

Cumberland[#1890] Cumberland[#0889]

coarse-alignment (DP warp)

C1→0 = 4.19 C0→1 = 3.99

C0↔1 = 8.18

#16: Shapes of first “C” differ, some loops filled, poor DP, misformed “d”.

124

Companies[#1683] Repair[#0366]

coarse-alignment (DP warp)

C1→0 = 2.96 C0→1 = 0.96

C0↔1 = 3.92

Companies[#1683] Companies[#0933]

coarse-alignment (DP warp)

C1→0 = 0.99 C0→1 = 3.00

C0↔1 = 3.99

#17: Costs almost identical, loops filled.

125

Appendix D

Explanation of Code and Documentation

The documentproject directory contains both code and documentation related to

this dissertation. Code consists of two types: first, a C++ library (the documentproject

library), and second, application code. Directory organization is as follows:

/documentproject - project container directory
/apps_src - application source code
/bin - binary executables (compile to here from apps_src)
/doc/index.html - documentation for the library in HTML format
/lib - library compiles to here
/obj - object files generated during compilation
/src - source code for the library

The documentproject library includes many general-purpose object classes for

tasks such as image input/output and general document image processing (thresholding,

filtering, etc.). It also includes code more specific to my research and this dissertation,

such as the morphing / word warping algorithm code. The two object classes of primary

interest for this dissertation are the DImage class and the DMorphInk class. The library

includes documentation in HTML format. The documentation was generated automatically

(incorporating special comments within the code) by the open-source Doxygen program.

Application code consists of several applications and utility programs that can be

compiled individually, most of which rely on the documentproject library to compile and

run. Each program directory includes a README.txt file that describes the program, its

purpose, and its functionality. Additionally, running any program without using command-

line parameters will cause the program to generate a “usage” message and then exit. The

usage message lists any command-line parameters that are expected from the user.

126

References

[1] American Bankers Association. 2011 deposit account fraud survey. Summary at

URL http://www.aba.com/Products/Surveys/Pages/2011DepositAccount.aspx visited

22 Jan. 2013.

[2] Roman Bertolami and Horst Bunke. Hidden Markov model-based ensemble methods for

offline handwritten text line recognition. Pattern Recognition (PR), 41(11):3452–3460,

2008.

[3] Roman Bertolami, Beat Halter, and Horst Bunke. Combination of multiple handwritten

text line recognition systems with a recursive approach. In 10th International Workshop

on Frontiers in Handwriting Recognition (IWFHR), pages 61–65, La Baule, France, Oct.

2006.

[4] Board of Governors of the Federal Reserve System. Report to the Congress on

funds availability schedules and check fraud at depository institutions. Page ii, Oct.

1996, URL http://www.federalreserve.gov/boarddocs/rptcongress/chkfraud.pdf visited

22 Jan. 2013.

[5] Horst Bunke. Recognition of cursive roman handwriting- past, present and future. In 7th

International Conference on Document Analysis and Recognition (ICDAR), volume 1,

pages 448–459, Edinburgh, Scotland, Aug. 2003.

[6] Francesco Camastra. A SVM-based cursive character recognizer. Pattern Recognition

(PR), 40:3721–3727, 2007.

[7] Myriam Côté, Eric Lecolinet, Mohamed Cheriet, and Ching Y. Suen. Automatic read-

ing of cursive scripts using a reading model and perceptual concepts–the PERCEPTO

system. International Journal on Document Analysis and Recognition (IJDAR), 1:1–15,

1998.

[8] Peisheng Gao and Thomas W. Sederberg. A work minimization approach to image

morphing. The Visual Computer, 14:390–400, 1998.

127

[9] Basilios Gatos, Ioannis Pratikakis, and Stavros J. Perantonis. Adaptive degraded doc-

ument image binarization. Pattern Recognition (PR), 39:317–327, 2006.

[10] Basilios Gatos, Ioannis Pratikakis, and Stavros J. Perantonis. Efficient binarization of

historical and degraded document images. In 8th IAPR International Workshop on

Document Analysis Systems (DAS), pages 447–454, Nara, Japan, Sep. 2008.

[11] Simon Günter and Horst Bunke. Ensembles of classifiers for handwritten word recogni-

tion. International Journal on Document Analysis and Recognition (IJDAR), 5:224–232,

2003.

[12] Luke A. D. Hutchison and William A. Barrett. Fourier-Mellin registration of line-

delineated tabular document images. International Journal on Document Analysis and

Recognition (IJDAR), 8:87–110, Jun. 2006.

