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ABSTRACT

Crash Severity Distributions for Life-Cycle Benefit-Cost Analysis
of Safety-Related Improvements on Utah Roadways

Conor Judd Seat
Department of Civil and Environmental Engineering, BYU
Master of Science

The Utah Department of Transportation developed life-cycle benefit-cost analysis
spreadsheets that allow engineers and analysts to evaluate multiple safety countermeasures. The
spreadsheets have included the functionality to evaluate a roadway based on the 11 facility types
from the Highway Safety Manual (HSM) with the use of crash severity distributions. The HSM
suggests that local agencies develop crash severity distributions based on their local crash data.
The Department of Civil and Environmental Engineering at Brigham Young University worked
with the Statistics Department to develop crash severity distributions for the facility types from
the HSM.

The primary objective of this research was to utilize available roadway characteristic and
crash data to develop crash severity distributions for the 11 facility types in the HSM. These
objectives were accomplished by segmenting the roadway data based on homogeneity and
developing statistical models to determine the distributions. Due to insufficient data, the facility
types of freeway speed change lanes and freeway ramps were excluded from the scope of this
research. In order to accommodate more roadways within the research, the facility type
definitions were expanded to include more through lanes.

The statistical models that were developed for this research include multivariate
regression, frequentist binomial regression, frequentist multinomial, and Bayesian multinomial
regression models. A cross-validation study was conducted to determine the models that best
described the data. Bayesian Information Criterion, Deviance Information Criterion, and Root-
Mean-Square Error values were compared to conduct the comparison. Based on the cross-
validation study, it was determined that the Bayesian multinomial regression model is the most
effective model to describe the crash severity distributions for the nine facility types evaluated.

Keywords: crash severity, crash severity distribution, life-cycle benefit-cost analysis, Utah
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1 INTRODUCTION

Roadway safety is one important aspect taken into consideration when roadways are
rebuilt, rehabilitated, or maintained. There continues to be a large portion of research in the
United States relating to the safety of roadways. One facet of safety-related research is the
development of life-cycle benefit-cost analysis, which helps determine which safety
countermeasure provides the best benefit for the lowest cost. A previous study funded by the
Utah Department of Transportation (UDOT) developed life-cycle benefit-cost analysis
spreadsheets (Saito et al. 2016) using the method presented in the Highway Safety Manual
(HSM) that is applicable to various highway types included in the manual (AASHTO 2010).
The outcome of a life-cycle benefit-cost analysis is significantly affected by crash severity
distributions used to predict the number of crashes of each severity type that will be reduced on

the roadway after safety-related improvements are implemented.

This research was conducted to develop crash severity distributions using UDOT’s crash
data for the life-cycle benefit-cost analysis spreadsheets developed in a previous study (Saito et
al. 2016). This chapter presents the background information related to this research, explains the

purpose and need for this research, and describes the organization of the report.



1.1 Background

Safety has become increasingly important on roadways over the last several decades.
UDOT has made roadway safety one of their top priorities, which is expressed in their campaign:
“Zero Fatalities: A Goal We Can All Live With™.” The goal of zero fatalities is “all about
eliminating fatalities on [Utah] roadways” (UDOT 2016). One technique that UDOT uses to
reduce fatalities on roadways is continued investment in transportation safety research. Through
transportation safety research, safety-related improvements on roadways can be evaluated to

understand which improvements will be most effective.

The HSM, originally published in 2010, presents the preferred methods for performing
life-cycle benefit-cost analysis of safety-related improvements (AASHTO 2010). UDOT recently
adopted the most reliable method for determining the change in crashes known as the Part C
Predictive Method (AASHTO 2010). The Part C Predictive Method is an 18-step method for
predicting average crash frequencies. The Part C Predictive Method was applied through a series
of Excel-based life-cycle benefit-cost spreadsheets developed by the Brigham Young University
(BYU) safety research team (Saito et al. 2016). The purpose of the spreadsheets is to provide
engineers and analysts with a tool to evaluate multiple countermeasures and their life-cycle
benefits so that the engineer or analyst can select improvements for highway segments and

intersections that will contribute the most to the prevention of future crashes.

One component of life-cycle benefit-cost analysis is the use of crash severity
distributions. Crash severity distributions describe the distribution of crashes by severity type.
Crash severity distributions are important to life-cycle benefit-cost analysis because they are
used to generate estimates of cost savings by predicting the severity of crashes that will be

reduced as a result of implementing a countermeasure. Although there is a single crash severity



distribution given in the HSM, it is recommended that separate severity type distributions be
developed for all highway types included in the HSM. The HSM recommends that each agency
calibrate the predictive models in order to apply the models to their jurisdiction (AASHTO
2010). The spreadsheets recently developed for UDOT include the analysis for 11 facility types,
as outlined in the HSM; however, they all use the same default crash severity distribution
included in the HSM. UDOT currently has only one crash severity type distribution that has been
used for conducting life-cycle benefit-cost analyses for evaluating safety-related improvements.
There was a need to develop multiple crash severity distributions by roadway type to more

accurately evaluate safety-related improvements.

1.2 Purpose and Need

The purpose of this research was to develop crash severity distributions for the 11 facility
types outlined in the HSM. The crash severity distributions were developed using various
statistical models. Available crash data together with highway mile point and functional
classification data were used for the input file for developing statistical models to generate crash
severity type distributions. The scope of this research included a comprehensive literature
review, a crash severity distribution survey, the development of several statistical models of
crash severity distribution, and conclusions and recommendations. Specifically, the crash
severity distributions included the following 11 facility types included in the HSM (AASHTO

2010):

1.  Rural two-lane two-way (TLTW) highways

2. Undivided rural multilane highways

3. Divided rural multilane highways



4.  Two-lane undivided suburban/urban arterials
5. Three-lane suburban/urban arterials including a two-way left-turn lane (TWLTL)
6.  Four-lane undivided suburban/urban arterials
7. Four-lane divided suburban/urban arterials
8.  Five-lane suburban/urban arterials including a TWLTL
9. Rural and urban freeway segments
10.  Freeway speed change lanes
11.  Freeway ramps

The need for this research arose as UDOT does not currently use multiple crash severity
distributions for its current life-cycle benefit-cost analysis; a single crash severity distribution is
used for the entire UDOT roadway system. The HSM states that the purpose of the calibration
procedure “is to adjust the predictive models which were developed with data from one
jurisdiction in another jurisdiction” (AASHTO 2010). Calibration will account for differences
between jurisdictions in factors such as climate, driver populations, animal populations, crash

reporting thresholds, and crash report system procedures.

By including multiple crash severity distributions within the current life-cycle benefit-
cost analysis, the analysis will significantly improve. The number of crashes by severity type
prevented by countermeasures will be more accurate than using a single set of severity
distributions. Safety engineers and analysts will more effectively allocate tax payer money to

projects that will reduce vehicle crashes, especially severe vehicle crashes.



As part of previous research efforts by BYU, the Utah Crash Prediction Model (UCPM)
and Utah Crash Severity Model (UCSM) were developed (Schultz et al. 2015). These models are
only used for roadway segments and cannot be applied to intersections and interchanges at the
time of this research. Since this research effort was performed in conjunction with the research

effort for these models, intersections and interchanges were not included as part of this research.

1.3 Organization

This thesis consists of six chapters. Chapter 1 presents an overview of the report along
with a stated purpose, scope, and need for this research. Chapter 2 contains the literature review,
which is a summary of findings related to the research. Chapter 3 outlines the content and results
of a survey distributed to state departments of transportation (DOTs). Chapter 4 presents the
methodology pertaining to the creation of the crash severity distributions including the data
preparation and development of the statistical models. Chapter 5 contains the results from the
statistical models for the crash severity distributions. Chapter 6 presents the conclusions and

recommendations for future research.



2 LITERATURE REVIEW

A comprehensive literature review has been performed on general aspects of traffic safety
and crash severity distributions. This process consisted of gathering information that could
contribute to this study. Several topics are addressed in this literature review. First, life-cycle
benefit-cost analysis is reviewed along with UDOT’s current approach to this analysis. Next,
general aspects of traffic safety are addressed, including crash severity, monetary benefit of
crashes, the predictive method, and facility types outlined in the HSM. Lastly, a summary of

previous research completed by BYU, including the UCPM and the UCSM, is discussed.

2.1 Life-Cycle Benefit-Cost Analysis

The HSM can be considered as the basis for anything related to safety on roadways
(AASHTO 2010). Life-cycle benefit-cost analysis of safety-related improvements and the
method explained in the HSM can be considered as the preferred method to complete such
analysis. This section describes the methods outlined in the HSM and the current method used by
UDOT for life-cycle benefit-cost analysis. Finally, the use of crash severity distributions in life-

cycle benefit-cost analysis is discussed.

2.1.1 HSM Techniques for Life-Cycle Benefit-Cost Analysis
The safety benefits for a project are determined using the crash information for a site.

One of the most important parts of the life-cycle benefit-cost analysis of safety-related



improvements is to estimate the change in the number of crashes resulting from a proposed

project. The HSM outlines four different methods for estimating the change in expected average

crash frequency of a proposed project or project design alternative. The four methods listed in

the Part C Predictive Method are presented in order of most to least reliable (AASHTO 2010):

Method 1 — Apply the Part C Predictive Method to estimate the expected average

crash frequency of both the existing and proposed conditions.

Method 2 — Apply the Part C Predictive Method to estimate the expected average
crash frequency of the existing condition and apply an appropriate project crash
modification factor (CMF) from Part D to estimate the safety performance of the

proposed condition.

Method 3 — If the Part C Predictive Method is not available, but a safety performance
function (SPF) applicable to the existing roadway condition is available, use that SPF
to estimate the expected average crash frequency of the existing condition and apply
an appropriate project CMF from Part D to estimate the safety performance of the

proposed condition. A locally derived project CMF can also be used in Method 3.

Method 4 — Use observed crash frequency to estimate the expected average crash
frequency of the existing condition and apply an appropriate project CMF from Part
D to the estimated expected average crash frequency of the existing condition to
obtain the estimated average crash frequency for the proposed condition. This method

is applied to facility types not addressed by the Part C Predictive Method.

When a CMF is used in one of the four method outlined above, the standard error of the

CMF can be applied to develop a confidence interval around the estimated expected average



crash frequency. With this range, analysts can see the type of variation associated with

implementing a countermeasure (AASHTO 2010).

2.1.2 Current UDOT Method

The current recommended method for UDOT for life-cycle benefit-cost analysis uses the
most reliable method in the HSM. Saito et al. (2016) developed a series of spreadsheets that
would implement the Part C Predictive Method for use with life-cycle benefit-cost analysis. The
spreadsheets allow the life-cycle benefit-cost estimates to be analyzed for the 11 facility types
outlined in the HSM. Although default values are given throughout the spreadsheet, crash costs,
expected average crash frequency, and crash severity distribution can be changed in order to fit
the specific site that is being analyzed. The use of crash severity distributions in life-cycle

benefit-cost analysis is discussed briefly in the next section.

2.1.3 Use of Crash Severity Distributions

One important aspect associated with life-cycle benefit-cost analysis of safety-related
countermeasures is determining the total benefits. The main benefit in the case of safety-related
improvements is the expected reduction in crashes within the study site. Crash severity
distributions are used to predict the severity crash types that will be reduced as a consequence of
the safety-related countermeasure. It is important to note that different countermeasures may

reduce different crash types.

2.2 Traffic Safety
In the HSM, safety is defined as “the crash frequency or crash severity, or both, and
collision type for a specific time period, a given location, and a given set of geometric and

operational conditions” (AASHTO 2010). There are two types of safety analyses: subjective and



objective. Subjective safety analysis relates to how safe a person feels on a roadway, while
objective safety analysis refers to the use of quantitative measures that are independent of the
observer. The HSM focuses on objective safety analysis. In the evaluation and estimation
methods presented in the HSM, crash frequency is used as a fundamental indicator of safety
(AASHTO 2010). This section first defines crash severity. Next, the predictive method from the

HSM is presented. Finally, the facility types outlined in the HSM are presented.

2.2.1 Crash Severity

One major component of traffic safety is crash severity, defined as the level of injury or
property damage of the crash (AASHTO 2010). Although many injuries may be inflicted during
a crash, crash severity is defined as the most severe level of injury that is caused by the crash. In

most agencies, crash severity is divided into categories known as the KABCO scale. The five

KABCO categories used in the HSM are (AASHTO 2010):

e K: Fatal injury: an injury that results in death;

e A: Incapacitating injury: any injury, other than a fatal injury, that prevents the injured
person from walking, driving, or normally continuing the activities the person was
capable of performing before the injury occurred;

¢ B: Non-incapacitating evident injury: any injury, other than a fatal or incapacitating
injury, that is evident to observers at the scene of the crash in which the injury
occurred;

e (: Possible injury: any injury reported or claimed that is not fatal, incapacitating, or

non-incapacitating evident injury and includes claim of injuries not evident;

O: No injury: Property damage only (PDO).



UDOT uses similar crash severity categories based on the KABCO scale. The numerical
values 5 to 1 are used rather than the alphabetical characters KABCO. Severity 1 is PDO, while
severity 5 is a fatal injury crash. Traffic safety can be improved in two ways: a decrease in
average crash frequency or a decrease in the average crash severity. This section explains the
monetary benefits of crash frequency based on FHWA and UDOT standards. Next, factors

contributing to crashes are discussed.

