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ABSTRACT 

A Flexible Service-Oriented Approach to 
Address Hydroinformatic Challenges in 

Large-Scale Hydrologic Predictions 

Michael Antonio Souffront Alcantara 
Department of Civil and Environmental Engineering, BYU 

Doctor of Philosophy 

Water security is defined as a combination of water for achieving our goals as a society, 
and an acceptable level of water-related risks. Hydrologic modeling can be used to predict 
streamflow and aid in the decision-making process with the goal of attaining water security. 

Developed countries usually have their own hydrologic models; however, developing 
countries often lack hydrologic models due to factors such as the maintenance, computational 
costs, and technical capacity needed to run models. A global streamflow prediction system 
(GSPS) would help decrease vulnerabilities in developing countries and fill gaps in areas where 
no local models exist by providing extensive results that can be filtered for specific locations. 

The development of a GSPS has been deemed a grand challenge of the hydrologic 
community. To this end, many scientists and engineers have started to develop large-scale 
systems to an acceptable degree of success. Renowned models like the Global Flood Awareness 
System (GloFAS), the US National Water Model (NWM), and NASA’s Land Assimilation 
System (LDAS) are proof that our ability to model large areas has improved remarkably. Even so, 
during this evolution the hydrologic community has started to realize that having a large-scale 
forecasting system does not make it immediately useful. New hydroinformatic challenges have 
surfaced that prevent these models from reaching their full potential. I have divided these 
challenges in four main categories: big data, data communication, adoption, and validation. 

I present a description of the background leading to the development of a GSPS including 
existing models, and the components needed to create an operational system. A case study with 
the NWM is also presented where I address the big data and data communication challenges by 
developing cyberinfrastructure and accessibility tools such as web applications and services. 

Finally, I used the GloFAS-RAPID model to create a forecasting system covering Africa, 
North America, South America, and South Asia using a service-oriented approach that includes 
the development of web applications, and services for providing improved data accessibility, and 
helping address adoption and validation challenges. I have developed customized services in 
collaboration with countries that include Argentina, Bangladesh, Colombia, Peru, Nepal, and the 
Dominican Republic. I also conducted validation tests to ensure that results are acceptable. 
Overall, a model-agnostic approach to operationalize a GSPS and provide meaningful results at 
the local level is provided with the potential to allow decision makers to focus on solving some of 
the most pressing water-related issues we face as a society.
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1 INTRODUCTION 

1.1 Background 

On September 25th 2015, the United Nations (UN) put forth a collection of 17 goals aimed 

towards ending poverty, protecting our planet, and ensuring prosperity for all (Nam, 2015). This 

set of goals is known as the Sustainable Development Goals (SDGs), which has been adopted by 

193 countries. The goal categories are: no poverty, zero hunger, good health and well-being, 

quality education, gender equality, clean water and sanitation, affordable and clean energy, 

decent work and economic growth, industry innovation and infrastructure, reduced inequalities, 

sustainable cities and communities, responsible consumption and production, climate action, life 

below water, live on land, peace justice and strong institutions, and partnerships for the goals. 

The direct effect of water in more than half of these categories can be easily recognized, and it 

can be argued that water indirectly affects some of the other categories. Complementary to the 

UN’s SDGs, the SENDAI Framework for Disaster Risk Reduction constitutes an agreement 

endorsed by the UN to reduce risk due to natural disasters, and subsequently the losses of lives, 

livelihoods, and environmental assets at the individual, community, and country scale. Water 

management in the form of prediction and preparedness has the potential to significantly 

improve risk reduction, especially in developing countries lacking the resources to develop their 

own prediction system. 
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Grey and Sadoff (2007) defined the relatively new term water security as the availability 

of an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, 

coupled with an acceptable level of water-related risks to people, environments and economics. 

In other words, water security is determined by a combination of the main water-related issues 

addressed by the SDGs and the SENDAI framework; namely water for achieving our goals as a 

society, and water risk management. Water security can only be attained by having an 

understanding of current water resources available and future availability with enough lead-time 

to prepare and respond to changes that may affect production or risk factors. Moreover, this type 

of understanding can only be reached by having easily accessible and accurate water data. 

Water is the most important natural resource on earth. As such, it needs to be managed 

properly from all angles. Water data needs to be readily accessible and easily understood by all 

involved groups. These groups usually include scientists, decision-makers, emergency 

responders, and the general public. The common use level and key functionality needed by each 

group are shown in Table 1-1. 

Table 1-1. Water data use levels. 

Group Use Level Key Functionality 
Scientists Research Comprehensive 
Decision Makers Planning Relevant 
Engineers/Emergency 
Responders 

Action Accessible 

General Public Awareness Intuitive 

Fluvial flooding is one of the most recurrent and costly natural disasters around the world 

in both human lives and property damage. In the United States (US), the last 50 years have seen 

over 100 such floods affecting about 12 million people and costing about $50 billion (Guha-
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Sapir, Below, & Hoyois, 2017). In Europe, the European Environmental Agency estimated that 

floods caused economic losses of over €60 Billion and over 1000 fatalities between 1998 and 

2009 (Wehrli, Herkendell, & Jol, 2010). Over the years, engineers and scientists have developed 

a variety of tools to timely respond to the problems posed by floods. For a long time, human 

efforts were concentrated in the prevention and mitigation of damaging floods through the 

construction of physical barriers to protect specific areas. This approach has been successful to 

an extent; however, there is a limit to the protection that these structures can offer. In the last few 

decades, flood preparedness has been incorporated into flood risk management as a way to 

minimize the impact of inevitable floods. A comprehensive flood risk management strategy 

should be a combination of prevention, preparation, response, and recovery (van Alphen, Martini, 

Loat, Slomp, & Passchier, 2009). This is evident in the main goals of organizations like the 

Global Flood Partnership (GFP), whose goal is to establish a partnership for global flood 

forecasting, monitoring and impact assessment to strengthen preparedness and response and to 

reduce global disaster losses; and NOAA’s Office of Water Prediction (OWP), whose goal is to 

develop and deliver state-of-the-science national hydrologic analyses, forecast information, data, 

decision-support services and guidance to support and inform essential emergency services and 

water management decisions. 

Hydro-meteorological models play a critical role in flood management systems. 

Hydrologic modeling is an important tool that helps us understand how to better respond to 

extreme events, and plan according to predicted expectations. Forecast predictions are used in 

the development of preparedness and mitigation strategies. More specifically, they are used as 

one of the main triggers in warning systems along with earth observations. Furthermore, the 

scarcity, and sometimes unavailability of the latter together with insufficient lead times to 
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respond usually make hydrologic models the main input to such warning systems with 

streamflow observations being assimilated when available. 

During the past few decades, engineers and scientists have increased our ability to predict 

floods. Hydrology and hydrologic modeling are continually evolving. There has been an internal 

expansion thanks to technological advances. We now have better physically-based distributed 

models with better grid resolution, larger coverage, and faster computation times. Second, there 

has been a vertical expansion, where Meteorology is now incorporating Global Circulation 

Models (GCMs), Land Surface Models (LSMs), and routing models so they can hydrologically 

route their runoff estimates. At the same time, Hydrology is looking at weather parameters not 

simply as inputs but as part of the overall cycle. As a result, new hydro-meteorological models 

that take advantage of the respective strengths of Meteorology and Hydrology are being 

developed. Finally, hydrology is also experiencing a multidisciplinary expansion, where other 

earth sciences are not only consuming model data but are also actively seeking to better 

understand hydrologic principles. Furthermore, not only are the earth sciences taking advantage 

of these models, but because this new integrated approach lowers the barrier to produce more 

accessible water data, other disciplines are also taking advantage of these hydro-meteorological 

models (Figure 1-1). 

The expansion of hydrology has made the possibility of larger-scale, more-accurate 

models that are useful at local scales a reality. Likewise, probabilistic forecasts now offer an 

alternative to incorporate the uncertainty introduced by the inputs used to run a model and 

deliver to decision-makers the reality of hydrologic forecasts. Nevertheless, major challenges 

remain.  For example, the inherent uncertainty introduced by the model itself is usually neglected, 

but can be significant (Butts, Payne, Kristensen, & Madsen, 2004). In addition, integrating and 
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communicating model results has historically been a major challenge due to the evolving nature 

of hydrologic models (Beran & Piasecki, 2009). This challenge has begun to be answered with 

the adoption of standards like the Open Geospatial Consortium (OGC), a push to create Earth 

Observation Systems (EOS) and cloud computing that allows model results to be accessed as a 

service via the Internet, and the creation of derived tools that facilitate the visualization and 

interpretation of “big” water data through light-weight web applications. 

 

 

Figure 1-1. The expansion of Hydrology. 

 

Flood maps are an example of a tool that can help us communicate hydrologic model 

results by identifying areas that are susceptible to flooding. Such maps allow decision makers to 

properly respond to flood events by providing intelligence regarding flood extent, depth, velocity, 

affected communities, and access routes for specific areas. In the US, the Federal Emergency 

Management Agency (FEMA) is responsible for conducting flood studies and producing flood 

maps. However, these ‘static’ flood maps have a relatively short lifespan due to the dynamic 

character of the inputs involved in their production. As a result, these maps are often used to 
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identify flood hazard zones instead of incorporating into a dynamic awareness system. 

Furthermore, flood maps are created using a number of different methods, which usually 

complicate the development of other flood management tools derived from them, often making 

the tools unique to a specific flood map. 

Hydrologic modeling can help make flood maps dynamic. Streamflow or water depth is an 

essential input to generate a flood map. These values can come from observations (i.e. historical, 

real-time), or from a hydrologic model (prediction). A workflow that continually links the inputs 

of a monitoring system or a hydrologic model to generate a flood map can be used as early 

warning system (EWS). 

In Europe, the European Flood Risk Management Directive, in force since 2007, requires 

all member countries of the European Union (EU) to assess all water courses and determine if 

they are at risk of flooding; to map the flood extent, assets, and humans at risk in these areas; and 

to take adequate and coordinated measures to reduce flood risk. Attempts to standardize the 

approaches used to create flood maps have been made in EU under this directive (van Alphen et 

al., 2009). Similarly, the Open Water Data Initiative (OWDI) in the US was started in 2014 and 

seeks to standardize and facilitate water data integration and sharing. The conceptual model 

developed for the OWDI includes four key functionalities that are essential for engaging the 

broader community of water data providers and users: Water Data Catalog, Water Data as a 

Service, Enriching Water Data, and Community for Water Data (Blodgett, Read, Lucido, 

Slawecki, & Young, 2016). Nevertheless, the standardization of water data remains an ongoing 

challenge around the world due in part to the wide variety of methods, water data outputs, and 

aimed audiences. 
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The accuracy of a flood map largely depends on the hydrologic model used. A hydrologic 

model is a simplification of a water system that helps us understand, predict, and manage water 

resources. We can better understand patterns, trends, and changes; we can predict where, when, 

and how much water we can expect; and most importantly, we can identify, plan, and respond to 

water-related issues (Figure 1-2). Hydrologic models have allowed scientists and engineers to 

expand both the temporal and spatial scale at which flood maps can be created. Flood Warning 

Systems (FWS) derived from hydrologic models require high-resolution results that can capture 

the effects of forecast predictions on the areas of interest. “Hyper-resolution” or “street-level” 

hydrologic and hydraulic models have become an essential part in the development of a FWS.  

Furthermore, these models can be used to help us understand how to better respond to hydrologic 

events without the need of a flood map. Flood maps are only one of the different tools available 

to help us communicate the results of hydrologic models. On the other end of the spectrum, 

hydrologic models can help in the prediction and monitoring of extended droughts. 

 

 

Figure 1-2. Hydrologic modeling and its uses. 
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1.2 Global Streamflow Prediction New Challenges 

Having a hyper-resolution global model does not automatically make it useful. New 

challenges, which are considered an extension to the initial grand challenge, have surfaced. I 

have subdivided these challenges in the following categories: big data issues like storage, 

maintenance, and metrics tracking; communication issues like accessibility, relevancy, and 

clarity, particularly when working with different groups; adoption issues like ownership, 

partnering, branding, and overall implementation at the local level (country, region, etc.); and 

validation issues. This section discusses some of the recent advances regarding the core 

challenge of creating a hyper-resolution global hydrological model. 

The benefits of a large-scale hyper-resolution prediction system are of critical importance 

in many water-related areas. Some of these areas include food production, climate change, and 

disaster risk reduction. Specifically, the main concept behind any disaster risk reduction or 

mitigation is to lower the costs of such inevitable events. The effectiveness of flood preparedness 

has been proven by various general and localized estimates that compare the initial cost of the 

initiative with the potential cost of a given flood event or a number of them (Godschalk, Rose, 

Mittler, Porter, & West, 2009; Kelman, 2013; Kull, Mechler, & Hochrainer‐Stigler, 2013). 

Developed countries usually possess their own flood warning system. The US National Water 

Model and the European Flood Awareness System are examples of this. While most of the 

developed world has good data, tools, and experience, developing countries often lack the 

capacity to produce and maintain their own models, resulting on an increase in vulnerability. 

Entities like the World Bank and the Inter-American Development Bank have recognized that 

international assistance is essential for developing countries to overcome vulnerability. 
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The benefits of a global streamflow forecast are numerous. Streamflow prediction is 

critical for assessing/predicting extreme events such as floods and droughts, but it also has the 

ability to positively impact areas like agriculture, biodiversity, and climate change by providing 

essential data for the development and advancement of problem-solving tools in these areas. 

A global streamflow prediction system would not only benefit developing countries by 

offering predictions in areas that would have no coverage otherwise. Developed countries can 

also benefit in a similar manner, especially in areas where there are no local models or enough 

observed data. Other advantages of having a large-scale modeling system include the ability to 

predict events at a larger scale (e.g. multi-watershed level), and to provide a secondary prediction 

to serve as comparison to or support an already standing forecast prediction system. 

