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ABSTRACT 

Crash Severity Distributions for Life-Cycle Benefit-Cost Analysis 
of Safety-Related Improvements on Utah Roadways 

 
Conor Judd Seat 

Department of Civil and Environmental Engineering, BYU 
Master of Science 

 
The Utah Department of Transportation developed life-cycle benefit-cost analysis 

spreadsheets that allow engineers and analysts to evaluate multiple safety countermeasures. The 
spreadsheets have included the functionality to evaluate a roadway based on the 11 facility types 
from the Highway Safety Manual (HSM) with the use of crash severity distributions. The HSM 
suggests that local agencies develop crash severity distributions based on their local crash data. 
The Department of Civil and Environmental Engineering at Brigham Young University worked 
with the Statistics Department to develop crash severity distributions for the facility types from 
the HSM. 

 
The primary objective of this research was to utilize available roadway characteristic and 

crash data to develop crash severity distributions for the 11 facility types in the HSM. These 
objectives were accomplished by segmenting the roadway data based on homogeneity and 
developing statistical models to determine the distributions. Due to insufficient data, the facility 
types of freeway speed change lanes and freeway ramps were excluded from the scope of this 
research. In order to accommodate more roadways within the research, the facility type 
definitions were expanded to include more through lanes. 

 
The statistical models that were developed for this research include multivariate 

regression, frequentist binomial regression, frequentist multinomial, and Bayesian multinomial 
regression models. A cross-validation study was conducted to determine the models that best 
described the data. Bayesian Information Criterion, Deviance Information Criterion, and Root-
Mean-Square Error values were compared to conduct the comparison. Based on the cross-
validation study, it was determined that the Bayesian multinomial regression model is the most 
effective model to describe the crash severity distributions for the nine facility types evaluated. 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: crash severity, crash severity distribution, life-cycle benefit-cost analysis, Utah  
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1 INTRODUCTION 

Roadway safety is one important aspect taken into consideration when roadways are 

rebuilt, rehabilitated, or maintained. There continues to be a large portion of research in the 

United States relating to the safety of roadways. One facet of safety-related research is the 

development of life-cycle benefit-cost analysis, which helps determine which safety 

countermeasure provides the best benefit for the lowest cost. A previous study funded by the 

Utah Department of Transportation (UDOT) developed life-cycle benefit-cost analysis 

spreadsheets (Saito et al. 2016) using the method presented in the Highway Safety Manual 

(HSM) that is applicable to various highway types included in the manual (AASHTO 2010).  

The outcome of a life-cycle benefit-cost analysis is significantly affected by crash severity 

distributions used to predict the number of crashes of each severity type that will be reduced on 

the roadway after safety-related improvements are implemented.  

This research was conducted to develop crash severity distributions using UDOT’s crash 

data for the life-cycle benefit-cost analysis spreadsheets developed in a previous study (Saito et 

al. 2016). This chapter presents the background information related to this research, explains the 

purpose and need for this research, and describes the organization of the report. 



2 

 Background 

Safety has become increasingly important on roadways over the last several decades. 

UDOT has made roadway safety one of their top priorities, which is expressed in their campaign: 

“Zero Fatalities: A Goal We Can All Live WithTM.” The goal of zero fatalities is “all about 

eliminating fatalities on [Utah] roadways” (UDOT 2016). One technique that UDOT uses to 

reduce fatalities on roadways is continued investment in transportation safety research. Through 

transportation safety research, safety-related improvements on roadways can be evaluated to 

understand which improvements will be most effective. 

The HSM, originally published in 2010, presents the preferred methods for performing 

life-cycle benefit-cost analysis of safety-related improvements (AASHTO 2010). UDOT recently 

adopted the most reliable method for determining the change in crashes known as the Part C 

Predictive Method (AASHTO 2010). The Part C Predictive Method is an 18-step method for 

predicting average crash frequencies. The Part C Predictive Method was applied through a series 

of Excel-based life-cycle benefit-cost spreadsheets developed by the Brigham Young University 

(BYU) safety research team (Saito et al. 2016). The purpose of the spreadsheets is to provide 

engineers and analysts with a tool to evaluate multiple countermeasures and their life-cycle 

benefits so that the engineer or analyst can select improvements for highway segments and 

intersections that will contribute the most to the prevention of future crashes. 

One component of life-cycle benefit-cost analysis is the use of crash severity 

distributions. Crash severity distributions describe the distribution of crashes by severity type. 

Crash severity distributions are important to life-cycle benefit-cost analysis because they are 

used to generate estimates of cost savings by predicting the severity of crashes that will be 

reduced as a result of implementing a countermeasure. Although there is a single crash severity 
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distribution given in the HSM, it is recommended that separate severity type distributions be 

developed for all highway types included in the HSM. The HSM recommends that each agency 

calibrate the predictive models in order to apply the models to their jurisdiction (AASHTO 

2010). The spreadsheets recently developed for UDOT include the analysis for 11 facility types, 

as outlined in the HSM; however, they all use the same default crash severity distribution 

included in the HSM. UDOT currently has only one crash severity type distribution that has been 

used for conducting life-cycle benefit-cost analyses for evaluating safety-related improvements. 

There was a need to develop multiple crash severity distributions by roadway type to more 

accurately evaluate safety-related improvements. 

 Purpose and Need 

The purpose of this research was to develop crash severity distributions for the 11 facility 

types outlined in the HSM. The crash severity distributions were developed using various 

statistical models. Available crash data together with highway mile point and functional 

classification data were used for the input file for developing statistical models to generate crash 

severity type distributions. The scope of this research included a comprehensive literature 

review, a crash severity distribution survey, the development of several statistical models of 

crash severity distribution, and conclusions and recommendations. Specifically, the crash 

severity distributions included the following 11 facility types included in the HSM (AASHTO 

2010): 

1. Rural two-lane two-way (TLTW) highways 

2. Undivided rural multilane highways 

3. Divided rural multilane highways 
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4. Two-lane undivided suburban/urban arterials 

5. Three-lane suburban/urban arterials including a two-way left-turn lane (TWLTL) 

6. Four-lane undivided suburban/urban arterials 

7. Four-lane divided suburban/urban arterials 

8. Five-lane suburban/urban arterials including a TWLTL 

9. Rural and urban freeway segments 

10. Freeway speed change lanes 

11. Freeway ramps 

The need for this research arose as UDOT does not currently use multiple crash severity 

distributions for its current life-cycle benefit-cost analysis; a single crash severity distribution is 

used for the entire UDOT roadway system. The HSM states that the purpose of the calibration 

procedure “is to adjust the predictive models which were developed with data from one 

jurisdiction in another jurisdiction” (AASHTO 2010). Calibration will account for differences 

between jurisdictions in factors such as climate, driver populations, animal populations, crash 

reporting thresholds, and crash report system procedures. 

By including multiple crash severity distributions within the current life-cycle benefit-

cost analysis, the analysis will significantly improve. The number of crashes by severity type 

prevented by countermeasures will be more accurate than using a single set of severity 

distributions. Safety engineers and analysts will more effectively allocate tax payer money to 

projects that will reduce vehicle crashes, especially severe vehicle crashes. 
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As part of previous research efforts by BYU, the Utah Crash Prediction Model (UCPM) 

and Utah Crash Severity Model (UCSM) were developed (Schultz et al. 2015). These models are 

only used for roadway segments and cannot be applied to intersections and interchanges at the 

time of this research. Since this research effort was performed in conjunction with the research 

effort for these models, intersections and interchanges were not included as part of this research. 

 Organization 

This thesis consists of six chapters. Chapter 1 presents an overview of the report along 

with a stated purpose, scope, and need for this research. Chapter 2 contains the literature review, 

which is a summary of findings related to the research. Chapter 3 outlines the content and results 

of a survey distributed to state departments of transportation (DOTs). Chapter 4 presents the 

methodology pertaining to the creation of the crash severity distributions including the data 

preparation and development of the statistical models. Chapter 5 contains the results from the 

statistical models for the crash severity distributions. Chapter 6 presents the conclusions and 

recommendations for future research.
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2 LITERATURE REVIEW 

A comprehensive literature review has been performed on general aspects of traffic safety 

and crash severity distributions. This process consisted of gathering information that could 

contribute to this study. Several topics are addressed in this literature review. First, life-cycle 

benefit-cost analysis is reviewed along with UDOT’s current approach to this analysis. Next, 

general aspects of traffic safety are addressed, including crash severity, monetary benefit of 

crashes, the predictive method, and facility types outlined in the HSM. Lastly, a summary of 

previous research completed by BYU, including the UCPM and the UCSM, is discussed. 

 Life-Cycle Benefit-Cost Analysis 

The HSM can be considered as the basis for anything related to safety on roadways 

(AASHTO 2010). Life-cycle benefit-cost analysis of safety-related improvements and the 

method explained in the HSM can be considered as the preferred method to complete such 

analysis. This section describes the methods outlined in the HSM and the current method used by 

UDOT for life-cycle benefit-cost analysis. Finally, the use of crash severity distributions in life-

cycle benefit-cost analysis is discussed. 

2.1.1 HSM Techniques for Life-Cycle Benefit-Cost Analysis 

The safety benefits for a project are determined using the crash information for a site. 

One of the most important parts of the life-cycle benefit-cost analysis of safety-related 
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improvements is to estimate the change in the number of crashes resulting from a proposed 

project. The HSM outlines four different methods for estimating the change in expected average 

crash frequency of a proposed project or project design alternative. The four methods listed in 

the Part C Predictive Method are presented in order of most to least reliable (AASHTO 2010): 

• Method 1 – Apply the Part C Predictive Method to estimate the expected average 

crash frequency of both the existing and proposed conditions. 

• Method 2 – Apply the Part C Predictive Method to estimate the expected average 

crash frequency of the existing condition and apply an appropriate project crash 

modification factor (CMF) from Part D to estimate the safety performance of the 

proposed condition. 

• Method 3 – If the Part C Predictive Method is not available, but a safety performance 

function (SPF) applicable to the existing roadway condition is available, use that SPF 

to estimate the expected average crash frequency of the existing condition and apply 

an appropriate project CMF from Part D to estimate the safety performance of the 

proposed condition. A locally derived project CMF can also be used in Method 3. 

• Method 4 – Use observed crash frequency to estimate the expected average crash 

frequency of the existing condition and apply an appropriate project CMF from Part 

D to the estimated expected average crash frequency of the existing condition to 

obtain the estimated average crash frequency for the proposed condition. This method 

is applied to facility types not addressed by the Part C Predictive Method. 

When a CMF is used in one of the four method outlined above, the standard error of the 

CMF can be applied to develop a confidence interval around the estimated expected average 
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crash frequency. With this range, analysts can see the type of variation associated with 

implementing a countermeasure (AASHTO 2010). 

2.1.2 Current UDOT Method 

The current recommended method for UDOT for life-cycle benefit-cost analysis uses the 

most reliable method in the HSM. Saito et al. (2016) developed a series of spreadsheets that 

would implement the Part C Predictive Method for use with life-cycle benefit-cost analysis. The 

spreadsheets allow the life-cycle benefit-cost estimates to be analyzed for the 11 facility types 

outlined in the HSM. Although default values are given throughout the spreadsheet, crash costs, 

expected average crash frequency, and crash severity distribution can be changed in order to fit 

the specific site that is being analyzed. The use of crash severity distributions in life-cycle 

benefit-cost analysis is discussed briefly in the next section. 

2.1.3 Use of Crash Severity Distributions 

One important aspect associated with life-cycle benefit-cost analysis of safety-related 

countermeasures is determining the total benefits. The main benefit in the case of safety-related 

improvements is the expected reduction in crashes within the study site. Crash severity 

distributions are used to predict the severity crash types that will be reduced as a consequence of 

the safety-related countermeasure. It is important to note that different countermeasures may 

reduce different crash types. 

 Traffic Safety 

In the HSM, safety is defined as “the crash frequency or crash severity, or both, and 

collision type for a specific time period, a given location, and a given set of geometric and 

operational conditions” (AASHTO 2010). There are two types of safety analyses: subjective and 
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objective. Subjective safety analysis relates to how safe a person feels on a roadway, while 

objective safety analysis refers to the use of quantitative measures that are independent of the 

observer. The HSM focuses on objective safety analysis. In the evaluation and estimation 

methods presented in the HSM, crash frequency is used as a fundamental indicator of safety 

(AASHTO 2010). This section first defines crash severity. Next, the predictive method from the 

HSM is presented. Finally, the facility types outlined in the HSM are presented. 