2.2.1.1 Monetary Benefit of Crash Frequency

After the change in crash frequency has been estimated for a project, the benefits from
reducing the crashes needs to be converted to a monetary value. There are many different
opinions as to how much value should be placed on the different severity levels of crashes. The
Federal Highway Administration (FHWA) has completed a significant amount of research that
establishes a basis for quantifying, in monetary value, the human capital crash costs to society of
fatalities and injuries from highway crashes (AASHTO 2010). The FHWA values for each crash

severity type are shown in Table 2-1.

Table 2-1: FHWA Benefit Value Per Crash for Each Crash Type (AASHTO 2010)

Severity g;:/eegr(i)?; Se;e;:ity Value
PDO O 1 $ 7,400.00
Possible Injury C 2 $  44,900.00
Evident Injury B 3 $  79,000.00
Disabling Injury A 4 $ 216,000.00
Fatal K 5 $ 4,008,900.00

State and local jurisdictions often have adopted the crash costs by crash severity and

collision type. For example, UDOT has their own monetary values that they use in determining

10



the value of each crash severity level (Wall 2016). As would be expected, monetary values
generally increase as the severity level increases. However, UDOT equalizes the scale for
disabling injury crashes and fatal crashes. This is done in order to lessen the benefit of reducing
fatal crashes and increase the benefit of reducing disabling crashes. It is obvious that fatal
crashes should most definitely be prevented; however, in many cases, disabling crashes become
more expensive in the long run due to medical costs and because the persons involved in these
incapacitating injuries are prevented from ever working again though still requiring full-time

care in many cases. The UDOT values for each crash severity type are shown in Table 2-2.

Table 2-2: UDOT Benefit Value Per Crash for Each Crash Type (Wall 2016)

SR ] g;::;ii}; Se‘lile(:.ity Y ear\zfgil;evalue)
PDO 0] 1 $ 3,200.00
Possible Injury C 2 $  62,500.00
Evident Injury B 3 $ 122,400.00
Disabling Injury A 4 $1,961,100.00
Fatal K 5 $1,961,100.00

2.2.1.2 Factors Contributing to a Crash

Although many crashes refer to the “cause” of a crash, it is more accurate to attribute
crashes to many contributing causes. Cause may include time of day, driver attentiveness, speed,
vehicle condition, road design, and many other factors. Traditionally, these factors can be
classified into three different categories: human, vehicle, and roadway or environmental. Human
factors refer to characteristics of the drivers including the age, judgement, skill, attention,
fatigue, experience, and sobriety. Vehicle factors refer to the design, manufacture, and

maintenance of the involved vehicles. Roadway or environmental factors refer to the geometric
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alignment, traffic control devices, surface friction, weather, and visibility of the surrounding area

(AASHTO 2010).

By understanding the various factors that influence the sequence of events, crashes and
crash severities can be reduced by implementing specific measures to target specific contributing
factors. In 1979, research was completed to describe the distribution of contributing crash factors
to vehicle crashes and their relationships to each other (Treat et al. 1979). The findings from this

research are shown in Figure 2-1.

93%

Human
Factors

Roadway [
Factors

N—13%

Figure 2-1: Contributing crash factors to vehicle crashes (Treat et al. 1979).

It was observed that 34 percent of crashes were caused, at least in part, by roadway
factors, while human factors and roadway factors together caused 27 percent of crashes (Treat et
al. 1979). While there are many strategies for reducing crashes and severity, the majority of these
strategies are not within the scope of the HSM. As such, the HSM focuses mainly on crashes
where it is believed that the roadway or environment is a contributing factor, whether wholly or

in part.
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2.2.2 Predictive Method

Within the HSM, the predictive method is explained. The predictive method is the
methodology in Part C of the HSM that is used to estimate the “expected average crash
frequency of a site, facility, or roadway under given geometric design and traffic volumes for a
specific period of time” (AASHTO 2010). The predictive method outlined in the HSM uses the
Empirical Bayes (EB) method. One clear advantage to using the EB method is, once the model is

calibrated for a particular site, the model can be readily applied to the region for which it was

calibrated (AASHTO 2010).

There are two basic elements of the predictive method. First, the predictive method
estimates the average crash frequency for a specific site type. This is accomplished using a
statistical model developed from data for a number of similar sites and adjusted for specific site
and local conditions. Second, the expected crashes and observed crashes for the site are
combined. A weighting factor is applied to the two estimates to reflect the model’s statistical
reliability. Currently, the HSM provides a detailed predictive method for three facility types:

rural TLTW, rural multilane highways, and urban and suburban arterials (AASHTO 2010).

There are some major advantages to using the predictive method. First, regression-to-the-
mean analysis focuses on long-term expected crash frequency rather than short-term observed
crash frequency. Another major advantage is that the reliance on availability of limited crash
data is reduced by incorporating predictive relationships based on data from similar sites. In
addition, the predictive method accounts for the fundamentally nonlinear relationship between
crash frequency and traffic volume. Last, the SPFs in the HSM are based on the negative
binomial distribution, which are better suited to modeling the high natural variability of crash

data than traditional modeling techniques based on the normal distribution (AASHTO 2010).
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2.2.3 Facility Types
The HSM outlines 11 facility types for which the predictive method is applicable. The 11

facility types are (AASHTO 2010):

1. Rural TLTW highways
2. Undivided rural multilane highways
3. Divided rural multilane highways
4.  Two-lane undivided suburban/urban arterials
5. Three-lane suburban/urban arterials including a TWLTL
6.  Four-lane undivided suburban/urban arterials
7. Four-lane divided suburban/urban arterials
8.  Five-lane suburban/urban arterials including a TWLTL
9. Rural and urban freeway segments

10.  Freeway speed change lanes

11.  Freeway ramps

Each facility type has different attributes according to urban code, the number of through

lanes, TWLTLs, median type, and functional class.

2.3 Previous BYU Research
Several research efforts have been conducted by BYU with regards to traffic safety and
the HSM predictive method. The UCPM and UCSM were developed by Schultz et al. (2015) and

are explained in further detail in the following sections.
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2.3.1 UCPM

The UCPM was developed to help UDOT identify segments of roadway that have a
higher number of crashes than expected (Schultz et al. 2015). This model uses a variety of
parameters such as vehicle-miles traveled (VMT), number of lanes, speed limit, and others to
create a crash distribution for different roadways. The median of the distribution is used as the
expected number of crashes that might occur on a specific segment based on the characteristics
of that segment. Using the Bayesian horseshoe selection method, a pre-selection process is
performed that takes all possible parameters in the dataset to produce a list of the significant ones
that should be used. The parameters can be used to predict a distribution of the number of

expected crashes for a given severity group (Schultz et al. 2015).

To start the procedure, a statistical model must be chosen to provide the base dataset in
the analysis and identification of the problem segments or “hot spots.” Crash data for the years
2008 to 2012 were used in this project’s statistical model (Schultz et al. 2015). From this model,
the total crash counts for each segment and the count of crashes for each attribute were selected
by the Bayesian horseshoe selection method. The UCPM required 100,000 iterations to obtain
posterior predictive distributions on the expected number of crashes to occur on each segment.
Crash counts were available for all severity levels combined and severity levels K and A

(Schultz et al. 2015).

Because this model can be used to determine the number of crashes that are expected to
occur on a given roadway segment, it can help determine the number of crashes that will be
reduced on each roadway segments when the values of selected variables change. The same can
be applied to severe crashes. After the number of crashes reduced is determined, the benefit can

be calculated by comparing different possible treatments to improve safety (Schultz et al. 2015).
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2.3.2 UCSM

The UCSM is used to determine the probability of a severe crash occurring. Three types
of input data are required for this analysis: 1) the probability that a severe crash occurs given that
a crash has occurred on a selected segment, 2) the predicted number of severe crashes, and 3) the
probability that the respective number of severe crashes occurred. Each segment may then be
assigned a ranking based on the difference between the actual and the predicted number of

crashes to find the most dangerous road segments (Schultz et al. 2015).

This model can be run with the same dataset as the crash prediction model with one
exception. Not only must the UCSM have a count of every crash that happened on that segment
in the given time period, but it must also have a count of crashes occurring in the severity group

(Schultz et al. 2015).

This model is helpful in determining which roadways are more dangerous according to
crash severity. If more severe crashes are occurring than what is predicted, then it is
recommended that the road be analyzed further for possible safety-improvement measures

(Schultz et al. 2015).

2.4 Chapter Summary

Crash severity distributions are used in life-cycle benefit-cost analysis by determining the
total benefits of safety-related improvements. The benefits are typically the expected reduction in
crashes as a consequence of the countermeasure. The method outlined in the HSM is the most
preferred method of such analysis. To determine the monetary value of a reduced crash, the five
crash severity levels have associated monetary values. In Utah, the values for fatal injury crashes

and disabling crashes have been equalized because disabling crashes may become more
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expensive in the long run. The facility types outlined in the HSM are based on varying attributes
of urban code, number of through lanes, TWLTLs, median type, and functional class. Previous
BYU research has developed the UCPM and the UCSM, which locate hot spots on roadway

segments that perform worse than expected in terms of safety.
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3 CRASH SEVERITY DISTRIBUTION SURVEY

Due to the lack of literature relating to crash severity distributions, a survey, which was
conducted using Qualtrics software (Qualtrics 2017), was distributed to each state DOT in the
United States. The purpose of this survey is to determine the uses of crash severity distributions
in conducting life-cycle benefit-cost analyses of countermeasures. This chapter presents the
content of the survey, the survey distribution, the survey results, and additional information on

crash severity distributions obtained through this survey.

3.1 Survey Content

The content of the survey on crash severity distributions focused on the uses, benefits,
and derivation of life-cycle benefit-cost analysis and crash severity distributions across the
United States. The survey was designed in such a way that different questions could be asked
based on the answers the respondent gave to questions earlier in the survey. The maximum
number of questions a respondent was required to answer was 13. It was estimated that the
survey would take about 5 minutes to complete. The majority of questions were multiple choice
questions; however, some questions allowed respondents to input unique text and upload
relevant documents. Appendix A includes the full survey and survey flow that was used to

collect the data.
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3.2 Survey Distribution

Contacts for the DOTs across the United States were obtained from lists provided by the
UDOT Safety Division and the Subcommittee of Safety Management found on the American
Association of State Highway and Transportation Officials (AASHTO) website (AASHTO
2018). The list provided by UDOT was consulted first, and 34 of the 50 contacts were found

from this list. The remaining 16 contacts were obtained from the AASHTO website.

The survey was distributed to all 50 state DOTs in the United States on February 23,
2017, at approximately 12:30 PM MST and was closed at approximately 10:00 AM MDT on
March 30, 2017. Two reminder emails were distributed on March 8, 2017, at 11:30 AM MST

and March 27, 2017, at 12:30 PM MDT to respondents that had not completed the survey.

3.3 Survey Results

Of the 50 DOTs that were sent the crash severity distribution survey, 27 DOTs responded
to the survey. However, three responses were not included in the data analysis because their
responses were incomplete, reducing the number to 24 respondents. The states that were
represented in the data analysis include, in alphabetical order, Alabama, Delaware, Hawaii,
linois, Indiana, lowa, Kansas, Kentucky, Louisiana, Maine, Massachusetts, Minnesota,
Mississippi, Missouri, Nebraska, New Jersey, New Mexico, New York, North Dakota,

Oklahoma, Oregon, South Carolina, South Dakota, and Vermont.

One of the purposes of this survey was to understand the uses of life-cycle benefit-cost
analysis throughout the United States. According to the results of the survey, 20 of the 24

respondents use life-cycle benefit-cost analysis.

19



The types of distributions applied to the life-cycle benefit-cost analysis were also
surveyed. Results regarding the types of distributions applied to life-cycle benefit-cost analysis
are shown in Figure 3-1. Nearly half of all respondents indicated that they use multiple
distributions that were derived from their state’s crash data. Additionally, 21 percent of
respondents indicated that their single crash severity distribution was derived from their state’s
crash data. Only three of the 24 respondents said that they currently use the crash severity

distribution given in the HSM.

m A single distribution taken
from the HSM

= A single distribution derived
from state crash data

= Multiple distributions
derived from state crash data

None of the above

Figure 3-1: Crash severity distributions used from survey respondents.

Another question on the survey explored the DOTs interest in and ability to develop crash
severity distributions for the 11 facility types in the HSM. Figure 3-2 shows the summary of the
results of the question. Forty-five percent of the respondents indicated that their respective DOTs
have considered developing crash severity distributions for the 11 facility types. Twenty-two
percent of respondents indicated that their DOTs have not considered deriving crash severity

distributions for the 11 facility types outlined in the HSM. If the respondent answered that their
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DOT had not considered deriving these crash severity distributions, they were encouraged to
specify a reason why they had not considered this. The most common reason for not developing

crash severity distributions for the 11 facility types was that they had insufficient data.

= Yes

45% = No

We have multiple
distributions based on
something other than the 11
facility types in the HSM.

Figure 3-2: Consideration to derive crash severity distribution on 11 facility types.