Organizations like the Global Flood Partnership (GFP) seek to establish an international 

partnership to help strengthen preparedness and response to global disasters, while at the same 

time incentivizing cooperation, and the development of such a global system that can benefit 

everyone. 

The development of a global hyper-resolution hydrologic model has been deemed a grand 

challenge mainly because of the significant computational cost, and the amount of data needed to 

run such a model. However, other scientists have also started to incorporate the communication 

and usefulness of such a model as part of the challenge. For example, Emerton et al. (2016) 

included quantifying, understanding, and communicating the values and benefits derived from a 

global forecast as part of the many challenges of a global forecast prediction system. 

A description of some of the main accompanying challenges that come with a global 

streamflow prediction system is discussed below. 
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1.2.1 Big Data 

A global Streamflow Prediction System requires a solid cyberinfrastructure where results 

can be stored, and retrieved. Moreover, a continuous operational forecast system requires a 

workflow that can be run automatically. This would include the download and organization of 

model inputs, which would add to the already large amount of data produced by the model. 

Therefore the infrastructure for a global model is bound to include organization tasks to 

download, archive, and delete data. Traditionally, hydrologic models have been run on local 

servers, however with the latest advances in Information and Communication Technologies 

cloud storage and computing has become a common alternative. Souffront Alcantara, Crawley, 

et al. (2017) provides an example of a large-scale forecast prediction system that is based on an 

on-premise architecture for storing the US National Water Model. However, it is important to 

note that this server is separately located at the Renaissance Computing Institute (RENCI), which 

is a leader in data science innovations, and it is managed and maintained by them (see chapter 2). 

Therefore, in practical terms, this cyberinfrastructure was able to combine some of the benefits 

provided by both cloud and on-premise storage and computing.  

Cloud computing offers a number of advantages for the development of an operational 

global forecast prediction system, especially in developing countries. Some of the most obvious 

advantages include: the removal of expensive computing hardware and space, easy to scale, 

machines are maintained centrally by the provider, model improvements and other updates only 

need to be done on the server rather than numerous desktops/servers, and the entire system can 

be managed from one place (usually a dashboard).  

A global forecast prediction system is meant to be accessed by a large number of users. 

Therefore, an easy to scale system would be ideal. Furthermore, cloud computing and big data, 
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such as the output of a large-scale streamflow forecast system, are conjoined in the sense that big 

data provides users the ability to use commodity computing to consume subsets of the data that 

are of interest, while cloud computing provides the underlying engine that makes the data 

available in the first place (Hashem et al., 2015). 

1.2.2 Communication 

Communicating water data has been a common challenge for the hydrologic community 

(Beran & Piasecki, 2009). This is due in part to the evolving nature of hydrologic models. In the 

last few decades, the emergence of standards for the sharing and distribution of hydrologic data 

has made communicating and sharing water data much easier. Some of these standards include 

WaterML, which offers a simple structure for working with time series data; netCDF, which 

offers a more solid structure for working with multi-dimensional data; and GIS open web service 

standards like the Web Mapping Service (WMS), Web Feature Service (WFS), and Web 

Processing Service (WPS) standards, which offer a common denominator for exposing water 

data in a dynamic way that is compatible with the most used visualization tools available. 

The adoption of the standards mentioned above has helped reduce the existing gap 

between data producers and data users in the hydrologic and decision-making communities. 

However, most of the focus on data communication is usually placed on scientific/research users. 

Furthermore, water data needs to be effectively communicated not only to the scientific 

community, but also to decision-makers, emergency responders, and the general public. Water 

data needs to be presented as actionable information that is accessible and understandable for all 

user levels (Souffront Alcantara, Crawley, et al., 2017). 
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A solution for communicating results to other groups is to develop web applications that 

allow users to interact with the data through thin-clients depending on their specific needs. Water 

data as a service through the use of a web app has many benefits. Results can be displayed using 

open standards, while other functionality can be added to satisfy user needs from a simple web 

browser. Web apps can successfully link the back-end cyberinfrastructure needed to generate 

forecast results with state-of-the-art web development technologies to create dynamic 

environments where users from different levels can access information that is relevant to them by 

taking advantage of open standards. 

1.2.3 Adoption 

In general, adopting a new technology usually depends on the estimated benefits and costs 

of implementation. In the case of a large-scale streamflow prediction system, there are a number 

of general and specific factors that will determine such benefits and costs, and therefore 

influence implementation at the local level. Some of the general factors include the existence of a 

local system, and the disposition of the local community to incorporate or integrate a global 

system. In such a cases, the global system’s value would most likely be in serving as a secondary 

tool to trigger action or to corroborate when the local model forecasts an extreme event. 

However, the greatest value of a large-scale system comes when there is no local system 

available. 

More specific factors regarding the adoption of a large-scale forecasting system include 

the time it takes to adopt new technologies, and who will take responsibility for the performance 

of the model. Principles like the Technology Acceptance Model (TAM) suggest that the adoption 

of a new technology depends on the perceived ease of use and usefulness of the technology 
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involved (Davis, 1985). In theory, a large-scale system offers a relative ease of use by 

eliminating the costs of producing the model and offering forecast results as web services that 

can be consumed by anyone. However, it is important to note that while a forecast can be easily 

provided using new communication technologies, model results still need to be interpreted by 

knowledgeable professionals, and decision-support systems to respond to forecasted events 

would also still be in the hands of the local community. Therefore, a reasonable depth of 

understanding of the model is required at the local level. In addition, each country/region that 

decides to implement a global prediction system will have a vested interest in the good 

performance of the model. To this end, a combined approach can be implemented to monitor 

model performance where a local implementation of the model can provide feedback and/or test 

the model based on local observed data (see section 1.2.4). Furthermore while improvements to 

the global model based on such local observations will certainly lag, biases identified can be 

accounted for and decisions properly adjusted locally in the interim. Close collaboration between 

the model developers and the local implementation is required to achieve this goal. 

Success or failure of the model predictions imposes certain responsibility on the owner. 

But with a global/large-scale system, ownership may not be clear. While the developer of the 

model provides results, interpretation and response to the model fall at the local level. In 

practical terms, the weight of the decision support system developed from the model is of far 

more importance than the generation of a model. As a result, it is usually advised that a multi-

criteria approach is used to support decisions. Examples of such systems usually include multiple 

models, or observation data (Ahmadisharaf, Kalyanapu, & Chung, 2016; Horita, Albuquerque, 

Degrossi, Mendiondo, & Ueyama, 2015; Niswonger, Allander, & Jeton, 2014; Svoboda, Fuchs, 

Poulsen, & Nothwehr, 2015; Wan et al., 2014). Based on these factors, users may welcome or 
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reject ownership and therefore responsibility over certain aspects of a global model. To this end, 

there are a number of implementation levels that would depend on what is determined to work 

better at the local level by the local agency itself. 

1. External model consumption through a web app: The model is accessed from a 

generic web app developed to display the complete large-scale model. Additional 

functionality in the app would allow for extraction and visualization of data for a 

specific area. This generic app could be hosted by an international organization 

working with different countries/regions. 

2. Internal model consumption through a web app: The model is generated on-

premise and displayed and accessed through the generic web app. Internal 

generation would allow for computation of areas of interest only. 

3.  External model consumption through web services: The model is accessed 

through open standards and a REST API, and displayed using a customizable web 

app or integrated into an existing visualization tool. This would allow for display 

of areas of interest only while avoiding the costs of an on-premise implementation. 

Further, once a proper understanding of the models value and limitations are 

understood for the decision at hand, a local agency can “brand” the service in 

such a way that lends confidence to the downstream users. 

1.2.4 Validation 

The accuracy and uncertainty of a model need to be quantified before forecasts can be 

useful for any decision-making. Traditionally, models are tested and calibrated for specific areas. 

This poses an additional challenge for a large-scale forecast system. Given the extent of such a 
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model, validation and calibration would be a very arduous task. To this end, many large-scale 

models have instead carried over the uncertainty of their inputs by presenting an ensemble result 

that accounts for input uncertainty. 

Another way the accuracy of the forecast can be evaluated is by comparing results to 

observed data in local areas post model deployment. Assuming a large-scale model has been 

adopted at a regional or local scale, the model could be easily compared to regional or local 

observed data. Moreover, a large-scale forecast system that uses open standards drastically 

improves the ease of comparisons with any other existing dataset. The results of the comparison 

analysis can then be shared with the model developer and proper corrections made. 

A validation system that facilitates modeled and observed data comparison is necessary to 

ensure the consistency of such analyses so that they can be performed on different areas and by 

different groups. It is also critical for developing confidence for using simulated results at all 

levels. 

1.3 Summary 

Hydrologic modeling is an important tool for forecasting streamflow. A hyper-resolution 

model allows for prediction at “the street level,” which in turn can be used for urban planning, 

decision-making, and emergency response that is useful at a local level. Hydrologic modeling 

results can be used in combination with other tools like flood maps or drought monitoring 

systems. A global streamflow prediction system is ideal for regions that lack a local model or 

areas where there is not available input data or human capacity to create a model at a local level.  

Developing a large-scale hyper-resolution hydrologic model has been one of the main 

challenges of the hydrologic community over the past decade. Advances in technology have 
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made possible the development of a number of large-scale hydrologic models by different 

organizations. Some of the main characteristics of these models include data assimilation, 

communication of uncertainty through ensembles, and flexible development frameworks. 

Currently, some of the main large-scale models include the US National Water Model (NWM), 

the Global Forecast Awareness System (GloFAS), and the family Land Data Assimilation 

System models derived from NASA’s Land Information System (LIS). 

Additional challenges have surfaced with the development of global models. Some of these 

challenges are big data, communication, adoption, and validation challenges. The big data and 

communication challenges have started to be answered by providing new ways to store and 

display data. Web applications offer a relatively easy way to display water data in a dynamic and 

intuitive way. However, multiple components are required to develop these types of applications, 

and the knowledge required to do so is often out of the expertise of a water resources expert. 

Web frameworks offer an easy way to develop web applications lowering the barrier for 

engineers and scientist. 

This research seeks to answer the following questions: how can we empower scientists and 

decision makers so they can make a better use of hydrologic modeling and improve our overall 

ability to manage our water resource and respond to extreme events? And what improvements 

are needed to make a large-scale hydrologic model more useful to stakeholders? 

Tackling these challenges and questions will increase the usefulness of existing and future 

global models while also providing regions that lack a forecasting system with data that is 

readily available and that can be incorporated to their existing systems in a robust way with the 

help of web services. This in turn has the potential to improve our decision-making ability 

regarding water resources management and to reduce losses due to extreme events such as floods. 
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A description of some of the most used large-scale hydrologic models, along with some of 

the main components necessary to make a streamflow prediction system operational is provided 

in the next chapter. A Case study using the US National Water Model is provided in chapter 3, 

with a focus on big data and data communication challenges. Chapter 4 uses the GloFAS-RAPID 

model to create a semi-global streamflow prediction system covering Africa, North America, 

South America, and South Asia. All the main hydroinformatic challenges are addressed. Finally, 

Chapter 5 provides a summary of the developed tools and workflows, along with future 

development opportunities and areas of improvement. 
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2 LARGE-SCALE HYDROLOGIC MODELING AND COMPONENTS REVIEW 

2.1 Large-Scale Hydrologic Modeling Review 

The development of a high-resolution global model to monitor surface water has been 

deemed a “grand challenges” of the hydrologic community (Wood et al., 2011). So far, this 

challenge has been addressed primarily from the development point of view; the creation of such 

a model requires a reevaluation of variable interactions, computational costs, and the 

incorporation of observed data. The last few years have seen the development of such large-scale 

models become more feasible. As a result, a number of large-scale hydrologic models have 

surfaced. A review of available large-scale hydrologic models and some of their main 

components is presented with a focus on cyberinfrastructure, and accessibility.  

2.1.1 NWM 

The National Water Model (NWM) is a hydrologic model that generates forecasts for 

multiple variables across the continental US (NOAA, 2016). It was released in 2016 by the 

National Weather Service (NWS) Office of Water Prediction (OWP) in collaboration with the 

National Center for Atmospheric Research (NCAR) and the National Center for Environmental 

Prediction (NCEP). The NWM simulates runoff conditions for the 2.7 million reaches of the 

National Hydrography Dataset (NHD) (USGS NHD, 2016), which represents a significant 

increase over the approximate 4000 locations forecasted by the NWS through the thirteen River 

Forecast Center’s operations. The model has four different configurations or forecast products, 
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which differ in duration, time step, and frequency. All four configurations produce a unique 

forecast, with the exception of the long-range configuration, which is an ensemble forecast with 

four different members lagged by four six-hour time intervals for a total of 16 forecasts per day. 

The analysis and assimilation configuration is produced in near real-time and assimilates 

observation data from USGS gages. It serves as initialization for the other three configurations 

by providing an estimate of current conditions. In addition, the NWM produces results for three 

geospatial types or shapes: channel, land, and reservoir. The channel and reservoir types are 

based on the US NHD plus dataset, while the land type is based on a 1km2 land surface grid. The 

outputs of the model are made available as netCDF files on the NOAA Operational Model 

Archive and Distribution System (NOMADS) and through an NCEP FTP server. These outputs 

are only persisted for two days, so they must be retrieved, processed and accessed from a 

separate site. The NWM produces forecasts for a number of hydrologic parameters that vary 

depending on the model’s type and configuration. These variables include streamflow, 

streamflow velocity, total evapotranspiration, subsurface runoff, soil saturation, snow depth, and 

snow water equivalent. The latest streamflow forecast can be visualized from a dynamic map in 

the OWP main website (http://water.noaa.gov/map). 

A new version of the NWM was released in May 2017. Besides a list of enhancements to 

the actual model that include stream connectivity refinements, and improved parameter 

calibration; this version significantly reduced the size of the outputs, allowing for an increase in 

previous forecast storage, and faster data retrieval. 

