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ABSTRACT

Isogeometric Bézier Dual Mortaring and Applications

Di Miao
Department of Civil and Environmental Engineering, BYU

Doctor of Philosophy

Isogeometric analysis is aimed to mitigate the gap between Computer-Aided Design (CAD) 
and analysis by using a unified geometric representation. Thanks to the exact geometry representa-
tion and high smoothness of adopted basis functions, isogeometric analysis demonstrated excellent 
mathematical properties and successfully addressed a variety of problems. In particular, it allows 
to solve higher order Partial Differential Equations (PDEs) directly omitting the usage of mixed ap-
proaches. Unfortunately, complex CAD geometries are often constituted by multiple Non-Uniform 
Rational B-Splines (NURBS) patches and cannot be directly applied for finite element analysis.

In this work, we present a dual mortaring framework to couple adjacent patches for higher 
order PDEs. The development of this formulation is initiated over the simplest 4th order problem–
biharmonic problem. In order to speed up the construction and preserve the sparsity of the coupled 
problem, we derive a dual mortar compatible C1 constraint and utilize the Bézier dual basis to 
discretize the Lagrange multipler spaces. We prove that this approach leads to a well-posed discrete 
problem and specify requirements to achieve optimal convergence.

After identifying the cause of sub-optimality of Bézier dual basis, we develop an enrich-
ment procedure to endow Bézier dual basis with adequate polynomial reproduction ability. The 
enrichment process is quadrature-free and independent of the mesh size. Hence, there is no need to 
take care of the conditioning. In addition, the built-in vertex modification yields compatible basis 
functions for multi-patch coupling.

To extend the dual mortar approach to couple Kirchhoff-Love shell, we develop a dual 
mortar compatible constraint for Kirchhoff-Love shell based on the Rodrigues’ rotation formula. 
This constraint provides a unified formulation for both smooth couplings and kinks. The enriched 
Bézier dual basis preserves the sparsity of the coupled Kirchhoff-Love shell formulation and yields 
accurate results for several benchmark problems.

Like the dual mortaring formulation, locking problem can also be derived from the mixed 
formulation. Hence, we explore the potential of Bézier dual basis in alleviating transverse shear 
locking in Timoshenko beams and volumetric locking in nearly compressible linear elasticity. In-
terpreting the well-known B̄ projection in two different ways we develop two formulations for 
locking problems in beams and nearly incompressible elastic solids. One formulation leads to a 
sparse symmetric symmetric system and the other leads to a sparse non-symmetric system.

Keywords: isogeometric analysis, patch coupling, dual mortar method, Bézier dual basis, polyno-
mial reproduction, Kirchhoff-Love shell, kink, locking, B̄ projection
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2.2.3 Bézier extration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.3.2 Bézier dual basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Rational dual basis functions . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Chapter 6 Bézier B̄ projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1 Geometric locking: Timoshenko beams . . . . . . . . . . . . . . . . . . . . . . . 150

v
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and the non-symmetric Bézier B̄ method, NS −T PQ4/Q3, do not strictly satisfy the
LBB condition, but compared to the T L2

Q4/Q4 method, both methods reduce con-
straints to a favorable level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.10 Geometry, boundary conditions, and material properties for the Cook’s membrane
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.11 Sequence of meshes for Cook’s membrane problem. . . . . . . . . . . . . . . . . . . . 171

xii



6.12 Cook’s membrane: comparison of the vertical displacement at the top right corner for
the different methods and degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.13 Geometry, boundary conditions, and material properties for the infinite plate with a hole.173
6.14 Convergence study of the plate with a circular hole. The relative L2 error of displace-

ment, stress and the relative error in energy norm with respect to mesh refinement. . . . 174
6.15 Contour plots of σh

xx for the plate with a circular hole (p = 4, and the finest mesh is
used). For reference the analytical solution is also plotted. . . . . . . . . . . . . . . . 176

6.16 Contour plots of |σxx −σ
h
xx | for the plate with a circular hole (p = 4, and the finest

mesh is used). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiii



CHAPTER 1. INTRODUCTION

In classical finite element analysis, 80% of overall analysis time is devoted to mesh gen-

eration and cleanup, whereas only 20% of overall time is actually devoted to analysis [6]. Isoge-

ometric analysis, introduced by Hughes et al. [7], leverages computer aided design (CAD) repre-

sentations directly in finite element analysis (see Figure 1.1). It has been shown that this approach

can alleviate the model preparation burden of going from a CAD design to an analysis model and

improve overall solution accuracy and robustness [8]–[10]. Additionally, the higher-order smooth-

ness inherent in CAD basis functions make it possible to solve higher-order partial differential

equations, e.g. the biharmonic equation [11], [12], the Kirchhoff-Love shell problem [13]–[15]

and the Cahn-Hilliard equation [16], [17] directly without resorting to complex mixed discretiza-

tion schemes.

CAD

Meshing
(Approximated)

FEM
(Lagrange polynomial)

re
fi

n
em

en
t

FEA workflow

CAD

IGA
(B-Splines/

NURBS)

re
fi

n
em

en
t

IGA workflow

Figure 1.1: A comparison of between classical finite element analysis workflow and isogeometric
analysis workflow. FEA workflow: meshing and cleanup are required. Note that the meshing
process does not preserve the original CAD geometry. IGA workflow: using the CAD model
directly in the finite element analysis.
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CAD models are often built from collections of non-uniform rational B-splines (NURBS).

Adjacent NURBS patches often have inconsistent knot layouts, different parameterizations, and

may not even be physically connected. Additionally, trimming curves [18], [19] are often em-

ployed to further simplify the design process and to extend the range of objects that can be modeled

by NURBS at the expense of further complicating the underlying parameterization of the object.

While usually not an issue from a design perspective, these inconsistencies in the NURBS patch

layout, including trimming, must be accommodated in the isogeometric model to achieve accurate

simulation results. As shown in Figure 1.2, two primary approaches are often employed. First,

the exact trimmed CAD model, shown in Figure 1.2 in the middle, is used directly in the simula-

tion [19]. To accomplish this requires additional algorithms for handling cut cells and the weak

imposition of boundary conditions and may result in reduced solution accuracy and robustness.

Second, the CAD model is reparameterized [20], as shown in Figure 1.2 on the right, into a wa-

tertight spline representation like multi-patch NURBS, subdivision surfaces [21], or T-splines [3]

which can then be used as a basis for analysis directly. The reparameterization process often re-

sults in more accurate and robust simulation results but is only semi-automatic using prevailing

approaches. In both cases, existing techniques are primarily surface-based due to the predomi-

nance of surface-based CAD descriptions.

A geometry Trimmed model Reparameterized model

Figure 1.2: A geometry and two modelling strategies: trimming and reparameterization.

From the analysis perspective, the main challenge for conducting finite element analysis

over a geometry consisting of multiple spline patches is how to efficiently and accurately exchange

information among different patches. In this dissertation, we focus on the dual mortar method,

which can robustly apply constraints over intersections of reparameterized multi-patch geometries.
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1.1 State of the art

Researchers in both the design and analysis communities have made significant progress

in handling multi-patch NURBS models and the connections between adjacent patches. In this

section, we present a brief review of patch coupling techniques developed in both communities.

1.1.1 Local refinable splines

Figure 1.3: Subdivision of B-spline basis functions: (a) Uniform, and (b) non-uniform B-spline
basis functions are represented by linear combinations of refined basis functions [1].

In order to represent complex topologies, subdivision schemes (Figure. 1.3) are widespread

in geometry processing and computer graphics. Subdivision schemes allow for the construction of

smooth spline bases over unstructured meshes. Among the most popular subdivision schems are

the Catmull-Clark [22], Doo-Sabin [23] and Loop’s [24] scheme. For isogeometric analysis, Wei et

al. [25] introduced truncated hierarchical Catmull-Clark subdivion that can handle extraordinary

nodes involved in complex topologies. Truncated hierarchical Catmull-Clark subdivion inherits

the surface continuity of Catmull-Clark subdivision, namely C1 continuity at extraordinary points

and C2 continuity elsewhere. Loop subdivision surfaces provide similar regularity properties as

truncated hierarchical Catmull-Clark subdivion and have been applied to isogeometric analysis in

[26], [27] to generate triangular meshes. One of the limitations in the implementation of subdi-

vision meshes is that the basis function around the extraordinary point is composed of piecewise

polynomial functions with an infinite number of segments, which leads to insufficient integration
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by Gauss quadrature. To deal with this issue, various quadrature rules and adaptive strategies have

been examined in [28] for the Poisson problem on the disk and in [29] for fourth order partial

differential equations.

(a) B-splines (b) T-splines

Figure 1.4: Control points lie in a rectangular grid. (a) Topology of B-spline control grid. (b)
Topology of T-spline control grid. Note that the presence of T-junction control points is al-
lowed [2].

(a) B-splines (b) T-splines

Figure 1.5: A gap between two B-spline surfaces, fixed with a T-spline [3].
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In 2003, Sederberg et al. [3] introduced T-splines, which allow for the existence of T-

junctions in the mesh, so that lines of control points need not traverse the entire mesh. Thus, local

refinement can be realized by introducing T-junctions (see Figure. 1.4) around interested region.

Since the concept of T-splines is a generalization of NURBS technology, it can also be used to

merge NURBS surfaces that have different discretizaitons at the intersection (see Figure. 1.5). Due

to the desirable features of T-splines, Bazilevs et al. [2] explored this technology in isogeometric

analysis, and numerical results demonstrated its potential for solving structural and fluid problems.

By utilizing the Bézier extraction operator, a finite element data structure for T-splines [30] were

developed to ease the incorporation of T-splines into existing finite element codes. However, it

has been proven [31] that the original definition of T-splines is not sufficient to ensure the linear

independence of the basis functions. To circumvent this issue, analysis suitable T-splines [32] were

developed by applying an additional constraint that no two orthogonal T-junction extensions are

allowed to intersect. Subsequently, the mathematical properties of analysis suitable T-splines were

studied in [33], [34], and it has been sucessfully applied to the boundary element method [35].

Meanwhile, an adaptive local h-refinement algorithm with T-splines and a local refinement of

analysis-suitable T-splines were introduced by Döfel et al. [36] and Scott et al. [37], respectively.

However, for both algorithm, the refined mesh is not as local as one would hope and this problem

might be severe in 3D.

1.1.2 Multi-patch geometrically continuous functions

One of the advantages of isogeometric analysis is that it provides basis functions with high

smoothness, i.e. for p-th order splines, they enjoy up to Cp−1 continuity within a single patch.

Thus, it is possible to directly discretize differential operators of order higher than 2. However,

continuity higher than C0 for multi-patch discretization imposes significant difficulties. The con-

ception of geometric continuity is a well-known and highly useful concept in geometric design

[38], [39]. The parametric continuity requires both the smoothness of the geometry and its param-

eterization, whileas the geometric continuity only requires the smoothness of the geometry. Hence,

the geometric continuity of order s (Gs continuity) is a weaker continuity constraint as compared

to Cs parametric continuity. Bercovier et al. [40] has shown that for multi Bézier patches over an

unstructured quadrilateral mesh, as long as the order of polynomial is high enough, there always
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exists the minimal determining set for a G1 continuity construction. Moreover, the resulting basis

functions do not contain subdivisions around extraordinary vetices.

The case of G1 continuous functions on bilinearly parametrized two-patch B-spline do-

mains was considered by Kapl et al. [11], where the C1 basis functions are constructed and ana-

lyzed by numerical tests. It is shown that the space dimensionality heavily depends on the param-

eterization of two bilinear patch, and optimal convergence is observed on the biharmonic problem.

However, over-constrained C1 isogeometric spaces that cause sub-optimal convergence are also

observed for certain configurations (e.g. two-patch non-bilinear parameterizations and Cp−1 con-

tinuity within the patches for p-th order spline space). A theoretical analysis of the cause of this

so-called C1 locking phenomenon is provided in [41], where the analysis-suitable G1 geometry pa-

rameterization that allows for optimal approximation of C1 isogeometric spaces, is identified and

verified by numerical examples. Kapl et al. extended the construction of G1 continuous functions

to bilinearly parameterized multi-patch domains in [12], where the simple explicit formulas for

spline coefficients of C1 basis function are derived and nested C1 isogeometric spaces are gener-

ated. Recently, Kapl et al. [42], [43] explored the construction of C2 isogeometric functions on

multi-patch geometries and utilized the C2 isogeometric spaces for 6-th order PDE.

Although the geometrically continuous functions circumvent the use of subdivisions for

domains with extraordinary vertices, the requirement of C0 parameterization averts local mesh

refinement, and lower continuity is required to avoid C1 locking effect. Thus, its implementation

can be complex and it may not be a potential candidate for analysis in more general situations.

1.1.3 Variational approaches

From the analysis perspective, the pointwise satisfaction of continuity constraints between

adjacent patches is often unnecessarily rigorous. A reasonable approximation can be achieved even

if these constraints are applied in a variational setting. The Lagrange multiplier method is a general

framework which can be used to apply constraints to variational problems. In the context of isoge-

ometric analysis, various types of Lagrange multiplier approaches have been applied to problems

in solids [44], [45] and fluids [46]. While general in applicability, the solvability and optimality of

the Lagrange multiplier method is significantly influenced by the inf-sup condition [47], [48]. In

the context of domain coupling, to satisfy the inf-sup condition, special modifications are needed
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when building the Lagrange multiplier space to ensure stability (see Figure 1.6). This has been

further studied in [49]–[52] for finite element analysis and in [53] for isogeometric analysis.

Whereas the Lagrange multiplier method applies continuity constraint by Lagrange mul-

tipier, leading to a saddle point problem, the mortar method, first introduced by Bernardi [50],

considers a constrained solution space and gives rise to a positive definite variational problem.

Wohlmuth [54] used dual basis functions to discretize the Lagrange multiplier spaces, which fur-

ther simplifies the mortar formulation. Dual basis functions for the piecewise linear elements are

illustrated in Figure 1.6. A dual mortar method for isogeometric analysis was first developed by

Seitz et al. [55].

Applying constraints by the Lagrange multiplier method leads to a saddle point problem, of

which the discrete Lagrange multiplier basis functions cannot be chosen independently of that of

the primal variable and special treatment is required to ensure the solvability and optimality of the

discretized system. The stiffness matrix for the discrete problem arising from the Lagrangian mul-

tiplier method always contains both positive and negative eigenvalues, for which iterative methods

are known to be less efficient than for symmetric positive definite systems. The perturbed La-

grangian method alleviates these issues by appending a weighted quadratic penalty term to the

energy functional. The main drawback of the perturbed Lagrangian method is the inconsistency

with the original problem. It has been utilized in [56] for contact problems and [57], [58] for

domain decomposition problems in the isogeometric analysis framework.

To fully circumvent the inf-sup condition for imposing Dirichlet boundary conditions by

Lagrange multiplier, Barbosa et. al. [52] added a new penalty like term to the energy functional to

enhance the stability. Unlike perturbed Lagrangian methods where the penalty term is inconsistent

with the original problem, the new term proposed by Barbosa maintains the consistency. It has been

demonstrated that there is a close connection with the stablized Lagrange multiplier method and

Nitsche’s method in the context of setting the Dirichlet boundary conditions [59] and in the context

of domain decomposition [60]–[62]. Tur et. al. [63] utilized this method to solve both small and

large deformation contact problems and obtained optimal convergence rates for linear elements.

To our knowledge, this method has not been applied in the isogeometric analysis framework yet.

The discontinuous Galerkin method (or Nitsche’s method) was introduced in 1971 [64] for

handling Dirichlet boundary conditions in the weak sense. The discontinuous Galerkin method
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Figure 1.6: Lagrange multiplier basis functions for the piecewise linear elements, top: original
piecewise linear basis, middle: piecewise linear basis with modification at the right end, bottom:
dual basis functions for the piecewise linear elements, modification at the right end (Courtesy of
Zienkiewicz [4]).

resembles a mesh-dependent penalty method. Unlike the standard penalty method, which is not

consistent unless the penalty coefficient goes to infinity, the discontinuous Galerkin method is

consistent with the original problem. Moreover, no additional unknown (Lagrange multiplier) is

needed and no discrete inf-sup condition must be fulfilled, contrarily to mixed methods. Mean-

while, additional terms are added into the weak form to ensure the ellipticity of the problem. The

discontinuous Galerkin method has been widely studied in various aspects, including imposing

boundary conditions [61], domain decomposition [65] and contact problems [66]. In the field of

the isogeometric analysis, the discontinuous Galerkin method has been utilized to impose Dirichlet

boundary conditions for trimmed spline meshes [67]. The first article discussing the discontinuous

Galerkin method based domain decomposition strategy was written by Apostolatos et al. [68].

Nguyen et al. extended it to three-dimensional problems in [69]. Guo et al. [70] proposed a

Nitsche’s method for coupling Kirchhoff-Love NURBS shell patches.
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1.2 Research contributions

In this dissertation, the dual mortar framework for most prevailing higher-order partial dif-

ferential equations (including biharmonic problems, Cahn-Hilliard problems and Kirchhoff-Love

shell problems) are developed. The primary contributions of this dissertation are:

• Formulation and implementation of an isogeometric Bézier dual mortar method for the bihar-

monic problem on multi-patch domains. The formulation leads to an efficient construction

of a sparse constrained linear system. We prove the well-posedness of the formulation and

specify requirements to achieve optimal convergence.

• Development of the enriched Bézier dual basis. The enriched Bézier dual basis functions

are constructed via a quadrature-free algorithm and can reproduce polynomials up to a given

degree.

• Formulation and implementation of an isogeometric Bézier dual mortar method for the

Kirchhoff-Love shell problem on multi-patch domains.

• Extension of Bézier dual basis functions to alleviate transverse shear locking in Timoshenko

beams and volumetric locking in nearly compressible linear elasticity. Based on the different

interpretation of the B̄ formulation, we develop two formulations for locking problems.

• An isogeometric analysis code in C++ is developed. Eigen library [71] is adopted as the

primary linear solver. The assembly routine is multi-threaded by the thread module in the

Standard Template Library (STL). This code is capable of handling nonlinear dyanmic prob-

lems with higher mesh resolution.

1.3 Organization of the dissertation

The remainder of this thesis is structured as follows: Chapter 2 provides an overview of

isogeometric analysis, e.g. the formulation of B-splines and NURBS, knot insertion and degree

elevation algorithms. In addition, the concepts of Bézier extraction/projection and dual basis func-

tions are explained. In Chapter 3 the Bézier dual mortar method for the biharmonic problem is

9



theoretically and numerically studied. The optimality of the proposed formulation requires the inf-

sup stable as well as a suitable approximation property for the Lagrange multiplier space. However,

numerical studies indicate that Bézier dual basis fails to provide adequate approximation, leading

to sub-optimal convergence results. In Chapter 4, we investigate all factors that influence the ap-

proximation of basis functions and develop the enriched Bézier dual basis. The enriched Bézier

dual basis, constructed via a quadrature-free algorithm, possesses the polynomial reproduction

ability and compact support. The accuracy and robustness of the enriched Bézier dual basis is

thoroughly tested by various 2nd and 4th order problems. In Chapter 5, the Bézier dual mortar

method for the Kirchhoff-Love shell problem is presented. The formulation is based on a dual

mortar compatible constraint and handles both smooth shell coupling problem as well as kinked

shell coupling problem. The enriched Bézier dual basis is adopted as discretized Lagrange multi-

pliers, leading to a sparse linear system. Several linear and nonlinear benchmark problems verify

the accuracy and robustness of this approach. In Chapter 6, the application of Bézier dual basis

is extended to alleviate transverse shear locking in Timoshenko beams and volumetric locking in

nearly compressible linear elasticity without populating the stiffness matrix. Finally, conclusions

and directions for future work are given in Chapter 7.
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CHAPTER 2. PRELIMINARIES

Isogeometric analysis (IGA), introduced by Hughes et al. [7], adopts the spline basis,

which underlies the CAD geometry, as the basis for analysis. Of particular importance is the

positive impact of smoothness on numerical solutions, where, in many application domains, IGA

outperforms classical finite elements [2], [6], [72]–[75].

In this chapter, a brief overview of spline basis functions are given in Section 2.1. In

Section 2.2, we review some of the most popular algorithms in manipulating splines, including

Bézier extraction and Bézier projection. Dual basis serves as the main research tool for this thesis.

The concept of dual basis functions is also introduced in Section 2.3.

2.1 Splines

2.1.1 The univariate Bernstein basis

The ith univariate Bernstein basis function of degree p on the unit interval [0,1] is defined

by

Bp
i (ξ) =

(
p
i

)
ξi(1− ξ)p−i (2.1)

where the binomial coefficient
(p

i

)
=

p!
i!(p− i)!

, 0 ≤ i ≤ p. The polynomial degree superscript will

be omitted when unnecessary. Matrix-vector notation will be used throughout, with bold fonts

indicating matrices and vectors, e.g. the vector form of a set of Bernstein basis functions is denoted

by

Bp(ξ) =



Bp
0 (ξ)

Bp
1 (ξ)
...

Bp
p(ξ)


. (2.2)
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The Bernstein basis of degree p spans the space of polynomials of degree p. The Gramian matrix

Gp = [Gp
i,j] can be computed by

Gp
i,j =

∫ 1

0
Bp

i (ξ)B
p
j (ξ)dξ, i, j ∈ {0,1, . . . ,p}. (2.3)

Eq. (2.3) can be evaluated in closed form (see [76]) as

Gp
i,j =

(p
i

) (p
j

)
(2p+1)

( 2p
i+ j

) (2.4)

and its inverse (see [77]) as

[Gp
i,j]
−1 =

(−1)i+ j(p
i

) (p
j

) min(i,j)∑
k=0

(
p+ k +1

p− i

) (
p− k
p− i

) (
p+ k +1

p− j

) (
p− k
p− j

)
. (2.5)

A Bernstein basis defined over an arbitrary interval
[
ξα,ξβ

]
can be evaluated from

Bp
i (
ξ − ξα
ξβ − ξα

), ξ ∈
[
ξα,ξβ

]
. (2.6)

The corresponding Gramian and inverse can be obtained by multiplying and dividing the matrices

in Eq. (2.4) and Eq. (2.5) by the scaling factor (ξβ − ξα), respectively. For the sake of simplicity,

we use the same symbols to represent the Bernstein basis defined on different intervals. A closed

form expression for the L2 inner product between the Bernstein basis Bp
i (ξ) and polynomial ξ j is

given by ∫ 1

0
Bp

i (ξ)ξ
j dξ =

(
p
i

)
(i+ j)!(p− i)!
(p+ j +1)!

. (2.7)

Bernstein basis possess the following properties:

• Nonnegativity: Bp
i (ξ) ≥ 0 for all i, p, and 0 ≤ ξ ≤ 1;

• Partition of unity:
∑p

i=0 Bp
i (ξ) = 1, for all 0 ≤ ξ ≤ 1;

• Interpolatory at the ends: Bp
0 (0) = Bp

p(1) = 1.
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However, the global support of the Bernstein basis makes it impossible to locally edit a

Bézier curve, which is a urgent requirement for geometry modeling. This problem can be overcome

by using B-splines.

2.1.2 The univariate B-spline basis

A set of univariate B-spline basis functions of degree p can be uniquely defined by a non-

decreasing knot vector Ξ = {ξi}
n+p
i=0 , where n is the number of B-spline basis functions. In this

work, we only use open knot vectors, i.e., ξ0 = ξ1 = · · · = ξp and ξn = ξn+1 = · · · = ξn+p defined

over the interval [0,1]. The value of the ith B-spline basis function is recursively defined using the

Cox-de Boor formula [78]

N0
i (ξ) =


1 ξi ≤ ξ ≤ ξi+1

0 otherwise
(2.8)

N p
i (ξ) =

ξ − ξi

ξi+p− ξi
N p−1

i (ξ)+
ξi+p+1− ξ

ξi+p+1− ξi+1
N p−1

i+1 (ξ). (2.9)

In addition to the properties of Bernstein basis, B-splines also possess:

• Compact support: supp(N p
i ) ⊂

[
ξi,ξi+p+1

]
.

This feature is crucial for both geometry modeling and finite element analysis. In modeling, it

allows the changing in a localized region while keeping other parts unchanges. In finite element

analysis, it ensures the sparse structure of the discretized linear system.

B-splines of different degrees are shown in Figure 2.1. As can be seen, linear B-spline

basis functions are identical to the classic hat functions that widely used in finite element analysis.

Compared with quadratic Lagrange polynomials in Figure 2.2, quadratic B-splines are smoother

across each mesh grids. Indeed, B-splines of degree p have up to p−1 continuous derivatives. The

inter-element continuity can be manipulated by repeating knots. In general, basis functions at knot

of multiplicity m have Cp−m continuity.

A d-dimensional B-spline curve S(ξ) ∈ Rd can then be defined as

S(ξ) =
∑

A

NA,p(ξ)PA (2.10)
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0, 0 1
3

2
3 1, 1

0, 0, 0 1
3

2
3 1, 1, 1

Figure 2.1: B-spline basis functions of different degrees. Top: linear spline basis functions defined
by {0,0,1/3,2/3,1,1}. Bottom: quadratic spline basis functions defined by {0,0,0,1/3,2/3,1,1,1}.

0
1
3

2
3 1

Figure 2.2: Quadratic Lagrange polynomials defined on the same mesh grid as the splines in
Figure 2.1.

where PA = (p1
A,p

2
A, . . . ,p

d
A)

T is a d-dimensional control point. An example of a B-spline curve is

illustrated in Figure 2.3.

2.1.3 The univariate NURBS basis

B-splines can be used to represent piecewise polynomial functions but are not capable of

representing conic sections (e.g. circles, ellipses and hyperbolas). NURBS(Non-Uniform Rational

B-Spline) overcome this shortcoming. A NURBS basis function can be written as

RA,p(ξ) =
NA,p(ξ)wA

W(ξ)
(2.11)
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0, 0, 0 1
3

2
3 1, 1, 1

Figure 2.3: A B-spline piecewise quadratic curve in R2 and the corresponding B-spline basis.

where wA is called a weight and

W(ξ) =
∑

A

NA,p(ξ)wA (2.12)

is called the weight function. A d-dimensional rational curve S(ξ) ∈ Rd can then be defined as

S(ξ) =
∑

A

RA,p(ξ)PA. (2.13)

It is often more convenient to represent the d-dimensional NURBS in a (d + 1)-dimensional ho-

mogeneous space by defining Pw
A = (p

1
AwA,p2

AwA, . . . ,pd
AwA,wA)

T and the corresponding (d + 1)-

dimensional B-spline curve as

Sw(ξ) =
∑

A

NA,p(ξ)Pw
A (2.14)
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such that each component of Sw can be written as

Si(ξ) =
Sw

i (ξ)

Sw
d+1(ξ)

. (2.15)

In the homogeneous form, NURBS can be manipulated with standard B-spline algorithms.

2.1.4 The multivariate spline basis

In higher dimensions, Bernstein, B-spline, and NURBS basis functions are formed by the

Kronecker product of univariate basis functions. For example, two-dimensional B-spline basis

functions of degree p = (pξ,pη) are defined by

Np(ξ,η) = Npξ (ξ) ⊗Npη (η) (2.16)

where Npξ (ξ) and Npη (η) are vectors of basis functions in the ξ and η directions, respectively. A

particular multivariate basis function can be written as

Np
A(i,j)(ξ,η) = Ni,pξ (ξ)Nj,pη (η) (2.17)

where the index mapping is defined as

A(i, j) = nηi+ j . (2.18)

The integer nη is the number of basis functions in η direction. In three-dimensional space, a set

of basis functions can be constructed by the Kronecker product between two-dimensional basis

functions and univariate basis functions.

2.2 Geometric algorithms

2.2.1 Knot insertion

The knot insertion algorithm ensures the insertion of one or multiple knots into a knot

vector Ξ without changing the shape and parameterization of the curve. It allows us to conduct
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h-refinement (subdividing elements into smaller ones without changing the type of basis functions

used) in the context of Isogeometric Analysis. The detailed algorithm of knot insertion can be

found in [78].

An example of knot insertion of the B-spline curve in Figure 2.3 is illustrated in Figure 2.4.

A set of knots
{ 1

6,
1
2,

5
6
}

are inserted into the original knot vector Ξ= {0,0,0,1/3,2/3,1,1,1}. The in-

serted curve remains geometrically and parametrically identical to the original curve. Meanwhile,

knot spans [ξi,ξi+1) are splitted into smaller ones.

0, 0, 0 1
6

1
3

1
2

2
3

5
6 1, 1, 1

Figure 2.4: Knot insertion for the curve in Figure 2.3. The inserted curve is geometrically and
parametrically identical to the original curve.

2.2.2 Degree elevation

The degree elevation algorithm increases the polynomial degree of each B-spline basis

functions while preserves the geometry and parameterization of the curve. It allows us to conduct

p-refinement (increasing the degree of basis functions without changing the number of element

used) in the context of Isogemetric Analysis. The detailed algorithm of degree elevation can be

found in [78].
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An example of degree elevation of the B-spline curve in Figure 2.3 is illustrated in Fig-

ure 2.5, where the original quadratic spline curve is elevated to cubic and the shape remains un-

changed. Recalling that the basis is Cp−m continuous at a knot of multiplicity m, it is clear that,

to preserve the inter-element continuity, the multiplicity of each knots must be increased as the

increase of the polynomial degree. In Figure 2.5, the multiplicity each knot is increased by one.

0, 0, 0, 0 1
3 ,

1
3

2
3 ,

2
3 1, 1, 1, 1

Figure 2.5: Degree elevation for the curve in Figure 2.3. The degree elevated curve is geometrically
and parametrically identical to the original curve.

2.2.3 Bézier extration

Bézier extraction is a technique that is often used to facilitate the incorporation of isogeo-

metric analysis into existing finite element codes [79], [80]. Bézier extraction defines an injection

that maps a space spanned by B-spline basis to a space spanned by piecewise Bernstein basis.

Bézier extraction is accomplished by repeating all interior knots of a knot vector until they have

a multiplicity equal to p+ 1. The interior knots repeating process defines a linear operator C

(see [79]) such that

N(ξ) = CB(ξ). (2.19)
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Figure 2.6: Illustration of Bézier extraction and projection in one dimension for a B-spline of
degree 2 and knot vector {0,0,0,1/3/2/3,1,1,1}. (a) The element extraction and projection for the
second element. (b) Bézier extraction over the entire domain.

The localization of C to an element domain produces the element extraction operator Ce. Given

control points Pe, the corresponding Bézier control points Qe can be computed directly as

Qe = (Ce)T Pe. (2.20)

A graphical depiction of Bézier extraction over an element is shown in Figure 2.6a.

It is possible to view Bézier projection as a global assembly procedure. The B-spline basis

vector N of dimension nN can be represented by a set of Bernstein basis functions B of dimension
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nB defined on each element as

N = AT CB, (2.21)

where C is a block diagonal matrix with Bézier element extraction operators on the diagonal and

the rectangular assembly operator A is the permutation matrix that maps local element degrees of

freedom to global degrees of freedom. The assembly operator A satisfies the following properties:

• Each row of A contains a single unity-valued entry; all other entries are zero.

• Each column of A contains at most p+1 unity-valued entries; all other entries are zero.

• Compact support. The non-zero entries can be associated to no more than p+1 consecutive

elements.

• If we consider the column vectors Ai of A, the space span {Ai}
nN−1
i=0 is an nN dimensional

subspace of RnB and {Ai}
nN−1
i=0 are orthogonal, i.e.

Ai ·A j , 0 ⇐⇒ i = j . (2.22)

The Bézier extraction process for the quadratic B-spline basis defined by the knot vector

{0,0,0,1/3,2/3,1,1,1} is shown in Fig. 2.6b. The assembly operator A for this example is given by

A =

N0 N1 N2 N3 N4



1 0 0 0 0 N0
0

0 1 0 0 0 N0
1

0 0 1 0 0 N0
2

0 1 0 0 0 N1
0

0 0 1 0 0 N1
1

0 0 0 1 0 N1
2

0 0 1 0 0 N2
0

0 0 0 1 0 N2
1

0 0 0 0 1 N2
2

, (2.23)
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where the highlighted submatrix is the restriction of A onto elements Ω0 and Ω1, and onto the

B-spline basis functions N1 and N2.

