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ABSTRACT 

The Influence of Pile Shape and Pile Sleeves on Lateral Load Resistance 
 

Dalin Newell Russell 
Department of Civil Engineering, BYU 

Master of Science 
 

The lateral resistance of pile foundations is typically based on the performance of round 
piles even though other pile types are used. Due to lack of data there is a certain level of 
uncertainty when designing pile foundations other than round piles for lateral loading. 
Theoretical analyses have suggested that square sections will have more lateral resistance due to 
the increased side shear resistance, no test results have been available to substantiate the 
contention. Full-scale lateral load tests involving pile shapes such as circular, circular wrapped 
with high density polyethylene sheeting, square, H, and circular with a corrugated metal sleeve 
have been performed considering the influence of soil-pile interaction on lateral load resistance. 
The load test results, which can be summarized as a p-y curve, show higher soil resistance from 
the H and square sections after accounting for differences in the moment of inertia for the 
different pile sections. The increased soil resistance can generally be accounted for using a p-
multiplier approach with a value of approximately 1.25 for square or 1.2 for H piles relative to 
circular piles. It has been determined that high density polyethylene sheeting provides little if 
any reduction in the lateral resistance when wrapped around a circular pile. Circular piles with a 
corrugated metal sleeve respond to lateral loading with higher values of lateral resistance than 
independent circular piles in the same soil.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: laterally loaded piles, shape influence, lateral resistance, full-scale test, LPile, circular 
pile, H pile, square pile, plastic sleeve, corrugated metal pipe, lateral deflection  
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1 INTRODUCTION 

Up until the mid-twentieth century engineers did not know how to evaluate deep 

foundations for lateral loads. It was generally assumed that deep foundations could only resist 

axial loads (Coduto, 2001). Since that time, case studies and theoretical models have proven that 

the same mechanisms that allow a pile to resist vertical loads are also inherent when a pile 

experiences lateral loads. Although it is still a relatively new field of study, there are various 

methods available to compute the response of a pile to lateral load. Many of these methods are 

based on lateral load test experiments performed on circular piles. Pile shapes such as square and 

H are commonly used in practice but without high regard to shape effect. It is generally 

considered that the resistance of the square or H pile is equal to that of a comparable circular 

pile. Site specific tests are sometimes performed on pile shapes to ensure a determined resistance 

can be met but no case study has been found correlating the data to other pile shapes. Shape 

factors have been generated based on theoretical assumptions yet lack the backing of full scale 

test data.  

A study performed by Bustamante (2014) was the first of its kind to laterally test round, H, 

and square piles in similar soil conditions. The tubular steel piles were consistent in material 

properties, with comparable dimensions and moments of inertia. The study confirmed that, under 

similar conditions, the square and H piles responded with greater lateral resistance than a round 

pile after accounting for differences in widths and moments of inertia. Using a pile analysis 
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program called LPile, models were created to match the observed load verse deflection curves of 

the load tests. Bustamante suggested that including p-multipliers of 1.2 for square piles and 1.35 

for H piles in the LPile model more accurately predicted the lateral resistance of the non-circular 

piles. More data like this study would be beneficial in verifying the shape effect of laterally 

loaded piles.  

A common scenario where piles are subjected to lateral loading can be seen in the 

foundation of abutment bridges. Piles that support the abutment are first driven a portion into the 

native soil before the backfill is placed around the pile to reach the final elevation. As the soil 

around a pile is compacted, negative stresses can build on the pile face. This phenomenon is 

called downdrag which can cause settlement issues as negative stresses build up along the entire 

height of backfill. Various practices can be set in place to mitigate downdrag, two of which are: 

wrapping the pile with high density polyethylene (HDPE) sheeting to reduce skin friction and 

covering the pile with a corrugated metal pipe, or corrugated metal sleeve (CMS). These 

practices, meant to reduce downdrag, introduce a new level of uncertainty in the pile’s ability to 

resist lateral forces. It is believed that a majority of the lateral resistance of a pile comes from the 

top five to ten pile diameters (Duncan et al., 1994) and it isn’t strange for the sleeve to extend 

beyond that as it matches the abutment height. There is little in the technical literature that can 

describe the sleeves effect on the lateral resistance of the pile or support the practice of using pile 

sleeves in lateral conditions. This research will study piles subjected to lateral loads and 

investigate how pile shape and pile sleeves affect the resistance to such loads. 
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 Objectives 

A primary objective of this research was to measure the reaction of comparable round, H 

and square piles to lateral loads. In addition to piles of different shape, this research also studied 

the effect of pile sleeves; namely round piles wrapped with HDPE sheeting as well as round piles 

with a corrugated metal pipe placed around it like a sleeve. This study determined how pile 

shape affects the way in which the pile interacts with the soil in terms of lateral displacement, 

heave, moment verse depth and deflection of the soil at distances from the pile. With this data a 

method to account for the lateral resistance of piles of different shapes and sleeves was further 

defined. Procedures similar to the lateral tests and analysis of Bustamante (2014) were used to 

determine whether the suggested p-multipliers accurately describe the resistance of a square and 

H pile. The end objective is to develop design recommendations for the lateral resistance of piles 

with similar geometries and sleeves which will ultimately minimize ambiguity in design. 

 Scope 

This research is a continuation of the tests performed by Bustamante (2014). Some of the 

piles tested by Bustamante were re-tested after sufficient recompaction of the soil had ensued 

with the addition of five feet of backfill material. A square pile and round piles with a CMS 

constructed in the same area, in a similar manner were also tested. Overall, this research 

facilitated full scale, lateral load tests on piles of circular, square, and H shape as well as circular 

piles with HDPE sheeting and a CMS. The test piles had similar material properties with 

comparable dimensions and moments of inertia to allow direct comparison of lateral resistance. 

The H pile was oriented about its weak axis which is common to current construction practices. 

To provide a full view of the pile response, the experiment was documented with instruments 

that measure lateral deflection, lateral load, heave, pile rotation, and pile moment. As a method 
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of analysis, the measured load tests where compared to current lateral design methods to gauge 

accuracy in predicting lateral resistance. The use of p-multipliers in an LPile analysis provided a 

reasonable method of predicting the lateral resistance of square and H piles.  

 

 Thesis Organization 

This thesis is organized in seven chapters, this introduction being the first. The second 

chapter will provide a brief review of the technical literature related to laterally loaded pile 

theory, p-y curves, and methods of estimating the effect of pile shape and pile sleeves. Chapter 

three explains the layout of the test site, the piles used, soil compaction and the loading system. 

Chapter four describes how the test was instrumented. Chapter five reports the load test results 

with a brief discussion on observations. Chapter six provides the analysis of the test results in 

comparison with current methods to explain the lateral resistance of shaped piles. Conclusions of 

the findings of this research can be found in the final chapter, chapter seven. 
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2 LITERATURE REVIEW 

In preparation for a study of the influence of pile shape and piles sleeves on lateral 

resistance it is necessary to become familiar with current literature on the subject. In this section, 

a brief summary of basic theory and contributing articles on the subject matter have been 

provided regarding the influence of pile shape, wrapped piles, and corrugated metal sleeves 

(CMS). A discussion of laterally loaded piles will introduce methods for computing the expected 

lateral resistance through p-y curves. The API method for calculating p-y curves in cohesionless 

sand will be explained along with the computer program LPile. A basic explanation of the 

iterative method of computing pile response will be provided including additional characteristic 

equations to be used to further describe soil properties. The practice of using pile sleeves will be 

introduced along with implications that the literature provides on such uses to lateral response. It 

will be apparent that full-scale data on these topics will be a welcome contribution to the 

literature and can be the basis of future recommendations for design. 

 Laterally Loaded Piles 

Pile foundations are often subjected to lateral loads such as: 

• Earth pressures on the back of retaining walls 
• Wind Loads 
• Seismic Loads 
• Berthing loads from ships as they contact piers or other harbor structures 
• Downhill movements of earth slopes 
• Vehicle acceleration and braking forces on bridges 
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• Eccentric vertical loads on columns 
• Ocean wave forces on offshore structures 
• River current forces on bridge piers 
• Cable forces from electrical transmission towers or electric railway wire support towers 
• Structural loads on abutments for arch or suspension bridges. (Coduto, 2001) 

The transfer of these lateral loads between a deep foundation and the ground is an 

interactive process. As a deep foundation is loaded it deflects into the soil which provides 

resistance against the load. The amount of resistance the engaged soil provides is dependent on 

the degree to which the pile has deflected into the soil. This concurrent process can be modelled 

at the most basic level as a beam using dynamic beam theory. Figure 2-1 represents a free body 

diagram for a deep foundation, namely a long pile (L>10D), considering lateral deflection, slope, 

moment and shear found in a long foundation under a lateral load. This figure demonstrates how 

maximum magnitudes for deflection and pile slope occur at the ground surface, whereas 

maximum pile moment occurs at a depth below the ground surface. The soil-pile interaction, 

represented as the shape and magnitude of these plots, depends on many factors. Three of these 

factors include: the type of load that is applied (axial, shear and moment) as well as their 

magnitude; the relationship between resistance and deflection in the soil (known as the p-y 

curve); and properties of flexural rigidity such as the modulus of elasticity (E) and the moment of 

inertia (I) of the pile. These factors have been the subject of much research and theoretical 

analysis. However, the influence of pile shape and pile sleeve elements on lateral resistance has 

received relatively little attention.  
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Figure 2-1: Deflection, Slope, Moment and Shear for a Pile Subject to Lateral Loading 
(After Isenhower and Wang, 2015) 

 

The connection of the pile head to the rest of the structure can prescribe the type of loads 

that can be expected. Three basic types of connection restraints include; free-head condition, 

restrained-head condition, and pure moment condition. When designing a deep foundation it is 

important to identify the connection to determine the boundary conditions of the pile’s 

movements. In practice, designs should incorporate all the expected loading of a pile. This study 

will isolate pile head shear forces and its effect on pile response.  

Pile length is an important attribute in the design of deep foundations. With respect to 

lateral loading, pile length can be indicative of the failure mechanism that occurs when 

overloaded. Deep foundations are divided into two categories: short and long. Short or “stubby” 

foundations that are laterally loaded lack the depth required to anchor the toe against rotations. 

Often it is the soil that fails first when ultimate loads occur, that is to say the soil yields before 

the flexural capacity of the pile can be reached. Long foundations provide greater embedment 

establishing the pile toe as essentially fixed. Piles are classified as long or short according to 
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their stiffness and the lateral resistance provided by the soil. Generally, stiffer piles, such as one 

made of steel, is considered long if D/B ≤ 10. 

 The P-y Curve 

First proposed by McClelland and Focht in 1956, the p-y curve is an elementary soil model 

vital to the analysis of a laterally loaded pile (Isenhower & Wang, 2015). This curve 

demonstrates, at any depth z, the correlation of soil resistance per unit length of pile, p, and the 

lateral displacement of the pile, y. At a basic level, the p-y curve actually comes from two 

components: the Q-y curve, defining the development of the passive resistance on the face of the 

pile, and the F-y curve, defining the development of shear resistance along the side of the pile as 

illustrated in Figure 2-2 (Briaud et al., 1983). This relationship is also described in 

Equation (2-1). 

 

 

Figure 2-2: Lateral Load Mechanism (after Briaud et al., 1983) 
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𝑷𝑷 = 𝑸𝑸 + 𝑭𝑭          (2-1) 

 

Where: 

P = the total lateral resistance of a pile 

Q = the passive force contribution to lateral pile resistance on the pile face 

F = the shear resistance contribution to lateral pile resistance on the side of the pile 

The significance of both components of lateral resistance have been displayed by pile tests. 

Briaud et al. (1983) performed a test analyzing the predicted soil interaction of 4 design methods 

versus the actual soil behavior. The test pile was a three foot diameter drilled shaft embedded 20 

ft in a stiff clay. At the rate of approximately five tons per day the load was applied at 2.5 ft 

above the ground surface. The soil resistance due to the face of the pile was calculated from 

pressure cell readings. Horizontal and moment equilibrium could not be obtained considering 

only the front or passive resistance of the pile and the side shear effects had to be included to 

describe the reaction of the pile to the loading. This example confirmed two points: 

1. The shear resistance is an important part of the total resistance. 

2. The shear resistance is fully mobilized before the passive resistance. 

Trends in full-scale tests show that little movement (0.1 to 0.25 inches) is typically 

required to engage full shear resistance while passive forces require large amounts of movement 

to achieve maximum resistance (Smith, 1987). Load tests have proven the existence of separate 

passive pressure and side shear forces in lateral loading yet some design procedures lump the 

two sources into a more generic overall lateral resistance. Such as by the use of magnification 

factors based on pile shape and plasticity (Robertson et al., 1986).  Nevertheless, some methods 
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are available that attempt to formulate passive pressure, Q-y curves, and side shear contributions, 

F-y curves, independently. (Smith, 1987). 

The pressuremeter method is a common procedure used to distinguish the Q-y and F-y 

contributions. The expansion of a pressuremeter probe in soil is analogous to the lateral 

movement of a loaded pile. Correlations to expected lateral stiffness and strength can be made 

according to the pressure readings. Direct techniques for producing the Q-y curve and the F-y 

curve can also be derived from the pressuremeter curve (Briaud et al., 1983; Smith, 1987; 

Cosentino et al., 2006). Thus the pressuremeter method can be used to provide more accurate p-y 

data. From test data the components of side shear and passive pressure can be combined to 

describe the soil-pile interaction as the pile is laterally loaded. The pressuremeter can be used to 

produce p-y curves for a specific soil and it has also increased the accuracy of theoretical 

methods that use soil and pile parameters to produce p-y curves. 

2.2.1 API Method for Calculating P-y Curves for Piles in Sand above the Water 
Table 

The American Petroleum Institute (API) has published a method to calculate 

load-deflection curves for round piles in sand. Printed in RP 2A-WSD (2010) it is included in the 

recommended practice for planning, designing and constructing fixed offshore platforms using a 

working stress design. This method accounts for soil properties; such as, effective unit weight, 

friction angle, and modulus of subgrade reaction, as well as pile diameter, depth, and loading 

condition. Initially, the lateral bearing capacity of the sand material can be calculated with 

Equation (2-2) and Equation (2-3) for shallow and deep depths respectively.  

𝑷𝑷𝒖𝒖𝒖𝒖 = (𝑪𝑪𝟏𝟏 𝒙𝒙 + 𝑪𝑪𝟏𝟏 𝒅𝒅) 𝜸𝜸 𝒅𝒅          (2-2) 

𝑷𝑷𝒖𝒖𝒅𝒅 = 𝑪𝑪𝟑𝟑 𝒅𝒅 𝜸𝜸 𝒙𝒙          (2-3) 
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Where: 

 pu = ultimate resistance (force/unit length), lbs/in. 

  s = shallow 

  d = deep 

 γ = effective soil weight, lbs/in3 

 x = depth, in. 

 φ = angle of internal friction of sand, deg. 

C1, C2, C3 = Coefficients determined from Figure 2-3 as a function of φ 

 d = average pile diameter from surface to depth, in. 

 

 

Figure 2-3: Soil Coefficients; C1, C2, and C3 (After RP 2A-WSD, 2010) 
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The ultimate lateral bearing capacity for sand can vary at a certain depth therefore the 

smaller of the two lateral bearing capacities should be used as the ultimate bearing capacity, pu. 

With the ultimate bearing capacity designated, the resultant soil resistance, P, can be calculated 

using Equation (2-4). This equation considers the loading condition, subgrade modulus, depth, 

and lateral deflection. The factor for loading condition can be found with Equation (2-5) whereas 

the subgrade modulus, k, can be determined with Figure 2-4 as a function of φ. The resultant soil 

resistance P, in lbs/in., explains the soil resistance at a depth given a certain lateral deflection of 

the soil. 

𝑷𝑷 = 𝑨𝑨 𝑷𝑷𝒖𝒖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 � 𝒌𝒌 𝒙𝒙
𝑨𝑨 𝑷𝑷𝒖𝒖

𝒚𝒚�        (2-4) 

𝑨𝑨 = �𝟑𝟑.𝟎𝟎 − 𝟎𝟎.𝟖𝟖 𝒙𝒙
𝒅𝒅
�  ≥ 𝟎𝟎.𝟗𝟗 𝐟𝐟𝐟𝐟𝐟𝐟 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐥𝐥𝐟𝐟𝐬𝐬𝐥𝐥𝐬𝐬𝐥𝐥𝐥𝐥     (2-5) 

 

Figure 2-4: Subgrade Modulus as a Function of Friction Angle (After RP 2A-WSD, 2010) 
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The API method effectively correlates the soil properties with a lateral bearing capacity to 

produce p-y values. Given various deflection values, this method may be used to calculate 

enough soil resistance values at a certain depth to formulate a p-y curve. It should be noted that 

neither pile width nor shape effect was considered in the above equations. That is because this 

method was designed specifically for steel cylindrical (pipe) pile foundations. It is recommended 

that this method should be used in a general setting and in the absence of more definitive 

information (RP 2A-WSD, 2010). Despite this limitation, the basis of this method is similar to 

other procedures for calculating the resistance of laterally loaded piles such as the LPile 

procedure for calculating p-y curves. 

2.2.2 LPile Analytical Method 

LPile is a widely used computer program which specializes in the analysis of piles and 

drilled shafts under lateral load. The development for the commercial distribution of LPile by Dr. 

Lymon C. Reese began in 1985. However, it was preceded by general pile theory and 

methodology similarly used in the computer program COM624 developed for mainframe 

computers. The current version used in this work is LPile version 2015.8.03 which will be 

referred to as LPile throughout the remainder of this document. LPile computes deflection, shear, 

bending moment and soil response as a function of depth in nonlinear soils. The user interface 

allows for the consideration of various soil types as well as pile configurations. These features 

qualify its use in this study.  

In an LPile model the soil around the pile is replaced with a series of nonlinear springs 

representing the soil resistance over a length, p, as a nonlinear function of pile deflection, y 

(Figure 2-5). The pile is typically divided up into 50 to 100 nodal points, and p-y curves 
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appropriate for the soil type and soil strength are computed at each node. In an iterative process, 

the lateral resistance at each node is adjusted until it is consistent with the deflection computed at 

that node based on the p-y curve defined for that node.  

 

Figure 2-5: Theoretical Model of a Pile under Lateral Loading and p-y Curves (after 
Isenhower and Wang, 2015) 

 

The basic differential equation governing the lateral load behavior of a pile in a soil profile 

is given by the equation 

 

        𝑬𝑬𝑬𝑬 𝒅𝒅
𝟒𝟒𝒚𝒚

𝒅𝒅𝒙𝒙𝟒𝟒
+ 𝑸𝑸𝒅𝒅𝟐𝟐𝒚𝒚

𝒅𝒅𝒙𝒙𝟐𝟐
− 𝒑𝒑 + 𝑾𝑾 = 𝟎𝟎  (2-4) 
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Where: 

 Q = axial thrust load in the pile, 

 y = lateral deflection of the pile at a point x along the length of the pile, 

 p = soil reaction per unit length, 

 EI = flexural rigidity, and 

 W = distributed load along the length of the pile. 

The first term governs the influence of pile flexural resistance, the second term deals with 

p-delta effects from the axial load on the pile as it deforms laterally, the third term accounts for 

the soil resistance along the length of the pile and the last term accounts for distributed load.  The 

differential equation can only be solved by application of boundary conditions at the top of the 

pile which define applied load or moment, rotation or deflection.  