The core of the NWM is the NCAR’s Weather Research and Forecasting Hydrologic 

model (WRF-Hydro). The NWM inputs come from a variety of sources including Multi-

Radar/Multi-Sensor System (MRMS) radar-gauge observed precipitation data, and High 
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Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecasting System (GFS) and 

Climate Forecast System (CFS) Numerical Weather Prediction (NWP) forecast data. WRF-

Hydro is configured to use the Noah and Noah-MP Land Surface Models (LSMs) to simulate 

land surface processes. Separate modules perform diffusive wave surface routing and saturated 

subsurface flow routing on a 250m grid, and then Muskingum-Cunge channel routing through 

the NHDPlusV2 stream network (NOAA Office of Water Prediction, 2017). 

An additional method for visualizing and extracting NWM forecasts for extended periods 

is available through HydroShare’s National Water Model Viewer web application. HydroShare is 

an online, collaborative resource for sharing hydrologic data (Tarboton et al., 2014). The NWM 

Viewer provides visualization and interaction with NWM forecasts. In addition, it convers NWM 

outputs from individual large-scale spatial files to localized time series files that can be 

downloaded manually or programmatically using a REST API developed as part of the web app 

(Souffront Alcantara, Kesler, et al., 2017). 

2.1.2 WRF-Hydro 

The Weather Research and Forecasting Model Hydrological Modeling System (WRF-

Hydro) is a community-based model framework that allows coupling of meteorological models 

and terrestrial/hydrologic models. This model architecture, built using Fortran, was originally 

created to work with the WRF model, an atmospheric model for meteorological and numerical 

weather predictions; however, it has been expanded to provide a modularized approach that 

covers typical terrestrial and hydrological processes, and to allow modelers to use their own 

meteorological input files. The Noah and Noah-MP LSMs are the primary surface models in 

WRF-Hydro. 
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Noah and Noah-MP calculate vertical fluxes of energy, moisture, and soil states. The Noah 

model is a one-dimensional LSM that simulates soil moisture, soil temperature, skin temperature, 

snowpack, canopy water content, and surface energy flux and water flux (Ek et al., 2003). The 

Noah-MP model incorporates multiple-parameterization options allowing for improvements in 

simulation of runoff and other hydrological variables (Niu et al., 2011). 

2.1.3 GloFAS 

The Global Flood Awareness System (GloFAS) is an ensemble hydrologic model that 

generates 51 different runoff forecasts for the major rivers of the world on a global grid with a 

resolution of 16 km2 on a continuous basis. A 52nd forecast is generated at a resolution of 8 km2. 

GloFAS was released in 2011 by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the European Commission’s Joint Research Centre (JRC), and has been 

operational since July 2011.  The GloFAS system is composed of an integrated 

hydrometeorological forecasting chain and of a monitoring system that analyzes daily results and 

shows forecast flood events on a dedicated web platform (Alfieri et al., 2013). This model uses 

real-time and historical observations in combination with a Data Assimilation System (DAS) and 

a Global Circulation Model (GCM). The underlying framework used to create GloFAS is 

ECMWF’s Integrated Forecasting System (IFS). GloFAS uses the HTESSEL model for its land 

surface scheme. HTESSEL is a hydrologically-revised version of the Tiled ECMWF Scheme for 

Surface Exchanges over Land (TESSEL) model (Balsamo et al., 2009). This new land surface 

scheme corrected the absence of a surface runoff component in its predecessor, among other 

minor improvements. Finally, the LISFLOOD model is used to route the GloFAS results that are 

presented in their web application (http://globalfloods.jrc.ec.europa.eu/glofas-forecasting/). 
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LISFLOOD is a physically-based distributed model that provides one-dimensional channel 

routing using the kinematic wave method (Roo, Wesseling, & Deursen, 2000). 

A predecessor to GloFAS, the European Flood Awareness System (EFAS) is an 

operational monitoring system for forecasting floods across Europe that follows the same 

structure as GloFAS, though at a higher resolution and with additional functionality due to the 

ability to connect through the European Union (EU) and several national hydrological and 

meteorological agencies for data assimilation, validation, and calibration. The aim of EFAS is to 

gain time for preparedness measures before major flood events strike, particularly for trans-

national river basins both in the member states of the EU as well as on a general European level. 

2.1.4 ERA Interim and ERA5 

ERA-Interim is a global atmospheric reanalysis produced by ECMWF. This is a global 

dataset that spans January 1980 to December 2014 (35 years). One of the advantages of using 

reanalysis is that the data provides a global view that encompasses many essential climate 

variables in a physically consistent framework, with only a short time delay (Dee et al., 2011). 

This type of data becomes invaluable in areas where no actual observed data is available. A 

runoff derivative of this atmospheric reanalysis was produced on a 40km2 global grid using a 

land surface model simulation in HTESSEL. 

GloFAS forecasts can be visualized from their main website 

(http://globalfloods.jrc.ec.europa.eu/glofas-forecasting/), which combines the forecasts from 

GloFAS and the simulated historic run from the ERA Interim to provide an awareness system 

that displays warning points and the probability of an event occurring based on the ensemble 

forecasts and return periods extracted from the ERA data. 
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A web app exists for GloFAS that allows for visualization of forecasts. The underlying 

processes associated with this app also address GloFAS’ density challenge by routing model 

results through a river network to provide results not only for major rivers, but for any potential 

river in the world. The Streamflow Prediction Tool (SPT) provides an intuitive user interface that 

allows for the easy lookup and visualization of results (Snow et al., 2016). 

ERA-Interim is being updated by the ERA5 dataset; a new climate reanalysis dataset 

developed by ECMWF that will eventually cover a time window from 1950 to present. ERA5 

provides estimates for a large number of atmospheric and land surface variables over the globe at 

an increased resolution of 30 square kilometers. Similar to the ERA-Interim/Land the ERA5 will 

be used in the HTESSEL land surface model to produce the global runoff land component, which 

in turn can then be run through the same river network to produce the simulated historical 

discharge data. Seven years of data have already been released. The rest of the data will be 

available in January of 2019 and is meant to replace the ERA-Interim dataset. Some of the 

improvements of the ERA5 dataset include a higher resolution, better global balance of 

precipitation and evaporation, and better soil moisture. 

2.1.5 IFS 

The Integrated Forecasting System is the framework where all the main ECMWF models 

run. It is a set of computer programs written in Fortran. The IFS was first implemented in 1994. 

The IFS was jointly developed and maintained by ECMWF and Meteo-France, the French 

national meteorological service. This model was the first to use 4D-Var data assimilation, which 

is a four-dimensional variational data assimilation technique. It performs a statistical 

interpolation in space and time between a distribution of meteorological observations and an a 
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priori estimate of the model state (Andersson & Thépaut, 2008). This implementation 

represented a significant advance at the time. 

2.1.6 HYPE 

The Hydrological Predictions for the Environment model is a model fro small- and large-

scale assessment of water resources and water quality (Lindström, Pers, Rosberg, Strömqvist, & 

Arheimer, 2010). This model has the peculiarity that it works with sub-basin areas as opposed to 

grids, and that it incorporates nutrient flow in addition to water flow. 

The European Hydrological Predictions for the Environment (E-HYPE) is a multipurpose 

model currently used for water forecasting in Europe, and specific areas and research projects. It 

was developed by the Swedish Meteorological and Hydrological Institute (SMHI). The model is 

forced by daily precipitation and temperature and then calculates flow paths in the soil based on 

snow melt, evapotranspiration, surface runoff, infiltration, percolation, macropore flow, tile 

drainage, and lateral outflow to the stream from soil layers with water content above field 

capacity (Donnelly, Andersson, & Arheimer, 2015). E-HYPE distinguishes itself from other 

large-scale models in that it divides watersheds into sub-basins rather than using a regular grid. 

This model also has the ability to account for human influences like irrigation and hydropower.  

Results from E-HYPE can be visualized from SMHI’s HypeWeb website 

(http://hypeweb.smhi.se/europehype/) and from SMHI’s river info website (http://riverinfo.eu/). 

The former displays the different variable outputs per sub-basin while the latter presents 

streamflow forecasts together with historical data in a dynamic way through the use of an 

interactive map and a graph. 
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An EFAS-Hype initiative is currently been tested. This model uses forcing data from 

EFAS and is customize towards flood warning and transboundary flow. 

2.1.7 GLDAS 

The Global Land Data Assimilation System is a global land surface model developed 

jointly by NASA’s Goddard Space Flight Center (GSFC) and NOAA’s National Center for 

Environmental Prediction (NCEP). The main goal of GLDAS is to produce a high spatial 

resolution model in near-real time. GLDAS is a global, high-resolution, offline (uncoupled to the 

atmosphere) terrestrial modeling system that incorporates satellite- and ground-based 

observations in order to produce optimal fields of land surface states and fluxes in near–real time 

(Rodell et al., 2004). A series of other LDAS models have been developed for specific areas 

around the world. Some of these include the North American LDAS (NLDAS), the Famine Early 

Warning Systems Network LDAS (FLDAS) mainly for Africa’s sub-saharan region, the ongoing 

South Asia LDAS (SALDAS), among others. LDAS models are creating using the Land 

Information System (LIS) framework. 

2.1.8 LIS 

LIS is a software framework that integrates the use of satellite and ground-based 

observational data along with advanced land surface models and computing tools to accurately 

characterize land surface states and fluxes (Kumar et al., 2006). LIS’s available LSMs include 

the Community Land Model (CLM), Noah Land Surface Model, Variable Infiltration Capacity 

(VIC), and Hydrology with Simple SIB (HySSIB). This framework allows for the production of 

high-resolution results (as high as 1km), and the assimilation of earth observations from NASA’s 

satellites (e.g. AQUA and TERRA). LIS was developed using Fortran and C. 
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VIC is a model that predicts surface runoff and energy fluxes. The model, first developed 

in the early 1990s, was created with the intention of representing land surface hydrology at a 

global scale for incorporation into General Circulation Models (GCMs) (Liang, Lettenmaier, 

Wood, & Burges, 1994). 

2.1.9 Fortran 

After reviewing some of the main modeling frameworks used in hydrological modeling it 

becomes clear that one of the main similarities between frameworks is that they all used Fortran 

to some extent. One of the oldest programming languages, Fortran is a High Performance 

Computing (HPC) language especially suited for numeric and scientific computations. It was 

first introduced in the 1950’s, but despite its age remains one of the most used scientific HPC 

programing languages. By comparison, Python, which is a very popular interpreted language, is 

about 100 times slower than Fortran. Another factor in the use of Fortran is the existence of 

legacy code that has been optimized and can continue to be used for the development of new 

models. 

2.2 Water Resources Communication and Visualization Components 

Water data in all its forms needs to be communicated in effective ways to help accomplish 

our society goals, and to respond to extreme events in a timely manner. Hydroinformatics 

combines elements of hydrology, hydraulics, and Information and Communication Technology 

(ICT) to help provide the information necessary to solve water-related problems. Many different 

tools and technologies are used to analyze, interact, share, and communicate water data. This is 

due to the many uses of water, and the many ways in which water needs to be accounted for. A 
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description of some of the main components used to communicate water data, specifically 

modeled data, and relative to our solution is provided in the next few paragraphs. 

Modeled data has two main components: A geographic component, and a numeric 

component. The geographic component of water data refers to the way scientists and engineers 

represent water bodies in a Geographic Information System (GIS) environment. Water data is 

usually represented as vector or raster data. In order to communicate water information, a 

number of standards have been adopted (see section 1.2.2). These standards are stored and 

displayed using special servers. 

2.2.1 Geospatial Servers 

Geoserver is an open source server for sharing geospatial data (Iacovella, 2017). Vector or 

raster water data can be stored in a Geoserver to make it available online following any of the 

most common standards for sharing geospatial data. 

ArcGIS Server is a licensed server that allows you to make geospatial data available to 

others as a web service. Other ways to store the geographic side of water data include the use of 

databases. PostgreSQL is an example of an open-source SQL database that can be geospatially 

enable to store geographic data. 

In addition to geospatial data storing and sharing, web-mapping libraries provide a way in 

which this data can be consumed by providing visualization in a web map. Openlayers is an 

open-source web-mapping library for developing interactive web maps (Gratier, Spencer, & 

Hazzard, 2015). Openlayers can display most geospatial vector and raster formats. Leaflet is 

another example of an open-source web-mapping library. Leaflet also provides easy ways to 

display geographic data that is time enabled (Agafonkin, 2014). The ArcGIS API for JavaScript 



 28 

library is another open-source web-mapping library that provides ways to consume geospatial 

data using open-source standards and ArcGIS formats. 

 Swain et al. (2015) provided a more detailed review of geospatial databases and web-

mapping libraries along with other commonly used software for developing water resources web 

applications. 

2.2.2 Numeric Data Formats 

While not the preferred way, the numeric component of water data can also be stored in 

geospatial and SQL databases. However, some of the most common ways to store modeled 

results include local storage using file and table formats. The netCDF file format is a standard for 

scientific research and offers good flexibility and structure (Rew & Davis, 1990). However, it 

has some limitations regarding data transfer and web accessibility for simple data (e.g., a time 

series). NetCDF files cannot be displayed directly through a web browser without the help of 

additional software, and usually need to be downloaded to access the data. Users are required to 

download a set of files and become familiar with the file structure to be able to extract 

meaningful information. On the other hand, WaterML, which is also a standard for water data 

sharing, offers a simple structure for sharing hydrologic time series data and its related metadata 

based on Extensible Markup Language (XML) (Zaslavsky, Valentine, & Whiteaker, 2007) that 

can be visualized in a browser. 

Other formats such as the JavaScript Object Notation (JSON) and some of its variants such 

as GeoJSON have also found their way into some of the most used formats to store and share 

water-related data due to its compatibility with JavaScript and other web development languages 

to provide visualization and web tools that consume water data. JSON is a plain text data format 
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that follows a dictionary-like pattern to store and access data (keys and values). Both geographic 

and numeric water data can be stored in JSON. 