2.2.4 Bézier projection

Bézier projection can be viewed as the inverse of extraction [81]. It defines an surjection

that maps a space spanned by piecewise Bernstein basis onto a space spanned by B-spline basis.

Bézier projection uses an element reconstruction operator Re ≡ (Ce)−1 such that the global control

point values, corresponding to those basis functions defined over the support of an element e, can

be determined directly from Bézier control values as

Pe = (Re)T Qe (2.24)

where Qe is any field in Bézier form. The action of the element reconstruction operator is depicted

graphically in Figure 2.6a. For example, given any function u ∈ L2, we can compute Qe as

Qe = (Ge)−1Fe (2.25)

where Ge is the Gramian matrix corresponding to the Bernstein basis with components

Ge
i j =

∫
Ωe

Be
i Be

j dΩ = 〈Be
i ,B

e
j 〉Ωe (2.26)

and

Fe
i =

∫
Ωe

Be
i u dΩ = 〈Be

i,,u〉Ωe . (2.27)

Note that efficiency gains can be had at the expense of accuracy by instead performing the integra-

tion in the parametric domain of the element [81].

The element-wise projection produces one control value for each element in the support

of the function. These values must be combined in order to provide the final control value. A

core component of the Bézier projection algorithm is the definition of an appropriate averaging

operation. The process of computing the weights is illustrated in Figure 2.7. A weighted average
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of the values is computed using the weighting

ωe
a =

∫
Ωe Ne

a dΩ∫
ΩA NA(e,a) dΩ

(2.28)

where Ωe corresponds to the physical domain of element e, A(e,a) is a mapping from a local nodal

index a defined over element e to a corresponding global node index A, and ΩA corresponds to the

physical support of NA. The final averaged global control point is then calculated as

PA =
∑
Ωe∈ΩA

ωA(e,a)PA(e,a). (2.29)

Bézier projection onto NURBS functions can be defined in an analogous manner [81].

The individual steps comprising the Bézier projection algorithm are illustrated in Figure 2.8

where the curve defined by f(t)=
( t

3
)3/2 e1+

1
10 sin(πt)e2, t ∈ [0,3] is projected onto the quadratic B-

spline basis defined by the knot vector
{
0,0,0, 1

3,
2
3,1,1,1

}
. For this example, the algorithm proceeds

as follows:

Step 1: The function f is projected onto the Bernstein basis of each element. This results in a set

of Bézier coefficients that define an approximation to f. The Bézier coefficients are indicated

in part (1) of Figure 2.8 by square markers that have been colored to match the corresponding

element. Each Bézier segment is discontinuous.

Step 2: The element reconstruction operator Re is used to convert the Bézier control points into

spline control points associated with the basis function segments over each element. The new

control points are marked with inverted triangles and again colored to indicate the element

with which the control point is associated. The control points occur in clusters. The clusters

of control points represent the contributions from multiple elements to a single spline basis

function control point.

Step 3: Each cluster of control points is averaged to obtain a single control point by weighting

each point in the cluster according to the weighting given in (2.28). The resulting control

points are shown as circles with the relative contribution from each element to each control
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point indicated by the colored fraction of the control point marker. Colors in Figures 2.7

and 2.8 are coordinated to illustrate where the averaging weights come from and their values.
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Figure 2.7: Weights over each knot span associated with the basis function defined by the knot
vector [0,0,0, 1

3,
2
3,1,1,1].

2.3 Dual basis

In this section, we give a brief introduction to the concept of global and Bézier dual basis

functions. Bézier dual basis functions will be used in Section to facilitate the solution of domain

coupling problems in the dual mortar method. A dual basis is defined as a set of basis functions

{N̂i}
n
i=1, which are dual to a corresponding set of primal basis functions {Ni}

n
i=1 in the sense that

〈N̂i,Nj〉Ω :=
∫
Ω

N̂iNj dΩ = δi j, ∀i, j ∈ [1,2, . . . ,n], (2.30)

where δi j is the Kronecker delta.
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(0) Target function

(1) Perform local projection to
obtain Bézier control points
(represented by squares, col-
ored to match elements)

(2) Use element reconstruction
operator to project Bézier
points to spline control points
(represented by inverted tri-
angles, colored to match ele-
ments)

(3) Apply smoothing algorithm
(contribution of each element
to each control point shown by
colored fraction)

(4) Comparison of final function
(light blue) and target function
(dashed)

Figure 2.8: Steps of Bézier projection.

2.3.1 Global dual basis

The global dual basis functions {N̂G
i }

n
i=1 for a given set of primal basis function {Ni}

n
i=1 can

be computed as

N̂G
i =

∑
j

G−1
i j Nj, (2.31)

where G−1
i j are the components of the inverse of the Gramian matrix G with components Gi j =

〈Ni,Nj〉Ω.
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(a)

(b)

(c)

Figure 2.9: A comparison of a B-spline basis function (a) with the corresponding global dual basis
function (b) and the Bézier dual basis function (c).

In Isogeometric Analysis, we choose B-spline functions as the primal basis. One important

property of B-spline functions is that they have compact support. This leads to sparse linear sys-

tems when these functions are used to define the trial and weighting function spaces in a Galerkin

method. The global dual basis functions, however, do not have compact support and will result in

dense linear systems when used as the weighting function space in a Galerkin method. Dual basis

supports are shown in Figure 2.9 where we have highlighted one B-spline function in Figure 2.9a

and then shown the corresponding global dual basis function in Figure 2.9b.

2.3.2 Bézier dual basis

To maintain the sparsity of linear systems we will use Bézier dual basis functions, which

are computed locally and have compact support. These functions are computed using the Bézier
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projection operator introduced in [81]. The Bézier dual basis has been shown to be effective

in reducing volumetric and shear locking [82], alleviating membrane locking in Kirchhoff-Love

shells [83], and as a dual mortaring strategy for elasticity problems [84].

The construction of Bézier dual basis functions leverages Bézier extraction/projection [79],

[85] and can be performed in several simple steps. For a given Bézier element, Ωe, the element

extraction operator Ce is computed. The element extraction operator maps a set of Bernstein

polynomials {Bi}
m
i=1 defined over a Bézier element, where m depends on the polynomial degree of

the Bézier element in each parametric direction, into the set of global B-spline basis functions that

have support over that element. The element reconstruction operator, Re, and the Gramian matrix,

Ge (2.26), of the Bernstein polynomials defined over the element are then computed. The element

extraction operator for the dual basis is then simply

D̂e = diag(ωe)Re [Ge]
−1 (2.32)

where diag(ωe) is a diagonal matrix with the Bézier projection weights (2.28) on the diagonal.

The restriction of a Bézier dual basis functions N̂ B
i to Ωe is then computed as

N̂ B
i |Ωe =

m∑
j=1

D̂e
i j B j . (2.33)

From this local definition of the dual basis over an element we have∫
Ωe

N̂ B
i Nj dΩ = ωe

i δi j, (2.34)

and

A
e

∫
Ωe

N̂ B
i Nj dΩ = δi j, (2.35)

where A is the standard assembly operator [86] . The Bézier dual basis of the B-spline basis

function highlighted in Figure 2.9a is shown in Figure 2.9c. Note that the Bézier dual basis function

has the same compact support as the primal B-spline basis function.
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2.3.3 Rational dual basis functions

If rational basis functions are used, the construction of the dual basis must be modified

slightly. A rational dual basis must satisfy the biorthogonality requirement∫
Ω

R̄ARB dΩ = δAB. (2.36)

A simple way to achieve biorthogonality is to define

R̄A =W N̄A/wA (2.37)

where W is the rational weight given in (2.12). Now∫
Ω

R̄ARB dΩ =
∫
Ω

N̄ANB dΩ = δAB. (2.38)

Remark 1. The Bézier dual basis functions define a quasi-interpolation operator T( f )=
∑

i 〈N̂ B
i , f 〉Ni,

which possesses the following properties:

• Optimal approximation: for pth order spline basis function and f ∈ C∞, the approximation

error is given by [81]

‖T ( f )− f ‖L2 ≤ Chp+1‖ f ‖Hp+1 . (2.39)

• Boundary interpolation: for two sets of pth order spline basis functions {N s
i }

ns
i=1 and {Nm

i }
nm
i=1

defined on [0,L], if the first and last elements of s are subsets of the first and last elements of

m, then

T s( f m)(0) = f m(0) and T s( f m)(L) = f m(L), ∀ f m ∈ span{Nm
i }

nm
i=1. (2.40)

The second property is critical for the coercivity of the biharmonic problem on multi-patch do-

mains.
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CHAPTER 3. ISOGEOMETRIC BÉZIER DUAL MORTARING: THE BIHARMONIC
PROBLEM

In this dissertation, we assume that some form of reparameterization has been performed

(see Figure 1.2 on the right) on a CAD model to either remove some or all of the trimming curves

and/or to restructure the underlying patch layout to improve the parameterization (e.g., reduce de-

gree, distortion, complexity, etc.). However, we relax the requirement that adjacent patches share

a consistent parameterization along shared edges and instead introduce a dual mortaring along the

shared interfaces. Relaxing this requirement can simplify the reparameterization process leading

to more robust approaches [87]. This dual mortaring can be built into the simulation technology

directly or can be used to build a weakly continuous basis which can then be used for either de-

sign or analysis. The present work leverages Bézier dual mortaring along each patch interface. In

particular, in this work, the Bézier dual mortaring approach, introduced in [84], is extended to bi-

harmonic problems, which require the weak satisfaction of C1 continuity. To preserve the sparsity

of the condensed linear system, we propose a dual mortar suitable C1 constraint and the corre-

sponding Lagrange multiplier. Several different treatments of extraordinary points are considered.

Numerical benchmarks illustrate the accuracy and robustness of the proposed method for both 2nd

and 4th order problems.

3.1 The dual mortar method

We introduce the dual mortar method in the context of an abstract formulation for a con-

strained problem: find u ∈ X and λ ∈M such that


a(v,u)+ b(v,λ) = l(v) ∀v ∈ X,

b(µ,u) = 0 ∀µ ∈M,
(3.1)
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where a(·, ·) is a bilinear form representing a potential energy, l(·) is a linear form representing the

external load and b(·, ·) is a bilinear form representing a set of constraints on the solution u. In

Section 3.2, b(·, ·) will represent the continuity constraints across patch boundaries.

If we introduce a pair of discrete function spaces Xh ⊂ X andMh ⊂ M we can represent

the weak form (3.1) as the matrix problem

KLMULM =


K BT

B 0

 ULM =


F

0

 , (3.2)

where K is the discretized stiffness matrix, F is the discretized external force vector, B is the

discretized constraints matrix and ULM is a vector containing the control values of the displacement

field uh ∈ Xh and Lagrange multiplier field λh ∈ Mh. The stiffness matrix KLM for the discrete

problem (3.2) always contains both positive and negative eigenvalues, for which iterative methods

are known to be less efficient than for symmetric positive definite systems. More importantly, the

constraint matrix B might be row-wise linearly dependent if the Lagrange multiplier spaceMh is

not discretized with caution. This will lead to a non-invertible linear system. The mortar method

resolves these issues by introducing a constrained function space

K B {u ∈ X | b(λ,u) = 0, ∀λ ∈M}. (3.3)

The saddle point problem (3.1) can now be transformed into a minimization problem: find u ∈ K

such that

a(v,u) = l(v), ∀v ∈ K . (3.4)

Given N, the vector containing the basis functions of Xh, the vector containing the basis functions

of Kh is given by

Nk = CT N, (3.5)

where the matrix C is the vector basis of the null space of the constraint matrix B. If the Lagrange

multiplier space is discretized by a set of dual basis functions, the constraint matrix B can be

written as [88]

B =
[
B1 B2

]
, (3.6)
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where B1 is an identity matrix, and the bandwidth of B2 depends on the support size of dual basis

functions. For a constraint matrix B constructed using Bézier dual basis functions, B2 is a sparse

matrix with limited bandwidth, while the global dual basis functions leads to a dense B2.

For a B in the form (3.6) with B1 = I, the vector basis of its null space can be obtained from

C =

−B2

I

 . (3.7)

The mortar linear system can now be written as

KmortarUmortar = CT KCUmortar = CT F. (3.8)

The relation between the mortar displacement nodal value vector Umortar and ULM is given by

ULM = CUmortar. (3.9)

With a sparse C obtained from the Bézier dual basis, the stiffness matrix of the mortar formulation

Kmortar will remain sparse, resulting in an efficient linear system.

3.2 A dual mortar formulation for the multi-patch biharmonic problem

In this section, we present a formulation for the biharmonic problem over multi-patch ten-

sor product domains. Because the biharmonic problem requires trial and test functions that are in

H2, we will use the dual mortar method to add constraints between patch boundaries to weakly

enforce C1 continuity. We begin by introducing concepts from domain decomposition.

3.2.1 Domain decomposition

Let Ω be a bounded open domain in R2 with its boundary denoted by ∂Ω. We assume that

Ω can be subdivided into K non-overlapping patches Ωk for 1 ≤ k ≤ K , i.e.

Ω̄ =

K⋃
k=1
Ω̄k and Ωk

⋂
Ωl = ∅, ∀k , l (3.10)
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where Ω̄k is the closure of Ωk . For simplicity, we only consider the case where the intersection of

two patches is either empty, a single vertex, or the entire edge. We denote the common interface of

two neighboring patches as Γkl = ∂Ωk
⋂
∂Ωl so that Γkl = ∅ if Ωk is not a neighbor of Ωl . We also

define the skeleton S =
⋃

k,l∈K,k<l Γkl as the union of all interfaces in Ω. The set V denotes the set

of all vertices in Ω. A representative example of a multi-patch geometry is shown in Figure 3.1.

x

y
Γ12 Γ21

Γ23
Γ32

Γ31
Γ13

v1
Ω1 Ω2

Ω3
∂Ω

ξ(1)
η(1) Ω̂1 F1

ξ(2)

η(2)
Ω̂2

F2

E12

Figure 3.1: An example of a domain decomposition of a triangular domain. The patches are defined
on different parametric domains and are connected via geometric mappings.

For each patch, there exists a bijective geometric mapping from the parametric domain Ω̂k

to the physical domain Ωk , which is defined as

Fk (ξk,ηk) : Ω̂k 7→Ωk ∈ R
2, (3.11)

where (ξk,ηk) are the coordinates of the parametric domain. For simplicity and without loss of

generality, we assume the parametric domain is Ω̂k = [0,1]× [0,1] for all patches.

We can use the mappings Fk to create connections between neighboring patches. Due to

the fact that Fk is a bijection, there exists an inverse mapping denoted by F−1
k . We can construct a

bijective transformation on the intersection Γkl as

Ekl = F−1
l ◦Fk, (3.12)
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which maps a parametric point on ∂Ω̂k
⋂
Γ̂kl to a physical point on the intersection Γkl and then

to a parametric point on ∂Ω̂l
⋂
Γ̂kl . With the mapping Ekl in hand, we are now ready to formulate

the biharmonic problem over multi-patch domains.

3.2.2 The biharmonic problem

The strong form governing equation and boundary conditions of the homogeneous bihar-

monic problem defined over the domain Ω is given by the following:


∆

2u = f on Ω,

u =
∂u
∂n
= 0 on ∂Ω,

(3.13)

with f ∈ L2(Ω) and u ∈ C4(Ω). This problem can be restated in the weak form as: find u ∈ H2
0 (Ω)

such that

ab(u,v) = l(v), ∀v ∈ H2
0 (Ω), (3.14)

with

ab(u,v) =
∫
Ω

∇u∇vdΩ,

l(v) =
∫
Ω

f vdΩ,
(3.15)

where H2
0 (Ω) is the Sobolev space containing all functions in the space H2(Ω) that also satisfy the

homogeneous Dirichlet boundary conditions in (3.13).

For a partitioned domain Ω, as defined in Section 3.2.1, the construction of a finite dimen-

sional subspace of H2
0 (Ω) is a nontrivial task because there is no guarantee that the discretization of

neighboring domains is smooth enough across shared boundaries to satisfy the H2(Ω) requirement.

In order to handle multi-patch geometries, we will recast the biharmonic problem in terms of the

following Lagrange multiplier formulation: find u ∈ Xb, λ0 ∈M0 and λ1 ∈M1 such that:


ab(u,v)+ b0(λ0,v)+ b1(λ1,v) = l(v) ∀v ∈ Xb,

b0(µ0,u) = 0 ∀µ0 ∈M0,

b1(µ1,u) = 0 ∀µ1 ∈M1,

(3.16)
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where

Xb B {v ∈ L2(Ω) | v |Ωk
∈ H2(Ωk), 1 ≤ k ≤ K and v |∂Ω =

∂v

∂n
|∂Ω = 0}, (3.17)

is an unconstrained broken Sobolev space endowed with the norm ‖u‖H2
∗ (Ω)
=

(∑K
k=1 ‖u‖H2(Ωk )

)1/2
,

M0 andM1 are Lagrange multiplier spaces, and b0 and b1 impose the required constraints on u to

satisfy the H2 requirement. We will define b0 and b1 in the following section.

Remark 2. Strictly speaking, the restriction of u ∈ H2(Ω) to the boundary ∂Ω is ill-defined. To

rigorously define the value of u and its normal derivative on ∂Ω, we need the help of the trace

operator T . A standard trace theorem states [89]: Given Ω with a boundary ∂Ω of class Ck,1 (i.e.,

k times continuously differentiable and its k th order derivatives are Lipschitz continuous). Assume

that l ≤ k. Then the mapping

u→ {Tu,T
∂u
∂n
, . . . ,T

∂lu
∂ln
}, (3.18)

is a bounded linear operator from Hk+1(Ω) onto
∏l

j=0 Hk− j+ 1
2 (∂Ω). And if u ∈ Hk+1(Ω)∩C∞(Ω),

we have the following relation

{u,
∂u
∂n
, . . . ,

∂lu
∂ln
} = {Tu,T

∂u
∂n
, . . . ,T

∂lu
∂ln
} (3.19)

Hence, for u ∈ H2(Ω), we have Tu ∈ H
3
2 (∂Ω) and T ∂u

∂n ∈ H
1
2 (∂Ω). If u◦F ∈ H2(Ω̂) and each entries

of ∇F−1 are in L∞(Ω), then [90]


∂u◦F
∂ξ ◦F−1

∂u◦F
∂η ◦F−1

 ∈ H1(Ω)2. (3.20)

As a result, T
(
∂u◦F
∂ξ ◦F−1

)
∈ H

1
2 (∂Ω) and T

(
∂u◦F
∂η ◦F−1

)
∈ H

1
2 (∂Ω).

This result guarantees H2
0 (Ω) and the inter-patch constraints that will be discussed in the

next section are all well-defined. In order to avoid cumbersome notation, the trace operator T(·) is

suppressed and we will use { ∂u
∂ξ ,

∂u
∂η } to refer to { ∂u◦F

∂ξ ◦F−1, ∂u◦F
∂η ◦F−1}.
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3.2.3 Dual-compatible C1 constraints

We now develop a set of constraints to impose C1 continuity across patch boundaries under

the dual mortar framework. Since C1(Ω) ⊂ H2(Ω), we will be able to use these constraints to solve

the multi-patch biharmonic problem.

To illustrate our method, we consider the construction of C1 constraints for the two-patch

domain shown in Figure 3.2. We call Ωs the slave domain and Ωm the master domain. For a

function u ∈ C1(Ωs ∪Ωm) with

u =


us in Ωs

um in Ωm,

(3.21)

and us ∈ C1(Ωs), um ∈ C1(Ωm) the following two constraints are required across the intersection

Γsm:

[u]Γsm = 0, (3.22a)[
∂u
∂n

]
Γsm

= 0, with n = ns = −nm, (3.22b)

where nk is the outward normal direction of ∂Ωk and

[·]Γsm B ·|Ωs − ·|Ωm (3.23)

is the jump operator. The continuity constraint (3.22a) can naturally be incorporated into the

framework of the dual mortar formulation. The smoothness constraint (3.22b), however, can not

be directly imposed. First, the existence of a dual basis for ∂Ni

∂n |Γsm is doubtful. Even if these dual

basis functions do exist, since they are biorthogonal to the normal derivative of the basis functions,

their formulation will depend on the parameterization of Γsm and the geometric information of Ωs.

This complex geometric dependence would destroy the simplicity of the dual basis formulation. To

overcome this issue, we instead propose a smoothness constraint involving parametric derivatives

only.
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ηm
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n
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ξs
n

ηsEsm

Ωs Ωm

Figure 3.2: A two-patch planar domain Ω consisting of two patches Ωs and Ωm that are defined by
the two mappings Fs and Fm.

Lemma 1. Given two differentiable bijective geometric mappings Fs : Ω̂s → Ωs and Fm : Ω̂m →

Ωm, a C0-continuous function u is C1-continuous in the physical domain if and only if[
∂u
∂ξs

]
Γsm

= 0 and
[
∂u
∂ηs

]
Γsm

= 0. (3.24)

Proof. It suffices to consider two neighboring patches as shown in Figure 3.2. In this configuration,

if u is a C0-continuous function then [ ∂u
∂ηs
]Γsm = 0. If u is also C1-continuous, we have

0 =
[
∂u
∂n

]
Γsm

=

[
∂u
∂ξs

]
Γsm

∂ξs

∂n
+

[
∂u
∂ηs

]
Γsm

∂ηs

∂n
=⇒

[
∂u
∂ξs

]
Γsm

∂ξs

∂n
= 0 (3.25)

The fact that Fs is bijective and ∂ηs
∂n = 0 indicates ∂ξs

∂n , 0. Hence,
[
∂u
∂ξs

]
Γsm

= 0. On the other hand,


[
∂u
∂ξs

]
Γsm

= 0[
∂u
∂ηs

]
Γsm

= 0
=⇒

[
∂u
∂n

]
Γsm

=

[
∂u
∂ξs

]
Γsm

∂ξs

∂n
+

[
∂u
∂ηs

]
Γsm

∂ηs

∂n
= 0 (3.26)

This concludes the proof. �

Hence, the constraints in (3.24) are equivalent to constraint (3.22b). On an intersection that

is parallel to the ηs direction in the parametric domain, the constraint
[
∂u
∂ξs

]
Γsm

= 0 is utilized; on an
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intersection that is parallel to the ξs direction in the parametric domain, the constraint
[
∂u
∂ηs

]
Γsm

= 0

is utilized.

Remark 3. In order to demonstrate the advantages of the constraints in (3.24), we consider the

following intergral:∫
Γsm

∂Na(ξs,ηs)

∂ξs
N̂j(ηs)dΓ =

∫
Γsm

∂Nnξs−1(1)Ni(ηs)

∂ξs
N̂j(ηs)dΓ

=
∂Nnξs−1(1)

∂ξs

∫
Γsm

Ni(ηs)N̂j(ηs)dΓ
i, j ∈

{
1,2, . . . ,nηs

}
(3.27)

where nξs and nηs are the number of nodes in the ξs and ηs directions of the slave patch, respec-

tively, and the index a = nξsi−1. This integral is one term that is involved in the discretization of

the constraint (3.22b) and is constructed by a Lagrange multiplier basis function N̂j(ηs) and an

activated basis function of the slave patch Na(ξs,ηs) that is one column away from the intersection

(denoted by the blue triangles in Figure 3.2). Due to the tensor product structure of multivariate

spline basis functions, the derivative in one direction (ξs for this case) will not influence the contri-

butions coming from other directions. Hence, the dual basis function of an activated basis function

in the constraint
[
∂u
∂ξs

]
Γsm

= 0 can be constructed by the dual basis function of its ηs component

divided by
∂Nnξs−1(1)

∂ξs
.

The only issue now is how to evaluate the derivative of um w.r.t. ξs or ηs directions. This

can be done by considering the following chain rule


∂um
∂ξs

∂um
∂ηs

 =

∂ξm
∂ξs

∂ξm
∂ηs

∂ηm
∂ξs

∂ηm
∂ηs


T

·


∂um
∂ξm

∂um
∂ηm

 = ∇ET
sm ·


∂um
∂ξm

∂um
∂ηm

 . (3.28)

The Jacobian of the composition mapping Esm can be written as

∇Esm = ∇(F−1
m ◦Fs) = ∇(F−1

m ) · ∇Fs = (∇Fm)
−1 · ∇Fs . (3.29)
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3.2.4 The dual mortar formulation

The Lagrange multiplier formulation for the multi-patch biharmonic problem can be de-

fined as: find u ∈ Xb, λ0 ∈M0 and λ1 ∈M1 such that


ab(u,v)+ b0(λ0,v)+ b1(λ1,v) = l(v) ∀v ∈ Xb,

b0(µ0,u) = 0 ∀µ0 ∈M0,

b1(µ1,u) = 0 ∀µ1 ∈M1,

(3.30)

with

b0(λ0,v) =
∑
Γ∈S

∫
Γ

[u]Γλ0dΓ, (3.31a)

b1(λ1,v) =
∑
Γ∈S

(∫
Γ

[
∂u
∂ξs

]
Γ

λ1dΓ if Γ ‖ ηs or
∫
Γ

[
∂u
∂ηs

]
Γ

λ1dΓ if Γ ‖ ξs

)
. (3.31b)

The constrained function space required by the dual mortar formulation of the multi-patch bihar-

monic problem can then be defined as

Kb := {u ∈ Xb | b0(µ0,u) = 0 and b1(µ1,u) = 0∀(µ0, µ1) ∈ M0×M1} . (3.32)

3.2.5 Discretization

For each intersection, the two adjacent patches are classified as either slave Ωs or master

Ωm. One patch can, at the same time, be a master for one intersection and a slave for another inter-

section. To approximate the solution of the variational problem, we use B-spline basis functions

{N s
i }i∈Is and {Nm

i }i∈Im to discretize Ωs and Ωm, respectively. Note that, on the intersection, we se-

lect the side with finer trace mesh as the slave patch and denote the other side as the master patch.

This selection strategy can minimize the error from variational crimes [91], [92]. An appropriate

indexing is chosen so that there is no overlap between the index sets Is and Im (i.e., given ns basis

functions in Ωs, we can assume the starting index in the index set Im is ns + 1). The discretized
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geometrical mappings are represented by

Fs =
∑
i∈Is

Ps
i N s

i , (3.33)

Fm =
∑
i∈Im

Pm
i Nm

i , (3.34)

where the control points Ps
i ,P

m
i ∈ R

2. The discrete space Xh
b ⊂ Xb contains the discretized test and

weighting functions. In other words,

uh =
∑

i∈Is∪Im

UiNi, vh =
∑

i∈Is∪Im

ViNi (3.35)

with

Ni =


N s

i i ∈ Is,

Nm
i i ∈ Im.

(3.36)

The discrete Lagrange multiplier spacesMh
0 ⊂M0 andMh

1 ⊂M
h
1 are created using the dual basis.

Depending on the orientation of the intersection, we have that

• for the intersection ξs = 0,

λh
0 =

nηs∑
i=1
Λ

0
i N̂ s

i (ηs), µh
0 =

nηs∑
i=1

δΛ0
i N̂ s

i (ηs)

λh
1 =

nηs∑
i=1
Λ

1
i

N̂ s
i (ηs)

c
, µh

1 =

nηs∑
i=1

δΛ1
i

N̂ s
i (ηs)

c
, c =

∂N s
2 (ξs)

∂ξs

����
ξs=0

,

(3.37)

• for the intersection ξs = 1,

λh
0 =

nηs∑
i=1
Λ

0
i N̂ s

i (ηs), µh
0 =

nηs∑
i=1

δΛ0
i N̂ s

i (ηs)

λh
1 =

nηs∑
i=1
Λ

1
i

N̂ s
i (ηs)

c
, µh

1 =

nηs∑
i=1

δΛ1
i

N̂ s
i (ηs)

c
, c =

∂N s
nξs−1(ξs)

∂ξs

�����
ξs=1

,

(3.38)
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• for the intersection ηs = 0,

λh
0 =

nξs∑
i=1
Λ

0
i N̂ s

i (ξs), µh
0 =

nξs∑
i=1

δΛ0
i N̂ s

i (ξs)

λh
1 =

nξs∑
i=1
Λ

1
i

N̂ s
i (ξs)

c
, µh

1 =

nξs∑
i=1

δΛ1
i

N̂ s
i (ξs)

c
, c =

∂N s
2 (ηs)

∂ηs

����
ηs=0

,

(3.39)

• for the intersection ηs = 1,

λh
0 =

nξs∑
i=1
Λ

0
i N̂ s

i (ξs), µh
0 =

nξs∑
i=1

δΛ0
i N̂ s

i (ξs)

λh
1 =

nξs∑
i=1
Λ

1
i

N̂ s
i (ξs)

c
, µh

1 =

nξs∑
i=1

δΛ1
i

N̂ s
i (ξs)

c
, c =

∂N s
nηs−1(ηs)

∂ηs

�����
ηs=1

.

(3.40)

By substituting the discretized displacement field and Lagrange multipliers into the bilinear

form ab(·, ·), b0(·, ·) and b1(·, ·), we obtain the following stiffness and constraint matrices

VT KbU = ab(uh,vh) and

δΛ0

δΛ1


T

BbU =

b0(µ

h
0,u

h)

b1(µ
h
1,u

h)

 . (3.41)

The remaining question is how to effectively construct the vector basis (in matrix form Cb) of the

null space of Bb such that the resulting basis functions (constructed by Equation (3.5)) ofKh
b ⊂ Kb

have compact support and lead to a sparse stiffness matrix in (5.11).

3.3 Building a basis for the null space of Bb

3.3.1 The two-patch case

Recall from Section 3.1 that for a constraint matrix taking the form (3.6) the corresponding

operator C can be constructed in an elegant manner via Equation (3.7). In this section, we will

show how to recover form (3.6) from the constraint matrix Bb via a simple linear transformation.

We first classify the basis functions of Xh
b into five different types, depending on their proximity to

an interface, as shown in Figure 3.2:
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1. The basis functions N s
i such that supp(N s

i )
⋂
Γsm = ∅ and supp(

∂Ns
i

∂ξs
)
⋂
Γsm , ∅ (the second

closest column of slave basis functions to the intersection Γsm), whose indices are denoted

by the index set Ii. (denoted by blue triangles)

2. The basis functions N s
i such that supp(N s

i )
⋂
Γsm , ∅ (the column of slave basis functions on

the intersection Γsm), whose indices are denoted by the index set Iii. (denoted by red squares)

3. The basis functions Nm
i such that supp(Nm

i )
⋂
Γsm , ∅ (the column of master basis functions

on the intersection Γsm), whose indices are denoted by the index set Iiii. (denoted by green

circles)

4. The basis functions Nm
i such that supp(Nm

i )
⋂
Γsm = ∅ and supp(

∂Nm
i

∂ξs
)
⋂
Γsm , ∅ (the second

closest column of master basis functions to the intersection Γsm), whose indices are in the

index set Iiv. (denoted by purple diamonds)

5. The basis functions Nm
i whose values and first order derivative values in the ξs direction are

zero on Γsm, whose indices are denoted by the index set Iv. (denoted by grey circles)

Since the structure of the constraint matrix Bb depends on the index sets Is and Im and the

ordering of the Lagrange multiplier basis functions we introduce two permutation matrices Pc and

Pr (this step is not neccessary from the implementation point-of-view, but is helpful during the

derivation, especially for multi-patch problems). We define the column-wise permutation matrix

Pc as 

Ii

Iii

Iiii

Iiv

Iv


= Pc


Is

Im

 , (3.42)

where Ii is the vector form of the index set Ii. We also define a row-wise permutation matrix Pr

such that the permuted constraint matrix can be written in the partitioned form

Bp = PrBbPT
c =


B1

1 B2
1 B3

1 B4
1 0

0 B2
2 B3

2 0 0

 , (3.43)
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where B1
1 is the contribution of the first type of B-spline basis function in the discretization of b1

and B2
2 is the contribution of the second type of B-spline basis function in the discretization of

b0. Under the row-wise permutation matrix Pr , B1
1 and B2

2 become identity submatrices. Under a

rank-preserving transformation T we can eliminate the submatrix B2
1 such that

TBp =

 I B3
1−B2

1B3
2 B4

1 0

B3
2 0 0

 . (3.44)

We may now take

Cp =



B2
1B3

2−B3
1 −B4

1 0

−B3
2 0 0

I


. (3.45)

The vector basis of the null space of Bb can now be obtained from

Cb = PT
c Cp. (3.46)

Examples of basis functions, represented by vectors of Cb, are shown in Figure 3.3.