There are 8 assumptions made in deriving the differential equation (2-6) for pile analysis: 
 

1. The pile is initially straight and has a uniform cross section 
2. The pile has a longitudinal plane of symmetry; loads and reactions lie in that plane 
3. The pile material is homogeneous 
4. The proportional limit of the pile material is not exceeded 
5. The modulus of elasticity of the pile material is the same in tension and compression 
6. Transverse deflections of the pile are small 
7. The pile is not subjected to dynamic loading 
8. Deflections due to shearing stresses are small (Isenhower and Wang, 2015) 

With integration of equation (2-6), other useful formulas can be obtained such as 

Equations (2-7), (2-8) and (2-9). 
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𝑽𝑽𝒗𝒗 = 𝑬𝑬𝑬𝑬 𝒅𝒅
𝟑𝟑𝒚𝒚

𝒅𝒅𝒙𝒙𝟑𝟑
+ 𝑸𝑸𝒅𝒅𝒚𝒚

𝒅𝒅𝒙𝒙
   (2-5) 

𝑴𝑴 = 𝑬𝑬𝑬𝑬 𝒅𝒅
𝟐𝟐𝒚𝒚

𝒅𝒅𝒙𝒙𝟐𝟐
   (2-6) 

𝑺𝑺 = 𝒅𝒅𝒚𝒚
𝒅𝒅𝒙𝒙

  (2-7) 

 

Where: 

Vv = horizontal shear in the pile, 

M = bending moment in the pile, 

S = slope of the elastic curve relative to the x-axis of the pile. 

Some may recognize this process because it resembles conventions used in beam 

mechanics. A pile may be thought of as a beam with loads, reactions, moments, and even torsion. 

The process increases in complexity because the reaction of soil depends on the movement of the 

pile and vice versa. These equations are matched with the p-y curves that explain the soil 

resistance with depth according to the deflections calculated using the pile deflection equations. 

The LPile procedure for developing p-y curves for cohesionless soils is similar to the 

procedure for cohesive soils but with the additional consideration of cohesive effects.  Because 

abutment piles are typically located in cohesionless soils associated with approach fills, this 

review will focus on this material type.  

The initial slope of the p-y curve is approximately linear with depth. Terzaghi (1955) 

suggested the following Equation (2-10) representing the p-y curve as straight lines as the slope 

increases with depth. 

𝑬𝑬𝒖𝒖 = 𝒌𝒌𝒙𝒙 (2-8) 
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In this equation k is a variation of the soil modulus while x represents the depth below the 

ground surface. Terzaghi’s k values were merely results of a literature review taking place in the 

1950s. Since then, values derived from full scale testing have given more accurate estimates of 

the subgrade modulus. Figure 2-6 shows the correlation between friction angle and k used in 

LPile for fine sands, this is a variation of Figure 2-4 used by API. If the user specifies a k value 

of zero then LPile will assign a default value using Figure 2-6. If an input value for the friction 

angle is higher than 45° a k value corresponding to 45° will be assigned. If the soil profile shows 

coarse or well-graded sand, a higher value of k may be considered. Although experimental data 

is sparse, it can be appropriate to use a k value 10 to 50 percent higher when dealing with dense 

and very dense well-graded sands that do not contain compressible material (Isenhower & Wang, 

2015). 

 

Figure 2-6: Value of k versus Friction Angle for Fine Sand Used in LPile 
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Other soil values have been suggested by Isenhower & Wang (2015) that can be used to 

further describe soil response, such as the passive, KP, at rest, K0, and active, Ka, earth pressure 

coefficients developed using equations (2-11) through (2-13);  

𝑲𝑲𝑷𝑷 = 𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 �𝟒𝟒𝟒𝟒° + 𝝋𝝋
𝟐𝟐
�          (2-9) 

𝑲𝑲𝟎𝟎 = 𝟎𝟎.𝟒𝟒           (2-10) 

𝑲𝑲𝒕𝒕 = 𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 �𝟒𝟒𝟒𝟒° − 𝝋𝝋
𝟐𝟐
�          (2-11) 

Equations (2-14) through (2-16) define the soil coefficients; C1, C2, and C3, which can be 

found in the LPile technical manual (Isenhower & Wang, 2015), 

𝑪𝑪𝟏𝟏 = 𝒕𝒕𝒕𝒕𝒕𝒕 𝜷𝜷�𝑲𝑲𝑷𝑷 𝒕𝒕𝒕𝒕𝒕𝒕 𝜶𝜶 + 𝑲𝑲𝟎𝟎 �𝒕𝒕𝒕𝒕𝒕𝒕 𝝋𝝋 𝒖𝒖𝒔𝒔𝒕𝒕 𝜷𝜷� 𝟏𝟏
𝒄𝒄𝒄𝒄𝒖𝒖 𝜶𝜶

+ 𝟏𝟏� − 𝒕𝒕𝒕𝒕𝒕𝒕 𝜶𝜶��    (2-12) 

𝑪𝑪𝟐𝟐 = 𝑲𝑲𝑷𝑷 −𝑲𝑲𝑨𝑨           (2-13) 

𝑪𝑪𝟑𝟑 = 𝑲𝑲𝑷𝑷
𝟐𝟐(𝑲𝑲𝑷𝑷 + 𝑲𝑲𝟎𝟎𝒕𝒕𝒕𝒕𝒕𝒕𝝋𝝋) −𝑲𝑲𝑨𝑨        (2-14) 

These equations can be used in conjunction with the API method to develop p-y curves in 

cohesionless sand above the water table. 

There are two models used while solving for the ultimate resistance of piles in sand.  These 

two models allow approximations for (pu)sa and (pu)sb to be developed as a general limit and 

magnitude of the ultimate soil resistance. The first model assumes a passive failure wedge 

develops at shallow depth while the second model assumes that the soil flows around the pile at 

depth. The lowest ultimate resistance is used. The passive wedge failure model is shown in 

Figure 2-7. The total lateral force Fpt (Figure 2-7) is a summation of the passive force, Fp 

subtracted by the active force Fa which is computed with the use of Rankine Theory. To quantify 

Fp it is assumed that the Mohr-Coulomb failure condition is satisfied on the vertical wedge side 

planes ADE and BCF as well as the wedge surface AEFB.  
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Figure 2-7: Geometry Assumed for Passive Wedge Failure for Pile in Sand (After 
Isenhower and Wang, 2015) 

 

The resulting Equation (2-17) is to solve for Fpt based off of the passive wedge failure 

model. 

𝐹𝐹𝑝𝑝𝑝𝑝 = 𝛾𝛾𝐻𝐻2 � 𝐾𝐾0𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝛽𝛽
3 tan(𝛽𝛽−𝐻𝐻)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑝𝑝𝐻𝐻𝐻𝐻𝛽𝛽
tan (𝛽𝛽−𝐻𝐻)

�𝛽𝛽
2

+ 𝐻𝐻
3
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�� (2-15) 

            +𝛾𝛾𝐻𝐻2 �𝐾𝐾0𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
3 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡− 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)− 𝐾𝐾𝐴𝐴𝑏𝑏

2 � 

 

Where: 

α = the angle of the wedge in the horizontal direction 

β = the angle of the wedge with the ground surface. 

b = pile diameter 
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H = height of the wedge itself 

K0 = at rest earth pressure coefficient 

KA = active earth pressure coefficient  

The ultimate soil resistance per unit length of pile near the ground surface can be 

obtained by differentiating Equation (2-18) with respect to depth. 

(𝑃𝑃𝑢𝑢)𝑐𝑐𝐻𝐻 = 𝛾𝛾𝐻𝐻 � 𝐾𝐾0𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝐻𝐻𝐻𝐻𝛽𝛽
tan(𝛽𝛽−𝐻𝐻)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

+ 𝑝𝑝𝐻𝐻𝐻𝐻𝛽𝛽
tan (𝛽𝛽−𝐻𝐻)

(𝑏𝑏 + 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�  (2-16) 

+γ𝐻𝐻[𝐾𝐾0𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 𝐾𝐾𝐴𝐴𝑏𝑏] 

 

Values of α can range from φ/3 to φ/2 for loose sand to nearly φ for dense sand according 

to Bowman (1958). The value of β can be approximated using equation (2-19). 

𝜷𝜷 = 𝟒𝟒𝟒𝟒° + 𝝓𝝓
𝟐𝟐
            (2-17) 

 

Another soil model considering flow around failure for ultimate resistance at any depth 

below the ground is shown in Figure 2-8.  This model incorporates stresses before the pile and 

behind the pile which are assumed equal or at least σ1 greater than σ2 else active soil failure 

could ensue. Due to the two dimensional nature of the model it is subject to uncertainty. With 

these assumptions the ultimate soil resistance for horizontal movement can be expressed as 

Equation (2-20). 

(𝒑𝒑𝒖𝒖)𝒖𝒖𝒔𝒔 = 𝑲𝑲𝑨𝑨𝒔𝒔\ 𝑯𝑯(𝒕𝒕𝒕𝒕𝒕𝒕𝟖𝟖𝜷𝜷 − 𝟏𝟏) + 𝑲𝑲𝟎𝟎𝒔𝒔\ 𝑯𝑯 𝒕𝒕𝒕𝒕𝒕𝒕𝝓𝝓 𝒕𝒕𝒕𝒕𝒕𝒕𝟒𝟒𝜷𝜷    (2-18) 
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Figure 2-8: Assumed Mode of Soil Failure by Lateral Flow around Pile in Sand, (a) Section 
through Pile, (b) Mohr-Coulomb Diagram (After Isenhower and Wang, 2015) 

 
After an analysis in LPile is completed results with depth are immediately displayed for 

deflection, bending moment, mobilized soil reaction, and shear force. The presentation charting 

utility can generate a total of 28 different types of graphs as a way of displaying results of the 

analysis (Isenhower and Wang, 2015). Along with those mentioned previously, p-y curves can 
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also be produced at user specified depths, which is a function that will be used in proceeding 

sections. Results can be compared in the program itself or exported for further analysis. 

Influence of Pile Properties 

 Influence of Pile Shape 

Pile shape is an attribute that effects the p-y curve as well as the structural stiffness of the 

pile.  Although the pile shape is routinely considered in computing the moment of inertia, I, for a 

pile, potential effects of pile shape are commonly neglected. Theory on the lateral resistance of 

piles such as the passive wedge failure method are based on the assumptions of a round pile and 

most field tests reported in the literature have involved circular piles. As a result, the lateral soil 

resistance for piles of all shapes are typically based on that developed for round piles and is 

likely conservative for square shaped piles. Despite the uncertainty in the pile shapes effect on 

lateral resistance, non-circular piles are commonly used in practice. 

A survey conducted by Filtz et al. (2013) presented questions about the use of steel H piles 

in bridge abutments to different Departments of Transportation (DOTs) across the United States 

and Canada. A total of 45 DOTs were invited to participate and 27 responses were received. 

More than half of the responding agencies reported using H piles more than other shapes in the 

construction of bridge abutments. In response to a question regarding the orientation of the H 

pile 21 agencies responded as follows: 15 of the responding agencies reported orienting the H 

pile with the weak axis perpendicular to the bridge centerline; 3 agencies orient steel H piles with 

the strong axis perpendicular to the bridge centerline; while 3 agencies orient the H pile in either 

direction. Out of all the responses, none of the agencies provided a design methodology that 

supports the use of a particular pile orientation. More information regarding the influence of pile 
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shape could be useful to pile design which otherwise must rely on current shape theory as a basis 

of design. 

Figure 2-9 shows from a conceptual standpoint how each pile shape resists stresses 

induced by lateral loads. In this figure, the loading force is coming from the left and arrows 

directed to the left represent the normal stress and shearing stresses on the piles.  

 

Figure 2-9: Sketch demonstrating shape influence on perceived stresses (After Reese and 
Van Impe, 2001) 

 

As a first approximation, one could assume that a square pile and a circular pile having the 

same width would have the same lateral soil resistance. Although the projected areas of the piles 

are similar, the shear resistance developed along the side of the piles will be different. As a round 

pile is loaded laterally, the back half of the pile loses contact with the soil and therefore no shear 

resistance is developed on this surface. In contrast, the side of a square pile remains in contact 

with the soil during lateral loading and therefore has a longer side length to develop shear 

resistance. As a result, a square pile will have greater lateral soil resistance than a round pile of 

the same width. The H pile loaded about its weak axis may have about the same width and depth 

as the square pile therefore, it should develop similar side shear resistance.  However, it should 

be noted that the moments of inertia of the two shapes are understandably different. In addition, 

to the differences in side shear, differences in passive resistance might be anticipated based on 
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pile shape. For example, the normal force arrows for a square pile are all parallel to the direction 

of load while for a round pile the normal force arrows would have a component parallel and a 

component perpendicular to loading which might be expected to reduce lateral soil resistance.  

Like the bow on a ship through water, the shape of the round pile face can penetrate the earth 

easier therefore the effectiveness of the round pile in resistance lateral force must be less than 

that of a flat surface (Czerniak, 1957).  Although an H pile loaded about its weak axis would also 

have a normal force arrow parallel to the applied load, there could be some differences in passive 

resistance owing to compression of the soil between the flanges. 

As a method to quantify these differences in geometry and soil-pile interaction, Reese and 

Van Impe (2001) suggest a method for calculating an equivalent diameter, beq for square cross 

sections using Equation (2-21). 

𝒔𝒔𝒆𝒆𝒆𝒆 = 𝒘𝒘�
𝑷𝑷𝒖𝒖𝒄𝒄+𝟐𝟐�𝒅𝒅−

𝒘𝒘
𝟐𝟐�𝒇𝒇𝒛𝒛

𝑷𝑷𝒖𝒖𝒄𝒄
�         (2-19) 

Where: 

w = width of section 

d = depth of section 

Puc = ultimate resistance of a circular section with a diameter b equal to w 

fz = Shearing resistance along the sides of the rectangular shape at depth z below the 

ground surface  

 For cohesionless soils, the unit side resistance, fz, may be computed using equation 

(2-22).  

𝒇𝒇𝒛𝒛 = 𝑲𝑲𝒛𝒛\ 𝒛𝒛 𝐬𝐬𝐬𝐬𝐥𝐥 (𝝓𝝓𝒛𝒛)          (2-20) 
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Where: 

Kz = lateral earth pressure coefficient  

z = effective vertical soil stress at depth z  

ϕz = interface friction angle (between the soil and the wall of the pile) 

The value of Kz will also be related to the manner in which the pile is installed and ϕz will 

turn out to be lower than the soil friction angle. The values of equivalent diameter will vary 

according to the shear strength, soil characteristics, and depth. It may be practical to calculate the 

equivalent diameter at various depths and average the values to obtain an inclusive equivalent 

diameter for the length of the pile. The resultant beq may then be introduced into p-y calculations, 

such as those previously mentioned, as a modified pile width, b. 

Other methods have also been devised to consider shape factors in lateral pile design. 

Czerniak (1957), explaining the overturning resistance of piles, detailed a reduction to allowable 

lateral earth pressure of 0.636 for circular piles. Another method by Smith (1987), based on 

applying vertical shear pressuremeter methods to lateral effects, proposed a tentative procedure 

that separated the shapes effect on side shear and passive resistance. His method for calculating 

the ultimate shear reaction used shape factors of 0.79 and 1.76, for circlular and square shapes 

respectively. Shape factors for the passive resistance was suggested as 1.0 for square piles and 

0.75 for circular piles. These factors were an adjustment from a previous study performed by 

Briaud et al. (1983) which suggested a passive resistance factor of 0.8 for circular piles instead of 

0.75 as well as a shape factor of 2.0 for square piles and 1.0 for circle piles in regard to the side 

shear contribution. Currently, there are no suggested shape factors for the design of H piles. 

Although these concepts on the influence of pile shape seem correct conceptually, there is 

a lack of full scale testing data that could verify the theorized methods. It is possible that this 



26 
 

uncertainty is the reason why current pile analysis programs, such as LPile, do not apply a shape 

factor in calculations and only consider the shape’s effect on the moment of inertia. Full scale 

testing of round, square and H piles in close proximity could increase the accuracy of non-

circular pile models and confidence in their results.  

A study preliminary to this one performed by Bustamante (2014) was completed in 

response to this lack of data. Bustamante tested the influence of pile shape by laterally loading 

square, circle, and H piles. His test consisted of piles driven 18 ft into native soil with 15 ft of 

soil backfill added around the piles. These different shaped piles had similar dimension and 

comparable moment of inertia so the shape effect could be compared. The results of the tests, 

shown in (Figure 2-10), demonstrated that the square piles provide more lateral resistance than 

the round pile. The H pile was observed to have less lateral resistance than the round pile but it 

should be noted that it was loaded about its weak axis having a moment of inertia of 59% of that 

of the round pile. It is suggested that an H pile with a moment of inertia equal to the round would 

provide more resistance than the round pile. Further analysis suggested that this increase was a 

result of higher resistance from side friction and normal stress components of the H and square 

piles.  

As part of the analysis, Bustamante also created a model of the square and H pile in LPile 

to better match the load test data. His findings showed that the current procedure for analyzing 

square and H piles under lateral loads insufficiently predicted the resistance of each shape. Better 

agreement could be acquired with the use of p-multipliers along the entire depth of the pile. P-

multipliers of 1.2 for the square pile and 1.35 for the H pile provided the best agreement with the 

load test data as shown in Figure 2-11. These modification factors can be used in the lateral 

design of square and H piles to better predict the lateral capacity of such piles. 
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Figure 2-10: Load Tests on Square, Round, and H Piles (After Bustamante, 2014) 

 

Figure 2-11: Model for Square and H Piles with P-multipliers (After Bustamante, 2014) 
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The study by Bustamante appears to be the first of its kind in the lateral pile resistance 

literature. Further tests like this can provide more insight on the shape effect of these non-

circular piles. The study presented in this document will build on the research done by 

Bustamante, literally and academically. In an effort to provide more data to compare with 

Bustamante’s results, the round and H piles were retested after sufficient compaction of the 

disturbed material and an additional 5 ft of backfill has been added. A different square pile was 

also tested to compare with the square pile previously tested. Similar analysis to that of 

Bustamante was performed to verify the p-multipliers suggested for the square and H piles.  

 Wrapped Piles 

One concern with the use of piles in deep foundations is called downdrag. Piles that are 

situated in compressible soil can experience negative skin friction due to the downward shear 

forces that accumulate along the length of the pile. The same vertical side friction which prevents 

the pile from settling in the soil is capable of pulling the pile downward as the soil compresses 

around it. There are several methods to reduce this negative skin friction. (1) Preloading to 

reduce soil settlement following pile installation; (2) pile casing to prevent direct contact 

between the pile and the surrounding soil; and (3) coating the pile with bitumen or wrapping the 

pile with plastic sheeting to ease the effect of relative settlement. The 3rd method is often the 

most cost effective. 

Polyethylene wrapping, applied similarly to Figure 2-12, can also be used for certain pile 

configurations that require the advantage of the vertical capacity of a pile but not the lateral 

resistance of a pile. Piles such as those in bridge abutments demand the vertical capacity of a 

deep foundation but need the flexibility to allow certain amounts of deflection.  
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Figure 2-12: Plastic Sheeting for Downdrag Reduction: (a) Schematic; (b) One plastic 
Layer; and (c) Two Plastic Layers (After Caliendo and Tawfiq, 1995) 

 

Caliendo and Tawfiq (1995) demonstrated the reduction in negative skin forces through 

tests performed using a direct shear apparatus as shown in Figure 2-13. Concrete blocks 

reinforced with wire mesh were fashioned to represent the pile face as well as provide the bottom 

half of the direct shear apparatus. The soil in the apparatus was then sheared to model the friction 

mechanism between the concrete surface and the soil. A set of blocks where tested with the soil 

to obtain baseline shear values then another set of blocks were tested with various applications of 

plastic sheeting. 