3.4 Crash Severity Distribution Information

As part of the survey, agencies were given the opportunity to upload literature relating to
their states’ research on the life-cycle benefit-cost analysis or crash severity distributions. Of the
24 respondents to the survey, four agencies uploaded literature. Even though none of the
uploaded literature describe the methodology for creating crash severity distributions, some of

the literature show the distributions that the states use in their analyses.

The New York DOT uploaded literature pertaining to their crash severity distributions. A
sample of the document is shown in Figure 3-3. The document indicates that the New York DOT
defines crash severity on the categories of fatal (K), injury (A, B, and C), and PDO (O) crashes.

The segments for the crash severity distributions are classified based on level of access (full,
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partial, free); urban code (urban, rural); median type (divided, undivided); and number of lanes.
Based on these classifications, the New York DOT has 74 different crash severity distributions

for roadway segments (NYSDOT 2013).

Accident Severity Distribution (percent)

Chissiachiive™ Fatal Tnjury Fatallnury PDO?
£3 L FREE ACOESS, HEOELAL, UNDIVIOED, 4 LANES 0.48 18.50 1o, o7 B0.583
=4 A FREE ARCTESS, HURAL, TNDIVEIDED, £ LANES 0.50 1960 e e & 79.81
556 -L FREE ACTESS  FRURAL, UNDLVIDED, ALL LAMES 0.48 1859 15.07 BO.93
56 A FHEE ACTESS, FURAL, [NDIVIDED, ALY LEANES .50 19,60 a0.18 TE.81
57 L FREE ACCESS, UHEAN, DIVIDED, 2 LANEHES 0.31 29 .55 25.8% 70.14
58 A FREE ACCEST, [HEEAN, [IVIDHD, 2 1ANEE .30 30.35 30.565 ES_35
58 L FREE ACCESS, UHBAN, DIVIDED, 4 LANES a.31 29.55 28 8% 0. k4
&0 A FEEH ACTESS, UFBARN, [EVIDHD, £ LANES 0.30 30 .35 d0.635 B9.35
61 L FREE ACCHESS, URBAN, BIVIDED, & LANES .31 28 .55 29.8%6 T0.14
&2 A FREH ACTESS, UFBRN, [EVIDHD, 6 LANHES 0.30 30 .35 a0.65 B9.35
63 L FREE RCOCFESS, UREAMN, DIVIDED, 7 LAMES 0.3% 29 55 28,85 TO. 14
B4 A FEEE ACTESS, TUREAN, GFIVIDED, 7 LANES 0.30 10 .35 38,65 69.35
65 L FEEE ACTESS, TREAN, DIVIDED, RLL LANES 0.3 29,55 25.86 Th. 14
66 A FREE ACTESS, UHBAN, DIVIDED, ALL LANES 0.30 38.35 30.65 B8.35
67 L FREEE ACTESS, THRARN, [NDIVIDED, I LANES t.26 470 24 .98 75.04
&8 ‘A FREE ACTESS, UHBAN, DNDIVIDED, I LANES 0.3as 25 45 IE70 74.29
69 L FREE ACTESS, THEAN, THDITVIOED, 3 LANES .26 24 TO 24 .96 T&.04
70 A FBEE ACCESS, UFBAN, ONDIVIDED, 3 LARES g.as 25 45 2570 74.29
7L L FREH ACTESS, UFORN, THIIVIDED, 4 LANES 0.26 24.7T0 24.86 Te.04
72 -A FREE ACCESS, URBAN, UNDIVIDED, 4 LANES 0.35 d5.45 25,710 7429
T3 FEEE RCIESS, TREAN, THDIVIDED, ALL LONES 0.26 24 70 24 .98 TE_04
T4 A FREE ACTFESS, UEBEAN, TNDIVIDED, ALL LANES 0.325 35_45 35:740 7428
S ¢ 3 LEZ, RURAL, STISHAL, ALL LANES 0.52 Z3.90 24 .42 T5.58
& 1 3 LEZ, FRAL, SIGHN, ALL TLARES .52 £3.,510 24 .43 75.58
7 1 3 LES, RURAL, NONE, ALL LERES 0.52 23.50 24 .42 75.58
78 T 3 1LEZ, UF2AN, STORHAL, 1-4 LANES .23 30.36 30.58 ES 432

Figure 3-3: Crash severity distributions for New York segments (NYSDOT 2013).

The Vermont DOT also uploaded literature pertaining to their crash severity distributions.
Like many other state agencies, the Vermont crash severity distributions use the KABCO scale.
The crash severity distributions are classified based on urban code and functional classification.

The Vermont DOT has developed 13 crash severity distributions based on these classifications as
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shown in Figure 3-4. In addition to crash severity distributions, the literature also includes the
prediction model for two-lane rural highways, which is shown in Equation 3-1 (VTrans 2005).
This equation predicts the number of crashes per mile per year on two-lane rural highways based
on the average daily traffic (ADT), lane width, average paved shoulder width, average unpaved
shoulder width, and a roadside rating. By comparing the predicted number of crashes to the

actual number of crashes, the Vermont DOT can evaluate the safety of roadway segments.

| Not a Junction ]

| Fatal | Injury A | InjuryB | InjuryC | PDO |

RURAL

01 Interstate. Rural 2.1% 8.0% 22.5% 6.7% 60.7%
02 Principal Arterial 4 8% 7.4% 23.2% 6.7% 57.9%
06 Minor Arterial 3.0% 9.7% 21.0% 8.9% 57 .5%
07 Major Collector 2.5% 5.0% 24.5% 6.8% 57.2%
09 Local. Rural 1.9% 7.4% 23.3% 8.8% 58.6%
URBAN

11 Interstate, Urban 1.0% 6.2% 22.7% 52% 654.9%
12 Freeway/Expressway 0.0% 12.5% 37.5% 6.3% 43.8%
14 Principal Arterial 0.4% 3.6% 17.4% 10 4% 68.2%
16 Minor Arterial 0.8% 5.5% 19.1% 12.7% 61.9%
17 Urban Collector 0.0% 4.8% 17.0% 7.8% 70.4%
19 Local, Urban 0.0% 5.3% 15.2% 6.6% 73.0%
GENERAL

Urban 0.4% 4.6% 17.7% 10.1% 67.2%
Rural 2.6% 8.3% 23.1% 8.0% 57.9%
Urban + Rural 1.7% 7.0% 20.8% 8.1% 62.3%

Figure 3-4: Crash severity distributions for Vermont segments (VTrans 2005).
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N = (0.0015)(ADT)°°711(0.8897)" (0.9403)"4(0.9602)UF (1.2)# (3-1)

Where, N = Number of crashes per mile per year
ADT = Average daily traffic
W

Lane width

PA = Average paved shoulder width (feet)

UP = Average unpaved shoulder width (feet)

H = Road side rating (values range from 1 to 7)

3.5 Chapter Summary

This chapter presents the content and results from a survey distributed to every state DOT
in the United States regarding the use of life-cycle benefit-cost analysis and crash severity
distributions. The survey was expected to take about 5 minutes to complete. The results indicated
that 83 percent of the respondents used life-cycle benefit-cost analysis. Nearly half of the
respondents that used life-cycle benefit-cost had multiple crash severity distributions based on
their respective state’s crash data. Forty-five percent of respondents indicated that their
respective DOTs have considered developing crash severity distributions for the 11 facility types
in the HSM. During the survey, respondents had the option of uploading files relating to their
crash severity distributions. Respondents from the New York and Vermont DOTs uploaded the

distributions they use in their analysis.
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4 METHODOLOGY

This chapter presents the methodology used to meet the objectives of this study. First, the
facility types, as outlined in the HSM, are defined. Second, the datasets used for the data
preparation are outlined. Next, the segmentation program created for previous BYU research is
reviewed, including modifications made to the program to fit the needs of this research. Next, the
output of the segmentation program is presented. The straight proportion methodology for
calculating crash severity distributions is then discussed briefly. Finally, the statistical models

created for developing crash severity distributions are described.

4.1 Facility Type Definition
The HSM describes 11 facility types and the roadway characteristics associated with each

type (AASHTO 2010):
1. Rural TLTW highways
2. Undivided rural multilane highways
3. Divided rural multilane highways
4.  Two-lane undivided suburban/urban arterials
5. Three-lane suburban/urban arterials including a TWLTL

6.  Four-lane undivided suburban/urban arterials
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10.

11.

Four-lane divided suburban/urban arterials

Five-lane suburban/urban arterials including a TWLTL

Rural and urban freeway segments

Freeway speed change lanes

Freeway ramps

Each facility type has different attributes according to urban code, the number of through

lanes, TWLTLs, median type, and functional class. The attributes for the first nine facility types,

as described in the HSM, are shown in Table 4-1. Based on the quality and type of data

available, it was determined to exclude the facility types for freeway change lanes (facility type

10) and freeway ramps (facility type 11) from further analysis.

Table 4-1: Facility Type Attributes (AASHTO 2010)

Facilit
Typey Urban | Through TWLTL | Median Functional Class
Code Lanes

Code
1 Rural 2 0 Undivided -
2 Rural 4 0 Undivided -
3 Rural 4 0 Divided -
4 Urban 2 0 Undivided | Other Principal Arterial/ Major Arterial
5 Urban 2 1 Undivided | Other Principal Arterial/ Major Arterial
6 Urban 4 0 Undivided | Other Principal Arterial/ Major Arterial
7 Urban 4 0 Divided | Other Principal Arterial/ Major Arterial
8 Urban 4 1 Undivided | Other Principal Arterial/ Major Arterial
9 Fither 4,6, 8, 0 Either Interstate/ Other Freeway or

or 10 Expressway

4.2 Datasets

Several different datasets were used in this research that have been received through

UDOT’s Open Data Portal (UDOT 2017) and other UDOT contacts. The datasets used include

Historic Annual Average Daily Traffic (AADT), 2014 Medians, 2014 Lanes, Functional Class,
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and Urban Code. Crash data, crash location, crash rollup, and crash vehicle data, spanning from
2010-2014, were provided by the UDOT Traffic and Safety Division for the project. Route and
mile point data were essential for this study and are included in each dataset. This section
expounds on the uniform characteristics in each dataset, critical data columns for datasets

retrieved from UDOT’s Open Data Portal, and critical data columns for each crash dataset.

4.2.1 Data Uniformity

Each dataset downloaded from the UDOT Open Data Portal has separate attributes
corresponding with that dataset; however, uniform data fields exist that allow the datasets to be
related linearly or spatially. Four roadway identification fields were used to relate the datasets for
analysis. These fields include “ROUTE _ID,” “DIRECTION,” “BEG_MILEPOINT,” and

“END_MILEPOINT” for every dataset.

The “ROUTE _ID” field corresponds to the federal and state highway numbering system.
The direction of traffic flow is described by the “DIRECTION” field. “BEG_MILEPOINT” and
“END_MILEPOINT” identify the beginning and ending mile point, respectively, on the route

that the roadway segment characteristics exist.

4.2.2 Critical Data Columns for UDOT Open Data Portal Datasets

Each roadway characteristic dataset has individual attributes that correspond with each
dataset. According to the UDOT Data Portal, the AADT dataset has data dating from the most
recent year back to 1981 on some segments. Additionally, the traffic counter station number and
single and combination truck percentages are included in this dataset. The critical data columns
for the AADT dataset include route number, beginning mile point, ending mile point, seven

years of AADT data, single-unit truck percentage, and combination-unit truck percentage, as
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shown in Table 4-2. Similar tables for all of the UDOT Data Portal used in this project are

summarized in Appendix B.

Table 4-2: Critical Data Columns for the AADT Dataset

Heading Description

ROUTE Route ID: numeric route number of a given road
segment

BEGMP Beginning Mile Point: beginning mile point of the
road segment

ENDMP End Mile Point: ending mile point of the road

segment

AADT[YEAR]: historical dataset of AADT data from
AADT[YEAR] each year; at least 7 years of data are needed (i.e.,
AADT2012 through AADT2018)

Single-Unit Truck Percentage: single-unit truck
percentage of the road segment

SUTRK2015

Combination-Unit Truck Percentage: combination-

CUTRK2015 unit truck percentage of the road segment

4.2.3 Critical Data Columns for Crash Datasets

The datasets obtained from the UDOT Traffic and Safety Division include crash data,
crash location, crash rollup, and crash vehicle data. Each dataset includes a column called
CRASH ID and CRASH_DATETIME, which correspond to each crash that occurred. This
labeling system is consistent throughout each crash data file. This allows the information about a

specific crash to be found quickly in each dataset.

Aside from a uniform crash ID column, each crash dataset contains different information
about the crash. The crash data dataset has information regarding the crash severity, weather
conditions, pavement conditions, the type of collision, and other roadway conditions. The crash
rollup dataset includes information regarding the number of injuries, whether pedestrians or
bicyclists were involved, and related circumstances for the crash that occurred. The crash vehicle

dataset has information on the posted speed limit, estimated speeds at time of crash, the number
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of occupants in each vehicle, and the vehicle make and model. The crash location dataset
describes the location of the crash in terms of route number and mile point. Tables depicting the

critical data columns for each crash dataset collected for this project are provided in Appendix B.

