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ABSTRACT 

Reservoir Sedimentation: The Economics of Sustainability 
 

Matthew William George 
Department of Civil and Environmental Engineering, BYU 

Master of Science 
 
 Despite mounting demand for a more sustainable worldwide water supply system, 
available reservoir capacity is relentlessly diminishing due to sedimentation. This fact, coupled 
with a decrease in the rate of dam construction, indicate an impending water supply dilemma. In 
the future, dams should be designed following a life cycle management approach rather than the 
typical short-sighted design life technique. 
 
 Neither sustainable reservoir lifespans nor intergenerational equity is achieved through 
conventional cost-benefit analyses (CBA), which render all benefits and costs projected to occur 
more than several decades into a project as negligible. Consequently, future expenditures, 
including dam decommissioning or retrofitting with sediment management facilities, are 
regarded as non-factors in an analysis. CBAs have also historically failed to account for the 
impacts of sedimentation on infrastructure and the environment over time. 
 
 Alternatives to the traditional application of the CBA do exist, however. These include 
dam owners establishing retirement funds or insurance policies, beneficiaries paying for 
rehabilitation or maintenance, and economists incorporating infrastructure damages and 
potentially declining discount rates into their analyses. 
 
 To analyze the disadvantages of not managing sediment, a case study of costs caused 
from sedimentation impacts at Gavins Point Dam was performed. Impacts from sedimentation at 
Gavins Point Dam include, among many others, upstream municipal flooding and downstream 
bank stabilization and sandbar construction. The financial analysis considered the time value of 
money and showed that the value of expenditures to resolve sedimentation impacts is equivalent 
to 70% of the original construction cost. Including the costs of additional impacts would amplify 
this result. Design and operations decisions at Gavins Point Dam could have been drastically 
different, leading to a more sustainable project, if these expenditures from sedimentation impacts 
had been included in the initial economic analyses. 
 
 It is recommended that multidisciplinary discussions occur at multiagency levels to 
consider changes to traditional CBAs for long-term water supply projects. These discussions 
should investigate the creation of funding to address sediment management at existing dams. The 
frequency of bathymetric surveys should also be increased, which would lead to a better 
understanding of the condition of our infrastructure. By pursuing these recommendations and 
integrating the aforementioned alternatives to the CBA, economic studies for reservoirs will be 
more accurate, reservoir lifespans will be more sustainable, profits will be extended indefinitely, 
and the economic burdens passed to future generations will be lessened. 
 
Keywords: reservoir sedimentation, sustainability, economics, infrastructure  
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1 INTRODUCTION 

 With an ever-increasing global population, mounting demand exists for a more 

sustainable water supply system. Despite this demand, worldwide water storage capacity is 

relentlessly diminishing due to reservoir sedimentation (Annandale 2013, Juracek 2014). Neither 

sustainable reservoir lifespans nor intergenerational equity is achieved by use of traditional 

economic analyses of reservoirs because of the application of conventional cost-benefit analyses 

(CBA). The CBA renders benefits more than a few decades into the future as negligible, causing 

future expenditures, including costly dam decommissioning or retrofitting with sediment 

management facilities, to be seen as non-factors in the design stage—despite the large cost that 

will be placed on the future generation. Furthermore, the CBA has traditionally overlooked 

infrastructure and environmental damages caused by reservoir sedimentation. By incorporating 

alternatives to the traditional CBA, such as declining discount rates and comprehensive studies 

of sedimentation impacts, economic analyses for reservoirs will be more accurate, reservoir 

lifespans will be more sustainable, profit horizons will be extended, and the economic burdens 

placed upon future generations will be lessened. The purpose of this paper is to demonstrate that 

current operational practices at dams in the United States are not sustainable and that 

sustainability will require a modified application of the CBA. 
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2 WHAT DOES SUSTAINABILITY MEAN FOR RESERVOIRS? 

 Dam construction creates a valuable resource of stored water but disturbs the natural 

sediment equilibrium present in typical streams and rivers. The reservoir upstream from the dam 

traps sediment transported as bedload as well as a portion of the suspended sediment, present due 

to the decreased flow-through velocity. Over time, the deposition of sediment extends upstream 

of the dam, resulting in decreased channel capacity and a loss of storage space within the 

reservoir (Hotchkiss and Bollman 1996). Stream reaches downstream from dams often incise 

into the existing channel or produce coarser grain size distributions due to a lack of sediment 

passing the dam. Figure 2-1 depicts a typical reservoir’s sediment profile. Note that the coarser-

grained material is deposited in the upper region of the reservoir, forming a delta. The finer-

grained sediments are carried further and accumulate closer to the dam itself. Severe problems 

related to sedimentation can appear after only a small percentage of lost storage capacity due to 

the sediment imbalance on either side of the dam (Morris and Fan 1998). Other damages related 

to within-reservoir sedimentation, upstream sedimentation, and downstream scour will be 

identified and examined in more detail later. 
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Figure 2-1: A typical reservoir’s sediment profile (Randle and Ferrari 2010). 

 

 In light of the continual process of sediment transport in streams and rivers, it would 

seem logical to design dams to pass sediment downstream indefinitely. Such has not been the 

case, however, as dams have typically been designed to create a storage volume sufficiently large 

to contain estimated sediment deposits for 50 to 100 years. This period, known as the economic 

life of the project, is a result of the conventional application of the cost-benefit analysis (Morris 

and Fan 1998). The benefits of water projects, ranging from irrigation water and hydropower 

generation to flood control and recreation, are each linked to the reservoir’s economic lifespan 

(Palmieri et al. 1998). 

 A sustainable approach must include a sediment management plan to either directly 

address the mitigation of sediment or provide a fund with sufficient money to do so later. 

Otherwise, a filled reservoir with minimal project benefits becomes an economic burden on the 

following generation. This burden entails the weighty decision to either abandon the dam, 

decommission it, or retrofit it for sediment management. The former, “do nothing” approach 

involves safety and legal concerns, while the latter two approaches will incur large costs 

(Thimmes et al. 2005, Engberg 2002, Palmieri et al. 2003). A sustainable reservoir would 
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theoretically have an indefinite design life. As is, most dams do not have the necessary facilities 

for such a task. In order to promote long-term economic viability, dam owners (e.g., hydropower 

companies) and legislative bodies are encouraged to reconsider the traditional, short-sighted 

reservoir design approach. See Appendix A for further discussion on sustainable design through 

a life cycle management approach. 
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3 IS THERE A SEDIMENTATION PROBLEM? 

 Because all rivers transport sediment, dams disrupt the sediment load equilibrium in 

natural waterways. Evaluating the extent of this disruption is important for predicting 

sedimentation rates and establishing sediment management plans. 

 Bathymetric Surveys 

 Determining the current capacity of a reservoir requires performing a bathymetric survey. 

Consistently performing subsequent surveys allows for comparisons between the results, which 

reveal the change of available storage capacity in the reservoir. The change in capacity over time 

can be used to predict regional sedimentation rates. Such rates are valuable for future operations 

and maintenance considerations. Unfortunately, a recent analysis of bathymetric surveys of 

reservoirs in the United States revealed that a reservoir’s most recent survey is, on average, more 

than two decades old (Podolak and Doyle 2015). Nevertheless, certain reservoirs have been 

surveyed more consistently. Data from these reservoirs in conjunction with sedimentation rate 

predictions allow for generalized estimations regarding sedimentation conditions on worldwide 

and nationwide scales. 
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 Worldwide Storage 

 The International Commission on Large Dams has estimated that there are more than 

42,000 large (over 15 meters tall) dams on the planet and several times as many smaller 

structures (ICOLD 1988). The resulting worldwide storage capacity and rate of storage loss are 

approximately 7,000 cubic kilometers and between 0.5% and 1% annually, respectively. 

