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ABSTRACT 

Rotational Stiffness Models for Shallow Embedded 
Column-to-Footing Connections 

 
Ashley Lauren Sadler 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
 Shallow embedded steel column connections are widely used in steel buildings; however, 
there is insufficient research about this connection type to understand the actual rotational 
stiffness that the connection provides.  Shallow embedded steel columns are when a steel column 
is anchored to the foundation slab and then unreinforced concrete is poured around the base plate 
and the base of the column.  This thesis seeks to further quantify the rotational stiffness available 
in this type of connection due to the added concrete and improve an existing model in order to 
represent the rotational stiffness.   
 

Existing data from two series of experiments on shallow embedded columns were used to 
validate and improve an existing rotational stiffness model.  These two data sets were reduced in 
the same manner so that they could be compared to one another.  In addition, the rotational 
stiffness for each test column was determined so they could be evaluated against the outputs of 
the model. 
 
 The existing model was improved by evaluating each parameter in the model: the 
modulus of subgrade reaction, exposed column length, modulus of concrete for the blockout and 
the foundation slab, flange effective width, embedment depth, and effective column depth.  It 
was determined that the model was sensitive to the subgrade reaction, modulus of concrete, 
embedment depth and effective column depth.  The exposed length was not a highly sensitive 
parameter to the model.  Flange effective width was determined to not be needed, especially 
when the other parameters were altered. 
 
 In order to test the sensitivity of the total stiffness to the rotational stiffness, equations 
were developed using the stiffness method for several different moment frame configurations 
with partial fixity at the column base. It was seen that if the rotational stiffness was changed by 
100% then there could be seen a change in the total stiffness was only up to 20%. 
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1 INTRODUCTION 

 Overview of Steel Column-to-Footing Connections 

Steel is one of the most affordable and durable materials, which is why it is commonly 

used for framing multi-story buildings.  Concrete is also an efficient material and is typically 

used for the foundations of steel buildings.  One of the most common connections in construction 

is the connection of a steel column to a concrete footing.  Figure 1-1 shows how this connection 

is often accomplished, by leaving a square hole (blockout) in the floor slab, so that the steel 

column can be bolted directly to the footing under the slab.  After the column is installed the 

square hole (blockout) is filled in with concrete, hiding the bolts and base plate; no extra 

reinforcing steel is added in the blockout section.   

Figure 1-2 shows the configuration for another common steel column to concrete footing 

connection, an exposed column base plate.  It can be seen that the major difference between the 

two figures is the blockout.  The exposed base plate in Figure 1-2 does not have a concrete 

blockout around the column and the base plate. 

                    
                      (a)                                                                              (b) 

Figure 1-1: Blockout connection commonly used at the base of steel buildings: (a) detail; (b) 
picture of blockout just after column installation and prior to pouring of blockout concrete. 

Base Plate
Grout

Anchor Rod

Column

Concrete
Foundation

Slab on Grade

Blockout
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Figure 1-2: Exposed base plate connection commonly used at the base of steel buildings. 

 Motivation 

Engineers and researchers rely heavily on computer simulations to estimate how buildings 

will respond to earthquakes.   In order to have accurate computer models, engineers and 

researchers need to be able to put elements into a computer model to reasonably reflect the 

rotational stiffness at the bottom of the base columns.  Most studies assume the columns are 

“pinned” or “fixed” at the base.  This may be reasonable in some circumstances; overall, it may 

result in inaccurate building drifts or inaccurate moment demands on footings. 

Prior to 2014, experiments had not been performed to determine the rotational stiffness of 

the connection shown in Figure 1-1, and engineers and researchers did not know how to properly 

simulate them.  In response to this need, the American Institute of Steel Construction (AISC) 

sponsored a multi-year project at Brigham Young University (BYU) and University of 

California, Davis (UC Davis) to develop recommendations.   

During the recent years, Barnwell (2015) and Hanks (2016) completed separate series of 

experiments on column-to-footing connections similar to the one shown in Figure 1-1  Around 

the same time, two series of large-scale experiments were conducted at UC Davis (Grilli and 

Kanvinde 2015).  Further research was done by Tyron (2016) who created a model to predict the 
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rotational stiffness of such connections; he used values from Barnwell’s tests to calibrate his 

model.   

 Scope of Research 

The purpose of this research was to evaluate the recently generated experimental data 

collectively, and to develop a rotational stiffness model that engineers and researchers can use in 

computer models to simulate the response of buildings from earthquakes.  Tryon’s original 

model was refined based on observations from the experimental data. 

The research that was accomplished can be separated into three sections.  First, all recent 

experimental data was evaluated; second, the existing mathematical model was refined to better 

represent all of the data; and third, several moment frame configurations were evaluated with a 

closed form solution of the total stiffness to determine the sensitivity of the rotational stiffness. 

 Outline 

This chapter has included a brief introduction to the research that was conducted and to 

introduce the motivation for additional research.  Chapter 2 reviews the current literature on 

column-to-footing connections.  Chapter 3 describes the method used for data reduction of 

Barnwell’s and Hanks’ data sets.  The description of the modification of Tryon’s model is 

discussed in Chapter 4.  The system level sensitivity of different configurations and Tryon’s 

modified model is discussed in Chapter 5.  Finally, conclusions are presented in Chapter 6.
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2 LITERATURE REVIEW 

 Exposed Column Base Plate Connections 

Exposed base plate connections were introduced in Section 1.1 (Figure 1-1).  A great deal 

of research has been performed on these connections and the models are fairly accurate in 

predicting the rotational stiffness.  Even though these models are not perfect for embedded 

columns, they provide a good starting point for the interaction of the base plate and concrete 

foundation. 

2.1.1 DeWolf and Sarisley (1980) 

DeWolf and Sarisley (1980), investigated the strength of exposed base plate connections.  

They used two methods, the working stress and the ultimate strength methods, to determine the 

strength of the connections.  Figure 2-1 shows the compression block for both methods.  They 

conducted 16 tests to compare the models’ results, Table 2-1 shows the test matrix.  The 16 

specimens were tested by inducing a moment on the column from an axial load with an 

eccentricity.  The main differences between the two models were the compression block.  The 

working stress method had a triangular distributed bearing stress and the ultimate strength 

method was modeled as a rectangular stress block.  The average factor of safety was 2.16 for the 

working stress method and 1.11 for the ultimate strength method.   
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Table 2-1: Specimen Test Matrix and Results (DeWolf and Sarisley 1980) 

 
 

 

 

(a) Working stress Method                       b) Ultimate Strength Method 

Figure 2-1: Base Plate Strength Methods (DeWolf and Sarisley 1980). 

 



6 

The authors reached three conclusions from their experiments: 

1. When the diameter of the anchor bolts was large in comparison to the base plate 

dimensions, then the distance from the anchor bolt to the bearing zone of the plate 

on the concrete was small.  The smaller bearing area, did not allow the anchor bolt 

to reach capacity, and therefore, some of the bolts were ineffective. 

2. When the concrete area was greater than the base plate area, then a confining effect 

needed to be accounted for in the design.  

3. Increased plate thickness decreased capacity at a point, due to the plate acting like a 

rigid plate and would cause premature failure.  This was due to large bearing 

stresses from the plate not being as flexible.   

The authors recommended that the ultimate strength method be used for design, because it more 

accurately predicted the connection behavior. 

2.1.2 Kanvinde and Deierlein (2011) 

Kanvinde and Deierlein (2011), conducted experiments on 20 exposed base plate 

connections.  These tests were meant to be compared to the AISC Design Guide (Fisher and 

Kloiber 2006), which is the current standard for designing exposed column base plate 

connections.  They also were concerned with the behavior of the columns for three different 

scenarios which were tested to failure: an applied axial load with an eccentricity to induce a 

moment, an axial load and a shear force applied at the base of the column, and an axial and 

moment loads on columns designed to isolate the column to base plate weld.  The first two 

mechanisms had seven specimens in the test series and the final mechanism had 6 specimens.  

All specimens were constructed to two-third scale and then tested to failure. 
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The authors reached the following conclusions for each mechanism: 

1. Moment Capacity 

i. All tests showed “excellent deformation capacity” with little strength 

degradation until after 7% - 10% drift.  This suggested that the current 

design assumption, i.e., the base plate remaining elastic, may be rather 

conservative and significant deformation and energy dissipation capacity 

were available in the base plate.  

ii.  The AISC Design Guide gave highly conservative predictions.  It was 

observed that the experimental data showed connection strengths that were 

80% greater than the predicted values on average. 

2. Shear Capacity 

i. A coefficient of friction value of 0.45 was recommended to be used 

between the grout and steel.  This was slightly higher than the value 

recommended in AISC Design Guide of 0.40. 

ii. The AISC Design Guide was accurate for shear loads resisted by anchor 

bolts.  The bolts should be checked for the interaction between flexural 

axial forces and direct axial loads. 

iii. Concrete Capacity Design (CCD) was recommended for use in design 

when a shear key or shear lug is used, since the current method of 45° 

cone method was not conservative. 
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3. Weld Capacity 

i. The Complete Joint Penetration (CJP) and Partial Joint Penetration (PJP) 

were both adequate for use in seismic design, which could withstand up to 

3% to 5% drift. 

ii. PJP performed better than the CJP.  This was attributed to the stress 

concentrations that form around the access hole for the CJP groove weld. 

2.1.3 Kanvinde et al. (2011) 

Kanvinde et al. (2011) focused on the rotational stiffness of exposed column base 

connections, due to the fact that this element is often ignored in the design process.  They 

developed an analytical model which was validated with nine experimental specimens.  

Their method to estimate the design stiffness of base connections had three steps: 

1. Determine the design strength and internal force distribution 

2. Determine the deformation under high eccentricity 

3. Calculate the connection rotation for each individual component 

The components that contributed to the total deformation were the stretching of anchor rods that 

were in tension, the bending of the plate on the tension and compression sides, and the 

deformation of the concrete under the compression side of the plate; Figure 2-2 depicts these 

different deformations.   
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Figure 2-2: Model of various deformation (Kanvinde et al. 2011). 

 

The authors stated that the design of the connections cannot be classified as pinned or 

fixed, for it was somewhere in the middle.  The classification of the base fixity was important for 

the design, for if the column was designed as fixed, then increased story drift could occur in the 

first story.  Additionally, if the connection was designed as pinned then it would be possible for a 

more conservative response. Therefore, for safety and economy reasons it is important to 

understand the true fixity of the connection. 