4.3 Data Preparation

Microsoft Excel was used to prepare the data for more detailed analysis and to create
homogeneous segments. The Roadway and Crash Data Preparation Workbook was originally
created by Schultz et al. (2016) as a means to segment roadways based on homogeneous
characteristics or a specified length from multiple datasets. Modifications were made to this
Segmentation Workbook to add more datasets and change the programming code to segment the
datasets in a different way than that utilized in the original Workbook. This section briefly
addresses the original Excel workbook that was created and the modifications made to the

original Workbook for this project.

4.3.1 Original Workbook

The original Roadway and Crash Data Preparation Workbook was created in 2015 and is
comprised of two parts (Schultz et al. 2016). The two parts are roadway segmentation and crash
data combination. The roadway segmentation part uses five datasets to create roadway segments.
The five datasets included in this Workbook are AADT, functional class, speed limit or sign
faces, lanes, and urban code. Once all of the roadway datasets have been imported, the user can
choose whether to segment the data based on homogeneity or length. The final product of the

roadway segmentation process is an Excel spreadsheet with the segmented data.

Combining crash data uses four crash datasets: crash location, crash data, crash rollup,

and crash vehicle. Once these datasets are imported into the Workbook, the “Combine Crash
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Data” button appears which creates two spreadsheets when executed. One spreadsheet contains

all of the crash data and the other contains vehicle data related to the crash.

This Workbook was coded using Visual Basic Application (VBA) software that allows
the user to input data and create new spreadsheets by executing commands. Figure 4-1 shows the
interface of the Workbook. When the import button corresponding to a particular dataset is
executed (i.e., Historic AADT), it allows the user to select a data input file. Once the user selects
the input file, the VBA macros copy the data using the critical data columns, such as beginning
and ending mile point, route, and data specific to that dataset (e.g., AADT for every year), into
the Workbook on a new worksheet. Once the dataset is imported, the “Status” bar next to the

import button turns green, signifying the dataset has been properly imported.

When all the datasets are imported into the Workbook, a new button appears on the
interface that allows the user to choose whether the data will be segmented by change in the data
or by a specified maximum length that the user chooses. Figure 4-2 shows the new button. When
the “Combine Roadway Data” button is executed by the user, the VBA code ensures that each
dataset has been imported. Next, the code cycles through each dataset and deletes routes that are
not present in all five datasets and verifies that each dataset has the same ending mile point for
each route. The dataset mile point columns are found in each imported data sheet, and the lowest
mile point is the beginning mile point for the segmented data. Again, the VBA code cycles
through the imported data sheets, and, every time a change in a dataset is found, a new segment
begins. Once the data are segmented, headers are added to the spreadsheet, and the user selects a

folder location to save the segmented data.
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ROADWAY DATA Data download link: | UDOT Open Data Portal
IMPORT DATA STATUS

Historic AADT

Functional Class

Speed Limit Sign Faces

Urban Code

Segmentation . Length: 0.2 Mile(s)
" Every Change  Max Length Mile(s)

Combine Roadway Data

Reset |

Figure 4-2: Segementation options and combine segmentation button (Schultz et al. 2016).

4.3.2 Modifications to Roadway and Crash Data Preparation Workbook

As a result of the purpose and scope of this project, several changes were made to the
Roadway Data Preparation Workbook. These modifications made it possible to add more
datasets and combine the roadway data in a different manner than that used in the original
workbook. The revised user interface is pictured in Figure 4-3. The portion of the interface
associated with the Roadway Data Preparation Workbook is found on the left side of Figure 4-3.
Median and crash location were added to the roadway data section of the Workbook. Speed limit
was omitted from the roadway data section. In addition, changes were made throughout the VBA
code for the lane data, and new codes were added throughout the Workbook to adjust for the
specific needs of this research. No changes were made to the Crash Data portion of this

Workbook. This section summarizes the modifications made to the roadway data portion of the
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Workbook, including changes made to the lane data, the addition of the median data, crash data

additions, and facility type modifications added for this research.

4.3.2.1 Lane Data Modifications

Originally, through-lane data were the only lane type included in the segmentation
process. For this study, however, TWLTL data needed to be included. The process of adding the
TWLTL lane data into the segmentation process was done by adding TWLTLSs to the critical
data columns. In addition, the code was altered so that the roadways were segmented according

to the addition of the TWLTL data.

4.3.2.2 Median Data Additions
Similar to the lane data, the roadway data were not segmented based on the median type.
In the original Workbook, the data were segmented based on speed limit. For this research, speed

limit was not necessary, so the median type data replaced the speed limit data.

The original median data are comprised of 10 different median types. These median types
include depressed, no median, other divided, painted, railroad, raised island, raised median rapid
transit, separate grades, and undivided. Working with so many different types of medians proved
to be difficult since the median type would change frequently along the majority of roadway
corridors. A proposal was presented to the Technical Advisory Committee (TAC) to consolidate
the medians into divided and undivided categories for this project. Upon the approval of the
TAC, the consolidated median included the no median, painted median, and undivided median in

the undivided category and the remaining median types in the divided category.
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4.3.2.3 Crash Data Additions

Another modification that was made to the Segmentation Workbook was the inclusion of
the crash data. This dataset was used to calculate the number of crashes that occurred on each
roadway segment. Five additional columns were added to the final spreadsheet to include the

number of crashes per five-year period analyzed for each severity level.

4.3.2.4 Facility Type Modifications

Once the roadway data were segmented, a facility type was assigned to each roadway
segment. If a segment did not strictly fit into any of the nine facility types, an “ERROR” string
was entered into the cell for that respective segment. Upon inspection of these results, it was
found that 2,443 segments of the 5,732 total segments (42.6 percent) did not meet the criteria for
any of the facility types. With approval of the TAC, expanded definitions of the HSM facility
types were applied. The expanded facility type attributes are shown in Table 4-3, which can be
compared with the HSM definitions of facility type attributes in Table 4-1. With the expanded
definitions of facility types, only 12.7 percent of the total segments did not meet the criteria of

any of the facility types, compared to the 42.6 percent previously.

Next, it was observed that adjacent segments on the same route had the same facility
type. The only varying attribute for the segment was AADT. Segments meeting these criteria
were condensed for two reasons: 1) to eliminate short segments that may skew crash
distributions and 2) to reduce uncertainty in lane data. When adjacent segments on the same
route were condensed, the number of total segments decreased from 5,732 to 1,947 segments. To
account for the combining of adjacent segments, a weighted average for AADT based on

segment length was included.
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Table 4-3: Expanded Facility Type Attributes

Facility
Type Urban | Through TWLTL | Median Functional Class
Code Lanes
Code

1 Rural 2o0r3 0 Undivided -

2 Rural | 4 or more 0 Undivided -

3 Rural | 4 or more 0 Divided -

4 Urban 7 or 3 0 Undivided Other Principal Aﬁenal/ Major
Arterial

5 Urban 7 or 3 1 Undivided Other Principal Aﬁenal/ Major
Arterial

6 Urban | 4 or more 0 Undivided Other Principal Aﬁenal/ Major
Arterial

7 Utban | 4 or more 0 Divided Other Principal Arterlal/ Major
Arterial

8 Urban | 4 or more 1 Undivided Other Principal Arterlal/ Major
Arterial

9 Either 4-10 0 Either Interstate/ Other Freeway or

Expressway
44 Output

The output for both the original and the modified Roadway Segmentation Workbook is a

single Excel spreadsheet that has several different data columns compiled from all the input

datasets. Data included in the original output are the beginning and ending mile points of the

segment, route, UDOT Region, seven years of AADT data, functional class, urban code, number
of through lanes, speed limit, single truck percentages, and combination truck percentages. The

modified output includes all of the data included in the original output as well as TWLTL lanes,

facility type code, facility type description, vehicle miles traveled, and crash counts for each

severity level. Table 4-4 shows all of the column headers that are in the amended output and an

example value for each header. The modified segmentation has 1,947 segments, while the

original had 6,091 segments.
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Table 4-4: Sample Modified Workbook Output

Column Header Example
Label 0006P
Beg Milepoint 0
End Milepoint 46.017
Length 46.017
Route 0006
Route ID 0006
Direction P
FC Code 3
FC Type Other Prinicpal Arterial
County MILLARD
Region 4
UC Code 99999
UC Type Rurall
Median UNDIVIDED
Through Lane 2
TWLTL Lane 0
FT Code 1
FT Type Rural TL TW Highway
AADT 2014 350
AADT 2013 330
AADT 2012 325
AADT 2011 330
AADT 2010 340
AADT 2009 355
AADT 2008 345
Single Per 0.24961
Combo Perc 0.232449
VMT 2014 16105.95
Crash: Severity 1 16
Crash: Severity 2 2
Crash: Severity 3 6
Crash: Severity 4 2
Crash: Severity 5 2
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4.5 Straight Proportion Method

Once the roadways were segmented based on facility type, a straight proportion was
taken for each facility type to create crash severity distributions. The straight proportion method
was employed to understand the crash severity distributions for past crash data. The proportions
were calculated by dividing the total number of crashes of each severity of a facility type by the

total number of crashes on the respective facility type.

4.6 Statistical Model Development

Several statistical models were developed to predict the crash severity distribution for a
roadway facility type. The four models that were developed were the multivariate regression,
frequentist binomial regression, frequentist multinomial regression, and Bayesian multinomial
regression models. These models were chosen because the results are expressed in proportions,
which is required for the crash severity distributions since there are more than two crash
severities. These four statistical models were developed after exploring the data and examining
model diagnostics after fitting each model. This section describes the general development of

each model. More information on the detailed development of the statistical models is given by

Clegg (2018).

4.6.1 Statistical Foundation
To predict the distribution of crash severities for a facility type, a vector of the
probabilities of crash severity based on facility type is required. For each segment, the vector of

crashes is as shown in Equation 4-1.

Y = [y1j,Y2j,3j» Yajr Vsj] 4-1)

Where, yj = Vector of total number of crashes of all five severities on segment j
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vi; = Number of crashes of severity i on segment j

~.

Severity of crash (i.e., 1, ..., 5)

j = Roadway segment

Because a crash severity distribution is a vector, the data were assumed to be distributed
according to a multinomial distribution, as illustrated in Equation 4-2. This distribution is

typically used to describe situations with a discrete number of possible outcomes.
y; ~ Multinomial(n;, ir;) (4-2)

Where, ¥j = Vector of total number of crashes of all five severities on segment j

n; = Total number of crashes on segment j

mj = Vector of probabilities for a crash on segment j
i = Severity of crash (i.e. 1, ..., 5)

Roadway segment

~.
Il

The vector @j is comprised of the probabilities of crash severity i on segment j, as shown
in Equation 4-3.
Tl'] = [ﬂlj,T[zj,ﬁ3]',T[4_]',1T5j] (4-3)

Where, @; = Vector of probabilities for a crash on segment j

m; = Probability of crash severity i on segment j, ¥>_, m; ; = 1 because the sum of
the probabilities must equal 1.

i = Severity of crash (i.e. 1, ..., 5)

j = Roadway segment

This section describes the general development of the four statistical models that were
created as part of this research. The four models include multivariate regression, frequentist

binomial regression, frequentist multinomial regression, and Bayesian multinomial regression.
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4.6.1.1 Multivariate Regression Model
For the multivariate regression analysis, two initial assumptions are made. The first
assumption is that the proportion of each type of crash is distributed normally according to a

multivariate normal distribution, as illustrated in Equation 4-4.

Yij
pij= - (4-4)

nj

Where, pi; = Proportion of crashes of severity i on segment j
y;; = Number of crashes of severity i on segment j

n; = Total number of crashes on segment j

i = Severity of crash (i.e., 1, ..., 5)

Jj = Roadway segment

With regards to these proportions, it was also assumed that these proportions follow a

multivariate normal distribution.

In order to perform multivariate regression on the statistic p;;, where p;; is between 0 and
1, the data are required to be transformed so that the data span all the real numbers using
function f{x). For a given set of data, linear regression is used to find the line that best describes the
major trends in the data. Regression is illustrative of the relations between a set of covariates, X,
and their response, Y. It is commonly associated with a best-fit line. Possible transformations that
are commonly used for this type of analysis are the logit, probit, and arcsine transformation,
shown in Equations 4-5, 4-6, and 4-7, respectively. These three transformations were used to

manipulate the data so that a linear regression model could fit the data better for this project.

f(x) =1og(=) (4-5)
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FO) = [ e ax (4-6)

f() = sin'(Vx) (4-7)

Where, x = Proportion of crashes of severity i on segment j

It is important to note that multivariate regression does not account for the variability in
total segment crashes ;. For crash severity distributions, it is expected that the distributions will
sum to 1. In multivariate regression, the predicted probabilities for the crash severities will not
necessarily always sum to 1. Multivariate regression also allows for nonlinear elements in the
matrix of covariates. Specifically, the analysis applied varying numbers of natural splines to

certain variables.

4.6.1.2 Frequentist Binomial Regression Model

In the multivariate regression analysis, it was assumed that the proportion of crashes of a
certain severity on a segment are representative of the actual probability of a crash occurring.
With multivariate regression, the model is predicting the proportion of crashes of each severity,

not directly estimating the probability of crashes of each severity occurring.