2.2.3 Water Data Archives 

In addition to web servers hosting water data, other generalized water data archive systems 

provide ways to store, share, and retrieve data. Some of these systems include HydroShare, 

HydroServer, and IRODS. 

HydroShare is an online, collaborative resource for sharing hydrologic data (Tarboton et 

al., 2014). It provides a “community of water data” necessary to comply with OWDI standards 

by providing a site where users can publish, share, manage, discover, visualize, and download 

water-related data and models. HydroShare provides ways to store and find all types of water-

related data, from plain text results to actual models or even web applications. 

The Integrated Rule Oriented Data System (iRODS) is open source data management 

software (Rajasekar et al., 2010). It virtualizes data storage resources allowing users to retrieve 

data regardless of where and on what device the data is stored through the use of a client. 

HydroServer is a set of software applications for publishing hydrologic datasets on the 

Internet. It is a computer server that contains a collection of databases, web services, and 

software that allows data producers to store, publish, and analyze space-time hydrologic datasets 

(Horsburgh et al., 2010). HydroServer uses an Observations Data Model Database, which makes 

it ideal to store observed data or other water data that requires a relational structure. ODM is a 

relational model that defines the persistent structure of data, including the set of attributes that 

accompany the data, their names, their data type, and their context (Horsburgh, Tarboton, 

Maidment, & Zaslavsky, 2008). 
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There are a number of other water data archives that are available on the web. These 

include government projects designed to host water and weather related data produced by 

government agencies. An example of such a system is the NOAA Operational Model Archive 

and Distribution System (NOMADS), which provides a way to retrieve weather data produced 

by NOAA and other government funded organizations. NOMADS provides a way to access real-

time, modeled, and historical data in a format-independent web-service-oriented way (Rutledge, 

Alpert, & Ebisuzaki, 2006). 

2.2.4 Web Development Frameworks 

The number of different components required to deploy a water resources web application 

makes the development process complex. Even though compatibility is guaranteed by using open 

standards, it is necessary to determine what specific software and formats an app will use. Web 

frameworks exist to facilitate this stage by providing a set of tools bundled together to address 

each of the requirements of a web app. This concept is common in computer science, however it 

is relatively new in water resources. 

Two main web frameworks that focus on water resources are reviewed here. Tethys 

platform is a web framework for developing water resources web applications. It offers a suite of 

open-source software selected to address the unique development needs of water resources web 

apps (Swain et al., 2016). Tethys provides tools for the creation of an intuitive interface 

including interactive maps, forms, and graphs, while at the same time providing tools to connect 

this front-end-user interface to background processes usually required in water resources apps. 

The main goal of Tethys is to lower the barrier of web app development for water resource 
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scientists and engineers with a working knowledge of web programming and specific capability 

in Python. 

Similarly, The ArcGIS Enterprise Suite, which includes ArcGIS Portal, ArcGIS Server, 

and an ArcGIS Data Store, offers a licensed approach to easily deploy geospatially-enabled web 

applications. The development of background processes is leveraged using ArcGIS for Desktop 

combined with Python workflows, including Arcpy, a python package that includes most of the 

tools that form the core functionality of ArcGIS for Desktop. 

A web framework facilitates the development of web application by providing an “out-of-

the-box” solution to develop and deploy web applications. In the case of web frameworks 

oriented towards water resources, this is more so given the fact that the app developer is usually 

an engineer/scientist as opposed to a professional web developer. 
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3 IMPROVING DATA ACESSIBILITY FOR THE UNITED STATES NATIONAL 

WATER MODEL (NWM) 

3.1 Background 

United States national and local agencies responsible for forecasting have been trying to 

bridge the gap between meteorological models, hydrologic models, and end-user needs for the 

past several years (McEnery, Ingram, Duan, Adams, & Anderson, 2005; Xu, 1999). Some of the 

efforts to improve water resources forecasting include the following: the creation of an open 

water data initiative (OWDI) in 2014, which seeks to standardize and facilitate water data 

sharing; the creation of a National Water Center (NWC) in 2015 with the goal of creating a new 

National Water Model that covers the entire continental U.S. on regular time intervals; and the 

initiation of the NWC’s National Flood Interoperability Experiment (NFIE) in collaboration with 

the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) 

starting in 2015. Since its creation, NFIE has served as an important connection between the 

academic community and the NWC for improvements in flood forecasting (Maidment, 2016). In 

2015, NFIE focused on the creation of a prototype hydrologic model for the continental U.S. The 

success of this experiment was reflected in part by the release of the National Water Model 

(NWM) a year layer in August 2016. The NWM is a hydrologic model that generates forecasts 

for multiple hydrologic variables across the continental U.S. (NOAA, 2016). It was developed by 

the National Weather Service (NWS) Office of Water Prediction (OWP) in collaboration with 
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the National Center for Atmospheric Research (NCAR), and the National Center for 

Environmental Prediction (NCEP). The NWM simulates conditions for the 2.7 million reaches of 

the National Hydrography Dataset (USGS NHD, 2016). This represents a significant increase in 

the NWS flood forecasting ability, which was previously available at approximately 4,000 

locations served by a number of models and using different modeling techniques. The massive 

amount of new information being produced by the NWM presents a new challenge in water data 

management.  

The NWM has four different configurations or forecast products, which differ in duration, 

time step, and frequency (Figure 3-1). All four configurations produce a unique forecast, with the 

exception of the long-range configuration, which is an ensemble forecast with four different 

members produced over four staggered six-hour time blocks (16 total forecast members per day). 

The analysis and assimilation configuration is produced in near real time and assimilates 

observation data from U.S. Geological Survey (USGS) gages. It serves as initialization for the 

other three configurations by providing an estimate of current conditions at the outset of a new 

forecast. In addition, the NWM produces output for three geospatial types or shapes: channel, 

land, and reservoir. The channel and reservoir types are based on the U.S. NHD Plus dataset, 

while the land type is based on a 1km2 grid system covering the continental U.S. The outputs of 

the model are made available as netCDF files on the NOAA Operational Model Archive and 

Distribution System (NOMADS) and through an NCEP FTP server. However, these outputs are 

only stored for two days. While streamflow is the primary output from the NWM, the forecasts 

also provide a number of other hydrologic parameters that can provide useful information for 

validation and decision support. These variables include the following: streamflow velocity, total 

evapotranspiration, subsurface runoff, soil saturation, snow depth, and snow water equivalent. 
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With the advent of new and more comprehensive hydrologic models, the scientific 

community is now starting to close the second gap: providing timely, continuous, and freely 

accessible water intelligence. An important part of achieving this goal requires addressing big 

data and data communication issues such as storage, accessibility, distribution, visualization, and 

relevancy. In 2016, NFIE was renamed as the National Water Center Summer Institute, and 

focused on complimenting the NWM by exploring how to better generate decision support 

products derived from the NWM forecasts such as flood maps. Flood maps offer an effective 

way to convert water information into water intelligence by providing it in a context (spatially 

and temporally enabled forecasts) that is relevant to users. 

3.2 NWM Storage and Data Access Improvements 

I developed an interface to easily access NWM forecast outputs was developed as part of 

the activities leading up to the 2016 Summer Institute. I also developed a cyberinfrastructure for 

storing and retrieving NWM forecasts in collaboration with the Renaissance Computing Institute 

(RENCI), a leader in data science support. The web interface consisted of a series of web 

applications created using the open source Tethys Platform for accessing and visualizing the 

forecasts via the web. These web applications serve as a gateway to the NWM forecasts 

(Souffront Alcantara et al., 2017). In addition, other web apps were derived from the data-access 

apps for comparing forecasts to observed data, and demonstrating the capability to provide 

dynamic flood maps from the NWM forecasts for specific areas using a REST API. These 

additional apps serve as examples of what can be done with the output from the NWM.  
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In the next few paragraphs, I will introduce these web apps, which served as a starting 

point for the development of a more comprehensive toolset to validate the NWM while 

improving the overall national ability to access, visualize, and develop additional resources such 

as flood maps using NWM forecasts. The developed cyberinfrastructure and app designs, storage 

and performance metrics, and the deployed apps are presented. 

 

 

Figure 3-1. National Water Model Configuration (adapted 
from http://water.noaa.gov/about/nwm) 

 
 Table 3-1. Deployed Web Applications 

 Functionality  Web App 

Data Access 
 NWM Viewer 
 NWM Explorer 

Utility 
 USGS/AHPS Gauge Viewer 
 West Virginia Flood Map 
 Tuscaloosa Flood Map 

 

3.2.1 A new Cyberinfrastructure for the NWM 

As part of the preparation for the NWC summer institute we developed and deployed two 

web applications along with the accompanying back-end processes and storage architecture to 

expose the volumes of data generated daily to support the NWM.  
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An NWM netCDF output file ranges from 72MB to 2GB in size depending on model 

configuration and type. The number of files per forecast varies by configuration depending on 

frequency, duration, and forecast time step. One netCDF file includes a single time step value for 

the set of stream reaches, grid cells, or reservoir points modeled. Therefore, a single forecast is 

composed of many large netCDF files. For example, one complete streamflow forecast for the 

short-range configuration (the shortest configuration) would include fifteen ~72MB netCDF files 

for a total of 1GB uncompressed. The total size of a complete forecast for the other 

configurations scales up quickly. The medium-range forecast for the simulated land results 

includes 80 files of approximately 2GB each. The two examples above represent the total size for 

a single forecast. To provide a sense of how much data is being produced daily, there are twenty-

four 15-hour short-range forecasts, one medium-range forecast, and one 16-member ensemble 

long-range forecast that collectively result in about 2TB of data per day. This high volume of 

daily storage emphasizes the need for a cyberinfrastructure designed specifically to facilitate 

forecast extraction for a specific feature or group of features (stream reach, grid-cell area, or 

reservoir point) without requiring the formidable task of downloading the entire set of files. 

To develop this cyberinfrastructure, we established a process that searches NOMADS and 

automatically downloads the NWM outputs using a secure server within RENCI’s data center 

each time a new forecast is discovered. The compressed files are extracted to make the NWM 

forecast results more accessible to the public as direct file downloads or through apps designed 

to mine selected time series for reaches, reservoirs, or land-grid cells. Figure 3-2 shows the file 

structure used to store the processes files. The files were stored by forecast range type and then 

by date.  
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 Figure 3-3 shows the cyberinfrastructure for preparing, storing, and communicating NWM 

forecasts with web apps. Once the NWM forecasts are copied to RENCI, subsequent scripts are 

used to unzip and process the forecasts into georeferenced netCDF files by adding geographic 

coordinates. The georeferenced files are then moved into corresponding directories where the 

short, medium, and long-range forecasts are persisted for two weeks and the Analysis & 

Assimilation forecast is persisted since the inception of the NWM in May of 2016. Finally, the 

naming convention for each file included parameters like date, time, configuration, and geometry 

to facilitate data querying. 

A Jenkins automation server within RENCI’s data center manages this entire workflow 

(Figure 3-4). Jenkins is an automation server written in Java that helps automate processes. 

 

 

Figure 3-2. National Water Model Forecast File Directory 
Structure. 
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 Figure 3-3. Web Apps Cyberinfrastructure. 

  

Figure 3-4. Jenkins workflow for preparing NWM forecast 
data. 
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3.2.2 Data-Access Apps 

Two web applications were developed for accessing the NWM data. These apps access the 

NWM outputs by connecting directly with the cyberinfrastructure at RENCI. The data-access 

apps operate on top of the NWM output files as well as the inputs (forcing files) used to create 

them, and were designed to extract specific forecasts for a stream, reservoir, or land area 

provided by the user. 

The NWM Explorer app was designed to search, discover, and download individual NWM 

forecast files, or entire sets of zipped forecast files within RENCI’s data storage directories 

(Figure 3-5). Filters can be used to further drill-down access to forecasts based on geometric 

feature (stream, reservoir, land-grid cell) or time. The forcing files used as input for the NWM 

are also available to enable scientists to run their own models using the same inputs as the NWM 

and possibly compare their results to the NWM. Data can be downloaded via three different 

methods. 

1. The file system explorer allows users to directly browse RENCI’s directories

2. The iRODS explorer, which can be accessed separately from HydroShare or from a

command prompt

3. The REST API, which facilitates download automation and the retrieval of selected

model output

Other useful functionality includes options for getting a list of available forecasts and file 

metadata for a specific file. 

The NWM Viewer app was developed to provide visualization and extraction of output 

for the four configurations of the NWM, and all of the variables associated with the grid, stream, 
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and reservoir geometries. The app is composed of a map for spatial interaction (i.e., selecting 

streams, grid cells, or reservoirs), a form for forecast parameter specification (i.e., configuration 

or date), and a graph area for displaying the forecasts in the form of a hydrograph (Figure 3-7). 

Besides interaction and visualization, another important functionality from this app is that it 

converts the NWM forecast netCDF files into a time series format that can be displayed in a 

hydrograph, and can also be downloaded as a WaterML file. The NWM Viewer extracts 

information from multiple netCDF files given a time range and other basic parameters and 

assembles them in a time series (Figure 3-6). In addition, the NWM Viewer app has the option to 

convert NWM forecasts from their default metric units to U.S. customary units and to extract the 

time series data as a CSV file. 

Figure 3-5. National Water Model Explorer App Structure. 
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Figure 3-6. National Water Model Forecast Viewer Structure. 
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 Figure 3-7. National Water Model Viewer Interface Design. 
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3.2.3 NWM REST API 

A REST API was developed to facilitate NWM data retrieval for a single feature, and 

programmatic manipulation using languages like Python, R, or MatLab. A REST API is a web 

service or a set of functions that can be used to access data without a web interface. Our REST 

API communicates with RENCI’s server using the HTTP protocol. A request is sent to the server 

using a URL, which contains the criteria for the desired forecast. The parameters given in the 

URL are the same parameters used in the interface (i.e. configuration, geometry, variable, 

identifier). A response from the RENCI server is returned as a WaterML file, which contains a 

time series with the desired forecast and basic metadata. The WaterML file can be viewed in a 

browser, downloaded, or read and parsed as a text file using a programming language of choice. 