The authors warned that there were a few inherent inaccuracies in the method that was 

included from the AISC Design Guide (Fisher and Kloiber 2006).  One of the main assumption 

was the shape of the stress block.  Both of these models assume that the stress block was 

rectangular; however, this was not a perfect representation of the behavior.  

2.1.4 Kanvinde et al. (2013) 

Kanvinde et al. (2013) investigated the connection response of exposed base plate 

connections by adjusting the base plate thickness.  They noted that previous models had 

simplified assumptions in order to perform tests, since it was extremely difficult to test 

individual components due to the highly interactive nature of all the components.  Therefore, the 
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authors performed finite element analysis in order to isolate single components.   They then 

validated the model with physical experiments. 

From these comparisons, the authors noted that the current method for determining the 

rotational stiffness may be adequate; however, a perfect prediction would be too complex for 

normal design situations.  It was additionally noted that the thickness of the base plate should be 

a key factor in the design formulas since it was seen that a thicker base plate increased the 

connection stiffness capacity.   

The important finding from their finite element analysis was that the rectangular 

compression block may be non-conservative for thicker plates since thicker plates tend to have 

higher stress concentrations at the toe of the compression side of the base plate.   

 Embedded Column Connections 

Embedded column connections were introduced in Section 1.1 (Figure 1-2) and are formed 

by pouring concrete around the base of the column after the foundation and main slab have been 

poured and the steel columns has been anchored into place.  These connections are commonly 

used due to the ease of construction as well as it being more aesthetically pleasing.  However, 

there is limited research on the behavior of this type of connection.  

2.2.1 Cui et al. (2009) 

Cui et al. (2009) conducted experiments to investigate the effect of earthquake loads on 

shallow-embedded column base connections, specifically the effect on the slab.  Their tests  

included eight two-third scale HSS columns.  They investigated the effects of slab thickness, 

shape, and reinforcement on elastic stiffness, strength, and energy dissipation capacity of the 

embedded column.   
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The test specimens were all constructed from HSS 200 mm tubes.  Seven columns had 9 

mm tube thickness and one column had 12 mm tube thickness.  The base plates were all 25-mm 

thick and 300 mm square.  Each base plate had twelve anchor bolts spread evenly around the 

base plate and the foundation was designed to be stiff enough that the anchor bolts governed the 

strength.  One of the specimens was left with an exposed base plate to act as the control.  The 

other seven had varying amounts of reinforcement and slab shapes.  The columns were all loaded 

axially with a 511 kN load. 

The authors reasoned that the contribution of the concrete slab to resist the applied moment 

was provided by two mechanisms: 1) The direct bearing of the slab on the column in 

compression, and 2) Punching resistance of the slab from the rotation of the base plate. 

The authors reached six conclusions from their experiments.  

1. The elastic stiffness, maximum strength, and dissipated energy saw improvement 

with the inclusion of the floor slab.   

2. The thickness and shape of the floor slab caused significant changes in the 

maximum strength.  The inclusion of horizontal rebar also greatly improved the 

strength.   

3. Horizontal rebar increased the deformation capacity.  

4. The main failure mode was punching shear in the column slab. This was true until 

the column base connection strength was increased to be larger than the plastic 

moment of the column, then the column failed in local buckling.   

5. A strengthened slab and elevated foundation slab shape should be used.   
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6. The plastic theory could reasonably estimate the maximum strength of the column 

regardless of thickness and geometric shape of the floor slab, with less than 20% 

error. 

2.2.2 Grilli and Kanvinde (2015) 

Grilli and Kanvinde (2015) investigated the performance of embedded column base 

connections under seismic loads.  They tested five full scale test specimens with the 

consideration of three main variables: embedment depth, column size, and axial load, Table 2-2 

summarizes the tests conducted. The specimens were constructed by a welding a base plate to a 

wide flange shape. They also welded a stiffener on the column where the blockout slab would 

end.  Their purpose was for the base plate to be used in uplift resistance and the stiffener for 

compression resistance.   

Table 2-2: Specimen Test Matrix (Grilli and Kanvinde 2015) 
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These experiments demonstrated that the strength and stiffness of the embedded column 

were greater than that of the exposed base connection and that the stiffness increased as the 

embedment depth increased.  Another observation was that increased connection strength 

occurred with increased flange width.  In the experiments, there was a correlation between 

compressive axial load and strength compared with that of no applied load; however, no 

correlation was seen for a tensile load. Finally, strength and stiffness were seen to decrease as the 

concrete cracked. 

The authors also proposed a strength model calibrated from their experimental data.  The 

model was based on three mechanisms. The first was horizontal bearing stress that acts on the 

column flanges. The second was the vertical bearing stresses that act on the embedded base plate 

at the bottom of the column, and the third was panel shear.  The authors suggested that their 

model was applicable for deeper columns; however, for shallow embedment, a model like 

Barnwell’s (2015) or any other model that was better suited.  A final note by the authors was 

about connection fixity.  They stated that although their column connections were designed as if 

they were fixed, there was still some flexibility in the connection, which should be accounted for 

during design. 

2.2.3 Barnwell (2015) 

Figure 2-3 showed Barnwell’s test setup.  He investigated shallow-embedded columns 

with blockout concrete.  The test matrix included twelve two-third scale specimens in order to 

investigate the effect of the blockout concrete on the rotational stiffness and overall strength of 

the connection.  The original eight specimens are shown in Table 2-3.  Four additional tests were 

conducted on four of the eight original specimens as summarized in Table 2-4.  All specimens 

were tested to failure and had four anchor bolts located in the corners of the base plate.   
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Figure 2-3: Barnwell's test setup used for first and second testing (Barnwell 2015). 

 

Table 2-3: Original Specimen Test Matrix (Barnwell 2015) 

Specimen Embedment [in] Orientation Shape 

A1 8 Strong W8 × 35 

A2 8 Strong W8 × 48 

A3 8 Weak W8 × 35 

A4 8 Weak W8 × 48 

B1 16 Strong W8 × 35 

B2 16 Strong W8 × 48 

B3 16 Weak W8 × 35 

B4 16 Weak W8 × 48 
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Table 2-4: Retested Specimen Test Matrix (Barnwell 2015) 

Specimen Embedment [in] Orientation Shape Braced Slab 

CA2 8 Strong W8 × 48 Y 

CA2 8 Strong W8 × 48 N 

CB2 16 Strong W8 × 48 Y 

CB2 16 Strong W8 × 48 N 

 

Barnwell reached the following conclusions: 

1. Strength from the specimens was higher than the predicted values from AISC 

Design Guide, and rotational stiffness increased with the depth of the blockout 

concrete.   

2. The compression resultant was not located underneath the baseplate.  This is 

unlike what was assumed with an exposed base plate column connection.  The 

resultant compression block was instead found to be located a distance farther 

away from the edge of the base plate. 

3. The compression block resultant could be determined using a 45-degree line from 

the compression face of the column to the base slab/ blockout interface.   

2.2.4 Tryon (2016) 

Tryon (2016) developed a numerical model to predict the stiffness of shallowly embedded 

column-to-footing connections.  The model had three parts: the exposed column, embedded 

portion of the column, and the base plate as shown in Figure 2-4.  The first part, the exposed 

section of the column, was analyzed using classic Bernoulli beam theory.  The second part, was 

the portion of the column that was encased in concrete, was analyzed using the closed-form 
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solutions developed by Hetényi for beams of infinite length (Hetényi 1971).  The final part, the 

base plate, was modeled as a rotational spring. 

The main parameters in Tryon’s continuum model were the embedment depth, exposed 

length of the column, modulus of subgrade reaction, flange effective width (Tryon called this 

parameter flange duality).  In order for the governing equations of Hetényi’s beams of infinite 

length to be relevant to shallow-embedded columns, the separate parameters were calibrated.  

The data from Barnwell’s experiment was used for calibration and testing of the model.   

The main equations in Tryon’s model for the rotational stiffness of the base plate are 

Equation (2-1) and Equation (2-2).   Equation (2-1) represents the rotational stiffness of the base 

plate when the column is oriented in the strong axis.  The rotational stiffness for the weak axis 

orientation is represented in Equation (2-2).   

 

 

 

 

Figure 2-4: Model for embedded column connection (Tryon, 2016). 
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One parameter of interest was the flange effective width for the strong axis orientation.   

This factor assumed that both flanges bearing against the concrete blockout acted in resisting.  

Figure 2-5 shows the depiction of the dual flanges resisting against the concrete blockout.  Tryon 

accounted for the two flanges with the term �2𝑏𝑏𝑓𝑓 − 𝑡𝑡𝑤𝑤�  in Equation (2-1).  He incorporated the 

flange effective width into the equations for base plates rotational stiffness. The flange effective 

width is not included in Equation (2-2) because the weak axis orientation only has the depth of 

the column resisting against the concrete blockout.   

 

Tryon also accounted for the differing strength in the blockout concrete and the base slab 

of concrete since these have an effect on the stiffness. This parameter is given in Equation (2-3), 

which is the average of the two concrete strengths to the blockout modulus.  However, the ratio 

 

Figure 2-5: Tryon’s model for effective flange width. (Tryon, 2016). 

1
2
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of the modulus of concretes would cancel out if the strength of the two were equal or close to 

equal.  

𝑘𝑘𝑠𝑠 =
1
2
�
𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 1� (2-3) 

Tryon demonstrated that the rotational stiffness of the base plate was related to the 

modulus of subgrade reaction.  The stiffness of the concrete was determined by the modulus of 

subgrade reaction multiplied with the depth of the column bearing against the concrete. This 

meant that for a column loaded in the strong axis direction, the subgrade modulus was multiplied 

by the flange width and the weak axis was multiplied by the depth of the column.  

In addition to the model, Tryon developed curves and simplified equations to go along 

with the curves that could be used in order to predict rotational stiffness of the spring.  Figure 2-6 

shows an example of such a curve.  The x-axis shows the normalized column length and depth 

for better comparison. Equation (2-4) shows the simplified equations that Tryon developed in 

order to represent the rotational stiffness curve. 