Combating this rate of loss corresponds to adding about 50 cubic kilometers of storage per year 

worldwide, with a replacement cost of approximately $13 billion each year in 2003 dollars, or 

nearly $18 billion in 2015 dollars (Palmieri et al. 2003). A continuously increasing global 

population exacerbates this situation further. As population rises, demand for water (and thus, 

water storage) also rises, despite the dwindling worldwide storage capacity (Annandale 2013, 

Juracek 2014). A decrease in the rate of dam construction coupled with reservoir sedimentation 

caused the global net reservoir storage capacity to begin declining in 1995 (Kondolf et al. 2014). 

If society continues allowing reservoirs to shrink, the demand for water will eventually overcome 

the supply, creating a worldwide water crisis (Annandale 2013). 

 Certain reservoirs are more susceptible to sedimentation than others. For example, the 

Welbedacht reservoir in South Africa lost 86% of its original storage volume between 1973 and 

2005. The first three years of the reservoir’s life resulted in a loss of one third of the storage 

capacity (Huffaker and Hotchkiss 2006). In addition, the Tarbela reservoir in Pakistan traps a 

significant amount of sediment from the Indus River. Its original volume was reduced by 20% in 

the first twenty years of operation (Palmieri and Dinar 2001). An extreme case occurred in 

Venezuela, when the Camaré reservoir lost all of its available storage space to sedimentation in 

less than 15 years (Morris and Fan 1998). It is obvious that the economic benefits of such 

projects were compromised as a result of sedimentation. 
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 Storage in U.S. Reservoirs 

 This phenomenon occurs within the United States as well. The Zuni Dam in New Mexico 

lost 80% of its capacity in a period of about 25 years (Nordin 1991). The majority of the United 

States west of the Mississippi River experience sedimentation rates greater than 1.2% per year; 

many of these states suffer from an average storage loss rate even greater than 2% (Graf et al. 

2010). This is particularly concerning, as the western states are highly dependent on reservoirs 

for their water supply. 

 The National Inventory of Dams, an online database maintained by the United States 

Army Corps of Engineers, estimates that there are more than 87,000 dams over 7.5 meters tall in 

the United States (NID 2015). These dams, which were primarily constructed between 1950 and 

1980, have a resulting average age of 55 years. A prominent concern with old dams, besides 

safety, is that sediment will eventually fill the anticipated dead storage zone and begin to 

interfere with the lowest outlets on the structure. Most dams were designed with an intended 

lifespan of 50 to 100 years. Sedimentation rates typically vary from the estimates used during the 

design stage, causing some dams’ lowest outlets to plug earlier than expected (Podolak and 

Doyle 2015). Tim Randle, group manager of the Bureau of Reclamation’s (Reclamation) 

Sedimentation and River Hydraulics Group, has provided a spreadsheet documenting each 

Reclamation reservoir’s age and other pertinent facts. A simple spreadsheet analysis showed that 

the average age of Reclamation dams is 67 years old and that within 25 years, one third of 

Reclamation dams are predicted to experience issues related to sediment reaching the lowest 

outlets (Tim Randle, personal communication, January 20, 2015). Decisions must be made in the 

near future regarding how to manage sediment trapped within these reservoirs. 
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 Physical and Environmental Impacts 

 Besides the aforementioned concerns regarding lost storage space, sedimentation also 

damages infrastructure and the environment. The Aswan Dam in Egypt has reduced sediment 

flow down the Nile River by 98% (Schwartz 2005). This has caused the Nile Delta to erode at 

rates as high as 125 to 175 meters per year. The Mississippi River Delta also suffers significant 

erosion because of the many dams and locks upstream (Schwartz 2005). Of the 33 major deltas 

found worldwide, 24 are currently shrinking because of reservoir sedimentation processes 

trapping sediment behind dams. These coastal regions will be particularly vulnerable to 

disastrous flooding as the coastlines continue to erode and the sea level rises an expected 0.46 

meters by 2100 due to climate change (Kondolf et al. 2014). There are also significant 

infrastructure and environmental concerns upstream of the coast due to reduced riverine 

sediment loads. 

 After the loss of only a small percentage of storage capacity, severe problems related to 

sedimentation can appear (Morris and Fan 1998). Hotchkiss and Bollman identified such impacts 

of sedimentation, which include main stem and tributary aggradation upstream and degradation 

downstream (1996). Secondary and tertiary impacts upstream of the reservoir include increased 

flood frequency and a rise in groundwater levels followed by concomitant crop failures. 

Downstream impacts include stream channel instability, loss of access to diversion works, 

undermining bridge piers and abutments, and altered fluvial geomorphology. Restoration of 

these non-storage related damages can be extremely costly and their effects are not included in 

economic analyses that justify initial construction. Appendix A contains additional information 

about these overlooked costs and the impacts of sedimentation. 
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 It is understood that the total elimination of sedimentation is neither viable nor possible. 

As such, sediment must be managed and preventative measures must be taken in order to 

alleviate the continual loss of reservoir storage space. Nevertheless, many reservoirs have 

neglected implementing sediment management practices to counteract the previously mentioned 

consequences (Kondolf et al. 2014). A warning in the Reservoir Sedimentation Handbook states 

that the “sudden loss of the world’s reservoir capacity would be a catastrophe of unprecedented 

magnitude, yet their gradual loss due to sedimentation receive little attention or corrective action” 

(Morris and Fan 1998). This is clearly a significant environmental problem. 
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4 THE COST-BENEFIT ANALYSIS 

 A History of the Cost-Benefit Analysis 

 The cost-benefit analysis (CBA) is a measure that determines the cost effectiveness of 

available options in order to evaluate whether the net benefits outweigh the costs. It is employed 

to balance society’s interests as a whole, rather than just those of an individual (Turner et al. 

1993). CBAs have undergone significant changes in the United States from their beginnings in 

the United States Army Corps of Engineers’ Federal Navigation Act of 1936. This act specified 

that if the projected benefits outweighed the costs, then the project could be pursued (Crabb and 

Leroy 2008). By 1960, many guidelines were used amongst federal agencies regarding benefit 

and cost categorization and evaluation, including the Federal Interagency River Basin 

Committee’s Green Book, the Bureau of Budget’s Budget Circular A-47, and various 

organizations’ internal standards and procedures (Hanley and Spash 1993, Hufschmidt 2000). 

Budget Circular A-47 was particularly conservative through its focus on national economic 

efficiency and the use of discount rates to emphasize a 50-year horizon for projects (Hufschmidt 

2000). 

 Mounting academic concern led to the scrutiny of these techniques, resulting in the 

Bureau of Budget organizing a panel of consults to improve federal economic analyses 

(Hufschmidt 2000). The result was Senate Document No. 97, which was adopted in 1962 and 

ultimately retained several conservative aspects of the former techniques, including discount 
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rates (Hufschmidt 2000). Nevertheless, this document expanded its scope from national 

economic development to include the “preservation of aesthetic and cultural values” 

(Hufschmidt 2000). This expansion in scope was further developed in subsequent revisions to 

economic policy and is currently referred to as “environmental quality” in analyses (Hanley and 

Spash 1993). Prior to the 1970s, CBAs largely ignored the environmental impacts of projects 

(Hanley and Spash 1993). 

 The current policy guiding CBAs is Economic and Environmental Principles and 

Guidelines for Water and Related Land Resources Implementation Studies, approved in 1983 

(Hufschmidt 2000). Modifications and additional standards have been established since 1983, 

with the most applicable being the recent memorandum on “Incorporating Ecosystem Services 

into Federal Decision Making” (Donovan et al. 2015). This memorandum directs agencies to 

“incorporate the value of natural, or ‘green,’ infrastructure and ecosystem services into Federal 

planning and decision making” (Donovan et al. 2015). 