Other methods available through our API allow users to query, explore, and download raw 

NWM forecasts and the inputs used to produce the forecasts without ever having to open the 

actual apps. Four methods are included in the API.  

• GetFileList: Returns a list with the names of the NWM files available for a 

specific query. 

• GetFile: Returns a streaming download of the specified file in NetCDF format. 

• GetFileMetadata: Returns key-value pairs with the available metadata for the file 

specified. 

• GetWaterML: Returns a WaterML file with the time-series data for the specified 

forecast query. 

 A load test was designed to determine how much data could be requested from the API 

before it overloaded. The results of the test along with information about the deployed apps are 

described in the Results section. 
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3.3 Results 

Our data-access apps allow users to easily visualize, and download NWM forecasts in 

WaterML, an intuitive format to use and transfer time series data. The apps achieve this by 

accessing raw NWM forecasts that are previously downloaded and processed in a server from 

RENCI. This cyberinfrastructure handles an average of 4 TB of files per day, with forecasts 

currently being stored for 14 days. A metrics test revealed that between October 2017 and 

October 2018, more than a hundred users have accessed our web services with just over 900 hits 

for our web apps, and more than 42500 calls to our REST API. Figure 3-8 shows estimated user 

locations for our NWM apps and API. These numbers show that our apps have successfully 

exposed the NWM to a community of water data users not only in the United States but around 

the world. 

NWM forecast files can be downloaded using the NWM Explorer app. Raw forecast 

products can also be downloaded as groups based on filters that query the files by configuration, 

shape, and time. There are three modes in which data can be accessed: the file system explorer, 

iRODS, and the API. 

This app provides a mechanism for scientists wanting to access raw NWM files for 

research purposes. Furthermore, all the variables available for the different configurations of the 

NWM as well as the input forcing files used to create the NWM forecasts can be browsed and 

downloaded directly. 

The NWM Viewer app simplifies the NWM forecast for a specific feature. It converts 

NWM output files from individual large-scale spatial files to localized time series files (Figure 

3-9). In addition, it offers visualization and data extraction from the more complex and binary-

based netCDF format to a simpler, XML-based format. Parameters are provided by the user 
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through a form, a specific feature (stream reach, grid cell, or reservoir point) is selected through 

an interactive map, and the resulting time series is displayed in the graph area, which can also be 

downloaded as WaterML or CSV. 

 

 

Figure 3-8. National Water Model App User Estimated Locations 
for the U.S. and Eurasia. 

 

A time series is created for a selected river reach, reservoir point, or land grid, containing a 

subset of data from multiple netCDF files that vary in number depending on given parameters. 

This app solves the problem of relevancy that comes with a national-scale hydrologic forecast by 

allowing users to access data for a particular river reach, reservoir, or area as opposed to all the 
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rivers, reservoir points, or land grid cells within the U.S. The NWM Viewer app successfully 

translates spatially based NWM forecasts into time-based files containing data for a specific 

feature. This process reduces the amount of storage required considerably. For example, the raw 

netCDF files require download of the complete files even if the user is only interested in a single 

stream reach. A complete set of netCDF files for the short-range configuration of the NWM 

amounts to 1GB while a complete forecast containing a time series for one reach is about 5.5MB. 

Table 3-2 shows a summary of the storage space used on the RENCI server with raw and 

processed files. 

Besides downloading data, a user may only be interested in monitoring a particular reach 

without ever needing to retrieve any data. The NWM viewer produces a time-series graph for 

most of the variables available in the NWM allowing for instantaneous visual inspection of any 

of the 2.7 million streams, the reservoir points, or the grid cells within the US. 

The NWM Viewer app produces a time series graph for most of the variables available in 

the NWM allowing for instantaneous visual inspection without the need to download any data. 

The REST API is based on the OWDI concept of providing water data as a service. The 

NWM API facilitates automation of data retrieval and the integration of our apps with third party 

projects. Multiple web applications have been developed that use the NWM API and further 

analyze or provide additional information such as comparing NWM forecast to observed data or 

generating dynamic flood maps for specific areas within the United States. These apps serve as 

examples of how our NWM API can be used to support third-party applications. 
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Figure 3-9. NWM Forecast Viewer App Displaying 2016 West 
Virginia Floods. 

 

Table 3-2. Average NWM data storage increase per day. 

Model Configuration Inputs 
and Outputs  

Raw Files 
(GB/day) 

Processed Files 
(GB/day) 

Analysis and Assimilation 6.2 63 
Short Range 94.6 802 
Medium Range 81.7 340 
Long Range Member 1 42.1 82 
Long Range Member 2 42 82 
Long Range Member 3 42.1 82 
Long Range Member 4 42 82 
Analysis and Assimilation 
Input 8.6 13 

Short Range Input 131.3 191 
Medium Range Input 92.9 128 
Total 583.5 1865 
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I performed a test to determine how much data can be extracted simultaneously using our 

API. I ran 100 different identifiers, one at a time with a 1.5-second delay between requests. 

Ninety-nine of these requests succeeded. I also tried 40 different identifiers without any delay 

between requests with a success rate of 34 out of 40. Finally, I tried 100 identifiers with 20 

concurrent requests at a time in five batches, but they all failed. From this test, I determined that 

our API could take a high number of requests as long as they do not come at exactly the same 

time. A one-second interval between requests should be sufficient for them to work. Smaller 

times may result in an overload of the API. 

3.4 Updates to the NWM and Discussion 

A new version of the United States National Water Model was released in May 2017. 

Some of the enhancements to the model include an improved forecasting cycling, which 

extended the short-range forecast from 15 to 18 hours, and increased the frequency of medium-

range forecasts from once to four times per day; parameter updates, which reduced hydrologic 

biases and improved precipitation blend from various sources for the short-range forecast; 

upgraded netCDF output format from netCDF3 to netCDF4, and metadata and data structure for 

compatibility with netCDF file readers. 

The main improvement in terms of storage for the latest release of the NWM was the 

change to integer values with a scaling factor to store variable values within the file structure as 

opposed to the use of floats. This reduced the size of individual netCDF files significantly, and 

most importantly, most netCDF readers automatically recognize this method because it is a 

common practice for storing scientific data. 
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Accordingly, the NWM Viewer app was updated to work with the newer version of the 

NWM. A document detailing some of the main areas of improvement for the NWM Viewer was 

drafted as part of this research. The suggestions presented in this document included the addition 

of grids to complement the hydrography and extract gridded data from the NWM such as forcing 

data; the addition of subsetting capabilities to allow users to extract data from multiple reaches 

within an area of interest as opposed to having to retrieve the data from each individual river 

reach or grid and having to know the unique identifiers for these elements ahead of time; the 

improvement of code and how data is served to increase the efficiency and speed of data delivery. 

These changes have slowly been incorporated into the NWM Viewer and the cyberinfrastructure 

behind it. 

3.5 Conclusion 

The US National Water Model is a hydrologic model that generates forecasts for multiple 

hydrologic variables across the continental U.S. It was first introduced in 2016, and then 

upgraded in 2017. Aside from model improvements, the main challenge for the NWM is data 

communication. The results from the NWM are exposed on the NOAA Operational Model 

Archive and Distribution System (NOMADS) for two days only, after which results are deleted. 

Water data initiatives such as the Open Water Data Initiatives in the U.S. seek to standardize 

water data use and sharing. The OWDI has four key functionalities for providing water data in an 

efficient way: Water Data Catalog, Water Data as a Service, Enriching Water Data, and 

Community for Water Data. Following OWDI principles we provided tools that allows users to 

access NWM data and provide a way to cover the main four key functionalities described in this 

initiative, while at the same time providing a cyberinfrastructure that allows for an extended 

period of data to be stored. 
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Hydrologic forecasts need to be translated into water intelligence that end users can easily 

understand. Data accessibility and visualization are important components necessary to achieve 

this goal. We created a set of web applications that facilitate interaction with the NWM. The 

NWM Forecast Viewer app provides an interactive way to access NWM forecast through the use 

of a dynamic web map and a form that can be used to query forecast and extract relevant data. 

The NWM Viewer app also has functionality to facilitate the extraction of large amounts of data 

both spatially and temporarily. The app allows for spatial queries through the use of polygons 

(usually watersheds) so that users can retrieve all the elements within the area of interest. 

Furthermore, the NWM Viewer app converts the raw NWM forecasts from spatially-based one-

time-step netCDF files to a complete time series queried according to the element (river reach, 

reservoir point, or grid) or area of interest. These apps provide accessibility and an example of 

how NWM forecasts can be exposed so other third-party web applications, and analyses can 

easily consume NWM data. An example of how this can be done is through the use of the NWM 

Viewer REST API.  

I developed a REST API that allows for programmatic NWM data retrieval. This API 

facilitates data retrieval in an efficient way without ever having to open the web interface. This is 

especially useful for derivative apps or analysis that requires constant data retrieval. The REST 

API has methods to retrieve the main forecast as well as other methods to retrieve metadata 

about the forecast and available data. 

We developed a cyberinfrastructure to store and retrieve NWM forecasts for an extended 

period of time as opposed to two days, which is the time forecasts were stored in the NOMADS 

server. The current cyberinfrastructure is hosted at the Renaissance Computing Institute (RENCI) 

where the main forecasts were initially stored for two weeks, and then with the release of the 
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newer version of the NWM in 2017 this was increased to a month. A corrected forecast that 

assimilates gage station data is also stored indefinitely. 

Enabling the NWM by providing a better data communication scheme that includes a 

cyberinfrastructure, a web app, and a REST API served as a first step to working with other 

large-scale models and led to the development of a global streamflow forecasting application 

based on the Global Flood Awareness System (GloFAS). 
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4 GLOBAL STREAMFLOW PREDICTION USING THE GLOFAS-RAPID 

MODEL: ADDRESSING PRACTICAL CHALLENGES 

4.1 Background 

A global streamflow prediction system that provides water information relevant at a local 

scale has emerged as a priority to the hydrologic community over the past few years where a 

functional high-resolution hydrologic model is seen now as a “grand challenge” in hydrology 

(Wood et al., 2011). As a result, the creation of a high-resolution global forecast has been the 

focus of research and development by the hydrologic sciences community.  

In recent years a number of large-scale models have surfaced (Alfieri et al., 2013; 

Lindström et al., 2010; NOAA Office of Water Prediction, 2017; Rodell et al., 2004). The 

development of such models has been possible because of the evolution of computational 

hydrology, which includes a number of internal advances, but also a vertical expansion where 

elements from meteorology have been integrated into improved land surface and routing models. 

As a result, we have increased our ability to predict floods by developing better hydro-

meteorological models. Recent technologies have also made larger-scale models that provide 

value to local decision-makers possible. For example, probabilistic forecasts now offer an 

alternative to incorporating the model uncertainty by providing an ensemble forecast that 

includes multiple possible scenarios as predicted outcomes. Nevertheless, despite the rapidly 

improving models and computational infrastructure, major challenges remain.  For example, the 
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inherent uncertainty introduced by the model itself is often neglected, but can be significant 

(Butts et al., 2004). In addition, the amount of data produced by large-scale models presents new 

challenges in water data management. Furthermore, integrating and communicating model 

results has historically been a major challenge due to the evolving nature of hydrologic models 

(Beran & Piasecki, 2009). In general, communicating water data to different groups such as 

scientists, emergency responders, decision-makers, and the general public has been a major 

challenge because of the broad range of backgrounds, understanding of hydrologic model output, 

and needs (Souffront Alcantara, Crawley, et al., 2017). This challenge has begun to be answered 

with the adoption of standards, a push to create Earth Observation Systems (EOS) and model 

results that can be accessed as a service via the Internet, and the creation of tools that facilitate 

the interpretation and validation of data.  

Other barriers to large-scale modeling are Big Data, Adoption or confidence in model 

output, and validation (see chapter 1 section 1.2). The realization that having a high-resolution 

model does not make it at once useful has prompted the need to address these significant 

challenges (Figure 4-1). 

 

Figure 4-1. Global streamflow prediction practical challenges. 
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The Global Forecast Awareness System (GloFAS) developed by the European Centre for 

Medium-ranged Forecasts (ECMWF) is a hydrologic model that generates daily forecasts and 

makes them available through a web interface. However, the relatively coarse resolution makes 

the forecast useful only on large river basins. In an effort to create a higher density version of 

GloFAS that would include streams of smaller basins (Snow et al., 2016) developed a 

methodology to map the gridded runoff of GloFAS to basins and route them through a river 

network using the River Application for Parallel Computation of Discharge (RAPID) routing 

model at a national level covering the main hydrologic regions within the United States. This 

groundbreaking research laid the foundation for the development of a global streamflow 

prediction system that can provide actionable information on every mapped stream in the world 

using the same principle. Building on this work to overcome important barriers relative to the use 

of a global system I have developed a more complex workflow so that forecasts can be produced 

in a seamless and efficient way (see chapter 4). 

A workflow to generate high-density forecasts as well as a cyberinfrastructure hosted on 

the Cloud are two important requirements that address the big data challenges for such a global 

streamflow prediction system. In a similar manner to the US National Water Model (Souffront 

Alcantara, Crawley, et al., 2017), data communication mechanisms are necessary to allow users 

to access data that is relevant and efficiently extract information. Furthermore, these tools need 

to be socialized, documented, and developed in a way that addresses the specific needs of 

different groups so that adoption of these new tools is seamless and easy to integrate with other 

existing tools. 