 

 
Figure 2-6: Tryon’s model for rotational stiffness vs. normalized embedment 
depth for W10s (Tryon 2016). 
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Where: 

β = Rotational stiffness at the embedment concrete (kip-in/radians) 

bf =  Width of column flange (in) 

L =  Embedment depth of the column (in)  

D =  Depth of the column (in) 

λ = Factor that incorporates the material properties of both the embedment material and the 
column material. 
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ko = modulus of reaction of the embedment material, assumed to be = 500 kip/in3
 

tw =  web thickness of column (in) 

E =  Modulus of Elasticity of column material = 29000 ksi 

Ix =  Moment of Inertia of the column about its strong axis (in4) 

2.2.5 Hanks (2016) 

Hanks (2016) validated the model proposed by Barnwell (2015) as well as studied the 

effects of  the stiffness of shallow embedded moment frame columns on the ductility of the 

frame.  He constructed eight two-third scale test specimens, which were similar in design to 

Barnwell’s specimens. Hanks’ test set up was also quite similar to Barnwell’s as shown in  

Figure 2-7.   
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Figure 2-7: Hanks' test set up (Hanks 2016). 
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The eight specimens were divided into two series of tests; each series being defined by a 

different column size.  The first specimen in each series acted as the control, i.e., specimens with 

no blockout concrete and only an exposed base plate connection.  The second specimen in each 

series had a blockout with a depth of 8 inches.  The third and fourth specimens had blockouts 

that were 16 inches deep.   The difference between the third and fourth specimens in the series 

was the number of anchor bolts.  The full test matrix is shown in Table 2-5.  The number of 

anchor bolts used in each connection was one of the key changes from Barnwell’s tests.  

Additional differences between Hanks’ experiment and Barnwell’s was the inclusion of a shear 

tab at the bottom of the base plate as well as larger column sizes.  

 

Table 2-5: Specimen Test Matrix (Hanks 2016) 

 Column Base Plate  Anchor Bolts Base Block-
out 

Specimen 
Name Size Thickness 

(in) 
ASTM 
grade 

Shear 
Lug Qty DIA 

(in) Grade Depth 
(in) 

Depth 
(in) 

D1 W14x53 2.25 A36 Yes 8 1 F1554 Gr 36 24 0 
D2 W14x53 2.25 A36 Yes 8 1 F1554 Gr 36 24 8 
D3 W14x53 2.25 A36 Yes 8 1 F1554 Gr 36 24 16 
D4 W14x53 1.5 A36 Yes 4 1 F1554 Gr 36 24 16 
F1 W10x77 3 A36 Yes 8 1 1/8 F1554 Gr 36 24 0 
F2 W10x77 3 A36 Yes 8 1 1/8 F1554 Gr 36 24 8 
F3 W10x77 3 A36 Yes 8 1 1/8 F1554 Gr 36 24 16 
F4 W10x77 2 A36 Yes 4 1 1/8 F1554 Gr 36 24 16 

 

Hanks’ concluded the following: 

1. The addition of the blockout concrete provided increased strength to the 

connection.  
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2. The currently accepted model, i.e., that developed by Kanvinde et al. (2011)  

although not meant for embedded columns can be informative for a highly 

conservative estimate.   

3. Rotational stiffness can be modeled as a fixed connection at the top of footing 

elevation instead of a rotational spring at the top of footing elevation if there was 

sufficient depth.  Although the depth that would prove sufficient is unknown, the 

embedment depth – column depth ratio should be greater than 1.22. 

2.2.6 Grilli and Kanvinde (2017) 

Grilli and Kanvinde (2017) investigated the current methods for estimating the strength of 

Embedded Column Base (ECB) connections as well as developed a new method for strength 

determination.  The method was developed by examining the work by Grilli and Kanvinde 

(2015), Barnwell (2015), and Cui et al. (2009).   

They assumed internal force transfer of horizontal bearing on the column flanges against 

the concrete panel shear and the vertical bearing on the embedded base plate against the 

concrete.  The proposed method assumed a moment distribution between the horizontal and 

vertical bearing mechanisms and corresponding stress distribution.  The proposed model 

attempted to balance reliance on mechanics and physics interactions, minimize ad-hoc 

calibration factors, agree with test data, and simplify equations for design.  Figure 2-8 shows the 

breakdown of the assumed interaction of forces.  Equation (2-5) through Equation (2-11) 

demonstrated how the moment capacity of the connection can be estimated with their model. 
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Figure 2-8: Idealization of moment transfer- (a) overall equilibrium 
and (b) explode detail. 
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𝑀𝑀𝐻𝐻𝐻𝐻 = 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑀𝑀𝑉𝑉𝑉𝑉 = �𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� ∗ ℎ = 𝑉𝑉𝑗𝑗 ∗ ℎ (2-5) 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛽𝛽 ∗ 𝛽𝛽1 ∗ 𝑓𝑓′𝑐𝑐 ∗ (𝑑𝑑𝑈𝑈 − 𝑑𝑑𝐿𝐿) ∗ 𝑏𝑏𝑗𝑗 (2-6) 

𝑀𝑀𝐻𝐻𝐻𝐻
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛽𝛽 ∗ 𝛽𝛽1 ∗ 𝑓𝑓′𝑐𝑐 ∗ 𝑏𝑏𝑗𝑗 ∗ �𝑑𝑑𝐿𝐿 ∗ 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

(𝑑𝑑𝐿𝐿2 − 𝑑𝑑𝑈𝑈2 )
2

� (2-7) 

𝑀𝑀𝑉𝑉𝑉𝑉 = 𝛼𝛼 ∗ 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (2-8) 

𝑀𝑀𝐻𝐻𝐻𝐻 = (1 − 𝛼𝛼) ∗ 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (2-9) 

𝛼𝛼 = 1 − �𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟⁄ � ≥ 0 (2-10) 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝐻𝐻𝐻𝐻

𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (1 − 𝛼𝛼)�  (2-11) 

α = Fraction applied moment resisted by the vertical bearing mechanism 

β = Factors to account for concrete confinement and the effective bearing 

bj =  effective joint width, outer joint panel zone width 

dL =  Depth of lower horizontal concrete bearing stress 

dU =  Depth of upper horizontal concrete bearing stress 

dembed, deffective = Embedment depth 

dref =  Depth at which the horizontal bearing stress attenuate to zero. 

h =  web height of column. 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑡𝑡𝑡𝑡𝑡𝑡  , 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = Force in the column flanges at the top and bottom of the embedment zone. 

Mbase = Generic base moment notation. 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = Base moment capacity as determine by the proposed method. 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚 = Maximum base moment observed by tests. 

𝑀𝑀𝐻𝐻𝐻𝐻  ,𝑀𝑀𝑉𝑉𝑉𝑉=  Moment resisted through horizontal or vertical bearing mechanisms. 

𝑀𝑀𝐻𝐻𝐻𝐻
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = Moment capacity provided by horizontal bearing. 

P =  Axial force in column. 

Vj =  Vertical shear force in the joint panel. 

Vcolumn = Imposed column shear. 
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In order to determine the validity of their results, the maximum moment found during the 

tests was compared to the moment capacity determined by the method.  The proposed strength 

estimation method was found to give good estimations for the five tests conducted by the authors 

with an average test ratio of 1.01 in comparison to the current method which gives a ratio of 

1.32. The authors warned that the proposed method is limited due to the small pool of data and 

limited failure modes examined. 

2.2.7 Rodas, et al. (2017) 

Rodas et al. (2017), presented a model representing the rotational stiffness of the deeply 

embedded columns.  The data used was that of Grilli and Kanvinde (2015).  The authors also 

used data collected from Barnwell (2015) as supplemental data in order to determine how their 

model transitioned from  the deeper embedment to a shallower embedment.  

The model decomposed the total rotational stiffness into two parts: deformation from the 

concrete and deformation from the column due to shear or flexure.  These separate deformations 

are determined by using the theory for beams on elastic foundations.  They then attempted to 

simplify the elements of the model so that it would be more convenient.  In order for the stiffness 

of the system to be determined, the base connection must be designed for strength before their 

method can be used.  This is due to the fact that the model was predominantly developed as a 

strength method.  Good estimations of the rotational stiffness were found for a range of 

embedment depths.  Using all of the test data, the test-predicted ratio was 1.20, if only the data 

from UC Davis was used, the ratio can be improved to 1.15.   

The authors cautioned that the developed model was not as accurate for shallow embedded 

column connections.  Additionally, the model only considered local deformation that was in the 

vicinity of the embedment.  The model also did not consider additional stiffness provided by 
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reinforcement welded to the column flanges.  It should also be noted that this model accounted 

for axial loads.
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3 DATA REDUCTION 

 Introduction 

Experimental data from two different test series were used in this research.  The 

experiments were conducted by Barnwell (2015) and Hanks (2016), details of testing and setup 

were given in Sections 2.2.3 and 2.2.5, respectively.  In order for these data sets to be 

comparable, they needed to be processed with the same procedure.  This section describes the 

method for the consistent calculation of the drift, moment at the top of the slab, and the rotational 

stiffness for each specimen in each of the separate experiments.  In addition, the resulting 

rotational stiffness values for each individual specimen are summarized. 

 Generating Hysteretic Plots 

Hysteretic plots were created for each specimen in order to understand the behavior of the 

specimens.  The process of generating these plots was implemented in three general steps. The 

first step was to calculate the moment at the top of the slab.  Second was to calculate the total 

drift.  The final step was to generate the hysteretic plots. 

The moment at the top of the slab was calculated with the applied load by the actuator and 

the distance from the top of slab to the line of action of the actuator.  The moment was calculated 

for each time step.  The load that was applied was determined by the loading cycle of the 

experiments.  The length of the exposed column was defined as the distance from the top of the 
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slab to the line of action of the actuator.  Table 3-1 and Table 3-2 show the exposed length for 

each of Barnwell’s and Hanks’ specimens respectively.   

Two additional values are shown in Table 3-1 and Table 3-2; the total blockout depth and 

the embedment depth.  The total blockout depth was the full depth thickness of the main slab or 

floor slab, which was poured on top of the foundation slab.  The embedment depth was defined 

as the distance from bottom of the base plate to the top of the blockout concrete slab.  The 

embedment depth was closely related to the total blockout depth, since the embedment depth was 

equivalent to the depth of the blockout minus the layer of grout between the column base plate 

and the base foundation concrete. 

The values listed in Table 3-1 and Table 3-2 were used throughout this thesis.  The 

exposed length was investigated further for its influence on Tryon model in Section 4.2.1.  The 

embedment depth was used in several figures of rotational stiffness versus the embedment depth 

throughout the thesis in order to evaluate the stiffness models. 

The second step for generating hysteric plots was to calculate the total drift of the column. 

The total drift of the column was determined by the total displacement of the column divided by 

the exposed length of the column.  The displacement of the column was calculated from the 

string potentiometer measurements.  The exposed length are the values listed in Table 3-1 and 

Table 3-2.   The total drift was then calculated for each time step. 

