
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-02-01

A Comprehensive Python Toolkit for Harnessing
Cloud-Based High-Throughput Computing to
Support Hydrologic Modeling Workflows
Scott D. Christensen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Civil and Environmental Engineering Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Christensen, Scott D., "A Comprehensive Python Toolkit for Harnessing Cloud-Based High-Throughput Computing to Support
Hydrologic Modeling Workflows" (2016). All Theses and Dissertations. 5667.
https://scholarsarchive.byu.edu/etd/5667

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5667?utm_source=scholarsarchive.byu.edu%2Fetd%2F5667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A Comprehensive Python Toolkit for Harnessing Cloud-Based High-Throughput

Computing to Support Hydrologic Modeling Workflows

Scott D. Christensen

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Norman L. Jones, Chair
E. James Nelson
Daniel P. Ames

Gustavious P. Williams
Alan K. Zundel

Department of Civil and Environmental Engineering

Brigham Young University

February 2016

Copyright © 2016 Scott D. Christensen

All Rights Reserved

ABSTRACT

A Comprehensive Python Toolkit for Harnessing Cloud-Based High-Throughput
Computing to Support Hydrologic Modeling Workflows

Scott D. Christensen

Department of Civil and Environmental Engineering, BYU
Doctor of Philosophy

Advances in water resources modeling are improving the information that can be

supplied to support decisions that affect the safety and sustainability of society, but these
advances result in models being more computationally demanding. To facilitate the use of cost-
effective computing resources to meet the increased demand through high-throughput computing
(HTC) and cloud computing in modeling workflows and web applications, I developed a
comprehensive Python toolkit that provides the following features: (1) programmatic access to
diverse, dynamically scalable computing resources; (2) a batch scheduling system to queue and
dispatch the jobs to the computing resources; (3) data management for job inputs and outputs;
and (4) the ability for jobs to be dynamically created, submitted, and monitored from the
scripting environment. To compose this comprehensive computing toolkit, I created two Python
libraries (TethysCluster and CondorPy) that leverage two existing software tools (StarCluster
and HTCondor). I further facilitated access to HTC in web applications by using these libraries
to create powerful and flexible computing tools for Tethys Platform, a development and hosting
platform for web-based water resources applications. I tested this toolkit while collaborating with
other researchers to perform several modeling applications that required scalable computing.
These applications included a parameter sweep with 57,600 realizations of a distributed,
hydrologic model; a set of web applications for retrieving and formatting data; a web application
for evaluating the hydrologic impact of land-use change; and an operational, national-scale, high-
resolution, ensemble streamflow forecasting tool. In each of these applications the toolkit was
successful in automating the process of running the large-scale modeling computations in an
HTC environment.

Keywords: cloud computing, high-throughput computing, Tethys Platform, GSSHA, hydrologic
modeling, Python

ACKNOWLEDGEMENTS

The process of earning a doctoral degree is no small undertaking, and to have gotten this

far is a tribute to all of the support I have received. While I cannot individually name everyone

that has helped me along my journey, I would like to thank a few of the people who have been a

significant part of it.

First, I must acknowledge that I have received divine help. I know God has been aware of

the details of my life and my research, and I believe that many of the solutions to problems that I

encountered along the way came through revelation.

I owe a lot to my parents, who instilled in me a value of education and have set an

example of being life-long learners. They taught me to get as much education as I could and have

made the opportunities that I have had possible by providing support encouragement.

I thank my advisors Norm Jones and Jim Nelson for the confidence that they showed in

me by inviting me to be a part of the CI-WATER team, and for the mentorship and friendship

they have given me these past several years. I also want to thank the other members of my

committee for their support and mentorship.

I am grateful to have had the opportunity to collaborate with great team members on the

CI-WATER project. Nathan Swain provided both vision and leadership in creating Tethys

Platform, and has been a good friend and support to me. I am lucky to have worked with Herman

Dolder on his Canned GSSHA research, with Jocelynn Anderson on her GSSHA Index Editor

app, and with Alan Snow in developing the Streamflow Prediction Tool. I have also benefitted

from working with Fidel Perez, Ezra Rice, Curtis Rae, and others.

Finally, I gratefully acknowledge my wife, who has sacrificed a lot to make this possible

for me. Her constant support has given me the hope and courage to continue day after day.