2.2.1 Crash Severity 

One major component of traffic safety is crash severity, defined as the level of injury or 

property damage of the crash (AASHTO 2010). Although many injuries may be inflicted during 

a crash, crash severity is defined as the most severe level of injury that is caused by the crash. In 

most agencies, crash severity is divided into categories known as the KABCO scale. The five 

KABCO categories used in the HSM are (AASHTO 2010): 

• K: Fatal injury: an injury that results in death; 

• A: Incapacitating injury: any injury, other than a fatal injury, that prevents the injured 

person from walking, driving, or normally continuing the activities the person was 

capable of performing before the injury occurred; 

• B: Non-incapacitating evident injury: any injury, other than a fatal or incapacitating 

injury, that is evident to observers at the scene of the crash in which the injury 

occurred; 

• C: Possible injury: any injury reported or claimed that is not fatal, incapacitating, or 

non-incapacitating evident injury and includes claim of injuries not evident; 

• O: No injury: Property damage only (PDO). 
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UDOT uses similar crash severity categories based on the KABCO scale. The numerical 

values 5 to 1 are used rather than the alphabetical characters KABCO. Severity 1 is PDO, while 

severity 5 is a fatal injury crash. Traffic safety can be improved in two ways: a decrease in 

average crash frequency or a decrease in the average crash severity. This section explains the 

monetary benefits of crash frequency based on FHWA and UDOT standards. Next, factors 

contributing to crashes are discussed. 

2.2.1.1 Monetary Benefit of Crash Frequency 

After the change in crash frequency has been estimated for a project, the benefits from 

reducing the crashes needs to be converted to a monetary value. There are many different 

opinions as to how much value should be placed on the different severity levels of crashes. The 

Federal Highway Administration (FHWA) has completed a significant amount of research that 

establishes a basis for quantifying, in monetary value, the human capital crash costs to society of 

fatalities and injuries from highway crashes (AASHTO 2010). The FHWA values for each crash 

severity type are shown in Table 2-1. 

Table 2-1: FHWA Benefit Value Per Crash for Each Crash Type (AASHTO 2010) 

Severity Severity 
Category 

Severity 
No. Value 

PDO O 1  $        7,400.00  

Possible Injury C 2  $      44,900.00  

Evident Injury B 3  $      79,000.00  

Disabling Injury A 4  $    216,000.00  

Fatal K 5  $ 4,008,900.00  

State and local jurisdictions often have adopted the crash costs by crash severity and 

collision type. For example, UDOT has their own monetary values that they use in determining 
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the value of each crash severity level (Wall 2016). As would be expected, monetary values 

generally increase as the severity level increases. However, UDOT equalizes the scale for 

disabling injury crashes and fatal crashes. This is done in order to lessen the benefit of reducing 

fatal crashes and increase the benefit of reducing disabling crashes. It is obvious that fatal 

crashes should most definitely be prevented; however, in many cases, disabling crashes become 

more expensive in the long run due to medical costs and because the persons involved in these 

incapacitating injuries are prevented from ever working again though still requiring full-time 

care in many cases. The UDOT values for each crash severity type are shown in Table 2-2. 

Table 2-2: UDOT Benefit Value Per Crash for Each Crash Type (Wall 2016) 

Severity Severity 
Category 

Severity 
No. 

Value 
(Year 2015 value) 

PDO O 1  $        3,200.00  

Possible Injury C 2  $      62,500.00  

Evident Injury B 3  $    122,400.00  

Disabling Injury A 4  $ 1,961,100.00  

Fatal K 5  $ 1,961,100.00  

2.2.1.2 Factors Contributing to a Crash 

Although many crashes refer to the “cause” of a crash, it is more accurate to attribute 

crashes to many contributing causes. Cause may include time of day, driver attentiveness, speed, 

vehicle condition, road design, and many other factors. Traditionally, these factors can be 

classified into three different categories: human, vehicle, and roadway or environmental. Human 

factors refer to characteristics of the drivers including the age, judgement, skill, attention, 

fatigue, experience, and sobriety. Vehicle factors refer to the design, manufacture, and 

maintenance of the involved vehicles. Roadway or environmental factors refer to the geometric 
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alignment, traffic control devices, surface friction, weather, and visibility of the surrounding area 

(AASHTO 2010). 

By understanding the various factors that influence the sequence of events, crashes and 

crash severities can be reduced by implementing specific measures to target specific contributing 

factors. In 1979, research was completed to describe the distribution of contributing crash factors 

to vehicle crashes and their relationships to each other (Treat et al. 1979). The findings from this 

research are shown in Figure 2-1. 

 

Figure 2-1: Contributing crash factors to vehicle crashes (Treat et al. 1979). 

 

It was observed that 34 percent of crashes were caused, at least in part, by roadway 

factors, while human factors and roadway factors together caused 27 percent of crashes (Treat et 

al. 1979). While there are many strategies for reducing crashes and severity, the majority of these 

strategies are not within the scope of the HSM. As such, the HSM focuses mainly on crashes 

where it is believed that the roadway or environment is a contributing factor, whether wholly or 

in part. 
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2.2.2 Predictive Method 

Within the HSM, the predictive method is explained. The predictive method is the 

methodology in Part C of the HSM that is used to estimate the “expected average crash 

frequency of a site, facility, or roadway under given geometric design and traffic volumes for a 

specific period of time” (AASHTO 2010). The predictive method outlined in the HSM uses the 

Empirical Bayes (EB) method. One clear advantage to using the EB method is, once the model is 

calibrated for a particular site, the model can be readily applied to the region for which it was 

calibrated (AASHTO 2010). 

There are two basic elements of the predictive method. First, the predictive method 

estimates the average crash frequency for a specific site type. This is accomplished using a 

statistical model developed from data for a number of similar sites and adjusted for specific site 

and local conditions. Second, the expected crashes and observed crashes for the site are 

combined. A weighting factor is applied to the two estimates to reflect the model’s statistical 

reliability. Currently, the HSM provides a detailed predictive method for three facility types: 

rural TLTW, rural multilane highways, and urban and suburban arterials (AASHTO 2010). 

There are some major advantages to using the predictive method. First, regression-to-the-

mean analysis focuses on long-term expected crash frequency rather than short-term observed 

crash frequency. Another major advantage is that the reliance on availability of limited crash 

data is reduced by incorporating predictive relationships based on data from similar sites. In 

addition, the predictive method accounts for the fundamentally nonlinear relationship between 

crash frequency and traffic volume. Last, the SPFs in the HSM are based on the negative 

binomial distribution, which are better suited to modeling the high natural variability of crash 

data than traditional modeling techniques based on the normal distribution (AASHTO 2010). 
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2.2.3 Facility Types 

The HSM outlines 11 facility types for which the predictive method is applicable. The 11 

facility types are (AASHTO 2010): 

1. Rural TLTW highways 

2. Undivided rural multilane highways 

3. Divided rural multilane highways 

4. Two-lane undivided suburban/urban arterials 

5. Three-lane suburban/urban arterials including a TWLTL 

6. Four-lane undivided suburban/urban arterials 

7. Four-lane divided suburban/urban arterials 

8. Five-lane suburban/urban arterials including a TWLTL 

9. Rural and urban freeway segments 

10. Freeway speed change lanes 

11. Freeway ramps 

Each facility type has different attributes according to urban code, the number of through 

lanes, TWLTLs, median type, and functional class. 

 Previous BYU Research 

Several research efforts have been conducted by BYU with regards to traffic safety and 

the HSM predictive method. The UCPM and UCSM were developed by Schultz et al. (2015) and 

are explained in further detail in the following sections. 
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2.3.1 UCPM 

The UCPM was developed to help UDOT identify segments of roadway that have a 

higher number of crashes than expected (Schultz et al. 2015). This model uses a variety of 

parameters such as vehicle-miles traveled (VMT), number of lanes, speed limit, and others to 

create a crash distribution for different roadways. The median of the distribution is used as the 

expected number of crashes that might occur on a specific segment based on the characteristics 

of that segment. Using the Bayesian horseshoe selection method, a pre-selection process is 

performed that takes all possible parameters in the dataset to produce a list of the significant ones 

that should be used. The parameters can be used to predict a distribution of the number of 

expected crashes for a given severity group (Schultz et al. 2015). 

To start the procedure, a statistical model must be chosen to provide the base dataset in 

the analysis and identification of the problem segments or “hot spots.” Crash data for the years 

2008 to 2012 were used in this project’s statistical model (Schultz et al. 2015). From this model, 

the total crash counts for each segment and the count of crashes for each attribute were selected 

by the Bayesian horseshoe selection method. The UCPM required 100,000 iterations to obtain 

posterior predictive distributions on the expected number of crashes to occur on each segment. 

Crash counts were available for all severity levels combined and severity levels K and A 

(Schultz et al. 2015). 

Because this model can be used to determine the number of crashes that are expected to 

occur on a given roadway segment, it can help determine the number of crashes that will be 

reduced on each roadway segments when the values of selected variables change. The same can 

be applied to severe crashes. After the number of crashes reduced is determined, the benefit can 

be calculated by comparing different possible treatments to improve safety (Schultz et al. 2015). 
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2.3.2 UCSM 

The UCSM is used to determine the probability of a severe crash occurring. Three types 

of input data are required for this analysis: 1) the probability that a severe crash occurs given that 

a crash has occurred on a selected segment, 2) the predicted number of severe crashes, and 3) the 

probability that the respective number of severe crashes occurred. Each segment may then be 

assigned a ranking based on the difference between the actual and the predicted number of 

crashes to find the most dangerous road segments (Schultz et al. 2015). 

This model can be run with the same dataset as the crash prediction model with one 

exception. Not only must the UCSM have a count of every crash that happened on that segment 

in the given time period, but it must also have a count of crashes occurring in the severity group 

(Schultz et al. 2015). 

This model is helpful in determining which roadways are more dangerous according to 

crash severity. If more severe crashes are occurring than what is predicted, then it is 

recommended that the road be analyzed further for possible safety-improvement measures 

(Schultz et al. 2015). 

 Chapter Summary 

Crash severity distributions are used in life-cycle benefit-cost analysis by determining the 

total benefits of safety-related improvements. The benefits are typically the expected reduction in 

crashes as a consequence of the countermeasure. The method outlined in the HSM is the most 

preferred method of such analysis. To determine the monetary value of a reduced crash, the five 

crash severity levels have associated monetary values. In Utah, the values for fatal injury crashes 

and disabling crashes have been equalized because disabling crashes may become more 
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expensive in the long run. The facility types outlined in the HSM are based on varying attributes 

of urban code, number of through lanes, TWLTLs, median type, and functional class. Previous 

BYU research has developed the UCPM and the UCSM, which locate hot spots on roadway 

segments that perform worse than expected in terms of safety. 
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3 CRASH SEVERITY DISTRIBUTION SURVEY 

Due to the lack of literature relating to crash severity distributions, a survey, which was 

conducted using Qualtrics software (Qualtrics 2017), was distributed to each state DOT in the 

United States. The purpose of this survey is to determine the uses of crash severity distributions 

in conducting life-cycle benefit-cost analyses of countermeasures. This chapter presents the 

content of the survey, the survey distribution, the survey results, and additional information on 

crash severity distributions obtained through this survey. 

 Survey Content 

The content of the survey on crash severity distributions focused on the uses, benefits, 

and derivation of life-cycle benefit-cost analysis and crash severity distributions across the 

United States. The survey was designed in such a way that different questions could be asked 

based on the answers the respondent gave to questions earlier in the survey. The maximum 

number of questions a respondent was required to answer was 13. It was estimated that the 

survey would take about 5 minutes to complete. The majority of questions were multiple choice 

questions; however, some questions allowed respondents to input unique text and upload 

relevant documents. Appendix A includes the full survey and survey flow that was used to 

collect the data. 
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 Survey Distribution 

Contacts for the DOTs across the United States were obtained from lists provided by the 

UDOT Safety Division and the Subcommittee of Safety Management found on the American 

Association of State Highway and Transportation Officials (AASHTO) website (AASHTO 

2018). The list provided by UDOT was consulted first, and 34 of the 50 contacts were found 

from this list. The remaining 16 contacts were obtained from the AASHTO website.  

The survey was distributed to all 50 state DOTs in the United States on February 23, 

2017, at approximately 12:30 PM MST and was closed at approximately 10:00 AM MDT on 

March 30, 2017. Two reminder emails were distributed on March 8, 2017, at 11:30 AM MST 

and March 27, 2017, at 12:30 PM MDT to respondents that had not completed the survey. 

 Survey Results 

Of the 50 DOTs that were sent the crash severity distribution survey, 27 DOTs responded 

to the survey. However, three responses were not included in the data analysis because their 

responses were incomplete, reducing the number to 24 respondents. The states that were 

represented in the data analysis include, in alphabetical order, Alabama, Delaware, Hawaii, 

Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Massachusetts, Minnesota, 

Mississippi, Missouri, Nebraska, New Jersey, New Mexico, New York, North Dakota, 

Oklahoma, Oregon, South Carolina, South Dakota, and Vermont.  

One of the purposes of this survey was to understand the uses of life-cycle benefit-cost 

analysis throughout the United States. According to the results of the survey, 20 of the 24 

respondents use life-cycle benefit-cost analysis. 
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The types of distributions applied to the life-cycle benefit-cost analysis were also 

surveyed. Results regarding the types of distributions applied to life-cycle benefit-cost analysis 

are shown in Figure 3-1. Nearly half of all respondents indicated that they use multiple 

distributions that were derived from their state’s crash data. Additionally, 21 percent of 

respondents indicated that their single crash severity distribution was derived from their state’s 

crash data. Only three of the 24 respondents said that they currently use the crash severity 

distribution given in the HSM. 

  

Figure 3-1: Crash severity distributions used from survey respondents. 