[13] Ergina Kavallieratou, Nikos Fakotakis, and George Kokkinakis. An unconstrained hand-

writing recognition system. International Journal on Document Analysis and Recogni-

tion (IJDAR), 4(1):226–242, 2002.

[14] Douglas J. Kennard and William A. Barrett. Separating lines of text in free-form hand-

written historical documents. In International Workshop on Document Image Analysis

for Libraries (DIAL), pages 12–23, Lyon, France, Apr. 2006.

[15] Douglas J. Kennard, William A. Barrett, and Thomas W. Sederberg. Word warping

for offline handwriting recognition. In International Conference on Document Analysis

and Recognition (ICDAR), pages 1349–1353, Beijing, China, Sep. 2011.

[16] Douglas J. Kennard, William A. Barrett, and Thomas W. Sederberg. Offline signature

verification and forgery detection using a 2-d geometric warping approach. In Interna-

tional Conference on Pattern Recognition (ICPR), Tsukuba, Japan, Nov. 2012.

[17] Gyeonghwan Kim and Venu Govindaraju. A lexico driven approach to handwritten

word recognition for real-time applications. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 19(4):366–379, Apr. 1997.

[18] Gyeonghwan Kim, Venu Govindaraju, and Sargur N. Srihari. An architecture for hand-

written text recognition systems. International Journal on Document Analysis and

Recognition (IJDAR), 2(1):37–44, 1999.

[19] In-Kwon Kim, Dong-Wook Jung, and Rae-Hong Park. Document image binarization

based on topographic analysis using a water flow model. Pattern Recognition (PR),

35:265–277, 2002.

128

[20] Alessandro L. Koerich, Robert Sabourin, and Ching Y. Suen. Large vocabulary off-line

handwriting recognition: A survey. Pattern Analysis and Applications (PAA), 6:97–121,

2003.

[21] Victor Lavrenko, Toni M. Rath, and R. Manmatha. Holistic word recognition for hand-

written historical documents. In Proc. of the International Workshop on Document

Image Analysis for Libraries (DIAL), pages 278–287, Palo Alto, CA, Jan. 2004.

[22] Nilo Lindgren. Machine recognition of human language, part III—cursive script recog-

nition. IEEE Spectrum, 2:104–116, May 1965.

[23] Marcus Liwicki, Muhammad Imran Malik, C. Elisa van den Heuvel, Xiaohong Chen,

Charles Berger, Reinoud Stoel, Michael Blumenstein, and Bryan Found. Signature

verification competition for online and offline skilled forgeries (SigComp2011). In Inter-

national Conference on Document Analysis and Recognition (ICDAR), pages 1480–1484,

Beijing, China, Sep. 2011.

[24] Sriganesh Madhvanath and Venu Govindaraju. The role of holistic paradigms in hand-

written word recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), 23(2):149–164, Feb. 2001.

[25] Uma Mahadevan and Ramesh C. Nagabushnam. Gap metrics for word separation in

handwritten lines. In 3rd International Conference on Document Analysis and Recogni-

tion (ICDAR), volume 1, pages 124–127, Montreal, Canada, Aug. 1995.

[26] R. Manmatha and Jamie L. Rothfeder. A scale space approach for automatically seg-

menting words from historical handwritten documents. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 27(8):1212–1225, Aug. 2005.

[27] Urs-Viktor Marti and Horst Bunke. Using a statistical language model to improve the

performance of an HMM-based cursive handwriting recognition system. International

Journal of Pattern Recognition and Artificial Intelligence (IJPRAI), 15(1):65–90, 2001.

[28] Urs-Viktor Marti and Horst Bunke. The IAM-database: An English sentence database

of offline handwriting recognition. International Journal on Document Analysis and

Recognition (IJDAR), 5(1):39–46, Jul. 2002.

[29] Ioannis Pavlidis, Rahul Singh, and Nikolaos P. Papanikolopoulos. On-line handwrit-

ing recognition using physics-based shape metamorphosis. Pattern Recognition (PR),

31(11):1589–1600, 1998.

129

[30] Réjean Plamondon and Sargur N. Srihari. On-line and off-line handwriting recogni-

tion: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 22(1):63–84, Jan. 2000.

[31] Brigitte Plessis, Anne Sicsu, Laurent Heutte, Eric Menu, Eric Lecolinet, Olivier Debon,

and Jean-Vincent Moreau. A multi-classifier combination strategy for the recognition

of handwritten cursive words. In 2nd International Conference on Document Analysis

and Recognition (ICDAR), pages 642–645, Tsukuba, Japan, Oct. 1993.