30 
 

 

Figure 2-13: Direct-Shear Test on Concrete-Polyethylene-Soil Samples: (a) Full View; and 
(b) Section A-A (After Caliendo and Tawfiq 1995 page 7) 

 

Two different types of soil samples were provided during the testing. The first being a 

reddish-brown sand with some fines and a natural water content, wc, of 2%. The second soil type 

was a crushed Florida limestone with crushed fines, irregular surfaces and hard particles angular 

in shape. Two types of plastic sheets were used for the testing. The first type was a Textrud clear 

0.15 (6 mil) polyethylene sheet and the second was Gundline high-density polyethelene (HDPE) 

with 1 mm (40 mil) thickness. To examine the effect of the boundary conditions on the friction 

characteristics of the polyethylene coating various layering arrangements were applied to the 

concrete testing blocks. These arrangements included: (1) one fixed layer; (2) one loose layer; 

(3) two fixed layers; (4) two loose layers; and (5) two loose oil-lubricated layers. The fixed 

layers were fastened to the concrete block while the loose layers were free to slide on the 

concrete surface during loading of the shear force. These various applications of the plastic 
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sheeting were chosen to evaluate the most effective negative skin friction reduction system. The 

tests were repeated with shear strain rates ranging from 1.3 x 10-6 s-1 to 5.25 x 10-3 s-1 as well as 

at temperatures of 5°C, 25°C and 56°C to examine the effects that these variables might have on 

negative skin friction reduction.  

The results of the testing showed that temperature, deformation rate, and soil particle size 

had no effect during the various arrangements of plastic sheeting to reduce the negative skin 

friction forces. The effectiveness of a 40-mil polyethylene sheet in reducing friction resistance 

was around 60%. The single 6-mil, which was the smoother of the two sheets, had an 

effectiveness around 67%. When two free layers of polyethylene were tested the effectiveness 

rose to 77%. When mineral oil was applied between two free layers of polyethylene sheets the 

skin friction was reduced by 80-98%. A further set of experiments was conducted with smooth 

steel plates. A single 6 mil loose polyethylene sheet was effect in reducing skin friction by 80%. 

This demonstration gives evidence that the material surface of the pile influences the 

effectiveness of the plastic sheeting in reducing the negative skin friction of the pile. 

A full scale test was performed by Price (2012) using 16” piles double wrapped with 10 

mil (0.25mm) thick sheet of low-density polyethylene (LDPE). Down drag was expected to be 

significant around the piles as the fill around the pile was compacted. The test pile TP4 was 

placed at a distance of 6.9ft (5.2D) from the Mechanically Stabilized Earth wall which is 

considered far enough to be unaffected by the wall. Their models showed that the computed 

lateral resistance was 60 to 80% higher than what was measured. This overestimation in the 

model and lower measured resistance appears to have been a consequence of double wrapping 

the pile. 
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It can be assumed that because side friction is a component of lateral resistance then 

reducing vertical side friction would also reduce the lateral side friction of a pile. Full scale 

comparable testing between wrapped piles and non-wrapped piles under the same conditions 

would provide further proof that a reduction should be included when analyzing lateral load 

resistance of a pile prepared with negative skin friction reducers such as polyethylene sheeting. 

 Corrugated Metal Sleeves 

A practice becoming more common with the construction of bridge abutments is the use of 

corrugated metal pipes placed around the upper portion of a pile as a sleeve. These CMSs can 

potentially reduce the dragload or downdrag forces that piles near bridge abutments experience 

during soil compaction. CMS piles also allow greater flexibility in the support which is needed in 

the construction of jointless bridges as shown in Figure 2-14.  

  

Figure 2-14: Piles in Corrugated Metal Sleeves near a Bridge Abutment 
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A nation-wide survey of state Departments of Transportation (DOTs) and construction 

companies using piles in integral abutment bridges indicated that 11 of the 20 responding 

agencies reported the practice of placing a corrugated metal pipe or a corrugated metal sleeve 

(CMS) around piles in the design of integral abutment bridges. In this practice the void space 

between the CMS and the pile is typically filled with loose sand to provide an increased ability 

for lateral movement of the pile while preventing buckling under axial load.  For integral 

abutments, where expansion and contraction of the bridge is accommodated at the abutment, it is 

desirable to provide a more flexible foundation. In particular many reported using CMS piles for 

abutment piles offset from an adjacent MSE wall. Of the surveyed agencies using the CMS filled 

with sand the offset distance ranged from 3 to 5 feet while those not using CMSs range from 3 to 

5.6 feet. The average distance for both is approximately 4.5 feet suggesting that the use of a 

CMS does not influence the offset distance used in practice (Filtz et al., 2013).  

Although the survey indicates that CMS piles are being used throughout the country, a 

review of the published technical literature does not provide any full-scale test data to provide 

any information on the lateral pile resistance provided by these systems.  Many engineers 

apparently assume that there is little or no lateral resistance in the CMS piles.   

To provide some guidance related to the performance of CMS piles, Filtz et al. (2013) 

conducted a finite element analysis using FLAC3D.  The numerical model represented a steel 

pipe pile surrounded by sand encased by a steel membrane within a soil mass shown in Figure 

2-15. Three sand infill mediums were introduced into the model designated as loose, medium, 

and dense. Specifications for the infill material as well as the steel and backfill material can be 

found in Table 2-1.  
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Table 2-1: Material Properties of Numerical Model (After Filtz et al, 2013) 

 

 

 

Figure 2-15: View of 3D Numerical Model, from Left to Right: Pile, In-fill Sand, Steel 
Sleeve and Surrounding Backfill Soil (After Filtz et al., 2013) 

 

Elastic Modulus  φ Constitutive Poisson Ratio
E, psf pcf deg Model ν

Steel 4,177,000,000 485 - Elastic 0.3
Loose Sand 280,000 115 30 Elastic-plastic, 

Mohr-Coulomb
0.3

Medium Sand 540,000 120 34 Elastic-plastic, 
Mohr-Coulomb

0.3

Dense Sand 800,000 130 38 Elastic-plastic, 
Mohr-Coulomb

0.3

Backfill 800,000 to 
1,300,000

120 38 Elastic-plastic, 
Mohr-Coulomb

0.2

Material
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A first case analysis subjected the model to self-weight forces followed by a vertical 

pressure of 1300 psf with lateral displacement constraints. After the model reached equilibrium 

the lateral loading sequences were applied. The second case analysis consisted of “monotonic” or 

progressively increasing loading to a deflection of 0.6 feet as shown in Figure 2-16. The second 

loading sequence represented cyclic lateral loading resembling 365 daily thermal cycles of 

displacement superimposed on one annual thermal cycle of displacement followed by monotonic 

loading to 0.6 feet of displacement as shown in Figure 2-17. This sequence was meant to 

represent thermal expansion cycles resembling a jointless bridge about 320 ft long and subject to 

a temperature variation of 80 °F.  

 

 

Figure 2-16: Second Case Analysis with Monotonic Loading (After Filtz et al., 2013) 

 

Although decreasing the density of the infill decreased the computed lateral pile resistance, 

the use of the loose backfill did not reduce the lateral resistance to some very small value as is 
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often assumed in design. It is shown in Figure 2-16 and Figure 2-17 that the one year cyclic 

thermal displacement loading has actually caused the pile resistance to stiffen. The loose soil 

under the cyclic loading in Figure 2-17 shows greater resistance than the loose soil in Figure 

2-16. These results indicate that infilling the CMS surrounding the pipe pile with sand will not 

eliminate the loads on the pile partly because of the stiffening that occurs due to cyclic loading. 

This is a topic of further investigation considering the lack of data to support the practice.  

 

 

Figure 2-17: Second Case Analysis with Cyclic then Monotonic Loading (After Filtz et al., 
2013)
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3 TEST LAYOUT 

This section will describe in detail the components of the test and how they contribute to 

the results found hereafter. The location of the test site will be described followed by an 

introduction to the pile sizes, shapes, and properties that were used in this test. The use of plastic 

sheeting and  corrugated steel pipes along with their properties will also be detailed. The soil 

properties, such as gradation information, unit weight and compaction efforts, is an essential 

component to the resistance of piles, a description of such can be found in this section. The 

sequence of the piles that were tested as well as the procedure of loading will then be explained 

in detail. This section will provide context that should be understood before progressing through 

following sections. 

 Location of Test site 

An undeveloped area of land located between Bluffdale and Lehi, Utah was chosen for the 

test site (see Figure 3-1). The location can be found using coordinates 40°27'10.95" N 

111°53'54.63" W. Access to the plot of land was provided by Geneva Rock who formerly used it 

as a gravel pit. This rather isolated location with granular native soil was a desirable site for 

testing. 
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 Piles Tested 

With the intent of collecting data on the soil-pile interaction, nine piles of various shapes 

were selected for testing. Table 3-1 provides a summary of the properties of the piles chosen for 

testing. There were four round 12.75X3/8” piles, four square HSS 12X1/4” piles, and one H 

shaped HP 12X74 pile used in testing. The pipe piles and square tube piles were donated by 

Atlas Steel while the H pile was donated by Spartan Steel. The tubular round piles conform to 

the American Society for Testing and Materials (ASTM) A252-10 GR 3 specification and have a 

yield strength of approximately 57 ksi. The non-compact H pile conforms to ASTM A572-50 

specifications with a minimum yield strength of 50 ksi while the steel of the square pile 

conforms to ASTM A500-10A Grade B&C specifications having a minimum yield strength of 

Figure 3-1: Test Site Location (Google Earth 2013) 
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46 ksi. Figure 3-2 illustrates the layout of the piles and test sequence which will be explained 

further in this section. Piles of similar dimension were selected so that they could be relatively 

comparable in width despite differences in geometric shape. Although square steel tube piles are 

not common, steel was selected for this pile shape so that differences in pile-soil interface 

friction could be avoided. An H pile shape with a smaller cross sectional area, such as an HP 

12x53, could have been used however inelastic global buckling in the flanges would reduce the 

moment capacity by about 20%. The HP 12x74 shape was chosen for a theoretical capacity of 

90% of the yield moment capacity so that failure in the soil could be observed before buckling in 

the pile became a concern. The piles were intended to act as a long pile therefore the pile length 

of 40 ft was deemed an appropriate pile length with a length to width/diameter ratio (D/B) of 

nearly 40. 

 

Table 3-1: Pile Properties 

 

 

Deseret Deep Foundations, Inc used an ICE I-30V2 diesel hammer to drive the test piles 

18 ft into native soil. The tubular piles were driven open ended which resulted in a soil plug with 

a length of 10.4 ft to 12.1 ft above the toe of the pile. The piles were left hollow so that the non-

Type
Cross 

Sectional 
Moment of Inertia 
(with angle iron) E Fy

(in2) (in4) (ks i ) (ks i )

Round 12.75X3/8 14.57 279 (314) 29,000 57
CMP 4.8 0.454 29,000 57
HSS 12x12X1/4 14.8 248 (335) 29,000 46
HP 12X74 12.1 12.2 0.605 0.61 22.6 186 (186) 29,000 50

Flange 
Depth

Flange 
Width

Web 
Thickness

Flange 
Thickness

Diameter/ 
Depth Wall Thickness

(in) (in)

12.75 0.349
24 0.064
12 0.233
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linear behavior of cracked concrete did not have to be considered which better facilitates back 

analysis using the program LPile. After the piles were driven compacted granular backfill was 

compacted around the test piles to an elevation 20 ft above the native soil surface.  This left 

about 2 feet of pile above the ground surface.  

Along with pile shape, two other pile geometries common to pile design were tested; 

namely, round piles with a corrugated metal sleeve (CMS), as well as a round pile wrapped with 

high density polyethylene sheeting (HDPE). Figure 3-2 shows two round piles on the right end of 

the test site with a circle around them, these two piles where surrounded by a CMS. Following a 

practice common for bridge abutments, a galvanized corrugated metal pipe 2 ft in diameter was 

placed around the top 20 feet of a round pile, as a CMS. This CMS was placed after the round 

piles were driven and prior to soil compaction around the top 20 ft of the pile. A picture of the 

round pile with a CMS during compaction is provided in Figure 3-3 (Right). It is common 

practice to fill the annular void with a loose uncompacted backfill material. The annular void of 

the CMS encased pile on the far right was filled with loose gravel while the annular void of the 

other CMS pile was filled with loose sand.  

The third pile from the left in Figure 3-2, shown with a black upper half, is a round pile 

that was wrapped with 8 layers of 6 mil high density polyethylene sheeting. A photo has been 

provided of the round pile with HDPE prior to recompaction in Figure 3-3 (Left). Although these 

practices are meant to reduce downdrag during soil compaction around the piles, the effect on 

lateral resistance has not yet been evaluated with full-scale tests. After the piles were driven 

along with the CMS and HDPE sheeting applied to their respective piles, the backfill was placed 

in 4 phases of compaction. 
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Figure 3-2: Pile Layout 
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Figure 3-3: (Left) Round Pile with HDPE, (Right) Round Pile with CMS 

 Soil Compaction 

Compacting the soil around the piles was a meticulous endeavor constituting a total of 

20 ft of backfill. The last lift of compaction reached a grade line about 2 ft below the top of the 

piles. The backfill material was selected as a silty sand with gravel while two separate materials 

were selected for the annular infill material between the round piles and the CMS. Particle size 

distribution curves for each material type were developed based on mechanical analysis to better 

define the soil used and its constituents. 
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3.3.1 Backfill Material 

The silty sand with gravel backfill material was provided by Geneva Rock. The backfill 

classified as an A-1-a material according to the AASHTO classification system or an SM 

material according to the Unified Soil Classification System. A sieve test showed a mean grain 

size (D50) of 2.3 mm, a coefficient of gradation (Cc) of 1.6, a coefficient of uniformity (Cu) of 40 

and a fines content of 14% (Table 3-2).  The results of a gradation test is plotted in Figure 3-4. A 

standard Proctor test produced a maximum density of 126.7 pcf and an optimum moisture 

content of 7.8%. Further information on this backfill material can be found in subsequent 

sections explaining the compaction of the backfill. 

 

 

Figure 3-4: Particle Size Distribution Curve for Selected Backfill 
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3.3.2 Infill Material 

A variety of materials could be used in practice for the annular infill material between the 

round piles and the CMS. In this study a poorly graded sand and a sand with gravel have been 

chosen to represent two possible options for infill. Gradations have been performed on the two 

materials to produce the following information. The sand infill consists of 97.7% sand fraction 

and falls under the AASHTO classification of A-1-b or SP according to the Unified Soil 

Classification System. A sieve test showed a mean grain size (D50) of 0.81 mm, a coefficient of 

gradation (Cc) of 0.93, a coefficient of uniformity (Cu) of 5.31 and a fines content of 1.4% (Table 

3-2). The gradation curve from the sieve analysis is presented in Figure 3-5. The other material 

can be classified as an A-1-a according to AASHTO and it qualifies as an SP, a poorly graded 

sand with gravel, by the Unified Soil Classification System. The material has a mean grain size 

(D50) of 3.7 mm, a coefficient of gradation (Cc) of 1.29, a coefficient of uniformity (Cu) of 2.9 

and a fines content of 1.4% (Table 3-2). Hereafter, for simplicity, it will be referred to as a gravel 

material to distinguish it from the poorly graded sand. The gradation curve of the gravel material 

is shown in Figure 3-5. How these two different materials affect the lateral pile resistance will be 

a topic of further investigation.  

Table 3-2: Gradation Information 
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Figure 3-5: Particle Size Distribution Curve for Gravel and Sand Infill Material 

3.3.3 Compaction 

There were three phases of soil compaction at this test site. An explanation of each of these 

phases is provided in this section. Figure 3-2 has been provided as a visual aid to show the layout 

of the test piles and the compaction phases as an elevation and plan view.  The initial phase of 

soil compaction consisted of 15 ft of backfill material to be compacted on top of the native soil. 

This material was placed in twelve inch lifts and compacted by a vibratory roller compactor.  

The material was moisture conditioned to sustain optimum levels throughout compaction. Lateral 

load tests on four piles were performed at this level including two square, one round, and one H 

pile. The first test was performed by reacting a round pile against a square pile while the second 
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test reacted another square pile against an H pile. A more detailed discussion of these test results 

and a detailed analysis was performed by Bustamante (2014). These tests will be mentioned in 

subsequent chapters for comparison. 

The second phase of soil compaction added five more feet of backfill on top of phase 1 

reaching 20 ft of backfill over the native soil. Four load tests were performed in phase 2 

compaction. Similar to the compaction in phase 1, phase 2 used a vibratory roller compactor with 

12 inch lifts as shown in Figure 3-6 and Figure 3-7. In phase 1 and 2, a jumping jack type 

compactor, as shown in Figure 3-8, was used to compact immediately around the test piles where 

the roller could not fit, such as between the two piles within close proximity to each other as 

shown in Figure 3-7. There was a larger section between the two piles in The material in phase 2 

was moisture conditioned, as shown in Figure 3-7, to achieve optimum moisture conditions.  

 

 
Figure 3-6: Phase 1 compaction 
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Figure 3-7: Phase 2 Compaction 

 

 

Figure 3-8: Jumping Jack Compactor in Phase 3 of Compaction. 
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Phase 3 was a recompaction phase which allowed the re-testing of two piles; the round pile 

with HDPE sheeting and the square pile at the right end of the test site. A procedure was 

designed to effectively remove any disturbed soil from previous tests and place re-compacted 

soil in the direct zone of influence around the piles to be re-tested. According to supportive 

literature (Duncan et al., 1994) and results from the tests done in phase 2 it was decided that the 

majority of lateral resistance is developed within the top 5-10 ft of soil. A pit measuring 6 ft 

wide, 6 ft long and 6 ft deep was excavated around the two piles on the side that the piles were to 

be pushed toward. Because of the size of the pit, a jumping jack compactor had to be used for 

compaction although the effectiveness in compaction of the jumping jack compactor compared 

to a vibrating roller was in question. To promote uniformity between phases of compaction, 

phase 3 re-compaction was performed with six inch lifts rather than twelve inch lifts because of 

the limited zone of influence of a jumping jack compactor. Special effort was made to provide 

compactive energy in the immediate vicinity around the piles where compaction is likely to have 

significant effects on lateral resistance at small deflection levels. This method was used for the 

last two tests, the (2) square and (2) round – HDPE load tests. Effort was directed to ensure 

uniformity between all lifts of compaction.  

According to common practice, the CMS infill material was poured into the annular void 

from the top of the pipe after final grade had been reached. Compaction was impossible in such a 

confined space and the pipe was not vibrated to increase infill density. Therefore, the infill 

material can be considered loose.  