Similar to transformation functions used in the multivariate regression model, frequentist
binomial regression models use link functions to estimate the parameters of a distribution.
Mathematically, the frequentist binomial regression model can be written as illustrated in

Equation 4-8.

Vij ~ Binomial(n,-, 7Tij) o

f(mi;) = XiBi = Bo + XijBi + -+ + X B (4-9)
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Where, Number of crashes of severity i on segment j

=
<
Il

n; = Total number of crashes on segment j
m; = Probability of a crash of severity i on segment j

X;j = Vector regression covariates for segment j

pi = Vector of regression coefficients
i = Severity of crash
j = Roadway segment

k = Number of covariates selected

The function f'in Equation 4-9 refers to one of the three link functions considered for this
analysis. While many link functions exist, the logit, probit, and complementary log-log link
functions are the most commonly used for this type of analysis. The logit and probit functions
are identical to Equations 4-5 and 4-6. The complementary log-log function is defined in

Equation 4-10.

f(x) = log(—1log(1 - x)) (4-10)

Similar to the multivariate regression, the probabilities for each crash of severity i are
normalized so that the probabilities sum to 1. Also, nonlinear elements are allowed in the matrix
of the covariates. One limitation of this model is that it does not account for any dependence

between the probabilities x;j, 72, w3j, 74, and 7s;.

4.6.1.3 Frequentist Multinomial Model
Due to the dependence between the probabilities for each crash severity, a frequentist
multinomial model was considered for this analysis. The frequentist multinomial model was

defined previously in Equation 4-2.
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Once again, link functions are used to link the probabilities of each crash severity to the
real number line, R. Similar to the binomial regression model, it is not assumed that the
probabilities follow a normal distribution. For the frequentist multinomial model, the only link

function that was analyzed was the logit function in Equation 4-5.

Multinomial regression performs regression on the odds of one class as compared to a
reference class. For the purposes of this analysis, crash severity 1 was set as the reference class.
The model of the log-odds of a class of interest compared to the reference class of crash severity
1 can be written as shown in Equations 4-11, 4-12, and 4-13.

n;:

et
Twj = 1455, e (4-11)
Ty
10g(n{—}1_) =n;; = X;P; (4-12)
{1}j
_ 1
Twj = 1+%5 el (4-13)

Where, m; = Vector of probabilities of a crash severity i on segment j

i = Severity of crash

Jj = Roadway segment

n; = Total number of crashes on segment j

Once again, many different versions of this model were considered in this analysis,

including natural spline functions to account for nonlinearity in the numeric variables.

4.6.1.4 Bayesian Multinomial Regression Model
Finally, a Bayesian multinomial regression model was fit so that a predictive probability
distribution on each probability within the crash severity distribution could be used. In order to

obtain the probability distribution, the logit function, shown previously in Equation 4-5, was
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used to link the elements of 7; to the real number line. The Bayesian multinomial regression

model that employs the logit link function is written as shown in Equations 4-14, 4-15, and 4-16.

y; = Multinomial (n]-,rt]-), such that fori + 1 (4-14)
T

log (%) =1ij = XiBi = Bio + X181 + -+ + X Pix (4-15)

1 (”{“") =n,,=0 4-16

°8 1)) i ( )

Where, Br =10
mij = Vector of probabilities of a crash severity i on segment j
n; = Total number of crashes on segment j
ni; = Vector of regression covariates for segment j and regression coefficients

Xj = Vector regression covariates for segment j

I
I

Vector of regression coefficients
i = Severity of crash
j = Roadway segment

k = Number of regression covariates included in the model

This Bayesian multinomial regression model can be exploited further. It is expected that
for certain variables, the effect will vary depending on crash severity. For example, an increase
in the AADT of a road will affect the probability of severity 1 crashes differently than it will
affect the probability of severity 2 crashes. For this reason, additional coefficients were added to
the model. The Bayesian multinomial regression model calculates a coefficient differently for

each of i classes when calculating the best-fit line.

In order to account for various intercepts and coefficients, several models were

considered. By substituting these various models in for Equation 4-15, the crash severity
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distributions for each of the facility types can be predicted. The models that were analyzed for
this research were the random intercepts model with respect to severity and facility type, random
coefficients model with respect to severity and facility type, and random coefficient mixture
model with respect to severity and facility type. In addition, a nonsense model was used to
evaluate the effectiveness of each model. A nonsense model was created by assuming that all
crash severities were equally likely. By creating a nonsense model, each of the other models
could be compared to the nonsense model to understand how well the data were predicted by
each model. In other words, the nonsense model creates a baseline to which the other models

may be compared.

4.6.2 Methods of Evaluation
Three different methods were used in order to evaluate the model fit and predictive
ability. The three methods are Bayesian Information Criterion (BIC), Deviance Information

Criterion (DIC), and Root Mean Squared Error (RMSE).

BIC evaluates model fit by examining the likelihood of the model given the observed
data. Once the likelihood is determined, deviance is extracted. High deviance indicates a low
likelihood and poor fit. An additional penalty is assessed to models with additional parameters to
account for the loss of the information in adding another covariate. This penalty is known
colloquially as the curse of dimensionality. Models with more parameters naturally fit the data
better; therefore, a greater penalty is assessed to offset the loss of information that may be
present. A high BIC value relative to other BICs of similar models on the same data indicates a

relatively poor fit.

DIC is very similar to BIC. However, it is impossible to compare the model fit between

models using BIC for evaluation and Bayesian models using DIC for evaluation. The values
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calculated for BIC and DIC cannot be translated from one to the other. If comparisons are to be

made between Bayesian and other types of models, RMSE is recommended.

RMSE evaluates the model's predictive ability by examining how far the calculated
estimates are from the actual values observed. For example, if for segment j the model predicts
n;*p;; crashes of severity i, where p;; is the proportion of crashes of severity i on segment j and y;;
is the actual number of severity i crashes on segment j, the RMSE is calculated as shown in

Equation 4-17.

1 N
RMSE = [ X%, 0 = 1y * Rm)? (4-17)
Where, N, = Total number of segments
vi; = Number of crashes of severity i on segment j

n; = Total number of crashes on segment j

Rni = Index probability for crash severity i for facility type m, within overall crash
severity distribution matrix R
i = Severity of crash
j = Roadway segment
m = Facility type

4.7 Chapter Summary

This chapter presented the methodology required to develop crash severity distributions
for nine facility types in the HSM. The datasets used in this analysis were historic AADT,
functional class, median, lane, urban code, and crash location. All of these datasets, with the
exception of crash location, were downloaded from UDOT’s Open Data Portal (UDOT 2017). A
roadway data preparation Excel-based spreadsheet developed in previous research was used to

segment the roadway based on homogeneity. Several changes were made to the Workbook in
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order to meet the scope and purpose of the research including adding TWLTL data, median data,
crash counts for each severity level, and facility type modifications. The output was a single
Excel spreadsheet with all of the data pertaining to each roadway segment. The total number of
segments was 1,947 after the expanded definitions of the HSM were applied. The methods for
developing the statistical models were also discussed. The four models that were developed for
this research were the multivariate regression, frequentist binomial regression, frequentist
multinomial regression, and Bayesian multinomial regression models. For evaluation of

goodness of model fit to actual crash occurrences, BIC, DIC, and RMSE were used.
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S RESULTS

This chapter presents the results for the crash severity distributions from the straight
proportion method and statistical models that were developed for the nine facility types listed in
the HSM. First, the results for the straight proportion method are presented. Next, the evaluation
results including the crash severity distributions for each of the four statistical models are
discussed. The four models include multivariate regression, frequentist binomial regression,
frequentist multinomial regression, and Bayesian multinomial regression. Finally, the preferred
model for determining the crash severity distributions for the nine facility types is selected. More

information regarding the results of the statistical models is provided by Clegg (2018).

5.1 Straight Proportion Method

The straight proportion method was used to understand the crash severity distribution
from past crash data. The results for the straight proportion method for the nine facility types are
shown in Table 5-1. Although the straight proportion method is quick and simple, it is not the
best to determine a crash severity distribution. One shortcoming of taking a straight proportion is
that it does not take into account the random nature of crashes like a statistical model would.
Another shortcoming of this method is that it only accounts for the facility type to determine the

crash severity distribution, whereas statistical models can include a number of relevant variables.
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Table 5-1: Crash Severity Distribution for Straight Proportion Method

Facility Severity | Severity | Severity | Severity | Severity
Type 1 2 3 4 5
1 0.7393 0.1046 0.1062 0.0373 0.0126
2 0.7849 0.0952 0.0841 0.0253 0.0105
3 0.7798 0.1116 0.0832 0.0166 0.0088
4 0.6900 0.1764 0.1110 0.0195 0.0031
5 0.6645 0.2024 0.1072 0.0197 0.0062
6 0.6407 0.2132 0.1212 0.0214 0.0035
7 0.6660 0.2064 0.1086 0.0171 0.0019
8 0.6482 0.1977 0.1233 0.0265 0.0043
9 0.7554 0.1410 0.0797 0.0183 0.0056

5.2 Multivariate Regression Model

In multivariate regression for transformed proportions, several assumptions must be met.
The assumptions that are important for this analysis are that the proportions change linearly
relative to each covariate, crash counts from different segments are independent from one
another, residuals are normally distributed, and the residuals have an equal variance across the
scope of each covariate, or homoskedacity. Since the analysis also considered multiple non-

linear regression, the linearity assumption was relaxed.

While much of the data have linear trends, there are some variables that do not have
linear trends. Figure 5-1 shows a linear plot for one variable, combination trailer truck
percentage that shows nonlinearity The red line indicates the median of the data, which does not

follow a linear trend.

As explained previously in section 4.3, efforts were made to ensure homogeneity within a
roadway segment. While there may be some dependence between segments, independence has
been accounted for in the data cleaning process; therefore, the crash counts are independent from

one another.
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Figure 5-1: Linear plots for percent single trucks (Clegg 2018).

The assumptions that the residuals are normally distributed and have equal variance are
unique to the multivariate regression framework. Figure 5-2 show the residual plots, which
appear normally distributed, for a multivariate regression model. Additionally, heteroskedacity
was examined. It was observed that the equal variance was not guaranteed, which implies that

the assumptions that the proportions are normally distributed is unjustified.
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Figure 5-2: Residual plots for multivariate regression (Clegg 2018).

For each of the four models that were explained in section 4.6, many models were
considered to achieve the most effective model. An iterative backward variable selection was
employed for variable selection in the multivariate regression analysis. The backwards variable
selection method began by using all possible covariates. If deleting a covariate lowered the BIC,
indicating a better fit, the covariate was removed. This process continued until only three

covariates remained: segment length, facility type, and 2014 AADT.

The option was investigated of including county and UDOT region in the model so that
crash severity distributions could be specific to smaller geographic areas. The backward variable

selection method showed that including either of these variables did not improve model fit. As
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such, the variables relating to county and UDOT region were not included as variables within

any of the four statistical models.

For the multivariate regression, frequentist multinomial regression, and frequentist
binomial regression models, nonlinearity was examined using natural splines. Several different
numbers of natural splines were included. The best model was chosen using BIC values, as BIC
values account for a good model fit while enforcing parsimony, meaning the simplest model with

the most predictive power.

For the multivariate regression framework, the best model for all severities is expressed
in Equation 5-1, with f defined previously in Equation 4-7. The I symbol refers to an indicator
function, which has a value of 1 or 0 depending on the facility type. For example, if Facility
Type Code = m, the indicator function is assigned a value of 1 because the facility types matches
the desired code in the model. The resulting crash severity distribution for the best-fitting model

according to BIC for each of the nine facility types is shown in Table 5-2.

f(pi]-) = Loi + Bim (]I(Facility Type Code; = m)) + 22:1 wzg(LENGTHj)ﬁzgi +

(AADT 2014;)Bs; + (Through Lanes;)By; (5-1)

Where, pij = Proportion of crash of severity i on segment j

pi = Regression coefficient for severity i

n; = Total number of crashes on segment j
e = Natural spline function of number g
LENGTH, = Variable for length of segment j
AADT 2014; = Variable for 2014 AADT value for segment j

Through Lanes; = Number of through lanes for segment j

g = Number of natural spline functions included in the model (6 natural spline
functions are included in this model)
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Severity of crash

~.

Roadway segment

.
|

m = Facility type

Table 5-2: Crash Severity Distribution for Multivariate Regression Model (Clegg 2018)

Facility Severity | Severity | Severity | Severity | Severity
Type 1 2 3 4 5

1 0.7854 0.0913 0.0902 0.0267 0.0064
2 0.8657 0.0624 0.0563 0.0123 0.0033
3 0.8023 0.1089 0.0746 0.0098 0.0044
4 0.7266 0.1594 0.0977 0.0136 0.0027
5 0.6993 0.1900 0.0960 0.0102 0.0045
6 0.6610 0.2041 0.1169 0.0152 0.0028
7 0.7538 0.1597 0.0753 0.0092 0.0020
8 0.6937 0.1891 0.0970 0.0175 0.0027
9 0.7734 0.1111 0.0880 0.0197 0.0078

5.3 Frequentist Binomial Regression Model

An identical procedure to the multivariate regression models was completed for the
Frequentist binomial regression framework. Once again, natural splines were used but were
applied to all variables. The best model was chosen based on the median BIC values for the five
models of each crash severity. Unlike the multivariate regression models, however, extreme
amounts of variability in the diagnostic measures did not exist, indicating that the binomial

regression model could account for the other sources of variability.