This material is based upon work supported by the National Science Foundation under

Grant No. 1135483.

iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

1 Introduction ... 1

2 Background and Related Work ... 6
 Distributed Computing ... 6

2.1.1 Distributed Computing Architectures ... 7
2.1.2 Computing Task Classifications ... 8
2.1.3 Computing Paradigms ... 10
 Cloud Computing ... 11
 HTCondor ... 12
 StarCluster .. 17
 Tethys Platform .. 17
 Related Work .. 20

3 TethysCluster: Automated Provisioning and Configuration of Cloud Resources 26
 Software Description .. 27

3.1.1 The Node Class ... 31
3.1.2 Cloud Providers .. 35
 Discussion ... 41

4 CondorPy: A Python Interface to HTCondor ... 44
 Software Description .. 45

4.1.1 Job-Centric Abstraction .. 46
4.1.2 Cross-Platform .. 48
4.1.3 Remote Scheduling ... 52
4.1.4 Job Templates ... 54
 Discussion ... 55

5 Computing Tools in Tethys Platform ... 59
 Compute API .. 60

5.1.1 Using TethysCluster in Tethys.. 61
5.1.2 Schedulers ... 62
 Jobs API .. 62

5.2.1 Job Manager .. 62
5.2.2 Tethys Job Templates ... 63
5.2.3 Jobs Table Gizmo ... 63
 Tethys Compute Admin Pages ... 65
 Discussion ... 68

6 Applications .. 71
 Canned GSSHA: Pre-computed Modeling for Flood Warning .. 71

6.1.1 Methods .. 72
6.1.2 Results ... 73
6.1.3 Discussion ... 76
 Data Access/Formatting Apps .. 77

6.2.1 Methods .. 79
6.2.2 Results ... 82
6.2.3 Discussion ... 84
 GSSHA Index Editor .. 85

v

6.3.1 Methods .. 86
6.3.2 Results ... 88
6.3.3 Discussion ... 88
 Streamflow Prediction Tool .. 89

6.4.1 Methods .. 90
6.4.2 Results ... 91
6.4.3 Discussion ... 92

7 Discussion and Conclusions ... 94
 Technical Contributions ... 94
 Future Work .. 95

7.2.1 Enhancements to TethysCluster .. 96
7.2.2 Enhancements to Tethys Compute .. 96
7.2.3 Additional Applications .. 97

References ... 99

Appendix A Software Availability .. 105
 TethysCluster .. 105
 CondorPy .. 105
 Tethys Compute (Tethys Platform) .. 105

vi

LIST OF TABLES

Table 6-1. Summary of Compute Time for the Canned GSSHA Parameter Sweep 74

Table 6-2. Summary of Statistics for Individual Model Runs and the HTCondor Pool 75

Table 6-3. Summary of Processing Time on the SSW Downloader Tethys App for Three
Datasets.. 84

Table 6-4. Results of Computation Time Based on Area and the Number of Reaches 92

vii

LIST OF FIGURES

Figure 1-1. Overview of the software projects I created, and contributed to in my research.4

Figure 2-1. Overview of distributed systems (Foster, Zhao et al. 2008) ...9

Figure 2-2. Possible configurations of an HTCondor pool. ...13

Figure 2-3. Major processes in an HTCondor (Thain, Tannenbaum et al. 2005).14

Figure 2-4. Customized instances of Tethys Portal. ..19

Figure 2-5. Component diagram for Tethys Platform. ..20

Figure 3-1. StarCluster can provision an HTCondor pool of Linux virtual machines on
Amazon Web Services. ..27

Figure 3-2. TethysCluster can provision HTCondor pools of Linux virtual machines on
Microsoft Azure and both Linux and Windows Machines on Amazon Web Services.28

Figure 3-3. Unified Modeling Language (UML) diagram showing classes and their
relationships in the StarCluster code. ...29

Figure 3-4. UML diagram showing classes that I modified and the classes and modules that
I added in TethysCluster. ..30

Figure 3-5. Implementation of the set_hostname method in the LinuxNode subclass.32

Figure 3-6. Implementation of the set_hostname method in the WindowsNode subclass.32

Figure 3-7. UML inheritance diagram showing the subclasses of the Node class.33

Figure 3-8. The make_node method in the NodeManager class determines the type of node
that should be made based on the platform attribute of the VM instance that is passed
in. ..34

Figure 3-9. Detail UML diagram of the azureutils module showing the parallel structure to
the awsutils module. ...37

Figure 3-10. Modified method in the TethysClusterConfig class that determines which cloud
provider class to instantiate. ...38

Figure 4-1. Class relationship UML diagram for the classes in CondorPy.45

Figure 4-2. UML diagram for the CondorPy Job class. ...46

Figure 4-3. UML diagram for the CondorPy Workflow class. ..49

Figure 4-4. UML Diagram for the CondorPy Node class. ...49

viii

Figure 4-5. Diagrams of various workflows showing the levels of complexity that can be
represented in CondorPy. ...50

Figure 4-6. Code for the custom decorator that ensures HTCondor CLI commands are
executed from the job’s working directory. ...51