Nuclear density tests were performed to check conformity to at least 95% of the standard 

proctor dry density and near optimum moisture content. Based on these measurements, the  
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moisture content, dry unit weight, calculated moist unit weight and relative compaction of the 

measured soil properties for phase 2 and phase 3 are shown in Table 3-3.  The overall average, 

standard deviation, and coefficient of variation have been calculated and are also reported in this 

table.  Although these measurements indicate that the soil densities are relatively uniform 

throughout the test site, the extent of this data should be explained.  The nuclear density gauge 

was set to depths of six to eight inches during density testing.  While this ensures that the phase 3 

data, which was laid in six inch lifts, is uniform, it can introduce a level of uncertainty for the 

phase 2 data, which was laid in 12 inch lifts.  The compaction data for the phase 2 tests reports 

satisfactory compaction results although this data is only representative of the depth to which the 

soil was tested.  It is possible that at depths below that which was tested, from eight to twelve 

inches, lower amounts of compaction were reached. It is common practice to use a roller 

compactor for twelve inch lifts although in smaller areas where a jumping jack compactor was 

used for a twelve inch lift, there is a higher probability that proper compaction was not reached at 

greater depths. The moisture conditioning was applied in a uniform manner throughout all the 

layers and the moisture content of the material was kept within an acceptable range to provide 

sufficient compaction in the regions that were tested. In retrospect, this is shown with the results 

of the round (1) pile with HDPE sheeting. The close proximity of this pile to an adjacent square 

pile required a jumping jack compactor to be used on twelve inch lifts. Load test results in future 

sections will reveal the inconsistency in compaction around this pile while all other load tests 

show trends that conform to the expected level of resistance. 
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Table 3-3: Soil Properties 

 

 

 Loading System 

The load source for the tests was a 300 kip hydraulic jack with a maximum stroke length of 

13 inches. To provide redundancy in load measurements, a load cell was placed between the 

hydraulic jack and the pile and load was read from a calibration with the pressure transducer on 

the pump. This generally provided two measurements for load readings. A steel C - channel or 

steel plate was welded to each test pile to provide a flat surface to attach clevis pin and protect 

the strain gauges. This setup allowed for fixed connections at every joint except where the tie-rod 

load cell met the clevis pin. This pinned connection was intended for safety purposes. The load 

apparatus was applied to each pile one foot above the ground surface. The piles were tested in 

sets of two, each pile acting as a reaction for the load applied to the other pile. The loading 

sequence can is shown in Figure 3-2. The order is numerical starting at test 1 and test 6 being the 
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last. Each load test followed a specific loading procedure to ensure consistent and comparable 

results.  

The procedure for loading in these tests followed similar procedures as those employed in 

lateral load tests conducted previously by Bustamante (2014). The loading was controlled by the 

lateral deflection of the pile. Deflection increments of 0.25 inches were chosen with an initial 

increment at 0.125 inches to better describe initial loading conditions. After the specified 

deflection increment had been reached, the fluid flow into the jack was locked off while load and 

deflection came into equilibrium over a 5 minute period. The initial deflection state of 0.125 

inches was held for only half the 5 minute period. Figure 3-9 shows a typical loading procedure 

as recorded by the data acquisition system during the loading program.  

 

Figure 3-9: Typical Loading Procedure 

 

This plot represents how the load was applied with time. The load increases to the next 

deflection state and reaches a peak.  When the fluid flow is locked off during the five minute 
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hold, the load initially decreases quite rapidly for about one minute and then reaches an 

equilibrium in which load is relatively stable or decreases very slowly.  Pile deflection typically 

remain constant or increases slightly during this period. After the five minute hold, the load is 

increased to the next deflection increment. This specific pile was pushed to 2.25 inches of 

deflection at around 60 kips of load. All tests were performed in this consistent manner with 

similar methods of instrumentation. 
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4 INSTRUMENTATION 

Various data collection methods were used during the load tests to record the magnitude of 

the load applied, deflection of pile, pile rotation at head, ground heave, deflection at the ground 

surface and strain along the length of the pile. These observations were critical toward explaining 

pile performance and for making comparisons between the individual piles. This section explains 

the instrumentation used during each test. 

 Load Cell and Pressure Transducers 

The load applied during each test was recorded by a strain gauge cell as well as an 

electronic pressure transducer in line with the hydraulic pump. The cell was located immediately 

in front of the hydraulic jack as it transferred the load from the hydraulic pump to the piles. A 

variety of steel struts were used to span the distance between test piles. During testing the load 

was verified with the pressure transducer which measured the hydraulic pressure from the 

hydraulic jack. Figure 4-1 provides a photo showing the load cell, jack and strut set-up between 

two test piles. To eliminate the buildup of a moment at the load point, the loading strut was 

pinned to a clevis on one pile while two spherical end platens were located on the opposite pile 

for the same purpose. These pin connections, shown in Figure 4-2, were also added to ensure 

safety in testing. Measurements were recorded by a Megadac computer data acquisition system 

at a rate of two readings per second. The same instrumentation procedure was used in all of the 

tests.  
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Figure 4-1: Load Test Arrangement 

 

 

Figure 4-2: Pin Connection 
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 String Potentiometers 

The displacement and rotation of the pile as well as the displacement of the ground surface 

immediately around the pile were measured using string potentiometers or string pots, as shown 

in Figure 4-3. Independent reference frames were constructed out of two pre-cast concrete blocks 

weighing around 3600 lbs spaced at about 8 ft on either side of the test pile. The string 

potentiometers were attached to this reference frame as well as their different points of 

observation. The pile head displacement was recorded by attaching a string potentiometer to a 

location on the pile one ft above grade using a magnetic clip.  This was also the elevation at 

which load was applied. Another string pot was fixed to the pile at a location three feet above the 

load point to measure pile deflection.  Pile rotation could then be computed by taking the 

difference in lateral deflection between the two points and dividing by the vertical distance 

between them.  

Stakes were placed in the ground at measured increments from the pile with string 

potentiometers attached in order to measure ground surface displacement. Figure 4-3 (left) shows 

how the string potentiometers were set up for the first test. During a few of the first tests the 

lateral deflection reading at the first stake, closest to the pile, showed inconsistent results. As 

failure planes propagated through the soil, this stake had a tendency to rotate toward the pile, 

giving false deflection readings. A new system using a metal plate with three stakes at the 

bottom to be driven in the ground and one upright stake to hold the string line proved a more 

efficient way to measure lateral ground deflection. 
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Figure 4-3: String Potentiometers in Place during Testing 

 Strain Gauges 

To calculate pile moment with depth, waterproof electrical resistance type strain gauges 

were installed along the length of each pile prior to driving.  In order to protect the gauges during 

driving, the line of strain gauges was covered with a steel angle which was tack welded to each 

pile between strain gauge locations as shown in Figure 4-4.  The strain gauges were placed on 

the pile at depths of 2, 4, 6, 9, 12, 15 and 18 ft below the ground surface.  Two strain gauges 

were placed at each depth on opposite exterior sides of the pile and in line with the direction of 

loading.  This allowed the collection of strain measurements on the pile as the pile face was 

subjected to tension or compression during loading.  Strain gauges were placed on the web of the 

H pile whereas the square round pile had strain gauges on the face of the pile in line with 

loading.  Trial readings were taken before hand to calibrate the data collection system to the 

strain gauge readings. 
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Figure 4-4: Strain Gauges Encased in a Steel Angle 

 Digital Image Correlation Camera System 

Relatively little information is available in the literature regarding ground heave and 

displacement patterns in soil adjacent to a laterally loaded pile. To better capture the heave 

around the piles two data collection methods were used in this experiment. Digital Image 

Correlation equipment and conventional surveying equipment were both used to record heave of 

the soil immediately around the pile. The survey station was set up prior to each test at a distance 

unaffected by the load test. Elevation measurements were taken with a leveling rod before and 

after the loading was applied. The elevation measurements were correlated to a backsight reading 

of a known benchmark that was independent of the testing. This method recorded elevation 

differences at one foot distances from the pile face to a distance of five feet from the pile, where 

space permitted. Elevation readings were also taken at the edge of the CMS which was six inches 
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from the face of the round central pile. This traditional method will later be compared to newer 

technology to ensure consistency with the new method. 

The method of Digital Image Correlation (DIC) was used in this study to provide detailed 

measurements of ground heave around the piles during loading.  This appears to be the first 

application of this technology for this purpose.  The DIC system, manufactured by Dante 

Dynamics, collects data by using two digital cameras placed at a known height from the ground 

and spaced at a fixed distance apart from each other. The cameras were oriented so that their line 

of sight overlapped with the companion camera creating a field of vision approximately 8 ft x 6 

ft. Corresponding shots were taken by each camera of the same object at the same time. The 

analysis software then uses a correlation algorithm to recognize displacements of thousands of 

points in the x, y and z direction. With this information, color contour plots can be generated of 

displacement, deformation, and strain. The setup of the data collection system in this test is 

shown in Figure 4-5. Ground heave was expected on the side of the piles opposite to the loading 

and the DIC cameras were installed to measure the deformation of the ground in that area. 

Objects with a high contrast pattern provide the most accurate data so the ground was painted 

white to contrast against the black painted gravel that was arranged in the camera view as shown 

in Figure 4-6. The system is sensitive to measurements down to 1/100,000 of the field of view 

(Measurement Principles of DIC). This setup resulted in a calculated measurement uncertainty of 

three thousandth of an inch (0.003 in). Digital images were taken immediately after each load 

increment during the test and again after the five minute hold period.  
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Figure 4-5: Test Apparatus with Independent Reference Frame and DIC Cameras 

 

Figure 4-6: Contrast Grid for DIC Cameras
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5 LATERAL LOAD TESTING 

This section reports the result of each individual lateral load test while providing 

explanations on these results. This section was organized to best compare how each pile type 

behaved in relation to similar pile types. The following sub sections will show the aspects of 

comparison for the lateral load tests: failure planes, load-displacement curves, pile rotation, 

bending moment vs. depth diagrams, ground displacement and ground heave. Further analysis 

and the implications of the test results can be found in Section 6. 

 Failure Planes 

As each of the piles were loaded failure planes started to propagate in the soil originating 

from the pile face. Failure planes that reached the surface were directly observable as surface 

cracks running through the soil. These cracks are a result of the soil failing in tension as the 

failure wedge mobilizes. These failure planes are another indicator of the influence of the 

laterally loaded pile on the surrounding soil. Figure 5-1 shows the surface cracks around each 

pile with the cracks highlighted with red paint for better visibility. The fan angle (α) of the most 

prominent failure plane has been measured for the square and the H piles. The H pile failure 

wedge spanned out to an α of 43° in each direction whereas the square pile showed an α of 45° 

on one side and 37° degrees on the other. These α measurements are close to those recorded by 

Rollins and Bustamante, (2015) as 38-45° for the H pile and 34-36° for the square pile. Passive 

wedge failure theory suggests an α ranging from the friction angle to half the friction angle 
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Bowman (1958). In this case, expected friction angles for the soil could range from 43° degrees 

and higher.  

  

  

Figure 5-1: Failure Plane around the Piles: Round (top left), H (top right), Square (bottom 
left), Round in CMS (bottom left) 

 

The failure planes shown around the round pile with a CMS gives insight into the soil pile 

interaction of this pile combination. As the applied load increases, the influence of the round pile 

on the loose infill increases, eventually engaging and mobilizing the CMS. The CMS then 

transmits this pressure onto a larger area of soil which is visible in Figure 5-2. This is a clear 

representation of how the use of a CMS increases the effective width of the pile. These failure 

planes will be further investigated in subsequent sections through measurements of vertical and 
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horizontal soil movement at distances from the pile. These methods will create a better 

description of the failure “wedge” or “bulb” for each pile shape. 

 

 

Figure 5-2: Idealized Failure Plane around Round Pile in a CMS 

 

 Pile Deflection 

Lateral deflection measurements were taken at 1 foot above the ground. This was also the 

point where the load was applied and can be referred to as the pile head. These deflection 

measurements at the pile head have been used to create load versus displacement curves for the 

various load tests. Each curve is based on the average load and displacement readings over a 30 

second interval one minute after the peak load. These curves will provide a basis in which to 

compare the lateral resistance of each pile type. This section will present the differences and 
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discuss the implications of the displacements of each pile type with load. Further insight based 

on observations made during the testing and pile properties will be provided. 

Deflection measurements were also taken at 3 ft above the load point or 4 ft above the 

ground. The two measurements of pile deflection were used to calculate pile rotation at the pile 

head. This metric allows an interpolation of lateral deflection down to the ground level which 

can be used to normalize the ground displacement versus distance plots. Pile rotation also 

provides a glance at the slope of the pile face above the ground surface as it deflected under 

lateral loading. Along with the load-deflection curves, pile rotation will also be provided in the 

following shape sections. 

5.2.1 Round Pile Performance 

Many pile analysis methods are formulated considering round pile behavior. This section 

shows the results of the round pile tests which can later be used as a control in which to compare 

other pile results. Figure 5-3 shows the load versus displacement curves for two separate tests. 

One curve is for a round pile that was tested in phase 2. The other load deflection curve is from a 

lateral load test performed in phase 1 by Bustamante (2014) with similar soil conditions and pile 

properties. The results for that test as well as a calculated average of the two tests are shown as a 

comparison.  

It is shown in Figure 5-3 that the load-deflection curve for the round pile test in phase 2 is 

very similar to that for the round pile reported by Bustamante (2014). Similar resistance trends 

are found up to 0.25 inches of deflection and at ultimate loads near 60 kips. At one inch of 

deflection the round Bustamante (2014) pile shows less resistance with varying slope, but the 

differences are less than 15%. It is possible that this small difference is due to slightly differing 
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states of soil compaction which would cause lower resistance compared to the round test in 

phase 2. Considering the initial response, matching ultimate loads, and general pile shape it can 

be said that these two load-deflection curves are comparable and display the same trend in soil-

pile interaction. The calculated average of the two load tests will be used in comparisons with an 

H pile in similar soil conditions. 

 

 

Figure 5-3: Lateral Load versus Deflection Curves for Round Piles 

 

The round pile from Bustamante’s load tests in phase 1 had an embedment length of 33 ft 

considering the 15 ft of compacted backfill on top of 18 ft native soil. This is less than the round 

pile tested in phase 2 with 20 ft of compacted backfill atop of the native soil amounting to 38 ft 

of total embedment. The agreement between these two load tests supports the hypothesis that this 
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difference in embedment length did not affect the lateral response of these piles. It is known that 

piles of shorter embedment react differently under lateral loads than piles considered to be long. 

These results indicate that embedment length doesn’t have as much effect on lateral resistance 

after a certain embedment length has been reached. 

Two separate tests were performed with a round pile wrapped with high density 

polyethylene (HDPE) wrapping, round (1) with HDPE and round (2) with HDPE. Plots of load-

deflection curves for the two piles are shown in Figure 5-4. It was expected that the wrapped pile 

would show a decrease in lateral resistance when compared with the average round pile results 

owing to a decrease in interface friction. The lateral load versus deflection plot shows the round 

(1) with HDPE curve to have lower resistance than the average round curve. On the contrary, the 

round (2) with HDPE pile shows more resistance than the average round curve. It was expected 

that these two piles would both show resistance values lower than the regular round pile due to 

the effect of the HDPE sheeting. With the higher resistance values of the round (2) with HDPE 

pile it is apparent that there is another variable which is affecting the results. 

These load tests come from piles of the same shape, loaded in the same manner and under 

similar conditions. The only factor that is seemingly a variable is the compaction of the soil 

around the pile. The soil around the round (2) with HDPE was sufficiently compacted with 6” 

inch lifts by a jumping jack compactor. This is different than the phase 2 compaction around the 

round (1) pile with HDPE which was placed in lifts of one foot. There is also reason to believe 

that less compactive effort was exerted on the side of the round pile (1) with HDPE in the 

direction that it was pushed due to close proximity to a surrounding pile. A jumping jack 

compactor was used on 12 inch lifts in this small area where the roller compactor could not fit. 

Although soil density tests in Table 3-3 show relatively uniform results for this pile, it has been 
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explained that this data may not fully explain the compaction at the bottom end of the 12 inch 

lifts. This difference in compaction has resulted in lower resistance values. The load tests are 

inconclusive in determining the effect of the HDPE sheeting on the lateral resistance of a round 

pile. Later analysis in Section 6.5.2 will suggest that the frictional contribution is a small portion 

of the overall lateral resistance. If the HDPE sheeting only affects the frictional contribution then 

it can be assumed that HDPE sheeting has little to no effect on the lateral resistance of a pile. 

This would suggest that soil compaction is the biggest variable in these load tests. Although the 

round pile (2) with HDPE sheeting differs in compactive effort from the other round pile load 

tests, the same compactive effort was implemented on the two companion square piles. 

Therefore the round pile (2) with HDPE will be used for comparison with the square load tests. 

 

Figure 5-4: Load Test Results for Round Piles with HDPE Sheeting 
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The rotation of the round piles is shown in Figure 5-5. The round pile and the round (2) 

with HDPE sheeting display a similar pile rotation through all stages of loading. Meanwhile the 

round (1) with HDPE sheeting shows more rotation than the other two piles. Understandably if 

the round (1) pile with HDPE sheeting deflects more under load, shown in Figure 5-4, the pile 

will also have greater rotation. Unfortunately, the same cannot be said about the round pile and 

the round (2) with HDPE. Although the round pile showed less lateral resistance than the round 

(2) with HDPE, shown in Figure 5-4, both piles appear to have rotated similarly. The 

measurements from the string potentiometers, used to measure deflection which provided means 

to calculate rotation, have been checked for errors but none were found. An LPile analysis 

modelling these piles indicate that the round pile is showing less rotation than expected and 

should lie between the two piles with HDPE sheeting. The reason of this anomaly is 

inexplicable. 

 

Figure 5-5: Rotation of Round Piles 
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5.2.2 Square Pile Performance 

Two square piles were tested at this site. These piles were tested in compaction phases 2 

and 3 with similar compactive effort provided by a jumping jack compactor. Every effort has 

been utilized to ensure similar quality in compaction around these square pile tests. The load-

deflection curves for these two tests along with that for a companion round pile in a similar 

phase of compaction are presented in Figure 5-6. As listed in Table 3-1 the moments of inertia 

for the round and square piles are 314 in4 and 335 in4 respectively after considering the angle 

iron attached to cover the strain gauges. The closeness of these quantities rules out pile stiffness 

as a contributing factor to differing resistance values. 

 

Figure 5-6: Square Pile Lateral Load versus Deflection Curves in Comparison with Round 
Pile Curve 
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 The two square piles shown in Figure 5-6 have very similar load-deflection curves. This 

consistency indicates that these two piles reacted to the loading in the same manner and provide 

some confidence that the density state was similar in both cases as was indicated by the nuclear 

density tests. The initial slope of the two curves show similar stiffness and the progression of the 

curves overlap until an ultimate load of about 80 kips at 2 inches of deflection. These load tests 

on square piles show an increase in pile resistance when compared to the round pile which is 

significant. At ultimate loads, the square piles exhibited 16% more resistance than the round pile. 

These results are consistent with previous tests reported by Bustamante (2015), in which soil-

structure interaction on the square piles provided somewhat greater resistance than that of the 

round pile. These load tests will provide a starting point toward quantifying the difference in the 

soil-structure interaction between these two pile shapes. 

 

Figure 5-7: Rotation of Square Piles Compared to Round Pile 
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The rotation of the square piles is shown in Figure 5-7. The round pile and the square (2) 

pile display a similar rotation through all stages of loading. Meanwhile the square (1) shows less 

rotation than the other square pile, even though the square piles had similar values for load and 

deflection, as shownin Figure 5-6. It is difficult to say how the same pile shape in similar 

conditions reached the same deflection yet one of them rotated more than the other. The 

measurements from the string potentiometers, used to measure deflection which provided means 

to calculate rotation, have been checked for errors but none were found. An LPile analysis 

modelling these piles indicate that the square (1) pile is showing less rotation than expected and 

should have values closer to that of the square (2) pile. The reason of this anomaly is 

inexplicable. 