 Common Criticisms 

 The use of the CBA to evaluate long-term environmental projects has long been 

scrutinized (Lind 1995). Ackerman explains that the arbitrary assignment of monetary values for 

the “priceless” (e.g., human lives, environmental protection, etc.) does not represent reality and 

that biased groups can sway the results of an analysis (2008). He concludes that the CBA, despite 

meticulously identifying costs, fails to capture the complex relationships between our society, 

our economy, and our environment (Ackerman 2008). 

 The other prevailing criticism of the CBA, and a focus of this paper, is directly related to 

the use of constant discount rates. Discount rates account for the time value of money, which is 

the concept that a certain amount of money in the present is considered to be worth more than the 
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same amount in the future because it could have been invested and earned interest over time. As 

part of the CBA, present values are calculated for all future values using a standard discount rate. 

Nearly all future benefits and costs beyond 30 years are inconsequential. Consequently, the 

present-oriented focus of these analyses is referred to as “the tyranny of discounting,” or 

intergenerational inequity (Pearce et al. 2003, Turner et al. 1993). This tyranny has three results: 

(1) damages to infrastructure and the environment occurring in the future have present values 

considerably smaller than the actual damage done, (2) projects with benefits that are beyond 50 

years in the future are difficult to justify, and (3) exhaustible resources are more easily abused in 

the present (Turner et al. 1993). As such, discounting seems to be counter-intuitive with regard to 

achieving sustainable development (Pearce et al. 2003). 

 Some critics have purported that discounting should not be used at all. This, however, is 

essentially discounting with a zero percent rate and implies that our generation’s needs are 

meaningless compared to those of people living hundreds or thousands of years in the future 

(Pearce et al. 2003). If this was true, and assuming a positive interest rate in the general 

economy, then society would save its resources and invest on behalf of the next generation. The 

following generation would act likewise for the ensuing generation, and so on and so forth 

(Pearce et al. 2003). Nevertheless, there are some cases where a zero percent rate could be 

justified. For example, federal government defense and intelligence operations oftentimes only 

consider inflation rates over time (Gus Williams, personal communication, May 23, 2016). In 

general, completely eliminating discounting is not a solution to the tyranny of discounting. 

 Sustainable Development 

 A common description of sustainable development comes from the Brundtland 

Commission (1987): “Humanity has the ability to make development sustainable to ensure that it 
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meets the needs of the present without compromising the ability of future generations to meet 

their own needs.” 

 Resolving sustainability with discounting is difficult because the underlying rationale for 

discounting is to more highly value the present, without anticipating being fair to future 

generations (Turner et al. 1993). While sustainable development is not the principal purpose of 

discounting in the CBA, alternatives do exist to the traditional CBA approach that can lead to the 

sustainable development of resources. These alternatives will be detailed in the following 

chapter. 

 As is, many issues with detrimental long-term effects that require action in the present are 

largely ignored because of the economic results based on a certain discount rate (Guth 2009, 

Pearce et al. 2003). For example, both nuclear waste storage and climate change mitigation are 

long-term problems that will severely affect ensuing generations unless action is taken in the 

present. These concerns are all issues of intergenerational equity (Lind 1995). Reservoir 

sedimentation is also an intergenerational issue affected by economic analyses and legislation. 

 What Contributes to Short-Sighted Design? 

 The standard 50- to 100-year reservoir design life is a result of using the traditional CBA 

to determine present values in an economic study. As discussed previously, the policy guiding 

Congress during the 1950s and 1960s emphasized a short-term horizon for projects through the 

use of constant discount rates and was criticized by many water project proponents as severely 

limiting (Hufschmidt 2000). This time period was when the vast majority of dams in the United 

States were either built or designed (as illustrated by Figure 4-1), meaning that most of our 

presently functioning dams were approved based on a relatively short design life (NID 2015, 

Hufscmidt 2000). This type of economic analysis heavily favors projects that avoid large initial 
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costs while promising many short-term benefits, effectively eliminating long-term reservoir 

projects that require the installation of sediment management facilities as part of the capital cost 

(Hotchkiss and Bollman 1996). 

 

 

Figure 4-1: History of dam construction in the United States. Note: dam must meet at least one 
of the following criteria: (1) high or significant hazard classification; (2) equal or exceed 7.62 
meters in height and 18,502 cubic meters in storage; or (3) equal or exceed 61,674 cubic meters 
in storage and exceed 1.83 meters in height (NID 2015). 
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5 ALTERNATIVES TO THE TRADITIONAL COST-BENEFIT ANALYSIS 

 There are several financial alternatives available to supplement or modify the traditional 

application of the cost-benefit analysis (CBA) that will either foster more sustainable reservoirs 

or mitigate the economic burden passed to future generations. 

 Retirement Fund and Insurance Policy 

 If sediment is not managed at a site, then once the economic benefits from the dam are 

diminished or exhausted (i.e., the reservoir has become silted in), a decision must be made 

regarding the structure. The available options are: (1) abandoning the dam, (2) decommissioning 

the dam, defined as removing a dam either completely or partially (Committee on Dam 

Decommissioning 2015), or (3) implementing a sediment management plan, which may require 

retrofitting the dam with sediment management facilities (Engberg 2002). The latter two options 

are very expensive, while the first option entails a higher degree of risk. Decommissioning dams 

has become more common in recent years, despite the many challenges unique to each dam site 

(Graf 2002). Unfortunately, most dams have been built without a plan to either manage the 

sediment or retire the facility (Engberg 2002). 

 Palmieri and Dinar suggest that a retirement fund be established throughout a dam’s 

lifespan to eventually pay for decommissioning (2001). They argue that if the salvage value of a 

dam is expected to be negative (as most eventually will be if sediment management has not been 
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considered), then a certain amount of the net monetary benefits generated should be set aside on 

a consistent basis to pay for retirement or retrofitting for sediment management. As is, original 

dam owners are typically not held liable for such costs since they sell the project as benefits 

begin to decline. Retiring dams is not as sustainable as managing the sediment to promote an 

indefinite lifespan; nevertheless, a retirement fund would relieve economic stress on future 

generations. 

 A related suggestion encourages dam owners to invest in an insurance policy. The policy 

would provide the current owner protection against unexpectedly large costs associated with 

decommissioning (Palmieri and Dinar 2001). 

 User Fees 

 A recent report written by the United States Army Corps of Engineers’ (Corps) 

Committee on Water Resources Science, Engineering, and Planning supports the beneficiary 

pays principle (2013). That is, the users of the resources generated by a dam should be 

contributing to the necessary costs for operation, maintenance, and rehabilitation. Payment for 

physical and environmental damages is a sensitive topic and is not always the solution for these 

issues. However, when natural resources are mismanaged and there are environmental impacts 

and damages to infrastructure that were unaccounted for in the preliminary economic analysis, 

there is increasing justification for user fees (Engel et al. 2008). 

 Implementing said user fees would require educating policymakers and citizens alike. By 

limiting government subsidies and passing costs to the users, the community would be able to 

help contribute to the sustainability of infrastructure, water supply, and energy production for 

their posterity. 
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 Declining Discount Rates 

 Besides strictly monetary alternatives, modifying aspects of how the CBA itself is 

performed can affect the resulting policy decision. As previously mentioned, discount rates 

incorporate the time value of money into economic analyses. The traditional CBA uses a set 

discount rate, dependent on government regulations; discount rates can vary significantly from 

country to country (Evans and Sezer 2002). The higher the discount rate, the more quickly future 

benefits and costs become negligible in an economic analysis. For example, discounting $1.00 

over 75 years at a typical 5% discount rate yields a present value of $0.03, while using a 2% rate 

gives a present value equal to $0.23, almost eight times larger than the 5% rate value. When 

these rates are applied to large-scale projects, the discount rate becomes critical in determining 

whether to pursue the project or not. 