Figure 3.3: Two exemplary basis functions in the constrained space Kh
b .

3.3.2 The multi-patch case

To extend this approach to more complex geometries requires the ability to stitch together

multiple patches as shown in Figure 3.4. To build the null space of a constraint matrix in the
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neighborhood of a vertex requires special care. From an implementation perspective, if we naively

let the Lagrange multiplier spaces along all the interfaces adjacent to the vertex have the same

dimension as the univariate spline basis along the slave side of the interface, there will be basis

functions which serve as both slave and master. As an example, consider the the basis functions

corresponding to the black pentagons of patchΩ2 in Figure 3.4. As a result, there is no permutation

under which the constraint matrix B can be modified to form (3.6) so that the basis of the null

space can be found in a trivial way. Additionally, although the constraint matrices defined on each

interface adjacent to a vertex are full row rank, the assembled constraint matrix B may not be full

row rank. To overcome this problem, one may adopt matrix factorization techniques to solve the

null space problem of a general constraint matrix B, including LU, QR, SVD, etc. For example, a

rank-revealing QR factorization of a rank-deficient constraint matrix B yields

BP =Q

R1 R2

0 0

 (3.47)

where P is a permutation matrix, Q is a unitary matrix, R1 is an upper triangular matrix and R2 is

a rectangular matrix. The vector basis of the null space can then be taken to be

C = P

−R−1

1 R2

I

 . (3.48)

This type of global factorization has been utilized for patch coupling problems in [93]–[95]. How-

ever, it requires a global factorization of the entire constraint matrix B, and fails to leverage the

local properties of the dual basis. Moreover, the sparsity of the resulting constrained stiffness ma-

trix might be negatively impacted since the inverse of R1 is a dense matrix. Additionally, inf-sup

stability may be violated and pathologies can be activated such as spurious oscillations and lock-

ing [52]. For 2nd order problems, one approach is to reduce the polynomial order of elements

adjacent to vertices by one [49]–[51], [53]. Then the modified Lagrange multiplier discretization

is a subspace of the trace space of the slave patch of codimension 2. By reducing the number of

constraints, the basis functions in the neighborhood of vertices can now be considered masters. In

addition, the modified Lagrange multiplier discretization is inf-sup stable.
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We introduce a sixth kind of B-spline basis function near a vertex v ∈ V,

6. The basis function Ni such that supp(Ni)
⋂
v , 0, or supp( ∂Ni

∂ξ )
⋂
v , 0, or supp( ∂Ni

∂η )
⋂
v , 0

or supp( ∂
2Ni

∂ξ∂η )
⋂
v , 0, whose indices are denoted by the index set Ivi (denoted by black

pentagons in Figure 3.4).

The definitions of the other five kinds of B-spline basis functions remain the same except that their

intersection with the sixth kind are excluded, that is

Ik = Ik − Ivi

⋂
Ik, k ∈ {i,ii, . . . ,v}. (3.49)

Ω1

Ω2 Ω3

Figure 3.4: A three-patch planar domain Ω consisting of Ω1, Ω2 and Ω3.

Global dual basis multi-patch treatment

In this approach, we reduce the number of constraints on each interface such that all of the

sixth kind of B-spline basis functions can be classified as masters. For the biharmonic problem this

requires a reduction of four constraints per vertex per patch. We accomplish this by coarsening the
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Figure 3.5: A coarsening procedure for cubic B-spline basis functions. Top: original cubic ba-
sis functions. Bottom: basis functions of the coasened mesh, where two knots on each end are
removed.

mesh in the neighborhood of each vertex. Specifically, we remove the two knots adjacent to each

vertex. An example of this coarsening procedure for cubic univariate B-spline basis functions is

shown in Figure 3.5. The corresponding global dual basis can then be constructed by using (4.1).

For a set of B-spline basis functions {Ni}
n
i=1 and the corresponding coarsened global dual basis{

N̂G
i

}n−4
i=1 , the biorthogonality relation is then given as∫

Γ

N̂G
i Nj+2dΓ = δi j, ∀1 ≤ i, j −2 ≤ n−4. (3.50)

In other words, the biorthogonality relation holds for all but the two basis functions nearest the

vertices.

A column-wise permutation matrix Pc which handles the multi-patch case can be defined

as 

Ii

Iii

Iiii

Iiv

Iv

Ivi


= Pc


I1

I2
...


. (3.51)
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With the help of a row-wise permutation matrix, Pr , the permuted constraint matrix can be written

in the partitioned form

Bmod
p := PrBmod

b PT
c =


B1

1 B2
1 B3

1 B4
1 0 B6

1

0 B2
2 B3

2 0 0 B6
2

 , (3.52)

where Bmod
b is the constraint matrix constructed from the coarsened dual basis, B1

1 is the contribu-

tion of the first type of B-spline basis function in the discretization of b1, and B2
2 is the contribution

of the second type of B-spline basis function in the discretization of b0. Under the row-wise per-

mutation matrix Pr , B1
1 and B2

2 become identity submatrices. Note that in the multi-patch case,

basis functions in the neighborhood of in-domain vertices are excluded from the definitions of the

first four types of B-spline basis functions. As a result, there is no basis function that will serve

as both slave and master. As for the two patch case, the vector basis of the null space of Bmod
b ,

denoted by Cmod
b , can now be obtained from Equation (3.46), with

Cmod
p =



B2
1B3

2−B3
1 −B4

1 0 −B6
1

−B3
2 0 0 −B6

2

I


. (3.53)

In order to guarantee the well-posedness of the mortar formulation and to improve the

approximation, we further apply two continuity constraints at each vertex


us(v) = um(v)

∂us(v)

∂ξs
=
∂um(v)

∂ξs
if Γ ‖ ηs or

∂us(v)

∂ηs
=
∂um(v)

∂ηs
if Γ ‖ ξs

, (3.54)

where v is the position of a vertex. The matrix form of the pointwise constraints (3.54) is denoted

by Bv. Hence, in the presence of in-domain vertices, the constraint matrix Bb is formed from both

applying constraints weakly through the coarsened dual basis functions along each interface and
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Figure 3.6: The activated degrees of freedom (red dots) involved in the constraint matrix Bv in
section 3.3.2.

by applying constraints strongly at each vertex as

Bb =


Bv

Bmod
b

 . (3.55)

The null space of Bb is the intersection of the null space of Bv and the null space of Bmod
b . As a

result, Cb is the vector basis of the null space of Bv constructed from ImCmod
b . First, we split the

column vectors of Cmod
b into two matrices

C1 := {v ∈ Cmod
b : Bvv = 0},

C2 := {v ∈ Cmod
b : Bvv , 0}.

(3.56)

An example of this split is given in Figure 3.7. C1 contains vectors of Cmod
b that are also in the

null space of Bv. Thus, they contribute to part of Cb. The null space of Bv from ImC2 can

be constructed as C2C̄, where C̄ is the vector basis of the null space of B̄ = BvC2 and can be

constructed through the factorization in (3.48). Since for each patch, only at most four degrees of

freedom per vertex per patch are involved in the formulation of Bv (see Figure 3.6), the number of

vectors in C2 is very small and the cost of the factorization of B̄ is negligible. The vector basis of
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the null space of Bb can now be given as

Cb =
[
C1 C2C̄

]
. (3.57)

Figure 3.7: Activated degrees of freedom of the vector basis (blue) defined by the columns of
Cmod

b . Left: A vector basis classified as C1; Right: A vector basis classified as C2

Remark 4. The Bézier dual basis can also be coarsened by replacing the three closest basis

functions at each vertex by their summation. In other words, for a set of Bézier dual basis functions

{N̂ B
i }

n
i=1, the coarsened Bézier dual basis functions {N̂mod

i }n−4
i=1 are defined as follows

N̂mod
i =


N̂ B

1 + N̂ B
2 + N̂ B

3 i = 1,

N̂ B
n + N̂ B

n−1+ N̂ B
n−2 i = n−4,

N̂ B
i+3 otherwise.

(3.58)

This modification preserves the biorthogonality relation (3.50). However, as can be seen from

numerical examples, the modified Bézier dual basis demonstrate poor performance. Hence, in the

next subsection, we will introduce a multi-patch treatment for Bézier dual basis functions without

resorting to a modification at each vertex.
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Bézier dual basis multi-patch treatment

In this approach, the basis functions in the discrete Lagrange multiplier spaces Mh
0 and

Mh
1 are classified according to their proximity to a vertex. The basis functions inMh

v are those

in bothMh
0 andMh

1 whose values and derivatives are non-zero at a vertex. The remaining basis

functions are put inMh
inter. The constraint matrix can then be written as

Bb =


Bv

Binter

 (3.59)

where Bv is the matrix form of b0 and b1 restricted to the functions inMh
v and Binter is the matrix

form of b0 and b1 restricted to the functions inMh
inter. Note that Binter has the same structure as

Bmod
b in Section 3.3.2. The basis vectors of the null space of Bint can be constructed from (3.53) and

is denoted by Cinter. Using the approach outlined in Section 3.3.2, we construct the basis vectors

of the null space of Bv from ImCinter. Cinter can also be split into two submatrices C1 and C2.

However, owing to the fact that Bv is constructed variationally, slightly more degrees of freedom

are involved than in the approach described in Section 3.3.2 (see Figure 3.8). However, thanks

to the locality of the Bézier dual basis, the number of vectors in C2 is fixed. An example of this

split is given in Figure 3.9. Following the same procedure as described in Section 3.3.2, we can

construct Cb from Equation (3.57).

Remark 5. This approach can be directly extended to the global dual basis as well. However, as

can be seen from numerical examples, the global dual basis without the coarsening procedure is

not inf-sup stable.

3.4 Finite element error analysis

In this section, we study the finite element approximation of (3.30). Suppose that Xh
b ⊂ Xb,

Kh
b ⊂ Kb,Mh

0 ⊂M0 andMh
1 ⊂M1 are finite-dimensional linear subspaces of the spaces Xb, Kb,

M0, andM1.
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Figure 3.8: The degrees of freedom (red dots) involved in the constraint matrix Bv in section 3.3.2
formed from quadratic B-splines.

Figure 3.9: Activated degrees of freedom of the vector basis (blue) defined by columns of Cinter.
Left: A vector basis classified as C1; Right: A vector basis classified as C2

Lemma 2. (bounded above) The bilinear functionals ab(·, ·), b0(·, ·) and b1(·, ·) are all bounded;

i.e., there exists positive constants Ca, Cb0 and Cb1 such that

|ab(u,v)| ≤ Ca‖u‖H2
∗
‖v‖H2

∗
,

|b0(µ0,u)| ≤ Cb0 ‖µ0‖
H−

3
2
‖u‖H2

∗
,

|b1(µ1,u)| ≤ Cb1 ‖µ1‖
H−

1
2
‖u‖H2

∗
,

∀u,v ∈ Xb,

∀µ0 ∈M0,u ∈ Xb,

∀µ1 ∈M1,u ∈ Xb.

(3.60)
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Proof. The continuity of ab(·, ·) follows from the Cauchy-Schwarz inequality, the continuities of

b0(·, ·) and b1(·, ·) follow from the definition of the dual norm and the trace theorem. �

Lemma 3. (bounded below) The bilinear functional ab(·, ·) is coercive on the space Kh
b that is

constructed from both the global dual basis functions and the Bézier dual basis functions, i.e.,

∃ca > 0 that is independent of the mesh size h such that ∀vh ∈ Kh
b , ab(v

h,vh) ≥ ca‖v
h‖H2

∗
. (3.61)

Proof. We introduce the function space X̄b as all functions in Xb that satisfy the pointwise con-

straint (3.54) on each vertex and are also C∞ in each patch. Then we have the following inclusion,

Kh
b ⊂ X̄b ⊂ Xb. For the case of the Bézier dual basis, the inclusion comes from (2.40); for the

case of the global dual basis, the inclusion comes from the pointwise constraints at the vertex. We

consider the coercivity of ab(·, ·) on X̄b. Suppose that this statement is false, then there exists a

sequence {vn}
∞
n=1 ∈ X̄b such that

K∑
k=1
|vn |H2(Ωk )

≤
1
n

and
K∑

k=1
‖vn‖H2(Ωk )

= 1. (3.62)

For any 1 ≤ k ≤ K , the sequence
{
vn |Ωk

}∞
n=1 is bounded in H2(Ωk). Hence, there exists a subse-

quence
{
(vn)m |Ωk

}∞
m=1 such that

(vn)m |Ωk
⇀ v |Ωk

weakly in H2(Ωk). (3.63)

By the Rellich-Kondrachov theorem,
{
(vn)m |Ωk

}∞
m=1 converges to v |Ωk

strongly in H1(Ωk). In other

words,

lim
m→∞

‖(vn)m |Ωk
− v |Ωk

‖H1(Ωk )
= 0. (3.64)

From |vn |H2(Ωk )
→ 0, we have that

{
(vn)m |Ωk

}∞
m=1 is a Cauchy sequence in H2(Ωk). Thus, we have

that v |Ωk
∈ H2(Ωk) and

lim
m→∞

‖(vn)m |Ωk
− v |Ωk

‖H2(Ωk )
= 0. (3.65)

50



From the approximation theory,

inf
rkn∈P1(Ωk )

‖vn− r k
n ‖H1(Ωk )

≤ C |vn |H2(Ωk )
≤

C
n

(3.66)

where P1(Ωk) is the 1st order polynomial space on Ωk . Hence,

‖(r k
n )m− v‖H1(Ωk )

≤ ‖(r k
n )m−(vn)m‖H1(Ωk )

+ ‖(vn)m− v‖H1(Ωk )
→ 0. (3.67)

This means v |Ωk
is a linear function on Ωk . If Ωk is a boundary element (i.e. ∂Ωk

⋂
∂Ω , ∅), the

only linear functions that satisfies the boundary condition is the zero function. Hence,

‖(vn)m‖H2(Ωk )
= ‖(vn)m− v‖H2(Ωk )

→ 0. (3.68)

If patch Ωl is coupled with Ωk along the intersection Γkl ‖ ηk , then on both ends a,b of Γkl we have

v(a) = 0, v(b) = 0,
∂v(a)
∂ξk

= 0, and
∂v(b)
∂ξk

= 0. (3.69)

Hence, v |Ωl
= 0. Similar arguments can be applied to all patches, leading to

K∑
k=1
‖(vn)m‖H2(Ωk )

→ 0. (3.70)

This is inconsistent with (3.62). As a result, (3.61) holds. �

Theorem 1. There exists a unique solution uh ∈ Kh
b that satisfies (3.14) for all vh ∈ Kh

b , with Kh
b

constructed using either the Bézier or global dual basis.

Proof. Thanks to Lemma 2 and Lemma 3, the well-posedness of problem (3.14) in Kh
b follows

from the Lax-Milgram theorem [92].

�
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Lemma 4. (Strang’s lemma) Let u ∈ H2
0 (Ω) satisfy problem (3.14) for all v ∈ H2

0 (Ω), then the error

between u and uh is given by

‖u−uh‖H2
∗
≤

(
1+

Ca

ca

)
inf

vh∈Kh
b

‖u− vh‖H2
∗
+

1
ca

sup
wh∈Kh

b
\{0}

|ab(u−uh,wh)|

‖wh‖H2
∗

, (3.71)

where the first term on the righthand side is often called the approximation error and the second

term is often called the consistency error.

Proof. See [92]. �

From Strang’s lemma, we may now obtain the following result by expanding the term

ab(u−uh,wh).

Theorem 2. The error between u and uh is given by

‖u−uh‖H2
∗
≤

(
1+

Ca

ca

)
inf

vh∈Kh
b

‖u− vh‖H2
∗
+

cb

ca

∑
Γ∈S

B, (3.72)

with

B =


inf

λh0 ∈M
h
0

‖
∂∆u
∂n
+ rηs −λ

h
0 ‖H−

3
2 (Γ)
+ inf
λh1 ∈M

h
1

‖∆u
∂ξs

∂n
−λh

1 ‖H−
1
2 (Γ)

Γ ‖ ηs,

inf
λh0 ∈M

h
0

‖
∂∆u
∂n
+ rξs −λ

h
0 ‖H−

3
2 (Γ)
+ inf
λh1 ∈M

h
1

‖∆u
∂ηs

∂n
−λh

1 ‖H−
1
2 (Γ)

Γ ‖ ξs,

(3.73)

where

rηs = ∂ηs

(
∆u

∂ηs

∂n
|Γ′|

)
1
|Γ′|

, rξs = ∂ξs

(
∆u

∂ξs

∂n
|Γ′|

)
1
|Γ′|

, (3.74)

with

|Γ′| =

√
∂x
∂ηs

2
+
∂y

∂ηs

2
Γ ‖ ηs

|Γ′| =

√
∂x
∂ξs

2
+
∂y

∂ξs

2
Γ ‖ ξs

(3.75)

and cb is a constant independent of the mesh size.
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Proof. Here we only discuss the stituation where Γ ‖ ηs. By Green’s theorem, we have that

ab(u−uh,wh) = ab(u,wh)− 〈 f ,wh〉Ω

= 〈∆2u,wh〉Ω+
∑
Γ∈S

(∫
Γ

∆u
[
∂wh

∂n

]
Γ

dΓ−
∫
Γ

∂∆u
∂n

[
wh]

Γ
dΓ

)
− 〈 f ,wh〉Ω

=
∑
Γ∈S

(∫
Γ

∆u
[
∂wh

∂n

]
Γ

dΓ−
∫
Γ

∂∆u
∂n

[
wh]

Γ
dΓ

)
=

∑
Γ∈S

(∫
Γ

∆u
∂ξs

∂n

[
∂wh

∂ξs

]
Γ

dΓ+
∫
Γ

∆u
∂ηs

∂n

[
∂wh

∂ηs

]
Γ

dΓ−
∫
Γ

∂∆u
∂n

[
wh]

Γ
dΓ

)
,

(3.76)

where the second term can be rewritten as∫
Γ

∆u
∂ηs

∂n

[
∂wh

∂ηs

]
Γ

dΓ =
∫ 1

0
∆u

∂ηs

∂n

[
∂wh

∂ηs

]
Γ

|Γ′|dηs

= −

∫ 1

0
∂ηs

(
∆u

∂ηs

∂n
|Γ′|

) [
wh]

Γ
dηs

= −

∫
Γ

rηs
[
wh]

Γ
dΓ.

(3.77)

Hence,

ab(u−uh,wh) =
∑
Γ∈S

(∫
Γ

∆u
∂ξs

∂n

[
∂wh

∂ξs

]
Γ

dΓ−
∫
Γ

(
∂∆u
∂n
+ rηs

) [
wh]

Γ
dΓ

)
. (3.78)

Next, using the constraints in the definition of the function spaceKh
b , we have that, for any λh

0,λ
h
1 ∈

Mh
0 ×M

h
1 ,

∑
Γ∈S

(∫
Γ

(
∂∆u
∂n
+ rηs

) [
wh]

Γ
dΓ

)
=

∑
Γ∈S

(∫
Γ

(
∂∆u
∂n
+ rηs −λ

h
0

) [
wh]

Γ
dΓ

)
≤

∑
Γ∈S
‖
∂∆u
∂n
+ rηs −λ

h
0 ‖H−

3
2 (Γ)

(
‖wh

s ‖H
3
2 (Γ)
+ ‖wh

m‖H
3
2 (Γ)

)
,

(3.79)

and∑
Γ∈S

(∫
Γ

∆u
∂ξs

∂n

[
∂wh

∂ξs

]
Γ

dΓ
)
=

∑
Γ∈S

(∫
Γ

(
∆u

∂ξs

∂n
−λh

1

) [
∂wh

∂ξs

]
Γ

dΓ
)

≤
∑
Γ∈S
‖∆u

∂ξs

∂n
−λh

1 ‖H−
1
2 (Γ)

(
‖
∂wh

s

∂ξs
‖

H
1
2 (Γ)
+ ‖

∂wh
m

∂ξs
‖

H
1
2 (Γ)

)
.

(3.80)
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From the trace theorem, we obtain the following conclusion:

sup
wh ∈Kh

b
\{0}

|ab (u−u
h ,wh ) |

‖wh ‖
H2
∗ (Ω)

≤cb
∑
Γ∈S

(
inf

λh0 ∈M
h
0
‖ ∂∆u∂n +rηs−λ

h
0 ‖

H
− 3

2 (Γ)
+inf

λh1 ∈M
h
1
‖∆u ∂ξs∂n −λ

h
1 ‖

H
− 1

2 (Γ)

)
. (3.81)

�

Hence, the error of finite element approximations in the broken H2
∗ (Ω) norm are bounded

by the best H2(Ω) approximation of uh ∈ Kh
b and the best approximations of µh

0 ∈ M
h
0 , µh

1 ∈ M
h
1

in H−
3
2 (Γ) and H−

1
2 (Γ), respectively.

Now, let P0 and P1 be L2 projection operators inMh
0 andMh

1 . Then the approximation of

u in the fractional Sobolev space Hs− 1
2 (Γ) is given by [50], [96]

‖u−Piu‖L2(Γ) ≤ Chmin{s,(pi)+1}− 1
2 ‖u‖

Hs− 1
2 (Γ)

, i ∈ {0,1} , (3.82)

where p0 and p1 are the polynomial order thatMh
0 orMh

1 reproduce, respectively.

Now, recalling the standard Aubin-Nitsche duality argument [91], [97] and applying esti-

mates (3.82) and the trace theorem, we get


‖u−P0u‖

H
− 3

2 (∂Ωk )
≤Ch

3
2
k
‖u−P0u‖

L2(∂Ωk )
≤Ch

min{s,p0+1}+1
k

‖u‖
H
s− 1

2 (∂Ωk )
≤Ch

min{s,p0+1}+1
k

‖u‖Hs (Ωk )
,

‖u−P1u‖
H
− 1

2 (∂Ωk )
≤Ch

1
2
k
‖u−P1u‖

L2(∂Ωk )
≤Chmin{s,p1+1}

k
‖u‖

H
s− 1

2 (∂Ωk )
≤Chmin{s,p1+1}

k
‖u‖Hs (Ωk )

.

(3.83)

Although the approximation power of Kh
b remains unknown, the ability of Xh

b to approximate

functions u ∈ Hs(Ω) is given by

inf
vh∈Xh

b

‖u− vh‖Hl(Ωk )
≤ Chmin{s,p+1}−l

k ‖u‖Hs(Ωk ), (3.84)

where p is the polynomial order that Xh
b reproduces. In order to find the best approximation error

of Kh
b , we need the following assumption:

Assumption 1. (inf-sup) Assume that the bilinear functionals b0(·, ·) and b1(·, ·) are inf-sup stable

in the discretized formulation, i.e., there exist positive constants β0 and β1 independent of the mesh
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size such that

inf
µh0∈M

h
0

sup
uh∈Xh

b
\{0}

b0

(
µh

0,u
)

‖uh‖H2
∗
‖µh

0 ‖H−
3
2

≥ β0, (3.85)

inf
µh1∈M

h
1

sup
uh∈Xh

b
\{0}

b1

(
µh

0,u
)

‖uh‖H2
∗
‖µh

1 ‖H−
1
2

≥ β1. (3.86)

Now we may bound the best approximation error of Kh
b by the best approximation error of

Xh
b via the following result.

Theorem 3. Under Lemma 2 and Assumption 1, we have that, for any u ∈ Kb,

inf
vh∈Kh

b

‖u− vh‖H2
∗
≤

(
1+

Cb

β

)
inf

wh∈Xh
b

‖u−wh‖H2
∗

(3.87)

where β =min (β0, β1), Cb =max
(
Cb0,Cb1

)
.

Proof. See [92] or [48]. �

The optimality of uh ∈ Kh
b in H2

∗ requires the inf-sup stability of the bilinear functionals

b0 and b1. The analytical study of the inf-sup stability of these functionals is beyond the scope of

this research. Instead, we demonstrate the approximation ability of Kh
b by directly conducting H2

∗

projection in different numerical examples. We may now give the final estimate:

Theorem 4. Given Assumption 1, we have that, on a smooth discretization i.e. Fi ∈ (C∞(Ωi))
2, for

any u ∈ Hs(Ω),

‖u−uh‖2
H2
∗ (Ω)
≤ C

K∑
k=1

h2σ
k ‖u‖

2
Hs(Ωk )

, (3.88)

where σ =min{s−2,p−1,p0+2,p1+1}.

Hence, for a smooth solution u, the optimality of the finite element approximation of the

proposed method requires that p0 ≥ p−3 and p1 ≥ p−2.
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Remark 6. Theorem 2 gives meaning to the Lagrange multipliers. In other words,


λ0 =

∂∆u
∂n
+ rηs,

λ1 = ∆u
∂ξs

∂n
,

Γ ‖ ηs or


λ0 =

∂∆u
∂n
+ rξs,

λ1 = ∆u
∂ηs

∂n
,

Γ ‖ ξs . (3.89)

If we apply the conventional C1 constraints [u]Γ = 0 and
[
∂u
∂n

]
Γ
= 0, then


λ0 =

∂∆u
∂n

,

λ1 = ∆u.
(3.90)

3.5 Numerical examples

In this section, we investigate the performance of the proposed method using both global

and Bézier dual basis functions on several challenging benchmark problems. The first example

is a two-patch coupling problem, where different discretizations and parameterizations are stud-

ied. To investigate the influence of the number of in-domain vertices, a three-patch coupling and

a five-patch coupling problem are studied. The approximation errors of each benchmark problem

are studied through the use of H2
∗ projection. To also demonstrate the advantages of the proposed

coupling method for 2nd order problems, we consider the transverse vibrations of an elastic mem-

brane on a nine-patch square domain. For the two-patch cases, results computed using the global

dual basis are labeled G-Qi while results computed using the Bézier dual basis are labeled B-Qi.

The subscript i denotes the degree. For the multi-patch cases, the methods tested are summarized

in Table 3.1. All problems are solved with the conjugate gradient module in Eigen [71].

3.5.1 The approximation power of dual basis functions

We study the approximation power of both global and Bézier dual basis functions by con-

sidering the L2 projection of a sinusoid function u(x) = sin(4πx) onto the domain [0,1]. The

L2-error of the Bézier dual basis is compared to that of the global dual basis in Figure 3.10. It

can be seen that the global dual basis functions, as predicted, converge optimally while the conver-
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Table 3.1: Summary of all the methods tested in Section 3.5.

Method Description Optimality

MG-Qi Using the global dual basis with the multi-patch treatment
described in Section 3.3.2.

Yes

MB-Qi Using the Bézier dual basis with the multi-patch treatment
described in Section 3.3.2. The coarsening procedure fol-
lows (3.58).

No, early domina-
tion of the consis-
tency error.

OG-Qi Using the global dual basis with the multi-patch treatment
described in Section 3.3.2.

No, the formulation
is not inf-sup sta-
ble.

OB-Qi Using the Bézier dual basis with the multi-patch treatment
described in Section 3.3.2.

No, but the dom-
ination of the
consistency error is
postponed.

gence of Bézier dual basis functions is sub-optimal and the error is O(h) for all tested polynomial

degrees.
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L
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B-Q1 B-Q2 B-Q3

Figure 3.10: A comparison of the convergence rates for global and Bézier dual basis functions for
the L2 projection of a sine function u(x) = sin(4πx) onto the domain [0,1].
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To better understand the cause of the poor approximation of the Bézier dual basis, we con-

sider the polynomial reproduction properties of the Bézier dual basis. The domain Ω is uniformly

partitioned into two elements since the Bézier dual basis is equivalent to the global dual basis on

a one element domain. The L2 approximation of the nth order Legendre polynomial is evaluated.

From this test, we can see that the Bézier dual basis functions can only reproduce the constant

function. The result for the 3rd order Bézier dual basis is shown in Figure 4.2. There are significant

discrepancies between the dual approximations and the corresponding polynomials for all Legen-

dre polynomials except the constant function. From the approximation theory, to achieve pth order

convergence rates requires the reproduction of polynomials up to p− 1th order. This explains the

sub-optimality of the Bézier dual basis in L2 projection. Moreover, for the same mesh, the error

increases as the polynomial order increases.

The sub-optimality of the Bézier dual basis may deteriorate the finite element approxima-

tion. From Theorem 4 and an Aubin-Nitsche duality argument, the expected convergence rates

of the proposed method with the Bézier dual basis are 1 in the H2
∗ norm and 2 in the L2 norm.

Although the poor approximation power is currently a flaw in the Bézier dual basis, its local sup-

port and straightforward construction make it an appealing choice in practical use. Additionally,

we have recently developed a technique that restores the optimal approximation of the Bézier dual

basis without appreciably changing the simplicity of construction. These results will be reported

in the following chapter.

3.5.2 The biharmonic problem on a two-patch domain

We now solve the biharmonic problem ∆2u = f on a square domain Ω = (0,1)× (0,1). A

manufactured solution is given by

u(x,y) = sin(2πx)sin(2πy)(xy(x−1)(y−1))2. (3.91)

This solution satisfies the homogeneous Dirichlet boundary condition (u = ∂u
∂n = 0) and is shown

in Figure 3.12d. The domain Ω is decomposed into two patches Ω1 = (0,0.4)× (0,1) and Ω2 =

(0.4,1)× (0,1), as shown in Figure 3.12. The right-hand side function f can be obtained by apply-

ing the biharmonic operator to u.
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Figure 3.11: The Legendre polynomials ( ) and the corresponding best L2 approximations ( )
by 3rd order Bézier dual basis functions defined on a two element domain. Bézier dual basis
functions can only replicate the constant function.

The sparsity patterns for the stiffness matrices corresponding to the uncoupled problem, the

coupled problem using the global dual basis, and the coupled problem using the Bézier dual basis

are shown in Figure 3.13. Note that the matrix constructed using the global dual basis is denser

than the matrix constructed using the Bézier dual basis.

We conduct convergence studies for p = 2,3,4,5 in both the L2 and H2
∗ norms for the mesh

shown in Figure 3.12a. The results are shown in Figure 3.14. Notice that despite the poor approx-

imability of the Bézier dual basis it performs surprisingly well in practice. As can be seen, both
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(a) Simple non-conforming
mesh

(b) Distorted non-conforming
mesh

(c) non-conforming mesh with
mismatched parameterizations

(d) The manufactured solution

Figure 3.12: The discretizations of the domain Ω ((a) - (c)) and the manufactured solution (d) with
the property u = ∂u

∂n = 0 on ∂Ω for the problem in Section 3.5.2.

the global and Bézier dual basis obtain optimal convergence rates in both norms for all polynomial

degrees. In fact, the convergence plots are almost identical between the global and Bézier dual ba-

sis. The influence of the consistency error of the Bézier dual basis cannot be observed for all tested

polynomial degrees. We conjecture that for biharmonic problems, the coefficient cb in (3.81) is so

small that the contribution of the consistency error in the finite element approximation is negligible.

To study the performance of the proposed method in the presence of mesh distortion and

mismatched parameterizations, we consider the meshes shown in Figure 3.12b and 3.12c. For the

distorted mesh, shown in Figure 3.12b, the proposed method with both global and Bézier dual basis

functions perform similarly with optimal convergence rates being achieved in all cases as shown

in Figure 3.15.
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(a) (b)

(c)

Figure 3.13: Stiffness matrix sparsity patterns for (a) the uncoupled linear system, (b) the coupled
linear system using the global dual basis, and (c) the coupled linear system using the Bézier dual
basis for the problem in Section 3.5.2. The stiffness matrices are computed from the two-patch
domain in Figure 3.12a after 4 levels of refinement.