The GloFAS-RAPID method developed by Snow et al. (2016) was used as a guideline to 

develop a workflow that generates daily forecasts for Africa, North America, South America, 
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and South Asia in a cloud environment. In addition, other large-scale models were tested in 

combination with the RAPID method to create high-density vector-based results that help 

provide a solution to the data communication challenges faced by these models, while at the 

same time giving an alternative that demonstrate the flexibility of our method and the ability to 

adapt to other models that provide gridded hydrologic runoff. The primary challenges described 

above were also addressed using the resulting routed forecast. 

4.2 Global Streamflow Prediction 

The GloFAS-RAPID model was used to create a forecast prediction system covering 

Africa, the Americas, and South Asia. GloFAS-RAPID forecast are the result of routing GloFAS 

gridded runoff over a pre-computed stream network using the RAPID model. The runoff from 

the ERA-Interim historic simulation is also routed to provide context to the forecast in the form 

of return periods and awareness points if the flow from a specific river reach surpasses any of 

this return periods. The main components of GloFAS-RAPID are described below.  

4.2.1 The Global Flood Awareness System 

GloFAS is based on the ECMWF 51-member ensemble hydrologic forecast model that 

generates runoff on a global grid with a resolution of 16km2. The gridded runoff is routed over a 

stream network, but because of the relative coarse resolution, streamflow discharges are only 

available for large basins. A 52nd forecast is generated at a resolution of 8km2. GloFAS was first 

released in 2011 by ECMWF and the European Commission’s Joint Research Centre (JRC), and 

has been operational since July 2011.  The GloFAS system is composed of an integrated 

hydrometeorological forecasting chain and of a monitoring system that analyzes daily results and 

shows forecast flood events on a dedicated web platform (Alfieri et al., 2013). This model uses 
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real-time and historical observations in combination with a Data Assimilation System (DAS) and 

a Global Circulation Model (GCM). 

4.2.2 The ERA-Interim Historic Simulation 

The ERA-Interim data is the result of a global atmospheric reanalysis produced also by 

ECMWF. This data covers from January 1980 to December 2014 (35 years) for the entire globe. 

One of the advantages of using reanalysis is that the data provides a global view that 

encompasses many essential climate variables in a physically consistent framework, with only a 

short time delay (Dee et al., 2011). This type of data becomes invaluable in areas where no actual 

observed data is available. A runoff derivative of this atmospheric reanalysis was produced on a 

40km2 global grid using a land surface model simulation in HTESSEL. Return periods and 

awareness points are calculated from this dataset. 

4.2.3 River Application for Parallel Computation of Discharge 

RAPID is a numerical model that simulates the propagation of water flow waves in 

networks of rivers composed of tens to hundreds of thousands of river reaches (David, 

Famiglietti, Yang, Habets, & Maidment, 2016). The RAPID model is based on the Muskingum 

method, which has a time and a dimensionless parameter as its main variables. RAPID 

successfully created a way to efficiently adapt the Muskingum method to any river network. 

We created a river network and weight tables for Africa, North America, South America, 

and South Asia following the methodology presented by Snow et al. (2016) (Figure 4-2). A river 

network for a specific area is created using the HydroSHEDS dataset, which is a hydrographic 

dataset based on elevation data from the Shuttle Radar Topography Mission (SRTM) that 
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provides data at a global scale (Lehner, Verdin, & Jarvis, 2008). In addition to generating 

hydrography, this preprocessing also generates weight tables, and Muskingum/RAPID 

parameters for converting the gridded results from GloFAS to a forecast on every reach in the 

river network. 

 

 
Figure 4-2. River network and subbasin generation example 
for the South Asia region. 

 

4.3 Addressing Hydroinformatic Challenges 

Hydrologic modeling ultimately has the potential to save lives and reduce the cost of 

damages caused by water-related extreme events. However, there are many challenges that 

prevent hydrologic models from being used to their full potential. I have divided some of these 

main challenges into four main categories described below 
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4.3.1 Big Data 

The amounts of data downloaded and produced by the GloFAS-RAPID model require a 

cybeinfrastructure that allows for daily computations. This cyberinfrastructure includes 

downloading tasks to obtain the raw GloFAS gridded runoff that serves as the main input to 

RAPID. The average size of the GloFAS gridded runoff for the entire globe is 6.5GB. In addition, 

the 35 years of simulated data used to calculate return periods and alerts amount to a static 80GB. 

In the past, local servers have been used to develop proof of concept results for specific 

regions around the globe. However, such an approach would require not only a focus on the 

deployment and maintenance of a global streamflow prediction system, but also the 

administration and maintenance of a local cyberinfrastructure (see section 1.2.1). 

The Microsoft Azure Cloud Service was selected to develop a cloud-based 

cyberinfrastructure. A 64-core 256GB virtual machine manages the main task of generating 

forecasts continually. A smaller second virtual machine was deployed to manage geospatial data 

visualization. The main virtual machine includes tasks to download the GloFAS gridded runoff, 

create inflow files for RAPID, and route the runoff. In addition, it includes workflows to clear 

the raw inputs once they are used and to move results to the Windows virtual machine and other 

data visualization servers (Figure 4-3). The ArcGIS suite is used in combination with 

PostGreSQL to store forecast results both as tables and as spatial services. An additional 

workflow is also run on this machine to create a time-enabled streamflow animation service by 

combining the tabular and spatial datasets (see the end of section 4.3.2). The resulting services 

can then be consumed from any web application or portal such as ArcGIS Online or Tethys 

Platform. 
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Figure 4-3. Global streamflow prediction cyberinfrastructure 
on MS Azure Cloud. 

4.3.2 Data Communication 

A data communication scheme that facilitates the extraction of relevant information is 

necessary for a large-scale ensemble forecast due to the large amount of data generated. In the 

absence of such a scheme, users would be required to download all the data and then try to filter 

it to extract relevant information. This type of approach is not efficient, and can result in 

potentially useful information not been used due to the difficulty of extracting it. Following this 

premise, a web application approach was chosen over a desktop approach given the increasing 

availability of the Internet around the world, and the ability to access data easily through a 
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browser without requiring any other software. Relevant information can be visualized from its 

original location, and evaluated or download for further processing, thus facilitating and 

improving data consumption. Tethys Platform was used to create two web applications (see 

section 2.2.4). The Streamflow Prediction Tool (SPT), first developed by Snow et al. (2016), was 

created with the main goal to visualize GloFAS-RAPID results. This app has continued to 

improve in terms of front-end design and data visualization and access. The main addition to the 

SPT is the inclusion of a REST API to enable programmatic retrieval of data. 

A REST API is a web service that can be used to access data without the need of a web 

interface. REST APIs use the http protocol to request data where parameters are passed through a 

URL. This development facilitates integration of our forecast results with third-party web apps, 

or any other workflow; the automation of forecast retrievals using any programing language; and 

the development of derived applications that consume these results through the API and further 

process them as opposed to incurring the same computational costs of generating their own 

forecast results. This last use, allows for the development of lightweight applications that provide 

complex results by relying on APIs from other apps. 

The developed REST API for the SPT includes the following methods (see Appendix A 

for detailed descriptions of the methods and their arguments): 

• GetForecasts: a method to extract forecast statistics from the 51 different 

ensembles available from the GloFAS-RAPID results. The available statistics are 

mean, max, min, and standard deviation. A high resolution 52nd ensemble result is 

also available. 

• GetEnsemble: a method to extract individual ensembles. Each ensemble can be 

retrieved separately, or a range of ensemble can be selected. 
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• GetHistoricData: a method to extract the 35 years of historic simulated data for a 

specific river reach. 

• GetReturnPeriods: a method to extract the 2, 10, and 20 year return periods for a 

specific river reach calculated using the historic simulation. 

• GetAvailableDates: a method for extracting the available forecasted dates. 

• GetWarningPoints: a method that returns the center of a river reach along with 

information about the forecasted flow and if it is greater than any of the calculated 

return periods for that reach. 

The GloFAS-RAPID results can be provided as a service through the use of the methods 

available in the API. 

The SPT tool is a generic tool that provides visualization for different regions that can be 

selected by the user. However, additional regions are not necessary or relevant in an operational 

environment targeted for a specific region or country. A second web application called the 

HydroViewer was developed to solve this issue by providing a customizable interface and 

presenting results only for a specific region or country. 

The HydroViewer app is a lightweight web application. It was designed to visualize 

streamflow forecasts for specific regions using not only GloFAS-RAPID, but also different 

model alternatives, which can be added to the app in a relatively easy way. So far the app 

includes the aforementioned GloFAS-RAPID model, the South Asia Land Assimilation System 

(SALDAS), and the High Intensity Weather Assessment Toolkit (HIWAT) model for monitoring 

intense thunderstorms. This app relies on the use of the SPT REST API to retrieve and visualize 

water data and has the goal of providing a country, region, or watershed management authority 
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the ability to have their own customized application that draws on the global streamflow 

prediction system results. The HydroViewer app was also designed to allow easy customization 

of functionality according to the needs of the stakeholders and decision-makers using it. It allows 

users to rebrand the interface of the web app and integrate it into their system, an idea that is 

important for the adoption of a global system (see section 4.3.3). 

 

 

 Figure 4-4. HydroViewer app design. 
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An improved way to display results visually has also been developed. A time-enabled 

geospatial web service has been created using ArcGIS technology. This service presents a 

dynamic river hydrography at different scale levels with a symbology based on predicted 

forecast volume and color-coded based on return period exceedance (Figure 4-5). This 

represents a significant improvement from the time-static service used in the SPT and the color-

coded triangles used to identify reaches exceeding a specific return period. 

Figure 4-5. Example of scale levels and sub regions used to 
dissolve the South Asia Region. Other parameters used in the 
dissolving process are time, return period, and flow magnitude. 

The streamflow animation workflow consists of a number of scripts created to calculate 

forecast statistics and convert the results from netCDF files to the simpler CSV format; dissolve 

spatial features based on forecast values such as stream order, region, and flow magnitude, and a 

Server Object Interceptor (SOI) add-on to redirect geospatial queries to the undissolved bottom-

level stream feature that contains the complete set of results. The forecast tabular results from the 
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CSV file are combined with the geospatial features using a geospatially-enabled enterprise 

database, where the dissolving steps are performed daily as new forecasts become available 

(Figure 4-6). The resulting service is hosted using an ArcGIS Server where the SOI functionality 

is enabled to improve display and forecast access speed 

 

Figure 4-6. Streamflow animation main workflow. 

4.3.3 Exposure and Adoption 

A recurrent issue faced with hydrologic models is finding ways in which results can be 

useful and models can transition into operational systems that benefit stakeholders. This is 

mainly due to the basic science approach traditionally taken regarding hydrologic modeling, 

where the main goal is to better understand hydrologic processes and improve model 

performance. While this is an essential part of hydrologic modeling and the main drive to 

improve our models, there is also an applied science approach that has the potential to help 

communities facing extreme events. 
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Some of the other practical challenges faced by hydrologic predictions directly affect the 

degree to which modeled results can be adopted by local communities. For example, elements of 

the data communication challenge such as data accessibility and compatibility are a big factor in 

determining the ease with which results can be adopted or integrated into existing systems. 

The benefits of adopting a forecasting system to aid in preparedness steps before extreme 

events have been discussed by many (Carsell, Pingel, & Ford, 2004; Godschalk et al., 2009; 

Pappenberger et al., 2015). On the other hand, the lack of actionable hydrological information 

worldwide has been identified by many international organizations and national governments 

(Goodall, Horsburgh, Whiteaker, Maidment, & Zaslavsky, 2008; Hilderbrand & Lead, 2014). 

A successful global streamflow prediction systems needs to be backed by various 

organization that can provide the necessary exposure needed for local communities to become 

interested in the system. In addition, the system should be flexible enough to meet the different 

needs at the local level with alternatives in the way results are consumed and can be integrated. 

Finally, the model needs to perform well, and include mechanisms to improve performance in 

areas where it fails to do so, be it by data validation/calibration techniques or by assimilating 

local observed data. 

4.3.4 Validation of a Global Streamflow Prediction System 

A question that is commonly asked before a streamflow prediction system is adopted at 

any level is “how accurate is it?” A global streamflow prediction system presents a unique 

challenge regarding model validation. The geospatial extent of the results makes it nearly 

impossible to calibrate the model using traditional methods. For example, the total number of 

streams within our system is just over 200000 reaches. 
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A number of validation tests have been performed to: 

1. Assert that our high-density routed forecasts yield, in essence, is the same result as the 

GloFAS and ERA Interim result at the same locations where both systems can be 

evaluated. 

2. The choice of a given resolution to create the global network at does not change the 

results at a common watershed outlet point. 

3. Model results are close to observed data at different locations around the world. 

Data validation is essential for determining the value and limitations of the data and in 

determining systematic biases that could be accounted for even while waiting for improvements 

to model formulations. Jackson (2018) compiled a number of commonly used error metrics that 

can be used to compare hydrologic modeled data to observed data. Some of these metrics include 

the Root Mean Square Error (RMSE) and derivatives, Coefficient of Determination, Coefficient 

of Correlation, Anomaly Correlation Coefficient, Nash-Sutcliffe Efficiency (NSE), and the 

Spectral Angle. Most of these error metrics have been compiled in a Python package called 

HydroStats (https://github.com/BYU-Hydroinformatics/Hydrostats). 

Using HydroStats, we compared our modeled results to observed data from several 

locations where we could obtain local observations. We describe the general results and process 

using examples from Colombia, and Nepal. We analyzed eight stations for the former, and 12 

stations for the latter (Figure 4-7 and Figure 4-8).  
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In our analysis, we used a number of different metrics. We used the anomaly correlation 

coefficient, the root mean square error, the interquartile range normalized root mean square error, 

the Nash-Sutcliffe Efficiency metric, the Pearson correlation coefficient, the Spearman 

correlation coefficient, the spectral angle metric, the improved Kling-Gupta efficiency, and the 

refined index of agreement. We chose to use this suite of metrics to give a more complete picture 

of how well the simulated data correlates to the observed data (Krause, Boyle, & Bäse, 2005). 