 To avoid the present-oriented approach caused by constant discount rates, declining 

discount rates can be used (Arrow et al. 2013, Annandale et al. 2016). In a CBA, a declining 

discount rate causes the discount rate to decrease throughout the project’s lifespan, resulting in 

more prominent future values in the analysis (Oxera 2002). This helps counter the present-

oriented bias of standard discounting and promotes intergenerational equity (Annandale et al. 

2016). 

5.3.1 Hyperbolic Discounting 

 For example, a technique known as hyperbolic discounting, which advocates the use of a 

declining discount rate to better emulate the way in which humans discount the future, may have 

promise. A weight factor can be calculated for a discounted value in the future for any point in 

time of an economic analysis by dividing the future value by its original present value. This 

weight factor expresses how much the original value is discounted at a certain point in time. 
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Figure 5-1 shows the relative discount weight factors for hyperbolic discounting versus 

traditional exponential discounting over a 100-year timeframe. The weight factors for future 

values are higher for hyperbolic discounting, providing more weight to discounted values in a 

CBA. As might be expected, however, the use of hyperbolic discounting introduces new 

concerns, such as time inconsistency. 

 

 

Figure 5-1: Weight factor comparison for hyperbolic, logistic, and exponential discounting. 

 

5.3.2 Time Inconsistency 

 Time inconsistency occurs when behavior contradicts a previously made decision (Heal 
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funds for some other purpose. While time inconsistency is possible even when a decision is made 

based on a standard, exponential discount rate, it is less likely because the exponential discount 

rate focuses on the short-term results of a project, as discussed previously. The reason it becomes 

a problem with declining discount rates is because they increase the importance of future values 

in the financial assessment, resulting in decisions that span multiple generations. 

 By making a self-binding commitment to some decision, a management group would 

ensure time consistency (Pearce et al. 2003). This scenario is not plausible, however, because 

people continually assess and optimize their financial circumstances. It is actually an undesirable 

and unnatural requirement to expect a governing body to make time-consistent decisions when 

considering that the individuals composing it do not make such decisions themselves (Heal 

1998). 

 A self-binding commitment that ensures time consistency may not even be optimal, as 

additional information could come to light regarding the state of sedimentation within a reservoir 

after performing bathymetric surveys. Because policy decisions are rarely optimal at first, it 

might even make sense to allow for flexibility in sediment management practices, as long as 

some plan is in place, such as a retirement fund, insurance policy, or user fees, to deal with the 

impacts of sedimentation. 

 According to Pearce et al., there is no easy resolution to this issue, but as a practical 

matter, time inconsistency is probably no more concerning than other political shifts and external 

shocks to the original policy (2003). Nevertheless, standard economic theory and legislative 

policy in the United States require that all decisions be made with a time-consistent discount rate. 
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5.3.3 Logistic Discounting 

 Logistic discounting employs a declining discount rate while potentially maintaining time 

consistent behavior compatible with standard economic theory (Harpman 2014). It has already 

been implemented in a variety of contexts including economics, statistics, population ecology, 

and medical research (Harpman 2014). Applying logistic discounting to long-term water 

resources projects’ economic analyses may alter project objectives and lead to more sustainable 

designs. Figure 5-1 also shows the relative discount weight factors for logistic discounting versus 

traditional exponential discounting over a 100-year timeframe. As illustrated in the figure, 

logistic discounting assigns a higher discount weight to future values than hyperbolic 

discounting. 

 Figure 5-1 shows that exponential discounting assigns a discount factor of 0.025 as early 

as 50 years into the future. This means that a $1,000,000 project benefit or cost incurred 50 years 

in the future has a discounted present value of $25,000 in the CBA analysis. Such a discounted 

value will largely be ignored, despite the ramifications 50 years later. Logistic discounting, 

however, assigns a weight factor of 0.8 after 50 years. That same $1,000,000 value will have an 

equivalent $800,000 present value in the CBA, which could affect design and construction 

decisions related to that project. 

 Logistic discounting has the potential, if implemented properly, to limit the tyranny of 

exponential discounting and allow for more sustainable long-term water resources projects 

(Pearce et al. 2003, Harpman 2014). Additional research in this area is recommended to 

determine whether it would be beneficial to implement logistic discounting rates in future CBA 

analyses. 
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 Complete Cost-Benefit Analyses 

 For new projects it is now possible to predict potential damages due to upstream 

sedimentation and downstream scour. If such expenditures from sediment-related damages were 

included in cost-benefit analyses, then it could be economically justifiable to sustainably manage 

sediment at dams; this would effectively extend the lifespans for dams indefinitely. Investigating 

this claim will require gathering and analyzing economic data regarding the costs of 

sedimentation from several projects around the world, as there is little published information 

regarding the economics of sediment-related impacts (Palmieri et al. 2003). By collecting these 

data, research with more concrete results will be available for consideration as new projects are 

designed. These results could sway dam owners or policymakers to proactively manage the 

sediment accumulating behind dams in order to avoid similar costs. 

 Through collaboration with the Corps, financial data was gathered for a project in an 

effort to calculate the amount of money spent remediating sedimentation impacts. The following 

section contains a case study for Gavins Point Dam that compares expenditures imposed by 

sedimentation impacts to the dam’s original construction expenses. 

5.4.1 Case Study: Gavins Point Dam 

5.4.1.1 Background 

 Gavins Point Dam was built on the Missouri River by the Corps at the border of South 

Dakota and Nebraska, near Yankton, South Dakota. The dam’s construction was approved based 

on anticipated benefits from hydropower generation, flood control, recreation, irrigation, 

navigation support, and fish and wildlife enhancement (Army Corps of Engineers Omaha 

District 2009). According to the Corps, the dam cost $50 million to build, with construction 
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beginning in 1952 and operations starting in 1957 (Army Corps of Engineers Omaha District 

2009). Sediment management techniques were not considered during the project’s design phase, 

as was typical of most dams designed in the United States (Vanoni 1975). The impounded 

reservoir, Lewis and Clark Lake, has lost more than 30% of its original storage capacity due to 

sedimentation. The construction cost and expenditures caused by sedimentation impacts have 

been gathered and converted to present values using economic formulae in order to compare 

construction cost to sediment-related damages at a consistent point in time. 

 Sedimentation impacts upstream of Lewis and Clark Lake have predominantly resulted in 

the clogging of municipal water intake structures, increased flood frequency, and heightened 

groundwater levels (Army Corps of Engineers Northwestern Division 2006, Carter 1991, Paul 

Boyd, personal communication, October 20, 2015). The deltaic deposits have led to clogged 

drinking water intakes at Springfield, South Dakota (see Figure 5-2) and have necessitated 

extensive redesign projects (Army Corps of Engineers Northwestern Division 2006). Drinking 

 

 

Figure 5-2: Deltaic deposits in Lewis and Clark Lake near Springfield, South Dakota (Missouri 
Sedimentation Action Coalition 2012). 
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water has also recently been reported to be of poor quality (Missouri Sedimentation Action 

Coalition 2013). The channel aggradation has also caused typical bankfull discharges to spill 

onto the floodplain (Hotchkiss and Bollman 1996). As sedimentation continues, the average 

flood severity will only worsen, resulting in additional property damages. Decreased clearance 

under bridges and frequent roadway maintenance due to perennial flooding damages necessitated 

a roadway embankment raise for portions of Highway 12 in 1995 and is now requiring a 

complete redesign of Highway 12, which has yet to be completed (HDR Engineering 2015). As 

sediment migrated upstream of Lewis and Clark Lake, Niobrara, Nebraska suffered from 

heightened groundwater levels that eventually flooded most basements (Carter 1991). The entire 

town was relocated to a higher elevation in the 1970s, resulting in a $14.5 million expense that 

the Corps partially funded (Carter 1991). The Corps or other entities have also been required to 

continually dredge the channel to maintain clearance for watercraft (Army Corps of Engineers 

Northwestern Division 2006, Paul Boyd, personal communication, October 20, 2015). 