For the mesh with mismatched parameterizations, shown in Figure 3.12c, the convergence

behavior of the Bézier dual basis, though optimal, deterioriates relative to the global dual basis as

shown in Figure 3.16. This indicates that the Bézier dual basis is more sensitive to mesh distortion

than the global dual basis. Interestingly, as the mesh is refined, the results obtained using the
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Figure 3.14: Convergence plots for the mesh shown in Figure 3.12a. Left: error measured in the
L2 norm. Right: error measured in the H2

∗ norm.

5th order global dual basis become sub-optimal. We speculate that this is caused by an inf-sup

instability in this specific problem.

For the degree mismatched case shown in Figure 3.12a, the convergence rates are between

pleft+1 and pleft+2 in the L2 norm, and between pleft−1 and pleft in the H2
∗ norm as expected for

all cases and shown in Figure 3.17.
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Figure 3.15: Convergence plots for the mesh shown in Figure 3.12b. Left: error measured in the
L2 norm. Right: error measured in the H2

∗ norm.
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Figure 3.16: Convergence plots for the mesh shown in Figure 3.12c. Left: error measured in the
L2 norm. Right: error measured in the H2

∗ norm.
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Figure 3.17: Convergence plots for the mesh shown in Figure 3.12a with mismatched degrees.
Left: error measured in the L2 norm. Right: error measured in the H2

∗ norm.

Although a functional analysis of the contribution of the consistency error in the finite

element approximation error is beyond the scope of this research and postponed for future work,

here we study the influence of the consistency error in a numerical manner. Since the finite element

error is composed of the approximation error and the consistency error, the effect of the consistency
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error can be demonstrated by a comparison between the finite element error and the approximation

error. The approximation error is the best H2
∗ approximation of u in the discretized weak C1 space

Kh
b , which is given as: find u ∈ Kh

b such that

〈vh,uh〉H2
∗
= 〈vh,u〉H2

∗
∀vh ∈ Kh

b . (3.92)

Plots of the approximation error for the proposed method for the meshes shown in Fig-

ure 3.12 are shown in Figure 3.18. As can be seen, the convergence plots of the approximation

error are identical to those of the finite element error in the H2
∗ norm. The approximation errors

for all cases are no more than 1% smaller than their finite element counterparts, which confirms

our conjecture that the contribution of the best approximation error for the Lagrange multipliers

(the consistency error) are negligible for the problems we tested. In addition, the approximation

error plots for the global dual basis also demonstrate wavy and less asymptotic behavior. For the

p= 5 mismatched non-conforming mesh case it also suffers from reduced convergence rates, which

confirms that the main cause of this phenomena in the finite element approximation is due to the

inf-sup instability.

3.5.3 The biharmonic problem on multi-patch domains

The biharmonic problem on a three-patch domain

We now examine the proposed method for multi-patch coupling. We first solve a bihar-

monic problem with the manufactured solution

u(x,y) = sin(2πx)sin(2πy) (y(3x− y)(3x+2y−9))2 , (3.93)

on the triangular domain decomposed into three patches as shown in Figure 3.19. Both multi-patch

treatments are tested in this problem.

The results are shown in Figure. 3.20. As can be seen, the MG method yields optimal con-

vergence rates in both measures for all tested polynomial orders. The MB method, on the other

hand, yields O(h) convergence in H2
∗ norm and O(h2) convergence in L2 norm. The poor per-

formance of the MB method is due to the consistency error, which can be verified by the optimal
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Figure 3.18: Convergence plots of the approximation error for the two-patch coupling problem
shown in Figure 3.12 and described in Section 3.5.2.

convergence rates in the approximation error (see Figure 3.21). Moreover, for p = 3,4,5, the finite

element error increases as the polynomial order increases, which is consistent with the approxi-

mation power of the Bézier dual basis (see Figure 3.10). Nevertheless, despite the sub-optimal

convergence for certain circumstances, the MB method still converges asymptotically for all tested

cases. The OG method yields optimal results for all tested polynomial orders except p = 5. The

sub-optimal rate for p = 5 in both the L2 and H2
∗ norms is due to the approximation error (see

65



(a) Non-conforming mesh (b) The manufactured solution

Figure 3.19: The non-conforming three-patch domain and the manufactured solution for the prob-
lem in Section 3.5.3.

Figure 3.21). Although the consistency error still influences the finite element approximation of

the OB method, the error level at which the consistency error dominates is much lower (104 times

lower in the L2 norm and 103 times lower in the H2
∗ norm) than that of the MB method. As a

result, for p = 2,3,4, the results obtained from the OB method demonstrate optimal convergence

with sub-optimal convergence only occurring at the finest mesh for p = 5. The approximation error

for both the MB and OB methods are optimal for all tested polynomial orders, which indicates the

inf-sup stability of the proposed method with the Bézier dual basis.

The biharmonic problem on a five-patch domain

To further study the effect of in-domain vertices, we solve a biharmonic problem on a

five-patch domain, as shown in Figure 3.22, with the manufactured solution

u(x,y) = sin(2πx)2 sin(2πy)2. (3.94)

The convergence behavior for all methods is shown in Figure 3.23. The approximation

error plots are shown in Figure 3.24. The results are similar to that of the three-patch case. For

the global dual basis, the MG method gives optimal convergence rates for both the L2 and H2

norms, while the OG method has an inf-sup instability, which disrupts convergence rates for fine

meshes. The OB method postpones the domination of the consistency error (i.e., postponed from
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Figure 3.20: Convergence plots for the three-patch problem in Section 3.5.3. Left: error measured
in L2 norm. Right: error measured in H2

∗ norm.

10−3 and 10−1 to 10−7 and 10−4 in the L2 and H2 norm, respectively) and significantly improves

convergence rates.

3.5.4 Transverse vibrations of an elastic membrane

We now study the OB method in the context of a 2nd-order eigenvalue problem. Of partic-

ular interest is the behavior of the highest frequencies in the system since they govern the critical

timestep size in an explicit time-stepping scheme. In particular, we consider the transverse vibra-

tion of a square, elastic membrane on the domain [0,3]× [0,3] with the nonconforming discretiza-
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Figure 3.21: Convergence plots of the approximation error for non-conforming three-patch cou-
pling in Section. 3.5.3.

(a) Non-conforming mesh (b) The manufactured solution

Figure 3.22: The non-conforming five-patch domain parameterization and the manufactured solu-
tion in Section 3.5.3.

tion shown in Figure 3.25. The natural frequencies and modes are governed by


∇2u(x,y)+ω2u(x,y) = 0, in Ω,

u(x,y) = 0 on ∂Ω,
(3.95)

where ω is the natural frequency. The exact natural frequencies are
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Figure 3.23: Convergence plots for the five-patch problem in Section 3.5.3. Left: error measured
in L2 norm. Right: error measured in H2

∗ norm.

ωmn = π

√(m
L

)2
+

( n
L

)2
, m,n = 1,2,3, . . . , (3.96)

where L is the length of the boundary.

The highest computed eigenvalues for the OB method are given in Table 3.2. As can be

seen, the weak C1 coupling dramatically reduces the highest eigenvalues for all tested cases. The

effect becomes more significant as the polynomal degree is increased. For p = 5, the highest

eigenvalue obtained through weak C1 coupling is 3
5 of that obtained through weak C0 coupling.
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Figure 3.24: Convergence plots of the approximation error for non-conforming five-patch coupling
in Section. 3.5.3.

The normalized discrete spectra for p = 5 are shown in Figure 3.26. In this case, weak C1 coupling

improves the behavior of the entire spectra.

Figure 3.25: The non-conforming nine-patch domain parameterization for the eigenvalue problem
in Section 3.5.4.

3.6 Conclusion

In this chapter, we present a dual mortar formulation for the biharmonic problem and inves-

tigate its properties analytically and numerically. With the help of the dual mortar suitable C1 con-

straint, the biorthogonality between the dual basis functions and the corresponding primal spline
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Table 3.2: The highest eigenvalues obtained by solving the eigenvalue problem for the square
domain (see Figure 3.25)

Refine OB-Q2 OB-Q3 OB-Q4 OB-Q5

C0 C1 C0 C1 C0 C1 C0 C1

0 16.12 11.47 24.76 16.36 35.38 22.56 48.48 29.43
1 20.97 17.41 29.39 20.86 41.41 26.91 54.60 34.18
2 31.30 28.04 43.60 30.39 60.49 37.35 79.57 46.82
3 54.04 52.61 78.60 51.09 108.47 61.75 141.44 81.53
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Figure 3.26: Normalized discrete spectra using p = 5. Results are obtained after three uniform
refinements.

basis functions can be extended to the discretized C1 constraint matrix. Hence, the condensed stiff-

ness matrix can be formed efficiently without the need to solve linear systems associated with each

intersection. Furthermore, the condensed stifness matrix remains sparse if the dual basis functions

are compactly supported, which is the case for the Bézier dual basis.

Due to the presence of in-domain vertices, some control points may serve as both slave and

master. To overcome this we propose two solutions. The first method localizes the constraints to

the neighborhood of each vertex and solves for the null space of a localized linear system. The

second method reduces the number of constraints at each vertex by reducing the number of degrees

of freedom of the dual basis. For both cases, when the Bézier dual basis is used, the resulting linear
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systems are sparse. A suite of numerical experiments demonstrate the effectiveness of the proposed

approach.
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CHAPTER 4. THE ENRICHED BÉZIER DUAL BASIS

In the previous chapter, we studied the approximation power of the Bézier dual basis and

the cause of their sub-optimality is the lack of polynomial reproduction. The sub-optimality of the

Bézier dual basis deteriorates the finite element approximation when is used as the discretization

of Lagrange multiplier. The development of dual basis functions that are able to reproduce higher

order polynomials while maintain compact support is crucial for the implementation of the dual

mortar formulation in the previous chapter.

Dual functional of splines was first introduced by de Boor and Fix [98] to develop a quasi-

interpolation operator for splines. Later on, de Boor presented dual basis functions in [99]. Thomas

et al. [85] introduced the Bézier projection operator as an efficient replacement of global L2 pro-

jection. The dual basis induced by Bézier projection operator has been utlized in [82], [84] for

alleviating locking and patch coupling, correspondingly. In the finite element framework, the con-

struction of dual basis function with optimal appxoimation power was first presented in [100].

In [101], Lamichhane and Wohlmuth introduced locally supported and continuous dual basis func-

tions for quadratic finite elements. Later on, Lamichhane and Wohlmuth developed a group of dual

basis that have the same support as the nodal finite element basis and possess adequate approxima-

tion power. Very recently, Wunderlich et al. [102] extend the formulation in [100] to the context of

isogeometric analysis.

However, the construction algorithm in [100] calls the assembly routine twice–the first call

is to construct dual basis with minimal support while the enrichment of dual basis is finished in the

second call, which is inconvenient from the implementation perspective. Moreover, the condition

numbers of a series of linear problems solved in [100] grow at the rate p, which may not be an

issue for lower order basis. However, this may pollute results from higher order basis on large

scale problems.
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Figure 4.1: A Bernstein basis (left) and the corresponding dual basis (right) of degree p= 2 defined
over the knot vector {0,0,0,1/3,2/3,1,1,1}. Note that each dual basis has the same support as the
corresponding primal basis function.

Based the formulation given in [100], we propose a quadrature-free algorithm to efficiently

construct enriched dual basis functions that reproduce polynomial up to a given degree. The linear

systems solved in our algorithm is independent of the mesh size. Hence, there is no needs to take

care of the conditioning. In addition, we utilize the enriched dual basis in the dual mortaring of 4th

order problems.

4.0.1 Dual basis functions

Bernstein dual basis functions

For a primal Bernstein basis B, a dual basis B̂ can be formulated by simply using the inverse

Gramian as

B̂ =G−1B. (4.1)

A graphical depiction of a Bernstein basis and the corresponding dual basis is shown in Figure 4.1.

The Bernstein dual basis B̂ has the following important properties:

• compact support. The Bernstein dual basis is locally supported and each dual basis has the

same support as the corresponding primal basis function, i.e., supp(B̂i) = supp(Bi).

• Polynomial completeness. The space spanned by the dual basis is the same as the space

spanned by the primal Bernstein basis, i.e., span{B̂} = span{B} = X.
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B-spline dual basis functions

For a primal B-spline basis N, a dual basis N̂ can be formulated abstractly as

〈N̂i,Nj〉Ω :=
∫
Ω

N̂iNj dΩ = δi j . (4.2)

We denote the spans of N and N̂ by N,N̂ ⊂ X, respectively.

We can also introduce a pair of quasi-interpolation operators

INu =
∑

i

〈N̂i,u〉ΩNi, and IN̂u =
∑

i

〈Ni,u〉ΩN̂i . (4.3)

Remark 7. Both IN and IN̂ are projection operators, i.e., for all u ∈ N , v ∈ N̂ , INu = u and

IN̂v = v.

The construction of a B-spline dual basis with the same properties as the Bernstein dual

basis, i.e., compact support and polynomial completeness, is challenging. A globally supported B-

spline dual basis with polynomial completeness can be constructed using an inverse Gramian (see

Equation (4.1)). On the other hand, a locally supported B-spline dual basis which does not have

polynomial completeness can be constructed using the Bézier extraction procedure as follows:

Lemma 5. {N̂} ∈ X is dual to N if and only if

N̂ =WT RT G−1B =WT RT B̂, (4.4)

where the weighted assembly matrix WT is a pseudo-inverse of A, i.e., WT A = I.

Proof. Given a basis vector in form (4.4), its inner product with the spline basis vector is given by

〈N̂,NT 〉Ω =WT RT 〈B̂,BT 〉ΩCT A = I. (4.5)

On the other hand, if we assume that {N̂} ∈ X is dual to N, then since N̂i = IX N̂i =
∑

j 〈B̂ j, N̂i〉B̂ j ,

we can rewrite the basis vector N̂ in terms of B̂ as

N̂ = W̃T B̂, with W̃i,j = 〈B̂i, N̂j〉Ω. (4.6)
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Hence, one can rewrite N̂ in form (4.4), with W = CW̃. �

We can now see that the construction of a locally supported dual basis can be simplified to

finding a set of banded vectors {Wi}
nN−1
i=0 such that

Wi ·A j = δi j . (4.7)

4.1 The approximation power of dual bases

In most cases, a locally constructed quasi-interpolation operator IN possesses optimal ap-

proximation power. However, without special care, the corresponding locally constructed dual

quasi-interpolation operator IN̂ possesses sub-optimal approximation power. In fact, for any de-

gree it usually provides an approximation accuracy of only O(h). This is due to the fact that the

dual basis underlying IN̂ often lacks polynomial completeness. To demonstrate this, we approx-

imate the global Legendre polynomials using the dual basis produced by the method described

in [81]. Figure 4.2 shows the result for a degree three dual basis over a two element domain.

There are significant discrepancies between the dual basis approximations and the corresponding

polynomials for all Legendre polynomials except the constant function.
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Figure 4.2: The Legendre polynomials ( ) and the corresponding best L2 approximations ( )
by 3rd order Bézier dual basis functions defined on a two element domain. Bézier dual basis
functions can only replicate the constant function.

In addition to the application of the dual basis as a local functional for the quasi-interpolation

operator IN , the dual basis is also widely used to solve constrained finite element problems. The
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advantage of using a dual basis as the Lagrange multiplier is that the degrees of freedom associated

with the multiplier can be locally condensed out leading to a sparse, positive-definite linear system.

However, the best finite element approximation of the Lagrange multiplier method is gov-

erned by the approximation power of the Lagrange multiplier. This means that, when a conven-

tional dual basis is used to define the Lagrange multiplier space, the approximation power of the

Lagrange multiplier does not improve as the polynomial degree is increased. In this section, we

discuss the theoretical requirements that a dual basis must satisfy to improve the approximation

power to a given order.

We first state the approximation properties of a polynomial space P, the proof of which

can be found in [92].

Lemma 6. (Bramble-Hilbert) Let Ω be star-shaped and Qqu be the Taylor polynomial of order q

of u ∈ Hq+1(Ω), then

|u−Qqu|Hk (Ω) ≤ Cbhhq+1−k |u|Hq+1(Ω), k = {0,1, . . . ,q+1} , (4.8)

where h is the diameter of Ω.

Assumption 2. (global idempotence) The dual quasi-interpolation operator IN̂ preserves polyno-

mials of degree q on the entire domain, i.e.,

IN̂ p = p, ∀p ∈ Pq(Ω). (4.9)

Assumption 3. (compact support) Each dual basis function N̂i is supported by at most m connected

elements and supp(Ni) ⊂ supp(N̂i).

From Assumption 2 and Assumption 3, we have the following result:

Lemma 7. (local idempotence) For each element Ωe ⊂ Ω, there is an extension element Ω̂e com-

prised of a fixed number of connected elements such that

(
IN̂ p

)
|Ωe = p, ∀p ∈ Pq(Ω̂e). (4.10)
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Proof. We define

Ω̂e =



⋃e+m−1
i=0 Ωi, e−m+1 < 0⋃ne−1
i=e−m+1Ωi, e+m−1 > ne −1⋃e+m−1
i=e−m+1Ωi, otherwise,

(4.11)

where ne is the number of elements in Ω. Since each N̂i is supported by at most m connected

elements, if Ωe ⊂ supp(N̂i), then supp(N̂i) ⊂ Ω̂e and the evaluation 〈Ni,p〉 in (4.3) can be done in

Ω̂e, owing to supp(Ni) ⊂ supp(N̂i). Hence, local polynomial preservation can be obtained from the

global idempotence for polynomials. �

Assumption 4. (local stability) The restriction of the dual quasi-interpolation operator IN̂ on Ωe

is bounded, i.e.,

‖IN̂u‖Hk (Ωe)
≤ Cst ‖u‖Hk (Ω̂e)

. (4.12)

Using the Bramble-Hilbert lemma, local idempotence, and local stability, we can state the

convergence behavior of the dual quasi-interpolation operator IN̂ .

Theorem 5. Let k and m be integer indices with 0 ≤ k ≤ m ≤ q+1 and u ∈ Hm(Ω̂e). Then for

0 ≤ k ≤ m, we have

‖u−IN̂u‖Hk (Ωe)
≤ Chm−k ‖u‖Hm(Ω̂e)

(4.13)

Proof. ∀p ∈ Pq(Ω̂e), we have

‖u−IN̂u‖Hk (Ωe)
≤ ‖u− p‖Hk (Ωe)

+ ‖p−IN̂u‖Hk (Ωe)

= ‖u− p‖Hk (Ωe)
+ ‖IN̂ (p−u)‖Hk (Ωe)

≤ (1+Cst)‖u− p‖Hk (Ω̂e)
,

(4.14)

by choosing p =Qqu, we have

‖u−IN̂u‖Hk (Ωe)
≤ (1+Cst)‖u−Qqu‖Hk (Ω̂e)

≤ Cbh(1+Cst)hm−k ‖u‖Hm(Ω̂e)
. (4.15)

�

Hence, in order for the dual quasi-interpolation operator IN̂ to converge at a given rate t,

IN̂ must preserve polynomials on the entire domain up to degree t − 1. In addition, the compact
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support and local stability requirements must be satisfied. In the next section, we will construct

a dual basis that satisfies Assumption 2 and explain how the construction procedure ensures the

satisfaction of Assumption 3 and Assumption 4.

Algorithm 1: An algorithm to compute {A⊥i }
nB−nN−1
i=0 with minimum support such that

{{An
i }

nN−1
i=0 ,{A⊥i }

nB−nN−1
i=0 } spans RnB .

Input : {Ai}
nN−1
i=0

Output: A set of orthonormal basis vectors {A⊥i }
nB−nN−1
i=0 for the null space of

span {Ai}
nN−1
i=0

1 j = 0;
2 Initialize {A⊥i }

nB−nN−1
i=0 with zero vectors of size nB;

3 for i = 0,1, . . . ,nN −1 do
4 nz = the number of nonzero entries of Ai;
5 if nz > 1 then
6 for k = 1, . . . ,nz−1 do
7 Map each entry of [1, . . . ,1︸ ︷︷ ︸

k

,−k] to A⊥j according to the indices of the nonzero

entries of Ai;

8 normalize A⊥j by A⊥j =
A⊥j
|A⊥j |

;

9 j = j +1;
10 end
11 end
12 end

4.2 Embedding polynomials into the dual basis function space

We now describe how to construct a set of enriched dual basis functions which will endow

IN̂ with polynomial reproduction up to a given degree. The construction is a two-step procedure:

1. For a given assembly matrix A, we find a set of sparse vectors {Wini
i }

nN−1
i=0 such that Wini

i ·

A j = δi j . Its matrix form Wini will be taken to be the initial guess for the assembly matrix W

of the desired dual basis.
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2. The vectors Wini are then modified by vectors {Wmod
i }

nN−1
i=0 which come from the null space

of span {Ai}
nN−1
i=0 until the required property is fulfilled. Note that such a modification will

maintain the biorthogonal relation between {Wi}
nN−1
i=0 and {Ai}

nN−1
i=0 where

Wi =Wini
i +Wmod

i . (4.16)

4.2.1 An orthonormal basis for the space RnB

To facilitate the construction of the enriched dual basis, we build a set of orthonormal

vectors which form a basis for RnB . Each orthonormal vector will have minimal support, where the

support of a vector is taken to be the distance between the first and last nonzero entry. Since the

column vectors Ai of A are orthogonal to each other, a natural choice for this basis is given by the

set of vectors comprising all of the normalized {Ai}
nN−1
i=0 , denoted by {An

i }
nN−1
i=0 , and the vectors

which span the null space of span {Ai}
nN−1
i=0 , denoted by {A⊥i }

nB−nN−1
i=0 . Note that the nonzero entries

of any {Ai}
nN−1
i=0 are unity-valued. In addition, each row of A contains one unity-valued entry.

The vectors {A⊥i }
nB−nN−1
i=0 can be found by constructing vectors which are orthonormal to

every vector in {An
i }

nN−1
i=0 from Rni , where ni is the number of nonzero entries in An

i . Note that each

A⊥i can be used to construct a function in X as

Ñi =
[
A⊥i

]T CB. (4.17)

Since {An
i }

nN−1
i=0 and {A⊥i }

nB−nN−1
i=0 span the space RnB , {Ni}

nN−1
i=0 and {Ñi}

nB−nN−1
i=0 span the space

X. Algorithm 1 can be used to efficiently construct the basis vectors {A⊥i }
nB−nN−1
i=0 .

For example, using the assembly matrix A shown in (2.23) as input, we can construct the

following set of basis vectors with Algorithm 1:

{
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

0

0

0

0

0

0

0

0

1

︸                               ︷︷                               ︸
{An

i }
nN−1
i=0

,



0

1/
√

2

0

−1/
√

2

0

0

0

0

0



,



0

0

1/
√

2

0

−1/
√

2

0

0

0

0



,



0

0

1/
√

6

0

1/
√

6

0

−2/
√

6

0

0



,



0

0

0

0

0

1/
√

2

0

−1/
√

2

0

︸                                         ︷︷                                         ︸
{A⊥i }

nB−nN−1
i=0

}
. (4.18)
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4.2.2 Constructing an initial guess Wini
i

An initial guess Wini
i for W can be constructed simply as

Wini
i = Ai/ni, (4.19)

where ni is the number of nonzero entries in Ai, since the number of nonzero entries in Ai is the

same as that in An
i As will be seen in the next section, this initial guess is critical for finding an

appropriate Wmod with the desired properties.

4.2.3 Polynomial preservation

We now establish an appropriate Wmod such that the quasi-interpolation operator IN̂ pre-

serves a polynomial vector P = [1,ξ, . . . ,ξq]T (q ≤ p). In other words,

IN̂ (P) = P. (4.20)

Since both the dual basis function space N̂ and the polynomial space are subspaces of the piecewise

Bernstein space X, Equation (4.20) can be verified through the variational problem

〈v,IN̂ (P
T )〉Ω = 〈v,PT 〉Ω, ∀v ∈ X. (4.21)

Replacing IN̂ in Equation (4.21) by its definition (Equation (4.3)) and expressing v in Bernstein

form, we have

〈B,N̂T 〉Ω〈N,PT 〉Ω = 〈B,PT 〉Ω

RW〈N,PT 〉Ω = 〈B,PT 〉Ω

Wini〈N,PT 〉Ω+Wmod〈N,PT 〉Ω = C〈B,PT 〉Ω

(4.22)

where the vector form of the B-spline basis N may be replaced by its Bézier extraction form, i.e.,

WiniAT C〈B,PT 〉Ω+WmodAT C〈B,PT 〉Ω = C〈B,PT 〉Ω. (4.23)

81



Using the initial guess defined in Equation (4.19) we have

WiniAT = AnAnT, (4.24)

where An is the matrix form of {An
i }

nN−1
i=0 . The operator AnAnT : RnB → span{An

i }
nN−1
i=0 is an l2-

projection operator for any vector in RnB . Hence, owing to the direct sum decompostion

RnB = span{An
i }

nN−1
i=0 ⊕ span{A

⊥
i }

nB−nN−1
i=0 , (4.25)

Equation (4.23) is equivalent to

WmodAT C〈B,PT 〉Ω = A⊥A⊥T C〈B,PT 〉Ω, (4.26)

where A⊥ is the matrix form of {A⊥i }
nB−nN−1
i=0 , or

[
A⊥i

]T Wmod〈N,PT 〉Ω =
[
A⊥i

]T C〈B,PT 〉Ω = 〈Ñi,PT 〉Ω, i ∈ {0,1, . . . ,nB −nN −1} . (4.27)

Remark 8. Obviously, A⊥A⊥T : RnB→ span{A⊥i }
nB−nN−1
i=0 is an l2-projection operator in RnB with

unity norm ‖AkAkT
‖ = 1. Additionally, vectors {Wmod

i }
nN−1
i=0 ∈ span{A⊥i }

nB−nN−1
i=0 , which ensures

that the modification made by Wmod will not influence the biorthogonal relation between W and

A.

We now develop an efficient algorithm to compute a modification matrix Wmod that satisfies

Equation (4.27). The resulting modification matrix will be as banded as possible and the zero

entries in Wmod will remain zero in W. In other words, there are no new nonzero entries introduced

by the sum of Wmod and Wini.

The procedure for constructing the matrix Wmod is given in Algorithm 2. The functions

that are involved in one iteration of Algorithm 2 for constructing a quadratic dual basis that re-

produces quadratic polynomials are shown in Figure 4.3. For a vector A⊥i , one can construct a

basis function Ñi of X by Equation (4.17) (Figure 4.3a). Since A⊥i is constructed by A11 from Al-

gorithm 1, [〈P,N10〉Ω], [〈P,N11〉Ω] and [〈P,N12〉Ω] are selected to form the matrix M (highlighted

in Figure 4.3b). A consequence of this approach is that the support of each dual basis function
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Algorithm 2: An algorithm to construct Wmod.

Input : {A⊥i }
nB−nN−1
i=0 , polynomial degree q

Output: Wmod

1 Initialize P = [1,ξ, . . . ,ξq]T ;
2 Initialize Wmod = 0nB×nN ;
3 Assemble the matrix C〈B,PT 〉Ω, 〈N,PT 〉Ω may then be obtained via the assembly operator

A;
4 for i = 0,1, . . . ,nB −nN −1 do
5 ind = the index of the vector Aind that is used to construct A⊥i in Algorithm 1 (shares

the same nonzero entries as A⊥i );
6 Find q+1 indices

{
n0,n1, . . . ,nq

}
that are closest to ind and 0 ≤ n0 ≤ nq ≤ nN −1;

7 Define a square matrix M from the
{
n0,n1, . . . ,nq

}
columns of 〈P,NT 〉Ω;

8 Construct a vector F = 〈P, Ñi〉Ω from C〈B,PT 〉Ω and Equation (4.17);
9 Solve X =M−1F;

10 for j = 0,1, . . . ,q do
11 Wmod

nj
=Wmod

nj
+ x jA⊥i ;

12 end
13 end

consists of no more than p+ q + 1 elements. Although the support is slightly enlarged through

the modification procedure, it still remains local. The domain involved in the formulation of M is

[s,e], highlighted by orange blocks. The polynomials involved in the formulation of M and F are

highlighted in Figure 4.3c.

4.2.4 A robust quadrature free algorithm to construct enriched dual basis functions with
polynomial preservation

Although Algorithm 2 builds locally supported dual basis functions that preserve polyno-

mials, the use of polynomials defined on the entire domain [0,1] in Equation (4.20) can be trou-

blesome due to near linear dependencies that can develop as the mesh is refined. The fundamental

issue is illustrated in Figure 4.3c. To overcome this issue, we can modify the approach to use

localized polynomials in each iteration. Consider the linear map

F =
ξ − s
e− s

: [s,e] → [0,1] . (4.28)

83



Ñi

0 1

(a) A Ñi formed by A⊥i constructed from A11 via Algorithm 1.

N11

s e0 1
(b) {Ni}

nq
i=n0

constructed by selected {Wi}
nq
i=n0

, s and e are starting and ending knots of
⋃nq

i=n0
supp(Ni).

1

ξ

ξ2

s e0 1
(c) P =

[
1,ξ,ξ2]T
1

t ◦ F
t2 ◦ F

s e0 1
(d) P◦F =

[
1,t ◦F,t2 ◦F

]T
Figure 4.3: Illustration of all involved basis functions, polynomials and elements in one iteration
of Algorithm 2 and Algorithm 4.
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Replacing P by P ◦ F = [1,t ◦F, . . . ,tq ◦F]T (see Figure 4.3d) in Algorithm 2, both spline basis

functions and P ◦ F are refined as the mesh is refined. As a result, the condition number of M,

constructed from P◦F, will not deteriorate as the mesh is refined. P◦F can be constructed from

P through an affine mapping operator T as

P◦F = TP. (4.29)

For the example shown in Figure 4.3, the operator T is given by

T =


1 0 0
−s

e− s
1

e− s
0(

−s
e− s

)2 −2s
(e− s)2

1
(e− s)2


. (4.30)

Hence, the two linear systems are essentially the same with the operator T acting as a

pre-conditioner that improves the conditioning of the matrix M in Algorithm 2. A generalized

algorithm that computes the affine mapping operator T : TP ◦ F1 = P ◦ F2, with F1 =
ξ−s1
e1−s1

and

F2 =
ξ−s2
e2−s2

is given in Algorithm 3.

Algorithm 3: An affine mapping operator T : TP◦F1 = P◦F2.
Input : The highest polynomial degree q, {s1,e1} and {s2,e2}
Output: Matrix form of operator T

1 Compute s =
s2− s1
e1− s1

and e =
e2− s1
e1− s1

;

2 Initialize Tq×q;
3 for j = 0,1, . . . ,q do
4 for i = 0,1, . . . , j do
5 Ti,j =

( j
i

) (−s)j−i

(e−s)j

6 end
7 end

Another issue with Algorithm 2 is the need to call a matrix assembly routine during the

construction of the matrix C〈B,PT 〉Ω. Leveraging the Bézier element extraction operator, the affine

mapping operator, and the closed form expression of the inner product between Bernstein basis
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functions and polynomials, we can develop a quadrature-free formulation for the proposed dual

basis. The procedure is given in Algorithm 4.

Algorithm 4: A quadrature-free algorithm to construct Wmod.