Figure 4-7. The submit method of the HTCondorObjectBase class, which parses the output
of a submit command using a regular expression to get the cluster id.52

Figure 4-8. UML diagram for the CondorPy HTCondorObjectBase class.54

Figure 4-9. Code sample for submitting an HTCondor job with CondorPy.55

Figure 5-1. Expanded Tethys Platform component diagram showing the sub-components of
Tethys Portal and the Tethys SDK. ..60

Figure 5-2. The Jobs Table gizmo. ..64

Figure 5-3. Tethys Portal admin page for Tethys Compute. ..65

Figure 5-4. Tethys Portal admin page for creating/editing clusters. ..66

Figure 5-5. Tethys Portal admin page Tethys Compute Settings. ...67

Figure 5-6. Tethys Portal admin page for creating/editing schedulers. ...68

Figure 5-7. Tethys Portal admin page for editing jobs. ...69

Figure 6-1. Summary of the steps in the Canned GSSHA study. ..73

Figure 6-2. The Canned GSSHA Tethys app allows users to explore the solution space of
the 57,600 archived simulations. ..74

Figure 6-3. Timeline showing the active computing time for running 57,600 GSSHA models
using HTCondor. ..74

Figure 6-4. The Simple Subset Wizard web tool allows users to obtain subsets of large data
sets. ...78

Figure 6-5. Links for downloading data from the SSW...79

Figure 6-6. SSW Downloader Tethys app. ..80

Figure 6-7. Convert NetCDF to GSSHA Input Tethys app. ..81

Figure 6-8. Summary of steps in developing the data access and formatting apps for use in
GSSHA models. ...82

Figure 6-9. Soil moisture data from the NLDAS data set over the larger domain.83

ix

Figure 6-10. Soil moisture data from the NLDAS data set over the smaller domain.83

Figure 6-11. Hourly precipitation for April 2015 near Austin, Texas. ..84

Figure 6-12. Plot of the processing times for various datasets with 1 or 2 variables on a large
or small domain. ...85

Figure 6-13. Map interface of the GSSHA Index Map Editor Tethys app.87

Figure 6-14. Summary of steps in creating the GSSHA Index Map Editor app.88

Figure 6-15. Example results of GSSHA Index Map Editor app workflow.89

Figure 6-16. Summary of steps for setting up the Streamflow Prediction Tool.91

Figure 6-17. The Streamflow Prediction Tool displaying streamflow forecasts for a reach in
the Great Basin Region. ..93

1

1 INTRODUCTION

Water resources models are often used to provide information needed to support

decisions affecting the safety and sustainability of society. Relative to traditional lumped

parameter models, spatially distributed, physics-based models such as Gridded

Surface/Subsurface Hydrologic Analysis (GSSHA) (Downer and Ogden 2004) have increased

applicability and accuracy, allowing for better-informed decisions. However, these advantages

come at a cost; sophisticated models are generally (1) more complex, and (2) require more time

and computational resources to run. To handle the issue of increased complexity, including the

often significant amount of data manipulation and file management in both the pre- and post-

processing, and to ensure that the process is repeatable, it is increasingly common to create

scripted modeling workflows. When these workflows are integrated into web-based applications

they become more broadly accessible and have more wide-reaching influence (Swain, Latu et al.

2015). Still, addressing the issue of needing access to additional computational resources to run

sophisticated models remains a challenge. The purpose of this research has been to investigate

methods to facilitate access to sufficient resources in computationally demanding modeling

workflows and web applications.

Typically water resources models are run using powerful desktop workstations, yet there

are many modeling applications that require a significant number (possibly millions) of model

runs, such as calibration, parameter sweeps, uncertainty analysis, and parent-child models, which

2

can take hundreds of thousands of CPU hours and cannot reasonably be supported by even the

most up-to-date hardware. To accomplish these modeling tasks, additional computing power is

needed. To illustrate, it is often necessary to account for uncertainty in water resources models.

Uncertainty is inherent in modeling because of natural variability and parameter uncertainty

(Smemoe 2004), structural noise (Doherty and Welter 2010), or unknown future conditions. A

common way to understand and characterize this uncertainty is to perform a stochastic analysis

that necessitates hundreds or thousands of model runs. It is not uncommon for a single

simulation to take several hours to run on a desktop workstation; to run several thousand

simulations may take years! Without additional computational resources this type of modeling

task would be unfeasible.