The final step was to generate the hysteretic plots.  Figure 3-1 shows the hysteretic plots 

for each of Barnwell’s specimens and Figures 3-2 and 3-3 show the hysteretic plots for each 

Hanks’ testing series. 
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Table 3-1: Barnwell's Experiment Parameters 

Specimen 
Exposed 

Length (in) 
Total Blockout 

depth (in) 
Embedment 
Depth (in) 

A1 80.375 8 6.5 

A2 80.375 8 6.5 

A3 80.375 8 6.5 

A4 80.375 8 6.5 

B1 83.375 16 14.5 

B2 83.375 16 14.5 

B3 83.375 16 14.5 

B4 83.375 16 14.5 

 
 

   

Table 3-2: Hanks' Experimental Parameters 

Specimen 
Exposed 

Length (in) 
Total Blockout 

depth (in) 
Embedment 
Depth (in) 

D1 102 0 0 

D2 93 8 7 

D3 86 16 15 

D4 86 16 15 

F1 102 0 0 

F2 93 8 7 

F3 86 16 15 

F4 86 16 15 
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Figure 3-1: Hysteretic plot for Barnwell's specimens. 
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Figure 3-2: Hysteretic plot for Hanks' D- series specimens. 

 

 
Figure 3-3: Hysteretic plot for Hanks' F-series specimens. 
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 Calculating Effective Rotational Stiffness 

In order to calculate the effective rotational stiffness for each specimen, five steps were 

implemented.  These steps were: first, decompose the displacements of the column; second, 

calculate the effective rotation of the connection; third, generate the backbone curves; fourth, 

determine the intersection of the backbone with particular drift values; and fifth, find the slope of 

the line representing the rotational stiffness. 

The first step in calculating the rotational stiffness was to decompose the displacements of 

the column.  The total displacement of the column was made up of two components: the 

displacement from the exposed column and the displacement from the base connection.  The 

total displacement was determined directly from the experimental testing, this was the same 

value as was used in Section 3.2.  The total displacement is defined as Equation (3-1).  The 

deflection from the column is simply the elastic deformation of a single column, which is 

represented by the Equation (3-2).  The parameters were F, the applied force; L, the distance 

from the top of the slab to the line of action of the actuator or the exposed column length; E, 

Young’s modulus; and I, the moment of inertia.  The deformation from the connection was 

determined from these two equations as shown in Equation (3-3).  This decomposition is only 

valid as long as the column stays in the elastic region; therefore, Young’s modulus stays 

constant. 

 

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3-1) 

𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐹𝐹𝐿𝐿3

3𝐸𝐸𝐸𝐸
 (3-2) 
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𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −
𝐹𝐹𝐿𝐿3

3𝐸𝐸𝐸𝐸
 (3-3) 

With the column displacement decomposed, the effective base rotation was determined by 

using the displacement of column from only the connection, Equation (3-3).  The effective 

rotation was found by dividing the displacement due to the connection by the column exposed 

length given in Tables 3-1 and 3-2. 

The third step in the process of calculating the effective rotational stiffness was to generate 

the backbone curve for each specimen.  The backbone curve is the plot of the effective base 

rotation, which was found in the previous step and plotting it against the moment at the top of the 

slab, which was found in Section 3.2.  The difference was that not all of the moment data was 

used, only the maximum values per cycle or the backbone points.   

The fourth step was to identify points corresponding to particular drift values.  This was 

done by finding the intersection of the backbone curve with a particular value of drift or the 

effective base rotation.  Values of 0.004 and 0.005 effective base rotation were used as 

reasonable estimates.  The 0.4 percent drift and the 0.5 percent drift were essentially averages of 

the higher stiffness at lower percentages and the reduced stiffness at later percentages.  The drift 

values chosen were the same for all specimens.  The drift was linearly interpolated from the 

available data points of the backbone curve.  

The final step was to find the slope of the line between the two drift points.  This slope 

value was the estimated effective rotational stiffness.  A typical plot is shown in Figure 3-4.  The 

A2 line represents the backbone curve and the two dashed lines are the estimated effective 

rotational stiffness for two assumed drift values.   
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Figure 3-4: Specimen A2 rotational stiffness calculation. 

 Results 

Figure 3-5 through Figure 3-20 show the plots for each specimen in the Barnwell’s and 

Hanks’ test with the moment at the top of the slab versus the effective base rotation.  Barnwell’s 

series A are presented in Figure 3-5 through Figure 3-8 and Figure 3-9 through Figure 3-12 are 

for Barnwell’s series B.  Figure 3-13 through Figure 3-16 are for Hanks’ series D and Hanks’ 

series F is as shown in Figure 3-17 through Figure 3-20. 

The rotational stiffness values were calculated based on the slope of the line through the 

0.5 percent story drift points in Figure 3-5 through Figure 3-20.  The rotational stiffness values 

obtained are listed in Table 3-3 for Barnwell’s specimens and in Table 3-4 for Hanks’ specimens.  

Note that in Table 3-3 specimen B3 and B4 did not have a value for the rotational stiffness.  This 

was because the general method was not reliable for these specimens since they had flexible 

columns and limited connection deformation before column yielding.  Additionally, the method 

for decomposing the drift may not be valid in these cases.   
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Barnwell’s A Series 
 

 
Figure 3-5: Specimen A1 moment at top of slab versus effective base rotation. 
(W8x35 Strong – 6.5 inches embedment depth). 

 
Figure 3-6: Specimen A2 moment at top of slab versus effective base rotation 
(W8x48 Strong – 6.5 inches embedment depth). 
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Figure 3-7: Specimen A3 moment at top of slab versus effective base rotation 
(W8x35 Weak – 6.5 inches embedment depth). 

 

 
Figure 3-8: Specimen A4 moment at top of slab versus effective base rotation 
(W8x48 Weak – 6.5 inches embedment depth). 
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Barnwell B Series 
 

 
Figure 3-9: Specimen B1 moment at top of slab versus effective base rotation 
(W8x35 Strong – 14.5 inches embedment depth). 

 
Figure 3-10: Specimen B2 moment at top of slab versus effective base rotation 
(W8x48 Strong – 14.5 inches embedment depth). 
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Figure 3-11: Specimen B3 moment at top of slab versus effective base rotation 
(W8x35 Weak – 14.5 inches embedment depth). 

 
Figure 3-12: Specimen B4 moment at top of slab versus effective base rotation 
(W8x48 Weak – 14.5 inches embedment depth). 
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Hanks D Series 

 
Figure 3-13: Specimen D1 moment at top of slab versus effective base rotation 
(W14x35 Strong –  0 inches embedment depth). 

 
Figure 3-14: Specimen D2 moment at top of slab versus effective base rotation 
(W14x35 Strong –  7 inches embedment depth). 
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Figure 3-15: Specimen D3 moment at top of slab versus effective base rotation 
(W14x35 Strong – 15 inches embedment depth). 

 
Figure 3-16: Specimen D4 moment at top of slab versus effective base rotation 
(W14x35 Strong – 15 inches embedment depth). 
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Hanks F Series 

 
Figure 3-17: Specimen F1 moment at top of slab versus effective base rotation 
(W10x77 Strong –  0 inches embedment depth). 

 
Figure 3-18: Specimen F2 moment at top of slab versus effective base rotation 
(W10x77 Strong –  7 inches embedment depth). 
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Figure 3-19: Specimen F3 moment at top of slab versus effective base rotation 
(W10x77 Strong – 15 inches embedment depth). 

 
Figure 3-20: Specimen F4 moment at top of slab versus effective base rotation 
(W10x77 Strong – 15 inches embedment depth). 
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Table 3-3: Rotational Stiffness Values from Barnwell's Experiments 

Specimens 
Rotational Stiffness 

@ 0.5% Drift (kN-m/rad) 
Rotational Stiffness 

@ 0.4% Drift (kN-m/rad) 
A1 11567 12318 
A2 12806 14212 

A3 9470 10241 
A4 11027 12353 
B1 23587 24429 

B2 26599 31392 
B3 N/A N/A 

B4 N/A N/A 

 

Table 3-4: Rotational Stiffness Values from Hanks’ Experiments 

Specimens 
Rotational Stiffness 

@ 0.5% Drift (kN-m/rad) 
Rotational Stiffness 

@ 0.4% Drift (kN-m/rad) 
D1 55145 59872 

D2 68074 75914 

D3 84606 97305 

D4 58121 68416 

F1 59811 65850 

F2 69844 83928 

F3 84239 98660 

F4 58193 74185 

 Summary 

Data reduction was necessary in order to ensure that similar values were being compared.  

The values determined in this section were the values that were used for analysis in the rest of 

the thesis.  Although the rotational stiffness values seen in this section were approximations for 

the 0.5 percent story drift, any value of percent drift can be calculated and used in a similar 
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manner.  The 0.5 percent story drift was chosen, because it was an average of the higher stiffness 

at lower story drift values and the lower stiffness at higher story drift values.  However, as shown 

in Figure 3-5 through Figure 3-20, the 0.5 percent story drift was not always the best 

approximation.   

The values presented in this section were slightly different from those that were presented 

in Tryon’s or Hanks’ theses, Barnwell did not present rotational stiffness values in his thesis.  

The values in Table 3-3 were about two times smaller than the values reported by Tryon for 

Barnwell’s testing and the valued in Table 3-4 were also smaller than those reported in Hanks’ 

thesis.  Values from Table 3-4 were between 15% but less than 50% of Hanks’ reported values, 

because both Hanks and Tryon used different percent story drifts than the value used in this 

thesis.  In addition, the stiffness was calculated with small differences in the embedment depth 

and exposed length.
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4 MODIFIED TRYON MODEL 

 Introduction 

With the data reduction complete, the experimental data was compared with the results 

from Tryon’s model.  Tryon’s model was investigated in order to determine the parameters that 

were significant.  Each parameter was either added directly without modifications into a new 

version of Tryon’s model or the parameter were altered for a better fit of the data before being 

added into the model.   

The main parameters in Tryon’s continuum model are embedment depth, exposed length, 

flange effective width, modulus of subgrade reaction, and base plate rotational stiffness, ks, as 

stated in Section 2.2.4.  The embedment depth was discussed in Section 3.2.  The exposed length 

was introduced in Section 3.2 and is discussed further in Section 4.2.1.  The flange effective 

width and modulus of subgrade reaction are influential components to the rotational stiffness 

equations and are discussed in Sections 4.2.2 and 4.2.3, respectively. 