 The reservoir pool itself has also experienced sedimentation impacts. Because most 

project benefits are directly proportional to available storage capacity in the pool, as a reservoir’s 

volume decreases due to sedimentation processes, many project benefits are adversely affected. 

As previously discussed, Lewis and Clark Lake’s capacity to retain typical flood events has been 

reduced, resulting in a loss of averted flood damage benefits, or an increase in actual flood 

damages (Army Corps of Engineers Northwestern Division 2006). Having less storage available 

in general can also reduce benefits associated with hydropower generation and irrigation supply 

due to the inherent value of storage space. Recreational benefits have been impacted by the 

reduced storage capacity through a decreasing water surface area and the burial of boat ramps 

and other lake access points (Missouri Sedimentation Action Coalition 2013). After floods in 
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2011, the Corps was required to dredge and truck cattails (which were uprooted from the delta in 

the upper portion of the reservoir) for 4 months to prevent them from entering the penstocks and 

damaging the turbines and other hydromechanical equipment (Paul Boyd, personal 

communication, October 20, 2015). 

 Downstream from the dam, several impacts are apparent. Due to the sediment imbalance 

caused by a dam’s obstruction of open channel flow, clear water discharged downstream is 

deemed “hungry water.” This type of water tends to impact the downstream riparian habitat by 

scouring channel banks and bars and causing erosion. Bank stabilization and sandbar 

construction have both been required downstream of Gavins Point Dam (Army Corps of 

Engineers Northwestern Division 2006). The sandbar construction is referred to as the Emergent 

Sandbar Habitat (ESH) Program and its purpose is to mechanically create quality sandbar habitat 

for two endangered species of birds (Missouri River Recovery Program 2016). This requires a 

varying amount of annual maintenance dependent on how the sandbar responded to the prior 

year’s flows. The Missouri River has also incised downstream of Gavins Point Dam, leading to 

undercut and abandoned water intake structures (Army Corps of Engineers Omaha District 1991, 

Alexander et al. 2013). The incision has extended into tributaries and has disconnected the 

Missouri river from its floodplain, effectively preventing the natural rejuvenation of the 

floodplain forest and wetland habitat (Alexander et al. 2013). These impacts have required the 

Corps, or some other entity, to continually spend money to mitigate the impacts of 

sedimentation. By incorporating sediment management into the project’s initial design, these 

costs could have been avoided. 
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 Despite the numerous impacts that sedimentation processes have triggered at Gavins 

Point Dam, costs for only a few of the damages were available. Other expenditures were 

excluded because of either lack of data availability or time constraints. 

5.4.1.2 Economic Analysis 

 To compare monetary values over a long time horizon, the values need to be converted to 

their equivalent worth in a specific year. For this study, the year 2015 was selected; all values 

were converted to their 2015 values by taking into account the time value of money through 

discounting. The results of an economic analysis can be altered significantly depending on the 

choice of discount rate (Environmental Protection Agency 2014). As of 1974, Section 80 of 

Public Law 93-251 requires Congress to set a discount rate for use during each fiscal year (Water 

Resources Development Act 1974). However, because Gavins Point Dam’s water project was 

approved prior to the enactment of this section of law, there was no congressionally fixed 

discount rate in use at that time. Nevertheless, it is known that most water resources projects in 

the 1950s used a discount rate between 3.25% and 3.50% (Weisbrod et al. 1978). A discount rate 

of 3.50% was used in this analysis as a conservative estimate. 

 Once the discount rate is selected, converting an expenditure to its corresponding 2015 

value is a simple process, as seen in Equation 5-1. Note that in the equation the 2015 value is 

treated as a future value because 2015 is in the future when compared to the year of the 

expenditure. 

 𝐹𝑉 =  𝑃𝑉 ∗ (1 + 𝑑)𝑛 (5-1) 

Where: 
FV = future value (2015) 
PV = past value (between 1957 and 2014) 
d = discount rate 
n = number of years between FV and PV 
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5.4.1.3 Discussion 

 Table 5-1 contains a summary of expenditures due to sedimentation impacts in 2015 

dollars. Documentation regarding each expenditure can be found in Appendix B. It is recognized 

that there may be unforeseen benefits that could reduce the economic impact of damages 

incurred by sedimentation; these benefits are not quantified in this analysis. It is also worth 

noting that this analysis follows the traditional economic approach by considering a discount rate 

and not incorporating an inflation rate. 

 

Table 5-1: Expenditures for Sedimentation Impacts at Gavins Point Dam 

 

 

 The aforementioned $50 million construction cost for Gavins Point Dam is equivalent to 

$367.7 million in 2015 dollars. The ratio of the sum of costs in Table 5-1 compared to the 

construction cost is 0.70. This ratio would likely increase to be greater than 1.0 if the analysis 

considered all of the other damages resulting from sedimentation. Design and operations 

decisions for Gavins Point Dam could have been drastically different if these future expenditures 

from sedimentation impacts had been included in the initial economic analyses. 

 Incorporating sediment management practices from the beginning of the dam’s lifetime 

would have helped avoid substantial financial burdens that are currently present, even though 

they would have resulted in a higher upfront capital cost. Figure 5-3 presents a conceptual model 

2015 Value
20,328,000$   
17,987,000$   
1,659,000$     

161,800,000$ 
56,171,000$   

SUM 257,945,000$ 

Expenditure
City of Niobrara Relocation
Real Estate Acquisitions for Relocation
Highway 12 Maintenance (2004 - 2014)

ESH Construction / Maintenance
Highway 12 Redesign (Minimum Estimate)
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of this idea. The figure shows that profits can be sustained over a longer time horizon if sediment 

is managed, despite the decreased initial profit due to installing sediment management facilities. 

Not included in the model, but worth noting, is the fact that profits may even become negative 

for a project without sediment management once the reservoir silts in and other damages from 

sedimentation occur. Additional research regarding costs due to sedimentation impacts at other 

facilities would provide increasing justification for these claims. 

 Because each reservoir is highly unique based on its bathymetry, geology, hydrology, 

watershed characteristics, and hydraulic infrastructure, this report does not suggest certain 

sediment management techniques. Literature is available that discusses this topic in depth 

(Morris and Fan 1998, Palmieri et al. 2003). 

 

 

Figure 5-3: Conceptual model of profit over time for a dam project. 

 

 Damages due to upstream sedimentation and downstream scour should be incorporated 

into cost-benefit analyses for new projects. If such expenditures from sediment-related damages 
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were included in cost-benefit analyses, then it could be economically justifiable to sustainably 

manage sediment at dams. By considering these alternatives and modifications to the CBA, 

economic analyses for reservoirs will be more accurate, reservoir lifespans will be more 

sustainable, profit horizons will be extended, and the economic burdens placed upon future 

generations will be lessened. 
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6 RECOMMENDATIONS 

 In 1975, Bondurant warned of the inevitable filling of reservoirs and counseled that if 

society still relied on reservoirs in the future, then evaluating and managing the sediment would 

be necessary (Vanoni 1975). Bondurant’s warning has largely been ignored; sediment 

management practices have not been adapted for the most part, and society still heavily relies on 

reservoirs for water supply more than four decades later. 