The traditional approach for accessing large-scale computing resources is high-

performance computing (HPC) using supercomputers or computing clusters. However, for many

organizations, acquiring, operating, and maintaining this type of hardware is not cost-effective,

especially if the computational demand is sporadic and does not require near full-time utilization

of the resources, as is often the case with modeling applications. Yet, without access to the

necessary computing resources, scientists and engineers are limited in their ability to perform

important modeling tasks (Humphrey, Beekwilder et al. 2012). An alternative method to get

access to more computing without the need to invest in additional computing infrastructure is

through high-throughput computing (HTC). HTC differs from HPC in that the objective is to

optimize the long-term performance, or the amount of computing (or throughput) that can be

done over a long time period (e.g. the number of jobs per month), rather than the short term

performance (e.g. the number of operations per second) (Livny, Basney et al. 1997). Using

HTCondor, a middleware used to configure HTC systems, this type of computing environment

3

can be set up with ordinary desktop computers (Litzkow, Livny et al. 1988). However, the

number of local desktop computers that are available may not be sufficient to handle the

computational load of some modeling tasks. Recent advances in cloud computing have made it

an ideal resource for large-scale computing because it provides universal access to on-demand,

scalable, and cost-effective computing resources. HTC systems can integrate both local desktop

computers and cloud resources enabling scientists and engineers to leverage existing hardware

while also providing the flexibility to scale using the cloud.

To facilitate the use of HTC and cloud computing in modeling workflows and web

applications a scripting toolkit is needed which meets the following requirements: (1)

programmatic access to diverse, dynamically scalable computing resources, (2) a batch

scheduling system to queue and dispatch the jobs to the computing resources, (3) data

management for job inputs and outputs, and (4) the ability for jobs to be dynamically created,

submitted, and monitored from the scripting environment. I created two Python libraries,

TethysCluster and CondorPy, to meet these requirements. TethysCluster is based on another

Python tool called StarCluster and automates provisioning cloud resources and configuring those

resources into an HTC environment using HTCondor. CondorPy enables jobs to be created and

run in that environment by providing an interface to HTCondor. Together these libraries meet all

of the requirements listed above, and thus form a comprehensive Python computing toolkit.

To further facilitate accessing HTC and cloud resources in web applications, I used this

computing toolkit to add computing capabilities to Tethys Platform. Tethys Platform is a

development environment designed to lower the technical barriers of creating web-based

modeling applications (Jones, Nelson et al. 2014). I used TethysCluster and CondorPy as the

core elements in building Tethys Compute, a module in Tethys Platform that provides developers

4

with a software development toolkit (SDK) for integrating large-scale computing into web-based

modeling apps.

I tested TethysCluster, CondorPy, and Tethys Compute by using them to support various

other research applications including (1) pre-computing model results for flood scenarios using a

Latin hypercube sampling parameter sweep of a GSSHA model (Canned GSSHA), (2)

developing Tethys apps to access and reformat hydrologic data, (3) the GSSHA Index Map

Editor app, which evaluates the hydrologic impact of land-use change, and (4) the Streamflow

Prediction Tool, which performs ensemble streamflow forecasts. An overview of the software

projects that I developed and the applications that I contributed to is shown in Figure 1-1. The

arrows in the diagram indicate software that was used to support other projects.

Figure 1-1. Overview of the software projects I created, and contributed
to in my research.

5

This dissertation is organized as follows: Chapter 2 provides background and context,

describes related work, and states how my research has built upon and expands previous work.

The Python libraries TethysCluster and CondorPy are described in Chapters 3 and 4,

respectively. Chapter 5 presents the Tethys Platform computing tools. Chapter 6 discusses

several applications and test cases. And finally, I discuss the conclusions and contributions of my

research, and possibilities for future research in Chapter 7.

6

2 BACKGROUND AND RELATED WORK

This chapter provides background on computing technologies and tools relevant to this

research and describes advances that have been made in their use for water resources modeling.

First, a general background on distributed computing is provided with the goal of clarifying

terminology, followed by a more in-depth description of cloud computing and its benefits for

large-scale modeling. Next, some background is given on several tools that are of particular

relevance to this research, including the resource management and job scheduling system

(HTCondor), the cloud resource provisioning software (StarCluster), and the web-app

development platform (Tethys Platform). Finally, previous work that has used HTC and cloud

computing in water resources modeling is described while highlighting the need for a

comprehensive toolkit to facilitate accessing HTC in modeling workflows and web applications.

 Distributed Computing

Large computing tasks, such as those often required by water resources models, generally

depend on a distributed computing system. Distributed computing is a general term that refers to

any system that allows the decomposition of computing tasks to be computed simultaneously on

different processing elements (Buyya, Vecchiola et al. 2013). The field of distributed computing

has evolved so quickly that it has outpaced the terminology used to describe it. As a result, many

of the terms used in the field are overloaded and ambiguous (Foster, Zhao et al. 2008; Buyya,

Vecchiola et al. 2013). Since I use HTC and cloud computing to enable large modeling tasks,

7

this section is included in an effort to be clear about computing terms and to provide some

context for HTC and cloud computing. This section is organized into three subsections:

distributed computing architectures, computing task classifications, and computing paradigms.