 

Another question on the survey explored the DOTs interest in and ability to develop crash 

severity distributions for the 11 facility types in the HSM. Figure 3-2 shows the summary of the 

results of the question. Forty-five percent of the respondents indicated that their respective DOTs 

have considered developing crash severity distributions for the 11 facility types. Twenty-two 

percent of respondents indicated that their DOTs have not considered deriving crash severity 

distributions for the 11 facility types outlined in the HSM. If the respondent answered that their 

16%
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47%

16% A single distribution taken
from the HSM

A single distribution derived
from state crash data

Multiple distributions
derived from state crash data

None of the above
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DOT had not considered deriving these crash severity distributions, they were encouraged to 

specify a reason why they had not considered this. The most common reason for not developing 

crash severity distributions for the 11 facility types was that they had insufficient data. 

 

Figure 3-2: Consideration to derive crash severity distribution on 11 facility types. 

 

 Crash Severity Distribution Information 

As part of the survey, agencies were given the opportunity to upload literature relating to 

their states’ research on the life-cycle benefit-cost analysis or crash severity distributions. Of the 

24 respondents to the survey, four agencies uploaded literature. Even though none of the 

uploaded literature describe the methodology for creating crash severity distributions, some of 

the literature show the distributions that the states use in their analyses.  

The New York DOT uploaded literature pertaining to their crash severity distributions. A 

sample of the document is shown in Figure 3-3. The document indicates that the New York DOT 

defines crash severity on the categories of fatal (K), injury (A, B, and C), and PDO (O) crashes. 

The segments for the crash severity distributions are classified based on level of access (full, 

22%

33%

45%

Yes

No

We have multiple
distributions based on
something other than the 11
facility types in the HSM.
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partial, free); urban code (urban, rural); median type (divided, undivided); and number of lanes. 

Based on these classifications, the New York DOT has 74 different crash severity distributions 

for roadway segments (NYSDOT 2013). 

 
Figure 3-3: Crash severity distributions for New York segments (NYSDOT 2013). 

 

The Vermont DOT also uploaded literature pertaining to their crash severity distributions. 

Like many other state agencies, the Vermont crash severity distributions use the KABCO scale. 

The crash severity distributions are classified based on urban code and functional classification. 

The Vermont DOT has developed 13 crash severity distributions based on these classifications as 
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shown in Figure 3-4. In addition to crash severity distributions, the literature also includes the 

prediction model for two-lane rural highways, which is shown in Equation 3-1 (VTrans 2005). 

This equation predicts the number of crashes per mile per year on two-lane rural highways based 

on the average daily traffic (ADT), lane width, average paved shoulder width, average unpaved 

shoulder width, and a roadside rating. By comparing the predicted number of crashes to the 

actual number of crashes, the Vermont DOT can evaluate the safety of roadway segments. 

 
Figure 3-4: Crash severity distributions for Vermont segments (VTrans 2005). 
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𝑁𝑁 = (0.0015)(𝐴𝐴𝐴𝐴𝐴𝐴)0.9711(0.8897)𝑊𝑊(0.9403)𝑃𝑃𝑃𝑃(0.9602)𝑈𝑈𝑈𝑈(1.2)𝐻𝐻  (3-1) 

Where,  N = Number of crashes per mile per year 

 ADT = Average daily traffic 

 W = Lane width 

 PA = Average paved shoulder width (feet) 

 UP = Average unpaved shoulder width (feet) 

 H = Road side rating (values range from 1 to 7) 

 Chapter Summary 

This chapter presents the content and results from a survey distributed to every state DOT 

in the United States regarding the use of life-cycle benefit-cost analysis and crash severity 

distributions. The survey was expected to take about 5 minutes to complete. The results indicated 

that 83 percent of the respondents used life-cycle benefit-cost analysis. Nearly half of the 

respondents that used life-cycle benefit-cost had multiple crash severity distributions based on 

their respective state’s crash data. Forty-five percent of respondents indicated that their 

respective DOTs have considered developing crash severity distributions for the 11 facility types 

in the HSM. During the survey, respondents had the option of uploading files relating to their 

crash severity distributions. Respondents from the New York and Vermont DOTs uploaded the 

distributions they use in their analysis. 
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4 METHODOLOGY 

This chapter presents the methodology used to meet the objectives of this study. First, the 

facility types, as outlined in the HSM, are defined. Second, the datasets used for the data 

preparation are outlined. Next, the segmentation program created for previous BYU research is 

reviewed, including modifications made to the program to fit the needs of this research. Next, the 

output of the segmentation program is presented. The straight proportion methodology for 

calculating crash severity distributions is then discussed briefly. Finally, the statistical models 

created for developing crash severity distributions are described. 

 Facility Type Definition 

The HSM describes 11 facility types and the roadway characteristics associated with each 

type (AASHTO 2010): 

1. Rural TLTW highways 

2. Undivided rural multilane highways 

3. Divided rural multilane highways 

4. Two-lane undivided suburban/urban arterials 

5. Three-lane suburban/urban arterials including a TWLTL 

6. Four-lane undivided suburban/urban arterials 
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7. Four-lane divided suburban/urban arterials 

8. Five-lane suburban/urban arterials including a TWLTL 

9. Rural and urban freeway segments 

10. Freeway speed change lanes 

11. Freeway ramps 

Each facility type has different attributes according to urban code, the number of through 

lanes, TWLTLs, median type, and functional class. The attributes for the first nine facility types, 

as described in the HSM, are shown in Table 4-1. Based on the quality and type of data 

available, it was determined to exclude the facility types for freeway change lanes (facility type 

10) and freeway ramps (facility type 11) from further analysis. 

Table 4-1: Facility Type Attributes (AASHTO 2010) 

Facility 
Type 
Code 

Urban 
Code 

Through 
Lanes TWLTL Median Functional Class 

1 Rural 2 0 Undivided - 
2 Rural 4 0 Undivided - 
3 Rural 4 0 Divided - 
4 Urban 2 0 Undivided Other Principal Arterial/ Major Arterial 
5 Urban 2 1 Undivided Other Principal Arterial/ Major Arterial 
6 Urban 4 0 Undivided Other Principal Arterial/ Major Arterial 
7 Urban 4 0 Divided Other Principal Arterial/ Major Arterial 
8 Urban 4 1 Undivided Other Principal Arterial/ Major Arterial 

9 Either 4, 6, 8, 
or 10 0 Either Interstate/ Other Freeway or 

Expressway 

 Datasets 

Several different datasets were used in this research that have been received through 

UDOT’s Open Data Portal (UDOT 2017) and other UDOT contacts. The datasets used include 

Historic Annual Average Daily Traffic (AADT), 2014 Medians, 2014 Lanes, Functional Class, 
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and Urban Code. Crash data, crash location, crash rollup, and crash vehicle data, spanning from 

2010-2014, were provided by the UDOT Traffic and Safety Division for the project. Route and 

mile point data were essential for this study and are included in each dataset. This section 

expounds on the uniform characteristics in each dataset, critical data columns for datasets 

retrieved from UDOT’s Open Data Portal, and critical data columns for each crash dataset. 

4.2.1 Data Uniformity 

Each dataset downloaded from the UDOT Open Data Portal has separate attributes 

corresponding with that dataset; however, uniform data fields exist that allow the datasets to be 

related linearly or spatially. Four roadway identification fields were used to relate the datasets for 

analysis. These fields include “ROUTE_ID,” “DIRECTION,” “BEG_MILEPOINT,” and 

“END_MILEPOINT” for every dataset. 

The “ROUTE_ID” field corresponds to the federal and state highway numbering system. 

The direction of traffic flow is described by the “DIRECTION” field. “BEG_MILEPOINT” and 

“END_MILEPOINT” identify the beginning and ending mile point, respectively, on the route 

that the roadway segment characteristics exist. 

4.2.2 Critical Data Columns for UDOT Open Data Portal Datasets 

Each roadway characteristic dataset has individual attributes that correspond with each 

dataset. According to the UDOT Data Portal, the AADT dataset has data dating from the most 

recent year back to 1981 on some segments. Additionally, the traffic counter station number and 

single and combination truck percentages are included in this dataset. The critical data columns 

for the AADT dataset include route number, beginning mile point, ending mile point, seven 

years of AADT data, single-unit truck percentage, and combination-unit truck percentage, as 
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shown in Table 4-2. Similar tables for all of the UDOT Data Portal used in this project are 

summarized in Appendix B. 

Table 4-2: Critical Data Columns for the AADT Dataset 

Heading Description 

ROUTE Route ID: numeric route number of a given road 
segment 

BEGMP Beginning Mile Point: beginning mile point of the 
road segment 

ENDMP End Mile Point: ending mile point of the road 
segment 

AADT[YEAR] 
AADT[YEAR]: historical dataset of AADT data from 
each year; at least 7 years of data are needed (i.e., 
AADT2012 through AADT2018) 

SUTRK2015 Single-Unit Truck Percentage: single-unit truck 
percentage of the road segment 

CUTRK2015 Combination-Unit Truck Percentage: combination-
unit truck percentage of the road segment 

4.2.3 Critical Data Columns for Crash Datasets 

The datasets obtained from the UDOT Traffic and Safety Division include crash data, 

crash location, crash rollup, and crash vehicle data. Each dataset includes a column called 

CRASH_ID and CRASH_DATETIME, which correspond to each crash that occurred. This 

labeling system is consistent throughout each crash data file. This allows the information about a 

specific crash to be found quickly in each dataset. 

Aside from a uniform crash ID column, each crash dataset contains different information 

about the crash. The crash data dataset has information regarding the crash severity, weather 

conditions, pavement conditions, the type of collision, and other roadway conditions. The crash 

rollup dataset includes information regarding the number of injuries, whether pedestrians or 

bicyclists were involved, and related circumstances for the crash that occurred. The crash vehicle 

dataset has information on the posted speed limit, estimated speeds at time of crash, the number 
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of occupants in each vehicle, and the vehicle make and model. The crash location dataset 

describes the location of the crash in terms of route number and mile point. Tables depicting the 

critical data columns for each crash dataset collected for this project are provided in Appendix B. 

 Data Preparation 

Microsoft Excel was used to prepare the data for more detailed analysis and to create 

homogeneous segments. The Roadway and Crash Data Preparation Workbook was originally 

created by Schultz et al. (2016) as a means to segment roadways based on homogeneous 

characteristics or a specified length from multiple datasets. Modifications were made to this 

Segmentation Workbook to add more datasets and change the programming code to segment the 

datasets in a different way than that utilized in the original Workbook. This section briefly 

addresses the original Excel workbook that was created and the modifications made to the 

original Workbook for this project. 

4.3.1 Original Workbook 

The original Roadway and Crash Data Preparation Workbook was created in 2015 and is 

comprised of two parts (Schultz et al. 2016). The two parts are roadway segmentation and crash 

data combination. The roadway segmentation part uses five datasets to create roadway segments. 

The five datasets included in this Workbook are AADT, functional class, speed limit or sign 

faces, lanes, and urban code. Once all of the roadway datasets have been imported, the user can 

choose whether to segment the data based on homogeneity or length. The final product of the 

roadway segmentation process is an Excel spreadsheet with the segmented data. 

Combining crash data uses four crash datasets: crash location, crash data, crash rollup, 

and crash vehicle. Once these datasets are imported into the Workbook, the “Combine Crash 
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Data” button appears which creates two spreadsheets when executed. One spreadsheet contains 

all of the crash data and the other contains vehicle data related to the crash. 

This Workbook was coded using Visual Basic Application (VBA) software that allows 

the user to input data and create new spreadsheets by executing commands. Figure 4-1 shows the 

interface of the Workbook. When the import button corresponding to a particular dataset is 

executed (i.e., Historic AADT), it allows the user to select a data input file. Once the user selects 

the input file, the VBA macros copy the data using the critical data columns, such as beginning 

and ending mile point, route, and data specific to that dataset (e.g., AADT for every year), into 

the Workbook on a new worksheet. Once the dataset is imported, the “Status” bar next to the 

import button turns green, signifying the dataset has been properly imported. 

When all the datasets are imported into the Workbook, a new button appears on the 

interface that allows the user to choose whether the data will be segmented by change in the data 

or by a specified maximum length that the user chooses. Figure 4-2 shows the new button. When 

the “Combine Roadway Data” button is executed by the user, the VBA code ensures that each 

dataset has been imported. Next, the code cycles through each dataset and deletes routes that are 

not present in all five datasets and verifies that each dataset has the same ending mile point for 

each route. The dataset mile point columns are found in each imported data sheet, and the lowest 

mile point is the beginning mile point for the segmented data. Again, the VBA code cycles 

through the imported data sheets, and, every time a change in a dataset is found, a new segment 

begins. Once the data are segmented, headers are added to the spreadsheet, and the user selects a 

folder location to save the segmented data. 
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 Figure 4-2: Segementation options and combine segmentation button (Schultz et al. 2016). 

 

4.3.2 Modifications to Roadway and Crash Data Preparation Workbook 

As a result of the purpose and scope of this project, several changes were made to the 

Roadway Data Preparation Workbook. These modifications made it possible to add more 

datasets and combine the roadway data in a different manner than that used in the original 

workbook. The revised user interface is pictured in Figure 4-3. The portion of the interface 

associated with the Roadway Data Preparation Workbook is found on the left side of Figure 4-3. 