Input : {A⊥i }
nB−nN−1
i=0 , polynomial degree q

Output: Wmod

1 Initialize Wmod = 0nB×nN ;
2 Initialize P = [1,ξ, . . . ,ξq]T ;

3 Initialize D =
∫ 1

0 BPT dξ by Equation (2.7);
4 for i = 0,1, . . . ,nB −nN −1 do
5 ind = the index of the vector Aind that is used to construct A⊥i in Algorithm 1 (shares

the same nonzero entries as A⊥i );
6 Find q+1 indices

{
n0,n1, . . . ,nq

}
that are the closest to ind and 0 ≤ n0 ≤ nq ≤ nN −1,

and identify involved elements;
7 Construct the block diagonal matrix D̃ from the matrix D. The submatrices on the

diagonal correspond to the inner product between Bernstein basis functions and
piecewise polynomials on each element ;

8 Construct T̃ from Algorithm 3 (see Figure 4.4a), C̃ by restricting the extraction
operator C to the involved elements, Ã by restricting the assembly operator A to the
involved elements and B-spline basis functions, and Ã⊥i by restricting A⊥i to the
involved elements (see Figure 4.4b);

9 Construct M = T̃T D̃T C̃T Ã and F = T̃T D̃T C̃T Ã⊥i ;
10 Solve X =M−1F;
11 for j = 0,1, . . . ,q do
12 Wmod

nj
=Wmod

nj
+ x jA⊥i ;

13 end
14 end

A comparison of the maximum condition numbers of the matrices M produced by Algo-

rithm 2 and Algorithm 4, respectively, for constructing pth order dual basis functions with pth order

polynomial reproduction (q = p) is shown in Figure 4.5. As can be seen, the condition number of

M from Algorithm 2 grows at the rate p, whereas the condition number of M from Algorithm 4

is independent of mesh refinement. These results indicate that Algorithm 4 has the desired robust-

ness.

Leveraging Algorithm 2 and Algorithm 4, the enriched dual basis reproduces global poly-

nomials (Assumption 2), and the construction process guarantees that the support of each enriched
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T̃

(a) The operator T̃ maps global polynomials to polynomials defined over the span [s,e].

C̃

ÃT

[
Ã⊥

i

]T

(b) The block diagonal matrix C̃ maps Bernstein basis functions to discontinuous B-spline basis functions,
the assembly operator Ã constructed by restricting the operator A to the involved elements and spline basis
functions maps discontinuous spline basis functions to continuous spline basis functions, and the operator
Ã⊥i constructed by restricting the operator A⊥i to the involved elements maps discontinuous spline basis
functions to functions Ñi.

Figure 4.4: Illustration of the behavior of the operators used in Algorithm 4.

dual basis function consists of no more than p+q+1 elements (Assumption 3). It remains to prove

the local stability property (Assumption 4).

Proof of Assumption 4.

‖IN̂u‖Hk (Ωe)
= ‖

∑
i

〈Ni,u〉ΩN̂i‖Hk (Ωe)

≤ ‖
∑

i

N̂i‖Hk (Ωe)
‖〈N,u〉

Ω̂e
‖∞

= ‖N̂T 1‖Hk (Ωe)
‖〈N,u〉

Ω̂e
‖∞,

(4.31)

where 1 is a unit valued vector of the same size as N̂. By rewriting N̂ in its expanded form (4.4),

we have

‖IN̂u‖Hk (Ωe)
≤ ‖

∑
i

Bi‖Hk (Ωe)
‖G−T RW1‖∞‖〈N,u〉Ω̂e

‖∞. (4.32)
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Figure 4.5: The growth of the maximum condition numbers of the matrix M produced by Algo-
rithm 2 and Algorithm 4.

From the definition of matrix norms, we then have

‖IN̂u‖Hk (Ωe)
≤ ‖

∑
i

Bi‖Hk (Ωe)
‖G−T RW‖∞‖〈N,u〉Ω̂e

‖∞

≤ ‖
∑

i

Bi‖Hk (Ωe)
‖G−T ‖∞‖R‖∞‖W‖∞‖〈N,u〉Ω̂e

‖∞.
(4.33)

Since the Bernstein basis forms a partition of unity over each element, we have that

‖
∑

i

Bi‖Hk (Ωe)
= ‖1‖Hk (Ωe)

= ‖1‖L2(Ωe)
=
√

h. (4.34)

Let G[0,1] be the Gramian matrix defined on the interval [0,1] and assume ‖G−1
[0,1]‖∞ =Cgi, we have

‖G−T ‖∞ = ‖G−1‖∞ = h−1‖G−1
[0,1]‖∞ = Cgih−1. (4.35)

Owing to the fact that the Bézier element extraction operators are independent of the ge-

ometry and are invariant under uniform scaling, their norms are independent of the mesh size.

In addition, there are a finite number of different Bézier element extraction operators generated

88



by uniform mesh refinement. Hence, we can assume ‖R‖∞ = Cr . Meanwhile, thanks to Algo-

rithm 4, the construction of W is geometry and mesh size independent. Hence, we can assume that

‖W‖∞ = Cw.

Since spline basis functions are non-negative and also form a partition of unity, from

Lemma 7 and the Cauchy-Schwarz inequality, we have that

‖〈N,u〉
Ω̂e
‖∞ ≤ ‖〈1,u〉Ω̂e

‖∞ = |

∫
Ω̂e

udΩ| ≤ ‖1‖L2(Ω̂e)
‖u‖L2(Ω̂e)

=
√

Cmh‖u‖L2(Ω̂e)
(4.36)

where Cm is the number of elements involved in Ω̂e. By substituting Equations (4.34), (4.35), and

(4.36) into Equation (4.33), we have that

‖IN̂u‖Hk (Ωe)
≤ CgiCwCr

√
Cm‖u‖L2(Ω̂e)

≤ CgiCwCr
√

Cm‖u‖Hk (Ω̂e)
.

(4.37)

This concludes the proof with Cst = CgiCwCr
√

Cm. �

Hence, the enriched dual basis satisfies all required technical assumptions and will yield

optimal approximations. Figure 4.6 gives an example of enriched Bézier dual basis functions of

the same primal B-spline basis function with different polynomial reproduction orders. As can be

seen, the approximation power is improved at the expense of the support size.

4.3 Applications to 2nd order and 4th order mortar isogeometric analysis

The enriched dual basis functions can be used to discretize the Lagrange multiplier space

in finite element dual mortar formulations. In this section, we derive dual mortar formulations for

both second and fourth order problems.

4.3.1 Domain decomposition for an abstract problem

Here, we briefly recall the dual mortar method. LetΩ be a bounded domain. We decompose

it into slave Ωs and master Ωm patches such that Ω̄s ∪ Ω̄m = Ω̄ and Ωs ∩Ωm = ∅. We denote by

∂Ωs/∂Ωm the boundaries of the slave/master patch and by Γ = ∂Ωs∩∂Ωm the intersection between

the slave and the master patch (see Figure 4.7). We select the patch with the finer mesh as the slave
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(a) A cubic B-spline function

(b) Bézier dual basis function of 4.6a (c) Enriched Bézier dual basis function of 4.6a
that reproduces linear functions

(d) Enriched Bézier dual basis function of 4.6a
that reproduces quadratic functions

(e) Enriched Bézier dual basis function of 4.6a
that reproduces cubic functions

Figure 4.6: A cubic B-spline basis function and its corresponding enriched Bézier dual basis func-
tions with different polynomial reproduction orders.

patch. For the sake of simplicity, we restrict ourselves to the geometrically conforming situation

where the intersection between two different patches is either empty, a vertex, or a common edge.

In other words, no vertex serves as a hanging node.

We consider the following abstract variational problem. Let V be a Hilbert space that

satisfies homogeneous Dirichlet boundary conditions on ∂Ω. For a given f ∈ V′, find u ∈ V such

that

a(u,v) = 〈 f ,v〉Ω ∀v ∈ V . (4.38)

In order to approximate the solution of variational problem (4.38) on the decomposed do-

main Ω, Ωs and Ωm are discretized with non-conforming NURBS patches. The discrete spaces
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ηs ξm

ηm

Ωs Ωm

Figure 4.7: A two-patch planar domain Ω consisting of two patches Ωs and Ωm.

satisfying the homogeneous Dirichlet boundary conditions are denoted by Xh
s and Xh

m, respec-

tively. However, the function space

Xh B
{
v ∈ L2(Ω)

�� v |Ωl
∈ Xh

l , l ∈ {s,m}
}

(4.39)

is not compatible with the variational problem, as functions in Xh are discontinuous across the

intersection.

One solution is to modify the variational formulation (4.38) so that it becomes a saddle

point problem: Find (uh,λh) ∈ Xh ×Mh, such that


a(uh,vh)+ b(vh,λh) = 〈 f ,vh〉Ω ∀vh ∈ Xh,

b(uh, µh) = 0 ∀µh ∈Mh,
(4.40)

where b(·, ·), applied weakly by the Lagrange multiplier λh, is an abstract constrained bilinear

form and Mh is a Lagrange multiplier space defined on the intersection Γ. In order to recover

the positive definite variational formulation (4.38), Bernardi et al. [50] introduced the following

constrained space

Vh B
{
v ∈ Xh

�� b(v, µ) = 0, ∀µ ∈Mh }
. (4.41)
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Then, the saddle point problem (4.40) is equivalent to the minimization problem (4.38) on the

function spaceVh. The advantage of using a dual basis with compact support to discretize the La-

grange multiplier space is that the basis functions ofVh are much easier to construct. In particular,

all the basis functions ofVh have compact support. This is, in general, is not possible if the basis

functions of Vh are constructed using traditional Lagrange multiplier spaces or a globally con-

structed dual basis. In the latter case, the support of a dual basis function is the entire intersection

on the slave side.

We can rewrite the saddle point problem in matrix form:


K BT

B 0



U

Λ

 =

F

0

 , (4.42)

where K is the discretized stiffness matrix, F is the discretized external force vector, B is the

discretized constraints matrix, and U is a nodal vector of the displacement field uh ∈ Xh and Λ is a

nodal vector of the Lagrange multiplier field λh ∈ Mh. In vector form, the basis functions of Vh

can be written as

NV
h

=
[
B⊥

]T NX
h

, (4.43)

where NXh
are the basis functions of Xh in vector form. All column vectors of B⊥ are linearly

independent and they span the null space of B. We can further partition U as

U =


Us

Um

Uin


, (4.44)

where the slave nodal vector Us consists of all degrees of freedom that will be eliminated after static

condensation, the master nodal vector Um consists of all degrees of freedom on the intersection that

will not be eliminated after static condensation, and the inactive nodal vector Uin that consists of

all degrees of freedom that do not contribute to the construction of B. The constraint can then be
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rewritten as

BU =
[
Bs Bm 0

] 
Us

Um

Uin


= 0. (4.45)

If the Lagrange multiplier space is discretized with dual basis functions, Bs is the identity matrix,

and the bandwidth of Bm depends on the support size of the dual basis functions. For a con-

straint matrix B, constructed with dual basis functions with compact support, Bm is a sparse matrix

with limited bandwidth, while global dual basis functions lead to a dense Bm. For a B that takes

form (4.45) with Bs = I, the corresponding B⊥ can be obtained from

B⊥ =


−Bm 0

I


. (4.46)

We then have the following linear system to solve

KmortarUmortar =
[
B⊥

]T KB⊥Umortar =
[
B⊥

]T F (4.47)

where the relationship between the mortar displacement nodal vector Umortar and U is given by

U = B⊥Umortar. (4.48)

With a sparse B⊥ obtained from the dual basis functions with compact support, the stiffness matrix

of the mortar formulation Kmortar will remain sparse.

The quality of the approximation engendered by NVh
depends on the discrete primal space

Xh as well as the discrete Lagrange multiplier space Mh. It has been shown in the previous

chapter that, for Xh of degree p, an optimal discretization requires the best approximation error of

Xh to be O(hp) for 2nd-order problems and O(hp−1) for 4th-order problems, respectively. In other

words, λh ∈Mh should reproduce polynomials up to degree p−1 for 2nd-order problems and up to

degree p−2 for 4th-order problems, respectively. The error associated with λh is usually called the
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consistency error. For smooth splines, to achieve optimal accuracy while maintaining the locality

of the dual basis functions inVh, the proposed enriched dual basis is required.

4.3.2 Vertex modification

For a multi-patch decomposition, at least three patches will meet at a common interior

vertex and several interfaces can share this vertex as a common endpoint. If we discretize the

Lagrange multiplier space with a space of the same dimension as the univariate space formed by

taking the trace of the slave space along the interface, we obtain too many constraints. In this case,

control points in the neighborhood of a vertex may serve as both slave and master nodes and the

matrix B⊥ cannot be formed elegantly using (4.46). In addition, it has been shown in the previous

chapter thatVh constructed from a global dual basis does not satisfy the inf-sup condition, leading

to a sub-optimal approximation error. Hence, modifications to the Lagrange multiplier space in the

neighborhood of vertices are needed to relax the overly constrained linear system.

In general, these vertex modifications can be achieved by reducing the dimension of the La-

grange multiplier space. For second-order problems, a Lagrange multiplier space of codimension

2 of the trace space of the slave side is sufficient to remove redundant constraints. For fourth-order

problems, a Lagrange multiplier space of codimension 4 of the trace space of the slave side is pre-

ferred. To construct an enriched dual basis of codimension 2c, we remove the first c and the last c

vectors in {Ai}
nN−1
i=0 , leaving {Ai}

nN−1−c
i=c a nN −2c-dimensional vector space. The orthonormal vec-

tor basis of the null space of span{Ai}
nN−1−c
i=c can be written as {A⊥i }

nB−nN−1
i=0

⋃
{An

i }
c−1
i=0

⋃
{An

i }
nN−1
i=nN−c.

Now, we can construct Wini from {Ai}
nN−1−c
i=c via (4.19) and assemble Wmod from {A⊥i }

nB−nN−1
i=0

⋃
{An

i }
c−1
i=0

⋃
{An

i }
nN−1
i=nN−c with Algorithm 4. The resulting dual basis has 2c fewer dimensions than

the original basis and satisfies global idempotence.

4.3.3 Domain decomposition for 2nd-order problems

Due to the existence of the first-order weak derivative in the weak form of 2nd-order prob-

lems, the constrained space Vh should weakly satisfy a C0 continuity constraint across the inter-

face Γ. Hence, the constrained spaceVh for 2nd-order problems is given by
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Figure 4.8: The classification of nodes along an interface for 2nd-order problems.

Vh B

{
v ∈ Xh

���� ∫
Γ

µ [u]dΓ = 0, ∀µ ∈Mh
}
, (4.49)

where the Lagrange multiplier space Mh is two dimensions less than the trace space along the

slave side of the interface. As a result, in addition to the interface nodes along the master side of

the interface, the first and the last interface nodes along the slave side also serve as master nodes

(see Figure 4.8).

4.3.4 Domain decomposition for 4th-order problems

Due to the existence of the second-order weak derivative in the weak form of 4nd-order

problems, the constrained space Vh should weakly satisfy a C1 continuity constraint across the

interface Γ. Hence, two Lagrange multipliers are needed to apply both a C0 continuity constraint

and a C1 continuity constraint. The constrained spaceVh for 4nd-order problems is given by

VhB


v∈Xh

�����������


∫
Γ

µ0 [u]dΓ = 0, ∀µ0 ∈M
h
0∫

Γ

µ1

[
∂u
∂ξs

]
dΓ = 0 if Γ ‖ ηs or

∫
Γ

µ1

[
∂u
∂ηs

]
dΓ = 0 if Γ ‖ ξs, ∀µ1 ∈M

h
1


, (4.50)
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Figure 4.9: The classification of nodes along an interface for 4th-order problems.

where both Mh
0 and Mh

1 are 4 dimensions less than the trace space along the slave side of the

interface. As a result, four nodes in the neighborhood of each vertex of Ωs are classified as master

nodes.

4.4 Numerical examples

In this section, we investigate the performance of the enriched dual basis for several chal-

lenging second- and fourth-order benchmarks. The first example is a Poisson problem over a

four-patch square domain, where the intersections are all parameterized differently. In the second

problem, we model an infinite plate with a hole using four non-conforming NURBS patches. The

third benchmark is a biharmonic problem over a five-patch square domain. A simply supported

square Kirchhoff-Love plate is our fourth example. To verify the robustness of our enriched dual

basis and dual mortar formulation for fourth-order problems, we consider the Cahn-Hilliard equa-

tion as the last benchmark. All numerical problems are solved using the Eigen library [71]. Due

to the asymmetric structure of the consistent tangent matrix for the Cahn-Hilliard problem, the

BiCGSTAB solver is used whereas the conjugate gradient solver is used for the rest of problems.

Note that extraordinary vertices are present in all of the underlying meshes. For the Bézier dual

basis, we adopt the extraordinary vertex modification procedure described in the previous chapter.
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Results obtained from the enriched dual basis are denoted by Enrich-Qi. The performance

of the enriched dual basis is compared with the global dual basis (L2-Qi) and the Bézier dual basis

(Bézier-Qi). For all second-order problems, the polynomial reproduction degree q is set to p− 1

for the pth-order enriched dual basis and q = p− 2 for all fourth-order problems. These choices

of degrees ensure the sparsest possible stiffness matrix while also maintaining optimality. The

enriched dual bases are constructed by Algorithm 4.

4.4.1 Poisson problem

We start by solving the Poisson equation −∆u = f over the domain [0,1] × [0,1]. The

domain is decomposed into four patches, shown in Figure 4.10a. A manufactured solution is given

as

u(x,y) = sin(2πx)sin(2πy). (4.51)

This manufactured solution satisfies the homogeneous Dirichlet boundary condition (u = 0) and is

shown in Figure 4.10b.

(a) A four-patch mesh where all intersections
have both mismatched parameterizations and
non-conforming meshes.

(b) A manufactured solution.

Figure 4.10: The multi-patch mesh of the domain Ω = [0,1]× [0,1] and the manufactured solution
that satisfies u = 0 on ∂Ω, which are utilized for the problem described in Section 4.4.1.
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Convergence plots in both the L2 and H1 norms are shown in Figure 4.11. We achieve

optimal convergence for the enriched dual basis for all tested polynomial degrees (p = 2,3, . . . ,5) in

both norms. For p = 2,3, the error in the enriched dual basis is close to that of the global dual basis,

whereas uniform shifts are observed for p = 4,5. We speculate that the cause of these vertical shifts

in the convergence curves is due to the non-matching parameterizations along each intersection.

Since the enriched dual basis functions have a larger support size, the size of a corresponding

extension element Ω̂e for the enriched dual basis will be significantly larger than that of the standard

B-spline basis. As a result, the local approximation error of the enriched dual basis will be larger

than that of the standard B-spline basis. The higher degree non-matching parameterizations seem

to aggravate this error. However, regardless of the slight shift, the optimal convergence rates have

been observed in both measures. The Bézier dual basis, as expected, demonstrates sub-optimal

convergence in both the L2 and H1 norms for p = 3,4,5. In addition, in the asymptotic regime, the

error increases as the polynomial degree is increased.
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L2-Q2 L2-Q3 L2-Q4 L2-Q5

10−1.5 10−1 10−0.5
10−11

10−9

10−7

10−5

10−3

10−1

1
5

1
4

1
3

1
2

h

‖
u
−

uh
‖ H

1/
‖
u‖

H
1

Enrich-Q2 Enrich-Q3 Enrich-Q4 Enrich-Q5
Bézier-Q2 Bézier-Q3 Bézier-Q4 Bézier-Q5
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Figure 4.11: Convergence plots for the problem described in Section 4.4.1. On the left, error
measured in the L2 norm. On the right, error measured in the H1 norm.

Error contour plots for the cubic mesh after three global uniform refinements are shown

in Figure 4.12. The contour plot of the enriched dual basis is similar to that of the global dual

basis, except for small spikes in the neighborhood of extraordinary vertices. On the other hand,
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Enrich-Q3 Bézier -Q3

L2-Q3

Figure 4.12: Error contour plots for the Poisson problem on a four-patch domain (p = 3, three
uniform mesh refinements).

a significant amount of oscillatory error can be observed for the Bézier dual basis along each

intersection. Notice that the in-domain error (i.e., approximation error) is similar in all cases.

4.4.2 Linear elasticity – infinite plate with a hole

We next consider a linear elasticity problem. The problem setup and multi-patch domain

are shown in Figure 4.13. The traction along the outer edge is set to the exact solution

σrr(r,θ) =
Tx

2
(1−

R2
1

r2 )+
Tx

2
(1−4

R2
1

r2 +3
R4

1
r4 )cos(2θ),

σθθ(r,θ) =
Tx

2
(1+

R2
1

r2 )−
Tx

2
(1+3

R4
1

r4 )cos(2θ),

σrθ(r,θ) = −
Tx

2
(1+2

R2
1

r2 −3
R4

1
r4 )sin(2θ).

(4.52)
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(a) Infinite plate with a hole
subject to a uniaxial tension
at x = ±∞.
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(b) The problem setup. (c) The non-conforming
four-patch mesh.

Figure 4.13: The infinite plate with a hole problem.
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Figure 4.14: Convergence plots for the problem described in Section 4.4.2. On the left, the error
measured in the L2 norm. On the right, the error measured in the energy semi-norm.

The relative error of the displacement u are measured in both the L2 norm and energy

semi-norm

‖u−uh‖E :=
∑

k

∫
Ωk

1
2
σ(u−uh) : ε(u−uh)dΩ. (4.53)

Convergence plots for both norms are shown in Figure 4.14. Similar to the scalar Poisson problem,

both the enriched and global dual basis converge optimally for all polynomial degrees in both

norms. In addition, due to the absence of non-matching parameterizations along each intersection,

the convergence plots of the enriched dual basis are all identical to that of the global dual basis.

The convergence plots of the Bézier dual basis are again sub-optimal.
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Figure 4.15: Error contour plots for the linear elasticity problem on a four-patch domain (p = 3,
three uniform mesh refinements).

Error contour plots for p = 3 after three uniform global mesh refinements are shown in

Figure 4.15. The error contour plots for both the enriched and global dual basis are the same.

The error in the Bézier dual basis, however, is highly oscillatory along each intersection. Again,

the in-domain errors are similar for all methods which confirms that the main contribution to the

sub-optimal behavior is the consistency error.
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(a) A non-conforming five-patch mesh. (b) A manufactured solution.

Figure 4.16: The biharmonic problem setup.

4.4.3 The biharmonic problem

We next consider a homogeneous biharmonic problem over the domain [0,1]× [0,1] and a

manufactured solution

u(x,y) = sin(2πx)2 sin(2πy)2. (4.54)

The problem setup is shown in Figure 4.16.

Error convergence plots for the biharmonic problem are shown in Figure 4.17. The enriched

dual basis with q = p− 2 produces optimal results for p = 2,3,4 and the convergence plots are

identical to those produced by the global dual basis. Note that the optimal convergence rate for

quadratic basis functions is O(h2) in the L2 norm for biharmonic problems. For the p = 5 case, we

observe sub-optimal convergence for both the enriched and global dual basis and the most highly

refined mesh in the L2 norm. However, no sub-optimality is observed for the H2 norm. This

behavior indicates that the error occurs at certain digits of the floating point vector Umortar (between

the 7th and 10th digits for this case). We infer that the cause of this error is the poor conditioning of

the stiffness matrix. In addition, previous studies [103] show that the growth rate of the condition

number for the biharmonic problem is O(−h4), which is huge when compared with O(−h2) for

the Poisson problem. This explains why the ill-conditioning of the biharmonic problem occurs

much earlier than for the Poisson problem. We also attribute the slightly better performance of the
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Figure 4.17: Convergence plots for the problem described in Section 4.4.3. On the left, the error
measured in the L2 norm. On the right, the error measured in the H2 norm.

enriched dual basis to their compact support and the robust construction algorithm (Algorithm 4).

Again, the Bézier dual basis leads to sub-optimal behavior for higher-order elements.

Error contour plots for the cubic mesh after two uniform refinements are shown in Fig-

ure 4.18. Similar to second-order problems, the error contour plot for the enriched dual basis is

identical to that of the global dual basis due to the absence of mismatched parameterizations along

each intersection.

4.4.4 Kirchhoff plate

The last benchmark with analytical solution is a simply supported square Kirchhoff plate.

The bending moments of Kirchhoff plate is given by:

Mxx = −D
(
∂2w

∂x2 + ν
∂2w

∂y2

)
,

Myy = −D
(
∂2w

∂y2 + ν
∂2w

∂x2

)
,

Mxy = −D(1− ν)
∂2w

∂xy
,

(4.55)
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Figure 4.18: Error contour plots for the biharmonic problem on a five-patch domain (p = 3, two
uniform mesh refinements).

where w is the vertical displacement, D = Et3

12(1−ν2)
, t is the thickness, E is the Young’s modulus and

ν is the Poisson’s ratio. The governing equation of Kirchhoff plate can be derived as

∂4w

∂x4 +
∂4w

∂x2y2 +
∂4w

∂y4 =
q
D

(4.56)

where q is the pressure. In this benchmark, we consider a square plate with L = 12 subjected to a

sinusoidal presure load of

q(x,y) = −sin(
πx
L
)sin(

πy

L
). (4.57)

We also adopt t = 0.375, E = 4.8×105 and ν = 0.38. The analytical solution is given by

w(x,y) = −
L4

4Dπ4 sin(
πx
L
)sin(

πy

L
). (4.58)
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(a) Non-matching parameterized non-
conforming three-patch mesh

(b) The reference solution

Figure 4.19: The decomposition and discretization of the domain [0,1] × [0,1] and the refernce
solution that satisfies u = 0 on ∂Ω in Section 4.4.4. The non-matching parameterized interface is
denoted by green curve and the simple non-conforming discretized interfaces are denoted by red
curves.

The geometry, discretization and the analytical solution of vertical displacement are shown in

Figure 4.19. Note that the green intersection is non-matching parameterized, whereas red curves

are coupled non-comformingly.

Convergence behaviors of w, Mxx and Mxy are studied in Figure 4.20. As can be seen, both

the enriched dual basis and the global dual basis yield optimal results for all polynomial orders in

all three measures. As the biharmonic problem, ill-conditioning at the last refinement of p = 5 is

observed in L2 norm whereas convergences of errors in Mxx and Mxy are still optimal. Due to the

presence of a non-matching parameterized intersection, vertical shifts in error plots of the enriched

dual basis have been observed for higher order elements (p = 4,5). Again, the Bézier dual basis

generates sub-optimal results.

Contour plots of err= ux−uh
x for the simply supported Kirchhoff plate problem are given in

Figure 4.21. For the enriched dual basis and the global dual basis, no oscillation has been observed

on the curved intersecitons, however, errors are evolved along the non-matching parameterized

intersection. In addition, the influence of the non-matching intersection is more significant on the

enriched dual basis case. For the case of the Bézier dual basis, the consistency error is much higher

and propagates into each patches.
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Figure 4.20: Convergence plots for the simply supported Kirchhoff plate in Section 4.4.4. Upper
left: error of w measured in L2 norm. Upper right: error of Mxx measured in L2 norm. Bottom:
error of Mxy measured in L2 norm.

4.4.5 Cahn-Hilliard equation

In this benchmark, we verify the robustness of the dual mortar method and the enriched

dual basis by a 4th order non-linear dynamic problem–Cahn-Hilliard equation. The Cahn-Hilliard

equation is originally derived to model spinodal decomposition of binary mixtures. Taking the

concentration u of one of the mixtures’s components as an phase-field parameter, the governing
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Figure 4.21: Contour plots of err = ux − uh
x for the simply supported Kirchhoff plate problem on

the three-patch domain (p = 3, and the mesh is obtained after two refinements).

equation over infinite domain can be stated as

∂u
∂t
= ∇ · (M(u)∇(µ(u)−λ∆u)) in Ω×[0,T],

u(x,0) = u0(x) in Ω
(4.59)

where M(u) is the mobility, µ(u) represents the chemical potential of a regular solution in the

absence of phase interfaces and λ is a positive constant such that
√
λ represents a length scale of

the problem. In this benchmark, we study the concentration distribution over a 2D domain with
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difference initial conditions and boundary conditions. We consider

M(u) = Du(1−u), (4.60)

µ(u) = 3α
(

1
2θ

log
u

1−u
+1−2u

)
, (4.61)

and adopt the following values: α = 3000, D = 1, λ = 1 and θ = 1.5. The weak form is stated as

follows: find u ∈ U such that ∀v ∈ V

〈
∂u
∂t
,v〉Ω+ 〈M(u)∇µ(u)+∇M(u)∆u,∇v〉Ω+ 〈M(u)∆u,∆v〉Ω = 0, (4.62)

whereU andV are suitable function spaces.

To achieve an optimal ratio of high-frequency and low-frequency dissipation, we adopt

the first order generalized-α method [104], [105] as the temporal discretization scheme. In each

time step, we require the nonlinear residual reduces to 10−4 of its initial value. For the sake of

computational efficiency, we adopt an adaptive time stepping scheme introduced by Gómez et al.

in [16]. This adaptive time stepping scheme takes advantage of the fact that the generalized-α

method contains the backward Euler method as a special case, and use the relative error between

solution from generalized-α method and solution from backward Euler method as an estimator of

the current step size.

Stochastic concentration distribution

We first consider an initially stochastic concentration distribution over an infinite 2D do-

main, as:

u0(x) = ū+ r(x), (4.63)

where ū= 0.63 and the r is a random variable with uniform distribution in the range [−0.005,0.005].

The infinite domain can be described by a square domain Ω = [0,1]× [0,1] with periodic boundary

condition. Hence, for this case, bothU andV are H2(Ω) functions that satisfy periodic boundary

condition. Taking into account that periodic boundary conditions are applied, it is anticipated that

in the steady state only one circular inclusion remains. To demonstrate the robustness of the dual
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mortar method and the enriched dual basis, we non-uniformly discretize the domain Ω into 64×64

quadratic elements, the periodic boundary condition is applied by the dual mortar method.

The mesh and the structural evolution of the concentration distribution are demonstrated in

Figure 4.22. Note that both the top/bottom and the left/right interfaces are non-matching param-

eterized. As can be seen, from its initial stochastic pattern, the concentration distribution evolves

into two phases whose composition is determined by the minima of the bulk free energy. The

process is dominated by the reduction of the number of u = 0 phase. Meanwhile, the characteristic

length of u = 0 phase is increased. Finially, the circular shape of the single inclusion is formed as

the result of the bulk free energy minimization.

Linear concentration distribution

In the second case, we do not take ū as a constant, but we vary it linearly with the horizontal

spatial coordinate from 0.1 to 0.9. The domain Ω = [0,2] × [0,2] is decomposed into four patches

that are coupled non-conformingly. In addition, to show the compatibility of the coupling method

with other types of boundary condition, we consider

∂u
∂n
= 0, on ∂Ω. (4.64)

This boundary condition can be incorporated into the dual mortar formulation by solving localized

null space problems over each extraordinary points on the boundary.

The mesh and the structural evolution of the concentration distribution are demonstrated in

Figure 4.23. Four patches are discretized into 63×63, 65×65, 65×65 and 63×63 cubic elements,

correspondingly. In this case, three morphologies are formed in different regions of the domain.

On the left-hand side of the domain, the red phase nucleates into the blue one. The exact opposite

occurs on the right-hand side. In the middle, where u ≈ 0.5, we observe the striped pattern typical

from spinodal decomposition. Whereas the nucleation process is dominated in the middle region,

the structural evolution at the boundaries x = 0 and x = 2 hardly exists. Eventually, the interface

develops into a straight line at x = 1, which is consistent with the behavior of the exact solution.

In both cases, the convergence of the Newton’s method is achieved within 3 interations

when ∆t < 5× 10−6 and 4 interations when 5× 10−6 ≤ ∆t < 1× 10−4 for both the generalized-α
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The distorted mesh t = 0.000002 t = 0.000007

t = 0.000015 t = 0.000040 t = 0.000082

t = 0.000156 t = 0.002136 Steady state

Figure 4.22: Temporal evolution of an initially stochastic concentration distribution into phases of
different composition. The periodic boundary conditions are applied by the dual mortar method
with the enriched dual basis. The computational domain is non-uniformly discretized, mesh lines
at ξ = 0.5 and η = 0.5 are highlighted.

method and the backward Euler method. This is the same as the simulation with one uniformly

discretized patch. In addition, no influence in the time step size of the adaptive time stepping

scheme has been observed. This confirms that the dual mortar method with the enriched dual basis

does not impact the convergence behavior of the correction loop and the overall performance in

solving nonlinear problems.
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65× 65 63× 63

63× 63 65× 65

The non-conforming four-patch
mesh

t = 0.000002 t = 0.000004

t = 0.000010 t = 0.000048 t = 0.000204

t = 0.001304 t = 0.005814 Steady state

Figure 4.23: Temporal evolution of an initially linear concentration distribution with stochastic
perturbation into two phases separated by a straight interface. The four-patch domain are coupled
by the dual mortar method with the enriched dual basis.