For the variable selection, the backward variable selection method was used again. The
variables that were chosen using this technique were facility type code, length, and AADT 2014.
The chosen model for binomial regression is shown in Equation 5-2. The resulting crash severity

distribution for the nine facility types is shown in Table 5-3.
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logit (nim]-) = Poi + Pim (]I(Facility Type Code; = m)) + (LENGTH]-),BZl- +

Y7 =1 w3g(AADT 2014;) B3 (5-2)
Where,  mn = Probability of crash severity i on segment j of facility type m
LENGTH, = Variable for length of segment j

AADT 2014;

Variable for 2014 AADT value for segment j
n; = Total number of crashes on segment j
we = Natural spline function of number g

Number of natural spline functions included

o0Q
I

i = Severity of crash

Roadway segment

~.
|

m = Facility type

Table 5-3: Crash Severity Distribution for Frequentist Binomial Regression

Model (Clegg 2018)
Facility Severity | Severity | Severity | Severity | Severity
Type 1 2 3 4 5

1 0.7444 0.1061 0.1026 0.0356 0.0113
2 0.7720 0.0972 0.0920 0.0266 0.0122
3 0.7633 0.1231 0.0890 0.0168 0.0078
4 0.6780 0.1831 0.1140 0.0213 0.0036
5 0.6551 0.2095 0.1073 0.0210 0.0071
6 0.6286 0.2163 0.1291 0.0218 0.0042
7 0.6745 0.2070 0.0997 0.0170 0.0018
8 0.6373 0.2023 0.1277 0.0274 0.0053
9 0.7610 0.1207 0.0869 0.0239 0.0075

5.4 Frequentist Multinomial Regression Model
The multinomial regression models have a different set of assumptions. For multinomial
regression, it is required that the transformed proportions change monotonically relative to each

covariate. Monotonic relationships occur when one variable increases when another variable
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increases or when one variable decreases when another variable decreases. It was found that

some variables did not have monotonic relationships, such as AADT 2014.

The model that was chosen for the multinomial regression model is illustrated in

Equation 5-3.

log (mz}m‘) = Boi + Bim (H(Facility Type Code; = m)) +

T{1}mj

38 1 w2g(LENGTH;)Bogi + X521 w34 (AADT 2014;) B3y, (5-3)

Where, m;mj = Probability of crash severity i on segment j within facility type m
we = Natural spline function of number g

g = Number of natural spline functions included in the model (38 natural spline
functions are included in this model)

i = Severity of crash
j = Roadway segment

Facility type

3
Il

The covariates included in this model were the same as the frequentist binomial
regression models: segment length, 2014 AADT, and facility type. While this multinomial model
performed well, it did not vastly outperform the other models considered with regard to RMSE.
Also, it dealt with possible monotonicity in AADT and accounted for dependence within
elements of the 7mj vector. The crash severity distribution relating to the frequentist multinomial

regression model is shown in Table 5-4.
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Table 5-4: Crash Severity Distribution for Frequentist Multinomial Regression

Model (Clegg 2018)
Facility Severity | Severity | Severity | Severity | Severity
Type 1 2 3 4 5
1 0.7679 0.1006 0.0916 0.0314 0.0085
2 0.7855 0.0884 0.0916 0.0248 0.0097
3 0.7637 0.1238 0.0886 0.0183 0.0056
4 0.6985 0.1902 0.0964 0.0136 0.0013
5 0.5918 0.2403 0.1305 0.0303 0.0071
6 0.6535 0.2113 0.1145 0.0178 0.0029
7 0.6680 0.2100 0.1011 0.0195 0.0014
8 0.6404 0.2066 0.1257 0.0234 0.0039
9 0.7770 0.1188 0.0768 0.0221 0.0053

5.5 Bayesian Multinomial Regression Model

The final model under the Bayesian multinomial framework was the most complex
considered. It introduces coefficients for every combination of facility type and crash severity.
Covariates were selected by the Bayesian Lasso algorithm rather than the backward variable
selection algorithm used for the other models. The covariates of segment length, number of
through lanes, number of deceleration lanes, percentage of single trucks, percentage of

combination trucks, and 2014 AADT had a probability greater than 0.8 of being non-zero.

The DIC was used to determine which of the Bayesian models fit the actual data the best.
The DIC values for each of the Bayesian models is shown in Table 5-5. Based on the DIC
values, the random coefficients model with different coefficients for each crash severity and
facility type combination had the lowest DIC value. Therefore, this model was chosen as the best
Bayesian model from this analysis. The model can be written as shown in Equation 5-4. The
resulting crash severity distribution for the nine facility types for the best Bayesian multinomial

regression model is illustrated in Table 5-6.
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Table 5-5: DIC Values for Bayesian Models (Clegg 2018)

Model DIC Value
Random Intercepts (Severity) 28271
Random Intercepts (Severity & Facility 27930
Type)
Random Coefficients (Severity) 27186
Random Coefficients (Severity & Facility 26577
Type)
Nonsense 51590
Mixed 27786
T
log <n{—}]) = Boi + XijB1i + - + XijBri (5-4)
(1}j
Where, m; = Probability of crash severity i on segment j

i = Severity of crash

j = Roadway segment

K = 7 with covariates for each of the seven chosen variables

Table 5-6: Crash Severity Distribution for Bayesian Multinomial Regression

Model (Clegg 2018)
Facility Severity | Severity | Severity | Severity | Severity
Type 1 2 3 4 5
1 0.7308 0.1138 0.1079 0.0364 0.0111
2 0.7958 0.1062 0.0728 0.0192 0.0060
3 0.8308 0.1036 0.0591 0.0019 0.0046
4 0.6839 0.1784 0.1110 0.0239 0.0028
5 0.6896 0.1852 0.1008 0.0200 0.0044
6 0.6435 0.2073 0.1243 0.0211 0.0038
7 0.6522 0.2218 0.1069 0.0185 0.0006
8 0.6433 0.2091 0.1184 0.0248 0.0044
9 0.7569 0.1098 0.0970 0.0240 0.0123
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5.6 Final Model Selection

A final comparison between each of the statistical models was made using BIC values.
RMSE would be the best diagnostic, but because the predictions are in terms of decimals while
observed crashes are in terms of discrete numbers, RMSE is an unreliable diagnostic.
Nevertheless, the RMSE values were found to be informative and were included in Table 5-7.

Table 5-8 displays the BIC values for the best models from each framework.

Table 5-7: RMSE Values for Best Models (Clegg 2018)

Model Severity | Severity | Severity | Severity | Severity
1 2 3 4 5
Freq MLR 56509 | 3.9571 | 32292 | 1.4151 | 0.5788
Freq Logit 5.4687 | 3.7006 | 32177 | 1.4228 | 0.5707
Freq Multinomial 53610 | 3.7291 | 3.0640 | 1.4036 | 0.5488
Random Intercepts (Severity) 5.3721 3.8134 | 3.0586 | 1.3852 | 0.5688
Random Intercepts (Severity & | 53310 | 35141 | 3.0582 | 1.3385 | 0.5432
Facility Type)
Random Coefficients (Severity) | 5.3673 3.6241 3.0288 1.3383 0.5465
Random Coefficients (Severity | 53374 | 35008 | 3.0508 | 1.3345 | 0.5406
& Facility Type)

Nonsense 33722 | 7.9741 | 34130 | 4.1216 | 5.0276
Mixed 53315 | 3.6384 | 3.0967 | 1.4090 | 0.5764

Table 5-8: BIC Values for the Best Model from Each Framework (Clegg 2018)

Model BIC
Multivariate Regression -15342
Frequentist Binomial Regression 10493
Frequentist Multinomial Regression 24927577
Bayesian Multinomial Regression 30666

Based on the RMSE values, the frequentist multinomial regression and binomial
regression models appear to perform well. However, the BIC values show that the multinomial

regression does not fit the data well. Additionally, the likelihood for the multivariate regression
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and the binomial regression is misapplied because the assumption that the data are distributed
according to the multivariate distribution or frequentist binomial distributions cannot be met.
Additionally, vehicle crashes are believed to be distributed according to a multinomial

distribution.

Based on the BIC and RMSE values, it was concluded that the Bayesian multinomial
regression model predicted the crash severity distributions more accurately compared to the other
models analyzed. The Bayesian models are more flexible in evaluating effects of certain similar
segments of roads. The Bayesian model is also favored due to its interpretability. The crash
severity distribution for the Bayesian multinomial regression model was shown previously in
Table 5-6. In addition, there is a 95 percent probability that the crash severity distribution will
fall within the respective values in Table 5-9 and Table 5-10. Figure 5-3 shows the 95 percent
credible intervals for the Bayesian multinomial regression model. CS 1-5 refer to crash severity,

with 1 representing PDO and 5 representing fatal crashes.

Table 5-9: 95 Percent Credible Upper Bound for Bayesian Multinomial Regression

Model (Clegg 2018)

F%(;Il)lély Severity 1 | Severity 2 | Severity 3 | Severity 4 | Severity 5
1 0.7419 0.1223 0.1159 0.0411 0.0138
2 0.8269 0.1343 0.0962 0.0320 0.0133
3 0.8819 0.1650 0.1080 0.0144 0.0267
4 0.6975 0.1905 0.1211 0.0288 0.0047
5 0.7132 0.2072 0.1174 0.0279 0.0082
6 0.6514 0.2146 0.1298 0.0232 0.0047
7 0.6664 0.2350 0.1165 0.0225 0.0016
8 0.6581 0.2226 0.1289 0.0296 0.0065
9 0.7679 0.1185 0.1051 0.0283 0.0158
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Table 5-10: 95 Percent Credible Lower Bound for Bayesian Multinomial Regression

Model (Clegg 2018)
F%ill)léy Severity 1 | Severity 2 | Severity 3 | Severity 4 | Severity 5
1 0.7192 0.1057 0.1005 0.0320 0.0088
2 0.7594 0.0825 0.0532 0.0107 0.0022
3 0.7542 0.0593 0.0286 0.0001 0.0004
4 0.6693 0.1665 0.1017 0,0195 0.0016
5 0.6642 0.1649 0.0858 0.0139 0.0020
6 0.6352 0.1999 0.1192 0.0191 0.0030
7 0.6375 0.2090 0.0980 0.0149 0.0002
8 0.6278 0.1960 0.1087 0.0205 0.0028
9 0.7446 0.1018 0.0892 0.0203 0.0094
g 2] 9 — i g —
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Figure 5-3: 95 percent credible intervals for Bayesian multinomial regression model: (a)
crash severity 1, (b) crash severity 2 and 3, and (c) crash severity 4 and 5 (Clegg 2018).
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5.7 Crash Severity Distribution Comparison

Once the Bayesian multinomial crash severity distribution was chosen, a comparison
between the chosen model, the straight proportion method, and the HSM crash severity
distributions was performed. The comparison of these crash severity distributions is shown in
Figure 5-4, where FT refers to the facility type that the distribution represents. The crash severity
distribution found within the HSM is developed using roadway data of facility type 1, rural
TLTW roadways. Thus, the crash severity distribution is compared to the other crash severity
distributions for facility type 1. Though the crash severity distributions for the straight proportion
method and Bayesian multinomial model are nearly identical, there are some differences
between these distributions and the distribution from the HSM. The difference between the
proportion of crashes for crash severity 1 in the HSM and the Bayesian multinomial model is 5.2
percent. For crash severity 2 and crash severity 4, the differences are 3.1 and 1.8 percent,

respectively.

The distributions for the straight proportion method and the Bayesian multinomial model
for facility types 2 through 9 can also be compared to understand how the results for each
method differ from each other. The largest discrepancies between the Bayesian multinomial
statistical model and the straight proportion method occur for facility types 3 and 5. For example,
the difference between the crash severity 1 proportion between the Bayesian multinomial
statistical model and the straight proportion method for facility type 3 is about 5.1 percent.

Likewise, for crash severity 3 the difference is approximately 2.4 percent for facility type 3.
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Due to the crash costs associated with the crash severity levels in life-cycle benefit-cost
analysis, the discrepancies in more severe crashes will have a larger impact in life-cycle benefit-
cost analysis. As stated previously, the crash severity distribution for the straight proportion
method was not chosen because it is not adequate to describe the contributing factors of crashes.
The straight proportion method uses facility type as the only variable to develop the crash
severity distributions, whereas the Bayesian multinomial model has a number of variables that

are taken into account.

5.8 Chapter Summary

This chapter presented the results for the crash severity distributions for the four models
developed for this research. To choose the best model for each framework, it was necessary for
the models to be cross-validated. The models were cross-validated using appropriate BIC, DIC,
and RMSE values. The model specifications were presented with the significant covariates. In
addition, the crash severity distributions for the nine facility types were presented. Next, a single
model, the Bayesian multinomial regression model, was presented as the most suitable crash
severity distribution. The crash severity distributions for the Bayesian multinomial statistical

model, the straight proportion method, and the HSM distribution were compared.
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6 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this research was to develop crash severity distributions for the 11 facility
types outlined in the HSM. Due to insufficient data, crash severity distributions were developed
only for the first nine facility types. The preceding chapters have discussed the procedures used
to complete the analysis, including a crash severity distribution survey that was distributed to
each of the 50 DOTs in the United States, the roadway segmentation process, and the

development of several statistical models.