Median and crash location were added to the roadway data section of the Workbook. Speed limit 

was omitted from the roadway data section. In addition, changes were made throughout the VBA 

code for the lane data, and new codes were added throughout the Workbook to adjust for the 

specific needs of this research. No changes were made to the Crash Data portion of this 

Workbook. This section summarizes the modifications made to the roadway data portion of the
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Workbook, including changes made to the lane data, the addition of the median data, crash data 

additions, and facility type modifications added for this research. 

4.3.2.1 Lane Data Modifications 

Originally, through-lane data were the only lane type included in the segmentation 

process. For this study, however, TWLTL data needed to be included. The process of adding the 

TWLTL lane data into the segmentation process was done by adding TWLTLs to the critical 

data columns. In addition, the code was altered so that the roadways were segmented according 

to the addition of the TWLTL data. 

4.3.2.2 Median Data Additions 

Similar to the lane data, the roadway data were not segmented based on the median type. 

In the original Workbook, the data were segmented based on speed limit. For this research, speed 

limit was not necessary, so the median type data replaced the speed limit data.  

The original median data are comprised of 10 different median types. These median types 

include depressed, no median, other divided, painted, railroad, raised island, raised median rapid 

transit, separate grades, and undivided. Working with so many different types of medians proved 

to be difficult since the median type would change frequently along the majority of roadway 

corridors. A proposal was presented to the Technical Advisory Committee (TAC) to consolidate 

the medians into divided and undivided categories for this project. Upon the approval of the 

TAC, the consolidated median included the no median, painted median, and undivided median in 

the undivided category and the remaining median types in the divided category. 
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4.3.2.3 Crash Data Additions 

Another modification that was made to the Segmentation Workbook was the inclusion of 

the crash data. This dataset was used to calculate the number of crashes that occurred on each 

roadway segment. Five additional columns were added to the final spreadsheet to include the 

number of crashes per five-year period analyzed for each severity level.  

4.3.2.4 Facility Type Modifications 

Once the roadway data were segmented, a facility type was assigned to each roadway 

segment. If a segment did not strictly fit into any of the nine facility types, an “ERROR” string 

was entered into the cell for that respective segment. Upon inspection of these results, it was 

found that 2,443 segments of the 5,732 total segments (42.6 percent) did not meet the criteria for 

any of the facility types. With approval of the TAC, expanded definitions of the HSM facility 

types were applied. The expanded facility type attributes are shown in Table 4-3, which can be 

compared with the HSM definitions of facility type attributes in Table 4-1. With the expanded 

definitions of facility types, only 12.7 percent of the total segments did not meet the criteria of 

any of the facility types, compared to the 42.6 percent previously. 

Next, it was observed that adjacent segments on the same route had the same facility 

type. The only varying attribute for the segment was AADT. Segments meeting these criteria 

were condensed for two reasons: 1) to eliminate short segments that may skew crash 

distributions and 2) to reduce uncertainty in lane data. When adjacent segments on the same 

route were condensed, the number of total segments decreased from 5,732 to 1,947 segments. To 

account for the combining of adjacent segments, a weighted average for AADT based on 

segment length was included. 
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Table 4-3: Expanded Facility Type Attributes 

Facility 
Type 
Code 

Urban 
Code 

Through 
Lanes TWLTL Median Functional Class 

1 Rural 2 or 3 0 Undivided - 
2 Rural 4 or more 0 Undivided - 
3 Rural 4 or more 0 Divided - 

4 Urban 2 or 3 0 Undivided Other Principal Arterial/ Major 
Arterial 

5 Urban 2 or 3 1 Undivided Other Principal Arterial/ Major 
Arterial 

6 Urban 4 or more 0 Undivided Other Principal Arterial/ Major 
Arterial 

7 Urban 4 or more 0 Divided Other Principal Arterial/ Major 
Arterial 

8 Urban 4 or more 1 Undivided Other Principal Arterial/ Major 
Arterial 

9 Either 4-10 0 Either Interstate/ Other Freeway or 
Expressway 

 Output 

The output for both the original and the modified Roadway Segmentation Workbook is a 

single Excel spreadsheet that has several different data columns compiled from all the input 

datasets. Data included in the original output are the beginning and ending mile points of the 

segment, route, UDOT Region, seven years of AADT data, functional class, urban code, number 

of through lanes, speed limit, single truck percentages, and combination truck percentages. The 

modified output includes all of the data included in the original output as well as TWLTL lanes, 

facility type code, facility type description, vehicle miles traveled, and crash counts for each 

severity level. Table 4-4 shows all of the column headers that are in the amended output and an 

example value for each header. The modified segmentation has 1,947 segments, while the 

original had 6,091 segments. 
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Table 4-4: Sample Modified Workbook Output 

Column Header Example 
Label 0006P 

Beg_Milepoint 0 
End_Milepoint 46.017 

Length 46.017 
Route 0006 

Route_ID 0006 
Direction P 
FC_Code 3 
FC_Type Other Prinicpal Arterial 
County MILLARD 
Region 4 

UC_Code 99999 
UC_Type Rurall 
Median UNDIVIDED 

Through_Lane 2 
TWLTL_Lane 0 

FT_Code 1 
FT_Type Rural TL TW Highway 

AADT_2014 350 
AADT_2013 330 
AADT_2012 325 
AADT_2011 330 
AADT_2010 340 
AADT_2009 355 
AADT_2008 345 
Single_Per 0.24961 

Combo_Perc 0.232449 
VMT_2014 16105.95 

Crash: Severity 1 16 
Crash: Severity 2 2 
Crash: Severity 3 6 
Crash: Severity 4 2 
Crash: Severity 5 2 
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 Straight Proportion Method 

Once the roadways were segmented based on facility type, a straight proportion was 

taken for each facility type to create crash severity distributions. The straight proportion method 

was employed to understand the crash severity distributions for past crash data. The proportions 

were calculated by dividing the total number of crashes of each severity of a facility type by the 

total number of crashes on the respective facility type. 

 Statistical Model Development 

Several statistical models were developed to predict the crash severity distribution for a 

roadway facility type. The four models that were developed were the multivariate regression, 

frequentist binomial regression, frequentist multinomial regression, and Bayesian multinomial 

regression models. These models were chosen because the results are expressed in proportions, 

which is required for the crash severity distributions since there are more than two crash 

severities. These four statistical models were developed after exploring the data and examining 

model diagnostics after fitting each model. This section describes the general development of 

each model. More information on the detailed development of the statistical models is given by 

Clegg (2018). 

4.6.1 Statistical Foundation 

To predict the distribution of crash severities for a facility type, a vector of the 

probabilities of crash severity based on facility type is required. For each segment, the vector of 

crashes is as shown in Equation 4-1. 

𝒚𝒚𝑗𝑗 =  �𝑦𝑦1𝑗𝑗,𝑦𝑦2𝑗𝑗 ,𝑦𝑦3𝑗𝑗 ,𝑦𝑦4𝑗𝑗, 𝑦𝑦5𝑗𝑗�        (4-1) 

Where,  yj = Vector of total number of crashes of all five severities on segment j 
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 yij = Number of crashes of severity i on segment j 

 i = Severity of crash (i.e., 1, ..., 5) 

 j = Roadway segment 

 

Because a crash severity distribution is a vector, the data were assumed to be distributed 

according to a multinomial distribution, as illustrated in Equation 4-2. This distribution is 

typically used to describe situations with a discrete number of possible outcomes. 

𝒚𝒚𝑗𝑗  ~ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑛𝑛𝑗𝑗 ,𝝅𝝅𝒋𝒋)        (4-2) 

Where,  yj = Vector of total number of crashes of all five severities on segment j 

 nj = Total number of crashes on segment j  

 πj = Vector of probabilities for a crash on segment j 

 i = Severity of crash (i.e. 1, ..., 5) 

 j = Roadway segment 

 

The vector πj is comprised of the probabilities of crash severity i on segment j, as shown 

in Equation 4-3.  

𝝅𝝅𝒋𝒋 =  �π1𝑗𝑗,π2𝑗𝑗 ,π3𝑗𝑗 ,π4𝑗𝑗 ,π5𝑗𝑗�        (4-3) 

Where,  πj = Vector of probabilities for a crash on segment j 

 πij = Probability of crash severity i on segment j, ∑ 𝜋𝜋𝑖𝑖𝑖𝑖 = 15
𝑖𝑖=1  because the sum of 

the probabilities must equal 1. 

 i = Severity of crash (i.e. 1, ..., 5) 

 j = Roadway segment 

This section describes the general development of the four statistical models that were 

created as part of this research. The four models include multivariate regression, frequentist 

binomial regression, frequentist multinomial regression, and Bayesian multinomial regression.  
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4.6.1.1  Multivariate Regression Model  

For the multivariate regression analysis, two initial assumptions are made. The first 

assumption is that the proportion of each type of crash is distributed normally according to a 

multivariate normal distribution, as illustrated in Equation 4-4. 

𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑦𝑦𝑖𝑖𝑖𝑖
𝑛𝑛𝑗𝑗

          (4-4) 

Where,  pij = Proportion of crashes of severity i on segment j 

 yij = Number of crashes of severity i on segment j 

 nj = Total number of crashes on segment j 

 i = Severity of crash (i.e., 1, ..., 5) 

 j = Roadway segment 

 

With regards to these proportions, it was also assumed that these proportions follow a 

multivariate normal distribution. 

In order to perform multivariate regression on the statistic pij, where pij is between 0 and 

1, the data are required to be transformed so that the data span all the real numbers using 

function f(x). For a given set of data, linear regression is used to find the line that best describes the 

major trends in the data. Regression is illustrative of the relations between a set of covariates, X, 

and their response, Y. It is commonly associated with a best-fit line. Possible transformations that 

are commonly used for this type of analysis are the logit, probit, and arcsine transformation, 

shown in Equations 4-5, 4-6, and 4-7, respectively. These three transformations were used to 

manipulate the data so that a linear regression model could fit the data better for this project.  

𝑓𝑓(𝑥𝑥) = log ( 𝑥𝑥
𝑥𝑥−1

)          (4-5) 
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𝑓𝑓(𝑥𝑥) =  ∫ 1
2𝜋𝜋
𝑒𝑒−

𝑥𝑥2

2
𝑥𝑥
−∞ 𝑑𝑑𝑑𝑑        (4-6) 

𝑓𝑓(𝑥𝑥) =  sin−1(√𝑥𝑥)         (4-7) 

Where,  x = Proportion of crashes of severity i on segment j 

 

It is important to note that multivariate regression does not account for the variability in 

total segment crashes nj. For crash severity distributions, it is expected that the distributions will 

sum to 1. In multivariate regression, the predicted probabilities for the crash severities will not 

necessarily always sum to 1. Multivariate regression also allows for nonlinear elements in the 

matrix of covariates. Specifically, the analysis applied varying numbers of natural splines to 

certain variables.  

4.6.1.2 Frequentist Binomial Regression Model 

In the multivariate regression analysis, it was assumed that the proportion of crashes of a 

certain severity on a segment are representative of the actual probability of a crash occurring. 

With multivariate regression, the model is predicting the proportion of crashes of each severity, 

not directly estimating the probability of crashes of each severity occurring. 

Similar to transformation functions used in the multivariate regression model, frequentist 

binomial regression models use link functions to estimate the parameters of a distribution. 

Mathematically, the frequentist binomial regression model can be written as illustrated in 

Equation 4-8.  

𝑦𝑦𝑖𝑖𝑖𝑖  ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝑗𝑗 ,𝜋𝜋𝑖𝑖𝑖𝑖)        (4-8) 

𝑓𝑓�𝜋𝜋𝑖𝑖𝑖𝑖� = 𝑿𝑿𝒋𝒋𝜷𝜷𝒊𝒊 =  𝛽𝛽𝑜𝑜 +  𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖 + ⋯+ 𝑋𝑋𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘𝑘𝑘           (4-9) 
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Where,  yij = Number of crashes of severity i on segment j 

 nj = Total number of crashes on segment j 

 πij = Probability of a crash of severity i on segment j 

 Xj = Vector regression covariates for segment j 

 βi = Vector of regression coefficients 

 i = Severity of crash 

 j = Roadway segment 

 k = Number of covariates selected 

 

The function f in Equation 4-9 refers to one of the three link functions considered for this 

analysis. While many link functions exist, the logit, probit, and complementary log-log link 

functions are the most commonly used for this type of analysis. The logit and probit functions 

are identical to Equations 4-5 and 4-6. The complementary log-log function is defined in 

Equation 4-10. 

𝑓𝑓(𝑥𝑥) = log (− log(1 − 𝑥𝑥))        (4-10) 

 

Similar to the multivariate regression, the probabilities for each crash of severity i are 

normalized so that the probabilities sum to 1. Also, nonlinear elements are allowed in the matrix 

of the covariates. One limitation of this model is that it does not account for any dependence 

between the probabilities π1j, π2j, π3j, π4j, and π5j.  