Results are shown in Section 4.3 for the relationship between the rotational stiffness that 

was determined in Section 3.4  and the model with the modified parameters. 
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 Influence of Various Parameters in Tryon’s Model 

4.2.1 Effects of Exposed Lengths 

The sensitivity of the resulting model for a single exposed length, when the column size 

and orientation match, was investigated.  Since Barnwell’s specimens had two different exposed 

lengths, the sensitivity of the model to this parameter was investigated.  For Barnwell’s tests, 

there was an exposed length of 80.375 inches for specimens with an 8-inch blockout depth and 

83.375 inches for the specimens with a 16-inch blockout depth.  It was believed that the 3-inch 

difference would not cause a significant change in the response of Tryon’s model.  Figure 4-1 

shows the difference in the rotational stiffness as predicted by Tryon’s model for the two 

different exposed lengths from Barnwell’s data if all other parameters were held constant.  The 

small difference in exposed length did not have much impact on the results from Tryon’s model.  

Thus, an exposed length of 83.375 inches was assumed for comparison with Tryon’s model in 

other parameter studies. The exposed length of 83.375 inches was used in Tryon’s model to 

calculate the moment, which was in turn used to estimate the total rotation and displacement of 

the column. 

Hanks’, specimen D2 and F2 had an exposed length of 93 inches and specimen D3, D4, 

F3, and F4 had an exposed length of 86 inches.  Specimens D1 and F1 did not have a blockout, 

so their exposed length was 102 inches.  Even though there was a greater difference between the 

three exposed lengths for Hanks’ data, it was still believed that the difference in exposed length 

was small enough that there would not be significant difference in the response of Tryon’s 

model.  Figure 4-2 shows the comparison of the three lengths with similar parameter 

assumptions.  Since there was an insignificant difference in the response of the model, a single 

value of 86 inches was assumed for the exposed length for Hanks’ experiments in other 
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parameter studies. The single value chosen for Hanks’ data as well as Barnwell’s data would be 

used to generate the curves shown throughout the remainder of this thesis.  The exposed length 

was an important parameter in calculating the moment induced on the specimen.   

 
Figure 4-1: Exposed length comparison for Barnwell’s experiments (ko = 150kip/in3). 

 

 
Figure 4-2: Exposed length comparison for Hanks’ experiments (ko = 150kip/in3). 
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4.2.2 Effects of Flange Effective Width 

A further assumption that was evaluated for Tryon’s model was flange effective width, 

which Tryon called flange duality and the effective width of the column.  As was discussed in 

Section 2.2.4, Tryon assumed that both flanges would act in resisting against the blockout 

concrete.  In order to check the flange effective width, curves were generated using Tryon’s 

model, one with the assumption of both flanges resisting and another accounting for only one of 

the flanges resisting against the blockout concrete.  Barnwell’s experimental data was then 

compared to the two curves to determine the best fit.  The affected parameter was mainly the 

spring rotational stiffness; however, Tryon’s calculations for the modulus of subgrade reaction 

was also affected.   

The flange effective width was then removed from Equation (2-1) and Equation (2-2) 

which became Equation (4-1) and Equation (4-2), respectively.  Notice that Equation (4-2) does 

not change since this was for the weak orientation of the column and therefore the two flanges 

were not acting in resistance.  The variable k in theses equations represents the concrete stiffness 

and was determined by the modulus of subgrade reaction multiplied by the depth of the flanges if 

strong axis and the depth of the column if the weak axis was used.   

 

𝑘𝑘𝑠𝑠 =
𝑘𝑘𝑑𝑑3

24
�
𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 1� (4-1) 

𝑘𝑘𝑠𝑠 =
𝑘𝑘𝑏𝑏𝑓𝑓3

24
�
𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 1� (4-2) 

 

The results of the flange effective width analysis are shown in Figure 4-3 for Barnwell’s 

strong axis specimens and in Figure 4-4 for Hanks’ specimens.  The dashed line in these figures 
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represents the equation for excluding flange effective width and is label as “Excluded”.  The 

solid line is the original response of the model, which includes the flange effective width and is 

labeled as “Included.”  Only the strong column orientations are shown, since the weak axis 

orientation does not change as already noted.  The modulus of subgrade reaction that was used 

for all of the figures are ko = 150 kips/in3.  The modulus of the concrete that was used differed: 

for Barnwell Efooting = 3600 ksi and Eblockout = 2280 ksi; and for Hanks Efooting = 3600 ksi and 

Eblockout = 3600 ksi.  These values were estimated from the information obtained from cylinders 

tests.  

 

Figure 4-3: Flange effective width comparison of Barnwell's strong axis 
specimens (ko = 150kip/in3). 

 

 

Figure 4-4: Flange effective width comparison of Hanks' specimens (ko = 150kip/in3). 
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Figure 4-3 shows that Barnwell’s data fits better with flange effective width excluded; 

however, Figure 4-4 suggests that Hanks’ data may fit slightly better with flange effective width 

included.  Although there are too few points to say definitively which way is better.  However, 

the flange effective width was removed for later parameter investigation, since there appeared to 

not be an extreme change between the two curves and Hanks’ data in some cases seems to fit 

better with the excluded flange effective width. 

4.2.3 Effects of Concrete Modulus 

The next parameter that was evaluated was the effect of the concrete modulus ratio on the 

spring stiffness, ks.  If the flange effective width was excluded like what was discussed above, 

then the equation for ks would become Equation (4-3), note this is the same equation as Equation 

(4-1), it was repeated for easier comparison.  Two variations of the equation were investigated.  

The variations that were compared are shown in Equations (4-4) and (4-5).  Equation (4-4) 

removes the assumption, 1
2
� 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 1�, and assumes that ks was only a function of the 

modulus of the footing over the blockout and not an average of the two strengths.  Equation (4-5) 

removes any effect from the concrete and tests for an adjustment factor instead.  An adjustment 

factor of 2 was used for both Barnwell’s and Hanks’ data.  Figure 4-5 shows the equations 

compared with Barnwell’s data.  Figure 4-6 shows the comparison of Hanks’ data compared to 

the equations discussed. 
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Figure 4-5: Barnwell's experiments compared to differing equations of the base 
plate rotational stiffness, ks (ko = 150kip/in3). 

 
 

 
Figure 4-6: Hanks' experiments compared to differing equations of the base plate 
rotational stiffness, ks, (ko = 150kip/in3). 
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Figure 4-5 shows that Barnwell’s data fits fairly well with any of the equations, since 

Barnwell did not test any exposed base connection columns.  Figure 4-6 suggests that a different 

modulus of subgrade reaction may be required or an additional change in a parameter.  These 

equations will be evaluated further in the Section 4.3 on combined effects.   

 Combined Effects 

4.3.1 Barnwell’s Data 

Figure 4-7 shows the relationship between Barnwell’s data and Tryon’s model.  Tryon’s 

model was updated with the assumptions that were described in the preceding subsections.  The 

curves were generated using Equation (4-4) for two different shapes in the strong and weak axis 

direction, with a variety of values for the modulus of subgrade reaction, 100 kip/in3, 150 kip/in3, 

and 200 kip/in3.  The “xs” in the figure correlate to the stiffness calculated at 0.5 percent story 

drift.   The results show that Tryon’s model is sensitive to the modulus of subgrade reaction 

value assumed, as well as the way the stiffness was calculated for the specimen.  The best fit for 

this strong axis loading is with ko = 150 kip/in3.   

The best fit values for Tryon’s model for the weak axis orientation was a little more 

difficult to determine since only one data point for each shape and orientation combination was 

available.  The best approximation for ko for the weak axis loading is 200 kip/in3.  The lack of 

experimental results was due to some errors during testing that did not allow for the actual 

stiffness to be calculated for comparison.   
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Figure 4-7: Barnwell’s experiments compared to Tryon’s model using Equation 4-5.  The 
concrete footing modulus used was 3600 ksi and the concrete blockout modulus used was 
2280 ksi. 

4.3.2 Hanks’ Data 

Figure 4-8 shows the relationship between Hanks’ data and the updated version of Tryon’s 

model with the use of Equation (4-4) for the formula of ks.  It should be remembered that Hanks’ 

testing did not include the weak orientation.  The results show the model under predicts Hanks’ 

data points. Therefore, it was determined that a larger modulus of subgrade reaction value was 

needed.  Additional values for the modulus of subgrade reaction were evaluated and the results 

are shown in Figure 4-9. 
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Figure 4-8: Hanks’ experiments compared to Tryon’s model using Equation 4-5.  The 
concrete footing blockout moduli were 3600 ksi. 

 

 

Figure 4-9: Hanks’ experiment compared to Tryon’s model using Equation 4-5 for 
multiple values of ko.  The concrete footing and blockout moduli were 3600 ksi. 

 
The responses of the model are shown again with the modulus of subgrade reaction, ko, 

ranging from 100 to 400 kip/in3 with 50 kip/in3 increments.  Figure 4-9 shows that an adjustment 

of the modulus of subgrade reaction only may not be enough to represent the rotational stiffness 

of a column.   
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Figure 4-8 and Figure 4-9 show that Tryon’s modified model under predicts values for 

these two larger shapes.  Therefore, Tryon’s model needed to account for the increased stiffness 

that Hanks’ experiments were suggesting.  This increased stiffness was most likely due to the 

base plates of Hanks’ experiments being thicker than that in Barnwell’s specimens.  Therefore, 

this affected the flexibility of the base plate and thus the effective depth of the column, or the 

variable d.  To test the theory, the effective depth of the column was changed in Equation (4-4).  

The effective depth was changed to be the distance between the centerline of the anchor rods, 

which was 16 inches for the F series and 18 inches for the D series and the results are shown in 

Figure 4-10.  The figure shows increased predicted rotational stiffness from what is shown in 

Figure 4-8; this increase in stiffness brings the curves predicted stiffness closer to Hanks 

specimen data.  Figure 4-11 shows the response of the model with ko values are used ranging 

from 100 to 400 kip/in3 with 50 kip/in3 increments.   

 

 

Figure 4-10: Hanks’ experiments compared to Tryon’s model using Equation 4-5 
when d is the distance between anchor bolts.  The concrete footing and blockout 
moduli were 3600 ksi. 
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Figure 4-11: Hanks’ experiment compared to Tryon’s model using Equation 4-5 
when d is the distance between anchor bolts and with multiple ko.  The concrete 
footing and blockout moduli are 3600 ksi. 

The model response for either assumption of d, the depth of the column or the distance 

between anchor rods, did not indicate sensitivity to of the subgrade modulus value, thus values 

between 150 and 300 kip/in3 seem reasonable.  Some judgement was required for selecting a 

single value of the modulus of subgrade reaction, but a value of ko of 200 kip/in3 is a decent 

approximation.  However, it appeared that the increased effective depth was beneficial in 

modeling Hanks’ specimens with thicker base plates. 

Before the new assumption of the parameter d, column depth, for Hanks’ specimen was 

used, the model was validated using the exposed length assumptions made in Section 4.2.1.  