I performed a comparison between our high-density routed results with the gridded result 

from GloFAS at selected locations. Data was collected from six GloFAS locations found in 

Nepal including Chatara, Chepang, Chisapani, Devghat, Kusum, and Parigaun. Our assumption 

is that if our result had similar trends and values to those of the native GloFAS then it meant that 

our RAPID processing did not introduce significant errors by converting the gridded GloFAS 

results to a higher density set of basins and routing through the river network. In addition, we 

also assumed that the results of this comparison could be applied to other areas outside of the 

locations used for the comparison. Data was collected every day for 9 weeks and summarized 

weekly. We used the mean flow of both datasets to perform the comparison as the best 

representation from all the ensembles.  

I routed the ERA-Interim historic simulation using RAPID at three different resolutions to 

determine the effects of varying resolutions on flow at a given location. Five watersheds in the 

United States where used: the Meramec River watershed in Missouri, the East Delaware River 

watershed in New York, the Alsea River watershed in Oregon, the White River watershed in 

Arizona, and the North Fork Clearwater River watershed in Idaho. These watersheds were 

selected because of their unimpaired flows and relative unaltered state. 

 



 68 

 

Figure 4-7. Station locations in Colombia. 

 

 

Figure 4-8. Station locations in Nepal. 
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4.4 Results 

The computational resources necessary to produce a high-density global streamflow 

prediction forecast represents a major challenge. A cloud cyberinfrastructure has been created 

using the MS Azure cloud platform. Forecasts using the GloFAS-RAPID model are generated 

daily for Africa, North America, South America, and South Asia. 

The new Streamflow Prediction Tool provides visualization of our GloFAS-RAPID results 

as well as data retrieval in CSV and WaterML formats (Figure 4-9). Previous forecast results are 

available in the app for one week, after which they are removed and archived in a dedicated 

server. Forecasts for a specific reach can be accessed by selecting the desired reach, which 

performs the appropriate data mining of the large datasets and delivers the single result of the 

selected stream. A pop-up window displays the hydrograph for that reach, which includes 

common interactions like zoom in our out, and data download as an image of CSV file. The 

hydrograph identifies the two, ten, and twenty year return periods to provide context of when a 

given forecast might be extreme relative to past flows. The 51-member ensemble forecast for the 

reach is displayed using statistics that show the mean, min, max, and standard deviation. A 

percent exceedance table also displays the probability of a specific flow value surpassing a return 

period based on the forecast (Figure 4-10). Other information available for each reach, are the 

35-year historical simulation from the ERA Interim, a flow duration curve and seasonal averages 

derived from the historical simulation. Both the forecast and simulated historical data can be 

downloaded from the interface (Figure 4-12). 



 70 

Figure 4-9. Streamflow Prediction Tool Interface. 

Figure 4-10. Streamflow Prediction Tool hydrograph and 
percent table. 
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The SPT REST API includes methods to programmatically retrieve forecast statistics such 

as mean, min, and max, as well as individual forecast ensembles. It also provides methods to 

retrieve the return periods, historic simulation, and warning levels for a specific river reach. 

Figure 4-11 shows an example of the REST API response in WaterML format. 

 

Figure 4-11. Example of an API response as seen from a web browser. 
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The HydroViewer app is a lightweight web application that allows users to display only 

relevant data and customize the web app according to stakeholder needs. This app makes use of 

web services to display results as opposed to replicating the hardware, software, and modeling 

expertise to generate their own hydrological forecasts. The app uses the SPT REST API to 

display forecast results and geospatial web services to display hydrographic data. The interface 

of the app can be customized to display the colors and logo of the organization it is deployed for, 

thus branding it as their own and lending confidence to those that use it. In addition, the 

HydroViewer app was designed with the principle of visualizing hydrologic results from 

different models, not only the GloFAS-RAPID model.  

Additional models can be added to the app in a relatively easy way as long as the results of 

the model are provided using a web service. Models such as the South Asia Land Assimilation 

System (SALDAS), and the High Intensity Weather Assessment Toolkit (HIWAT) model for 

monitoring intense thunderstorms have been already added to the app. 

Customizations for different organization also include the addition of hydrographs 

displaying observed data, data comparison displays, or the inclusion of other important 

geospatial data such as districts or country boundaries. 

Instances of the HydroViewer have been deployed for the following countries: Argentina, 

Bangladesh, Brazil, Colombia, La Hispaniola (The Dominican Republic, and Haiti), Nepal, Peru, 

and Tanzania. 
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Figure 4-12. Streamflow Prediction Tool addition tabs displaying historic 
simulation, flow duration curve, seasonal averages, and download buttons. 
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Figure 4-13. HydroViewer Colombia displaying observed data customization. 

 

The developed streamflow animation service successfully addresses one of the main 

interpretation issues of the SPT. The SPT displays warning levels based on return periods, and 

using color-coded triangles at the center of the river reach. However, because the geospatial 

service is not time enabled these triangles are displayed all at the same time. For example, if the 

forecasted flow exceeds the two-year return period on the second day of the forecast and then 

exceeds the twenty-year return period on the sixth day of the forecast, both warning levels are 

displayed as overlapping triangles color-coded yellow and purple to identify the two-year and 

twenty-year return periods, respectively.  
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Figure 4-14. HydroViewer La Hispaniola and Nepal displaying customizations. 
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Figure 4-15. HydroViewer Nepal displaying SALDAS hydrograph. 

 

It is the nature of forecasts to better predict the immediate future; therefore the warning 

level on the second day would be more likely than the one on the sixth day. However, this 

warning would be overlapped. Similarly, by displaying all warning levels at the same time, 

without considering time or space, the visual result usually gives a false sense that an extreme 

event may be imminent at the area and quite certain as opposed to ten days out with much greater 

uncertainty. Figure 4-16 shows a comparison between the two visualization methods. The SPT 

shows all the warning levels at the same time and at all zoom levels, including those for minor 

streams, while the new streamflow animation method displays warning levels only at a specific 

time and zoom level and it is much easier to distinguish whether the threat is for a minor 

tributary or the main stem of a river. 
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While the streamflow animation service is hosted using the proprietary ArcGIS Server, it 

follows OGC standards, allowing the service to be accessed by any system. The procedure used 

to display streams at different zoom levels based on stream order together with the warning level 

display symbology on the streams themselves as opposed to triangles and the Server Object 

Interceptor (SOI) to always query the bottom layer independently of the zoom level drastically 

improves the display time and responsiveness of the streamflow animation service.  

 

 
Figure 4-16. Streamflow visualization comparison between the SPT and the 
new time-enabled streamflow animation. 
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The total number of stream features displayed for all the regions comes to about 200000. 

Considering that these features are time-enabled and change their symbology display depending 

on a specific forecast prediction they, and that there are 85 time steps in the forecast, the amount 

of unique features displayed by this service comes to about 17000000 features. All these features 

are loaded on a map in a matter of seconds thanks to the aforementioned techniques used to 

improve the display. 

Some of the different efforts to increase the exposure and the adoption of the GloFAS-

RAPID model include a focus on the development of decision support tools, and collaborations 

with different organizations and countries around the globe. Hydrology is a foundational science 

that affects many other earth sciences and disciplines, as such hydrologic data can be 

incorporated into other disciplines to help provide a more informed answer to some of the main 

problems we faced as a society. The HydroViewer app is an example of a web application that 

can be used to help inform decision makers. However, thanks to the service-oriented approach in 

which the GloFAS-RAPID results are presented, it is relatively easy to develop additional web 

applications to address specific problems. Some examples include a flood mapping app and 

reservoir management app. These apps can consume the GloFAS-RAPID results through its 

REST API and use the resulting forecast as part of additional processes that are important for the 

given location or stakeholder. Figure 4-17 shows a flood mapping tool developed for the 

Dominican Republic that uses the GloFAS-RAPID API to generate a dynamic flood map 

specific to the predicted forecast. 
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Figure 4-17. Flood Mapping Tool for Dominican Republic. 

 

Different instances of web applications that make use of the GloFAS-RAPID model results 

through its API have been developed for many countries around the world. Some of these 

countries include Argentina, Bangladesh, Brazil, Colombia, Nepal, Peru, Tanzania, and the 

Dominican Republic. The development of these apps was coordinated through collaboration with 

local agencies and the NASA SERVIR Program, whose primary motivation is to help provide 

environmental decision-making tools that are adopted and fully functioning by stakeholders with 

the responsibility for water resources and emergency management. 

In addition to collaborations with SERVIR, this global streamflow prediction system has 

been one of the main projects supported by the Group on Earth Observations Water 

Sustainability Initiative (GEOGLOWS). These organizations help provide the necessary 

exposure for this system to be useful. Multiple trainings and capacity building efforts have taken 

place thanks to the support of these agencies. Collaboration with local agencies also enabled 
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validation efforts by providing access to local observed data. We compared our historic 

simulation results to observed data from 20 different locations in Nepal and Colombia. Figure 

4-18 shows that the routed historic simulation successfully follows the same pattern as the 

observed data and captures most events with a tendency to under-predict. 

 

 

Figure 4-18. Simulated vs Observed data for different locations in Nepal. 
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We also compared the daily average of our historic simulation for those of the observed 

data at the selected locations. Figure 4-19 shows that the historic simulation also captures 

seasonal averages. 

 

 

Figure 4-19. Simulated vs observed daily averages for different locations in Colombia. 

 

We performed an analysis to determine if our GloFAS-RAPID routed results were similar 

to the coarser GloFAS results. Data was collected for nine weeks during the summer of 2017 and 

summarized weekly. 
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 Figure 4-20. GloFAS-RAPID vs GloFAS forecasts. 
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 Figure 4-20 shows that GloFAS-RAPID provides a very similar result to the original 

GloFAS and follows trends with very similar shapes. This information demonstrates that even 

though GloFAS-RAPID is routing results over smaller watersheds, results from the same 

locations are still very similar in volume, with the main differences being the initialization 

methods used with each model, and the differences in the terrain and hydrography used for the 

routing. 

Finally, we performed an analysis to determine if our selected watershed size for routing 

results had any effect or introduced any variability on forecasted results. This was done by 

comparing forecasted results at the mouth of a watershed using three different spatial 

decompositions of the watershed upstream. Figure 4-21 shows an example of how the 

watersheds were subdivided. 

Figure 4-21. Varying resolutions used for the East Delaware River. 
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Figure 4-22. East Delaware River comparison between different resolutions. 
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As expected, the results from varying resolutions at the mouth of all the tested watersheds 

did not yield any significant differences in the results. Figure 4-22 shows three hydrographs 

comparing different resolutions. These results are consistent with the fact that the RAPID 

preprocessing methodology assigns a percentage of the total runoff volume to each sub-basin. 

The sum of these volumes at the mouth of a watershed should always be about the same. 

Aside from initial validation, data validation for a large-scale forecast prediction system at 

specific locations is a complicated task. This is in part due to the extent covered by the model. 

Local involvement is necessary to validate results and to provide feedback about the model. The 

collaboration efforts described above, as well as the development of validation tools, and 

accessibility tools such as REST APIs that facilitate forecasted and observed data analyses, 

provide a long term approach to validating and improving overall model results at the local level. 

4.5 Conclusion 

The development of a large-scale streamflow prediction system based on the ECMWF 

ensemble global runoff forecast presents a series of new challenges to run the system in an 

operational environment and to make the resulting streamflow information useful at the local 

scale. These hydroinformatic challenges were divided into four categories: big data, data 

communication, adoption, and validation. The GloFAS-RAPID model was used as the main 

model to address these challenges. GloFAS-RAPID provides a high-density result by routing 

runoff volume from GloFAS using the RAPID routing model. A solution for each of the main 

challenges was provided (Figure 4-23). A cloud cyberinfrastructure was developed to host model 

workflows, inputs, and outputs. Web applications were deployed to expose results over the 

Internet. Web services such as a REST API and geospatial services were created to provide 
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accessibility to our forecasted results. Additional web applications were created with the main 

goal to allow customizations and provide flexibility for local agencies to use results according to 

their specific needs. These projects were demonstrated in different countries around the world. 

Some of these countries include: Argentina, Bangladesh, Brazil, Colombia, Haiti, Peru, Nepal, 

Tanzania, the Dominican Republic, and the United States. We tested our results by comparing 

our forecasts to observed data. We determined that the GloFAS-RAPID results are in essence the 

same as the GloFAS results, but in a higher density. We also determined that the GloFAS-

RAPID result is usually close to observed values and is able to capture most extreme events. For 

areas where biases exist, we have developed a way to understand those biases and adjust, even 

while paving the way for a feedback mechanism that could lead to improved model results. 

Finally, we analyzed the effect of density variations on GloFAS-RAPID, and determined that 

sub-basin sizes do not significantly affect results at the mouth of the watershed. 

Figure 4-23. Hydroinformatic challenges and solutions. 
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5 SUMMARY AND FUTURE WORK 

5.1 Summary 

The development of a global streamflow prediction system that produces forecasts on a 

regular basis can answer many of the difficulties our society faces when dealing with water 

resources problems. Different initiatives exist with the goal to attain water security from a global 

perspective. The United Nation’s Sustainable Development Goals is a collection of 17 goals to 

help improve our society. More than half of these goals include a water component. In addition, 

the SENDAI Framework, named after the Japanese city where it was agreed, constitutes an 

agreement endorsed by the UN to reduce disaster risk, and subsequently the losses of lives, 

livelihoods, and environmental assets at the individual, community and country scale due to 

natural disasters. These two components: water for attaining our goals as a society, and an 

acceptable level water-related risk is what defines the term water security. 

An understanding of future water availability is necessary to attain water security. 

Hydrologic modeling can us help better predict, understand, and manage water resources by 

providing the necessary water intelligence required. To this end, the development of a large-scale 

high-resolution hydrologic model was deemed a grand challenge for the hydrologic community. 