4.6.1.3 Frequentist Multinomial Model 

Due to the dependence between the probabilities for each crash severity, a frequentist 

multinomial model was considered for this analysis. The frequentist multinomial model was 

defined previously in Equation 4-2. 
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Once again, link functions are used to link the probabilities of each crash severity to the 

real number line, ℝ. Similar to the binomial regression model, it is not assumed that the 

probabilities follow a normal distribution. For the frequentist multinomial model, the only link 

function that was analyzed was the logit function in Equation 4-5.  

Multinomial regression performs regression on the odds of one class as compared to a 

reference class. For the purposes of this analysis, crash severity 1 was set as the reference class. 

The model of the log-odds of a class of interest compared to the reference class of crash severity 

1 can be written as shown in Equations 4-11, 4-12, and 4-13. 

𝜋𝜋{𝑖𝑖}𝑗𝑗 = 𝑒𝑒𝑛𝑛𝑖𝑖𝑖𝑖

1+∑ 𝑒𝑒𝑛𝑛𝑖𝑖𝑗𝑗5
𝑖𝑖=2

         (4-11) 

log(
𝜋𝜋{𝑖𝑖}𝑗𝑗

𝜋𝜋{1}𝑗𝑗
) = 𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑗𝑗𝛽𝛽𝑖𝑖        (4-12) 

𝜋𝜋{𝑖𝑖}𝑗𝑗 = 1
1+∑ 𝑒𝑒𝑛𝑛𝑖𝑖𝑖𝑖5

𝑖𝑖=2
         (4-13) 

Where,  πj = Vector of probabilities of a crash severity i on segment j 

 i = Severity of crash 

 j = Roadway segment 

 nj = Total number of crashes on segment j 

 

Once again, many different versions of this model were considered in this analysis, 

including natural spline functions to account for nonlinearity in the numeric variables.  

4.6.1.4 Bayesian Multinomial Regression Model 

Finally, a Bayesian multinomial regression model was fit so that a predictive probability 

distribution on each probability within the crash severity distribution could be used. In order to 

obtain the probability distribution, the logit function, shown previously in Equation 4-5, was 



44 

used to link the elements of πj to the real number line. The Bayesian multinomial regression 

model that employs the logit link function is written as shown in Equations 4-14, 4-15, and 4-16. 

𝑦𝑦𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑛𝑛𝑗𝑗 ,𝝅𝝅𝒋𝒋�, such that for 𝑖𝑖 ≠ 1     (4-14) 

log �
𝜋𝜋{𝑖𝑖}𝑗𝑗

𝜋𝜋{𝑖𝑖}𝑗𝑗
� = 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝑿𝑿𝒊𝒊𝜷𝜷𝒊𝒊 = 𝛽𝛽𝑖𝑖0 + 𝑋𝑋1𝑗𝑗𝛽𝛽𝑖𝑖1 + ⋯+ 𝑋𝑋𝑘𝑘𝑘𝑘𝛽𝛽𝑖𝑖𝑖𝑖    (4-15) 

log �
𝜋𝜋{𝑖𝑖}𝑗𝑗

𝜋𝜋{1}𝑗𝑗
� = 𝜂𝜂1𝑗𝑗 = 0         (4-16) 

Where,  β1 = 0 

 πij = Vector of probabilities of a crash severity i on segment j 

 nj = Total number of crashes on segment j 

 ηij = Vector of regression covariates for segment j and regression coefficients 

 Xj = Vector regression covariates for segment j 

 βi = Vector of regression coefficients 

 i = Severity of crash 

 j = Roadway segment 

 k = Number of regression covariates included in the model 

 

This Bayesian multinomial regression model can be exploited further. It is expected that 

for certain variables, the effect will vary depending on crash severity. For example, an increase 

in the AADT of a road will affect the probability of severity 1 crashes differently than it will 

affect the probability of severity 2 crashes. For this reason, additional coefficients were added to 

the model. The Bayesian multinomial regression model calculates a coefficient differently for 

each of i classes when calculating the best-fit line. 

In order to account for various intercepts and coefficients, several models were 

considered. By substituting these various models in for Equation 4-15, the crash severity 
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distributions for each of the facility types can be predicted. The models that were analyzed for 

this research were the random intercepts model with respect to severity and facility type, random 

coefficients model with respect to severity and facility type, and random coefficient mixture 

model with respect to severity and facility type. In addition, a nonsense model was used to 

evaluate the effectiveness of each model. A nonsense model was created by assuming that all 

crash severities were equally likely. By creating a nonsense model, each of the other models 

could be compared to the nonsense model to understand how well the data were predicted by 

each model. In other words, the nonsense model creates a baseline to which the other models 

may be compared. 

4.6.2 Methods of Evaluation 

Three different methods were used in order to evaluate the model fit and predictive 

ability. The three methods are Bayesian Information Criterion (BIC), Deviance Information 

Criterion (DIC), and Root Mean Squared Error (RMSE). 

BIC evaluates model fit by examining the likelihood of the model given the observed 

data. Once the likelihood is determined, deviance is extracted. High deviance indicates a low 

likelihood and poor fit. An additional penalty is assessed to models with additional parameters to 

account for the loss of the information in adding another covariate. This penalty is known 

colloquially as the curse of dimensionality. Models with more parameters naturally fit the data 

better; therefore, a greater penalty is assessed to offset the loss of information that may be 

present. A high BIC value relative to other BICs of similar models on the same data indicates a 

relatively poor fit. 

DIC is very similar to BIC. However, it is impossible to compare the model fit between 

models using BIC for evaluation and Bayesian models using DIC for evaluation. The values 
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calculated for BIC and DIC cannot be translated from one to the other. If comparisons are to be 

made between Bayesian and other types of models, RMSE is recommended. 

RMSE evaluates the model's predictive ability by examining how far the calculated 

estimates are from the actual values observed. For example, if for segment j the model predicts 

nj*pij crashes of severity i, where pij is the proportion of crashes of severity i on segment j and yij 

is the actual number of severity i crashes on segment j, the RMSE is calculated as shown in 

Equation 4-17. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 =  � 1
𝑁𝑁𝑠𝑠
∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑛𝑛𝑗𝑗 ∗ 𝑅𝑅𝑚𝑚𝑚𝑚)2
𝑁𝑁𝑠𝑠
𝑗𝑗=1       (4-17) 

Where,  Ns = Total number of segments 

 yij = Number of crashes of severity i on segment j 

 nj = Total number of crashes on segment j  

 Rmi = Index probability for crash severity i for facility type m, within overall crash 
severity distribution matrix R 

 i = Severity of crash 

 j = Roadway segment 

 m = Facility type 

 Chapter Summary 

This chapter presented the methodology required to develop crash severity distributions 

for nine facility types in the HSM. The datasets used in this analysis were historic AADT, 

functional class, median, lane, urban code, and crash location. All of these datasets, with the 

exception of crash location, were downloaded from UDOT’s Open Data Portal (UDOT 2017). A 

roadway data preparation Excel-based spreadsheet developed in previous research was used to 

segment the roadway based on homogeneity. Several changes were made to the Workbook in 
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order to meet the scope and purpose of the research including adding TWLTL data, median data, 

crash counts for each severity level, and facility type modifications. The output was a single 

Excel spreadsheet with all of the data pertaining to each roadway segment. The total number of 

segments was 1,947 after the expanded definitions of the HSM were applied. The methods for 

developing the statistical models were also discussed. The four models that were developed for 

this research were the multivariate regression, frequentist binomial regression, frequentist 

multinomial regression, and Bayesian multinomial regression models. For evaluation of 

goodness of model fit to actual crash occurrences, BIC, DIC, and RMSE were used. 
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5 RESULTS 

This chapter presents the results for the crash severity distributions from the straight 

proportion method and statistical models that were developed for the nine facility types listed in 

the HSM. First, the results for the straight proportion method are presented. Next, the evaluation 

results including the crash severity distributions for each of the four statistical models are 

discussed. The four models include multivariate regression, frequentist binomial regression, 

frequentist multinomial regression, and Bayesian multinomial regression. Finally, the preferred 

model for determining the crash severity distributions for the nine facility types is selected. More 

information regarding the results of the statistical models is provided by Clegg (2018). 

 Straight Proportion Method 

The straight proportion method was used to understand the crash severity distribution 

from past crash data. The results for the straight proportion method for the nine facility types are 

shown in Table 5-1. Although the straight proportion method is quick and simple, it is not the 

best to determine a crash severity distribution. One shortcoming of taking a straight proportion is 

that it does not take into account the random nature of crashes like a statistical model would. 

Another shortcoming of this method is that it only accounts for the facility type to determine the 

crash severity distribution, whereas statistical models can include a number of relevant variables. 
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Table 5-1: Crash Severity Distribution for Straight Proportion Method 

Facility 
Type 

Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

1 0.7393 0.1046 0.1062 0.0373 0.0126 
2 0.7849 0.0952 0.0841 0.0253 0.0105 
3 0.7798 0.1116 0.0832 0.0166 0.0088 
4 0.6900 0.1764 0.1110 0.0195 0.0031 
5 0.6645 0.2024 0.1072 0.0197 0.0062 
6 0.6407 0.2132 0.1212 0.0214 0.0035 
7 0.6660 0.2064 0.1086 0.0171 0.0019 
8 0.6482 0.1977 0.1233 0.0265 0.0043 
9 0.7554 0.1410 0.0797 0.0183 0.0056 

 Multivariate Regression Model 

In multivariate regression for transformed proportions, several assumptions must be met. 

The assumptions that are important for this analysis are that the proportions change linearly 

relative to each covariate, crash counts from different segments are independent from one 

another, residuals are normally distributed, and the residuals have an equal variance across the 

scope of each covariate, or homoskedacity. Since the analysis also considered multiple non-

linear regression, the linearity assumption was relaxed. 

While much of the data have linear trends, there are some variables that do not have 

linear trends. Figure 5-1 shows a linear plot for one variable, combination trailer truck 

percentage that shows nonlinearity The red line indicates the median of the data, which does not 

follow a linear trend. 

As explained previously in section 4.3, efforts were made to ensure homogeneity within a 

roadway segment. While there may be some dependence between segments, independence has 

been accounted for in the data cleaning process; therefore, the crash counts are independent from 

one another. 
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Figure 5-1: Linear plots for percent single trucks (Clegg 2018). 

 

The assumptions that the residuals are normally distributed and have equal variance are 

unique to the multivariate regression framework. Figure 5-2 show the residual plots, which 

appear normally distributed, for a multivariate regression model. Additionally, heteroskedacity 

was examined. It was observed that the equal variance was not guaranteed, which implies that 

the assumptions that the proportions are normally distributed is unjustified. 
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Figure 5-2: Residual plots for multivariate regression (Clegg 2018). 

 

For each of the four models that were explained in section 4.6, many models were 

considered to achieve the most effective model. An iterative backward variable selection was 

employed for variable selection in the multivariate regression analysis. The backwards variable 

selection method began by using all possible covariates. If deleting a covariate lowered the BIC, 

indicating a better fit, the covariate was removed. This process continued until only three 

covariates remained: segment length, facility type, and 2014 AADT.  

The option was investigated of including county and UDOT region in the model so that 

crash severity distributions could be specific to smaller geographic areas. The backward variable 

selection method showed that including either of these variables did not improve model fit. As 
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such, the variables relating to county and UDOT region were not included as variables within 

any of the four statistical models. 

For the multivariate regression, frequentist multinomial regression, and frequentist 

binomial regression models, nonlinearity was examined using natural splines. Several different 

numbers of natural splines were included. The best model was chosen using BIC values, as BIC 

values account for a good model fit while enforcing parsimony, meaning the simplest model with 

the most predictive power. 

For the multivariate regression framework, the best model for all severities is expressed 

in Equation 5-1, with f defined previously in Equation 4-7. The 𝕀𝕀 symbol refers to an indicator 

function, which has a value of 1 or 0 depending on the facility type. For example, if Facility 

Type Code = m, the indicator function is assigned a value of 1 because the facility types matches 

the desired code in the model. The resulting crash severity distribution for the best-fitting model 

according to BIC for each of the nine facility types is shown in Table 5-2. 

𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑚𝑚 �𝕀𝕀�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 = 𝑚𝑚�� + ∑ 𝜔𝜔2𝑔𝑔�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗�𝛽𝛽2𝑔𝑔𝑔𝑔6
𝑔𝑔=1 +

�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 2014𝑗𝑗�𝛽𝛽3𝑖𝑖 + (𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗)𝛽𝛽4𝑖𝑖       (5-1) 

Where,  pij = Proportion of crash of severity i on segment j 

 βi = Regression coefficient for severity i 

 nj = Total number of crashes on segment j 

 ωg = Natural spline function of number g 

 LENGTHj  =  Variable for length of segment j 

 AADT 2014j =  Variable for 2014 AADT value for segment j 

Through Lanesj =  Number of through lanes for segment j 

 g = Number of natural spline functions included in the model (6 natural spline 
functions are included in this model) 
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 i = Severity of crash 

 j = Roadway segment 

 m = Facility type 

 

Table 5-2: Crash Severity Distribution for Multivariate Regression Model (Clegg 2018) 

Facility 
Type 

Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

1 0.7854 0.0913 0.0902 0.0267 0.0064 
2 0.8657 0.0624 0.0563 0.0123 0.0033 
3 0.8023 0.1089 0.0746 0.0098 0.0044 
4 0.7266 0.1594 0.0977 0.0136 0.0027 
5 0.6993 0.1900 0.0960 0.0102 0.0045 
6 0.6610 0.2041 0.1169 0.0152 0.0028 
7 0.7538 0.1597 0.0753 0.0092 0.0020 
8 0.6937 0.1891 0.0970 0.0175 0.0027 
9 0.7734 0.1111 0.0880 0.0197 0.0078 

 Frequentist Binomial Regression Model 

An identical procedure to the multivariate regression models was completed for the 

Frequentist binomial regression framework. Once again, natural splines were used but were 

applied to all variables. The best model was chosen based on the median BIC values for the five 

models of each crash severity. Unlike the multivariate regression models, however, extreme 

amounts of variability in the diagnostic measures did not exist, indicating that the binomial 

regression model could account for the other sources of variability. 