2.1.1 Distributed Computing Architectures

The architecture of a computing system is the configuration of hardware components and

the software required to make it a functioning system. This subsection defines several terms used

to describe distributed computing architectures.

Supercomputers: Computers that are at the front line of computing hardware. They

typically are parallel systems, meaning that there are multiple, identical processors that

simultaneously operate on the same data using a single, shared memory space. This architecture

is also known as symmetric multiprocessor systems (SMP) (Buyya, Vecchiola et al. 2013).

Clusters: A form of parallel systems where computing nodes are tightly networked so

they can function as a single system. They are generally composed of commodity hardware

components and have distributed memory. Clusters are a low-cost alternative to supercomputers

and are designed to be capable of the same type of workloads (Buyya, Vecchiola et al. 2013).

Grids: A network of various computing components (traditionally supercomputers or

clusters, but more generally any heterogeneous computing elements) that use a software element

called middleware to combine the components into a unified system (Rouholahnejad, Abbaspour

et al. 2012; Buyya, Vecchiola et al. 2013). Grids came about because there were many

supercomputing clusters that were often idle and many computational tasks that required more

capacity than could be offered by a single cluster. The term “grid” stems from the utility sector

8

and captures the idea that computing power can be offered on-demand as a public utility (Foster,

Zhao et al. 2008).

Cloud Computing: On-demand computing, network, and storage services, and

applications delivered via the Internet with a pay-per-use pricing model (Amazon Web Services

2014). Cloud computing relies heavily on the concept of virtualization, which enables raw

hardware to be combined virtually to form a computing system (Buyya, Vecchiola et al. 2013). A

more complete definition of cloud computing is given in Section 2.2.

Utility Computing: The idea that computing is a utility that can be distributed like

electricity or water (Foster, Zhao et al. 2008). This idea of computing was the inspiration for grid

computing and became fully realized with cloud computing.

There are a lot of overlaps and unclear boundaries among the different computing

architectures noted above. Figure 2-1, reproduced from work by Foster, Zhao et al. (2008),

shows the overlap of the various distributed system architectures.

2.1.2 Computing Task Classifications

Large computing tasks are often parallelized, or divided into sub-tasks, so they can take

advantage of distributed computing architectures. These tasks can be classified based on how

they are parallelized as either tightly coupled parallel or embarrassingly parallel.

Tightly Coupled Parallelization: The class of computing tasks that can be broken into

separate processing units, which can be run on separate processors, but where each unit is not

independent of other units, and therefore information must be passed between processors.

Information transfer often follows the Message-Passing Interface (MPI) specification that defines

9

how data are passed from one process to another (Lusk, Huss et al. 2012). This class of tasks

must be run on a tightly integrated architecture like a supercomputer or computing cluster.

Figure 2-1. Overview of distributed systems (Foster, Zhao et al. 2008)

Embarrassingly Parallel: Denotes tasks that can be broken into sub-tasks that are

completely independent from one another. Since each computing task is self-contained, there is

no message passing between processes and, therefore, fewer restrictions on the architectures that

can support this type of computing problem. Other names for this class of computing tasks are

pleasingly parallel, perfectly parallel, happily parallel, or bag-of-tasks.

10

2.1.3 Computing Paradigms

Several computing paradigms, or ways of handling various classes of computing

problems, have been proposed over time. While these paradigms don’t define a particular

architecture, they do have implicit hardware and middleware requirements (Buyya, Vecchiola et

al. 2013).

High-Performance Computing (HPC): Computing where the performance of the

processing units is crucial and is typically measured in floating-point operations per second

(FLOPS), or more commonly peta-FLOPS (a quadrillion FLOPS). Generally, HPC workloads

are performed on supercomputers or clusters where parallel, tightly coupled tasks can be

processed in a short period of time. While the strict definition of HPC refers to the performance

of the processing units of a system, this term is commonly used in a more generic sense to mean

any type of large or intense computing that cannot be done on a standard workstation and

necessitates a distributed computing system.

High-Throughput Computing (HTC): Computing where reliability and long-term

performance are crucial. HTC is typically measured in cycles (or jobs) per week or month. HTC

workloads are often embarrassingly parallel and are executed on heterogeneous distributed

systems. Whereas in HPC the performance of the processing units is crucial, in HTC the number

of processing units is of more concern. The main challenge of an HTC environment is

maximizing the computational resources that are available (Livny, Basney et al. 1997).