4.5 Conclusion

In this chapter, we develop an enrichment procedure to endow Bézier dual basis functions

with sufficient approximation ability. The cause of sub-optimal convergence of Bézier dual basis is

the lack of polynomial reproduction. The enriched Bézier dual basis can reproduce polynomial up

to a given order though at the expense of a slightly enlarged support size. Owing to the locality, the

linear system from static condensation remains sparse. The proposed enrichment methodology is
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based on the formulation in Oswald et al. [100] and two significant improvements have been made

in efficiency and robustness aspects. The proposed formulation is quadrature-free and independent

of the mesh size. Hence, the cost in assembly different operators will be eliminated and the effect

of the problem scale on the conditioning these operators will be minimized, giving rise to a more

efficient and robust formulation.

The performance of the enriched Bézier dual basis is demonstrated via several challenging

benchmark problems. These problems include 2nd order, 4th order, linear, nonlinear, static and

dynamic problems. The proposed dual basis demonstrates optimal convergence and yields com-

pelling results as compared with the global dual basis. The robustness of the proposed dual basis

is also confirmed by two highly nonlinear dynamic phase-field problems.

Finally, although the proposed enrichment procedure cures the sub-optimality of Bézier

dual basis at the expense of a slightly enlarged support, we believe there exists a better formulation

that can achieve the same performance without any influences on the support size. This is subjected

to the future research.
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CHAPTER 5. KIRCHHOFF-LOVE SHELL PROBLEM

5.1 Dual mortar method for non-homogeneous constraints

We briefly demonstrate the dual mortar method in the context of an abstract formulation

for a constrained problem: find u ∈ X and λ ∈M such that

{
a(v,u)+ b(v,λ) = l(v) ∀v ∈ X,

b(µ,u) = c(µ) ∀µ ∈M,

(5.1a)

(5.1b)

where a(·, ·) is a bilinear form representing a potential energy, l(·) is a linear form representing the

external load, b(·, ·) is a bilinear form representing a set of constraints on the solution u and c(µ) is a

linear form corresponding to any non-homogeneous constraints. In Section 5.3, b(·, ·) and c(·) will

represent the continuity constraints across patch boundaries for each Newton-Raphson iteration.

If we introduce a pair of discrete function spaces Xh ⊂ X andMh ⊂ M we can represent

the weak form (5.1) as the matrix problem

KLMULM =


K BT

B 0

 ULM =


F

R

 , (5.2)

where K is the discretized stiffness matrix, F is the discretized external force vector, B is the dis-

cretized constraints matrix, R is the forcing term due to non-homogeneous constraints (for homo-

geneous constraints, R= 0) and ULM is a vector containing the control values U of the displacement

field and the control values Λ Lagrange multiplier field. The mortar method statically condenses

out additional unknowns and gives rise to a positive definite variational problem by introducing a

constrained function space

Vh B {uh ∈ Xh | b(λh,uh) = 0, ∀λh ∈Mh}. (5.3)
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The saddle point problem (5.1) can now be transformed into a minimization problem: find a general

solution uh
hom ∈ V

h such that, for uh = uh
hom+uh

non

a(vh,uh) = l(vh), ∀vh ∈ Vh, (5.4)

where uh
non ∈ X

h is a particular solution that satisfies the constraint (5.1b). Given NXh
, the vector

containing the basis functions of Xh, the vector containing the basis functions ofVh is given by

NV
h

=
[
B⊥

]T N, (5.5)

where the matrix B⊥ is the vector basis of the null space of the constraint matrix B. If the Lagrange

multiplier space is discretized by a set of dual basis functions, the constraint matrix B can be written

as [88]

B =
[
I B2

]
, (5.6)

the bandwidth of B2 depends on the support size of dual basis functions.

For a B in the form (5.6), the vector basis of its null space can be obtained from

B⊥ =

−B2

I

 . (5.7)

The discretization of the constraint (5.1b) is

BUnon = R, (5.8)

where a particular solution can be solved from [106]

Unon = BT [
BBT ]−1 R. (5.9)

However, for a constraint matrix takes the form (5.6), a particular solution can be explicitly con-

structed as

Unon =


R

0

 . (5.10)
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The mortar linear system can now be written as

KmortarUmortar =
[
B⊥

]T KB⊥Umortar =
[
B⊥

]T F−
[
B⊥

]T KUnon. (5.11)

The relation between the mortar displacement nodal value vector Umortar, non-homogeneous solu-

tion Unon and U is given by

U = B⊥Umortar+Unon. (5.12)

With a sparse B⊥ obtained from a set of dual basis with compact support, the stiffness matrix of

the mortar formulation Kmortar will remain sparse, resulting in an efficient linear system.

5.2 Formulation of Kirchhoff-Love shell

In this section, we present the formulation of Kirchhoff-Love shell in compact form. The

theory of Kirchhoff-Love shell is based on the assumption that the normal of the shell’s mid-surface

remains perpendicular in the deformed configuration. Hence, the strain the transverse strains are

zero and the description of shell geometry can be reduced to its mid-surface.

5.2.1 Kinematics

In what follows, we use Greek letters for indices taking values {1,2} and Latin letters

for {1,2,3}, respectively. Einstein summation convention on repeated indices is also utilized.

We now consider a shell structure of arbitrary geometry with constant thickness h and param-

eterized with curvilinear coordinates θi, where θ1 and θ2 denote the natural curvilinear coordi-

nates and θ3 indicates the thickness direction with θ3 ∈ [−0.5h, 0.5h] (see Figure 5.1). We use

R(θ1,θ2),r(θ1,θ2) : R2 → R3 to describe the mid-surface of a shell in reference and current con-

figurations, respectively. For simplicity and without loss of generality, we assume the parametric

domain Ω̂ = [0,1]× [0,1]. The displacement of the shell mid-surface is given by

u(θ1,θ2) = r(θ1,θ2)−R(θ1,θ2). (5.13)
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The mid-surface covariant base vectors in both configurations are obtained by


Aα = R,α =

∂R
∂θα

A3 =
A1×A2
|A1×A2 |

,


aα = r,α =

∂r
∂θα
= Aα +u,α

a3 =
a1×a2
|a1×a2 |

, (5.14)

where | · | denotes the Euclidean length of the given vector. A3 and a3 are commonly refered to as

the directors in the reference and currect configurations. The position vector of any material point

within the shell in both reference configuration and current configuration are described by


X(θ1,θ2,θ3) = R(θ1,θ2)+ θ3A3(θ

1,θ2)

x(θ1,θ2,θ3) = r(θ1,θ2)+ θ3a3(θ
1,θ2)

, (5.15)

Similar to the mid-surface, the covariant base vectors at any arbitrary material point within the

shell in two configurations are obtained by


Gα = X,α = Aα + θ

3A3,α

G3 = X,3 = A3

,


gα = x,α = aα + θ3a3,α

g3 = x,3 = a3

. (5.16)

The covariant and contravariant metric coefficients are computed by


Gi j =Gi ·G j

Gi j =
[
Gi j

]−1
,


Ai j = Ai ·A j

Ai j =
[
Ai j

]−1
,


gi j = gi ·g j

gi j =
[
gi j

]−1
,


ai j = ai ·a j

ai j =
[
ai j

]−1
. (5.17)

The contravariant base vectors are then given by

Gi = Gi jG j, Ai = Ai jA j, gi = gi jg j, ai = ai ja j . (5.18)

Form the numerour strain measures, we use the Green-Lagrangian strain tensor to describe

the strain, which is defined as

E =
1
2

(
FT F− I

)
, (5.19)
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A1

A2A3

θ3

θ1

θ2G1

G2G3

Reference configuration

a1

a2
a3

θ3

θ1

θ2

g1

g2
g3 Current configuration

u

Deformation of an arbitrary material point

x1 x2

x3

R
r

X

x

Figure 5.1: Illustration of deformation, reference and currect configuration of Kirchhoff-Love
shell. The mid-surface is denoted by blue color.

where F = ∂x
∂X = gi ⊗Gi is the deformation gradient and I is the identity tensor. Alternatively, E

can be represented as

E = Ei jGi ⊗G j, with Ei j =
1
2

(
gi j −Gi j

)
. (5.20)

Substituting (5.17) into (5.20), we obtain Ei3 = E3i = 0. Separating the strain into a constant part

due to membrane load and alinear part due to bending and neglecting O((θ3)2) terms, the rest strain

coefficients are given by

Eαβ = εαβ + θ3καβ, (5.21)

where the membrane strain tensor

ε = εαβGα ⊗Gβ, εαβ =
1
2

(
aαβ − Aαβ

)
=

1
2

(
aα ·aβ −Aα ·Aβ

)
, (5.22)
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and the tensor expressing changes in curvature

κ = καβGα ⊗Gβ, καβ = bαβ −Bαβ, with


Bαβ =

1
2

(
Aα ·A3,β +Aβ ·A3,α

)
= −Aα,β ·A3

bαβ =
1
2

(
aα ·a3,β +aβ ·a3,α

)
= −aα,β ·a3

.

(5.23)

5.2.2 Equilibrium of elastic Kirchhoff-Love shell

Next, we develop the variational formulation from the minimization of the potential energy.

For the sake of simplicity, we assume that the shell is linear elastic with a strain energy density per

unit area of the form [107]

W(θ1,θ2) =
1
2

(
hε : C : ε +

h3

12
κ : C : κ

)
=

1
2

(
hCαβγδεαβεγδ +

h3

12
Cαβγδκαβκγδ

)
, (5.24)

where E is Young’s modulus, ν is Poisson’s ratio and the fourth order material tensor

C =CαβγδAα ⊗Aβ ⊗Aγ ⊗Aδ, Cαβγδ =
Eν

1− ν2 AαβAγδ+
E

2(1+ ν)

(
AαγAβδ + AαδAβγ

)
. (5.25)

The membrane force resultants tensor and the bending moment resultants tensor read


n = nαβAα ⊗Aβ, nαβ =

∂W
∂εαβ

= hCαβγδεγδ

m = mαβAα ⊗Aβ, mαβ =
∂W
∂καβ

=
h3

12
Cαβγδκγδ

. (5.26)

The potential energy of Kirchhoff-Love shell is defined as

Π(u,u) = Πint(u,u)+Πext(f,u) =
∫
Ω

WdΩ+Πext(f,u), (5.27)

where Ω is the mid-surface of the shell in the reference configuration, dΩ = |A1×A2 |dθ1dθ2 is the

differential area, Πint(u,u) =
∫
Ω

WdΩ is the strain energy and Πext(f,u) is the external work due to

external force f, in general Πext is a linear functional with respect to u. The variation formulation
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can be obtained from the minimization of the potential energy,

δΠ(u,δu) =
∂Π

∂u
δu =

∫
Ω

(δε(u,δu) : n(u)+ δκ(u,δu) : m(u))dΩ+Πext(f,δu) = 0, (5.28)

with

δε(u,δu) =
∂ε(u)
∂u

δu, and δκ(u,δu) =
∂κ(u)
∂u

δu. (5.29)

However, the variational formulation (5.28) is a nonlinear functional with respect to u and cannot

be solved directly. Hence, we adopt the Newton-Raphson method to solve the problem iteratively.

Assuming ui+1 = ui +∆u, the weak form for solving ∆u is stated as: find ∆u ∈ X, such that

(
Km(ui,δu,∆u)+Kb(ui,δu,∆u)

)
= −δΠ(ui,δu), ∀δu ∈ X, (5.30)

where i denotes the iterative step, the solution space X =
[
H2(Ω̂)

]3
, the membrane stiffness

Km(ui,δu,∆u) =
∫
Ω

δε(ui,δu) : δn(ui,∆u)+ δε(ui,δu,∆u) : n(ui)dΩ, (5.31)

and the bending stiffness

Kb(ui,δu,∆u) =
∫
Ω

δκ(ui,δu) : δm(ui,∆u)+ δκ(ui,δu,∆u) : m(ui)dΩ, (5.32)

with 

δn(u,∆u) =
∂n(u)
∂u
∆u = hC : δε(u,∆u),

δm(∆u) =
∂m
∂u
∆u =

h3

12
C : δκ(∆u),

δε(u,δu,∆u) =
∂δε(u,δu)

∂u
∆u,

δκ(u,δu,∆u) =
∂δκ(u,δu)

∂u
∆u.

(5.33)

5.3 A dual mortar formulation for the multi-patch Kirchhoff-Love shell

Most of the commonly used patch coupling approaches for Kirchhoff-Love shell fall into

the following categories: penalty method [14], [108], Lagrange multiplier method (collocation ap-

proach can be viewed as a Lagrange multiplier method with the Lagrange multiplier discretized
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by Dirac delta functions ) [94], [109]–[111], and Nitsche’s method [70], [112]. The performance

of the penalty method is significantly influenced by the choice of the penalty parameter: a small

penalty parameter cannot effectively enforce inter-patch constraint while a large penalty parameter

may badly affect the condition number of the linear system. Usually, the selection of the penalty

parameter is performed empirically by the analyst. The Lagrange multiplier methods leads to a

saddle point problem, for with iterative methods are known to be less efficient than for symmetric

positive definite systems. In addition, redundancy may happen in the discretized constraint matrix,

leading to a rank deficiency linear system (inf-sup instability). Although a global factorization

followed by a static condensation can circumvent this issue, the resulted linear system no longer

preserves its sparsity and may be polluted by the numerical error within the factorization process.

The stability parameter in the Nitsche method needs to be approximated by eigenvalue problems

associated with element intersections, which increase the computational cost. For nonlinear prob-

lems, the Nitsche’s method becomes complex as it requires the tractions and their variations on the

interface.

Here, we present a dual mortar formulation for the Kirchhoff-Love shell over multi-patch

tensor product domains. Thanks to the locally supported dual basis, the linear system can be

statically condensed with minimum computational cost and the resulted linear system preserves its

sparsity. Along each interface, we introduce a local coordinate system, in which a generic inter-

patch constraint is developed in a natural manner. The main advantages of this generic inter-patch

constraint are that it deals with both patches joining smoothly and those joining at a kink in a

uniform framework and it is compatible with dual basis.

We first introduce a rotation operator: for a vector v ∈ R3, its rotation round the axis k ∈ R3

by an angle θ according to the right hand rule is given as

Rk,θ(v) = vcos(θ)+
(

k
|k|
×v

)
sin(θ)+

k
|k|

(
k
|k|
·v

)
(1− cos(θ)). (5.34)

This operator is called the Rodrigues’ rotation formula [113] and will play an important rule in

formulating the inter-patch constraint.

To demonstrate our approach, we consider a kinked shell structure consisting of two NURBS

patches shown in Figure 5.2. We denote by Ωs the slave domain, Ωm the master domain and Γsm
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Table 5.1: The strategy in selecting the restrictions of θ̄1 and θ̄2 on Ωs, where Āk
α = ∂Xk/∂θ̄α |Ωk

Interface orientation θ̄1 |Ωs θ̄2 |Ωs

South Ās
1 = −As

2 Ās
2 = As

1
East Ās

1 = As
1 Ās

2 = As
2

North Ās
1 = As

2 Ās
2 = −As

1
West Ās

1 = −As
1 Ās

2 = −As
2

the intersection between two patches. These two domains are parameterized by coordinate systems

(θ1
s ,θ

2
s ) and (θ1

m,θ
2
m), respectively.

Figure 5.2: A two-patch non-conforming Kirchhoff-Love shell consisting of two patches Ωs and
Ωm with the intersection denoted by the red curve. The director Am

3 of Ωm and the director As
3 of

Ωs determine a rotation angle θ along the intersection.

5.3.1 A local coordinate system for patch intersections

In this subsection, we reparameterize the intersection between the slave patch and the mas-

ter patch by a coordinate system (θ̄1, θ̄2). However, we do not need to develop explicitly the map

from (θ̄1, θ̄2) toΩs andΩm. Instead, we are interested in the covariant base vectors (Ā1,Ā2) defined

in the new coordinate system and how they behave during the deformation. The new coordinate
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system is defined based on the orientation of both the slave patch and the master path. We first

specify the restrictions of θ̄1 and θ̄2 on Ωs following the strategy given in Table 5.1. For example,

if an intersection is a north edge on the slave patch, we have


Ās

1 =
∂Xs

∂θ̄1 |Ωs

=
[
As

1 As
2

]
·Jθ̄1 |Ωs = As

2

Ās
2 =

∂Xs

∂θ̄2 |Ωs

=
[
As

1 As
2

]
·Jθ̄2 |Ωs = −As

1

, (5.35)

with 

Jθ̄1 |Ωs =


∂θ1

s

∂θ̄1 |Ωs
∂θ2

s

∂θ̄1 |Ωs

 =

0

1


Jθ̄2 |Ωs =


∂θ1

s

∂θ̄2 |Ωs
∂θ2

s

∂θ̄2 |Ωs

 =

−1

0


. (5.36)

For different pairings of the slave edge and the master edge, the corresponding Jacobian

Jθ̄1 |Ωs , Jθ̄2 |Ωs can be computed in the same manner.

We now extend the curvilinear coordinate system (θ̄1, θ̄2) from the slave patch to the master

patch. A natural choice of the restriction of θ̄2 on Ωm is

θ̄2 |Ωm = θ̄
2 |Ωs, or Ām

2 = Ās
2. (5.37)

Given the directors As
3 and Am

3 and the axis Ās
2, we can now uniquely determine the counterclock-

wise rotation (see Figure 5.2) from Am
3 to As

3 by


cosθ = Am

3 ·A
s
3

sinθ =
(Ām

2 ×Am
3 ) ·A

s
3

|Ām
2 |

.
(5.38)

By Equation (5.34), we can define a rotation operator rotate As
3 to Am

3 around the axis Ām
2 as

Am
3 = RĀm

2 ,−θ
(As

3) = −RĀm
2 ,θ
(As

3). (5.39)
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Meanwhile, the rotation operator RĀm
2 ,−θ

also rotates Ās
1 to the tangential plane of Ωm along the

intersection. We let

Ām
1 = RĀm

2 ,−θ
(Ās

1). (5.40)

The corresponding Jacobians Jθ̄1 |Ωm =
[

∂θ1
m

∂θ̄1 |Ωm

∂θ2
m

∂θ̄1 |Ωm

]T
and Jθ̄2 |Ωm =

[
∂θ1

m

∂θ̄2 |Ωm

∂θ2
m

∂θ̄2 |Ωm

]T
are given

by [
Am

1 Am
2

]
·Jθ̄1 |Ωm = RĀm

2 ,−θ
(Ās

1),[
Am

1 Am
2

]
·Jθ̄2 |Ωm = Ās

2.
(5.41)

As
[
Am

1 Am
2

]
is a 3× 2 matrix, Equation (5.41) could not be factorized directly. However, as

RĀm
2 ,−θ
(Ās

1) and Ās
2 are on the tangential plane of Ωm, we can solve Jθ̄1 |Ωm and Jθ̄2 |Ωm by

Jθ̄1 |Ωm =

( [
Am

1 Am
2

]T
·

[
Am

1 Am
2

] )−1 ( [
Am

1 Am
2

]T
·RĀm

2 ,−θ
(Ās

1)

)
,

Jθ̄2 |Ωm =

( [
Am

1 Am
2

]T
·

[
Am

1 Am
2

] )−1 ( [
Am

1 Am
2

]T
· Ās

2

)
.

(5.42)

Following the above procedures, we have that the covariant base vectors of the master patch

are nothing but the rotation of the covariant base vectors of the slave patch via the rotation operator

RĀm
2 ,−θ

(see Figure 5.3), as

[
Ām

1 Ām
2

]
=

[
RĀm

2 ,−θ
(Ās

1) Ās
2

]
= RĀm

2 ,−θ

[
Ās

1 Ās
2

]
. (5.43)

The partial derivatives of the displacement u w.r.t. the new coordinate system (θ̄1, θ̄2) are

now given by 

ūs
,1 =

∂us

∂θ̄1 |Ωs

=
[
us
,1 us

,2

]
Jθ̄1 |Ωs

ūm
,1 =

∂um

∂θ̄1 |Ωm

=
[
um
,1 um

,2

]
Jθ̄1 |Ωm

ūm
,2 =

∂um

∂θ̄2 |Ωm

=
[
um
,1 um

,2

]
Jθ̄2 |Ωm

. (5.44)

Remark 9. Following the strategy in Table 5.1 is of crucial importance with respect to the algo-

rithm’s stability. Figure 5.4 shows the restriction of the new coordinate system on the coupling
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(a) Slave patch (b) Master patch

Figure 5.3: The covariant base vectors (Ā1,Ā2) of the coordinate system (θ̄1, θ̄2) on both the slave
patch and the master patch. Note that the covariant base vectors of the master patch can be obtained
by rotating the covariant base vectors of the slave patch via the rotation operator RĀm

2 ,−θ
.

edges for different coupling scenarios. As can be seen, the new coordinate system always follows

the right hand rule. On the slave patch, θ̄1 is always perpendicular to θ̄2, while on the master

patch, θ̄1 and θ̄2 forms an angle in the range of (0◦,180◦). Thus, the director of the new coordinate

system is always consistent with the director of the original coordinate system, i.e.


Ās

3 = As
3

Ām
3 = Am

3

. (5.45)

On the contrary, if we do not follow the scheme in Table 5.1, the new coordinate system may

not obey the right hand rule, Equation (5.45) may not be satisfied and the rotation angle from

Equation (5.38) may not necessarily guide Ās
1 to the tangential plane of Ωm.

5.3.2 Generic dual-compatible constraints for Kirchhoff-Love shell coupling

Shell patches can be coupled smoothly as well as joined at a kink. In this subsection,

we propose a set of constraints that can tackle shell coupling in a systematic manner. Compared

with existing Kirchhoff-Love shell continuity constraints, the proposed formulation has its unique-
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(a) Parametric domain of the master patch
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(b) Parametric domain of the slave patch

Figure 5.4: The new coordinate system (θ̄1, θ̄2) on parametric domains of both slave patch and
master patch. Coordinate systems on different edges denote the orientations in different coupling
scenarios. Note that no matter which edge is coupled, the new coordinate system always obey the
right hand rule on both slave and master patches.

ness. For instance, the constraint proposed in [110] only deal with G1 continuity of adjacent

patches, while the proposed formulation can tackle shell patches joined at different angle in a uni-

form framework. When patches are coupled smoothly, the proposed constraints will enforce C1

continuity across adjacent patches while the angle between directors of adjacent patches will be

preserved when they are joined at a kink. The constraint presented in [93], [109] is designed for

small deformation problems, while the proposed formulation solves both small deformation and

large deformation problems. In addition, the proposed constraints are compatible with dual basis,

i.e. the discretized constraint matrix takes the form of Equation (5.6), and the inf-sup stability is

automatically satisfied.

In the coordinate system (θ̄1, θ̄2), two physical properties that satisfied in the reference

configuration should be preserved:

Xs −Xm = 0 ⇒ xs −xm = 0, (5.46a)

Ās
3−RĀm

2 ,θ
(Ām

3 ) = 0 ⇒ ās
3−Rām2 ,θ(ā

m
3 ) = 0, (5.46b)

where Equation (5.46a) indicates the continuity of the displacement and Equation (5.46b) reflects

the rotational continuity between two patches. Equation (5.46b) can be applied directly to classic
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Lagrange multiplier formulation, however, for dual mortaring, modifications are required to fully

take the advantage of dual basis functions.

We modify Equation (5.46b) by the following steps:

ās
3−Rām2 ,θ(ā

m
3 ) = 0 ⊃ ās

1× ās
2−Rām2 ,θ(ā

m
1 × ām

2 ) = 0 ⊃ ās
1−Rām2 ,θ(ā

m
1 ) = 0, (5.47)

where the symbol ⊃ indicates that functions that satisfy the equation on the right-hand side is a

subset of those on the left-hand side. Combining Equation (5.40), we have:

Ās
1−RĀm

2 ,θ
(Ām

1 ) = 0 ⇒ ās
1−Rām2 ,θ(ā

m
1 ) = 0. (5.48)

Subtracting two equations in Equation (5.46a) and (5.48) respectively, we obtain:

us −um = 0, (5.49a)

ūs
,1−Rām2 ,θ(ā

m
1 )+RĀm

2 ,θ
(Ām

1 ) = 0. (5.49b)

Note that, for two patches that are coupled smoothly, i.e. θ = 0, Equation (5.49b) reduces

to

ūs
,1−Rām2 ,0(ā

m
1 )+RĀm

2 ,0
(Ām

1 ) = ūs
,1− ām

1 + Ām
1 = ūs

,1− ūm
,1 = 0, (5.50)

which is indeed the C1 continuity condition in the coordinate system (θ̄1, θ̄2). Both Equation (5.49a)

and Equation (5.50) are linear. To solve the nonlinear problem at ui+1 = ui +∆u, we have

∆us −∆um = 0, (5.51a)

∆ūs
,1−∆ūm

,1 = 0. (5.51b)

However, when patches coupled at a kink, the constraint (5.49b) is no longer linear. Hence, the

Newton-Raphson method is needed to apply the constraint (5.49b) iteratively. as

∆ūs
,1−

∂Rām2 ,θ(ā
m
1 )

∂um ∆ūm
,1 = ri

c, with ri
c = −

[
ās

1−Rām2 ,θ(ā
m
1 )

]
u=ui

. (5.52)

126



Remark 10. It is important to use ām
2 as the rotation axis in the rotation operator formulation of

Equation (5.48). Although ās
2 equals to ām

2 in the weak sense, the presence of ∆ūs
,2 in the lineariza-

tion of ām
2 will impede the formulation of the identity submatrix in Equation (5.6).

5.3.3 The dual mortar formulation

The Lagrange multiplier formulation for the multi-patch nonlinear Kirchhoff-Love shell

can be stated as: find ∆u ∈ X, λ0 ∈M0 and λ1 ∈M1 such that


Km(ui,δu,∆u)+Kb(ui,δu,∆u)+ b0(λ0,δu)+ b1(ui,λ1,δu) = −δΠ(ui,δu) ∀δu ∈ X,

b0(δλ0,∆u) = 0 ∀δλ0 ∈M0,

b1(ui,δλ1,∆u) = Rb1(u
i,δλ1) ∀δλ1 ∈M1,

(5.53a)

(5.53b)

(5.53c)

with

b0(δλ0,∆u) =
∑
Γ∈S

∫
Γ

δλ0 · (∆us −∆um)dΓ, (5.54a)

b1(ui,δλ1,∆u) =
∑
Γ∈S

∫
Γ

δλ1 ·

(
∆ūs

,1−
∂Rām2 ,θ(ā

m
1 )

∂um ∆ūm
,1

)
dΓ, (5.54b)

Rb1(u
i,δλ1) =

∑
Γ∈S

∫
Γ

δλ1 · ri
cdΓ, (5.54c)

where S is the union of all interfaces. When patches are coupled smoothly, Equation (5.53c) is

degenerated to ∑
Γ∈S

∫
Γ

δλ1 ·
(
∆ūs

,1−∆ūm
,1

)
dΓ = 0. (5.55)

The constrained function space for the dual mortar formulation of the multi-patch Kirchhoff-

Love shell problem can then be defined as

V B
{
∆v ∈ X | b0(µ0,∆v) = 0 and b1(ui,µ1,∆v) = 0 ∀(µ0,µ1) ∈ M0×M1

}
. (5.56)
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The dual mortar formulation for the multi-patch Kirchhoff-Love shell can then be stated as: find

∆u = ∆unon+∆uhom, with the homogeneous contribution ∆uhom ∈V such that

Km(ui,δu,∆u)+Kb(ui,δu,∆u) = −δΠ(ui,δu), ∀δu ∈V, (5.57)

where the non-homogeneous contribution∆unon is a function in X that satisfies both constraint (5.53b)

and (5.53c). In what follow, we will show that, in the dual mortar formulation, the constrained

function space V and the non-homogeneous contribution ∆unon can be constructed with minimum

computational costs.

5.3.4 Discretization

For each intersection Γsm, we classify two adjacent patches as either slave Ωs or master

Ωm. Note that one patch can simultaneously be a master for one intersection and a slave for

another intersection. To approximate the solution of the variational problem (5.57), we discretize

Ωs and Ωm by B-spline basis functions {N s
i }i∈Is and {Nm

i }i∈Im , with the index sets Is = {1,2, . . . ,ns}

and Im = {ns +1,ns +2, . . . ,ns +nm}. The incremental displacement and its variation are discretized

as

∆uh =
∑

i∈Is∪Im

Ni ·∆Ui, δuh =
∑

i∈Is∪Im

Ni · δUi, (5.58)

where

δUi =


δU x

i

δUy
i

δUz
i


, ∆Ui =


∆U x

i

∆Uy
i

∆Uz
i


, Ni =


Ni 0 0

0 Ni 0

0 0 Ni


, with Ni =


N s

i i ∈ Is,

Nm
i i ∈ Im.

(5.59)

The Lagrange multipliers and their variations are discretized by the dual basis of the dis-

cretized trace space of intersections. However, for a multi-patch decomposition, at least three

patches meet at an interior vertex and several interfaces can share this extraordinary point as a

common endpoint. If we discretize the Lagrange multiplier space with the same dimension as

univariate basis of the slave side, we obtain too many constraints. Some of the control points in

the neighborhood of a vertex may serve as both slave nodes and master nodes. We overcome this
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issue by considering a set of dual basis
{
N̂i

}ns
θ̄2−4

i=1 with codimension four of the corresponding

ns
θ̄2-dimensional trace space, and satisfies the following biorthogonality relation∫

Γsm

N̂i(θ̄
2)N s

j+2(θ̄
2)dΓ = δi j, 1 ≤ i, j −2 ≤ ns

θ̄2 −4. (5.60)

where the basis functions N s
j+2(θ̄

2) of the trace space depend on the orientation and are summarized

in Table 5.2. The codimension can be accomplished by coarsening the mesh in the neighborhood

of each vertex. For the global dual basis, we remove the two knots adjacent to each vertex. For the

enriched Bézier dual basis, there is a built-in coarsening algorithm, see Chapter 4 for the detail.

The Lagrange multipler λ0, λ1 and their variation are written as:

λh
0 =

ns
θ̄2−4∑
i=1

N̂i ·Λ
0
i , δλh

0 =

ns
θ̄2−4∑
i=1

N̂i · δΛ
0
i ,

λh
1 =

1
c

ns
θ̄2−4∑
i=1

N̂i ·Λ
1
i , δλh

1 =
1
c

ns
θ̄2−4∑
i=1

N̂i · δΛ
1
i ,

(5.61)

where

Λ0
i =


Λ0x

i

Λ
0y
i

Λ
0z
i


, δΛ0

i =


δΛ0x

i

δΛ
0y
i

δΛ0z
i


, Λ1

i =


Λ1x

i

Λ
1y
i

Λ
1z
i


, δΛ1

i =


δΛ1x

i

δΛ
1y
i

δΛ1z
i


, N̂i =


N̂i 0 0

0 N̂i 0

0 0 N̂i


, (5.62)

the weight c is given in Table 5.2.

By substituting the discretized displacement field and Lagrange multipliers into the mixed

problem (5.53), we obtain the following stiffness, constraint matrices and the right-hand side of

the non-homogeneous constraint (5.53c):

δUT Kkl∆U = Km(uhi,δuh,∆uh)+Kb(uhi,δuh,∆uh),
δΛ0

δΛ1


T

Bkl∆U =


b0(δλ
h
0,∆uh)

b1(uhi,δλh
1,∆uh)

 ,[
δΛ1]T Rb1 = Rb1(u

hi,δλh
1).