For the variable selection, the backward variable selection method was used again. The 

variables that were chosen using this technique were facility type code, length, and AADT 2014. 

The chosen model for binomial regression is shown in Equation 5-2. The resulting crash severity 

distribution for the nine facility types is shown in Table 5-3. 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑚𝑚 �𝕀𝕀�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 = 𝑚𝑚�� + �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗�𝛽𝛽2𝑖𝑖 +

∑ 𝜔𝜔3𝑔𝑔(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 2014𝑗𝑗)7
𝑔𝑔=1 𝛽𝛽3𝑔𝑔𝑔𝑔         (5-2) 

Where,  πimj = Probability of crash severity i on segment j of facility type m 

 LENGTHj  =  Variable for length of segment j 

 AADT 2014j =  Variable for 2014 AADT value for segment j 

 nj = Total number of crashes on segment j 

 ωg = Natural spline function of number g 

 g = Number of natural spline functions included 

 i = Severity of crash 

 j = Roadway segment 

 m = Facility type 

 

Table 5-3: Crash Severity Distribution for Frequentist Binomial Regression 
Model (Clegg 2018) 

Facility 
Type 

Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

1 0.7444 0.1061 0.1026 0.0356 0.0113 
2 0.7720 0.0972 0.0920 0.0266 0.0122 
3 0.7633 0.1231 0.0890 0.0168 0.0078 
4 0.6780 0.1831 0.1140 0.0213 0.0036 
5 0.6551 0.2095 0.1073 0.0210 0.0071 
6 0.6286 0.2163 0.1291 0.0218 0.0042 
7 0.6745 0.2070 0.0997 0.0170 0.0018 
8 0.6373 0.2023 0.1277 0.0274 0.0053 
9 0.7610 0.1207 0.0869 0.0239 0.0075 

 Frequentist Multinomial Regression Model 

The multinomial regression models have a different set of assumptions. For multinomial 

regression, it is required that the transformed proportions change monotonically relative to each 

covariate. Monotonic relationships occur when one variable increases when another variable 
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increases or when one variable decreases when another variable decreases. It was found that 

some variables did not have monotonic relationships, such as AADT 2014. 

The model that was chosen for the multinomial regression model is illustrated in 

Equation 5-3. 

log �
𝜋𝜋{𝑖𝑖}𝑚𝑚𝑚𝑚

𝜋𝜋{1}𝑚𝑚𝑚𝑚
� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑚𝑚 �𝕀𝕀�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 = 𝑚𝑚�� +

∑ 𝜔𝜔2𝑔𝑔(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗)𝛽𝛽2𝑔𝑔𝑔𝑔38
𝑔𝑔=1 + ∑ 𝜔𝜔3𝑔𝑔(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 2014𝑗𝑗)𝛽𝛽3𝑔𝑔𝑔𝑔38

𝑔𝑔=1       (5-3) 

Where,  π{i}mj = Probability of crash severity i on segment j within facility type m 

 ωg = Natural spline function of number g 

 g = Number of natural spline functions included in the model (38 natural spline 
functions are included in this model) 

 i = Severity of crash 

 j = Roadway segment 

 m = Facility type 

 

The covariates included in this model were the same as the frequentist binomial 

regression models: segment length, 2014 AADT, and facility type. While this multinomial model 

performed well, it did not vastly outperform the other models considered with regard to RMSE. 

Also, it dealt with possible monotonicity in AADT and accounted for dependence within 

elements of the πmj vector. The crash severity distribution relating to the frequentist multinomial 

regression model is shown in Table 5-4. 
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Table 5-4: Crash Severity Distribution for Frequentist Multinomial Regression 
Model (Clegg 2018) 

Facility 
Type 

Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

1 0.7679 0.1006 0.0916 0.0314 0.0085 
2 0.7855 0.0884 0.0916 0.0248 0.0097 
3 0.7637 0.1238 0.0886 0.0183 0.0056 
4 0.6985 0.1902 0.0964 0.0136 0.0013 
5 0.5918 0.2403 0.1305 0.0303 0.0071 
6 0.6535 0.2113 0.1145 0.0178 0.0029 
7 0.6680 0.2100 0.1011 0.0195 0.0014 
8 0.6404 0.2066 0.1257 0.0234 0.0039 
9 0.7770 0.1188 0.0768 0.0221 0.0053 

 Bayesian Multinomial Regression Model 

The final model under the Bayesian multinomial framework was the most complex 

considered. It introduces coefficients for every combination of facility type and crash severity. 

Covariates were selected by the Bayesian Lasso algorithm rather than the backward variable 

selection algorithm used for the other models. The covariates of segment length, number of 

through lanes, number of deceleration lanes, percentage of single trucks, percentage of 

combination trucks, and 2014 AADT had a probability greater than 0.8 of being non-zero. 

The DIC was used to determine which of the Bayesian models fit the actual data the best. 

The DIC values for each of the Bayesian models is shown in Table 5-5. Based on the DIC 

values, the random coefficients model with different coefficients for each crash severity and 

facility type combination had the lowest DIC value. Therefore, this model was chosen as the best 

Bayesian model from this analysis. The model can be written as shown in Equation 5-4. The 

resulting crash severity distribution for the nine facility types for the best Bayesian multinomial 

regression model is illustrated in Table 5-6. 

  



57 

Table 5-5: DIC Values for Bayesian Models (Clegg 2018) 

Model DIC Value 
Random Intercepts (Severity) 28271 

Random Intercepts (Severity & Facility 
Type) 27230 

Random Coefficients (Severity) 27186 
Random Coefficients (Severity & Facility 

Type) 26577 

Nonsense 51590 
Mixed 27786 

 

log �
𝜋𝜋{𝑖𝑖}𝑗𝑗

𝜋𝜋{1}𝑗𝑗
� = 𝛽𝛽0𝑖𝑖 + 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽1𝑖𝑖 + ⋯+ 𝑋𝑋𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘𝑘𝑘      (5-4) 

Where,  πij = Probability of crash severity i on segment j 

 i = Severity of crash 

 j = Roadway segment 

 K = 7 with covariates for each of the seven chosen variables 

 

Table 5-6: Crash Severity Distribution for Bayesian Multinomial Regression 
Model (Clegg 2018) 

Facility 
Type 

Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

1 0.7308 0.1138 0.1079 0.0364 0.0111 
2 0.7958 0.1062 0.0728 0.0192 0.0060 
3 0.8308 0.1036 0.0591 0.0019 0.0046 
4 0.6839 0.1784 0.1110 0.0239 0.0028 
5 0.6896 0.1852 0.1008 0.0200 0.0044 
6 0.6435 0.2073 0.1243 0.0211 0.0038 
7 0.6522 0.2218 0.1069 0.0185 0.0006 
8 0.6433 0.2091 0.1184 0.0248 0.0044 
9 0.7569 0.1098 0.0970 0.0240 0.0123 
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 Final Model Selection 

A final comparison between each of the statistical models was made using BIC values. 

RMSE would be the best diagnostic, but because the predictions are in terms of decimals while 

observed crashes are in terms of discrete numbers, RMSE is an unreliable diagnostic. 

Nevertheless, the RMSE values were found to be informative and were included in Table 5-7. 

Table 5-8 displays the BIC values for the best models from each framework.  

Table 5-7: RMSE Values for Best Models (Clegg 2018) 

Model Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

Freq MLR 5.6509 3.9571 3.2292 1.4151 0.5788 
Freq Logit 5.4687 3.7006 3.2177 1.4228 0.5707 

Freq Multinomial 5.3610 3.7291 3.0640 1.4036 0.5488 
Random Intercepts (Severity) 5.3721 3.8134 3.0586 1.3852 0.5688 

Random Intercepts (Severity & 
Facility Type) 5.3310 3.5141 3.0582 1.3385 0.5432 

Random Coefficients (Severity) 5.3673 3.6241 3.0288 1.3383 0.5465 
Random Coefficients (Severity 

& Facility Type) 5.3324 3.5098 3.0508 1.3345 0.5406 

Nonsense 3.3722 7.9741 3.4130 4.1216 5.0276 
Mixed 5.3315 3.6384 3.0967 1.4090 0.5764 

 

Table 5-8: BIC Values for the Best Model from Each Framework (Clegg 2018) 

Model BIC 
Multivariate Regression -15342 

Frequentist Binomial Regression 10493 
Frequentist Multinomial Regression 24927577 
Bayesian Multinomial Regression 30666 

 

Based on the RMSE values, the frequentist multinomial regression and binomial 

regression models appear to perform well. However, the BIC values show that the multinomial 

regression does not fit the data well. Additionally, the likelihood for the multivariate regression 
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and the binomial regression is misapplied because the assumption that the data are distributed 

according to the multivariate distribution or frequentist binomial distributions cannot be met. 

Additionally, vehicle crashes are believed to be distributed according to a multinomial 

distribution.  

Based on the BIC and RMSE values, it was concluded that the Bayesian multinomial 

regression model predicted the crash severity distributions more accurately compared to the other 

models analyzed. The Bayesian models are more flexible in evaluating effects of certain similar 

segments of roads. The Bayesian model is also favored due to its interpretability. The crash 

severity distribution for the Bayesian multinomial regression model was shown previously in 

Table 5-6. In addition, there is a 95 percent probability that the crash severity distribution will 

fall within the respective values in Table 5-9 and Table 5-10. Figure 5-3 shows the 95 percent 

credible intervals for the Bayesian multinomial regression model. CS 1-5 refer to crash severity, 

with 1 representing PDO and 5 representing fatal crashes. 

Table 5-9: 95 Percent Credible Upper Bound for Bayesian Multinomial Regression 
Model (Clegg 2018) 

Facility 
Type Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

1 0.7419 0.1223 0.1159 0.0411 0.0138 
2 0.8269 0.1343 0.0962 0.0320 0.0133 
3 0.8819 0.1650 0.1080 0.0144 0.0267 
4 0.6975 0.1905 0.1211 0.0288 0.0047 
5 0.7132 0.2072 0.1174 0.0279 0.0082 
6 0.6514 0.2146 0.1298 0.0232 0.0047 
7 0.6664 0.2350 0.1165 0.0225 0.0016 
8 0.6581 0.2226 0.1289 0.0296 0.0065 
9 0.7679 0.1185 0.1051 0.0283 0.0158 
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Table 5-10: 95 Percent Credible Lower Bound for Bayesian Multinomial Regression 
Model (Clegg 2018) 

Facility 
Type Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 

1 0.7192 0.1057 0.1005 0.0320 0.0088 
2 0.7594 0.0825 0.0532 0.0107 0.0022 
3 0.7542 0.0593 0.0286 0.0001 0.0004 
4 0.6693 0.1665 0.1017 0,0195 0.0016 
5 0.6642 0.1649 0.0858 0.0139 0.0020 
6 0.6352 0.1999 0.1192 0.0191 0.0030 
7 0.6375 0.2090 0.0980 0.0149 0.0002 
8 0.6278 0.1960 0.1087 0.0205 0.0028 
9 0.7446 0.1018 0.0892 0.0203 0.0094 

 

  (a)                                       (b)                                       (c) 

Figure 5-3: 95 percent credible intervals for Bayesian multinomial regression model: (a)  
crash severity 1, (b) crash severity 2 and 3, and (c) crash severity 4 and 5 (Clegg 2018). 
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 Crash Severity Distribution Comparison 

Once the Bayesian multinomial crash severity distribution was chosen, a comparison 

between the chosen model, the straight proportion method, and the HSM crash severity 

distributions was performed. The comparison of these crash severity distributions is shown in 

Figure 5-4, where FT refers to the facility type that the distribution represents. The crash severity 

distribution found within the HSM is developed using roadway data of facility type 1, rural 

TLTW roadways. Thus, the crash severity distribution is compared to the other crash severity 

distributions for facility type 1. Though the crash severity distributions for the straight proportion 

method and Bayesian multinomial model are nearly identical, there are some differences 

between these distributions and the distribution from the HSM. The difference between the 

proportion of crashes for crash severity 1 in the HSM and the Bayesian multinomial model is 5.2 

percent. For crash severity 2 and crash severity 4, the differences are 3.1 and 1.8 percent, 

respectively. 

The distributions for the straight proportion method and the Bayesian multinomial model 

for facility types 2 through 9 can also be compared to understand how the results for each 

method differ from each other. The largest discrepancies between the Bayesian multinomial 

statistical model and the straight proportion method occur for facility types 3 and 5. For example, 

the difference between the crash severity 1 proportion between the Bayesian multinomial 

statistical model and the straight proportion method for facility type 3 is about 5.1 percent. 