5.2.3 H – Pile Performance 

One H pile, tested in phase 2 of compaction, was laterally loaded for this study. Figure 5-8 

shows the lateral load versus deflection curve for the load test as well as that that for a similar 

study which also tested an H-pile under lateral loading. The data from Bustamante (2014) comes 

from a lateral test using the same H pile. The previous H pile test was performed using a similar 

test procedure as the one described in Section 3 and was tested after soil compaction phase 1 

with only 15 ft of backfill above native soil. The test on the H pile in this study was performed 

after the Bustamante (2014) test and with the addition of 5 ft of backfill. Considerable soil 

placement and recompaction had taken place to ensure that the Bustamante load test would not 

affect the results of further tests on that pile. 

The two H pile tests show comparable resistance for the first inch of deflection. For 

deflections above one inch, the H pile from Bustamante (2014) develops 10 to 20% higher lateral 
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resistance for a given deflection and peaks at a load nearly 10 kips higher than the H pile. These 

two curves are reasonably comparable for lower deflections which are generally used in pile 

design. For analysis over a greater range of deflections an average load-deflection curve was 

computed as shown in Figure 5-8. This average, which peaks at 55 kips at 2.75 inches of 

deflection, will be used for further comparisons of the soil-pile interaction of an H pile such as in 

Figure 5-9. 

 

 

Figure 5-8: H Pile Lateral Load versus Deflection Curves 

 

The round pile average in similar soil conditions demonstrates greater resistance then the H 

pile curve. It should be noted that the H piles in these tests were oriented about the weak axis to 

investigate a common construction practice. A survey of the use of H piles in integral abutment 

bridges reported that many agencies use H piles oriented about the weak axis as support for the 
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abutment foundations (Filtz et al., 2013). In these load tests, the moment of inertia (I) for the 

round pile is 314 in4 whereas the H pile had an I of 186 in4. The H pile has a smaller I by 41%. 

With this in mind it can be expected that the H pile will provide less resistance. From these load 

test results it appears that despite the orientation of the H pile, it still performs well in 

comparison to the round pile. Given equivalent values for I it appears that the H pile would 

provide more resistance than the round pile. 

 

 

Figure 5-9: Load vs Deflection Curves for Round and H Load Test Averages 

 

The load versus deflection curves (Figure 5-8) showed larger deflection for the H pile from 

these tests when compared to the round pile. A similar difference is apparent in the comparison 

of pile rotation for the H and round pile (Figure 5-10). The H pile rotation curve shows an initial 
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linear slop but gradually decreases as the pile is loaded through the yielding soil. The lower 

moment of inertia for the H pile must also affect the degree of rotation for the pile. 

 

Figure 5-10: Rotation of an H pile Compared to a Round Pile 

 

5.2.4 Performance of Round Piles with a CMS 

This section describes the results of lateral load tests on two round piles each with a 

corrugated metal pipe (CMP) placed as a sleeve (CMS) over the upper 20 feet of the pile. The 

annular void space in one of the CMSs was filled with loose sand while the other was filled with 

loose gravelly sand. The load in both cases was applied to the round pile inside the CMS at a 

height of 12 inches. Plotted in Figure 5-11 are the load-deflection curves for the load tests 

performed on the round pile in CMS with sand infill and the round pile in CMS with gravel 
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infill. The load-deflection curve for the round pile surrounded by compacted backfill is also 

shown in Figure 5-11 purposes.  

There is very little information dictating how these round – CMS combination piles should 

perform under lateral loading, only assumptions could be made up to this point. Generally, it is 

assumed that a round pile within a CMS filled with loose soil will provide relatively little lateral 

resistance. However, the results from these tests have been contrary to that expectation. These 

tests show that a round pile with a CMS will ultimately develop more resistance than a round 

pile in compacted granular backfill. For the first half inch of deflection the round – CMS piles 

show similar resistance to that for a round pile in compacted backfill. Moreover, after the first 

half inch of deflection, the round – CMS pile combinations develop higher lateral resistance than 

the round pile.  

 

Figure 5-11: Round with CMS Lateral Load versus Deflection 
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The initial slope of the load-deflection curves indicates similar stiffness between all three 

curves at the beginning of loading. As the load increases, the soil around the round pile begins to 

yield and the slope flattens in all cases.  However, the load-deflection curves have higher slopes 

than that for the regular round pile. There is also a difference in the load-deflection curves 

between the round – CMS pile combination with sand and the round – CMS pile combination 

with gravel infill. The gravel infill deflected less at higher loads than that of the loose sand infill. 

This might be expected because a gravelly sand often has a higher friction angle than a uniform 

sand.  The increased resistance could also be due to greater compaction of the loose sand at 

higher loads as it was pressed against the CMS. The final resistance of the round – CMS pile 

combination with gravel infill reached 77 kips at 2.25 inches of deflection while the round – 

CMS pile combination with sand infill only provided 72 kips of resistance at the same deflection.  

These loads are 17 to 12 kips higher than that of the round pile in compacted backfill which is a 

large and unexpected difference. As these tests disproved the original thoughts on how these 

piles would perform, it is of importance to be able to explain this phenomenon and create a 

method of modelling these CMS piles. 

The rotation of the round piles in the CMS give an interesting perspective when compared 

to the independent round pile. The pile rotation curve (Figure 5-12) show that the round piles in 

the CMS rotate more than the round pile until 50 kips of load. Both round piles in the CMS have 

a constant rate of rotation until 37 kips when the sand infill appears to give way allowing the pile 

to rotate more. It appears that using gravel infill in the annular void will cause less rotation to the 

central round pile in response to lateral load. 
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Figure 5-12: Rotation of Round Piles with and without a CMS 

 

 Pile Bending Moment vs. Depth Curves 

The bending moment is directly tied with the deflection and soil resistance against the pile 

with depth. Obtaining information on the moment experienced in the pile will indicate the depth 

of influence for soil resistance. This section introduces the moment vs. depth plots obtained from 

lateral load testing. Section 6.6 will use the moment vs. depth curves to verify the accuracy of a 

model to explain the soil-pile interaction of the pile.  

The bending moment, M, in inch-kips along each pile was computed using Equation (5-1).  

𝑀𝑀𝐻𝐻 = 𝐸𝐸𝐸𝐸
2𝑦𝑦

[(𝜇𝜇𝜀𝜀𝐻𝐻𝑝𝑝 − 𝜇𝜇𝜀𝜀𝑐𝑐𝑝𝑝) − (𝜇𝜇𝜀𝜀𝐻𝐻𝑐𝑐 − 𝜇𝜇𝜀𝜀𝑐𝑐𝑐𝑐)](10−6)        (5-1) 
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Where: 

E = modulus of elasticity of the pile (29,000 ksi), 

I = moment of inertia of the pile (in4), 

𝜇𝜇𝜀𝜀𝐻𝐻𝑝𝑝 = micro strain for the ith data point on the tension (+) side of the pile, 

𝜇𝜇𝜀𝜀𝑝𝑝𝑐𝑐 = initial micro strain for the tension (+) side of the pile prior to loading, 

𝜇𝜇𝜀𝜀𝑐𝑐𝐻𝐻 = micro strain for the ith data point on the compression (-) side of the pile, 

𝜇𝜇𝜀𝜀𝑐𝑐𝑐𝑐 = initial micro strain on the compression side of the pile prior to loading, and 

y = the distance separating the two strain gauges measured along the line of loading. 

Micro strain values were collected from strain gauges on both sides of the pile, the tension 

and the compression side. Strain gauges were placed on the pile at depths of 2, 4, 6, 9, 12, 15, 

and 18 ft. These depths give an approximate depiction of the soil-pile interaction in the top half 

of the pile. The maximum moment of the pile will also occur within this depth range. Figure 

5-13 shows an idealized bending moment diagram for a laterally loaded pile. The moment will 

also cross from positive to negative in this range. Figure 5-14, Figure 5-15, Figure 5-16 and 

Figure 5-17 respectively show the moment versus depth plots for round piles, a square pile, H 

pile and round piles in a CMS.  

The moment vs. depth curves were plotted with a load of near 50 kips applied to the piles. 

The maximum moment typically occurs near 4 ft below ground for the round and square piles 

while the H pile experience the maximum moment at a depth of 6 ft (Table 5-1). The round piles 

in a CMS show maximum moments occurring at depths of seven and eight feet which is much 

deeper than the round piles. Typically, larger diameter piles develop maximum moment at 
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greater depth. This suggests that the CMS pile is acting as a round pile of larger diameter.  The 

moment versus depth plots indicate that a large part of the soil resistance of a single laterally 

loaded pile occurs in the top 4 to 6 ft of soil which is in agreement to a previous laterally loaded 

pile analysis (Duncan et al., 1994). It is also interesting to note that the maximum moment in 

these tests tended to occur at a depth of four times that of the diameter or width of the pile as 

shown in Table 5-1. 

Table 5-1: Summary of Maximum Moment and Depth for Each Pile Shape at 50 Kips 
Lateral Load 

      
  Depth 

Diameter/ Max.  
  Width Moment  
  (ft) (ft) (kip-in)  
 Round 4 1.06 4700  
 Round (1) with HDPE 4 1.06 2531  
 Square (1) 3 1.0 1700  
 H Pile 6 1.01 2000  
 Round in CMS with Sand Infill 8 2.0 1650  
 Round in CMS with Gravel Infill 7 2.0 1830  

 

 
Figure 5-13 Idealized Bending Moment Diagram for a Laterally Loaded Pile 
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Figure 5-14: Bending Moment versus Depth for two Round Piles at 50 Kips Lateral Load 
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Figure 5-15: Bending Moment versus Depth for a Square and Round Pile at 50 Kips 
Lateral Load 
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Figure 5-16: Bending Moment versus Depth for an H Pile at 50 Kips Lateral Load 
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Figure 5-17: Bending Moment versus Depth for a Round Pile in a CMS at 50 Kips 
Lateral Load 
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 Ground Displacement 

As the pile was loaded during each test, pressure would be transferred to the surrounding 

soil causing the soil to displace. The lateral displacement of the ground at certain distances from 

the pile was measured using string potentiometers attached to stakes in the ground. These 

measurements help determine how lateral pile loading affects the ground around it and the extent 

of the failure wedge that is produced. The displacement around the piles at distances of up to 5.6 

feet in front of the test piles shown in Figure 5-18 to Figure 5-21. In these figures the 

displacements at 0 feet from the pile, or the pile face, correlate to pile deflections near one inch 

after accounting for pile rotation. 

 

Figure 5-18: Displacement near Round Piles 
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Figure 5-19: Displacement near H & Round Piles 

 

Figure 5-20: Displacement near Square Piles 
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Figure 5-21: Displacement near Round Piles with CMS 

 

The displacement figures show trends of decreasing displacement further from the pile. 

The round pile and round (1) wrapped pile show a drop in displacement at the one foot distance 

followed by a rise to the displacement at 2 foot. This is likely due to excess embedment of the 

reference stakes. The string potentiometers were attached to steel stakes used to mark the soil at 

that location. In these previously mentioned tests, lateral pile loading induced a failure plane in 

the soil that propagated to the stake causing rotation in the direction toward the pile. This would 

give artificially lower displacements than what actually occurred. This phenomena could also 

have occurred during the test for the H pile. The rest of the figures show that the effects of the 

lateral loading dissipate at distances further from the pile. The round piles with a CMS show 

displacement at a distance of 6 inches from the round pile which is where the outer diameter of 
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the CMS lies. In comparison to the results from the round pile it appears that the deflection of the 

CMS is similar to what the deflection of the ground would be without the CMS. Longitudinal 

ground displacements are close to zero at 5 feet from the pile. This indicates that at distances as 

low as 5 feet from the pile there is a small to negligible amount of influence from the loaded pile.  

Knowing the amount of deflection at a given distance from the pile can be an indication of 

the pressure that the soil would exert on an object at that distance.  In certain applications it is 

important to know how a laterally loaded pile will affect surrounding objects such as other piles 

in a pile group or spread footings. Normalized deflection versus normalized distance plots are 

presented in Figure 5-22, Figure 5-23, and Figure 5-24 with the equivalent loads that would 

cause 0.25, 0.5 and 1.0 inches of deflection at the pile face.  These three curves have been 

combined into one plot with a best fit curve shown in Figure 5-25.This curve and Equation (5-2) 

can be used to estimate the deflection at certain distances from the pile face according to pile 

diameter and expected deflection at the pile face. Adversely, if the deflection limits are known 

this curve can be used to estimate the pile diameter needed to reduce horizontal displacement at a 

certain distance from the pile face. It should be noted that these curves are for sands at a 96% 

relative compaction so differences might occur for looser sands. 

𝜹𝜹 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟒𝟒𝟐𝟐𝒅𝒅𝟒𝟒 − 𝟎𝟎.𝟎𝟎𝟒𝟒𝟒𝟒𝟖𝟖𝒅𝒅𝟑𝟑 + 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝒅𝒅𝟐𝟐 − 𝟎𝟎.𝟐𝟐𝟏𝟏𝟐𝟐𝟒𝟒𝒅𝒅 + 𝟏𝟏.𝟎𝟎    (5-2) 

 

Where: 

d = distance from the pile face in diameters 

𝛿𝛿 = horizontal ground displacement as a percentage of displacement at the pile face 
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Figure 5-22: Normalized Deflection vs. Normalized Distance at 0.25" Equivalent Load 

 

 

Figure 5-23: Normalized Deflection vs. Normalized Distance at 0.50" Equivalent Load 
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Figure 5-24: Normalized Deflection vs. Normalized Distance at 1.0" Equivalent Load 

 

Figure 5-25: Normalized Displacement vs. Normalized Distance Line of Best Fit 
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 Ground Heave 

As each pile deflected laterally under the applied load the compacted soil around the pile 

would displace vertically. Measurements of this vertical displacement, or heave, at a distance 

from the pile can indicate the zone of influence in front of the pile itself. This information can 

influence the design of pile groups, bridge abutments, or structures near deep foundations. With 

the use of a level survey and DIC cameras, measurements were collected to observe this 

phenomena and determine how it might change for different pile shapes and the piles with a 

CMS.  

Using a surveying level, ground elevation measurements were recorded before each lateral 

load test and after the final load was reached. The survey level was placed at a location 

independent of the load test with measurements in reference to a common datum. Measurements 

were taken at distances of 0, 1, 2, 3, 4 and 5 feet from the pile face, parallel to the line of loading. 

For the round piles with a CMS, the second measurement was taken at 6 inches from the pile 

face, which is where the CMS was located. Figure 5-26 to Figure 5-29 show the ground heave 

recorded using the survey level. A common trend among these plots is that ground heave is 

greatest at the pile face and comes back down to near zero at a distance of around 4 to 5 feet 

from the pile face.  However, in the case of the CMS piles the ground heave increased from the 

pile face to the edge of the CMS, presumably as the loose fill in the annual space gradually 

compressed under load. Maximum heave occurred at the CMS face and then decreased with 

distance. 
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Figure 5-26: Ground Heave versus Distance in Front of Round Piles 

 

Figure 5-27: Ground Heave versus Distance in Front of an H Pile 
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Figure 5-28: Ground Heave versus Distance in Front of Square Piles 

 

Figure 5-29: Ground Heave versus Distance in Front of Round Piles with CMS 
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Along with the survey measurements, a set of DIC cameras was placed around each test to 

record how the lateral pile loading displaced the soil around it. The DIC data provided a valuable 

perspective as it recorded thousands of data points at each step of loading. An initial comparison 

was made between the DIC data and the survey measurements to verify agreement in results. The 

heave versus distance plots from both methods is shown in Figure 5-30, Figure 5-31 and Figure 

5-32 for the square pile, H pile and CMS pile, respectively. In these plots the heave in inches is 

recorded as a function of distance from the pile face in feet. The survey measurement curves, 

similar to those shown previously, represent the elevation difference before and after testing. The 

DIC reading curves represent the vertical displacement at the final load along the same line as 

the survey measurements. All three of the plots show reasonably comparable values for the two 

methods based on displacement at the pile face, displacement at the furthest distance and 

intermediate slope. The agreement between the two methods verifies the accuracy of the DIC 

analysis in estimating heave in front of the pile face.  

For the square and H shaped piles, the heave versus distance plots show a nearly linear, 

decreasing slope to around four feet from the pile. Beyond a distance of four feet the slope 

appears to level off, indicating little or no effect from the loaded pile. Maximum heave occurs at 

the pile face for the square and H piles. In contrast, the CMS heave plot shows an increase in 

heave moving from the pile face to the CMS as discussed previously. Unfortunately, there was a 

shadow in the DIC data at the final load step where the camera could not pick up any readings 

for the first 8 inches from the pile face including 2 inches beyond the CMS so this behavior 

cannot be independently confirmed. However, DIC readings at smaller load levels indicate 

agreement with the survey measurement, in which the loose infill material does not heave as 

much as the compacted soil outside the CMS. After the first 8 inches, the two curves in Figure 
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5-32 fit nicely. From these results it appears likely that the loose material densifies during lateral 

loading before it shows signs of heave. Beyond the CMS it appears that the compacted backfill 

behaves similarly to that of the square and H piles with heave decreasing with distance. 

 

Figure 5-30: Heave Measurements for a Square Pile 

 

Figure 5-31: Heave Measurements for an H Pile 
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Figure 5-32: Heave Measurements for a Round pile in a CMS 

 

Combining the heave data from the DIC and survey measurements into one will allow 

further comparisons concerning pile type and heave effect. A fair comparison between pile types 

must consider the diameter or width of the effective pile as well as the overall heave. Figure 5-33 

presents this comparison as normalized heave (heave at any distance divided by heave at the pile 

face) plotted against normalized distance (distance from the pile face divided by pile width or 

diameter). In this plot, survey measurements for the round and H pile data are matched with the 

DIC readings of the CMS and square piles which a provide more detailed heave profile for these 

shapes. The H pile was oriented about its weak axis therefore flange ends where considered as 

the effective pile face. In the case of the CMS data, starting at the face of the CMS the distance 

was divided by the diameter of 24”, this explains the shortness of the curve compared to the 

other piles. From the round, square and H pile heave data, it appears that at a distance of four 

diameters from the pile face the effect of the pile on the soil isn’t as strong. A heave of 25% can 
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be expected at this distance. It could be assumed that four pile diameters is the size of the zone of 

influence of the square and H piles on the surrounding soil. Unfortunately, not enough 

measurements were taken away from the CMS to indicate an edge of the zone of influence but it 

would be appropriate to postulate a similar trend. 

Measurements from a heave analysis of a round pile in over-consolidated clay can also be 

used as a comparison. The round pile of 641 mm (25 inches) was tested by Reese et al (1968). A 

load of 596 kN (134 kips) was applied with deflection measurements taken 13 ft away from the 

pile. The data in this experiment has been normalized and provided in Figure 5-33. The heave 

matches that of the square and CMS piles closely despite the difference in soil material. These 

results also show that at four pile diameters the heave is near 25% of the heave at the pile face. 

 

Figure 5-33: The Effect of Pile Shape and Sleeve on Ground Heave 
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Apart from heave measurements, quantitative observations can be made from DIC contour 

plots created through the data analysis package, Istra-4D Q-400 (2014). Figure 5-34 was created 

by assigning colors to various levels of displacement. The contour gradient ranges from cool to 

hot colors as initial displacements increase in magnitude. This image presents a representation of 

soil heave that could not be visually observed during testing. The color contours present the 

progression of the heave within the failure “wedge” or “bulb” surrounding the loaded pile. An 

analysis, similar to the heave plots shown previously, but in multiple directions from the pile 

allow further definition of the size of the stress bulb. Similar images have been produced for the 

square and H piles shown in Figure 5-35 and Figure 5-36. DIC images were not available for the 

round pile. 