Figure 4-12 shows the response of the model for the two column lengths and there is not a 

significant difference between them.  Therefore, the exposed length of 86 inches is continued to 

be used.   
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Figure 4-12: Exposed length comparison for Hanks’ experiments when d is the 
distance between anchor bolts.  d = 16 inches for W10 and d = 18 inches for W14 
(ko = 150 kip/in3). 

 

4.3.3 Direct Comparison 

Figure 4-13 shows the direct comparison of Tryon’s original model to the modified model 

with Barnwell’s specimens represented with “xs”.  A value for the modulus of subgrade reaction 

of 150 kip/in3 was used for modeling as was suggested in Section 4.3.1.  It can be seen that for 

the lower embedment there is not a lot of difference in the model, but for the deeper embedment 

there is a greater change.  A similar comparison is shown for Hanks data in Figure 4-14.  Again, 

a direct comparison of the original model and the modified model.  Hanks’ specimens are shown 

with “xs”.  A modulus of subgrade reaction of 200 kip/in3 was used as suggested in Section 

4.3.2.  There is not as close a solution for Hanks’ specimens; however, Hanks’ results are fairly 

close to the predicted rotational stiffnesses.   
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Figure 4-13: Comparison of Tryon's original model to the modified model with Barnwell's 
specimens (ko=150 kip/in3). 

 

 
Figure 4-14: Comparison of Tryon's original model to the modified model with Hanks' 
specimens (ko=200 kip/in3). 

 Summary 

Tryon’s model was improved to account for several different assumptions for the given 

parameters and has better predictive capabilities for any wide-flange shape.  The effect of the 

exposed length, flange effective width, concrete modulus, and the column depth were evaluated 

to determine the sensitivity of the model.   

The first parameter that was evaluated was the exposed length.  It was noted that the model 

was not sensitive to this parameter, and therefore, a single length for all of Barnwell’s specimens 

and a single length for all of Hanks’ specimens were used.  Barnwell’s specimens used an 

exposed length of 83.375 inches and Hanks’ specimens had an exposed length of 86 inches.   
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The next parameter evaluated was flange effective width.  It was determined that looking 

at flange effective width by itself did not give a clear idea whether it should be included or 

excluded; however, when this parameter was combined with other parameters the response of the 

model improved.  Therefore, the flange effective width parameter was excluded from the model. 

The influence of the concrete modulus was not immediately obvious and the assumption 

was made to use instead the ratio of the footing concrete over the blockout concrete.  This new 

assumption, when combined with the other parameters, improved the response of the model.  

The equation used was Equation (4-4). 

The final parameter investigated was the depth of the column.  Barnwell’s base plate was 

not very thick and therefore, the depth of the column seemed to be sufficient.  However, Hanks’ 

thicker base plate led to greater rotational stiffness.  Therefore, the effective depth of the column 

was increased for the thicker base plates to be the distance between the centerline of the anchor 

bolts.  Therefore, the parameter d was equal to 16 inches for the W10 column and 18 inches for 

the W14 column.  
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5 SYSTEM LEVEL SENSITIVITY 

 Introduction 

In Tryon’s model the rotational stiffness, β, was dependent upon the value chosen for the 

modulus of subgrade reaction, ko.  However, determining an appropriate value for the modulus 

of subgrade reaction is a challenge.  It was, therefore, determined to study the sensitivity of the 

total stiffness to the rotational stiffness, β, and determine how accurate β must be in order to 

obtain reasonable values for the total stiffness.  The sensitivity analysis was done by comparing 

the system stiffness to the rotational stiffness, β, for several values of the modulus of subgrade 

reaction.  A moment frame with partially fixed base columns was used in this study. 

 Method 

5.2.1 Sensitivity of Total Stiffness as Modulus of Subgrade Reaction Changes 

 The total stiffness of a column was investigated to determine its sensitivity to β as ko was 

changed.  This was done by determining the stiffness of the column and base connection 

separately. Equation (5-1) is the flexural stiffness of a single cantilever column, which depends 

on the modulus of elasticity, the moment of inertia, and the exposed length of the column.  The 

stiffness of the embedment depth was determined by Equation (5-2).  This was the stiffness 

provided by a rotational spring at the top of the slab.  The rotational stiffness at the top of the 

slab provided by the embedment, β, was determined by using Hetényi’s beam equations and the 
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work completed by Tryon as described previously in Section 2.2.4.  The same exposed length of 

the column was used in Equation (5-2) as was used in Equation (5-1).  Equation (5-3) was used 

to combine the stiffness provided by the column and the stiffness provided by the base in order 

to determine total stiffness of the exposed column and the embedded portion. 

 

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
3𝐸𝐸𝐸𝐸
𝐿𝐿3

 (5-1) 

𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝛽𝛽
𝐿𝐿2

 (5-2) 

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

1
𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

+ 1
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (5-3) 

5.2.2 Sensitivity of Total Stiffness as the Rotational Stiffness β Changes 

The sensitivity of kcolumn with respect to β was investigated for a moment frame with 

rotational springs at top of the slab as depicted in Figure 5-1.   A closed form solution was 

developed for half of the moment frame with corresponding variables: EIb, EIc, H, L, β, and F. 

The half moment frame was chosen for simplicity, as shown in Figure 5-2.  The frame was 

divided into three members: Member AB, Member BC, and the rotational spring. The three 

members, boundary conditions, and the degrees of freedom are shown in Figure 5-3.  The four 

degrees of freedom: 1) rotation at A, 2) constrained to be equal DOF translation at B, 3) rotation 

at B, and 4) rotation at C.    
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Figure 5-1: Full moment frame and system 
parameters with partial fixity denoted at the 
top of the slab. 

 

 
Figure 5-2: Half the moment frame and 
system parameters for the system 
analyzed with partial fixity denoted at 
the top of the slab. 

 

 
Figure 5-3: The four degrees of freedom and 
nodes for the half moment frame. 

 

F 
 

 

F 
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The closed form solution was developed by using the stiffness method.  A brief 

explanation of the steps is discussed here.  Appendix A presents, in detail the development of the 

closed form solution.  Individual stiffness matrices were constructed for each of the three 

members.  These three matrices were then used to construct the global stiffness matrix.  A force 

vector was defined, which was simply a horizontal force applied at node B as shown in Figure 

5-3.  Deformation was then calculated from the global stiffness and the forcing vector with the 

equation F = khalf−frame ∗ Δ.  The total stiffness of the half-frame was then determined by 

dividing the applied force by the translational deformation at node B or node C or as expressed 

in equation, F/∆𝐵𝐵||𝐶𝐶 .  This value was then multiplied by two if a full moment frame was desired.  

The final equation for the system stiffness is given by Equation (5-4). 

 

Equation (5-4) was validated by doing hand calculations as well as creating a simple 

computer model for a single moment frame.  Two cases were checked with the computer model: 

First, β = 100,000 kip-in/rad, Ic = Ib = 200 in4, E = 29,000 ksi, H = 86 inches, L = 2*H, which 

resulted in a stiffness of 56.84 kip/in; Second, β = 200,000 kip-in/rad, Ic = Ib = 200 in4, E = 

29,000 ksi, H = 86 inches, L = 2*H, which resulted in a stiffness of 72.67 kip/in.  These results 

matched to at least three decimal places to that obtained using the closed form solution.  

Assuming values of beta of zero and infinity, the closed form solution is that of the pinned-

pinned situation and the fixed-fixed situation. 

 

khalf−frame =
36IbE2Ic2 + 6LβEIc2 + 36HIbβEIc

3H4Ibβ + 12EH3IbIc + 2H3IcLβ + 6EH2Ic2L
 

 

(5-4) 
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5.2.3 Sensitivity Analysis for Larger Moment Frame Systems 

An equation for the stiffness of a single moment frame with partially fixed base 

connections was developed in the previous section, Section 5.2.2.  In this section, equations are 

presented for elements of a larger system with multiple bays and stories with partially fixity at 

the top of the slab as shown in Figure 5-4.   

 

 

Figure 5-4: Multi-story and bay moment frame with system parameters labeled 
and partial fixity denoted at each top of the slab. 

 
There were two configurations developed, which were used to create the stiffness of a 

multi-story and multi-bay moment frames.  The configurations are shown in Figure 5-5 for the 

exterior elements and Figure 5-6 for the interior elements.  Figure 5-7 and Figure 5-8 show the 

degrees of freedom for the exterior and the interior sections, respectively.  The configuration in 

Figure 5-7 has six degrees of freedom: 1) rotation at A, 2) constrained to be equal DOF 

translation at B and C, 3) rotation at B, 4) rotation at C, 5) translation at D, and 6) rotation at D.   

Figure 5-8 has seven degrees of freedom: 1) rotation at A, 2) constrained to be equal DOF 

translation at B and E, 3) rotation at B, 4) rotation at C, 5) translation at D, 6) rotation at D, and 

7) rotation at E.    
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Figure 5-5: Exterior element of a multi-story and 
bay moment frame with system parameters labeled 
and partial fixity noted at the top of the slab. 

 
 
 
 
 
 

 
Figure 5-6: Interior element of multi-story and bay 
moment frame with system parameters labeled and 
partial fixity noted at the top of the slab. 

 

F 
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Figure 5-7: Six degrees of freedom for the exterior 
elements of a multi-story and bay moment frame as 
used in analysis. 

 
 
 
 
 
 
 

 
Figure 5-8: Seven degrees of freedom for the interior 
elements of a multi-story and bay moment frame as 
used in analysis. 
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Using the direct stiffness method, the stiffness Equation (5-5) and Equation (5-6) were 

obtained for the configurations on the exterior of the frame and for an interior section, 

respectively.  These modules were used to construct the stiffness for a full frame of multiple bays 

and stories.   