 Achieving reservoir sustainability requires a sediment management plan for each dam to 

either directly address the mitigation of sediment or provide a fund with sufficient money to 

respond to the facility’s condition appropriately. Otherwise, a filled reservoir with minimal 

project benefits becomes an economic burden on the following generation. A sustainable 

reservoir would theoretically have an indefinite design life. As is, most dams do not have the 

necessary facilities for such a task. In order to promote long-term economic viability, dam 

owners (e.g., hydropower companies) and legislative bodies are encouraged to reconsider the 

traditional, short-sighted reservoir design approach in favor of a life cycle management plan that 

incorporates sediment management. The author makes the following recommendations: 

 Increase the frequency of bathymetric surveys of state- and federally-owned dams to 

better track the rate of reservoir capacity loss. 

 Discuss at multiagency levels changes to the traditional cost-benefit analysis for dams 

that would produce sustainable designs and include the costs of not managing reservoir 
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sedimentation and the means of averting those costs (inclusion of sediment management 

alternatives). This will require a multidisciplinary effort. 

 Investigate logistic discounting’s potentially time-consistent nature and the feasibility of 

incorporating declining discount rates into long-lived water resources projects. 

 Consider the creation of funding to address sediment management issues at existing 

dams. Such funding could consist of user fees, a retirement fund, insurance policies, or 

similar financial practices. 
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APPENDIX A. OVERLOOKED COSTS OF DAMS: BARRIER TO SUSTAINABILITY 

Abstract 

 Despite an ever-increasing demand for a more sustainable water supply system, 

worldwide storage capacity is relentlessly diminishing due to reservoir sedimentation. Over time, 

the deposition of sediment promulgates significant infrastructure damages both upstream and 

downstream of the dam, in addition to loss of storage space within the reservoir. The true costs 

of such damages are often overlooked and, thus, not included in cost-benefit analyses when 

designing dams. In order to promote long-term economic viability, dam owners (e.g., 

hydropower companies) and legislative bodies are encouraged to reconsider the traditional, 

short-sighted reservoir design life approach in favor of a life cycle management plan that 

incorporates sediment management. By incorporating overlooked costs into economic analyses 

and implementing a life cycle management plan, reservoir lifespans will be more sustainable, 

profits will be extended indefinitely, and the economic burdens placed upon future generations 

will be lessened. 

A.1 Introduction 

 With an ever-increasing global population, mounting demand exists for a more 

sustainable water supply system. Despite this demand, worldwide water storage capacity is 

relentlessly diminishing due to reservoir sedimentation (Annandale 2013, Juracek 2014). A 
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warning in the Reservoir Sedimentation Handbook states that “sudden loss of the world’s 

reservoir capacity would be a catastrophe of unprecedented magnitude, yet their gradual loss due 

to sedimentation receive little attention or corrective action” (Morris and Fan 1998). Action must 

be taken to improve the sustainability of reservoirs and meet the increasing demand for water. 

 Neither sustainable lifespans nor intergenerational equity is achieved by use of traditional 

economic analyses of reservoirs because of the application of conventional cost-benefit analyses 

(CBA). The CBA renders any benefits more than a few decades into the future as negligible due 

to the use of discount rates when evaluating the time value of money. As a result, most future 

costs, including costly dam decommissioning or retrofitting with sediment management 

facilities, are seen as non-factors in the design stage—despite the large cost that will be placed 

on the future generation. Additionally, infrastructure damages caused by sedimentation in 

upstream reaches, downstream reaches, and within the reservoir have typically been excluded 

from economic studies. By considering these factors, reservoir lifespans will be more 

sustainable, profits will be extended indefinitely, and the economic burdens placed upon future 

generations will be lessened. 

A.2 Sustainability 

 Dam construction creates a valuable resource of stored water but disturbs the natural 

sediment equilibrium present in typical streams and rivers. The reservoir upstream from the dam 

traps sediment transported as bedload, as well as a portion of the suspended sediment, present 

due to the decreased flow-through velocity. Over time, the deposition of sediment extends 

upstream of the dam resulting in decreased channel capacity and a loss of storage space within 

the reservoir (Hotchkiss and Bollman 1996). Stream reaches downstream from dams often incise 

into the existing channel or produce coarser grain size distributions due to a lack of sediment 
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passing the dam. Severe problems related to sedimentation can appear after only a small 

percentage of lost storage capacity due to the sediment imbalance on either side of the dam 

(Morris and Fan 1998). Damages associated with upstream deposition, reservoir deposition, and 

downstream scour will be identified and discussed in more detail later. 

 In light of the continual process of sediment transport in streams and rivers, it would 

seem logical to design dams to pass sediment downstream indefinitely. Such has not been the 

case, however, as dams have typically been designed to create a storage volume sufficiently large 

to contain estimated sediment deposits for 50 years. This 50-year period, known as the design 

life of the project, is a result of the conventional application of the CBA (Morris and Fan 1998). 

The benefits of dams, ranging from irrigation water and hydropower generation to flood control 

and recreation, are each linked to the reservoir’s design life (Palmieri et al. 1998). 

 A common description of sustainability is from the Brundtland Commission Report 

(1987): “Humanity has the ability to make development sustainable to ensure that it meets the 

needs of the present without compromising the ability of future generations to meet their own 

needs.” A sustainable approach for reservoirs would include a sediment management plan to 

either directly address the mitigation of sediment or provide a fund with sufficient money to do 

so later. Otherwise, a filled reservoir with minimal project benefits becomes an economic burden 

on the following generation. This burden entails the weighty decision to either abandon the dam, 

decommission it, or retrofit it for sediment management. The former, “do nothing” approach 

involves safety concerns, while the latter two approaches will incur large costs (Engberg 2002, 

Palmieri et al. 2003). A sustainable reservoir would theoretically have an indefinite design life. 

As is, most dams do not have the necessary facilities for such a task. An indefinite design life is 
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consistent with an approach known as the life cycle management plan, which will be outlined 

more thoroughly later. 

A.3 Short-Sighted Design 

 Large infrastructure projects are commonly designed using a 50- or 100-year lifespan 

(Hotchkiss and Bollman 1996). Deciding whether to pursue the project is typically dependent on 

an economic analysis that weighs potential project benefits against predicted costs throughout the 

project’s lifetime. If the net result is positive, the project is considered to be profitable. This type 

of study is known as the CBA. 

 Because the CBA compares monetary values over a prospective project’s lifespan, future 

costs and benefits are discounted in order to express them in present value terms. Discounting 

applies a bias toward the present, particularly if a high rate is used, known as the “tyranny of 

discounting” (Hufschmidt 2000, Pearce et al. 2003). This renders any benefits more than a few 

decades into the future as negligible. 

 The CBA heavily favors projects that avoid large initial costs while promising many 

short-term benefits, effectively eliminating long-term reservoir projects that require the 

installation of sediment management facilities as part of the initial capital cost (Hotchkiss and 

Bollman 1996). These facilities would not be used extensively in the early years of a project’s 

lifespan, causing their installation cost to appear unjustified in a CBA; their derived benefit 

would not occur until decades into the future, when project benefits have already been severely 

discounted. 

 Resolving sustainability with discounting is difficult because the underlying rationale for 

discounting is to more highly value the present, without anticipating being fair to future 

generations (Turner et al. 1993). While sustainable development is not the principal purpose of 
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discounting in the CBA, a more comprehensive analysis in conjunction with life cycle 

management can lead to the sustainable development of resources. 