Due to insufficient research for the development of crash severity distributions, the
research team conducted a brief survey to understand the uses of crash severity distributions in
relation to life-cycle benefit-cost analysis within DOTs. Next, an existing automated Excel
workbook was modified to analyze roadway data segment based on a change in roadway
characteristics. The roadway segments were classified based on the HSM facility types. Changes
were made to the definition of the facility types in order to include more roadway segments in
the analysis. The expanded definition of the facility types included additional through lanes.
Statistical models were developed using R-programming. The four models that were developed
for this research were the multivariate regression, frequentist binomial regression, frequentist

multinomial regression, and Bayesian multinomial regression models.
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This chapter summarizes the methodology and final results of this research. First, the
roadway segmentation process is summarized. Next, the statistical models developed for this

project are discussed. Finally, recommendations and future research opportunities are presented.

6.1 Roadway Segment Summary

After the roadway data were acquired, an automated workbook created in previous BYU
research was modified to segment the data using several roadway characteristics. The median
type roadway characteristic was included. Although 10 types of medians were included in the
dataset, each type was classified as divided or undivided, as the HSM only specifies these two
median types. The definitions of the facility types were expanded to include more through lanes.
By changing the definition of the facility types, more segments were included in the analysis.
Additionally, TWLTLs were also added to the data segmentation process. Once changes were
made to the segmentation process, it was observed that several adjacent segments had the same
facility type. The only difference between adjacent segments was AADT values. Adjacent
segments on the same route were then condensed to reduce the occurrence of short segments. In
such cases, a weighted average, based on segment length, of the AADT of combined segments

was entered.

6.2 Statistical Model Summary

Once the roadway segmentation process was complete, the data were entered into four
statistical models to develop crash severity distributions. The four models that were developed
for this research were the multivariate regression, frequentist binomial regression, frequentist
multinomial regression, and Bayesian multinomial regression models. To evaluate the models, a

cross-validation study was conducted to select the best model for each framework. BIC, DIC,
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and RMSE values were compared to conduct the analysis. Based on the cross-validation study, it
was determined that the Bayesian multinomial regression model was the most effective model to
describe the crash severity distributions for the nine facility types evaluated. Table 6-1 shows the

crash severity distributions for each facility type for the Bayesian multinomial regression model.

Table 6-1: Crash Severity Distribution for Bayesian Multinomial Regression

Model (Clegg 2018)
Facility Severity | Severity | Severity | Severity | Severity
Type 1 2 3 4 5

1 0.7308 0.1138 0.1079 0.0364 0.0111
2 0.7958 0.1062 0.0728 0.0192 0.0060
3 0.8308 0.1036 0.0591 0.0019 0.0046
4 0.6839 0.1784 0.1110 0.0239 0.0028
5 0.6896 0.1852 0.1008 0.0200 0.0044
6 0.6435 0.2073 0.1243 0.0211 0.0038
7 0.6522 0.2218 0.1069 0.0185 0.0006
8 0.6433 0.2091 0.1184 0.0248 0.0044
9 0.7569 0.1098 0.0970 0.0240 0.0123

6.3 Recommendations and Future Research

Several suggestions for future research are presented based on the findings of this
research. Although the data used in this research worked well throughout the process, one issue
with the data was that there were circumstances that involved tedious manipulation to the data in
order to achieve the results wanted. UDOT’s Light Detection and Ranging (LiDAR) data are of
extreme precision but can cause some problems when the data are not required to be at a high
level of precision. It is, therefore, recommended that a collection of datasets of varying precision
be developed to meet various analysis purposes. For example, for many analyses, a more general,
less precise dataset can be used. For this project, the extremely precise LIDAR data were
difficult to use at times. By having various datasets, the user will be able to choose a dataset that

will meet the needs of his or her research.
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Another recommendation for future research is to focus on collecting data for the
additional facility types. Originally, the scope of this project included developing crash severity
distributions for all 11 facility types; however, due to insufficient data, only nine facility types
were developed. The two facility types that were not included were freeway speed change lanes
and freeway ramps. In order to develop crash severity distributions for these omitted facility
types, additional roadway data and crash data will be required. Perhaps the largest change of data

suggested will be in recording the specific lanes in which crashes occur.

The last recommendation for future research is to combine the process of life-cycle
benefit-cost analysis with the roadway safety research that continues to be developed. One of the
outputs for the safety research is a list of countermeasures to implement in order to increase the
safety for that roadway segment. These countermeasures can then be evaluated in the life-cycle
benefit-cost analysis to help engineers and decision-makers with choosing the best option for the
roadway in terms of safety improvements. Automating this procedure can give the engineer an
idea of how much the countermeasure will cost and which countermeasures could be excluded

due to cost constraints.

67



REFERENCES

American Association of State and Highway Transportation Officials (AASHTO). (2010).
Highway Safety Manual. Washington, DC.

American Association of State and Highway Transportation Officials (AASHTO). (2018).
Subcommittee on Safety Management. < https://safetymanagement.transportation.org/
membership/> (April 4, 2017).

Clegg, B. W. (2018). “Predictive Crash Severity Distribution for Utah State Roadways Based on
Facility Type.” Department of Statistics, Brigham Young University, Provo, UT.

New York State Department of Transportation (NYSDOT). (2013). Average Accident
Costs/Severity Distribution State Highways 2011. <https://www.dot.ny.gov/divisions/
operating/osss/highway-repository/Revised2010 2011AvrAccCostSev.pdf> (May 7,
2018).

Qualtrics. (2017). Welcome to the Experience Management Platform.
<https://www.qualtrics.com/> (November 22, 2017).

Saito, M., Frustaci, J. B., and Schultz, G. G. (2016). “Life-Cycle Benefit-Cost Analysis of Safety
Related Improvement on Roadways.” Report UT-16.15, Utah Department of
Transportation Traffic and Safety Research Division, Salt Lake City, UT.

Saito, M., Schultz, G. G., and Brimley , B. K. (2011). “Transportation Safety Data and Analysis,
Volume 2: Calibration of the Highway Safety Manual and Development of New Safety
Performance Functions,” Report UT-10.12b, Utah Department of Transportation Traffic
and Safety Research Division, Salt Lake City, UT.

Schultz, G. G., Bassett, D., Roundy, R., Saito, M., and Reese, C.S. (2015). “Use of Roadway
Attributes in Hot Spot Identification and Analysis.” Report UT-15.10, Utah Department
of Transportation Traffic and Safety, Research Division, Salt Lake City, UT.

Schultz, G. G., Mineer, S.T., Saito, M., Gibbons, J. D., Siegal, S. A., and MacArthur, P. D.
(2016). “Roadway Safety Analysis Methodology for Utah.” Report UT-16.13, Utah
Department of Transportation Traffic and Safety, Research Division, Salt Lake City, UT.

Treat, J. R., Tumbas, N. S., McDonald, S.T., Dhinar, D., Hume, R. D., Mayer, R. E., Stansifer,
R. L., and Castellan, N. J. (1979). Tri-Level Study of the Causes of Traffic Crashes: Final

68



Report- Executive Summary Report No. DOT-HS-034-3-535-79-TAC(S). Institute for
Research in Public Safety, Bloomington, IN.

Utah Department of Transportation (UDOT). (2017). Open Data Portal. <http://udot.uplan.
opendata.arcgis.com/> (February 2, 2017).

Utah Department of Transportation (UDOT). (2016). Zero Fatalities: A Goal We Can Live With.
“Utah Strategic Highway Safety Plan.” <http://ut.zerofatalities.com/downloads?SHSP-
ZeroFatalities.pdf> (May 7, 2018).

Vermont Agency of Transportation (VTrans). (2005). Highway Safety Improvement Program.

Wall, D. (2016). Utah Department of Transportation. Personal Communication.

69



APPENDIX A SURVEY

Appendix A includes the details for the survey that was distributed as part of this
research. This section includes the survey questions and survey flow and further details regarding

the survey results.

A.1 Survey Questions and Survey Flow
The following is the crash severity distribution survey that was sent to each of the 50

State DOTs in the United States. Figure A.1 shows the survey flow.

This is a survey conducted by the Brigham Young University research team to determine
the uses of crash severity distributions by State DOT across the United States in conducting life-
cycle benefit-cost analyses of safety improvement countermeasures. This survey will take
approximately 5 minutes to complete. Completing this survey is voluntary. Please answer each
question honestly. The survey is tallied by Qualtrics software. The names of respondents will be
kept confidential and will not be reported in any reports, including the final report produced in
this study. Please allow those who are most familiar with these subjects to be the representatives

for your DOT.

Life-cycle benefit-cost analyses require crash severity distributions in order to predict the
types of crashes that will occur on a roadway segment. A crash severity distribution describes the

distribution of crash severities for a roadway type, segment or network. There is a single default
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crash severity distribution described on pages 10-14 through 10-17 of Volume 2 of the Highway
Safety Manual for rural two-lane, two-way roads, which is shown below. The Highway Safety

Manual encourages state and local agencies to adopt their own crash severity distributions based
on their respective crash database. The purpose of this survey is to understand the crash severity

distributions that are currently being used or implemented throughout the United States.

Crash Severity Distribution
Fatal - 1.3%
Incapacitating Injury 5.4%
Non-incapacitating Injury  10.9%
_ Possible Injury | 145%
Property Damage Only | 67.9%
Total  100.0%

Introduction Questions

1. Which State Department of Transportation do you represent?

2. What position do you hold at your DOT?

3. Do you use life-cycle benefit-cost analysis to analyze the cost-effectiveness of safety-
related countermeasures?

a) Yes
b) No
c) Idon't know
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Block A

1. When did you begin using the life-cycle benefit-cost analysis you currently use?

a)
b)
c)
d)
e)

I don't know

More than 10 years ago
Between 5 and 10 years ago
Between 1 and 5 years ago
Less than 1 year ago

2. What crash severity distribution(s) do you use in your life-cycle benefit-cost analysis?

a)
b)

©)
d)

Block B

A single distribution taken from the Highway Safety Manual (There is currently
only one for rural two-lane two-way highways)

A single distribution derived from our state's crash data

Multiple distributions derived from our state's crash data

None of the above. Other reason specified below.

1. Has the DOT you represent considered using different crash severity distribution based
on your state's crash data?

a)
b)

c)
d)
e)
f)

Yes, we already have crash severity distributions based on our state’s crash data.
Yes, we are currently researching crash severity distributions for our state using
our state’s crash data.

Yes, but we have not yet started to research it.

No, we feel the crash severity distribution we currently use is sufficient.

No, we don’t use crash severity distributions.

No. Other reason specified below.

2. Has the DOT you represent considered using different crash severity distributions
specific to the 11 facility types described in the Highway Safety Manual?

a)
b)
c)
d)

e)
f)

Yes, we already have crash severity distributions based on the 11 facility types
described in the Highway Safety Manual.

Yes, we are currently researching crash severity distributions based on the 11
facility types described in the Highway Safety Manual.

Yes, but we have not yet started to research crash severity distributions based on
the 11 facility types described in the Highway Safety Manual.

No, we feel the crash severity distribution we currently use is sufficient.

No, we don’t use crash severity distributions.

No. Other reason specified below.
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3. Does your DOT have literature relating to the derivation of crash severity distributions
for various facility types? Please upload any files in a single compressed file.

4. May we contact you if we have questions about your answers?
a) Yes
b) No

Block C

1. Has the DOT you represent considered using different crash severity distributions
specific to the 11 facility types described in the Highway Safety Manual?

a) Yes, we already have crash severity distributions based on the 11 facility types
described in the Highway Safety Manual.

b) Yes, we are currently researching crash severity distributions based on the 11
facility types described in the Highway Safety Manual.

c) Yes, but we have not yet started to research crash severity distributions based on
the 11 facility types described in the Highway Safety Manual.

d) No, we feel the crash severity distribution we currently use is sufficient.

e) No, we don’t use crash severity distributions.

f) No. Other reason specified below.

2. Does your DOT have literature relating to the derivation of crash severity distributions
for various facility types? Please upload any files in a single compressed file.

3. May we contact you if we have questions about your answers?
a) Yes
b) No

Block D
1. Has the DOT you represent considered using different crash severity distribution based
on your state's crash data?
a) Yes, we already have crash severity distributions based on our state’s crash data.
b) Yes, we are currently researching crash severity distributions for our state using
our state’s crash data.
c) Yes, but we have not yet started to research it.
d) No, we feel the crash severity distribution we currently use is sufficient.
e) No, we don’t use crash severity distributions.
f) No. Other reason specified below.
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2. Has the DOT you represent considered using different crash severity distributions
specific to the 11 facility types described in the Highway Safety Manual?

a) Yes, we already have crash severity distributions based on the 11 facility types
described in the Highway Safety Manual.

b) Yes, we are currently researching crash severity distributions based on the 11
facility types described in the Highway Safety Manual.

c) Yes, but we have not yet started to research crash severity distributions based on
the 11 facility types described in the Highway Safety Manual.

d) No, we feel the crash severity distribution we currently use is sufficient.

e) No, we don’t use crash severity distributions.

f) No. Other reason specified below.