 

Figure 5-34: Vertical Displacement Contour Plot for a Round Pile in a CMS 
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Figure 5-35: Vertical Displacement Contour Plot for a Square Pile 

 

Figure 5-36: Vertical Displacement Contour Plot for an H Pile 
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Idealized stress bulbs have been shown on these images representing the boundary of 0.5 

inches of vertical deflection. It is easy to see that the CMS has a larger radius of influence due to 

the larger diameter of the pile. The stress bulb of the CMS reaches 5.7 ft from the face of the 

sleeve while the square and H pile reach 3.55 ft and 2.32 ft out respectively. The magnitude of 

heave is shown on the right side of these figures as the hotter colors represent greater heave and 

cooler colors represent lower levels of heave. Going further from the pile the heave values 

eventually reach zero indicated by a purple color. Three-dimensional relationships such as these 

can be more helpful in creating a realistic model than relationships presented by the failure 

wedge method (Reese and Van Impe, 2001).
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6 LATERAL LOAD ANALYSIS 

The purpose of this lateral load analysis is to create a design approach or a model that 

accurately describes the lateral load contribution of square or H shaped piles as well as CMS 

piles. The accuracy of the approach can easily be evaluated by comparing the computed load-

deflection curves with those measured during the lateral load tests. Close agreement between the 

two curves will indicate that the model produces the same resistance as observed in the load test. 

Another means for verifying the accuracy of the model will be a direct comparison between the 

moment diagrams produced by the design model and the diagrams measured in load tests.  

The widely used computer program LPile (version 2015.8.03), created by Ensoft, Inc., was 

heavily used in this analysis. As indicated previously, LPile computes deflections and moments 

for individual piles under lateral loads. The versatility of the program in terms of pile behavior, 

soil behavior, and output options qualify LPile as an appropriate program for this analysis.  

This section starts by defining the LPile program input parameters including, pile 

properties, soil properties, and load sets. Initially, soil properties were adjusted to match the 

measured load-deflection curves for the round piles.  These same soil properties were then used 

to analyze the companion square and H shaped piles to confirm that lateral resistance was 

underestimated by neglecting shape effects. To better account for the apparent shape effects, 

three different approaches were evaluated, namely: (1) the Equivalent diameter method proposed 

by Reese and Van Impe, (2001) (2) the F-y/Q-y Mechanism proposed by Briaud and Smith, 
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(1987), and (3) a simple P-multiplier approach proposed by Rollins and Bustamante (2015). The 

results from the LPile model for each approach are compared with the load test results to 

determine the effectiveness of the model in accurately describing the pile response to lateral 

loading. Lastly, the moment diagrams of the model with a p-multiplier are compared to the 

moment diagrams of the load tests to verify that the model properly explains the pile’s response 

to a lateral load along the depth of the piles. 

 Pile Material Properties 

A thorough description of the pile properties has been provided to explain the input 

properties used in the LPile model. Following this description a similarly accurate model may be 

reproduced if desired.  The piles used for the load tests were selected according to the shape and 

comparable width or diameter as shown in Figure 6-1. Each pile came from the same grade of 

steel having a modulus of elasticity (E) of 29,000 ksi with a yield stress (Fy) of 57 ksi for the 

round pile, 50 ksi for the H pile, and 56 ksi for the square pile.  A diameter or width close to 12 

inches was chosen for consistency with proportions standard to structural grade steel.  Table 6-1 

details these pile properties.  The moments of inertia of the round and square HSS piles are 

similar while the H pile is considerably lower, oriented about its weak axis.  Angle irons were 

added previous to pile driving to protect the strain gauges placed on the exterior of the piles from 

damage.  The added stiffness of the angle irons was taken into consideration for an increased 

moment of inertia as shown in Table 6-1 in parentheses.  The angle irons, attached near the 

neutral axis, had little effect on the H pile. 
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Figure 6-1: H, Round, and Square Pile Shape 

Table 6-1: Pile Properties 

 

Each pile was tested to a maximum pile head deflection of 3 inches or until signs of initial 

yielding were apparent. This ensured that each pile behaved as a linear elastic material allowing 

the model to neglect post yielding effects. Each pile measured 40 ft long with 2 ft of the pile left 

above ground after driving and Phase 2 backfill. The load point was one foot above the ground 

surface or at a distance of 39 ft above the toe. For purposes of analysis the pile was considered to 

be hollow. A plug did form during pile driving in the bottom 10 feet but this is below the depth 

of influence for lateral loading. It is unlikely that the plug contributed to the lateral resistance of 

the pile therefore there was no need to consider a composite elastic modulus or alter the moment 

of inertia of the pile. A pile properties window for LPile 2015 is presented in Figure 6-2 showing 

typical input for the analysis of the round pile. 

Type
Moment of Inertia 
(with angle iron) E Fy

(in4) (ks i ) (ks i )

Round 12.75X3/8 279 (314) 29,000 57
CMP 0.454 29,000 57
HSS 12x12X1/4 248 (335) 29,000 57
HP 12X74 12.1 12.2 0.605 0.61 186 (186) 29,000 57

Flange 
Depth

Flange 
Width

Web 
Thickness

Flange 
Thickness

Diameter/ 
Depth Wall Thickness

(in) (in)

12.75 0.349
24 0.064
12 0.233
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Figure 6-2: LPile Input Property Window for a Round Pile 

 

 Pile Load Model 

For practical purposes the piles were modeled as 39 ft long piles with loading applied at 

the head of the pile. The load condition can be defined as a shear force at the pile head in the 

positive direction. Loading for the full scale tests was deflection controlled in increments of 0.25 

inches. Increasing load was applied until the pile reached the next increment of deflection. As a 

result, different load sets were used for each analysis as the load that caused an inch of deflection 

for a square pile was different than the load for a circular pile. Axial forces and moment about 

the pile head were set equal to zero to match the testing conditions. 
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 Soil Properties Model 

The soil properties required for an LPile analysis are the effective unit weight, γ; the 

friction angle, ϕ; and the lateral soil stiffness or subgrade modulus, k. Soil properties were 

entered into the model to represent the soil conditions at the test site including all phases of soil 

compaction. As mentioned in Section 3.3, the soil model can be described in three layers from 

the pile toe to the head; 18 feet of native soil, 15 feet of phase 1 soil compaction, and 5 feet of 

compacted material from phase 2 or phase 3. The native soil and the backfill material, being 

cohesionless sand, were modeled using the API Sand (O’Neill) p-y curve model. The effective 

unit weights for each layer can be found in Table 3-3, these values were based on average 

nuclear density gauge measurements. Measurements for the ϕ and k were not made during 

testing and were derived by back-calculation as described below. 

API suggests that values for ϕ and k can be determined using charts shown in Figure 2-6 

(Isenhower & Wang, 2015) that consider the relative density of the soil. Generally, for each 

iteration, a ϕ was chosen with a corresponding k value, calculated using the equation,  

𝒌𝒌 = 𝟎𝟎.𝟒𝟒𝟏𝟏𝟐𝟐𝟖𝟖𝝓𝝓𝟐𝟐 − 𝟖𝟖.𝟏𝟏𝟐𝟐𝟒𝟒𝟒𝟒𝝓𝝓 − 𝟖𝟖𝟑𝟑.𝟐𝟐𝟐𝟐𝟒𝟒            (6-1) 

which represents the curve presented in Figure 2-6 as defined by API for sand above the water 

table. 

 Initially, LPile analyses were performed using a friction angle of 38° which is 

approximately equal to the value used in the design of a nearby MSE wall using the same 

backfill material (Besendorfer, 2015; Budd, 2016; Luna, 2016).  However, the friction angle 

produced a force-deflection curve which was considerably lower than the measured curves for 

either phase 2 or phase 3 of compaction as shown in Figure 6-3. Additional analyses were 

subsequently performed with progressively higher friction angles until the load-deflection curve 
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for the model matched that of the round load tests. As shown in Figure 6-3, using a friction angle 

of 45° in LPile produced a load-deflection curve that  matches the measured curve for the round 

test most closely for soil compaction in phase 2. A corresponding k value of 394 pci was 

determined using Equation (6-1).  Likewise, using a friction angle of 51° produced a load-

deflection curve most closely matching the (2) round pile with HDPE in phase 3.  While this ϕ 

value is relatively high, a number of researchers have back-calculated similar values for well 

compacted sand for lateral load tests (Brown et al., 1988; Rollins et al., 2005; Rollins et al., 

2011).  At this point it is unclear whether the discrepancy lies in the correlation between relative 

density and friction angle employed by API or the passive force model used by API which is 

based on Rankine theory rather than the log-spiral theory.  Both of these factors would lead to 

conservative estimates of lateral pile resistance. The k vs ϕ correlations in Figure 2-6 do not 

extend to a ϕ of 51° and  experience indicates that k values for this friction angle range can differ 

from values given by Equation (6-1) (Brown et al., 1988; Rollins et al., 2005; Rollins et al., 

2011). A k value of 394 pci was found to produce the best agreement with the agreement with 

the load test results. A summary of the soil properties considered in iterations of the LPile model 

for a round pile is shown in Table 6-2.   

Soil properties for phase 1 were also back-calculated from lateral load tests performed at 

the 15 ft compacted backfill level. That analysis was performed by Bustamante (2014) who 

found a friction angle of 45° and a k value of 250 pci to produce the best agreement with the test 

data. The friction angle is exactly the same as the results obtained for this study for the phase 2 

compaction at the 20 ft level.  
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Figure 6-3: Measured Load-Deflection Curve Along with Curves Computed with LPile 
Using a Range of Friction Angles 

 

Table 6-2: Final Soil Properties Used for LPile Analysis 

    

Soil Layer 
Effective Unit 

Weight 
Friction 
Angle 

k 

  [pcf] [degrees] [pci] 

Native Soil 125 34 100 

Phase 1 129 45 250 

Phase 2 131 45 394 

Phase 3 131 45 394 
    

 

Apart from comparing the load verse deflection of the pile face, a comparison for the round 

pile was made of the LPile p-y curve output with the API method for creating a p-y curve for a 
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pile in sand. The API method, explained in Section 2.2, considers effective unit weight, friction 

angle, pile width, modulus of subgrade reaction, loading condition, and depth. Coefficients for 

passive, active, and at rest soil pressures are intermediate factors used to quantify the lateral 

bearing capacity for sand at shallow or deep levels. The lesser of the two lateral bearing 

capacities is chosen as the ultimate soil resistance which is then multiplied by a loading factor, 

subgrade modulus, depth, and deflection. A sample calculation of this process shown in five 

steps is given in Appendix A. The method presented by API gave a soil resistance of 

p = 453 lb/in with a deflection of 1.33 inches at a depth of 16 inches. This is very similar to the 

values given by the LPile model, p = 457 lb/in at similar deflection and depth. This agreement in 

results gives verification that the LPile soil model has been entered and calculated correctly. 

 Results of the LPile Analysis for Other Pile Shapes 

Using the pile material properties, applied loads, and soil properties back-calculated for the 

round piles, analyses were performed in LPile to calculate pile head load-deflection curves for 

each pile shape. If pile shape is unimportant, then the computed load-deflection curves should be 

in good agreement with the measured curves after adjusting for differences in pile width and 

moment of inertia.  Likewise, if H and square piles actually have higher soil resistance than for 

round piles as anticipated, then the computed load-deflection curves should be softer than 

measured in the field.   

6.4.1 LPile Model for H Piles 

Figure 6-4 shows the load-deflection curve computed by LPile along with the average 

load-deflection curve for the H pile in the soil compacted during phase 2. The computed curve 

matches the measured curve for the first 0.75 inches of deflection but underestimates the 
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measured resistance of the H pile at greater deflections. A maximum difference of 5 kips 

develops at 2.75 inches of deflection, that amounts to a 9% difference from the measured 

resistance. These results suggest that the lateral resistance may be somewhat underestimated for 

the H pile if shape effects are ignored. This model could potentially be improved by considering 

shape effects on the soil resistance. 

 

Figure 6-4: H Shaped LPile Analysis Compared to H Pile Load Test Results 

 

6.4.2 LPile Model for Square Piles 

The load vs deflection curve computed by LPile for a square pile is compared with the 

measured curves for the two square pile load tests in Figure 6-5. In this plot the computed curve 

is consistently lower than the two measured curves.  The increasing gap between computed and 
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measured curves reaches a difference of nearly 9 kips at 1.75 inches of deflection. This 

difference amounts to a 12% increase in lateral resistance relative to the computed value.  

 

Figure 6-5: Square LPile Analysis Compared to Square Load Test Results 

 

The fact that the computed resistance is consistently lower than the measured curves 

suggests that the square pile shape is producing greater than expected lateral resistance. Pile 

shape is not considered in the API method for estimating lateral resistance. To more accurately 

estimate the lateral resistance of square shaped piles there should be a method to quantify the 

effect that pile shape has on soil pile interaction. Approaches to better account for this shape 

effect will be explored subsequently. 
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 Investigation of Approaches to Account for Pile Shape on Lateral Pile Resistance 

After exploring laterally loaded pile models without shape effects an investigation of pile 

shape effect leads to three separate approaches: (1) the Equivalent diameter method proposed by 

Reese and Van Impe, (2001) (2) the F-y/Q-y Mechanism proposed by Briaud and Smith, (1987), 

and (3) a simple P-multiplier approach proposed by Rollins and Bustamante (2014). Each 

method will be used to produce load-deflection curves for each pile shape. These plots will 

individually be compared to the load tests then collectively to determine which method best 

describes the response of the pile to lateral load. 

6.5.1 Reese and Van Impe Equivalent Diameter 

As described in Section 2.3, Reese and Van Impe (2001) propose the use of an equivalent 

diameter to account for the increased lateral resistance on the sides of non-circular pile shapes. 

The equivalent diameter method uses the width and depth dimensions of the non-circular pile to 

produce an equivalent round shaped pile. For example, square or H shaped piles with dimensions 

matching that of an equivalent round pile will result in an increased equivalent diameter, beq, 

which will lead to an increase in lateral resistance. This method considers soil properties as well 

as the pile dimensions of width and depth.  

Calculations involved in finding the equivalent diameter of the piles in this study are 

provided in Appendix D whereas a description of the procedure implemented in this analysis is 

provided in this section.  

The equivalent diameter method is similar to the API method for finding ultimate 

resistance of a circular section. Like the API method, soil property coefficients C1, C2, and C3 

can be found by using Equation (2-9), Equation (2-10) and Equation (2-11). These coefficients 
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along with the effective vertical soil stress at depth x, pile width b, and depth can be used to find 

the ultimate resistance at shallow depths, pus, Equation (2-2), or deep depths, pud, Equation (2-3). 

The minimum of these two values is considered the ultimate soil resistance. Unlike the API 

method, the equivalent diameter method labels this ultimate resistance as puc. This value is then 

used in the equivalent diameter Equation (2-21) along with the pile width and shearing 

resistance, fz. Calculating the fz along the sides of the pile requires the vertical effective soil stress 

at the specified depth, the interface friction angle which has been taken as two-thirds of the 

friction angle of the soil, and the lateral earth pressure coefficient, K, as outlined in Equation 

(2-12). A lateral earth pressure coefficient was assumed to be 1.0 in this analysis which is 

consistent with API recommendations for axial loading. Once the puc and fz have been 

determined the equivalent diameter can be found with Equation (2-21). With the vertical 

effective stress varying with depth, a unique equivalent diameter can be calculated at each depth. 

It is suggested that the average equivalent diameter along a determined depth be used in the final 

analysis (Reese & Van Impe, 2001). A depth of 5 feet was considered for the bounds of the 

average equivalent pile diameter, see Table 6-3. Averaging the equivalent pile diameter over a 

greater length would result in a smaller value since the equivalent diameter is a ratio of the added 

contribution of side shear to the ultimate resistance, which increases greatly with depth. The 

square shape pile gives an average equivalent diameter of 12.3 which is a 2.5% increase in pile 

width while the H pile has an average equivalent diameter of 12.5 which is a 3.3% increase. 

Although these numbers indicate that the square and H shapes should provide extra resistance 

relative to an equivalently shaped round pile, the difference is quite small.  
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Table 6-3: Average Equivalent Diameter for Square and H Piles 

      

  Actual 
beq 

Percent  

  Width Increase  
 Square  12 12.3 2.49%  
 H  12.2 12.5 2.48%  
      

The effectiveness of the equivalent diameter method in accurately predicting the lateral 

resistance can best be seen through a comparison of the measured and computed load-deflection 

curves as was done previously in Section 6.4.  In that section the comparisons showed a deficit in 

the computed lateral resistance relative to the measured resistance from the lateral load tests. 

Higher equivalent diameter values should minimize the deficit and improve accuracy in 

estimating lateral resistance. The equivalent diameter replaces the width dimension and models 

the pile as a round shape while maintaining the moment of inertia and modulus of elasticity 

values (E and I) for the non-circular shape. Load-deflection curves obtained using this method 

are compared to the measured curves from load tests in Figure 6-6 and Figure 6-7 for the H and 

Square piles, respectively.  

The approach suggested by Reese and Van Impe (2001) for calculating an equivalent 

diameter for non-circular piles still provides a lower estimate for lateral resistance relative to the 

measured curves, as shown in both Figure 6-6 and Figure 6-7. In fact, the load-deflection curves 

computed with the increased equivalent diameters are nearly identical to the curves computed 

previously for the original pile widths. For the equivalent diameter method to match the 

measured load-deflection curve for the H pile, a diameter closer to 15.5 inches would need to be 

used.  Although the equivalent width approach proves to be slightly less conservative than using 

the original pile width it still fails to closely match the measured load test curves.  
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Figure 6-6: Load vs. Deflection Curve for Equivalent Diameter Approach for an H Pile 

 

Figure 6-7: Load vs. Deflection Curve for Square Load Tests Compared with Equivalent 
Diameter Approach for a Square Pile 
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The greatest increase resulting from the increased equivalent width is shown in Figure 6-7. 

The square shape with a beq of 12.3 presents a slight increase from the LPile model with the 

actual square pile width; however, resistance is still about 8 kips lower than the measured 

resistance at the largest deflection. An equivalent diameter of about 17 inches would need to be 

used in the analysis to match the measured load-deflection curve from the load test. 

Bustamante’s (2014) study of this approach in relation to the measured load test data also 

indicated short comings in the methods estimation of pile shape resistance. 

6.5.2 Briaud and Smith F-y/Q-y Mechanism 

As mentioned in Section 2.2, the pressuremeter test can be used to explain the lateral 

resistance of the soil on a pile foundation. Briaud et al. (1983) developed a system of analysis 

using pressuremeter data to produce Q-y and F-y curves at any depth. These two components 

were then combined to result in a p-y curve that explains the overall resistance of the pile. This 

process is demonstrated in Figure 2-2 as resistance values from Q-y and F-y curves are 

superimposed to produce the p-y curve. Although a pressuremeter was not used during these 

tests, a similar analysis implemented in reverse may be used to determine if this Q-y/F-y 

approach could explain the observed increase in soil-pile interaction for square and H shape 

piles. 

Generating p-y curves at user specified depths is an output option of the LPile program. 