[32] Yu Qiao, Mikihiko Nishiara, and Makoto Yasuhara. A framework toward restoration

of writing order from single-stroked handwriting image. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 28(11):1724–1737, Nov. 2006.

[33] Yu Qiao and Makoto Yasuhara. Recover writing trajectory from multiple stroked im-

age using bidirectional dynamic search. In 18th International Conference on Pattern

Recognition (ICPR), pages 970–973, Hong Kong, Aug. 2006.

[34] Toni M. Rath and R. Manmatha. Features for word spotting in historical manuscripts.

In 7th International Conference on Document Analysis and Recognition (ICDAR), vol-

ume 1, pages 218–222, Edinburgh, Scotland, Aug. 2003.

[35] Toni M. Rath and R. Manmatha. Word image matching using dynamic time warp-

ing. In Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 521–527, Madison, Wisconsin, Jun. 2003.

[36] Azriel Rosenfeld and John L. Pfaltz. Sequential operations in digital picture processing.

Journal of the ACM (JACM), 13(4):471–494, 1966.

[37] Thomas W. Sederberg and Eugene Greenwood. A physically based approach to 2-D

shape blending. ACM SIGGRAPH Computer Graphics, 26(2):25–34, Jul. 1992.

[38] Andrew W Senior and Anthony J. Robinson. An off-line handwriting recognition system.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 20(3):309–

321, Mar. 1998.

[39] United States Postal Service. Postal facts 2012. URL http://about.usps.com/future-

postal-service/postalfacts-2012.pdf visited 20 Dec. 2012.

[40] Mehmet Sezgin and Bülent Sankur. Survey over image thresholding techniques and

quantitavtive performance evaluation. Journal of Electronic Imaging (JEI), 13(1):146–

165, Jan. 2004.

130

[41] Rahul Singh and Nikolaos P. Papanikolopoulos. Planar shape recognition by shape

morphing. Pattern Recognition (PR), 33:1683–1699, 2000.

[42] Sargur N. Srihari. Computer processing of handwriting in documents. Michigan State

University, Computer Science Department Distinguished Lecture Series, Presentation

slides at URL http://www.cedar.buffalo.edu/∼srihari/talks/MSU.pdf visited 20 Dec.

2012.

[43] Sargur N. Srihari and Edward J. Kuebert. Integration of hand-written address interpre-

tation technology into the united states postal service remote computer reader system.

In 4th International Conference on Document Analysis and Recognition (ICDAR), vol-

ume 2, pages 892–896, Ulm, Germany, Aug. 1997.

[44] Tal Steinherz, Ehud Rivlin, and Nathan Intrator. Offline cursive script word recognition

— a survey. International Journal on Document Analysis and Recognition (IJDAR),

2:90–110, 1999.

[45] Claudia Swendseid. Payment fraud trends & prevention strategies, Jul. 2012. Na-

tional Association of Federal Credit Unions 45th Annual Conference & Exhibition, URL

http://www.nafcu.org/WorkArea/DownloadAsset.aspx?id=28175 visited 22 Jan. 2013.

[46] Insup Taylor and M. Martin Taylor. The Psychology of Reading. Academic Press, 1983.

[47] Trails of hope: Overland diaries and letters, 1846–1869. Harold B. Lee Library, Brigham

Young University. Online collection available at http://overlandtrails.lib.byu.edu.

[48] Tamás Varga and Horst Bunke. Tree structure for word extraction from handwritten

text lines. In 8th International Conference on Document Analysis and Recognition

(ICDAR), volume 1, pages 352–356, Seoul, Korea, Aug.–Sep. 2005.

[49] Alessandro Vinciarelli. A survey of off-line cursive word recognition. Pattern Recognition

(PR), 35:1433–1446, 2002.

[50] Alessandro Vinciarelli, Samy Bengio, and Horst Bunke. Offline recognition of uncon-

strained handwritten texts using HMMs and statistical language models. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (TPAMI), 26(6):709–720, Jun.

2004.

[51] Chen Yan and Graham Leedham. Decompose-threshold approach to handwriting extrac-

tion in degraded historical document images. In 9th International Workshop on Fron-

tiers in Handwriting Recognition (IWFHR), pages 239–244, Kokubunji, Tokyo, Japan,

Oct. 2004.

131

[52] Yuanping Zhu, Chunheng Wang, and Ruwei Dai. Document image binarization based on

stroke enhancement. In 18th International Conference on Pattern Recognition (ICPR),

pages 955–958, Hong Kong, Aug. 2006.

[53] Matthias Zimmermann, Jean-Cédric Chappelier, and Horst Bunke. Offline grammar-

based recognition of handrwitten sentences. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 28(5):818–821, May 2006.

132