3. Does your DOT have literature relating to the derivation of crash severity distributions
for various facility types? Please upload any files in a single compressed file.

4. Please describe the crash severity distributions used in your life-cycle benefit-cost
analysis. Do you have crash severity distributions for certain facility types? How did you
derive your distributions? If literature is available, please attach for reference on the next
question.

5. Please attach any literature that is available regarding the previous question. Please
upload any files in a single compressed file.

6. When did you begin using the crash severity distributions you currently use?

a) Idon't know.

b) More than 10 years ago

c) Between 5 and 10 years ago
d) Between I and 5 years ago
e) Less than 1 year ago

7. What benefits have you seen from using your crash severity distributions in your crash-
related analyses?

8. May we contact you if we have questions about your answers?
a) Yes
b) No
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Conclusion

If you have questions about this survey, you may contact Dr. M. Saito. Please use the following
address when you would like to mail printed materials to us.

If you have questions regarding your rights as a participant in research projects, you may contact
Dr. Shane S. Schulthies, Chair of the Institutional Review Board for Human Subjects, 120B RB,
Brigham Young University, Provo, UT 84602; phone, (801) 422-5490

Please advance this survey to submit your results. We appreciate your time to participate in this
survey.

Block E

1. Has the DOT you represent considered using a life-cycle benefit-cost analysis to analyze
the cost-effectiveness of countermeasures to improve safety?
a) Yes, we are currently researching life-cycle benefit-cost analysis.
b) Yes, but we have not yet started to research it.
c) Yes, we have used it in the past but have stopped using it.
d) No, we are not interested in using it.
e) No. Other reason specified.

2. What alternatives methods do you use in order to analyze the cost-effectiveness of
countermeasures to improve safety? Please be specific.

3. Does your DOT have literature relating to the derivation of crash severity distributions
for various facility types? Please upload any files in a single compressed file.

4. May we contact you if we have questions about your answers?
a) Yes
b) No

Other Contact

1. Is there someone else at your DOT that we might contact in order to determine the uses
of crash severity distributions at your DOT in conducting life-cycle benefit-cost analyses
of safety improvement countermeasures?

a) Yes
b) No
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Other Contact Information

1. What is their contact information?
a) Name:
b) Phone Number:
c) Email Address:

Contact Question

1. May we contact you if we have questions about your answers?
a) Yes
b) No

Contact Information

1. What is your contact information?
a) Name
b) Phone Number
c) Email Address
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APPENDIX B CRITICAL DATA COLUMNS

Appendix B is a collection of tables that provide a list of the critical data columns needed
for each dataset. These columns are used in the automated Excel workbook to segment data or

combine crash files.

B.1 Roadway Characteristic Datasets
The critical columns for each of the roadway characteristic datasets received from UDOT
Traffic and Safety Division are outlined in Table B.1 through Table B.4. These data columns are

crucial in the use of the Roadway Characteristic Data portion of the automated Excel workbook.

Table B.1: Critical Data Columns for Functional Class

Heading Description

Route ID: numeric route number of a given road

ROUTE
segment

Beginning Mile Point: beginning milepoint of the

BEGMP
road segment
ENDMP End Mile Point: ending milepoint of the road segment
FC_CODE Functional Class: number representing the functional

class type of the segment
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Table B.2: Critical Data Columns for Median Data

Heading Description

Route ID: Route ID number with direction letter (i.e.,
ROUTE NAME 0089N)

ROUTE_DIR Direction: Route direction (P, N)

Beginning Mile Point: The mile point where the sign

START ACCUM
= appears

END ACCUM End Mile Point: The end mile point of the road
- segment

MEDIAN TYP Medan Type: the type of median for the road segment

Table B.3: Critical Data Columns for Lane Data

Heading Description

ROUTE NAME Route ID: numeric route number for a given road
- segment

Beginning Mile Point: beginning mile point of the

START ACCUM | ;2 ceoment

END _ACCUM End Mile Point: end mile point of the road segment

THRU_ LANE Through Lanes: number of through lanes

DECELL LAN Deceleration Lanes: number of deceleration lanes

Two-Way Left-Turn Lanes (TWLTL): number of

TWO_WAY_LE | 1o

ACCELL LANE | Acceleration Lanes: number of acceleration lanes

PASSING LANE | Passing Lanes: number of passing lanes

Table B.4: Critical Data Columns for Urban Code

Heading Description

ROUTE NAME Route ID: numeric route number for a given road
- segment

Beginning Mile Point: beginning mile point of the

START ACCUM | ;a4 ceoment

END _ACCUM End Mile Point: end mile point of the road segment

Urban Code: number that represents a description of

URBAN_CODE the surrounding area

Urban Description: description of the surrounding

URBAN_DESC area (i.e., Small-Urban, St. George, rural, etc.)
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B.2 Crash Datasets

The critical columns for each of the datasets received from UDOT Traffic and Safety

Division are outlined in Table B.5 through Table B.8. These data columns are crucial in the use

of the Crash Data portion of the automated Excel workbook.

Table B.5: Critical Columns for Crash Data

Heading

Description

CRASH_ID

Crash ID: unique crash ID number for each crash

CRASH DATETIME

Crash Date/Time: date and time of crash

CRASH_SEVERITY ID

Crash Severity ID: numerical severity level of
crash (i.e., 1-5)

LIGHT CONDITION_ID

Light Condition: ID for light condition at time of
crash (i.e., 1-6, 88-99)

WEATHER CONDITION ID

Weather Condition: ID for weather condition at
time of crash (i.e., 1-9, 88-99)

MANNER_COLLISION ID

Manner Collision: ID for manner of collision in
crash (i.e., 1-8, 88-99)

PAVEMENT ID

Pavement: ID for pavement type (i.e., 1-4, 88-
99)

ROADWAY_ SURF CONDITION ID

Roadway Surface Condition: ID for roadway
surface conditions (i.e., 1-9, 88-99)

ROADWAY JUNCT FEATURE ID

Roadway Junction Feature: ID for roadway
junction feature (i.e.,1-10, 20-26, 88-99)

WORK_ZONE RELATED YNU

Work Zone Related: Y/N to determine whether
crash occurred in work zone

WORK_ZONE WORKER PRESENT YNU

Work Zone Worker Present: Y/N to determine
whether worker present in work zone

HORIZONTAL ALIGNMENT ID

Horizontal Alignment: ID for horizontal
curvature of roadway (i.e., 1-2, 88-99)

VERTICAL ALIGNMENT ID

Vertical Alignment: ID for vertical curvature of
roadway (i.e., 1-4. 88-99)

ROADWAY_ CONTRIB_CIRCUM_ID

Roadway Contributing Circumstance: ID for
vehicle contributing circumstance related to the
crash (i.e., 0-18, 88-99)

FIRST HARMFUL EVENT ID

First Harmful Event: ID for first harmful event
resulting from the crash (i.e., 0-62, 88-99)
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Table B.6: Critical Data Columns for Crash Location

segment

Heading Description
CRASH_ID Crash ID: unique crash ID number for each crash
ROUTE Route ID: numeric route number for a given road

ROUTE_DIRECTION | Direction: route direction (i.e., P, N, or X)

RAMP_ID 4. CD)

Ramp ID: ID indicating a ramp and the type (i.e., 1-

MILEPOINT Mile Point: mile point location of the crash

Table B.7: Critical Columns for Crash Rollup Data

Heading

Description

CRASH ID

Crash ID: unique crash ID number for each crash

NUMBER VEHICLES INVOLVED

Number Vehicles Involved: number of vehicles
involved in the given accident

NUMBER FATALITIES

Number of Fatalities: number of person-fatalities
resulting from a given crash

NUMBER FOUR _INJURIES

Number of Incapacitating Injuries: number of
person-incapacitating injuries resulting from a
given crash

NUMBER THREE INJURIES

Number of Injuries: number of person-injuries
resulting from a given crash

NUMBER TWO INJURIES

Number of Possible Injuries: number of person-
possible injuries resulting from a given crash

NUMBER ONE INJURIES

Number of Property Damage Only Events: number
of events for property damage only resulting from
a given crash

PEDESTRIAN INVOLVED

Pedestrian Involved: Y/N to determine whether a
pedestrian was involved in the crash

BICYCLIST _INVOLVED

Bicyclist Involved: Y/N to determine whether a
bicyclists was involved in the crash

MOTORCYCLE INVOLVED

Motorcycle Involved: Y/N to determine whether a
motorcycle was involved in the crash

IMPROPER_RESTRAINT

Improper Restraint: Y/N to determine whether
improper restraint was a factor in the crash

UNRESTRAINED

Unrestrained: Y/N to determine whether a
driver/passenger was unrestrained in the crash
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Table B.7 Continued

Heading

Description

DUI

DUI: Y/N to determine whether driving under the
influence was a factor in the crash

AGGRESSIVE DRIVING

Aggressive Driving: Y/N to determine whether
aggressive driving was a factor in the crash

DISTRACTED DRIVING

Distracted Driving: Y/N to determine whether
distracted driving was a factor in the crash

DROWSY DRIVING

Drowsy Driving: Y/N to determine whether
drowsy driving was a factor in the crash

SPEED RELATED

Speed Related: Y/N to determine whether speed
was a factor in the crash

INTERSECTION_RELATED

Intersection Related: Y/N to determine whether
the crash occurred at an intersection

ADVERSE WEATHER

Adverse Weather: Y/N to determine whether
adverse weather was a factor in the crash

ADVERSE ROADWAY SURF CONDITION

Adverse Roadway Surface Conditions: Y/N to
determine whether adverse roadway surface
conditions were a factor in the crash

ROADWAY GEOMETRY RELATED

Roadway Geometry Related: Y/N to determine
whether roadway geometry was a factor in the
crash

WILD ANIMAL RELATED

Wild Animal Related: Y/N to determine whether
a wild animal was involved in the crash

DOMESTIC_ANIMAL RELATED

Domestic Animal Related: Y/N to determine
whether a domestic animal was involved in the
crash

ROADWAY DEPARTURE

Roadway Departure: Y/N to determine whether a
vehicle departed the roadway as a result of the
crash

OVERTURN ROLLOVER

Overturn/Rollover: Y/N to determine whether a
vehicle overturned and/or rolled over as a result
of a crash

COMMERCIAL MOTOR_VEH INVOLVED

Commercial Motor Vehicle Involved: Y/N to
determine whether a commercial motor vehicle
was involved in the crash

INTERSTATE HIGHWAY

Interstate Highway: Y/N to determine whether the
crash occurred on an interstate roadway

TEENAGE DRIVER INVOLVED

Teenage Drive Involved: Y/N to determine
whether a teenage driver was involved in the
crash
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Table B.7 Continued

Heading

Description

OLDER DRIVER INVOLVED

Older Driver Involved: Y/N to determine whether
an older driver was involved in the crash

URBAN COUNTY

Urban County: Y/N to determine whether the crash
occurred in an urban area

ROUTE TYPE

Route Type (L/S/U):

NIGHT DARK_CONDITION

Night/Dark Condition: Y/N to determine whether
night or dark conditions was a factor in the crash

SINGLE VEHICLE

Single Vehicle: Y/N to determine whether a single
vehicle was involved in a crash (i.e. not a collision
involving multiple vehicles)

TRAIN_INVOLVED

Train Involved: Y/N to determine whether a train
was involved in the crash

RAILROAD CROSSING

Railroad Crossing: Y/N to determine whether the
crash occurred at a railroad crossing

TRANSIT VEHICLE INVOLVED

Transit Vehicle Involved: Y/N to determine
whether a transit vehicle was involved in the crash

COLLISION_WITH FIXED OBJECT

Collision with Fixed Object: Y/N to determine
whether the crash involved a fixed object (i.e. not
another vehicle, nor a person)
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Table B.8: Critical Columns for Crash Vehicle

Heading

Description

CRASH ID

Crash ID: Specific crash ID number for each
crash

VEHICLE NUM

Vehicle Number: Number assigned to each
vehicle involved in a given crash

CRASH DATETIME

Crash Date/Time: Date and time of crash

TRAVEL DIRECTION ID

Travel Direction: Direction value of route at the
location of the crash (i.e., 1-5)

EVENT SEQUENCE 1 ID

Event Sequence #1: ID for first crash sequence
for non-collision and collision events (i.e., 0-99)

EVENT SEQUENCE 2 ID

Event Sequence #2: ID for second crash
sequence for non-collision and collision events
(i.e., 0-99)

EVENT SEQUENCE 3 ID

Event Sequence #3: ID for third crash sequence
for non-collision and collision events (i.e., 0-99)

EVENT SEQUENCE 4 ID

Event Sequence #4: ID for fourth crash sequence
for non-collision and collision events (i.e., 0-99)

MOST HARMFUL EVENT ID

Most Harmful Event: ID for most harmful event
resulting from the crash (i.e., 0-99)

VEHICLE MANEUVER ID

Vehicle Maneuver: ID for the controlled
maneuver prior to the crash (i.e., 1-14, 88-99)

VEHICLE DETAIL ID

Vehicle Detail ID: 8-digit ID number that is
specific to a vehicle involved in a crash amongst
all other vehicle involved in crashes
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