Likewise, for crash severity 3 the difference is approximately 2.4 percent for facility type 3.  
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Due to the crash costs associated with the crash severity levels in life-cycle benefit-cost 

analysis, the discrepancies in more severe crashes will have a larger impact in life-cycle benefit-

cost analysis. As stated previously, the crash severity distribution for the straight proportion 

method was not chosen because it is not adequate to describe the contributing factors of crashes. 

The straight proportion method uses facility type as the only variable to develop the crash 

severity distributions, whereas the Bayesian multinomial model has a number of variables that 

are taken into account. 

 Chapter Summary 

This chapter presented the results for the crash severity distributions for the four models 

developed for this research. To choose the best model for each framework, it was necessary for 

the models to be cross-validated. The models were cross-validated using appropriate BIC, DIC, 

and RMSE values. The model specifications were presented with the significant covariates. In 

addition, the crash severity distributions for the nine facility types were presented. Next, a single 

model, the Bayesian multinomial regression model, was presented as the most suitable crash 

severity distribution. The crash severity distributions for the Bayesian multinomial statistical 

model, the straight proportion method, and the HSM distribution were compared. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this research was to develop crash severity distributions for the 11 facility 

types outlined in the HSM. Due to insufficient data, crash severity distributions were developed 

only for the first nine facility types. The preceding chapters have discussed the procedures used 

to complete the analysis, including a crash severity distribution survey that was distributed to 

each of the 50 DOTs in the United States, the roadway segmentation process, and the 

development of several statistical models. 

Due to insufficient research for the development of crash severity distributions, the 

research team conducted a brief survey to understand the uses of crash severity distributions in 

relation to life-cycle benefit-cost analysis within DOTs. Next, an existing automated Excel 

workbook was modified to analyze roadway data segment based on a change in roadway 

characteristics. The roadway segments were classified based on the HSM facility types. Changes 

were made to the definition of the facility types in order to include more roadway segments in 

the analysis. The expanded definition of the facility types included additional through lanes. 

Statistical models were developed using R-programming. The four models that were developed 

for this research were the multivariate regression, frequentist binomial regression, frequentist 

multinomial regression, and Bayesian multinomial regression models. 



65 

This chapter summarizes the methodology and final results of this research. First, the 

roadway segmentation process is summarized. Next, the statistical models developed for this 

project are discussed. Finally, recommendations and future research opportunities are presented. 

 Roadway Segment Summary 

After the roadway data were acquired, an automated workbook created in previous BYU 

research was modified to segment the data using several roadway characteristics. The median 

type roadway characteristic was included. Although 10 types of medians were included in the 

dataset, each type was classified as divided or undivided, as the HSM only specifies these two 

median types. The definitions of the facility types were expanded to include more through lanes. 

By changing the definition of the facility types, more segments were included in the analysis. 

Additionally, TWLTLs were also added to the data segmentation process. Once changes were 

made to the segmentation process, it was observed that several adjacent segments had the same 

facility type. The only difference between adjacent segments was AADT values. Adjacent 

segments on the same route were then condensed to reduce the occurrence of short segments. In 

such cases, a weighted average, based on segment length, of the AADT of combined segments 

was entered. 

 Statistical Model Summary 

Once the roadway segmentation process was complete, the data were entered into four 

statistical models to develop crash severity distributions. The four models that were developed 

for this research were the multivariate regression, frequentist binomial regression, frequentist 

multinomial regression, and Bayesian multinomial regression models. To evaluate the models, a 

cross-validation study was conducted to select the best model for each framework. BIC, DIC, 
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and RMSE values were compared to conduct the analysis. Based on the cross-validation study, it 

was determined that the Bayesian multinomial regression model was the most effective model to 

describe the crash severity distributions for the nine facility types evaluated. Table 6-1 shows the 

crash severity distributions for each facility type for the Bayesian multinomial regression model. 

Table 6-1: Crash Severity Distribution for Bayesian Multinomial Regression 
Model (Clegg 2018) 

Facility 
Type 

Severity 
1 

Severity 
2 

Severity 
3 

Severity 
4 

Severity 
5 

1 0.7308 0.1138 0.1079 0.0364 0.0111 
2 0.7958 0.1062 0.0728 0.0192 0.0060 
3 0.8308 0.1036 0.0591 0.0019 0.0046 
4 0.6839 0.1784 0.1110 0.0239 0.0028 
5 0.6896 0.1852 0.1008 0.0200 0.0044 
6 0.6435 0.2073 0.1243 0.0211 0.0038 
7 0.6522 0.2218 0.1069 0.0185 0.0006 
8 0.6433 0.2091 0.1184 0.0248 0.0044 
9 0.7569 0.1098 0.0970 0.0240 0.0123 

 Recommendations and Future Research 

Several suggestions for future research are presented based on the findings of this 

research. Although the data used in this research worked well throughout the process, one issue 

with the data was that there were circumstances that involved tedious manipulation to the data in 

order to achieve the results wanted. UDOT’s Light Detection and Ranging (LiDAR) data are of 

extreme precision but can cause some problems when the data are not required to be at a high 

level of precision. It is, therefore, recommended that a collection of datasets of varying precision 

be developed to meet various analysis purposes. For example, for many analyses, a more general, 

less precise dataset can be used. For this project, the extremely precise LiDAR data were 

difficult to use at times. By having various datasets, the user will be able to choose a dataset that 

will meet the needs of his or her research. 
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Another recommendation for future research is to focus on collecting data for the 

additional facility types. Originally, the scope of this project included developing crash severity 

distributions for all 11 facility types; however, due to insufficient data, only nine facility types 

were developed. The two facility types that were not included were freeway speed change lanes 

and freeway ramps. In order to develop crash severity distributions for these omitted facility 

types, additional roadway data and crash data will be required. Perhaps the largest change of data 

suggested will be in recording the specific lanes in which crashes occur.  

The last recommendation for future research is to combine the process of life-cycle 

benefit-cost analysis with the roadway safety research that continues to be developed. One of the 

outputs for the safety research is a list of countermeasures to implement in order to increase the 

safety for that roadway segment. These countermeasures can then be evaluated in the life-cycle 

benefit-cost analysis to help engineers and decision-makers with choosing the best option for the 

roadway in terms of safety improvements. Automating this procedure can give the engineer an 

idea of how much the countermeasure will cost and which countermeasures could be excluded 

due to cost constraints.  
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APPENDIX A  SURVEY  

Appendix A includes the details for the survey that was distributed as part of this 

research. This section includes the survey questions and survey flow and further details regarding 

the survey results. 

A.1 Survey Questions and Survey Flow 

The following is the crash severity distribution survey that was sent to each of the 50 

State DOTs in the United States. Figure A.1 shows the survey flow. 

This is a survey conducted by the Brigham Young University research team to determine 

the uses of crash severity distributions by State DOT across the United States in conducting life-

cycle benefit-cost analyses of safety improvement countermeasures. This survey will take 

approximately 5 minutes to complete. Completing this survey is voluntary. Please answer each 

question honestly. The survey is tallied by Qualtrics software. The names of respondents will be 

kept confidential and will not be reported in any reports, including the final report produced in 

this study. Please allow those who are most familiar with these subjects to be the representatives 

for your DOT. 

Life-cycle benefit-cost analyses require crash severity distributions in order to predict the 

types of crashes that will occur on a roadway segment. A crash severity distribution describes the 

distribution of crash severities for a roadway type, segment or network. There is a single default 
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crash severity distribution described on pages 10-14 through 10-17 of Volume 2 of the Highway 

Safety Manual for rural two-lane, two-way roads, which is shown below. The Highway Safety 

Manual encourages state and local agencies to adopt their own crash severity distributions based 

on their respective crash database. The purpose of this survey is to understand the crash severity 

distributions that are currently being used or implemented throughout the United States. 

 

 

 

Introduction Questions 

1. Which State Department of Transportation do you represent? 
 

2. What position do you hold at your DOT? 
 

3. Do you use life-cycle benefit-cost analysis to analyze the cost-effectiveness of safety-
related countermeasures? 

a) Yes 
b) No 
c) I don't know 
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Block A 

1. When did you begin using the life-cycle benefit-cost analysis you currently use? 
a) I don't know 
b) More than 10 years ago 
c) Between 5 and 10 years ago 
d) Between 1 and 5 years ago 
e) Less than 1 year ago 

 

2. What crash severity distribution(s) do you use in your life-cycle benefit-cost analysis? 
a) A single distribution taken from the Highway Safety Manual (There is currently 

only one for rural two-lane two-way highways) 
b) A single distribution derived from our state's crash data 
c) Multiple distributions derived from our state's crash data 
d) None of the above. Other reason specified below. ____________________ 

 

Block B 

1. Has the DOT you represent considered using different crash severity distribution based 
on your state's crash data? 

a) Yes, we already have crash severity distributions based on our state’s crash data. 
b) Yes, we are currently researching crash severity distributions for our state using 

our state’s crash data. 
c) Yes, but we have not yet started to research it. 
d) No, we feel the crash severity distribution we currently use is sufficient. 
e) No, we don’t use crash severity distributions. 
f) No. Other reason specified below. ____________________ 

 

2. Has the DOT you represent considered using different crash severity distributions 
specific to the 11 facility types described in the Highway Safety Manual? 

a) Yes, we already have crash severity distributions based on the 11 facility types 
described in the Highway Safety Manual. 

b) Yes, we are currently researching crash severity distributions based on the 11 
facility types described in the Highway Safety Manual. 

c) Yes, but we have not yet started to research crash severity distributions based on 
the 11 facility types described in the Highway Safety Manual. 

d) No, we feel the crash severity distribution we currently use is sufficient. 
e) No, we don’t use crash severity distributions. 
f) No. Other reason specified below. ____________________ 
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3. Does your DOT have literature relating to the derivation of crash severity distributions 
for various facility types? Please upload any files in a single compressed file. 

 

4. May we contact you if we have questions about your answers? 
a) Yes 
b) No 

 

Block C 

1. Has the DOT you represent considered using different crash severity distributions 
specific to the 11 facility types described in the Highway Safety Manual? 

a) Yes, we already have crash severity distributions based on the 11 facility types 
described in the Highway Safety Manual. 

b) Yes, we are currently researching crash severity distributions based on the 11 
facility types described in the Highway Safety Manual. 

c) Yes, but we have not yet started to research crash severity distributions based on 
the 11 facility types described in the Highway Safety Manual. 

d) No, we feel the crash severity distribution we currently use is sufficient. 
e) No, we don’t use crash severity distributions. 
f) No. Other reason specified below. ____________________ 

 
2. Does your DOT have literature relating to the derivation of crash severity distributions 

for various facility types? Please upload any files in a single compressed file. 
 

3. May we contact you if we have questions about your answers? 
a) Yes 
b) No 

 

Block D 
1. Has the DOT you represent considered using different crash severity distribution based 

on your state's crash data? 
a) Yes, we already have crash severity distributions based on our state’s crash data. 
b) Yes, we are currently researching crash severity distributions for our state using 

our state’s crash data. 
c) Yes, but we have not yet started to research it. 
d) No, we feel the crash severity distribution we currently use is sufficient. 
e) No, we don’t use crash severity distributions. 
f) No. Other reason specified below. ____________________ 
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2. Has the DOT you represent considered using different crash severity distributions 
specific to the 11 facility types described in the Highway Safety Manual? 

a) Yes, we already have crash severity distributions based on the 11 facility types 
described in the Highway Safety Manual. 

b) Yes, we are currently researching crash severity distributions based on the 11 
facility types described in the Highway Safety Manual. 

c) Yes, but we have not yet started to research crash severity distributions based on 
the 11 facility types described in the Highway Safety Manual. 

d) No, we feel the crash severity distribution we currently use is sufficient. 
e) No, we don’t use crash severity distributions. 
f) No. Other reason specified below. ____________________ 

 

3. Does your DOT have literature relating to the derivation of crash severity distributions 
for various facility types? Please upload any files in a single compressed file. 

 

4. Please describe the crash severity distributions used in your life-cycle benefit-cost 
analysis. Do you have crash severity distributions for certain facility types? How did you 
derive your distributions? If literature is available, please attach for reference on the next 
question. 
 

5. Please attach any literature that is available regarding the previous question. Please 
upload any files in a single compressed file. 
 

6. When did you begin using the crash severity distributions you currently use? 
 

a) I don't know. 
b) More than 10 years ago 
c) Between 5 and 10 years ago 
d) Between 1 and 5 years ago 
e) Less than 1 year ago 

 

7. What benefits have you seen from using your crash severity distributions in your crash-
related analyses? 

 

8. May we contact you if we have questions about your answers? 
a) Yes 
b) No 
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Conclusion 

If you have questions about this survey, you may contact Dr. M. Saito. Please use the following 
address when you would like to mail printed materials to us.  

If you have questions regarding your rights as a participant in research projects, you may contact 
Dr. Shane S. Schulthies, Chair of the Institutional Review Board for Human Subjects, 120B RB, 
Brigham Young University, Provo, UT 84602; phone, (801) 422-5490 

Please advance this survey to submit your results. We appreciate your time to participate in this 
survey. 