A.4 Sedimentation Impacts 

 Reservoir sedimentation is largely disregarded because of the slow rate at which it 

advances from one year to the next. Over several decades, however, these minor losses amass 

considerably. In addition to loss of storage space within a reservoir, the sediment imbalance 

caused by a dam operated without sediment management facilities can damage the environment 

and infrastructure both upstream and downstream of the reservoir. The upstream reach will suffer 

from aggradation, while the downstream channel will exhibit degradation. In this section, the 

damages caused by sedimentation will be presented as occurring in three distinct reaches: (1) 

upstream of the reservoir, (2) within the reservoir pool, and (3) downstream of the reservoir. 

A.4.1 Upstream Deposition 

 As sediment deposits in the upper portion of a reservoir, it forms a delta, which will 

eventually begin to extend upstream into the channel and its tributaries. The aggradation 

experienced in these upstream reaches can cause a variety of problems. 

 One problem caused by aggradation is the clogging of water intake structures and other 

diversions (Hotchkiss and Bollman 1996). This clogging requires either frequent dredging or 

redesigning to resolve. 

 Another common issue upstream of reservoirs is the burial of boat ramps and other access 

points to the river. Additionally, deposition causes decreased clearance in the waterway, 

restricting boat navigation (Vanoni 1975). Decreased navigational clearance can also affect 

military and commercial boating operations and require regular dredging (Garcia 2008). 
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 Flood frequency also increases as a result of channel aggradation. Typical river 

discharges that cause bankfull flow would now spill onto the floodplain (Hotchkiss and Bollman 

1996). As sedimentation continues, the average flood severity will only worsen, likely resulting 

in property damage. 

 All of these impacts have occurred upstream of Lewis and Clark Lake, the reservoir 

impounded behind Gavins Point Dam on the Missouri River. The dam was built by the United 

States Army Corps of Engineers and began operating in 1957. As was typical of most dams 

designed in the United States, sediment management techniques were not considered (Vanoni 

1975). Sedimentation impacts have resulted in the clogging of municipal water intake structures, 

increased flood frequency, and decreased clearance under bridges (Paul Boyd, personal 

communication, October 20, 2015). The increased flood frequency eventually required the 

complete relocation of the town of Niobrara and Niobrara State Park. Decreased clearance under 

bridges has necessitated a redesign of the highway, which has yet to be completed. These issues 

caused by unmanaged sediment will require over $160 million to remedy (HDR Engineering 

2015). 

A.4.2 Reservoir Deposition 

 The Sedimentation Engineering manual states that “in most storage reservoirs of modern 

design, more than 90% of the incoming load is usually trapped” (Vanoni 1975). By capturing 

almost all of the bedload and some of the suspended load, storage space within a reservoir 

relentlessly dwindles. This affects all benefits associated with the project. 

 Typical operations at a dam are eventually impacted by clogging of the dam’s intake 

structures, interference with gate operations, and, if applicable, abrasion of the hydromechanical 

equipment (Garcia 2008). These problems will likely not appear until a reservoir’s dead storage 



43 

has filled in, and the intake structure is at the same elevation as the reservoir’s floor. As storage 

volume continues to diminish, available flood storage at the dam is also reduced (Garcia 2008). 

 As with the upstream reach, the delta in the upper portion of the reservoir can bury boat 

ramps and other access points. Recreational boating will be affected as well. Besides limiting 

access and boating, the deltaic deposits can negatively impact property values in the area by 

converting beach areas into mud flats (Vanoni 1975). 

 The International Commission on Large Dams has estimated that there are more than 

42,000 large (over 15 meters tall) dams on the planet and several times as many smaller 

structures (ICOLD 1988). The resulting worldwide storage capacity and rate of storage loss are 

approximately 7,000 cubic kilometers and between 0.5% and 1% annually, respectively 

(Palmieri et al. 2003). Combating this rate of loss corresponds to adding about 50 cubic 

kilometers of storage per year worldwide, with a replacement cost of approximately $13 billion 

each year in 2003 dollars (Palmieri et al. 2003). A continuously increasing global population 

exacerbates this situation further. As population rises, demand for water (and thus, water storage) 

also rises, despite the dwindling worldwide storage capacity (Annandale 2013, Juracek 2014). A 

decrease in the rate of dam construction coupled with reservoir sedimentation caused the global 

net reservoir storage capacity to begin declining in 1995 (Kondolf et al. 2014). If we continue 

allowing our reservoirs to shrink, the demand for water will eventually overcome the supply, 

creating a worldwide water crisis (Annandale 2013). 

 Certain reservoirs are more susceptible to sedimentation than others. For example, the 

Welbedacht reservoir in South Africa lost 86% of its original storage volume between 1973 and 

2005. The first three years of the reservoir’s life resulted in a loss of one third of the storage 

capacity (Huffaker and Hotchkiss 2006). In addition, the Tarbela reservoir in Pakistan traps a 
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significant amount of sediment from the Indus River. Its original volume was reduced by 20% in 

the first twenty years of operation (Palmieri et al. 2001). An extreme case occurred in Venezuela, 

when the Camaré reservoir lost all of its available storage space to sedimentation in less than 15 

years (Morris and Fan 1998). It is obvious that the economic benefits of such projects were 

compromised as a result of the sedimentation. 

 While not explicitly occurring within the reservoir, delta starvation is a major result of 

sediment being trapped behind dams along river systems. The Aswan Dam in Egypt has reduced 

sediment flow down the Nile River by 98% (Schwartz 2005). This has caused the Nile Delta to 

erode at rates as high as 125 to 175 meters per year. The Mississippi River Delta also suffers 

significant erosion due to the many dams and locks along the river (Schwartz 2005). Of the 33 

major worldwide deltas, 24 are currently shrinking because of reservoir sedimentation. These 

coastal regions will be particularly vulnerable to disastrous flooding as the coastlines continue to 

erode and the sea level rises an expected 0.46 meters by 2100 due to climate change (Kondolf et 

al. 2014). 

A.4.3 Downstream Scour 

 Because reservoirs trap the vast majority of transported sediment, water discharging from 

a dam is usually very clear. This sediment-starved water will cause scour in the channel 

downstream of the dam, unless downstream tributaries provide sufficient sediment to restore 

balance (Vanoni 1975). 

 Scour can cause environmental damages, but it also adversely affects infrastructure. For 

example, scour at bridge piers and abutments can lead to the necessity of an eventual bridge 

replacement (Hotchkiss and Bollman 1996). Sufficient scour along a channel’s banks could lead 
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to a bank failure and collapse, severely damaging property. An extremely expensive repair could 

be required, depending on where the scour occurs. 

 General degradation of the channel bed impacts hydraulic structures. For example, 

gravity-fed diversions rely on a certain water surface elevation in the channel to convey water, 

but if degradation has caused the profile to lower, then the required amount of water can no 

longer be reliably supplied to that diversion (Vanoni 1975). This leads to either abandoning or 

redesigning affected water intake structures (Hotchkiss and Bollman 1996). 

 Channel stabilization of the Colorado River below Parker Dam, completed in 1938 by the 

Bureau of Reclamation, cost $16 million plus an additional $5 million to modify the diversion 

structure affected by degradation (Vanoni 1975). 

 All of these impacts, whether upstream, in-reservoir, or downstream, are not typical costs 

associated with a dam’s operation. Rather, they represent infrastructure damages caused by a 

dam’s operation that should have been considered during the design process. 