(5.63)
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Table 5.2: A summary of all parameters used in the description of the discretized Lagrange multi-
plier λ0 and λ1

Interface orientation N s
j (θ̄

2) ns
θ̄2 c

South N s
j (θ

1) ns
θ1 −

∂Ns
2 (θ

2)

∂θ2

���
θ2=0

East N s
j (θ

2) ns
θ2

∂Ns
ns
θ1−1(θ

1)

∂θ1

�����
θ1=1

North N s
j (θ

1) ns
θ1

∂Ns
ns
θ2−1(θ

2)

∂θ2

�����
θ2=1

West N s
j (θ

2) ns
θ2 −

∂Ns
2 (θ

1)

∂θ1

���
θ1=0

5.3.5 Building a solution space from the discretized constraints

In this subsection, we will show how to recover the form (5.6) from the constraint ma-

trix Bkl by a simple linear transformation. Then, the vector basis B⊥kl of Bkl’s nullspace can be

constructed naturally by Equation (3.7) and a particular solution can be constructed explicitly by

Equation (5.10). We first classify the basis functions of the discretized space into five different

types, depending on their vicinity to an interface or a vertex, as shown in Figure 5.5:

1. All the second closest column of slave basis functions to the intersection Γsm but the first two

and the last two, whose indices are denoted by the index set Ii. (denoted by blue dots)

2. All the column of slave basis functions on the intersection Γsm but the first two and the last

two, whose indices are denoted by the index set Iii. (denoted by red dots)

3. All the column of master basis functions on the intersection Γsm and the first two and the last

two slave basis functions on the intersection Γsm, whose indices are denoted by the index set

Iiii. (denoted by green dots)

4. All the second closest column of master basis functions to the intersection Γsm and the first

two and the last two of the second closest column of slave basis functions to the intersection

Γsm, whose indices are in the index set Iiv. (denoted by yellow dots)

5. The basis functions whose values and first order derivative values in the θ̄1 direction are zero

on Γsm, whose indices are denoted by the index set Iv. (denoted by grey dots)
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Figure 5.5: The classification of all basis functions for the two-patch non-conforming Kirchhoff-
Love shell in Figure 5.2. (For interpretation of colors in this figure, the reader is referred to the
web version of this article.)

We reorder the basis functions as well as the Lagrange multipliers by introducing two

permutation matrices Pc and Pr (this step is not neccessary from the implementation point-of-

view, but is helpful during the derivation, especially for multi-patch problems). We define the

column-wise permutation matrix Pc as



Ii

Iii

Iiii

Iiv

Iv


= Pc


Is

Im

 , (5.64)

where Ii is the vector form of the index set Ii. We also define a row-wise permutation matrix Pr

such that the permuted constraint matrix can be written in the partitioned form

Bp = [Pr ⊗ I3×3]Bkl [Pc ⊗ I3×3]
T =


B1

1 B2
1 B3

1 B4
1 0

0 B2
2 B3

2 0 0

 , (5.65)
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where ⊗ is the tensor product operator, I3×3 is the 3×3 identity matrix, B1
1 is the contribution of

the first type of B-spline basis function in the discretization of b1 and B2
2 is the contribution of the

second type of B-spline basis function in the discretization of b0. Under the row-wise permutation

matrix Pr, B1
1 and B2

2 become identity submatrices. Under a rank-preserving transformation T we

can eliminate the submatrix B2
1 such that

TBp =

 I B3
1−B2

1B3
2 B4

1 0

B3
2 0 0

 . (5.66)

We may now take

B⊥p =



B2
1B3

2−B3
1 −B4

1 0

−B3
2 0 0

I


. (5.67)

The vector basis of the null space of Bb can now be obtained from

B⊥kl = [Pc ⊗ I3×3]
T B⊥p . (5.68)

When the constraint is not homogeneous, i.e. R =
[
0 Rb1

]T
, 0, we have

TBp [Pc ⊗ I3×3]Unon = TRp = Rp, (5.69)

where Rp = [Pr ⊗ I3×3]R. We can explicitly construct a particular solution from Equation (5.10) as

Unon = [Pr ⊗ I3×3]
T Rp = R. (5.70)

5.4 Numerical results

In this section, the performance of the proposed Kirchhoff-Love shell coupling formulation

as well as the enriched Bézier dual basis are illustrated by several challenging benchmark exam-

ples, including both linear and non-linear problems. Results computed using the ith order global

dual basis are labeled G−Qi. Results computed using the ith order enriched Bézier dual basis are
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labeled B−Qi. Note that the ith order enriched Bézier dual basis is constructed by reproducing

polynomials of degree i−2.

5.4.1 Linear problems

In this subsection, we consider the performance of the proposed patch coupling formulation

for the linearized Kirchhoff-Love shell model. The first example is a simply supported plate under

sinusoidal load, where results are compared with the analytical solution. The second example is the

Scordelis-Lo roof problem. The convergence behavior is tested against a numerical solution from

a very fine mesh. In the third example, we consider a hemisphere shell subjected to two opposite

point loads. Two different parameterizations are considered. All problems in this subsection are

solved by the conjugate gradient iterative solver in Eigen library [71].

Simply supported plate under sinusoidal load

(a) Non-matching parameterized non-
conforming three-patch mesh

(b) The reference solution

Figure 5.6: The decomposition and parameterization of the domain [0,12]×[0,12] and the refernce
solution that satisfies u = 0 on ∂Ω.

In the first example, we study a plate of size L × L = 12×12, thickness t = 0.375, Young’s

modulus E = 4.8× 105, Poisson’s ratio ν = 0.38 and subjected to a sinusoidal pressure p(x,y) =

sin(π x
L )sin(π y

L ) (in −z direction). The analytical solution of the vertical displacement is given

by [114] (see Figure 5.6)

w(x,y) = −
L4

4Dπ4 sin(
πx
L
)sin(

πy

L
), (5.71)
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where D = Et3

12(1−ν2)
is the flexural rigidity of the plate. The computational domain is decomposed

into five non-conformingly coupled patches as shown in Figure 5.6. The simply supported bound-

ary condition is applied by setting u = 0 on the boundary.
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Figure 5.7: Convergence plots for the simply supported plate under sinusoidal pressure load. Upper
left: error of w measured in L2 norm. Upper right: error of Mxx measured in L2 norm. Bottom:
error of Mxy measured in L2 norm.

Figure 5.7 shows the convergence of the approximated vertical displacement wh, bending

moment Mh
xx and Mh

xy to the analytical solution as the mesh is refined. As expected, both the

enriched Bézier dual basis and the global dual basis yield optimal results for all polynomial orders

in all three measures. For the displacement error, there is no visible difference between the enriched

Bézier dual basis and the global dual basis in all tested polynomial orders. However, compared to
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the global dual basis, the enriched Bézier dual basis introduces slightly higher errors in both Mxx

and Mxy errors for p = 3,4, though the convergence remains optimal.

B−Q3 err = uhz −uz G−Q3 err = uhz −uz

B−Q3 err = Mh
xx −Mxx G−Q3 err = Mh

xx −Mxx

B−Q3 err = Mh
xy −Mxy G−Q3 err = Mh

xy −Mxy

Figure 5.8: Contour plots of err = uh
z − uz, err = Mh

xx −Mxx and err = Mh
xy −Mxy for the simply

supported plate under sinusoidal load (p = 3, and the mesh is obtained after one refinement).
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(a) (b)

Figure 5.9: The Scordelis-Lo roof problem: (a) Geometry, parameterization and boundary condi-
tions. Note that the blue edges are free, while the red edges are fixed in x and z directions. (b)
Deformed Scordelis-Lo roof (scaling factor of 20 is applied to the displacement). Left: Only the
C0 continuity constraint is applied. After deformation, kinks are formed on all intersections. Right:
The C1 continuity constraint is also applied. The deformed surface is as smooth as a single patch.

Contour plots of err = uh
z − uz, err = Mh

xx −Mxx and err = Mh
xy −Mxy for cubic splines are

given in Figure 5.8. The error level for two types of dual basis are very similar in all three error

measures. For the enriched Bézier dual basis case, error spikes are formed along intersections and

highest error spikes are observed at vertices for Mxx and Mxy. The global dual basis, on the other

hand, seems to yield more evenly distributed errors.

Scordelis-Lo roof problem

We then consider the Scordelis-Lo roof benchmark problem. The Scordelis-Lo roof prob-

lem is a membrane stress dominated static shell problem and named after the authors who first re-

ported it [115]. In this problem, a cylindrical shell roof (Young’s modulus E = 432MPa, Poisson’s

ratio ν = 0, thickness t = 0.25m.), under the distributed gravity load ( f = 90N/m2), is supported

by rigid diaphragms on both curved edges (i.e. ux = uz = 0), while the straight edges are free to

move, as depicted in Figure. 5.9a. To improve the robustness, the displacement in y direction of

one DOF on the diaphragms supported edges is fixed. The vertical displacement at the midpoint of

the straight edges is considered as the reference (with the given value uz = −0.300592457m [94]).

The roof structure is decomposed into four patches, which are discretized non-conformingly

as shown in Fig. 5.9a. Fig. 5.9b demonstrates the effect of the proposed constraint. As can be
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Figure 5.10: Stiffness matrix sparsity patterns for (a) the coupled linear system using the global
dual basis, and (b) the coupled linear system using the enriched Bézier dual basis for the Scordelis-
Lo roof problem. The stiffness matrices are computed from the four-patch domain in Figure 5.9a
after 4 levels of refinement.

seen, with only C0 continuity constraint enforced, althought the deformed surface remains con-

tinuous, all intersections fail to transfer the bending moments from one patch to another. Hence,

connections act like hinges and kinks are formed along all intersections. By enforcing the ad-

ditional constraint, the smoothness of the roof structure is preserved, even though the mesh is

non-conformingly discretized.

The sparsity patterns for the stiffness matrices corresponding to the coupled problem using

the global dual basis, and the coupled problem using the enriched Bézier dual basis are shown in

Figure 5.10. Note that the matrix constructed using the enriched Bézier dual basis is much sparser

then the matrix constructed using the global dual basis.

Fig. 5.11 shows the vertical displacement of the midpoint of the free edge for different

polynomial degrees. Converged results are obtained by both the global dual basis and the enriched

Bézier dual basis for all polynomial orders. For quartic basis functions, the relative error is reduced

to 0.1% with only one refinement for both dual basis. The accuracy of the four-patch configurations

is very similar to the single patch one. To better study the performance of the proposed coupling

formulation, we compare the displacement field of the four-patch mesh to a reference solution

obtained from a very fine single patch mesh, as shown in Figure 5.12. Optimal convergence rates

137



0 2,000 4,000 6,000
−0.4

−0.35

−0.3

−0.25

Degrees of freedom

D
is

pl
ac

em
en

t(
m

)

Q2
B-Q2
G-Q2

(a)

0 2,000 4,000 6,000
−0.36

−0.34

−0.32

−0.3

Degrees of freedom

D
is

pl
ac

em
en

t(
m

)

Q3
B-Q3
G-Q3

(b)

0 2,000 4,000 6,000

−0.306

−0.304

−0.302

−0.3

Degrees of freedom

D
is

pl
ac

em
en

t(
m

)

Q3
B-Q3
G-Q3

(c)

Figure 5.11: Scordelis-Lo roof problem: a comparison of the vertical displacement at the midpoint
of the free edge for different dual basis functions and degrees.

are attained for all polynomial orders. The convergence plots of the enriched Bézier dual basis is

indistinguishable to that of the global dual basis.
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Figure 5.12: The convergence plot for the Scordelis-Lo roof problem.
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(a) Geometry and boundary conditions of the problem.
The red point is fixed from moving and rotating.

(b) Non-conforming twelve patch mesh with the inter-
sections denoted by the red lines.

Figure 5.13: The geometry and mesh setup of the pinched hemisphere shell problem.
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Pinched hemispherical shell problem

In this example, we consider a hemispherical shell pinched at the top and subjected to four

radial point loads (see Fig. 5.13a). The bottom circumferential edge of the hemisphere is free. The

thickness of the shell is t = 0.04 and the material properties are E = 6.825×107 and ν = 0.3. The

hemispherical is decomposed into twelve patches as shown in Figure 5.13b. Note that the twelve-

patch parameterization is degeneracy-free. The radial displacement at point A is considered as the

benchmark quantity and a reference value is given as ux = 0.0924 [13].

The convergence of the proposed formulation is plotted in Figure 5.14. Convergence is

observed for both types of dual basis functions. It seems that, as the mesh is refined, the enriched

Bézier dual basis provides results that are closer to the reference solution.
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Figure 5.14: Pinched hemispherical shell problem: acomparison of the radial displacement at point
A for different dual basis functions and degrees

T-beam

Shell structrues with kinks and sharp folds are widely applied in engineering practice. In

this example, we verify the performance of the proposed coupling formulation in preserving the

coupling angle between patches during deformation. A T-beam (see Herrema et al. [108]) with a

thickness of t = 0.1 in Figure 5.15a is modelled by three cubic B-spline patches joined at a common
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edge, where the flange is formed by 14×4 and 16×4 B-spline patches and the web is formed by

a 12×4 B-spline patch. The T-beam is pinned (i.e. u = 0) on one side and deflected under a point

load of F = 10 at one corner of the flange in the −z direction (see Figure 5.15a). The deformed

configuration is shown in Figure 5.15b, a maximum displacement magnitude of max(|u|) = 0.0589

is observed at the bottom tip of the web, which agrees with the result in [108].

L = 20
w = 2
h = 2

(a) (b)

Figure 5.15: T-beam prolem: (a) Geometry, parameterization and boundary conditions of the prob-
lem. Note that red edges are pinned ends (i.e. u = 0). (b) Deformed configuration with a scale
factor of 10.

Figure 5.16 shows the relative error between the deformed coupling angle and the original

90◦ coupling angle between the web and flange for the mesh in Figure 5.15a (coarse) and the one

after one refinement (fine). In the region y ∈ [0,10] for the coarse mesh and y ∈ [0,14] for the fine

mensh, we observe a relative error close to zero. Oscillations are observed at the free end of the

intersection for all tested cases. We attribute this phenomenon to the dimonsion of the discretized

Lagrange multiplier spaces. Lagrange multiplier with codimension four of the trace space renders

all twelve control points at the free end of the intersection become master nodes so that constraints

at this region could not transfer stresses from one patch to the other. However, a h−refinement

does reduce the error magnitude as well as the size of the oscillation region. Owing to the compact
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supports, the oscillation region of the result from the enriched Bézier dual basis is smaller than the

result from the global dual basis for both coarse and fine meshes.
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Figure 5.16: Relative error of angle between the flange and web along the intersection for (a) a
coarse mesh, (b) a fine mesh.

5.4.2 Nonlinear problems

The proposed formulation has demonstrated its accuracy in linear analysis. In the follow-

ing, the robustness of the proposed formulation will be verified by several challenging nonlinear

benchmark problems. From our observations, the presence of the geometric stiffness matrix sig-

nificantly influences the convergence of the conjugate gradient solver. For the sake of robustness,

all problems in this subsection are solved by SparseLU module in Eigen library [71].

Cantilever subjected to an end shear force

The first nonlinear problem to be studied is a cantilever subjected to an end shear force (see

Figure 5.17a). The length, width and thickness of the cantilever are L = 10, b = 1 and t = 0.1,

respectively. The material parameters are: Young’s modulus E = 1.2×106 and Poisson’s ratio ν =

0. The left boundary is clamped (u = ∂u
∂x = 0) while the right boundary is subjected to a uniformly

distributed traction load in the z-direction with the maximum load of f = 4 and the incremental

load of ∆ f = 0.4. The cantilever is decomposed into three patches, which are discretized by 9×3,
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5× 2 and 3× 3 B-spline elements, respectively (see Figure 5.17b). A fine mesh obtained by a

uniform refinement of the mesh in Figure 5.17b is also considered in this research. The deformed

cantilever is demonstrated in Figure 5.17c.

(a)

(b) (c)

Figure 5.17: A cantilever subjected to an end shear force: (a) the problem description, (b) the
three-patch non-matching discretization and (c) the initial and deformed configurations.

Figure 5.18 shows the shear traction against the horizontal (−ux) and vertical (uz) displace-

ments at the free end for both the non-conforming multi-patch configuration and the reference

results reported by Sze et al. [5]. Due to the heavy distortion of the mesh, the results are as ex-

pected poor for quadratic elements. However, the results for cubic splines agree with the reference

result even for the coarse mesh. For all tested cases, the difference between the results obtained

from the enriched Bézier dual basis and the global dual basis are negligible.

Slit annular plate subjected to a lifting line force

In the second example, we study a slit annular plate subjected to a lifting line force. The

problem setup is illustrated in Figure 5.19a, where the inner radius, outer radius, thickness, max-

imum vertical traction load and load step are R0 = 6, R1 = 10, t = 0.03, f = 0.8 and ∆ f = 0.04,

respectively. Young’s modulus is E = 21×106 and Poisson’s ratio is 0. One end of the slit is fully

clamped while the other end is lifted under the uniform traction load f . We benchmark the vertical

displacements of points A and B. To test the performance of the proposed coupling formulation,
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Figure 5.18: Load-deflection curves for cantilever subjected to an end shear force. The horizontal
(−ux) and vertical (uz) displacements at the free end for (a) a quadratic coarse mesh, (b) a quadratic
fine mesh, (c) a cubic coarse mesh and (d) a cubic fine mesh are compared to the results provided
in [5].

we decompose the annular plate into three NURBS patches with 6×2, 6×5 and 6×3 elements, re-

spectively (see Figure 5.19b). In this example, we also consider a fine mesh obtained by a uniform

refinement of the mesh in Figure 5.19b. The deformed annular plate is shown in Figure 5.19c.

Figure 5.20 shows the load against the vertical deflections of points A and B for both the

non-conforming multi-patch configuration and the reference results provided in [5]. Cubic ele-

ments are utilized in all tested cases. Whereas the multi-patch results obtained from the coarse

mesh demonstrate slight discrepancy from the reference results, a good agreement with the refer-

ence results is observed for the fine mesh. Again, the difference between the results obtained from

the enriched Bézier dual basis and the global dual basis are negligible.
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(a)

(b) (c)

Figure 5.19: A cantilever subjected to an end shear force: (a) the problem description, (b) the
three-patch non-matching discretization and (c) the initial and deformed configurations.
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Figure 5.20: Load-deflection curves for the slit annular plate lifted by a lifting line force. The
vertical displacements at tip A and B for (a) a cubic coarse mesh and (b) a cubic fine mesh are
compared to the results provided in [5].
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Pullout of an open-ended cylindrical shell

In this test, an open-ended cylinder is pulled by a pair of radial forces. The problem setup

is illustrated in Figure 5.21a, where the radius, length, thickness of the cylinder, radial force and

load step are R = 4.953, L = 10.35, t = 0.094, P = 40,000 and ∆P = 1,000, respectively. The

material properties are: Young’s modulus E = 10.5× 106 and Poisson’s ratio ν = 0.3125. We

benchmark uz at point A, ux and points B and C, correspondingly. The cylindrical shell is mod-

eled by four NURBS patches, discretized by 32× 16, 28× 14, 28× 14 and 32× 16, respectively

(see Figure 5.21a). The results of Sze et al. [5] are used as the reference. A good agreement

with the reference results is observed in Figure 5.22 indicating the accuracy and robustness of our

formulation.

5.5 Conclusion

In this chapter, we present a dual mortar formulation for the Kirchhoff-Love shell problem.

The proposed formulation is based on the enriched Bézier dual basis and generic dual-compatible

constraints. The enriched Bézier dual basis reproduces polynomial up to a given order without

losing its locality. Thanks to the dual-compatible constraint, the biorthogonality between the dual

basis functions and the corresponding primal spline basis functions can be extended to the dis-

cretized constraint matrix. Hence, the static condensation can be achieved without extra computa-

tional effort. With the help of the enriched Bézier dual basis, the condensed linear system remains

sparse. Moreover, the constraint utilized in our formulation is generic in the sense that it handles

C1 continuity for smooth shell coupling as well as angle preservation for patches joined at a kink.

When kinks present, the constraint is no longer linear. Thus, Newton-Raphson iteration is needed

in order to apply the constraint. Due to the presence of the residual of the constraint, the linearized

constraint is non-homogeneous. Thanks to the unique constraint matrix structure, a particular so-

lution that satisfies the non-homogeneous constraints can be constructed without the need to solve

any linear systems.

The accuracy and robustness of the proposed formulation are verified by several linear and

nonlinear benchmark problems. The Kirchhoff plate and Scordelis-Lo roof problems indicate the

optimality of the proposed formulation. The T-beam and L-beam problems demonstrate the ability
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(a)

(b) (c)

Figure 5.21: The open-end cylindrical shell subjected to radial pulling forces: (a) the problem
description and four-patch non-matching discretization, (b) the initial and deformed configurations
in 3D view, and (c) the initial and deformed configurations in y-axis view.

of the proposed formulation in preserving coupling anlge. From the benchmark results, we believe

the proposed patch coupling formulation has great potential in addressing real world complex shell

problems.
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Figure 5.22: Load-deflection curves of the open-end cylinder subjected to a point pulling load. The
results are measured at points A, B and C.
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CHAPTER 6. BÉZIER B̄ PROJECTION

In this chapter, we demonstrate how dual basis functions can be employed as the underlying

local projection framework for a B̄ approach to treat locking in isogeometric structural elements.

Numerical locking in structural finite elements includes geometric locking in thin curved

structural members such as membrane and shear locking and also includes volumetric locking

in incompressible and nearly incompressible elasticity. There is an immense body of literature

on approaches to overcome locking in the finite element community and various approaches have

emerged as dominant. These include reduced quadrature [116], [117], B̄ projection methods [118]–

[120], and mixed methods based on the Hu-Washizu variational principle [121]–[124]. It is im-

portant to mention that, although ameliorated at high polynomial degrees, smooth splines in the

context of IGA still exhibit locking behavior [125], [126].

In IGA, there is a growing literature on the treatment of locking in structural elements.

Leveraging higher-order smoothness, transverse shear locking can be eliminated at the theoretical

level by employing Kirchhoff-Love [13], [15] and hierarchic Reissner-Mindlin [127]–[129] shell

elements. Reduced quadrature schemes have been explored in [130]–[132] as a way to alleviate

transverse shear locking. The extension of B̄ projection to the isogeometric setting was initiated

in [133] for both elastic and plastic problems and was extended in [134] to include local projection

techniques [135], [136].

We introduce two methods that employ Bézier dual basis to produce a localized approxi-

mation to the standard B̄ method. The motivation behind these methods is the fact that B̄ methods

result in dense linear systems. The methods we introduce result in a sparse linear system irrespec-

tive of the choice of basis functions. We call these two methods the symmetric and non-symmetric

Bézier B̄ projection methods, where the names indicate the symmetry of the resulting stiffness

matrix. We show that both methods result in a sparse stiffness matrix and reduce locking. We also

show that optimal convergence rates are achieved in the case of the non-symmetric method and
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near optimal convergence rates are achieved in the case of the symmetric method. We also perform

an inf-sup analysis of these methods.

6.1 Geometric locking: Timoshenko beams

To illustrate the use of Bézier B̄ projection to overcome geometric locking effects we study

transverse shear locking in Timoshenko beams. The Timoshenko beam problem provides a simple

one dimensional setting in which to describe Bézier B̄ projection. Note however, that the approach

can be directly generalized to more complex settings like spatial beams and shells and other geo-

metric locking mechanisms like membrane locking. We consider a planar cantilevered Timoshenko

beam as shown in Figure 6.1. The strong form for this problem can be stated as

−sGAγ′ = f (x)

−EIκ′− sGAγ = 0

κ = φ′

γ = ω′−φ


in Ω (6.1)

ω = 0

φ = 0

 at x = 0 (6.2)

sAGγ =Q

−EIκ = M

 at x = L (6.3)

where γ is the shear strain, κ is the bending strain, ω is the vertical displacement, φ is the angle

of rotation of the normal to the mid-plane of the beam, f is the distributed transverse load, Q

is a point load, M is the moment, E is the Young’s modulus, G is the shear modulus, A is the

cross-sectional area, I is the second moment of inertia of the beam cross-section, s is the shear

correction factor, normally set to 5/6 for rectangular cross-sections, and Ω = (0,L). When ω and

φ are interpolated by basis functions of the same order the finite element solution to this problem

exhibits shear locking as the beam becomes slender.
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Figure 6.1: Deformation of a Timoshenko beam. The normal rotates by the angle φ, which is not
equal to w′, due to shear deformation.

6.1.1 Symmetric Bézier B̄ projection

Locking is caused in Timoshenko beam problems when equal order interpolation is used

for both midline displacements and rotations. To reduce the effects of locking for these problems

the B̄ method projects the shear strain, γ, onto a lower order function space. This process produces

a projected shear strain, which we call γ̄, that is substituted into the weak form of the problem

statement. In this section we use the Bézier projection operator to compute an approximation of

γ̄, and refer to this approach as the symmetric Bézier B̄ projection method because the resulting

stiffness matrix is symmetric.

The weak form

Given the function spaces S(Ω) = {u |u ∈ H1(Ω)×H1(Ω),u|Γg = g} and V(Ω) =

{w |w ∈ H1(Ω)×H1(Ω),w|Γg = 0} where u = {ω,φ}T , w = {δω,δφ}T , g is the prescribed Dirichlet

boundary condition, and Γg is the Dirichlet boundary at x = 0, the weak form of the problem can

be stated as: find u ∈ S(Ω) such that for all w ∈ V(Ω)∫ L

0
κ(w)EIκ(u)+ γ̄(w)sGAγ̄(u)dx =

∫ L

0
δω f dx+ δω(L)Q+ δφ(L)M . (6.4)
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Discretization

We discretize ω and φ as

ω =
∑

A

ωANA (6.5)

φ =
∑

A

φNA (6.6)

where NA is a degree p spline basis function and ωA and φA are the corresponding control point

values. The shear strain and bending strain can then be expressed as

γ =
∑

A

[
N′A −NA

] [
ωA φA

]T
(6.7)

κ =
∑

A

[
0 N′A

] [
ωA φA

]T
(6.8)

The shear strain γ̄ is constructed by Bézier projection of the true shear strain γ onto a lower degree

space. In other words, we project from a pth degree spline space with n basis functions N defined

by the knot vector

Ξp = {0,0, . . . ,0︸    ︷︷    ︸
p+1 copies

,Ξint,1,1, . . . ,1︸    ︷︷    ︸
p+1 copies

}, (6.9)

onto a p−1th degree spline space with n̄ basis functions N̄ defined by the knot vector

Ξ̄p−1 = {0,0, . . . ,0︸    ︷︷    ︸
p copies

,Ξint,1,1, . . . ,1︸    ︷︷    ︸
p copies

} (6.10)

where the internal knots, denoted by Ξint , are the same for both spaces. The projected shear strain

γ̄ can then be written as

γ̄ =
∑

A

γ̄AN̄A. (6.11)
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The control variables γ̄A are simply

γ̄A =

∫
ΩA

ˆ̄NAγ dΩ = 〈 ˆ̄NA,γ〉Ωi (6.12)

where ˆ̄NA is a dual basis function for the spline space of degree p−1 computed from (2.33).

Localizing to the Bézier element we define the strain-displacement arrays in terms of ele-

ment Bernstein basis functions of degree p and p−1 as

Bκ
e =

[
0 −Be

0,p
′ · · · 0 −Be

p,p
′

]
, (6.13)

Bγ
e =

[
Be

0,p
′ −Be

0,p · · · Be
p,p
′ −Be

p,p

]
, (6.14)

B̄e =
[
B̄e

0,p−1 · · · B̄e
p−1,p−1

]
, (6.15)

where Be
i,p is the ith Bernstein basis function of order p. We can then compute the element arrays

as

Kb
e = EICe〈Bκ

e
T,Bκ

e〉(Ce)T, (6.16)

M̄e = sGAC̄e〈B̄T
e ,B̄e〉(C̄e)T, (6.17)

P̂e = 〈(
ˆ̄Ne)T,Bγ

e 〉(Ce)T, (6.18)

where Ce is the element extraction operator for the degree p spline space, C̄e is the element extrac-

tion operator for the degree p−1 spline space, and ˆ̄Ne are the dual basis functions restricted to the

element for the degree p−1 spline space. The global stiffness matrix can then be written as

K =Kb+ K̄s
S (6.19)
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where

Kb =A
e

Kb
e, (6.20)

K̄s = P̂T M̄P̂ (6.21)

P̂ =A
e

P̂e (6.22)

M̄ =A
e

M̄e (6.23)

and A is the standard finite element assembly operator [86]. We note that the assembly of K̄s

requires the assembly of two intermediate matrices, M̄ and P̂. The computation of these matrices

is needed because the product of two integrals over the entire domain can not be localized to the

element level.

6.1.2 Non-symmetric Bézier B̄ projection

Simo and Hughes [86] have shown that B̄ formulations and mixed formulations are equiv-

alent. However, the development of the symmetric Bézier B̄ projection method presented in Sec-

tion 6.1.1, where we began by interpreting the B̄ formulation as a strain projection method, lacks

a connection to mixed formulations. In this section, we present a second method based on Bézier

projection in which we view the B̄ formulation as a mixed formulation where, for the Timoshenko

beam problem, the auxiliary variable is the shear stress. We use the Bézier dual basis functions

as the test functions for the auxiliary variable. Once the problem has been cast as a mixed for-

mulation we then eliminate the auxiliary variable to get a purely displacement based formulation.

This approach preserves convergence rates and all assembly routines for the stiffness matrix can

be performed at the element level. However, it does not produce a symmetric stiffness matrix.

The weak form

In the mixed formulation for the Timoshencko beam problem the shear stress, τ = sGAγ, is

taken as a new independent variable. The weak form of the mixed formulation can then be stated
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as: find u ∈ S(Ω) and τ ∈ L2(Ω) such that for all w ∈ V(Ω) and δτ ∈ L2(Ω)∫ L

0
κ(w)EIκ(u)+γ(w)τ dx = l〈w〉 (6.24)∫ L

0
δτ(sGAγ(u)− τ)dx = 0. (6.25)

Discretization

In the finite element formulation of the mixed problem, the discretization of u and w remain

the same as before. The shear strain and its variation, however, are in L2(Ω), so their finite element

approximation can consist of functions with lower regularity, such as discontinuous polynomials.

When the field u is discretized by pth degree spline basis functions defined by the knot vector given

in (6.9), we use the p−1 degree spline basis functions, defined by the knot vector given in (6.10),

to discretize the shear stress τ and the corresponding dual basis to discretize its variation δτ. The

discrete form of the shear stress and its variation are given by

τ =
∑

A

τAN̄A (6.26)

δτ =
∑

A

δτA
ˆ̄NA. (6.27)

The stiffness matrix for the mixed form can then be written as

Kmix =


Kb PT

sGAP̂ −I

 (6.28)

where

P =A
e

Pe, (6.29)

and

Pe = C̄e〈B̄T
e ,B

γ
e 〉(Ce)T . (6.30)
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and P̂ is given in (6.18) and (6.22). We can now eliminate the control variable of the shear stress

from (6.28) to get a pure displacement formulation where the stiffness matrix can be written as

K =Kb+ K̄s
NS, (6.31)

where

K̄s
NS = sGAPT P̂. (6.32)

We can see that the use of different function spaces for the shear strain and its variation leads to a

non-symmetric stiffness matrix.

Remark As mentioned previously, the symmetric Bézier B̄ formulation is not consistent with a

mixed formulation. To see this, we can recover the mixed formulation of (6.19), which is


Kb P̂T

sGAP̂ −M̄−1

 , (6.33)

where both the shear stress and its variation are discretized by the dual basis functions. However,

for the inner product of dual basis functions we have

〈 ˆ̄Ni,
ˆ̄Nj〉 , M̄−1

i j , (6.34)

which shows the inconsistency between the symmetric Bézier B̄ formulation and the mixed for-

mulation.

6.1.3 Bandwidth of the stiffness matrix

A global B̄ method that utilizes a global L2 projection results in a dense stiffness matrix.