Many-Task Computing (MTC): A computing paradigm that seeks to bridge the gap

between HPC and HTC. The goal is to leverage a large amount of computing resources

(reminiscent of HTC), but over a short period of time to maximize the number of tasks per

second (similar to HPC). Tasks are generally heterogeneous and loosely coupled, using a shared

11

file system to communicate, but may not be embarrassingly parallel. The main concern of MTC

is scalability (Raicu 2009).

 Cloud Computing

Terms like “cloud computing” or “the cloud” have become quite commonplace and are

used in so many different contexts that their exact meaning is a bit ambiguous. Many definitions

have been proposed in the literature, yet the new and quickly evolving field has not yet

converged on a stable definition. Armbrust, Fox et al. (2010) gave a concise definition of the

cloud stating that it was “applications delivered as services over the Internet and the hardware

and systems software in the data centers that provide those services.” Vaquero, Rodero-Merino

et al. (2008) compiled early definitions in the literature and stated the most commonly included

characteristics were scalability, virtualization, and pay-per-use utility model. Perhaps the most

widely accepted definition is from the National Institute of Standards and Technology (NIST),

which states that the essential characteristics of the cloud are: on-demand self-service, broad

network access, resource-pooling, rapid elasticity, and measured service. The NIST definition

also includes three service models: infrastructure as a service (IaaS), platform as a service

(PaaS), and software as a service (SaaS); in addition to four deployments: public cloud, private

cloud, community cloud, and hybrid. Of special note is the hybrid cloud—a combination of a

private and public cloud—because it is often used to create the most cost-effective computing

cloud with truly elastic scalability by first using local computing resources when available before

using commercial cloud resources (Humphrey, Hill et al. 2011). This practice is termed cloud

bursting.

12

Cloud computing is an attractive resource for water resources modeling because cost-

effective, scalable computing can be accessed ubiquitously on-demand. It opens the door to

perform modeling at a scale that was previously only available to those with access to large

computing centers. Furthermore, if a modeling workflow is deployed as a web app, the step to

utilizing cloud computing is a natural one. Here a distinction is made between web apps that use

the cloud only to deploy their software as a SaaS and hydrologic apps that use IaaS cloud

computing to perform large computing tasks.

 HTCondor

HTCondor is a middleware that provides both job and computing-resource management

and enables HTC through opportunistic computing. It is probably the most commonly used

middleware for managing clusters, idle workstations, and grids (Buyya, Vecchiola et al. 2013).

Since I use HTCondor as an essential part of the computing toolkit, it is described here in detail.

HTCondor creates an HTC system by grouping, or “pooling”, network-connected

computing resources. A common example of an HTCondor pool is a set of lab or office

computers that are all on the same network and configured (through HTCondor) to be part of the

same computing system. Each computer in the pool is assigned one or more roles such as

matchmaker, resource, or agent. Background processes, called daemons, which are specified in

the computer’s HTCondor configuration file determine the role(s) of a computer. Each pool has

only one matchmaker, which serves as the central manager. All other computers in the pool are

resources and/or agents and are configured to report to the central manager. A resource is also

known as a worker, and is a computer designated to run jobs. And an agent, also known as a

scheduler, is a computer designated to schedule jobs. Any computer in the pool (including the

13

central manager) may function as both a resource and an agent. Figure 2-2 shows a possible

HTCondor pool configuration.

Figure 2-2. Possible configurations of an HTCondor pool.

To submit a job to the pool a user must create a file to describe the job requirements,

including the executable and any input or output files. This file is known as a problem solver.

The user submits the problem solver to an agent, which advertises the requirements needed to

run the job to the central manager. Similarly, each resource in the pool also advertises its

availability, capabilities, and preferences to the central manager. This advertising, from both the

agents and the resources, is done using a schema-free language called ClassAds. Periodically the

central manager scans the ClassAds from resources and from agents and try to match jobs and

resources that are compatible. When a match is made, the central manager notifies the agent and

14

the resource of the match. It is then the agent’s responsibility to contact the resource and start

the job. This interaction is handled by a process running on the agent, known as the shadow,

which communicates with a process running on the resource, called the sandbox. The shadow

provides all of the details required to execute a job, while the sandbox is responsible for creating

a safe and isolated execution environment for the job.

The entire sequence is known as the HTCondor kernel and is summarized in Figure 2-3

reproduced from (Thain, Tannenbaum et al. 2005).

Figure 2-3. Major processes in an HTCondor (Thain, Tannenbaum et al. 2005).