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
48𝐼𝐼𝑏𝑏𝐸𝐸2𝐼𝐼𝑐𝑐2 + 8𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑐𝑐2 + 48𝐻𝐻𝐼𝐼𝑏𝑏𝛽𝛽𝛽𝛽𝐼𝐼𝑐𝑐

6𝐻𝐻4𝐼𝐼𝑏𝑏𝛽𝛽 + 18𝐸𝐸𝐻𝐻3𝐼𝐼𝑏𝑏𝐼𝐼𝑐𝑐 + 9𝐻𝐻3𝐼𝐼𝑐𝑐𝐿𝐿𝐿𝐿 + 18𝐸𝐸𝐻𝐻2𝐼𝐼𝑐𝑐2𝐿𝐿
 

(5-5) 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
96𝐼𝐼𝑏𝑏𝐸𝐸2𝐼𝐼𝑐𝑐2 + 8𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑐𝑐2 + 96𝐻𝐻𝐼𝐼𝑏𝑏𝛽𝛽𝛽𝛽𝐼𝐼𝑐𝑐

12𝐻𝐻4𝐼𝐼𝑏𝑏𝛽𝛽 + 36𝐸𝐸𝐻𝐻3𝐼𝐼𝑏𝑏𝐼𝐼𝑐𝑐 + 9𝐻𝐻3𝐼𝐼𝑐𝑐𝐿𝐿𝐿𝐿 + 18𝐸𝐸𝐻𝐻2𝐼𝐼𝑐𝑐2𝐿𝐿
 

(5-6) 

 
The resulting equations were verified with a computer model. There were two different 

cases verified for the interior frame: First, β = 100,000 kip-in/rad, Ic = Ib = 127 in4, E = 29,000 

ksi, H = 170 inches, H = 2*L, which resulted in a stiffness of 3.45 kip/in; Second, β = 200,000 

kip-in/rad, Ic = Ib = 120 in4, E = 29,000 ksi, H = 170 inches, H = 2*L, which resulted in a 

stiffness of 3.87 kip/in.  These results matched to at least three decimal places to that obtained 

using the closed from solution. 

 Results 

5.3.1 Sensitivity of Total Stiffness as Modulus of Subgrade Reaction Changes 

With Equation (5-3) determined for the total stiffness of the column, a graph was 

developed to compare the effects of the rotational stiffness, β, on the total stiffness of the system.  

Figure 5-9 shows the total stiffness versus the rotational stiffness, β.  Different values of β were 

calculated by changing the modulus of subgrade reaction, ko, incrementally in order to achieve a 

smooth curve.  Constant values for E, I, and L were assumed in order to plot the graph.  (E = 

29000 ksi, I = 127 in4, and L = 83.375 inches, for a W8 × 35 column). 
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Figure 5-9 shows a steep rise in the middle of the graph.  This suggested that the rotational 

stiffness was more sensitive for these particular parameters, due to the rapidly changing total 

stiffness values as the modulus of subgrade reaction was changing.  This observation was 

expected, considering that the properties of the concrete were essential to the stiffness provided 

to the system from the embedment depth.   

5.3.2 Sensitivity of Total Stiffness as the Rotational Stiffness β Changes 

The closed form solution developed for a simple moment frame with a partially fixed base 

was used to evaluate the total stiffness as the rotational stiffness changes.  The first step in 

determining the sensitivity of the total stiffness was to select several values for the modulus of 

 

Figure 5-9: Barnwell’s W8x35 14.5 inches embedment depth - single column 
stiffness analysis. 
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subgrade reaction, 100 kip/in3 – 200 kip/in3.  These values for the subgrade modulus were then 

used in Tryon’s model to develop a range of rotational stiffness values when the parameters for a 

specific column was chosen.  The range of rotational stiffness values were then plugged into the 

closed form solution.   The beam length was two times the height with the height representing a 

single 10-foot story height.  Figure 5-10 gives reference to the extremes of the rotational stiffness 

and is similar for all analysis.  When the rotational stiffness is zero then this is considered a 

pinned connection and as the rotational stiffness goes to infinity then this is considered a fixed 

connection.   

 

 
Figure 5-10: Comparison of stiffness for W8x35 of 6.5 inches embedment depth for a 
large range of rotational stiffness. 

 
Figure 5-11 shows the predicted total stiffness values of a moment frame with W8 × 35 

columns and beam and a column embedment depth of 6.5 inches.  This resulted in a range of 
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rotational stiffness values, β, between 45,092 kip-in/rad and 85,438 kip-in/rad and a 

corresponding range of total stiffness values between 13.8 kip/in and 17.8 kip/in.  The high end 

of β is 89% greater than the low end β, and the high end of stiffness is 28% greater than the low 

end.  Therefore, stiffness can probably be predicted within 28%.   

 

Figure 5-11: Comparison of stiffness for W8x35 of 6.5 inches embedment depth 
from Barnwell's experiments and Tryon's model for a partially fixed moment 
frame 

 
Figure 5-12 shows the predicted total stiffness values when the column embedment was 

increased to 14.5 inches keeping the columns and the beam the same as W8 × 35.  The figure 

shows that a range of β values between 147,933 kip-in/rad and 239,654 kip-in/rad results in a 

range for the total stiffness between 21.5 kip/in and 24.7 kip/in.  The high end of β is 62% 

greater than the low end β, and the high end of stiffness is 15% greater than the low end.  

Therefore, stiffness can probably be predicted within 15%.  Table 5-1 shows a more complete 
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list of rotational stiffness values and their corresponding total stiffness values calculated for all of 

the modulus of subgrade reaction values shown in the figures, as well as the two embedment 

depths discussed. 

 

 
Figure 5-12: Comparison of stiffness for W8x35 of 14.5 inches embedment depth 
from Barnwell's experiments and Tryon's model for a partially fixed moment frame. 

 
 

Table 5-1: W8x35 Percent Change Comparison of Stiffness 

Embedment 

Depth 

(inches) 

Modulus of 

Subgrade Reaction 

(ko=kips/in3) 

Value of β (kip-

in/rad) 

Value of Total 

Stiffness (kip/in) 

6.5 

100 45,092 13.8 

150 65,807 16.1 

200 85,438 17.8 

14.5 

100 147,933 21.5 

150 198,430 23.5 

200 239,654 24.7 
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Figure 5-13 shows the predicted stiffness values if a W10 × 77 was used for the columns 

and beam; a column embedment depth of 7 inches was assumed.  These assumptions resulted in 

a range of rotational stiffness values between 300,809 kip-in/rad and 522,451 kip-in/rad and 

resulted in a range of total stiffness values between 63.2 kip/in and 76.8 kip/in.  The high end of 

β is 74% greater than the low end β.  The high end of stiffness is 21% greater than the low end.  

Therefore, stiffness can probably be predicted within 21%. 

 

 
Figure 5-13: Comparison of stiffness for W10x77 of 7 inches embedment depth from 
Hanks’ experiments and Tryon's model for a partially fixed moment frame. 

 

Figure 5-14 shows the results for a moment frame with columns and beam with W10 × 77 

shape, but the column embedment depth is increased to 15 inches.  Figure 5-14, shows a range of  
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β values between 398,196 kip-in/rad and 626,350 kip-in/rad, which resulted with a total stiffness 

range between 70.1 kip/in and 81.2 kip/in. The high end of β is 57% greater than the low end β.  

The high end of stiffness is 16% greater than the low end.  Therefore, stiffness can probably be 

predicted within 16%.  Table 5-2 shows a more complete list of rotational stiffness values and 

total stiffness values calculated for all of the modulus of subgrade reaction values shown in the 

figure, as well as the two embedment depths discussed.   

 
 

 
Figure 5-14: Comparison of stiffness for W10x77 of 15 inches embedment depth 
from Hanks’ experiments and Tryon's model for a partially fixed moment frame. 
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Table 5-2: W10x77 Percent Change Comparison of Stiffness 

Embedment 
Depth 

(inches) 

Modulus of 
Subgrade Reaction 

(ko=kips/in3) 

Value of β 
(kip-in/rad) 

Value of Total 
Stiffness (kip/in) 

7 

100 300,809 63.2 

150 419,380 71.4 

200 522,451 76.8 

15 

100 398,196 70.1 

150 524,920 76.9 

200 626,350 81.2 

5.3.3 Sensitivity Analysis for Larger Moment Frame Systems 

In the previous section a single bay moment frame was analyzed for the sensitivity of the 

total stiffness to the rotational stiffness.  In this section, a larger moment frame was analyzed in a 

similar manner.  Values for the modulus of subgrade reaction was chosen and used in Tryon’s 

model to get a range of rotational stiffness values.  These rotational stiffness values were then 

used in the closed form solutions that were developed in Section 5.2.3.  There were two separate 

configurations, one for the exterior sections of the moment frame and one for the interior 

sections of the moment frame as seen in Figure 5-4.  Figure 5-15 through Figure 5-22 were 

developed for several different assumptions for the column size and column embedment depth; 

the beam size was assumed to be similar to the column.  The height of each story was to 

represent a 10-foot story height.  The length was represented as two times the height. 

Figure 5-15 shows the predicted stiffness of an exterior column assembly when a W8 × 35 

column was used with a column embedment depth of 6.5 inches.  The beam was also assumed to 
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 have a similar moment of inertia.  A range of rotational stiffness values, β, between 45,092 kip-

in/rad and 85,438 kip-in/rad resulted in a range of total stiffness values between 3.39 kip/in and 

3.99 kip/in.  The high end of β is 89% greater than the low end β, and the high end of stiffness is 

18% greater than the low end.  Therefore, stiffness can probably be predicted within 18%.   

 
Figure 5-15: Plot of total stiffness versus rotational stiffness for exterior assembly 
(W8x35 – 6.5 inches embedment depth). 

 

Figure 5-16 is for an exterior column assembly when a W8 × 35 column was used with the 

beam using a similar moment of inertia and a column embedment depth of 14.5 inches.  The 

figure shows that for a range of β values between 147,933 kip-in/rad and 239,654 kip-in/rad 

resulted in a range for the total stiffness between 4.48 kip/in and 4.84 kip/in. The high end of β is 

62% greater than the low end β, and the high end of stiffness is 8% greater than the low end.   



76 

Therefore, stiffness can probably be predicted within 8%.  Additional information on the 

modulus of subgrade reaction that was used and its corresponding total stiffness, see Table 5-3 

for both embedment depth shown in Figure 5-15 and Figure 5-16.   

 
Figure 5-16: Plot of total stiffness versus rotational stiffness for exterior assembly 
(W8x35 – 14.5 inches embedment depth). 

 

Table 5-3: W8x35 Exterior Percent Change Comparison of Stiffness 

Embedment 
Depth 

(inches) 

Modulus of 
Subgrade Reaction 

(ko=kips/in3) 

Value of β 
(kip-in/rad) 

Value of Total 
Stiffness (kip/in) 

6.5 

100 45,092 3.39 

150 65,807 3.74 

200 85,438 3.99 

14.5 

100 147,933 4.48 

150 198,430 4.71 

200 239,654 4.84 
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Comparison of the same shapes and embedment depths were used for an interior column 

assembly.  Figure 5-17 shows the total stiffness for an interior W8 × 35 column with a column 

embedment depth of 6.5 inches. The beam was also assumed to have a similar moment of inertia. 