A.5 Incomplete Nature of Cost-Benefit Analysis 

 Conventionally, these sedimentation impacts have been unaccounted for when 

performing a CBA for dam projects. Not only are the impacts ignored, but the costly decision to 

decommission is also excluded from economic analyses (Palmieri et al. 2003). By not factoring 

these costs into the decision, it becomes an obvious choice to neglect sediment management 

planning. Most dam owners would likely find it economically justifiable to install sediment 

management facilities, such as low level outlets for flushing, at the beginning of the project, 

rather than waiting for the inevitable expenses incurred by the impacts detailed in the previous 

section; larger long-term revenue would be achieved for dam owners as a result. Additionally, 
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our water supply would be more sustainable and future generations would not be required to bear 

the burden of short-sighted reservoir design lives and the resulting negative consequences. 

 For new projects it is now possible to project potential damages due to in-reservoir 

sedimentation, upstream sedimentation, and downstream scour. These costs should be included 

in the CBA to account for a lack of sediment management capability. A better understanding of 

the actual damages at existing projects would help justify this claim. Cost estimates for reservoir 

sedimentation-related damages will need to be gathered; there is little published information 

regarding the economics of such processes (Palmieri et al. 2003). By collecting these data, 

research with more concrete results will be available for consideration for new projects. These 

results could sway dam owners or policymakers to proactively manage the sediment 

accumulating behind dams in order to avoid similar costs. 

 Nevertheless, Turner et al. argue that the present-oriented nature of the CBA, or the 

tyranny of discounting, has three results: (1) damages to infrastructure and the environment 

occurring in the future have present values considerably smaller than the actual damage done, (2) 

projects with benefits that are beyond 50 years in the future are difficult to justify, and (3) 

exhaustible resources are more easily abused in the present (1993). As such, even when 

considering all future infrastructure damages, the discount rate may trivialize the future costs to 

such an extent that an unsustainable water supply project is still economically justified. In such 

cases, economic alternatives do exist that would stimulate intergenerational equality. 

A.5.1 Retirement Fund or Insurance Policy 

 Palmieri et al. suggested that a retirement fund be established throughout a dam’s lifespan 

to eventually pay for decommissioning (2001, 2003). They argue that if the salvage value of a 

dam is expected to be negative (as most eventually will be if sediment management has not been 
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considered), then a certain amount of the net monetary benefits generated should be set aside on 

a consistent basis to pay for retirement or retrofitting. As is, dam owners are typically not held 

liable for such costs. Retiring dams is not as sustainable as managing the sediment to promote an 

indefinite lifespan; nevertheless, a retirement fund would relieve economic stress on future 

generations. 

 A related suggestion encourages dam owners to invest in an insurance policy. The policy 

would provide the owner protection against unexpectedly large costs associated with 

decommissioning (Palmieri et al. 2001). 

A.5.2 User Fees 

 The “beneficiary pays” principle purports that users of the resources generated by a dam 

should be contributing to the necessary costs for operation, maintenance, and rehabilitation 

(Committee 2013). Payment by users for infrastructure and environmental damages is a sensitive 

topic and is not always the solution for these issues. However, when natural resources are 

mismanaged and there are environmental impacts and damages to infrastructure that were 

unaccounted for in the preliminary economic analysis, there is increasing justification for user 

fees (Engel et al. 2008). 

 Implementing said user fees would require educating policymakers and citizens alike. By 

limiting government subsidies and passing costs to the users, the community would be able to 

help contribute to the sustainability of infrastructure, water supply, and energy production for 

their posterity. 
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A.6 Life Cycle Management 

 Achieving sustainability for reservoirs will require abandoning the traditional design life 

approach and focusing on life cycle management. Life cycle management promotes perpetual 

use of infrastructure, rather than designing for a set 50- or 100-year lifespan (Palmieri et al. 

2003). 

 With a reduced number of suitable dam sites, augmenting worldwide reservoir storage by 

building new dams will only become more difficult. Maintaining the current storage volume is 

essential for existing projects. New dams should incorporate a sediment management plan in the 

initial design. 

 The Reservoir Conservation Manual explains that a design life approach assumes that a 

project has served its purpose once the design life period is over, while life cycle management 

encourages perpetual use (Palmieri et al. 2003). Life cycle management also allows for more 

flexibility during the project’s lifespan through continually assessing the state of the investment 

and incorporating external concerns, such as environmental and social issues, as they arise 

(Palmieri et al. 2003). 

 Elected officials and policy-makers are often tempted to only focus on up-front costs 

associated with projects but would be prudent to begin thinking more strategically about 

maintaining and operating large infrastructure investments (ASCE and Eno 2014). These types 

of projects should include the impacts caused by sedimentation as well as potential 

decommissioning costs for the facility. Otherwise, water supply infrastructure investments will 

not be sustainable and will cost even more for future generations to remedy (ASCE and Eno 

2014). 
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A.7 Conclusion 

 In 1975, Bondurant warned of the inevitable filling of reservoirs and counseled that if 

society still relied on reservoirs in the future, then managing sediment would be necessary 

(Vanoni 1975). Bondurant’s warning has largely been ignored; sediment management practices 

have not been adapted for the most part, and society still heavily relies on reservoirs for water 

supply more than four decades later. 

 Sedimentation impacts are present inside of reservoirs as well as in the river reaches both 

upstream and downstream. Upstream aggradation can result in clogged intake structures, 

decreased navigational clearance, and increased flood frequency, while downstream scour can 

lead to abandoned intake structures, compromised channel stability, and damaged bridge piers 

and abutments. The loss of storage space within the reservoir itself contributes to a reduction in 

all project benefits as well as delta starvation at the coast. Severe problems related to 

sedimentation can appear after only a small percentage of lost storage capacity due to the 

sediment imbalance on either side of the dam. These types of costly impacts should have been 

incorporated in the economic analysis at the beginning of the project but unfortunately were not. 

Future projects ought to strive for more sustainable water supply infrastructure investments than 

those previously built. 

 A sustainable approach must include a sediment management plan to either directly 

address the mitigation of sediment or provide a fund with sufficient money to do so later. 

Otherwise, a filled reservoir with minimal project benefits becomes an economic burden on the 

following generation. A sustainable reservoir would theoretically have an indefinite design life. 

As is, most dams do not have the necessary facilities for such a task. In order to promote long-

term economic viability, dam owners (e.g., hydropower companies) and legislative bodies are 
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encouraged to reconsider the traditional, short-sighted reservoir design approach in favor of a life 

cycle management plan that incorporates sediment management. 
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APPENDIX B. GAVINS POINT DAM ECONOMIC ANALYSIS DOCUMENTATION 

B.1 Sources of Expenditures for Sedimentation Impacts 

 Several of the costs that were gathered came as the result of a Freedom of Information 

Act (FOIA) request from the United States Army Corps of Engineers’ Omaha District Office 

Counsel through the assistance of Linda Burke. These will indicate FOIA at the end of the 

section heading. 

B.1.1 City of Niobrara Relocation 

 See the contract and its revisions on the following pages provided by John Remus of the 

United States Army Corps of Engineers. Note that the initial cost is $3 million, but the first 

contract amendment changes this value to $5.5 million. 
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B.1.2 Real Estate Acquisitions for Relocation (FOIA) 

 The following pages contain tables representing the acquisition costs for real estate 

during the relocation of Niobrara. 
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B.1.3 Highway 12 Maintenance (2004 – 2014) and Redesign (Minimum Estimate) 

 Costs related to the maintenance and redesign of Highway 12 are contained in an 

Environmental Impact Statement prepared by HDR Engineering. The citation is included in the 

References section as well as here: 

HDR Engineering (2015). Nebraska Highway 12 Niobrara East and West Draft Environmental 
Impact Statement. United States Army Corps of Engineers, Omaha District. 

B.1.4 Emergent Sandbar Habitat Construction / Maintenance, 1999 – 2015 (FOIA) 

 The FOIA request regarding costs to construct and maintain the Emergent Sandbar 

Habitat can be found on the following pages. 
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