Using the round LPile model created in Section 6.4, p-y curves at specific depths were generated 

as the starting point of this analysis. At the selected depths of 1, 2, 4, 6, 9, 12, 15, 18, and 39 ft, 

p-y curves were created as a result of the lateral analysis are shown in Figure 6-8. The plot 

demonstrates how the soil resistance in units of kip/in of pile length increases as the pile deflects 
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laterally and engages the soil. Each curve initially shows a linear stiffness with eventual yielding 

in the soil with increased deflection. At a certain load the soil yields completely as deflection 

increases at a constant resistance. It should also be noted that greater depths yield p-y curves of 

increased resistance as a result of increased stiffness and shear strength resulting from higher 

confining pressures. According to Equation (2-1) the p-y curve is a combination of the Q-y curve 

and the F-y curve or the passive resistance and side shear resistance. Once the shear contribution 

has been defined the front facing passive resistance can also be obtained by subtracting the F-y 

curve from the Q-y curve.   

 
Figure 6-8: P-y Curves at a Specified Depth for a Round Pile 

 

Using a method similar to that explained by Briaud et al. (1983), the side shear resistance F 

can be calculated at a specific depth using Equation (6-2). 

𝑭𝑭 = 𝒌𝒌 𝜸𝜸 𝒛𝒛 𝒕𝒕𝒕𝒕𝒕𝒕(𝜹𝜹) 𝑫𝑫 (𝑺𝑺𝑭𝑭)         (6-2) 
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Where: 

K = lateral pressure coefficient, or 1.00 for API sands 

 = unit weight of the soil 

z = depth 

δ = interface friction angle between soil and wall of the pile, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 2
3
𝑡𝑡 

D = diameter of the pile or width of the non-circular pile 

SF = shape factor for square piles = 1.76 
SF = shape factor for round piles = 0.79 
 
Using Equation (6-2), the maximum shear contribution can be calculated at any depth 

knowing the properties of the soil: lateral earth pressure coefficient, unit weight, and interface 

friction angle, along with the diameter of the pile. As the soil is engaged by the pile the shear 

force increases from zero to the maximum shear resistance. It was assumed that the shear force 

would require 0.1 inches of deflection to reach maximum resistance (Smith, 1987). With this in 

mind, shear components were calculated using shape factors in accordance with research by 

Smith (1987) on friction mobilization curves for laterally loaded square and round piles. A shape 

factor of 0.79 was used for the round pile while a shape factor of 1.76 was used for the square 

pile primarily because of greater contact along the side of the square pile. (Smith, 1987). Sample 

calculations of these F-y curves are provided in Appendix D. The computed F-y curves at a 

depth of 1 ft are plotted in Figure 6-9Figure 6-9: F-y Curves for Round and Square Piles at Depth 

of 1 ft, where the shear resistance around the square pile is more than twice that around the round 

pile. 
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Figure 6-9: F-y Curves for Round and Square Piles at Depth of 1 ft 
 

After calculating the shear contribution, the passive resistance of the round pile was found 

by subtracting this shear component from the overall resistance as a function of displacement. 

Smith (1987) suggested that passive resistance of the square pile can be found by applying a 

factor of 1.33 to the passive resistance for the round pile. This is a revision from the shape factor 

(SF) of 1.25 suggested earlier by Briaud et al. (1983). Applying this factor to the passive 

resistance of the round pile and using the shear contribution calculated earlier, a p-y curve was 

computed for each depth formed for a square pile. An example of the calculated F-y, Q-y and P-

y curve for a round and square pile at 1 ft of depth is presented in Figure 6-10. Relative to the 

round pile, the square pile develops greater resistance for passive resistance and side shear which 

results in a greater p-y curve. According to Figure 6-10 it appears that the shear contribution is 

minor in comparison to the passive resistance developed by the front face of the pile. At 1 ft of 

depth the side shear of a square pile only contributes, at maximum, 2.5% of the overall 



117 
 

resistance. This percent contribution is smaller when looking at a round pile and decreases with 

depth for both pile types as the magnitude of passive resistance increases.  

 

Figure 6-10: P-y Curves and Components for a Square and Round Pile at 1 ft Depth 
 

Once p-y curves were calculated at a number of depths they could be used as manually 

input p-y curves in the LPile analysis. P-y curves were calculated at depths of 0, 1, 2, 4, 6, 9, 12, 

15, 18, and 39 ft to provide a full description of the soil resistance as a function of depth. Using 

the pile properties of a square pile, namely pile width, I, and E, an analysis was run in LPile to 

compute a load versus deflection curve as shown in Figure 6-11 in comparison with to the 

measured curve. The same procedure was completed for an H pile as and the computed load-

deflection curve is presented in Figure 6-12 along with the measured curves. These computed 
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curves can be compared to the load-deflection curves for the measured load test results to 

determine accuracy in predicting the pile resistance. 

 

Figure 6-11: Comparison of Measured Load-Deflection Curve in Comparison with Curve 
Computed Using F-y/Q-y Mechanism for a Square Pile 

 

Figure 6-12: Comparison of Measured Load-Deflection Curve in Comparison with Curve 
Computed Using the F-y/Q-y Mechanism for an H Pile 
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Initially, the computed load-deflection curves are very close to the curve measured in the 

load test for the square pile but at larger deflections the computed curve shows slightly more 

resistance than measured.  Nevertheless, the procedure does provide a reasonable estimate of the 

measured response overall even though the final load it assumes greater capacity for the soil-pile 

interaction. The Briaud and Smith (1987) approach computes a load-deflection curve for the H 

pile with a resistance nearly 5 kips greater than that for the actual load test. This method provides 

a much better approximation of the response of the square pile than the equivalent diameter 

method yet it over predicts the maximum resistance for the H pile. Perhaps, the shape factors 

suggested by this method are a little too high and overestimate the shape effect on the lateral 

resistance. Similar findings were obtained in Bustamante’s (2014) study except there was greater 

agreement between the measured H pile load-deflection curve and the F-y/Q-y mechanism 

results rather than the square pile. 

6.5.3 P-multiplier Approach 

The p-multiplier approach is a simple and convenient method for adjusting the expected 

lateral soil resistance by a modification factor. Uses of the p-multiplier approach include 

providing a reduction to lateral resistance in liquefied sand or reducing the lateral soil resistance 

to account for pile group interaction from multiple rows of piles (Isenhower & Wang, 2015). 

Varying p-multipliers may be applied at any depth along the pile to account for stratified soil 

layers of fluctuating strength. In this instance, a constant p-multiplier can be used along the 

entire pile length to account for the pile shape of the entire pile. The LPile models created in 

Section 6.4 can be used as a base from which to apply the p-multipliers.  
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After applying p-multipliers to the square and H LPile soil models, load vs. deflection 

curves were computed and plotted against the measured load vs. deflection curves from the load 

tests. Through multiple iterations a computed load-deflection curve was developed that was very 

similar to the measured load-deflection curves for both the H and Square piles.  The back-

calculated p-multipliers for the H and square piles, summarized in Table 6-4, are constant for the 

entire pile length. As indicated in Table 6-4, applying a p-multiplier of 1.25 to the square model 

and 1.2 to the H model produced the load vs. deflection curves shown in Figure 6-13 and Figure 

6-14, respectively. 

Table 6-4: P-Multipliers for Square and H Piles 

Square H 
1.25 1.2 

 

 

Figure 6-13: P-multiplier Approach for H Piles 
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Figure 6-14 P-multiplier Approach for Square Piles. 

 

The lateral resistance of the two square load tests is analogous to the estimated resistance 

of the LPile model with a modification factor of 1.25. The precision of the match from 0 inches 

of deflection to the ultimate resistance is significant. The match for the H Pile analysis is also 

close to the measured load test results. The period of the curve from 0.25 inches to 1.25 inches 

varies by no more than 0.1 inches for a given load. All other sections of the curves correlate 

remarkably well with each other.  

The p-multipliers of this research can also be compared to those suggested by Bustamante 

(2014) based on tests conducted on round, square and H piles for the 15 ft thick fill. For the 

square pile Bustamante recorded a p-multiplier of 1.2 which is rather close to the 1.25 suggested 
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by this analysis. It is recommended that a p-multiplier between this range be used for further 

design of square piles using the LPile program. This modification would account for the extra 

passive and side shear forces that a square pile provides. This would be an advantage in using 

square piles in the design of deep foundations. The p-multiplier suggested by Bustamante for the 

H pile was 1.35, which is higher than the 1.2 recorded in this research. It appeared that the H pile 

test results in that research was somewhat higher than expected. Using a p-multiplier of 1.2 for H 

piles would account for the added side shear and front facing pressures of an H pile while still 

remaining within the conservative bounds of the test results. 

As an overall comparison, the computed load-deflection curves for all of the analytical 

methods have been plotted in Figure 6-15 for the square pile and Figure 6-16 for the H pile. A 

review of the plots indicates that the p-multiplier method provides the closest agreement to the 

measured curves from the load tests. In both cases the LPile model which neglects pile shape 

effects predicts lower resistance than that measured in the load tests. This is expected on account 

of the moment of inertia providing the only distinguishing factor in accounting for the difference 

in the performance of each pile. The Reese and Van Impe (2001) equivalent diameter approach 

suggests using a higher effective width for square and H piles but this adjustment is so small that 

it does not markedly change the resistance in comparison with analyses that neglect shape 

effects.  This result also suggests that the increased lateral resistance may develop owing to 

increased passive force on the pile face more than increased resistance on the side of the pile.  

The shape factors suggested by Briaud and Smith (1987) applied to the F-y/Q-y mechanism 

show promise in accounting for the increased lateral resistance owing to pile shape effects.  

However, in the case of the H pile this approach overestimated the resistance of the pile resulting 

in a non-conservative prediction. The close agreement between the square and H pile load tests 
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and the calculated LPile model with p-multipliers is visually observable. According to these 

results the p-multiplier approach provides the simplest and most reasonable approach to account 

for pile shape effects. 

 
Figure 6-15: Comparison of Analytical Methods for a Square Pile 

 
Figure 6-16: Comparison of Analytical Methods for an H Pile 
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 Bending Moment vs. Depth Curves 

Comparisons up until this point have generally looked at the pile head load-deflection 

curves. Another perspective can be attained by plotting the measured bending moment vs. depth 

curves with those computed using LPile with the p-multiplier approach for account for shape 

effects. As discussed in Section 6.5.3, p-multipliers have been utilized in the LPile model to 

better fit the pile model to the load test results in terms of lateral load vs. deflection. This section 

will compare the moment vs. depth output results of the LPile models to ensure that the p-

multiplier approach provides a good description of the moments along the length of the pile. 

The measured moment vs. depth plot for the load test on the square pile is shown in Figure 

6-17 and Figure 6-19 for loads of 37 and 50 kips respectively. The computed bending moment 

vs. depth curves for a square pile with no p-multiplier as well as one with a multiplier of p = 1.25 

have also been plotted for comparison. Points of interest include the magnitude of the maximum 

moment in the pile as well as the depth that the maximum moment occurs. The measured pile 

moment has been calculated using strain gauge data which recorded the strain at the top 18 ft of 

each pile. It is easy to see that the LPile model with the p-multiplier gives a closer approximation 

of the maximum moment in magnitude and depth to that measured during the tests on the square 

pile. The same comparison is shown for an H pile in Figure 6-18 and Figure 6-20 for loads of 37 

kips and 50 kips respectively. The measured moment on the H pile occurred at a depth of six feet 

whereas both LPile models had a maximum moment occur at about five feet. The bending 

moment for the LPile model with a p-multiplier did show a magnitude nearer to the measured 

maximum moment of 2000 kip-in that without a p-multiplier. In both cases the LPile model with 

the p-multiplier displayed a moment versus depth curve closer to the measured load test data.  
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Figure 6-17: Bending Moment versus Depth for a Square Pile at 37 Kips of Load 
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Figure 6-18: Bending Moment versus Depth for an H Pile at 37 Kips of Load 
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Figure 6-19: Bending Moment vs. Depth for a Square Pile at 50 Kips of Load 
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Figure 6-20: Bending Moment versus Depth for an H Pile at 50 Kips of Load 
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 The Influence of Pile Shape on Lateral Load Resistance 

Does pile shape make a difference in the lateral resistance of a pile? The test results from 

Section 5 presents comparisons of lateral resistance of round, square and H pile shapes with 

similar widths and with similar backfill soils. A noticeably higher difference was observed from 

the ultimate resistance of the square piles, a difference of nearly 14% than that of the round pile. 

This ultimate resistance is a combination of the structural stiffness of the pile and the resistance 

provided by the soil. With both piles having nearly the same moment of inertia this difference 

can be attributed to the influence of pile shape on the soil resistance. The suggested p-multiplier 

for a square pile is 1.25 which indicates that the resistance in the soil for a square pile is actually 

25% greater than a similar round pile. The H pile demonstrated a resistance of 85% compared to 

that for the round pile, the moment of inertia of the H pile was only 59% in comparison to the 

same round pile. This suggests that given equal moments of inertia, the H pile may have greater 

resistance than the round. The p-multiplier for an H pile is 1.2 which indicates a 20% increase in 

the resistance in the soil around an H pile. Similar results for the same pile shapes were observed 

by Bustamante (2014). These observations suggest that pile shape can have an influential role in 

the lateral resistance of a pile. Lateral analysis using three different methods indicates that the p-

multiplier approach is a simple, intuitive, and more effective approach to estimating the 

resistance of such pile shapes. 

This being said, pile shape is not the only influence on lateral resistance nor should it the 

most important. Pile properties such as, the modulus of elasticity and moment of inertia, as well 

as soil properties including, unit weight, friction angle, and soil type, are known to have greater 

influence on lateral pile design. The degree of certainty of values such as relative compaction 

should also be considered before a specific p-multiplier is applied. There are also constructability 
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factors such as availability and cost to consider although shape can influence the economics of 

deep foundation design.  

A basic cost analysis can also provide insight on the whether or not the pile shape should 

be changed from a round to square pile shape for a given project.. Apart from considering pile 

driving cost, the price of each pile can be correlated to its weight in steel. If each pile has similar 

material properties, then price per foot of pile is a ratio of the cross sectional area. This study 

utilized piles of comparable width and diameter. Although this similarity also extends to the 

cross sectional area of the square and the round piles, 14.8 in2 and 14.57 in2 respectively, the 

same cannot be said about the H pile, 22.5 in2. Using these factors as the basis of comparison, the 

square pile would cost 2% more than the round pile while the H pile, orientated about its weak 

axis, would cost 55% more than the round pile. This price can be reduced by using an H pile 

with a smaller section, such as a non-compact W12x53 shape, if bending capacity is not a large 

concern. As the price of steel is constantly fluctuating, these ratios will hold true in any market 

and other pile sizes with similar width/diameter and areas. 

As demonstrated in this study, pile shape does have an influence on the lateral resistance of 

a pile. It has been shown that a square pile with a similar width, moment of inertia and cross 

sectional area as a round pile will provide more lateral resistance with nearly the same cost. An 

H pile on the other hand, oriented about the weak axis, will provide less resistance and possibly 

cost 55% more than a comparable round pile. Although pile shape is usually not the most 

important consideration in design, to the attentive engineer the use of pile shape factors can be a 

secondary consideration that should be considered in the design of deep foundations.  
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 LPile Model for Round Piles with a CMS 

When using a round pile in a CMS it is generally assumed that a reduction in lateral 

resistance would be expected. Contrary to this belief, the numerical model performed by Filtz et 

al. (2013) suggests that stiffening of the loose infill soil in the annular space may cause an 

increase in lateral resistance. The results of the load test shown in Section 5.2.4 also demonstrate 

an increase in lateral resistance from the CMS particularly at larger deflections. With these 

contradictions in view, it is important to investigate how the pile, loose infill, and CMS interact 

to produce increased lateral resistance. Models created using LPile will be a critical component 

in this investigation. Various models have been tried in order to explain this unexpected 

phenomena until a model producing reasonable agreement with the measured response was 

found. 

A reasonable model will allow further understanding of how the pile structure acts under 

lateral loads and can be used to further predict how this pile structure will react under different 

loads. A round pile with a CMS is not a pile option in the standard section type and shape 

category in LPile. Initial endeavors were spent finding existing pile types that resembled a round 

pile in a CMS. An initial model was produced as a round shaft with permanent casing and core 

using the CMS properties for the casing, round pile properties as the shaft core and the soil infill 

as the concrete fill. Results proved that this was an inappropriate model that yielded resistance 

far greater than what was observed in the load test. It is possible that the model would match 

observed response if lower values for the compressive strength of sand fill could be introduced 

but this exceeded the lower bounds set by the LPile program.  

Eventually, the endeavor of modelling the round pile in a CMS as a round shaft with 

casing was discarded because it suggests that the element acts entirely as a composite member 
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which further discussion suggests is not true. The next step was to decide on an appropriate 

moment of inertia that would describe the behavior of the combined pile-infill-CMP structure. 

Much deliberation went into formulating an appropriate moment of inertia that represents 

the stiffness of the seemingly composite pile and sleeve combination. Tables for sectional 

properties for corrugated steel pipe products provided by Contech Engineered Solutions provided 

insight on the CMS contribution to a composite moment of inertia. Although the CMS has twice 

the diameter of the round pile, the thin wall and corrugated nature of the pipe provide values for 

moments of inertia of around 1.892 x 10-3 in4/in. That quantity is minute in comparison to that of 

the steel pipe pile itself. In the design of a round shaft with permanent casing, the properties of 

the core, case, and fill material would be weighted to create a composite moment of inertia and 

modulus of elasticity. These stiffness properties can be calculated for a round shaft with 

permanent casing assuming that the concrete has sufficiently bonded to the case and core, acting 

as one amalgamated member. However, the same procedure cannot be used for the CMS with 

cohesionless infill because unlike the round shaft with permanent casing, the member does not 

act as a uniformly composite material. As the member is loaded, the cohesionless infill provides 

no contribution in tension and it is difficult to quantify the contribution in compression as the 

material continuously compacts with increased load. The only sure contribution in flexural 

stiffness for the member was that of the central round pile. This moment of inertia was used for 

further models. 

One of the models was created using the moment of inertia of the pipe pile alone and 

assuming that no resistance is provided by the infill or the CMS. This assumption idealized the 

annular material as being very loose and allowing for large deflections within the CMS. The 

computed load-deflection curve for this model is plotted in Figure 6-21.  Because the load is 
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applied with a moment arm 21ft above the native soil very little lateral resistance is developed 

with deflection and the maximum load only reaches 2.5 kips at 3.2 inches of deflection. 

Although designers often assume that this model applies to sleeved piles it does not appear to be 

realistic.  As an attempt to replicate the load tests, this theory can immediately be dismissed on 

account of the extremely low load-deflection curve in comparison with the measured results as 

shown in Figure 6-21.  The failure of this model to match measured response proves that the 

annular fill, although loose, provides a significant amount of lateral resistance to the pile 

structure. 

 

Figure 6-21: Round Pile Unrestrained at Top 20 feet Compared to Round Piles with CMS 
Load Test Results 
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While testing the round piles in the CMS it was observed that initially the round pile 

deflected in response to the load. As a way of replicating at least the initial stages of loading, the 

LPile model for the round pile was plotted against the CMS test data. This comparison between 

the CMS load tests and an individual round pile modeled in LPile assuming soil with a φ of 45° 

and a k of 394 pci is provided in Figure 6-22. Keeping in mind that the annulus was filled with 

loose, non-compacted infill, it is expected that this inner round pile will initially deflect more 

than the individual round pile in compacted backfill. Initially, the round pile inside the CMS 

does deflect a little more than the solo round pile but this isn’t as large of a difference as was 

expected. The deflection difference between the load tests and the model is only 0.03 inches at a 

load of 26.4 kips. For the most part, the shape of the measured and computed load-deflection 

curves fit quite closely together for the first 0.5 inches. This suggests that as the round pile inside 

the CMS is loaded, it responds to the load like an independent round pile in compacted backfill.  