Various models have surfaced during the past few years. However, these new models have also 

brought the realization that having a good hydrologic model does not make it automatically 

useful to stakeholders. 
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As part of my work with some of the more recognized large scale hydrologic models, 

including the US National Water Model, and GloFAS, I determined that there were additional 

challenges that needed to be overcome in order to create a successful operational global 

streamflow prediction system, namely big data, communication, adoption, and validation. 

A case study working with the US National Water Model (NWM) was used to focus on big 

data and communication challenges. I created a cyberinfrastructure to store streamflow forecast 

results for the continental US on a daily basis using a semi-cloud environment in cooperation 

with the Renaissance Computing Institute (RENCI). I also developed the NWM Viewer web 

application to allow users to interact with the NWM results. This app allows for data 

visualization, querying, and extraction. Metrics tests between October 2017 and October 2018 

revealed that the NWM Viewer app has been accessed more that 42,500 times to retrieve 

streamflow data. 

I then developed our own streamflow prediction system using the GloFAS-RAPID model 

covering Africa, North America, South America, and South Asia. A cloud cyberinfrastructure 

using the Microsoft Azure platform was used to answer big data issues such as the computational 

power, and large amounts of data required to run a model for these major regions. 

I helped improve the Streamflow Prediction Tool, a web application designed to visualize 

data from the GloFAS-RAPID model. I also created a REST API to improve programmatic data 

retrieval and the incorporation of our forecast results into third-party applications using a 

service-oriented approach. I also created a time-enabled geospatial service to display forecast 

results on each river reach within our covered regions.  
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To answer some of the adoption issues faced by hydrologic models, we worked in 

coordination with international agencies such as NASA, and NOAA; as well as local agencies 

around the world to provide training and customized solutions for end users. Some of the 

countries where we worked include Argentina, Bangladesh, Brazil, Colombia, Nepal, Peru, 

Tanzania, and the Dominican Republic. The HydroViewer web app was developed to facilitate 

the usage of forecasts results. The HydroViewer app is a lightweight web application designed to 

visualize streamflow forecasts for specific regions using not only the GloFAS-RAPID model, but 

also different model alternatives, which can be added to the app in a relatively easy way. 

Finally, we conducted different tests to validate our modeled results following a 

collaboration approach using the HydroStats analytical package to facilitate model validation 

using observed data from collaborators where the HydroViewer app was deployed. Figure 

4-23  (see section 4.5) shows our main answer to each one of the hydroinformatic challenges.

Overall, I have provided a methodology to operationalize a large-scale streamflow 

prediction system and provide meaningful results at the local level. This research has the 

potential to allow decision makers to focus on solving some of the most pressing water-related 

issues we face as a society by providing the cyberinfrastructure necessary to generate this type of 

water data, the tools necessary to access, consume, and manipulate data, the exposure and 

flexibility necessary to engage local communities, and validation and feedback mechanisms to 

instill confidence in its use and to improve results for specific areas. 

5.2 Future Work 

A global streamflow prediction system needs to cover the entire globe. One of the main 

improvements our GloFAS-RAPID streamflow prediction system needs is to set up other regions 
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currently missing. In addition, improvement to our initialization methods and Muskingum 

parameter selection are needed. Improved Digital Elevation Model (DEMs) would also help 

improve the overall quality and resolution of the model. Machine learning and other Artificial 

Intelligence (AI) can help provide an answer to some of these issues. Some work has already 

been done regarding this. For example, AI has already been used to help estimated Muskingum 

parameters (Bai, Wei, Yang, & Huang, 2018; Farzin et al., 2018).  

Countries like the United States usually possess a hydrography service with the country’s 

river network and a unique identifier for each river reach within it. The US National 

Hydrography Dataset (NHD) is an example of this and the US National Water Model uses it as 

the foundational stream network for generating forecasts. Developing countries do not always 

possess such a service. Moreover, an official global hydrography dataset that integrates the 

existing hydrography of every country does not exist. The current GloFAS-RAPID system 

arbitrarily assigns an identifier for every region. A global streamflow prediction service would 

benefit from the consistency that a global hydrography dataset service would offer. 

The developed REST API can be improved by adding functions to retrieve data based on a 

coordinate location as opposed to a river reach ID. In this way, users would not be required to 

know the specific ID for their river of interest. 

Adoption and validation challenges are part of a paradigm that is meant to continue. New 

technologies in forecast prediction and data visualization need to be incorporated and pertinent 

training needs to be provided. A feedback approach is necessary to help validate a model system 

covering such an extensive area. Ways to facilitate model validation such as the development of 

web applications or an API that allow for modeled and observed data comparisons would help 

further this ongoing validation challenge.
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APPENDIX A. STREAMFLOW PREDICTION TOOL REST API DOCUMENTATION 

A REST API is a web service or a set of methods that can be used to produce or access 

data without a web interface. REST APIs use the http protocol to request data. Parameters are 

passed through a URL using a predetermined organization. A REST API has been developed to 

provide access to the Streamflow Prediction Tool (SPT) forecasts without the need to access the 

web app interface. This type of service facilitates integration of the SPT with third party web 

apps, and the automation of forecast retrievals using programing languages like Python, or R. 

The available methods and a description of how to use them are shown below. 

GetForecast for Forecasts Statistics 

Parameter Description Example 

watershed_name The name of watershed or main area of interest. Nepal 

subbasin_name The name of the sub basin or sub area. Central 

reach_id The identifier for the stream reach. 5 

forecast_folder 
The date of the forecast (YYYYMMDD.HHHH). (Optional) 

(YYYMMDD.H) 

20170110.1200  

20170110.0 

most_recent  

stat_type The selected forecast statistic. (high_res, mean, mean 
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Parameter Description Example 

std_dev_range_upper, std_dev_range_lower, 

max, min). 

units Set to ‘english’ to get ft3/s. (Optional) english 

return_format Set to ‘csv’ to get csv file. (Optional) csv 

 

Example 

>>> import requests  

>>> request_params = dict(watershed_name='Nepal', subbasin_name='Central', reach_id=5, 
forecast_folder='most_recent', stat_type='mean')  

>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetForecast/', params=request_params, headers=request_headers)  

 

GetEnsemble (1 - 52) 

Parameter Description Example 

watershed_name The name of watershed or main area of interest. Nepal 

subbasin_name The name of the sub basin or sub area. Central 

reach_id The identifier for the stream reach. 5 

forecast_folder 
The date of the forecast (YYYYMMDD.HHHH). (Optional) 

(YYYMMDD.H) 

20170110.1200  

20170110.0 

most_recent 

ensemble The selected forecast ensemble(s). The value can be a Number: 52 
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Parameter Description Example 

number, a list, or a range. Accepted values go from 1 to 

Leave empty or ensemble=all for retrieving all. 

List: 1,3,6,9 

Range: 1-15 

units Set to ‘english’ to get ft3/s. (Optional) english 

Example  

>>> import requests  

>>> request_params = dict(watershed_name='Nepal', subbasin_name='Central', reach_id=5, 
forecast_folder='most_recent', ensemble='52')  

>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetEnsemble/', params=request_params, headers=request_headers)  

 

GetHistoricData (1980 - Present) 

Parameter Description Example 

watershed_name The name of watershed or main area of interest. Nepal 

subbasin_name The name of the sub basin or sub area. Central 

reach_id The identifier for the stream reach. 5 

units Set to ‘english’ to get ft3/s. (Optional) english 

return_format Set to ‘csv’ to get csv file. (Optional) csv 

Example 

>>> import requests  

>>> request_params = dict(watershed_name='Nepal', subbasin_name='Central', reach_id=5)  
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>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetHistoricData/', params=request_params, headers=request_headers)  

GetReturnPeriods (2, 10, and 20 year return with historical max) 

Parameter Description Example 

watershed_name The name of watershed or main area of interest. Nepal 

subbasin_name The name of the sub basin or sub area. Central 

reach_id The identifier for the stream reach. 5 

units Set to ‘english’ to get ft3/s. (Optional) english 

Example 

>>> import requests  

>>> request_params = dict(watershed_name='Nepal', subbasin_name='Central', 
return_period=2)  

>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetReturnPeriods/', params=request_params, headers=request_headers)  

GetAvailableDates 

Parameter Description Example 

watershed_name The name of watershed or main area of interest. Nepal 

subbasin_name The name of the sub basin or sub area. Central 

reach_id The identifier for the stream reach. 5 
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Example 

>>> import requests  

>>> request_params = dict(watershed_name='Nepal', subbasin_name='Central', reach_id=5)  

>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetAvailableDates/', params=request_params, headers=request_headers)  

 

GetWatersheds 
This method takes no parameters and returns a list of the available watersheds. 

Example 

>>> import requests  

>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetWatersheds/', headers=request_headers)  

GetWarningPoints 

Parameter Description Example 

watershed_name The name of watershed or main area of interest. Nepal 

subbasin_name The name of the sub basin or sub area. Central 

return_period The return period that the warning is based on. (2,10, or 20) 

forecast_folder The date of the forecast (YYYYMMDD.HHHH). (Optional) 20170110.1200 

Example 

>>> import requests  

>>> request_params = dict(watershed_name='Nepal', subbasin_name='Central', 
return_period=20, forecast_folder='20170802.0')  
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>>> request_headers = dict(Authorization='Token asdfqwer1234')  

>>> res = requests.get('[HOST Portal]/apps/streamflow-prediction-
tool/api/GetWarningPoints/', params=request_params, headers=request_headers) 
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APPENDIX B. US NATIONAL WATER MODEL REST API 

GetWaterML 

 
Supported 
Methods GET 

Returns A WaterML file of the specified forecast. 

Params 

Name Description Valid Values Required Default if 
omitted 

archive The archive (data 
source) of the forecast. 

Indicate the archive (data source) used for query; 
Accepted value: "rolling", "harvey" and "irma" No 

Default 
value: 
"rolling" 

config The configuration of 
the forecast. 

One and only one of the following strings: 
"short_range", "long_range", "medium_range", or 
"analysis_assim". 

Yes Cannot be 
ommitted. 

geom The geometry of the 
forecast. 

One and only one of the following strings: 
"channel_rt", "land", "reservoir" or "forcing". Yes. Cannot be 

ommitted. 

variable The variable of the 
forecast. 

One and only one of the following strings, 
depending on the specified configuration and 
geometry.  
analysis_assim + channel_rt: "streamflow" or 
"velocity".  
analysis_assim + reservoir: "inflow" or "outflow".  
analysis_assim + land: "SNOWH", "SNEQV", 
"FSNO", "ACCET", "SOILSAT_TOP", or 
"SNOWT_AVG".  
analysis_assim + forcing: "RAINRATE", 
"LWDOWN", "PSFC", "Q2D", "SWDOWN", 
"T2D", "U2D", "V2D".  
short_range + channel_rt: "streamflow" or 
"velocity".  
short_range + reservoir: "inflow" or "outflow".  
short_range + land: "SNOWH", "SNEQV", 
"FSNO", "ACCET", "SOILSAT_TOP", or 
"SNOWT_AVG".  
short_range + forcing: "RAINRATE", 

Yes. Cannot be 
ommitted. 
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"LWDOWN", "PSFC", "Q2D", "SWDOWN", 
"T2D", "U2D", "V2D".  
medium_range + channel_rt: "streamflow" or 
"velocity".  
medium_range + reservoir: "inflow" or "outflow".  
medium_range + land: "SNOWH", "SNEQV", 
"FSNO", "ACCET", "SOILSAT_TOP", 
"SNOWT_AVG", "UGDRNOFF", "ACCECAN", 
"SOIL_T", "SOIL_M", or "CANWAT".  
medium_range + forcing: "RAINRATE", 
"LWDOWN", "PSFC", "Q2D", "SWDOWN", 
"T2D", "U2D", "V2D".  
long_range + channel_rt: "streamflow".  
long_range + reservoir: "inflow" or "outflow".  
long_range + land: "SNEQV", "ACCET", 
"SOILSAT", "UGDRNOFF", "SFCRNOFF", 
"CANWAT".  
long_range + forcing: N/A (long_range has no 
forcing files.) 

COMID 

The identifier of the 
stream reach, reservoir, 
or grid cell for the 
forecast. 

A numeric string. e.g. "12345678". If 
geometry=land, enter the grid south_north index 
followed by a comma and then the grid west_east 
index. e.g. "1357,2468" 

Yes. Cannot be 
ommitted. 

lon Longitude A numeric string with a longitude coordinate in 
decimal degrees". No. Empty 

string. 

lat Latitude A numeric string with a latitude coordinate in 
decimal degrees". No. Empty 

string. 

startDate The beginning date of 
the forecast. A string of the form "YYYY-MM-DD" Yes. Cannot be 

ommitted. 

endDate 

Only applicable/valid 
if 
config=analysis_assim. 
The ending date of the 
analysis assimilation. 

A string of the form "YYYY-MM-DD" 
representing any date between "2016-06-09" and 
the current date. 

No. 

The endDate 
is the 
startDate 
plus one day. 

time 

Only applicable/valid 
if config=short_range 
or medium_range. 
The UTC time of day 
at which the forecast is 
initialized, represented 
by an hour from 00 to 
23. Time 00 
corresponds to 
12:00AM, and so forth 
up to time 23 for 
11:00PM. 

Numeric string from 00 to 23. e.g. "00"  
short_range: 00, 01, 02 ...23.  
medium_range: 00, 06, 12, 18. 

No. "00" 
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lag 

Only applicable/valid 
if config=long_range. 
The time lag of the 
long range ensemble 
forecast. 

The following strings: t00z, t06z, t12z. e.g. "t00z" No "t00z" 

member 

Only applicable/valid 
if config=long_range. 
Represents the desired 
ensemble member of 
the long range forecast. 

Numeric string between 1 and 4. e.g. "1". No "1" 

 