 

Block E 

1. Has the DOT you represent considered using a life-cycle benefit-cost analysis to analyze 
the cost-effectiveness of countermeasures to improve safety? 

a) Yes, we are currently researching life-cycle benefit-cost analysis. 
b) Yes, but we have not yet started to research it. 
c) Yes, we have used it in the past but have stopped using it. 
d) No, we are not interested in using it. 
e) No. Other reason specified. ____________________ 

 

2. What alternatives methods do you use in order to analyze the cost-effectiveness of 
countermeasures to improve safety? Please be specific. 

 

3. Does your DOT have literature relating to the derivation of crash severity distributions 
for various facility types? Please upload any files in a single compressed file. 

 

4. May we contact you if we have questions about your answers? 
a) Yes 
b) No 

 

Other Contact 

1. Is there someone else at your DOT that we might contact in order to determine the uses 
of crash severity distributions at your DOT in conducting life-cycle benefit-cost analyses 
of safety improvement countermeasures? 

a) Yes 
b) No 
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Other Contact Information 

1. What is their contact information? 
a) Name: ____________________ 
b) Phone Number: ____________________ 
c) Email Address: ____________________ 

 

Contact Question 

1. May we contact you if we have questions about your answers? 
a) Yes 
b) No 

 

Contact Information 

1. What is your contact information? 
a) Name ____________________ 
b) Phone Number ___________________ 
c) Email Address ____________________ 
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Figure A.1 Crash Severity Distribution Survey Flow 
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Figure A.1 Continued  
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Figure A.1 Continued 
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APPENDIX B  CRITICAL DATA COLUMNS 

Appendix B is a collection of tables that provide a list of the critical data columns needed 

for each dataset. These columns are used in the automated Excel workbook to segment data or 

combine crash files. 

B.1 Roadway Characteristic Datasets 

The critical columns for each of the roadway characteristic datasets received from UDOT 

Traffic and Safety Division are outlined in Table B.1 through Table B.4. These data columns are 

crucial in the use of the Roadway Characteristic Data portion of the automated Excel workbook. 

 

Table B.1: Critical Data Columns for Functional Class 

Heading Description 

ROUTE Route ID: numeric route number of a given road 
segment 

BEGMP Beginning Mile Point: beginning milepoint of the 
road segment 

ENDMP End Mile Point: ending milepoint of the road segment 

FC_CODE Functional Class: number representing the functional 
class type of the segment 
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Table B.2: Critical Data Columns for Median Data 

Heading Description 

ROUTE_NAME 
Route ID: Route ID number with direction letter (i.e., 
0089N) 

ROUTE_DIR Direction: Route direction (P, N) 

START_ACCUM Beginning Mile Point: The mile point where the sign 
appears 

END_ACCUM End Mile Point: The end mile point of the road 
segment 

MEDIAN_TYP Medan Type: the type of median for the road segment 
 

Table B.3: Critical Data Columns for Lane Data 

Heading Description 

ROUTE_NAME Route ID: numeric route number for a given road 
segment 

START_ACCUM 
Beginning Mile Point: beginning mile point of the 
road segment 

END_ACCUM End Mile Point: end mile point of the road segment 
THRU_LANE Through Lanes: number of through lanes 
DECELL_LAN Deceleration Lanes: number of deceleration lanes 

TWO_WAY_LE Two-Way Left-Turn Lanes (TWLTL): number of 
TWLTLs 

ACCELL_LANE Acceleration Lanes: number of acceleration lanes 
PASSING_LANE Passing Lanes: number of passing lanes 

 

Table B.4: Critical Data Columns for Urban Code 

Heading Description 

ROUTE_NAME Route ID: numeric route number for a given road 
segment 

START_ACCUM 
Beginning Mile Point: beginning mile point of the 
road segment 

END_ACCUM End Mile Point: end mile point of the road segment 

URBAN_CODE 
Urban Code: number that represents a description of 
the surrounding area 

URBAN_DESC 
Urban Description: description of the surrounding 
area (i.e., Small-Urban, St. George, rural, etc.) 
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B.2 Crash Datasets 

The critical columns for each of the datasets received from UDOT Traffic and Safety 

Division are outlined in Table B.5 through Table B.8. These data columns are crucial in the use 

of the Crash Data portion of the automated Excel workbook. 

Table B.5: Critical Columns for Crash Data 

Heading Description 
CRASH_ID Crash ID: unique crash ID number for each crash 

CRASH_DATETIME Crash Date/Time: date and time of crash 

CRASH_SEVERITY_ID 
Crash Severity ID: numerical severity level of 
crash (i.e., 1-5) 

LIGHT_CONDITION_ID 
Light Condition: ID for light condition at time of 
crash (i.e., 1-6, 88-99) 

WEATHER_CONDITION_ID 
Weather Condition: ID for weather condition at 
time of crash (i.e., 1-9, 88-99) 

MANNER_COLLISION_ID 
Manner Collision: ID for manner of collision in 
crash (i.e., 1-8, 88-99) 

PAVEMENT_ID Pavement: ID for pavement type (i.e., 1-4, 88-
99) 

ROADWAY_SURF_CONDITION_ID 
Roadway Surface Condition: ID for roadway 
surface conditions (i.e., 1-9, 88-99) 

ROADWAY_JUNCT_FEATURE_ID 
Roadway Junction Feature: ID for roadway 
junction feature (i.e.,1-10, 20-26, 88-99) 

WORK_ZONE_RELATED_YNU 
Work Zone Related: Y/N to determine whether 
crash occurred in work zone 

WORK_ZONE_WORKER_PRESENT_YNU 
Work Zone Worker Present: Y/N to determine 
whether worker present in work zone 

HORIZONTAL_ALIGNMENT_ID 
Horizontal Alignment: ID for horizontal 
curvature of roadway (i.e., 1-2, 88-99) 

VERTICAL_ALIGNMENT_ID 
Vertical Alignment: ID for vertical curvature of 
roadway (i.e., 1-4. 88-99) 

ROADWAY_CONTRIB_CIRCUM_ID 
Roadway Contributing Circumstance: ID for 
vehicle contributing circumstance related to the 
crash (i.e., 0-18, 88-99) 

FIRST_HARMFUL_EVENT_ID 
First Harmful Event: ID for first harmful event 
resulting from the crash (i.e., 0-62, 88-99) 
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Table B.6: Critical Data Columns for Crash Location 

Heading Description 
CRASH_ID Crash ID: unique crash ID number for each crash 

ROUTE Route ID: numeric route number for a given road 
segment 

ROUTE_DIRECTION Direction: route direction (i.e., P, N, or X) 

RAMP_ID 
Ramp ID: ID indicating a ramp and the type (i.e., 1-
4, CD) 

MILEPOINT Mile Point: mile point location of the crash 
 

Table B.7: Critical Columns for Crash Rollup Data 

Heading Description 
CRASH_ID Crash ID: unique crash ID number for each crash 

NUMBER_VEHICLES_INVOLVED 
Number Vehicles Involved: number of vehicles 
involved in the given accident 

NUMBER_FATALITIES 
Number of Fatalities: number of person-fatalities 
resulting from a given crash 

NUMBER_FOUR_INJURIES 
Number of Incapacitating Injuries: number of 
person-incapacitating injuries resulting from a 
given crash 

NUMBER_THREE_INJURIES 
Number of Injuries: number of person-injuries 
resulting from a given crash 

NUMBER_TWO_INJURIES 
Number of Possible Injuries: number of person-
possible injuries resulting from a given crash 

NUMBER_ONE_INJURIES 
Number of Property Damage Only Events: number 
of events for property damage only resulting from 
a given crash 

PEDESTRIAN_INVOLVED 
Pedestrian Involved: Y/N to determine whether a 
pedestrian was involved in the crash 

BICYCLIST_INVOLVED 
Bicyclist Involved: Y/N to determine whether a 
bicyclists was involved in the crash 

MOTORCYCLE_INVOLVED 
Motorcycle Involved: Y/N to determine whether a 
motorcycle was involved in the crash 

IMPROPER_RESTRAINT 
Improper Restraint: Y/N to determine whether 
improper restraint was a factor in the crash 

UNRESTRAINED 
Unrestrained: Y/N to determine whether a 
driver/passenger was unrestrained in the crash 
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Table B.7 Continued 

Heading Description 

DUI 
DUI: Y/N to determine whether driving under the 
influence was a factor in the crash 

AGGRESSIVE_DRIVING 
Aggressive Driving: Y/N to determine whether 
aggressive driving was a factor in the crash 

DISTRACTED_DRIVING 
Distracted Driving: Y/N to determine whether 
distracted driving was a factor in the crash 

DROWSY_DRIVING 
Drowsy Driving: Y/N to determine whether 
drowsy driving was a factor in the crash 

SPEED_RELATED 
Speed Related: Y/N to determine whether speed 
was a factor in the crash 

INTERSECTION_RELATED 
Intersection Related: Y/N to determine whether 
the crash occurred at an intersection 

ADVERSE_WEATHER 
Adverse Weather: Y/N to determine whether 
adverse weather was a factor in the crash 

ADVERSE_ROADWAY_SURF_CONDITION 
Adverse Roadway Surface Conditions: Y/N to 
determine whether adverse roadway surface 
conditions were a factor in the crash 

ROADWAY_GEOMETRY_RELATED 
Roadway Geometry Related: Y/N to determine 
whether roadway geometry was a factor in the 
crash 

WILD_ANIMAL_RELATED 
Wild Animal Related: Y/N to determine whether 
a wild animal was involved in the crash 

DOMESTIC_ANIMAL_RELATED 
Domestic Animal Related: Y/N to determine 
whether a domestic animal was involved in the 
crash 

ROADWAY_DEPARTURE 
Roadway Departure: Y/N to determine whether a 
vehicle departed the roadway as a result of the 
crash 

OVERTURN_ROLLOVER 
Overturn/Rollover: Y/N to determine whether a 
vehicle overturned and/or rolled over as a result 
of a crash 

COMMERCIAL_MOTOR_VEH_INVOLVED 
Commercial Motor Vehicle Involved: Y/N to 
determine whether a commercial motor vehicle 
was involved in the crash 

INTERSTATE_HIGHWAY 
Interstate Highway: Y/N to determine whether the 
crash occurred on an interstate roadway 

TEENAGE_DRIVER_INVOLVED 
Teenage Drive Involved: Y/N to determine 
whether a teenage driver was involved in the 
crash 
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Table B.7 Continued 

Heading Description 

OLDER_DRIVER_INVOLVED 
Older Driver Involved: Y/N to determine whether 
an older driver was involved in the crash 

URBAN_COUNTY 
Urban County: Y/N to determine whether the crash 
occurred in an urban area 

ROUTE_TYPE Route Type (L/S/U):  

NIGHT_DARK_CONDITION 
Night/Dark Condition: Y/N to determine whether 
night or dark conditions was a factor in the crash 

SINGLE_VEHICLE 
Single Vehicle: Y/N to determine whether a single 
vehicle was involved in a crash (i.e. not a collision 
involving multiple vehicles) 

TRAIN_INVOLVED 
Train Involved: Y/N to determine whether a train 
was involved in the crash 

RAILROAD_CROSSING 
Railroad Crossing: Y/N to determine whether the 
crash occurred at a railroad crossing 

TRANSIT_VEHICLE_INVOLVED 
Transit Vehicle Involved: Y/N to determine 
whether a transit vehicle was involved in the crash 

COLLISION_WITH_FIXED_OBJECT 
Collision with Fixed Object: Y/N to determine 
whether the crash involved a fixed object (i.e. not 
another vehicle, nor a person) 
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Table B.8: Critical Columns for Crash Vehicle 

Heading Description 

CRASH_ID Crash ID: Specific crash ID number for each 
crash 

VEHICLE_NUM 
Vehicle Number: Number assigned to each 
vehicle involved in a given crash 

CRASH_DATETIME Crash Date/Time: Date and time of crash 

TRAVEL_DIRECTION_ID 
Travel Direction: Direction value of route at the 
location of the crash (i.e., 1-5) 

EVENT_SEQUENCE_1_ID 
Event Sequence #1: ID for first crash sequence 
for non-collision and collision events (i.e., 0-99) 

EVENT_SEQUENCE_2_ID 
Event Sequence #2: ID for second crash 
sequence for non-collision and collision events 
(i.e., 0-99) 

EVENT_SEQUENCE_3_ID 
Event Sequence #3: ID for third crash sequence 
for non-collision and collision events (i.e., 0-99) 

EVENT_SEQUENCE_4_ID 
Event Sequence #4: ID for fourth crash sequence 
for non-collision and collision events (i.e., 0-99) 

MOST_HARMFUL_EVENT_ID 
Most Harmful Event: ID for most harmful event 
resulting from the crash (i.e., 0-99) 

VEHICLE_MANEUVER_ID 
Vehicle Maneuver: ID for the controlled 
maneuver prior to the crash (i.e., 1-14, 88-99) 

VEHICLE_DETAIL_ID 
Vehicle Detail ID: 8-digit ID number that is 
specific to a vehicle involved in a crash amongst 
all other vehicle involved in crashes 

 