The confinement provided by the CMS is apparently sufficient to provide significant lateral 

resistance even with loose infill material. 

As the load increases the measured load-deflection curves for the round piles in the CMS 

exceeds the computed curve for the round pile model. The effect of the CMS begins to show in 

the load-deflection curve as the slope becomes steeper at about 0.5 inches of deflection as it 

crosses over the curve predicted by the individual round pile model. It appears as though the 

loose annular material compacts as the load-deflection curve reaches 0.5 inches of deflection. As 

the infill material is loaded by the pile it compacts and transfers the load to the CMS. Up until 

one inch of deflection the CMS with sand infill and the CMS with gravel infill have identical 

load-deflection curves. This validates the consistency in the test results as well as the interaction 

of the infill between the round pile and CMS.  
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As the two load-deflection curves in Figure 6-22 separate, the difference that the infill 

material makes in the pile resistance becomes apparent. Between 1.0 inch of deflection and 1.75 

inches of deflection there is a transition in the slopes for the load-deflection curves. The 

relatively linear midsection of the slopes begin to flatten out indicating yielding in the soil. This 

yielding is more dramatic in the sand infill as the p-y curve drops below that of the gravel infill. 

The gravel infill provides more resistance as it is able to handle increased load without deflecting 

as much as the sand infill. At 1.75 inches of deflection the CMS appears to have fully engaged 

the surrounding soil material. 

 

 

Figure 6-22: Round 12.75” Diameter LPile Analysis Compared to Round Piles with CMS 
Load Test Results 
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As shown in Figure 6-22, both p-y curves are parallel at the maximum loads shown by the 

last four data points. The points for the CMS with sand infill are offset by only 5 kips less than 

the CMS with gravel infill which is a difference of about 6% of the ultimate load. This indicates 

that at this stage of loading the piles engage the soil outside the CMS at about the same rate and 

that the soil provides the same rate of resistance. It was demonstrated in Figure 6-22 that an 

LPile model of a round pile with a diameter of 12.75 inches matches the load vs. deflection curve 

of the Round/CMS piles up to 0.5 inches of deflection. This model sets the lower bound of what 

resistance to expect from this pile structure. Another model needed to be created to match the 

upper limit of the load vs. deflection curves. For the model to be comparable a member with 

similar stiffness properties would need to be defined.  

 

Figure 6-23: Round 24” Diameter LPile Analysis Compared to Round Piles with CMS 
Load Test Results 
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A load vs. deflection curve was produced with the moment of inertia and modulus of 

elasticity of a 12.75 inch diameter round pile but with the diameter of the 24 inch diameter 

corrugated metal pipe pile.  As shown in Figure 6-23, the load–deflection curve computed by 

LPile with this model matched with the round pile in the CMS with gravel infill curve from the 

load test at deflections greater than about 1.75 inches.  At deflections less than 1.75 inches the 24 

inch round pile model overestimates the resistance.  From this model it seems that after a certain 

amount of deflection and loading the CMS engages the surrounding soil as a round pile of 

similar diameter.  

According to this analysis, the lateral resistance of the round-CMS pile structure can be 

defined within the bounds of a 12.75 and a 24 inch diameter round pile with the moment of 

inertia of the 12.75 inch diameter pile as shown in Figure 6-24. Fitting a linear transition between 

the two models at 0.5 inches of deflection and 1.75 inches of deflection creates a load-deflection 

curve that fits the CMS gravel infill curve very well as presented in Figure 6-25. This composite 

curve matches the initial and ultimate deflections and provides a fit for the transition period. This 

model indicates that initially the pile acts as a regular round pile and eventually receives the 

benefit of the diameter of the CMS as it deflects into the surrounding compacted sand.  As is 

apparent in Figure 6-25, the gravel infill material provided a higher resistance at ultimate loads 

when compared to the pile with the sand infill material. This suggests that using a sand infill 

material with less gravel can cause a reduction in ultimate loads, by 6% in the case of this test. 
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Figure 6-24: Round-CMS Piles with LPile Models for Round Piles of 24 and 12.75 Inch 
Diameter 

 

Figure 6-25 Round-CMS Pile Model Matched with a Composite Curve: Lower and Upper 
Bounds set by Round Piles of 12.75 and 24 Inch Diameter with Linear Transition Between 
0.5 and 1.75 Inches of Deflection
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7 CONCLUSION 

The conclusions of this research have been summarized in two sections, conclusions from 

the results of the load tests and conclusions derived from the lateral load analysis. 

Recommendations for further research have also been provided. 

 Test Results 

1. The square pile showed a 14% increase in resistance when compared to a round 

pile of comparable width, similar moment of inertia and the same density backfill.  

This result suggests that square piles develop larger soil resistance than round piles 

owing to differences in pile shape. 

2. The H pile orientated about its weak axis showed considerably less resistance when 

compared to the round pile of comparable width. It should be noted that the 

moment of inertia for the H pile about its weak axis is 59% of the moment of 

inertia for the round. 

3. There is no consistent test results to suggest that the use of HDPE sheeting on the 

round pile will cause a significant reduction in lateral pile resistance. However, the 

results of these tests were compromised on account of differing levels of 

compaction around the round piles.  

4. The use of a CMS increased the effective width of the round pile creating a larger 

failure wedge as stresses propagated through the infill and engaged the CMS. 
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Contrary to current belief, use of the CMS increased the overall lateral resistance of 

the pile. It was observed that the gravel infill deflected less than the sand infill 

under similar loads.  

5. Failure planes were seen propagating from the pile at angles of 43° from the H pile 

and a range of 37°-45° from the square pile. The size of the failure planes around 

the CMS also indicated that the CMS increases the effective width of the pile as it 

is loaded by the central pile. 

6. The maximum bending moment occurred at a depth below the ground surface of 

four feet for the round and square piles, six feet for the H pile, and eight to nine feet 

for the round piles with a CMS of larger diameter.  

7. According to rotation data of each pile, it was observed that pile rotation is a 

function of deflection at the head of the pile rather than correlation of pile shape or 

sleeve. 

8. The vertical ground displacement can be recorded with DIC cameras with 

reasonable accuracy. At a distance from the pile of four pile diameters the soil 

experiences less than 25% of the vertical heave at the face of the pile. This trend 

holds true for each pile shape tested and matches testing in stiff clay as well. 

9. The horizontal ground displacement with distance from the pile face show similar 

trends for laterally loaded piles of different shape and sleeve. Normalizing the 

results showed that at a distance of five pile diameters from the pile face the soil 

only experienced about 10% of the overall pile deflection. 

10. The amount of backfill, whether it be 15 ft, such as in phase 1, or 20 ft, such as in 

phase 2 or phase 3, did not have a large effect on the lateral resistance. This is 
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apparent in the test results for the round pile from Bustamante (2014) with 15 ft of 

constructed backfill when compared to the round test results in this study, both 

having similar load-deflection curves despite the differences in backfill amount. 

This suggests that after a pile has reached a certain embedment length, there is no 

increase in lateral resistance with increased embedment depth. 

 Lateral Load Analysis 

1. Compactive effort around a pile has a significant effect on the lateral resistance of a 

pile. Back-calculating the friction angle with LPile showed that the 6” lifts with the 

jumping jack compactor in phase 3 of compaction resulted in a higher friction than 

phase 2 of compaction which was placed in 12” lifts. 

2. LPile model is lower than the load test results. This is expected on account of the 

moment of inertia providing the only distinguishing factor in the current method. 

The Reese and Van Impe equivalent diameter approach suggests using a higher 

effective width for square and H piles but this amounts to a small adjustment from 

the LPile analysis, still underestimating the actual resistance of the pile. The shape 

factors suggested by Briaud and Smith applied to the F-y/Q-y mechanism 

overestimate the resistance of the piles resulting in a non-conservative estimation. 

3. P-multipliers of 1.25 for square piles and 1.2 for H piles were required to provide 

the closest agreement with the measured load tests. These same p-multipliers more 

accurately described the bending moment of the pile when compared to the 

measured bending moment of similar piles.  
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4. As suggested by this research and Bustamante (2014), it is recommended that 

design for square piles considers a p-multiplier in the range of 1.2 to 1.25 while 

design for an H pile should include p-multipliers of 1.2 to 1.35. 

 Recommendation for Future Research 

1. Further testing with HDPE sheeting is necessary to determine whether using the 

material as a sleeve greatly influences the lateral resistance. Possible studies could 

include the use of driven reinforced concrete piles where the contrast between a 

rougher surface such as concrete and the HDPE sheeting could be better observed. 

2. This is the first case of full scale lateral load testing of round piles in a CMS. There 

are many variations of this pile structure including the use of different infill 

material, construction techniques and various other pile shapes used as the central 

pile. Further testing on these variations could introduce new techniques to gain 

more lateral capacity. For instance, an H pile oriented about its strong axis with a 

corrugated metal sleeve could take advantage of the stiffness of the H pile along 

with the added diameter of the CMS.  

3. More testing on soil heave and deflection at further distances from the pile could 

provide valuable data on effective stress distance developed by lateral loading. This 

research looked at a distance of 5 ft from the pile face, observing a larger area 

would provide a better view of this phenomena. This information would have 

implications on pile spacing in groups and near other structures. 

4. This research tested H piles oriented about the weak axis. Additional testing on 

piles about their strong axis would provide a look at the contribution to an increase 
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moment of inertia as well as the different F-y and Q-y contributions of this 

orientation. It would be assumed that a flat pile face would provide more passive 

resistance whereas the side shear would be less along the sides. 
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APPENDIX A. ADDITIONAL LATERAL LOAD PLOTS  

As each separate pile shape was considered in the report it can be informative to see plots 

comparing all the pile shapes and load sets. The following plots provide such a comparison.  

A.1 Load-Deflection 

 

Figure A-1: Load Deflection Curves for all Pile Types  



148 
 

A.2 Pile Rotation with Lateral Load 

 

 

Figure A-2: Pile Rotation Curves for all Pile Types 
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A.3 Moment versus Depth 

Moment versus depth data was not available for the Square (2) or Round (2) with HDPE piles. 

 

Figure A-3: Moment vs Depth Plot for Pile Types at 0.25" of Deflection 
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Figure A-4: Moment vs Depth Plot for Pile Types at 0.50" of Deflection 
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Figure A-5: Moment vs Depth Plot for Pile Types at 1.0" of Deflection 
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Figure A-6: Moment vs. Depth Curves for a Round Pile at Various Load States 
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Figure A-7: Moment vs. Depth Curves for a Round Pile with an HDPE Sleeve Pile at 
Various Load States 
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Figure A-8: Moment vs. Depth Curves for an H Pile at Various Load States 
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Figure A-9: Moment vs. Depth Curves for a Square Pile at Various Load States 
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Figure A-10: Moment vs. Depth Curves for a Round Pile in a CMS with Sand Infill at 
Various Load States 
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Figure A-11: Moment vs. Depth Curves for a Round Pile in a CMS with Gravel Infill 
at Various Load States 
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A.4 Deflection with Distance from Pile for all Loads 

 

Figure A-12: Lateral Deflection with Distance from a Round Pile at Various Load States 

 

Figure A-13: Lateral Deflection with Distance from a Round (1) Pile in an HDPE 
Sleeve at Various Load States 
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Figure A-14: Lateral Deflection with Distance from a Round (2) Pile in an HDPE Sleeve at 
Various Load States 

 

Figure A-15: Lateral Deflection with Distance from an H Pile at Various Load States 
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Figure A-16: Lateral Deflection with Distance from the Square (1) Pile at Various Load 
States 

 

Figure A-17: Lateral Deflection with Distance from the Square (2) Pile at Various 
Load States 
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Figure A-18: Lateral Deflection with Distance from a Round Pile in a CMS with Sand Infill 
at Various Load States 

 

Figure A-19: Lateral Deflection with Distance from a Round Pile in a CMS with Gravel 
Infill at Various Load States 

  



162 
 

A.5 Heave with Distance from Pile for all Loads 

 

 

Figure A-20: Heave with Distance from Pile face for all Pile Types 
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APPENDIX B. API METHOD FOR CALCULATING LATERAL RESISTANCE IN 

COHESIONLESS SAND ABOVE THE WATER TABLE 

 1. List the soil and pile parameters
γ' = 0.075 pci α = 22.5
φ' = 45 degrees β = 67.5
b = 12.75 in Kp = 5.8
k = 395 psi K0 = 0.4

KA = 0.17

2. Obtain coefficients C1, C2, C3

 C1 = 7.3
 C2 = 5.7
 C3 = 211.4

*extrapolated from C curves

3. Compute the Ultimate soil resistance p u .
x = 16 in

p us  = 227.1
p ud  = 3244.6
p u  = 227.1

4. Compute coefficient A
A = 2.00

5. Compute p for different y values.
if y = 1.33 inch, k = 394.713 pci (from Figure 3-32)
p = 453 lb/in
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APPENDIX C. REESE AND VAN IMPE EQUIVALENT DIAMETER  

 

w = 12 in w = 12.2 in
d = 12 in d = 12.1 in

φ = 45 deg  C1 = 7.3
φ = 30 deg  C2 = 5.7
γ' = 7.6E-05 k/in2  C3 = 211.4

K = 1.00

x x fz Pus Pud Puc beq Pus Pud Puc beq

(ft) (in) (k/in2) (k/in) (k/in) (k/in) (in) (k/in) (k/in) (k/in) (in)
1 12 0.001 0.14 2.31 0.14 12.5 0.14 2.35 0.14 12.7
2 24 0.001 0.44 4.63 0.44 12.3 0.44 4.70 0.44 12.5
3 36 0.002 0.90 6.94 0.90 12.3 0.91 7.06 0.91 12.5
4 48 0.002 1.52 9.25 1.52 12.2 1.53 9.41 1.53 12.4
5 60 0.003 2.30 11.57 2.30 12.2 2.31 11.76 2.31 12.4
6 72 0.003 3.24 13.88 3.24 12.1 3.25 14.11 3.25 12.3
7 84 0.004 4.34 16.19 4.34 12.1 4.35 16.46 4.35 12.3
8 96 0.004 5.60 18.51 5.60 12.1 5.61 18.81 5.61 12.3
9 108 0.005 7.01 20.82 7.01 12.1 7.02 21.17 7.02 12.3
10 120 0.005 8.59 23.13 8.59 12.1 8.60 23.52 8.60 12.3
11 132 0.006 10.33 25.45 10.3 12.1 10.34 25.87 10.34 12.3
12 144 0.006 12.22 27.76 12.2 12.1 12.24 28.22 12.24 12.3
13 156 0.007 14.28 30.07 14.3 12.1 14.29 30.57 14.29 12.3
14 168 0.007 16.49 32.38 16.5 12.1 16.51 32.92 16.51 12.3
15 180 0.008 18.87 34.70 18.9 12.1 18.88 35.28 18.88 12.3
16 192 0.008 21.40 37.01 21.4 12.1 21.42 37.63 21.42 12.3
17 204 0.009 24.09 39.32 24.1 12.1 24.11 39.98 24.11 12.3
18 216 0.009 26.94 41.64 26.9 12.1 26.96 42.33 26.96 12.3
19 228 0.010 29.96 43.95 30.0 12.0 29.98 44.68 29.98 12.2
20 240 0.011 33.13 46.26 33.1 12.0 33.15 47.03 33.15 12.2

Avg = 12.3 Avg = 12.5

Square

H DimensionsSquare Dimensions

H

2
3 𝑷𝑷𝒖𝒖𝒖𝒖 = 𝑪𝑪𝟏𝟏 𝒙𝒙+𝑪𝑪𝟐𝟐  𝒔𝒔  𝜸𝜸′  𝒙𝒙

𝑷𝑷𝒖𝒖𝒅𝒅 = 𝑪𝑪𝟑𝟑  𝒔𝒔 𝜸𝜸′  𝒙𝒙
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APPENDIX D. BRIAUD AND SMITH F-Y/Q-Y MECHANISM 

 

  

k = 1.0 API
γ = 7.6E-05 kip/in3 Pile Shape Properties
φ = 45 deg SF (Ff) SF (Q) D
δ = 30 deg Square 1.76 1 12

Depth (z) = 1 ft Round 0.79 0.75 12.75

Round Square
y P Ff Q Ff Q P
in kip/in kip/in kip/in kip/in kip/in kip/in

0.00 0.00 0.000 0.00 0.000 0.00 0.0000
0.02 0.10 0.001 0.10 0.002 0.13 0.1363
0.04 0.20 0.002 0.19 0.005 0.26 0.2629
0.07 0.28 0.003 0.27 0.007 0.37 0.3724
0.09 0.34 0.005 0.34 0.010 0.45 0.4617
0.11 0.40 0.005 0.39 0.011 0.52 0.5307
0.13 0.43 0.005 0.43 0.011 0.57 0.5818
0.15 0.46 0.005 0.46 0.011 0.61 0.6187
0.17 0.48 0.005 0.48 0.011 0.63 0.6449
0.20 0.49 0.005 0.49 0.011 0.65 0.6631
0.22 0.50 0.005 0.50 0.011 0.66 0.6757
0.24 0.51 0.005 0.50 0.011 0.67 0.6844
0.26 0.51 0.005 0.51 0.011 0.68 0.6903
0.28 0.52 0.005 0.51 0.011 0.68 0.6943
0.30 0.52 0.005 0.51 0.011 0.69 0.6970
0.33 0.52 0.005 0.52 0.011 0.69 0.6989
0.35 0.52 0.005 0.52 0.011 0.69 0.7001

𝐹𝐹 = 𝑡𝑡𝑧𝑡𝑡𝑡𝑡𝑡𝑡 δ 𝐷(𝑆𝐹𝐹)
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k = 1.0 API
γ = 7.6E-05 kip/in3 Pile Shape Properties
φ = 45 deg SF (Ff) SF (Q) D

δ = 30 deg Round 0.79 0.75 12.75
Depth (z) = 1 ft H 1.76 1 12.1

Round H
y P Ff Q Ff Q P
in kip/in kip/in kip/in kip/in kip/in kip/in

0.00 0.00 0.000 0.00 0.000 0.00 0.0000
0.01 0.06 0.001 0.06 0.002 0.08 0.0851
0.03 0.12 0.001 0.12 0.003 0.16 0.1640
0.04 0.17 0.002 0.17 0.005 0.23 0.2324
0.05 0.21 0.003 0.21 0.006 0.28 0.2881
0.07 0.25 0.004 0.24 0.008 0.32 0.3314
0.08 0.27 0.004 0.27 0.009 0.35 0.3638
0.10 0.29 0.005 0.28 0.011 0.38 0.3874
0.11 0.30 0.005 0.29 0.011 0.39 0.4039
0.12 0.31 0.005 0.30 0.011 0.40 0.4153
0.14 0.31 0.005 0.31 0.011 0.41 0.4232
0.15 0.32 0.005 0.31 0.011 0.42 0.4286
0.16 0.32 0.005 0.32 0.011 0.42 0.4323
0.18 0.32 0.005 0.32 0.011 0.42 0.4348
0.19 0.32 0.005 0.32 0.011 0.43 0.4365
0.20 0.33 0.005 0.32 0.011 0.43 0.4376
0.22 0.33 0.005 0.32 0.011 0.43 0.4384

𝐹𝐹 = 𝑡𝑡𝑧𝑡𝑡𝑡𝑡𝑡𝑡 δ 𝐷(𝑆𝐹𝐹)