HTCondor was originally conceived with the goal of scavenging processing time from

idle desktop workstations (i.e. opportunistic computing) (Litzkow, Livny et al. 1988). This

concept alone enables organizations to create HTC systems without the need to invest in

additional computing resources by fully utilizing the computers they already own during times

when they would otherwise be idle (e.g., nights, weekends, or other times when a user is away

from the computer). However, the capabilities of HTCondor now extend beyond just

15

opportunistic computing. The core design philosophy of HTCondor, and the key that has given

the project success, is flexibility (Thain, Tannenbaum et al. 2005), which has allowed HTCondor

to expand to be able to combine diverse computing resources (including clusters, grids, and

cloud resources in addition to desktop computers), managed by different organizations with

differing goals and objectives, into one computing system.

Additional features of HTCondor extend its flexibility and capabilities. For example,

HTCondor is ideal for embarrassingly parallel batch jobs, but it also provides a way of executing

workflows using directional acyclic graphs (DAGs) (Couvares, Kosar et al. 2007). A DAG

specifies a series of jobs, referred to as nodes, that need to be run in a particular order and also

defines the relationships between nodes using parent-child notation. This allows for the common

situation where the output from a preliminary set of simulations is used as input for a subsequent

set of simulations. An alternative scheduler called a DAG Manager (DAGMan) is used to

orchestrate submitting jobs in the proper order to the normal scheduler. If a node in the DAG

fails, the DAGMan generates a rescue DAG that keeps track of which nodes are completed and

those that still need to run. A rescue DAG can be resubmitted, and it will continue the workflow

from where it left off. This provides a robust mechanism for executing large workflows or a

large number of jobs.

HTCondor provides several runtime environments called universes. The two most

common universes are the standard universe and the vanilla universe. The standard universe is

only available on Unix machines. It enables remote system calls so the resource that is running

the job can remotely make calls to the agent to open and read files, which means that job files

need not be transferred, but can remain on the submitting machine. It also provides a mechanism

called checkpointing. Checkpointing enables a job to save its state. Thus when a resource

16

becomes unavailable in the middle of executing a job (because, for example, a user starts using

the computer where the job is running), the job can start on a new resource from the most recent

checkpoint. The vanilla universe is the default universe and is the most generic. It requires that

the computing resources have a shared file system or that files be transferred from the submitting

machine to the computing resource. The vanilla universe does not provide the checkpointing

mechanism, and thus, if a job is interrupted mid-execution, it must be restarted on a new

resource. Various other universes are available and are described in greater detail in the user

manual (Condor Team 2014).

HTCondor also provides a mechanism, called flocking, for submitting jobs to more than

one pool of resources. Flocking enables organizations to combine resources while maintaining

control of their own pool. For a machine to be able to flock to a remote pool the remote

scheduler must be identified in the configuration on that machine. Additionally, the remote

scheduler must accept the machine to be flocked from in its own configuration. The submitting

machine will first try to match jobs in its native pool, but when resources are not available then it

will “flock” jobs to the remote pool. Generally, a remote pool will not have a shared file system,

so jobs that are flocked must enable the file transfer mechanism.

The standard way for interacting with HTCondor is through the command line interface

(CLI). HTCondor also provides several APIs, including a set of Python modules that interact

directly with ClassAds and the HTCondor daemons, allowing jobs to be created and submitted

with Python scripts (Condor Team 2014). These Python modules, known as the HTCondor

Python bindings, are currently only available for Linux and are targeted at a specialized audience

of developers (Bockelman 2013).

17

 StarCluster

StarCluster is a cluster provisioning software created at MIT for Amazon Web Services

(AWS) (StarCluster 2014). It allows users to create groups (or clusters) of virtual machines

(VMs) (or nodes) that are automatically configured to operate as a unified HTC system. Since I

created TethysCluster as a modified version of StarCluster, in this section I describe the

functionality of StarCluster before modification.

StarCluster requires the use of pre-built Amazon Machine Images (AMIs) to provision a

cluster of VMs, and currently only supports Ubuntu or CentOS images. The pre-build

StarCluster AMIs are publicly available and can be customized to include any necessary

software for a particular computing task.

StarCluster is written in Python and contains several high-level classes that represent the

cloud provider, computing clusters, individual nodes within the cluster, etc. It uses a plug-in

framework to configure nodes with the necessary settings to activate various features, like a job

management system. By default the Sun Grid Engine (SGE) plugin is included on all clusters for

job management, but there is also a plugin for HTCondor. StarCluster is designed with a CLI so

it can be used directly from a command line to set up and manage computing clusters. It also has

an application programing interface (API) so that provisioning and setting up computing clusters

can be automated with Python scripts. StarCluster code is open source and thus available for

further customization and adaptation.

 Tethys Platform

Tethys Platform is a free and open source software (FOSS) written in Python and

powered by the Django web framework (Jones, Nelson et al. 2014; Swain, Christensen et al. In

18

Press). It provides an environment for developing and hosting web-based, water resources

applications or “web apps.” This platform links together components that are needed to support

water resources web apps, including web geographic information systems (GIS), visualization,

data management, and computational resources. It provides a Python scripting environment in

the form of an SDK to lower the barrier to developing apps, and includes a web portal for easily

deploying them.