This figure shows a range for the rotational stiffness between 45,092 kip-in/rad and 85,438 kip-

in/rad, which was the same range as seen in Figure 5-15; however, the range resulted in total 

stiffness values ranging between 4.78 kip/in and 5.59 kip/in.  The high end of β is 89% greater 

than the low end β, and the high end of stiffness is 17% greater than the low end.  Therefore, 

stiffness can probably be predicted within 17%.  It can be noted the stiffness was increased from 

the exterior column, as shown in Figure 5-15 for the same values of rotational stiffness.   

Figure 5-17: Plot of total stiffness versus rotational stiffness for interior assembly 
(W8x35 – 6.5 inches embedment depth). 
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 Figure 5-18 shows the total stiffness of an interior W8 × 35 column with a column 

embedment depth of 14.5 inches.  Again, a similar shape was used for the beam as was used for 

the column.  This figure shows that for a range between 147,933 kip-in/rad and 239,654 kip-

in/rad the rotational stiffness there was a range of total stiffness between 6.26 kip/in and 6.75 

kip/in.   The high end of β is 62% greater than the low end β, and the high end of stiffness is 8% 

greater than the low end.  Therefore, stiffness can probably be predicted within 8%.  This was 

similar to the results that were shown in Figure 5-16; however, it can be seen that there was an 

increased total stiffness.  For additional details of the rotational stiffness corresponding to its 

total stiffness see Table 5-4. 

 
Figure 5-18: Plot of total stiffness versus rotational stiffness for interior assembly 
(W8x35 – 14.5 inches embedment depth). 
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Table 5-4: W8x35 Interior Percent Change Comparison of Stiffness 

Embedment 
Depth 

(inches) 

Modulus of 
Subgrade Reaction 

(ko=kips/in3) 

Value of β 
(kip-in/rad) 

Value of Total 
Stiffness (kip/in) 

6.5 

100 45,092 4.78 

150 65,807 5.26 

200 85,438 5.59 

14.5 

100 147,933 6.26 

150 198,430 6.57 

200 239,653 6.75 

 
A larger shape size was evaluated next for both the exterior column assembly as well as the 

interior column assembly.  Figure 5-19 shows the values for the total stiffness if a W10 × 77 

exterior columns and the same shape for the beam was used.  A column embedment depth of 7 

inches was assumed.  These assumptions resulted in a range of rotational stiffness values 

between 300,809 kip-in/rad and 522,451 kip-in/rad and resulted in a range of total stiffness 

values between 14.2 kip/in and 16.0 kip/in.  The high end of β is 74% greater than the low end β, 

and the high end of stiffness is 12% greater than the low end.  Therefore, stiffness can probably 

be predicted within 12%.  

Figure 5-20 shows the values for the total stiffness if a W10 × 77 shape is used for the 

exterior columns and a beam with similar moment of inertia as the column; however, with  

15 inches of column embedment depth.  This resulted in a range of rotational stiffness values 

between 398,195 kip-in/rad and 626,350 kip-in/rad, which resulted in a total stiffness range 

between 15.2 kip/in and 16.5 kip/in. The high end of β is 57% greater than the low end β, and the 

high end of stiffness is 9% greater than the low end.  Therefore, stiffness can probably be 

predicted within 9%.  For additional information on the results seen in Figure 5-19 and Figure 

5-20 see Table 5-5. 
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Figure 5-19: Plot of total stiffness versus rotational stiffness for exterior assembly 
(W10x77 – 7 inches embedment depth). 
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Figure 5-20: Plot of total stiffness versus rotational stiffness for exterior assembly 
(W10x77 – 15 inches embedment depth). 

 

Table 5-5:  W10x77 Exterior Percent Change Comparison of Stiffness 

Embedment 
depth 

(inches) 

Modulus of 
Subgrade Reaction 

(ko=kips/in3) 

Value of β 
(kip-in/rad) 

Value of Total 
Stiffness (kip/in) 

7 

100 300,809 14.2 

150 419,380 15.3 

200 522,451 16.0 

15 

100 398,196 15.2 

150 524,920 16.0 

200 626,350 16.5 

 

The interior column assembly was evaluated next for comparison of the same shape and 

embedment depths.  Figure 5-21 is the results for the total stiffness versus the rotational stiffness 
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when a W10 × 77 column and beam was used for the interior assembly and a column embedment 

depth of 7 inches.  The figure shows a range for the rotational stiffness between 300,809 kip-

in/rad and 522,451 kip-in/rad, which was the same range as seen in Figure 5-19; however, this 

range of β results in increased total stiffness values between 19.9 kip/in and 22.4 kip/in.  The 

high end of β is 74% greater than the low end β, and the high end of stiffness is 12% greater than 

the low end.  Therefore, stiffness can probably be predicted within 12%.  

Figure 5-21: Plot of total stiffness versus rotational stiffness for interior assembly 
(W10x77 – 7 inches embedment depth). 

Figure 5-22 is also for an interior column assembly using the W10 × 77 shape, a beam 

shape of a similar moment of inertia, and 15 inches of column embedment depth.  The figure 

shows that the rotational stiffness ranges between 398,195 kip-in/rad and. 626,350 kip-in/rad.  

This is the same range as seen in Figure 5-20; however, the range resulted in an increased total 
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stiffness values between 21.2 kip/in and 23.1 kip/in.  The high end of β is 57% greater than the 

low end β, and the high end of stiffness is 9% greater than the low end.  Therefore, stiffness can 

probably be predicted within 9%. Additional analysis of Figure 5-21 and Figure 5-22 is found in 

Table 5-6. 

 
Figure 5-22: Plot of total stiffness versus rotational stiffness for interior assembly 
(W10x77 – 15 inches embedment depth). 

 

Table 5-6: W10x77 Interior Percent Change Comparison of Stiffness 

Embedment 
Depth 

(inches) 

Modulus of 
Subgrade Reaction 

(ko=kips/in3) 

Value of β 
(kip-in/rad) 

Value of Total 
Stiffness (kip/in) 

7 

100 300,809 19.9 

150 419,380 21.4 

200 522,451 22.35 

15 

100 398,195 21.2 

150 524,920 22.4 

200 626,350 23.1 
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 Summary 

The total stiffness is very for values of β from around 1e+04 to 1e+06.  However, the exact 

values will vary as shown herein for the W10 and W8 columns. The effect of β remains semi-

regular for different shapes as well as for the different column configurations used during 

investigation.  The main difference was in the total stiffness per column.  It was expected that the 

moment frame with partial fixity at the base would have greater stiffness then a single partially 

fixed column.   

Better accuracy in predicting the rotational stiffness is obtained with better estimation of 

the modulus of subgrade reaction; however, even if the rotational stiffness may only be predicted 

to within a 100%, then the total stiffness of a partially fixed frame may be predicted only within 

a 15% to 20% change.  The percentage was reduced based on the type of configuration use. 
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6 CONCLUSIONS 

This thesis outlined the work done to further the understanding of the rotational stiffness of 

shallow embedded columns.  This thesis evaluated the model created by Tryon with the data 

collected from the physical test conducted by Barnwell and Hanks.  The research completed for 

this thesis resulted in creating an improved model.   

The new model shows: 

1. The modulus of subgrade reaction was a sensitive parameter for the model.  However, 

when the modulus of subgrade reaction is in the correct range for the column 

connection then there is not a large change on the total stiffness. 

2. The exposed length did not have a large effect on the model predicted results, 

especially for small changes. 

3. The modulus of concrete for the slab and the blockout had a large effect on the model 

predicted results. 

4. Flange effective width was not an influential parameter to the model.  It appeared that 

only one flange acted in resistance against the concrete blockout was a better 

estimation.   

5. The base plate thickness had a large effect on the predicted rotational stiffness, by 

adjusting the effective column depth. 
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6. The model was not a good predictor for little to no embedment depth due to the lack of

specimen data.

7. Shallow embedded columns had a great deal more stiffness than a pinned system and

less stiffness than a fixed system.

8. Values for beta or the stiffness of the rotational spring were in the sensitive region;

however, a large change in the spring stiffness will result in a change of less than 20%

in the stiffness of the whole system.

This model was meant as an approximation and to give a good range for estimating 

rotational stiffness values.  However, it is important to use good judgement and check the limits 

of your design, since, the number of anchor bolts, base plate thickness, embedment depth, 

column and or beam size as well as the type of loads that the system is subjected to has a large 

effect on the design.  Different shapes other than the wide flange shape may not work with this 

model. 

Further research could be completed by adding in more data sets with more range in shape 

sizes and embedment depths, so that more accurate curves can be developed.  Additional tests 

should be done for the weak orientation, since there were only two points in all the data 

presented. 
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APPENDIX A 



 Half Moment Frame With Nodes A, B, and C

Step 1: Construct indiviual member k matrix

 k hat for member AB

khatab

E Ac

H

0

0

E Ac

H


0

0

0

12 E Ic

H3

6 E Ic

H2

0

12 E Ic

H3


6 E Ic

H2

0

6 E Ic

H2

4 E Ic

H

0

6 E Ic

H2


2 E Ic

H

E Ac

H


0

0

E Ac

H

0

0

0

12 E Ic

H3
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6 E Ic

H2


0

12 E Ic
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6 E Ic

H2


0

6 E Ic
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H

0
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H2


4 E Ic

H









































=

T

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1



















= Transform so that the member is vertical

kab TT khatab T=
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
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
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=

 k for member BC

kbc
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
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
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
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

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=
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 k for the spring

kspring
β

H2
=

Step 2: Construct the global K matrix

Corresponding DOF

θA

ΔBlC

Kglobal

4 E Ic

H
β

6 E Ic

H2

2 E Ic

H

0

6 E Ic
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L

2


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L

2


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H2

0
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0 0
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0 0

2 E Ib
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2
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
































=
θB

θC

Step 3: Develop the global F vector

Corresponding DOF

θA
ΔBlC Force is applied horizontally at node B

F

0

Force

0

0











=
θB
θC
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Step 4: Find all displacments and deformations

U Kglobal
1 F= Corresponding DOF

θA

ΔBlC

U

Force 3 Ib H2
 Ic L H





6 E Ib Ic 6 H Ib β Ic L β

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 Ib Ic 2 H3
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
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

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Step 5: Determine the stiffness of the system at the base

Stiffness of the system is 

K
Force
ΔBlC

=

K
36 Ib E2

 Ic
2

 6 L β E Ic
2

 36 H Ib β E Ic

3 H4
 Ib β 12 E H3

 Ib Ic 2 H3
 Ic L β 6 E H2

 Ic
2

 L
=

This is the stiffness for the half moment frame.

For the full moment frame use 2*K
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