The Bézier B̄ methods, on the other hand, produce sparse stiffness matrices. However, the cou-

pling of the local dual basis functions does increase the bandwidth slightly. This is illustrated in

Figure 6.2, which shows the structure of the stiffness matrix for the Timoshenko beam problem

using the second order basis functions of maximal smoothness for a displacement-based method
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(Figure 6.2a), global B̄ method (Figure 6.2b), symmetric Bézier B̄ method (Figure 6.2c) and non-

symmetric Bézier B̄ method (Figure 6.2d). The blank cells indicate zero terms in the matrix while

colored cells show the location of nonzero terms.

(a) Standard (b) Global B̄

(c) Symmetric Bézier B̄ (d) Non-symmetric Bézier B̄

Figure 6.2: Illustrations of the structure of 2nd order Timoshenko beam stiffness matrices for (a) a
standard displacement method, (b) a global B̄ method, (c) a symmetric Bézier B̄ method and (d) a
non-symmetric Bézier B̄ method.
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The increased bandwidth of the symmetric Bézier B̄ method when compared to a

displacement-based method can be explained by looking at the product of the integrals in

(6.21). For example, if we consider the basis functions N1 and N5 in Figure 6.3 we see that

supp(N1) ∩ supp(N5) = ∅, which means that the inner product of these two functions will be zero

and the corresponding coefficient in the stiffness matrix will be zero in the displacement-based

method. For the Bézier B̄ method, however, the form of (6.21) leads to a coupling between N1 and

N5. This can be seen by considering Ω2. Over this element, the shear stiffness can be represented

as

K̄s
2 =

3∑
i=1

3∑
j=1

PT
i M̄2P j (6.35)

and the term of this summation that results in the coupling between N1 and N5 is PT
1 M̄2P3, where P1

is the inner product of N1 and ˆ̄N2, P3 is the inner product of N5 and ˆ̄N3, and M̄2 is the inner product

of N̄2 and N̄3. We can see from Figure 6.3 that supp(N1)∩ supp( ˆ̄N2) = Ω1, supp(N5)∩ supp( ˆ̄N3) =

Ω3 and supp(N̄2)∩ supp(N̄3)=Ω2, so that PT
1 M̄2P3 is not zero. Thus we have increased the number

of nonzero coefficients in the shear stiffness matrix. However, the same exercise can be used to

show that there is no coupling between N0 and N6 for this set of basis functions so the matrix is not

dense. the bandwidth of the non-symmetric Bézier B̄ method is reduced further. This is because

the Gramian matrix does not appear in the this formulation. In fact, from the formulation of the

element stiffness matrix, we can show that the bandwidth of the stiffness matrix of the symmetric

Bézier B̄ and non-symmetric Bézier B̄ methods for the Timoshenko beam are 6p− 3 and 4p− 1,

respectively.

Remark In [134] a local B̄ method for shells was proposed that was based on the local least

squares method presented in [136]. This approach has a similar structure to the symmetric Bézier

B̄ method presented here. However, it was shown in [81] that choosing (2.28) as the weighting

provides a significant increase in the accuracy of the approximation.

158



N1 N5

Ω0 Ω1 Ω2 Ω3 Ω4

N̄2 N̄3

Ω0 Ω1 Ω2 Ω3 Ω4

ˆ̄N2
ˆ̄N3

Ω0 Ω1 Ω2 Ω3 Ω4

Figure 6.3: Quadratic maximally smooth B-spline basis functions (top), associated linear basis
functions (middle), and dual basis functions (bottom) for the Bézier B̄ formulation.
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6.1.4 Numerical results

In our study, a straight planar cantilever beam is clamped on the left end and a sinusoidal

distributed load f (x) = sin(π
x
l
) is applied, as depicted in Figure 6.4. The analytical solution for

vertical displacement w, rotation φ, bending moment M , and transverse shear force Q are given by

w(x) =
EI

(
6π2l2 sin

(
πx
l

)
+6π3l x

)
+ sGA

(
6l4 sin

(
πx
l

)
−6πl3x+3π3l2x2− π3l x3)

6π4sEIGA

φ(x) =
2l3 cos

(
πx
l

)
−2l3+2π2l2x− π2l x2

2π3EI

M(x) =
l2 sin

(
πx
l

)
− πl2+ πl x

π2

Q(x) =
−l cos

(
πx
l

)
− l

π
.

(6.36)

f(x)

Figure 6.4: Straight planar cantilevered Timoshenko beam clamped at the left and loaded by a
distributed load f (x).

The beam has a rectangular cross-section and we use the following non-dimensional sec-

tional and material parameters: length l = 10, width b = 1, thickness t = 0.01, Young’s modulus

E = 109, Poisson’s ratio ν = 0.3, and a shear correction factor of s = 5/6. A comparison of the

normalized error in the L2 norm for w, φ, M and Q versus the number of degrees of freedom

for polynomial degrees p = 1,2,3 is shown in Figure 6.5. Results computed using standard finite

elements are labeled Q1, Q2, and Q3. Results computed using a global B̄ method are labeled T L2
,

those computed with the symmetric Bézier B̄ method and the non-symmetric Bézier B̄ method

are labeled S−T P and NS−T P, respectively. As expected, the Q1 results lock and the error re-

mains virtually unchanged as the mesh is refined. Increasing the polynomial degree does reduce

the locking effect, although the reduction is minor for the Q2 results. T L2
, S−T P and NS−T P

are essentially locking free for all polynomial orders. The convergence rates for the B̄ methods are
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Figure 6.5: Convergence studies for slenderness factor l/t = 10−3. Error in the L2-norm for (a)
displacement w, (b) rotation φ, (c) bending moment M , and (d) shear force Q.

at least p+1 for w, p for φ, p−1 for M , and p−2 for Q. These rates agree with those reported in

[137] and are optimal. To reiterate, Bézier B̄ methods produces the same convergence rates as the

global B̄ method and the the error plots of NS−T P for φ, M and Q are identical to those of T L2
.

We have also studied the relationship between shear locking and decreasing slenderness

ratios for p = 2. The results are shown in Figure 6.6. For all three methods, the number of degrees

of freedom are fixed, and the sectional and material parameters are the same as in the previous

study. The slenderness ratio varies from 10 to 5×103. Q2 locks severely. The B̄ methods, on the

other hand, are locking free.

6.2 Volumetric locking: Nearly incompressible linear elasticity

To demonstrate the use of Bézier B̄ methods to alleviate volumetric locking effects we

study the nearly incompressible elasticity problem in two dimensions. We start with the small
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Figure 6.6: Convergence study for increasing slenderness, p = 2, and #do f = 32. Error in the
L2-norm for (a) displacement w, (b) rotation φ, (c) bending moment M , and (d) shear force Q.

strain tensor ε, which is defined as the symmetric part of the displacement gradient, i.e.,

εi j =
ui,j +u j,i

2
. (6.37)

The stress tensor is related to the strain tensor through the generalized Hooke’s law

σi j = ci j klεkl (6.38)

where, for isotropic elasticity, the elastic coefficients and stress tensor can be expressed in terms

of the Lamé parameters λ and µ as

ci j kl = µ(δikδ jl + δilδ j k)+λδi jδkl (6.39)

σi j = λεkkδi j +2µεi j . (6.40)
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The Lamé parameters λ and µ are defined in terms of Young’s modulus, E , and Poisson’s ratio, ν,

as

λ =
νE

(1+ ν)(1−2ν)
(6.41)

µ =
νE

2(1+ ν)
. (6.42)

we can write the strong form of linear elasticity as

σi j,j + fi = 0 in Ω (6.43)

ui = gi on Γgi (6.44)

σi jn j = hi on Γhi (6.45)

where Dirichlet boundary conditions are applied on Γgi , Neumann boundary conditions are ap-

plied on Γhi , and the closure of the domain Ω is Ω̄ = Ω∪ Γgi ∪ Γhi . To demonstrate the source of

volumetric locking, we introduce the pressure term

p = −(λ+2µ/3)εii . (6.46)

If ν→
1
2

then λ becomes very large and the additional constraint εii = 0 is applied to the volumetric

strain.

6.2.1 Symmetric Bézier B̄ projection

The weak form

The B̄ approach for nearly incompressible linear elasticity splits the strain tensor ε into

volumetric and deviatoric strains and then replaces the volumetric strain with a projected strain.

We begin with

ε(u) = εvol(u)+εdev(u) (6.47)

where εvol =
1
3

tr(ε)I is the volumetric strain and εdev = ε −
1
3

tr(ε)I is the deviatoric strain. The

volumetric strain is then replaced by a projected volumetric strain ε̄vol and the new total strain
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becomes

ε̄ = ε̄vol +εdev . (6.48)

The weak form can then be written as: find u ∈ S(Ω) such that for all w ∈ V(Ω)

ā〈w,u〉 = l̄〈w〉 (6.49)

where

ā〈w,u〉 =
∫
Ω

ε̄i j(w)ci j kl ε̄kl(u)dΩ, (6.50)

l̄〈w〉 =
∫
Ω

w · fdΩ+
∫
Γh

w ·hdΓ. (6.51)

Discretization

Following the same approach as was described for Timoshenko beams in Section 6.1 we

define element level strain-displacement matrices in terms of the Bernstein basis

Bdev
e =


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, (6.52)

Bvol
e =

[
∂Be

0,p

∂x

∂Be
0,p

∂y

∂Be
0,p

∂z
· · ·

∂Be
p,p

∂x

∂Be
p,p

∂y

∂Be
p,p

∂z

]
(6.53)
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The deviatoric part of the element stiffness matrix can then be computed from the corresponding

strain-displacement matrices as

Kdev
e = Ce〈Bdev

e
T DBdev

e 〉(Ce)T . (6.54)

where Ce is the element extraction operator for the degree p spline space. The volumetric part of

the stiffness matrix is computed using Bezier projection. The intermediate element matrices are

M̄vol
e = C̄e〈B̄T

e ,
1
3
(3λ+2µ)B̄e〉(C̄e)T (6.55)

P̂vol
e = 〈(

ˆ̄Ne)T,Bvol
e 〉(Ce)T (6.56)

where C̄e is the element extraction operator for the degree p−1 spline space, ˆ̄Ne are the dual basis

functions restriced to the element, and

B̄e =
[
Be

0,p−1 · · · Be
p−1,p−1

]
. (6.57)

The global stiffness matrix can then be assembled as

K =Kdev + K̄vol
S (6.58)

where

Kdev =A
e

Kdev
e , (6.59)

K̄vol
S = P̂T M̄P̂ (6.60)

P̂ =A
e

P̂vol
e (6.61)

M̄ =A
e

M̄vol
e . (6.62)
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6.2.2 Non-symmetric Bézier B̄ projection

The weak form

A mixed formulation for nearly incompressible elasticity can be developed by considering

the pressure p as an independent variable. The weak statement of the problem is then given as:

find u ∈ S(Ω) and p ∈ L2(Ω) such that for all w ∈ V(Ω) and δp ∈ L2(Ω)

â〈w,u〉 − b〈w,p〉 = l〈w〉, (6.63)

−b〈u,δp〉 −
1

(λ+2µ/3)

∫
Ω

δppdΩ = 0, (6.64)

where

â〈w,u〉 =
∫
Ω

εi j(w)ĉi j klεkl(u)dΩ, (6.65)

ĉi j kl = µ
(
δikδ jl + δilδ j k −2/3δi jδkl

)
, (6.66)

b〈w,p〉 =
∫
Ω

εii(w)pdΩ. (6.67)

Discretization

Following the same pattern as the non-symmetric Bézier B̄ method for the Timoshenko

beam problem, we use the same discretization for u and w and use lower order spline basis func-

tions and corresponding dual basis functions for the discretization of the pressure p and its variation

δp, respectively. The discretized stiffness matrix in mixed form can be written as

Kmix =


Kdev −PT

−P̂ −
1

(λ+2µ/3)
I

 , (6.68)

where

P =A
e

Pvol
e , (6.69)

with

Pvol
e = C̄e〈B̄T

e ,Bvol
e 〉(Ce)T . (6.70)
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By eliminating the pressure control variables, we obtain a pure displacement formulation with the

stiffness matrix taking the form

K =Kdev + K̄vol
NS, (6.71)

where

K̄vol
NS = (λ+2µ/3)PT P̂. (6.72)

We note again, that in contrast to the symmetric Bézier B̄ method, the assembly of the stiffness

matrix in this case can be performed in the standard way with no need for global matrix operations.

6.2.3 Numerical results

We begin this section by numerically evaluating the inf-sup constant for the global B̄ and

non-symmetric Bézier B̄ methods. We then investigate the performance of the Bézier B̄ method

for two nearly incompressible linear elasticity problems under plane strain conditions. For the nu-

merical examples, we first study the Cook’s membrane problem, which is discretized with B-spline

basis functions, and in the second problem we model an infinite plate with a circular hole using

NURBS. Results computed using standard finite elements are labeled Q1, Q2, Q3, and Q4. Results

computed using a global B̄ method are labeled T L2
and those computed with the symmetric Bézier

B̄ method and the non-symmetric Bézier B̄ method are labeled S−T P and NS−T P, respectively.

Numerical evaluation of the inf-sup condition

The inf-sup condition is also refered to as the Ladyzhenskaya-Babuska-Brezzi condition

(or simply LBB) [47], [138], [139]. It is a crucial condition to ensure the solvability, stability

and optimality of a mixed problem. For the nearly incompressible elasticity problem the inf-sup

condition is stated as: for δp , 0 and u , 0

inf
δp∈L2(Ω)

sup
u∈S(Ω)

|b〈u,δp〉|
‖δp‖L2(Ω)‖u‖H1(Ω)

≥ β > 0. (6.73)

In a discretized problem, the inf-sup condition requires the variable β to be a constant that is

independent of the mesh size.
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Here, we consider the inf-sup condition of a uniformly refined quarter annulus. The ge-

ometry and boundary conditions are shown in Figure 6.7. The geometry of the quarter annulus

can be exactly represented using a biquadratic NURBS basis. The knot vector for the coarsest

discretization is given by

Ξξ ×Ξη = {0,0,0,1,1,1} × {0,0,0,1,1,1} (6.74)

and the corresponding weights and control points associated with each basis function are given in

Table 6.1 and 6.2. For higher-order elements and finer discretizations the weights and correspond-

ing control points are identified by an order elevation and knot insertion algorithm, respectively.

The Bézier mesh representation for the discretizations are shown in Figure 6.8.

R1

R2

R1 = 1mm
R2 = 4mm

Figure 6.7: Geometry and boundary conditions for the inf-sup test.

Only the global B̄ method and the non-symmetric Bézier B̄ method are considered here, as

the symmetric Bézier B̄ method lacks a connection to a mixed formulation. As a counter example,

the well-known pair Qp/Qp of the global B̄ method that violates the inf-sup condition is also tested

here. Our tests follow the procedure proposed by Chapelle and Bathe in [140].
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Table 6.1: Weights for the plate with a circular hole

i wi,1 wi,2 wi,3
1 1 1/

√
2 1

2 1 1/
√

2 1
3 1 1/

√
2 1

Table 6.2: Control points for the plate with a circular hole

i Bi,1 Bi,2 Bi,3
1 (0,1) (1,1) (1,0)
2 (0,2.5) (2.5,2.5) (2.5,0)
3 (0,4) (4,4) (4,0)

Figure 6.9 shows the numerical results. As can be seen, the global B̄ method and the non-

symmetric Bézier B̄ method do not strictly satisfy the LBB condition since β is not independent of

Figure 6.8: Sequence of meshes for inf-sup test.
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Figure 6.9: Inf-sup test results for nearly incompressible elasticity. The global B̄ method,
T L2

Q4/Q3, and the non-symmetric Bézier B̄ method, NS − T PQ4/Q3, do not strictly satisfy
the LBB condition, but compared to the T L2

Q4/Q4 method, both methods reduce constraints to a
favorable level.
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the mesh size. This result is consistent with the statement made in [133] that the global B̄ method

does not reduce the constraints sufficiently to satisfy the LBB condition. However, compared to

the Qp/Qp pair, both methods reduce constraints to a more favorable level. If we compare the

results for the global B̄ method with the non-symmetric Bézier B̄ method we see that their stability

parameter β decreases at the same rate and the stability parameter for the non-symmetric Bézier

B̄ method is slightly lower than that for the global B̄ method. These results indicate a similar

optimality in convergence for both methods and a slightly higher error for the non-symmetric

Bézier B̄ method.

Cook’s membrane problem

This benchmark problem is a standard test for combined bending and shearing response.

The geometry, boundary conditions, and material properties are shown in Figure 6.10. The left

boundary of the tapered panel is clamped, the top and bottom edges are free with zero traction

boundary conditions, and the right boundary is subjected to a uniformly distributed traction load

in the y-direction as shown. The meshes used are shown in Figure 6.11.

x

y

44mm

16mm

48mm

T

uy

E = 240.565Mpa
ν = 0.4999
T = 100N

Figure 6.10: Geometry, boundary conditions, and material properties for the Cook’s membrane
problem.

170



A comparison of the displacement of the top right corner with respect to the number of

elements per side is shown in Figure 6.12. Q1 locks and mesh refinement has little impact. Locking

is somewhat reduced for the higher-order elements Qp, p > 1. The B̄ methods perform very well

for all degrees.

Figure 6.11: Sequence of meshes for Cook’s membrane problem.
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Figure 6.12: Cook’s membrane: comparison of the vertical displacement at the top right corner for
the different methods and degrees.

Infinite plate with a circular hole

The setup for the infinite plate with a circular hole problem is shown in Figure 6.13 and

the discretizations are shown in Figure 6.8. The traction along the outer edge is evaluated from the

exact solution which is given by

σrr(r,θ) =
Tx

2
(1−

R2
1

r2 )+
Tx

2
(1−4

R2
1

r2 +3
R4

1
r4 )cos(2θ)

σθθ(r,θ) =
Tx

2
(1+

R2
1

r2 )−
Tx

2
(1+3

R4
1

r4 )cos(2θ)

σrθ(r,θ) = −
Tx

2
(1+2

R2
1

r2 −3
R4

1
r4 )sin(2θ).

(6.75)

172



x

y

Tx = 10Mpa

TxTx

(a) Infinite plate with a hole subjected to uniaxial ten-
sion at x = ±∞.
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(b) A representation of the computational model.

Figure 6.13: Geometry, boundary conditions, and material properties for the infinite plate with a
hole.

Convergence plots for the relative error of the displacement and energy in the L2 norm

are shown in Figure 6.14. As can be seen, the standard Qp approximations suffer from severe

volumetric locking for all orders while, on the other hand, the B̄ methods remedy locking for all

cases. For the symmetric Bézier B̄ method, optimal rates are achieved in all three measures for

biquadratic elements and the optimal energy convergence has been achieved for bicubic elements,

but convergence has degraded in all three measures for the biquartic elements. This reduction in

convergence rates results from the fact that the derivation of the symmetric Bézier B̄ method is

purely based on the engineering analogy between the L2 projection and Bézier projection opera-

tions. The non-symmetric Bézier B̄ method, on the other hand, achieves optimal convergence in

the displacement, stress, and energy norms for all elements with slightly higher errors than those

of the global B̄ method.
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Contour plots of σxx from the finest biquartic discretization are shown in Figure 6.15. We

can see that results from all B̄ methods are consistent with the reference solution, but using the

standard finite element approach results in meaningless stresses. Figure 6.16 shows the absolute

error of σxx from the same discretization. We can see that the projection methods produce an error

of less than .1% of the maximum σxx , while the error for the standard Q4 element is of the same

order as the maximum σxx . We can also see that the non-symmetric method provides a slight

improvement when compared to the symmetric method.
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Figure 6.14: Convergence study of the plate with a circular hole. The relative L2 error of displace-
ment, stress and the relative error in energy norm with respect to mesh refinement.
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6.3 Conclusions

We have presented two Bézier B̄ projection methods, which we have called symmetric and

non-symmetric Bézier B̄ projection, as an approach to overcome locking phenomena in structural

mechanics applications of isogeometric analysis. Each approach maintains the sparsity of the re-

sulting linear system. The methods utilize Bézier extraction and projection, which makes it simple

to implement them in an existing finite element framework and makes it applicable to any spline

representation which can be written in Bézier form. In contrast to global B̄ methods, which pro-

duce dense stiffness matrices, the Bézier B̄ approach results in a sparse stiffness matrix while still

benefiting from higher-order convergence rates. We have made the connection between the non-

symmetric method and a mixed formulation and shown that, although this method does not strictly

satisfy the inf-sup condition, it reduces constraints sufficiently to provide optimal convergence

rates for the problems studied here.

We have demonstrated the performance of the approach in the context of shear deformable

beams (to alleviate transverse shear locking) and nearly incompressible elasticity problems (to

alleviate volumetric locking). The proposed method reduces locking errors and achieves nearly

optimal convergence rates for the symmetric method and optimal rates for the non-symmetric

method. The cases where optimal rates were not achieved when using the the symmetric formula-

tion are a symptom of the fact that the symmetric formulation is not directly related to a variational

principle.

The two methods presented here provide a choice between a formulation that results in a

symmetric stiffness matrix but requires matrix operations at the global level and potentially less

accuracy and a formulation that results in a non-symmetric stiffness matrix that can be assembled

in the standard element routine approach and achieves optimal convergence rates. The trade-offs

are between higher costs in assembly for the symmetric formulation versus potentially higher costs

in solving a non-symmetric system. In either case, however, the cost is less than using the standard

B̄ formulation.
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Figure 6.15: Contour plots of σh
xx for the plate with a circular hole (p = 4, and the finest mesh is

used). For reference the analytical solution is also plotted.
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Figure 6.16: Contour plots of |σxx −σ
h
xx | for the plate with a circular hole (p = 4, and the finest

mesh is used).
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

In this dissertation, an isogeometric analysis based patch coupling framework for higher

order PDEs is developed. Mathematical analysis and numerical examples veriefy the accuracy and

robustness of this technology. The use of dual basis with compact support significantly increases

the sparsity of the constrained linear system and reduces the computational cost. In addition,

this technology provides a unified formulation when dealing with vertices with different valences,

which makes it an ideal analysis technology for higher order problems over unstructured meshes.

The main contributions can be summarized as:

• Formulation of abstract dual mortar method for both homogeneous and non-homogeneous

constraints.

• Development of Bézier dual mortaring framework for higher order problems, including bi-

harmonic problem, phase-field problem and Kirchhoff-Love shell problem.

• Development and implementation of different vertex treatments for multi-patch coupling

problem.

• Development of the enriched Bézier dual basis, which improves the approximation ability of

the Bézier dual basis.

• Development and implementation of two locking-free formulations for both Timoshenko

beam and linear elasticity problem.

• Implementation of a C++ based multi-thread isogeometric analysis code which is utilized in:

– Simulations of Poisson and biharmonic problems

– Simulations of wave propagation problems

– Simulations of coupling problems based on the discontinuous Galerkin method
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– Simulations of linear elasticity and Timoshenko beam problems

– Simulations of phase field problems

– Simulations of Kirchhoff-Love shell problems

There exist many potential future work we can perspect from this work. From the mod-

elling aspect, a potential extension of the present work is to incorperate the constrained NURBS

patches directly into the CAD process. The dual mortar formulation provides a direct access to

locally supported basis functions in the constrained space, however, these basis functions are not

guaranteed to be positive over their supports and form a partition of unity, which are of crucial

importance for the CAD community. Hence, in order to use the constrained basis functions as the

design space, a better formulation is needed to accommodate these two properties. The support

size of the constrained basis function is directly linked to the support size of dual basis functions.

However, current enrichment procedure improves the polynomial reproduction at the expense of

support size of enriched Bézier dual basis functions. We believe there exists a better formulation

that can achieve the same performance without any influences on the support size.

There are many potential research topics in the analysis aspect as well. Since the focus of

this research is on the development of a coupling formulation, we assume all materials tested in

this work to be linear elastic. Hence, the verification of the dual mortar formulation over non-linear

material is needed. The vibration example proved that the weak-C1 coupling scheme can signifi-

cantly reduce the highest eigenvalue. Hence, it is interested to see the performance of this work in

explicit dynamics. C2 continuous functions are required for solving 6th order PDEs, including the

triharmonic equation [97], [141], the phase-field crystal equation [142] and Kirchhoff-Love shell

with strain gradient elasticity [143]. Fortunately, it seems that most of the theory and formulation

developed in this dissertation can be directly applied in the formulation of weak-C2 continuity. For

the coupling of Kirchhoff-Love shell, the dual mortar compatible constraint in this work is slightly

stronger than what is required by the problem and may lead to sub-optimal convergence for patches

connected at a kink. Hence, the development of a better constraint for Kirchhoff-Love shell is still

needed. In addition, shell structures are often connected with solid components (e.g. stiffner), an

extension to handle solid-shell coupling is of crucial importance. Furthermore, in the development

of dual basis based locking-free element, our study is restricted to the small deformation scenario,
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however, an extension to the large deformation scenario is of crucial importance. In all of these

directions, the use of isogeometric analysis should lead to improvements in both efficiency and

accuracy. As a result, these direction may become potentially fruitful research areas in the future.

180



REFERENCES
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Modélisation Mathématique et Analyse Numérique, vol. 37, no. 2, pp. 209–225, 2003. 8

185



[66] F. Chouly, P. Hild, and Y. Renard, “Symmetric and non-symmetric variants of Nitsche’s
method for contact problems in elasticity: theory and numerical experiments,” Mathematics
of Computation, vol. 84, no. 293, pp. 1089–1112, 2015. 8

[67] A. Embar, J. Dolbow, and I. Harari, “Imposing Dirichlet boundary conditions with Nitsche’s
method and spline-based finite elements,” International Journal for Numerical Methods in
Engineering, vol. 83, no. 7, pp. 877–898, Aug. 2010. 8
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Methods in Applied Mechanics and Engineering, vol. 335, pp. 273 – 297, 2018. 26, 73

[83] L. Greco, M. Cuomo, and L. Contrafatto, “A reconstructed local B-bar formulation for iso-
geometric Kirchhoff–Love shells,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 332, pp. 462–487, 2018. 26

[84] Z. Zou, M. A. Scott, M. J. Borden, D. C. Thomas, W. Dornisch, and E. Brivadis, “Isogeo-
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indépendamment des causes qui peuvent les produire, 1840. 120

[114] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells. McGraw-hill,
1959. 133

[115] A. Scordelis and K. Lo, “Computer analysis of cylindrical shells,” in Journal Proceedings,
vol. 61, no. 5, 1964, pp. 539–562. 136

[116] D. S. Malkus and T. J. R. Hughes, “Mixed finite element methods — Reduced and selective
integration techniques: A unification of concepts,” Computer Methods in Applied Mechanics
and Engineering, vol. 15, no. 1, pp. 63–81, 1978. 149

189



[117] O. C. Zienkiewicz, R. L. Taylor, and J. M. Too, “Reduced integration technique in general
analysis of plates and shells,” International Journal for Numerical Methods in Engineering,
vol. 3, no. 2, pp. 275–290, 1971. 149

[118] J. C. Nagtegaal, D. M. Parks, and J. R. Rice, “On numerically accurate finite element solu-
tions in the fully plastic range,” Computer Methods in Applied Mechanics and Engineering,
vol. 4, no. 2, pp. 153–177, 1974. 149

[119] T. J. R. Hughes, “Generalization of selective integration procedures to anisotropic and non-
linear media,” International Journal for Numerical Methods in Engineering, vol. 15, no. 9,
pp. 1413–1418, 1980. 149

[120] R. P. R. Cardoso and J. M. A. Cesar de Sa, “The enhanced assumed strain method for
the isogeometric analysis of nearly incompressible deformation of solids,” International
Journal for Numerical Methods in Engineering, vol. 92, no. 1, pp. 56–78, 2012. 149

[121] J. Dolbow and T. Belytschko, “Volumetric locking in the element free Galerkin method,”
International Journal for Numerical Methods in Engineering, vol. 46, no. 6, pp. 925–942,
1999. 149

[122] E. P. Kasper and R. L. Taylor, “A mixed-enhanced strain method: Part I: Geometrically
linear problems,” Computers & Structures, vol. 75, no. 3, pp. 237–250, 2000. 149

[123] T. Hughes, “On the variational foundations of assumed strain methods,” Journal of applied
mechanics, vol. 53, p. 51, 1986. 149

[124] R. L. Taylor, “Isogeometric analysis of nearly incompressible solids,” International Journal
for Numerical Methods in Engineering, vol. 87, no. 1-5, pp. 273–288, 2011. 149

[125] R. Echter and M. Bischoff, “Numerical efficiency, locking and unlocking of NURBS finite
elements,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 5, pp.
374–382, 2010. 149

[126] R. Bouclier, T. Elguedj, and A. Combescure, “Locking free isogeometric formulations of
curved thick beams,” Computer Methods in Applied Mechanics and Engineering, vol. 245,
pp. 144–162, 2012. 149

[127] B. Oesterle, R. Sachse, E. Ramm, and M. Bischoff, “Hierarchic isogeometric large rotation
shell elements including linearized transverse shear parametrization,” Computer Methods in
Applied Mechanics and Engineering, vol. 321, pp. 383–405, 2017. 149

[128] B. Oesterle, E. Ramm, and M. Bischoff, “A shear deformable, rotation-free isogeometric
shell formulation,” Computer Methods in Applied Mechanics and Engineering, vol. 307,
pp. 235–255, 2016. 149

[129] R. Echter, B. Oesterle, and M. Bischoff, “A hierarchic family of isogeometric shell finite
elements,” Computer Methods in Applied Mechanics and Engineering, vol. 254, pp. 170–
180, 2013. 149

190



[130] C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam, “Improved numerical integra-
tion for locking treatment in isogeometric structural elements, Part I: Beams,” Computer
Methods in Applied Mechanics and Engineering, vol. 279, pp. 1–28, 2014. 149

[131] ——, “Improved numerical integration for locking treatment in isogeometric structural ele-
ments. Part II: Plates and shells,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 284, pp. 106–137, 2015. 149

[132] C. Adam, T. J. R. Hughes, S. Bouabdallah, M. Zarroug, and H. Maitournam, “Selective
and reduced numerical integrations for NURBS-based isogeometric analysis,” Computer
Methods in Applied Mechanics and Engineering, vol. 284, pp. 732–761, 2015. 149

[133] T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. Hughes, “B-bar and F-bar projection methods
for nearly incompressible linear and non-linear elasticity and plasticity using higher-order
NURBS elements,” Computer Methods in Applied Mechanics and Engineering, vol. 197,
no. 33-40, pp. 2732–2762, 2008. 149, 170

[134] R. Bouclier, T. Elguedj, and A. Combescure, “Efficient isogeometric nurbs-based solid-shell
elements: Mixed formulation and B̄-method,” Computer Methods in Applied Mechanics and
Engineering, vol. 267, pp. 86–110, 2013. 149, 158

[135] T. J. Mitchell, S. Govindjee, and R. L. Taylor, “A method for enforcement of Dirichlet
boundary conditions in isogeometric analysis,” Recent Developments and Innovative Appli-
cations in Computational Mechanics, pp. 283–293, 2011. 149

[136] S. Govindjee, J. Strain, T. J. Mitchell, and R. L. Taylor, “Convergence of an efficient local
least-squares fitting method for bases with compact support,” Computer Methods in Applied
Mechanics and Engineering, vol. 213, pp. 84–92, 2012. 149, 158

[137] J. Kiendl, F. Auricchio, T. J. R. Hughes, and A. Reali, “Single-variable formulations and
isogeometric discretizations for shear deformable beams,” Computer Methods in Applied
Mechanics and Engineering, vol. 284, pp. 988–1004, 2015. 161

[138] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems aris-
ing from lagrangian multipliers,” Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, vol. 8, no. R2, pp. 129–151, 1974. 167

[139] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Gordon
& Breach New York, 1969, vol. 12, no. 3. 167

[140] D. Chapelle and K. J. Bathe, “The inf-sup test,” Computers & Structures, vol. 47, no. 4, pp.
537 – 545, 1993. 168
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