Tethys Platform leverages several other FOSS projects, which together make up the

Tethys software suite. Included in the software suite are: the web GIS projects GeoServer for

publishing spatial datasets as web mapping services (WMS), 52 North for providing

geoprocessing tools as a web processing services (WPS), and the PostgreSQL database with the

PostGIS extension for providing spatial data storage. In addition to the web GIS projects, the

software suite also includes a number of JavaScript libraries like OpenLayers and HighCharts to

help create interactive maps and charts in the browser. The computing capabilities of Tethys

Platform, which I added, rely on HTCondor.

Tethys Platform offers an SDK that helps developers interact with the various

components of the software suite and facilitates other aspects of web app development. The

Tethys SDK provides APIs to the components in the Tethys software suite as well as to several

external resources including CKAN or HydroShare for data storage, and to cloud computing

resources. In addition to these APIs, the SDK also has APIs powered by Django to facilitate

various aspects of web development including building web pages, user workspaces, and app-to-

app communication.

The Tethys Portal is a deployable web site that serves as the runtime environment for

apps that are developed with Tethys Platform. Django provides all of the core components of a

19

website, including a user management system and admin pages where the site can be configured

and customized. Different organizations can each host their own instance of a Tethys Portal,

brand and customize it, and install the apps that are suitable for their needs (Figure 2-4).

Figure 2-4. Customized instances of Tethys Portal.

In summary, Tethys Platform is a development and runtime environment for web apps.

Tools have been included specifically to support the needs of water resources web apps such as

web GIS elements and computing resources. An SDK is provided to facilitate the use of the

software suite included with Tethys Platform, in addition to external resources. In order for

Tethys to provide support for large modeling tasks it needs access to HTC systems and on-

20

demand, highly scalable computing resources. The Python toolkit developed by this research has

been integrated into the Tethys SDK to provide this functionality. The runtime environment for

the apps is powered by the Python web framework, Django, which also powers some of the

development tools that are part of the SDK. The various components of Tethys Platform that

have been described are shown in diagram in Figure 2-5.

Figure 2-5. Component diagram for Tethys Platform.

 Related Work

The computing tools described in the previous sections have been leveraged to facilitate

large-scale computing in various fields, and many examples are present in the literature (Li and

Mascagni 2003; Huang and Yang 2011; Fisch, Meißner et al. 2014; Petri, Li et al. 2014; Harvey

and Ji 2015). The water resources modeling community, however, has begun to adopt these tools

more recently. Efforts that have been made in applying and modifying these tools for water

resources applications are described below.

21

The use of cloud computing in water resources applications is an active field. Sun (2013)

created a simple watershed management app using Google services like Fusion Tables and

Google Maps. ModflowOnAzure is a cloud service built using the Microsoft Azure cloud and is

able to run batch MODFLOW jobs using Dropbox to sync files from a local machine to the

cloud (Liu, Sun et al. 2012). The ModflowOnAzure service was used in the CyberGIS project to

expand the computing resources from grid computing to the cloud (Behzad, Padmanabhan et al.

2011). Huang, Cao et al. (2014) created a similar system with Azure and Dropbox for running

contaminant transport models (MODFLOW and MT3DMS). Wu and Khaliefa (2012) created a

local cloud of commodity machines and linked them using Microsoft HPC Pack which they used

to run pump scheduling optimizations through a web portal. Hunt, Luchette et al. (2010) also

created an HPC Pack system for calibrating SWAT models, with the ability to cloud burst to

Azure. Humphrey, Beekwilder et al. (2012) used BeoPEST to calibrate MODFLOW models on

GoGrid. A Python module called cloudPEST created at the USGS facilitates provisioning

resources for running PEST on the Elastic Compute Cloud (EC2) from AWS (Fienen, Masterson

et al. 2013). Other similar cloud modeling applications are described in the literature (Wang, Tao

et al. 2008; Juve, Deelman et al. 2009; Luchette, Nelson et al. 2009; Lu, Jackson et al. 2010;

Subramanian, Liqiang et al. 2010; Kollet, Schumacher et al. 2011; Kim, Jung et al. 2012;

Gunarathne, Zhang et al. 2013; Miras, Jiménez et al. 2013; Delipetrev, Jonoski et al. 2014). All

of these cloud applications are specific to a particular modeling purpose, and in many cases a

particular model or workflow, and also are created for a specific cloud provider.

Glenis, McGough et al. (2013) created a more generic solution for running models in a

cloud-based system that also incorporates HTCondor. A CLI was developed to simplify the task

of provisioning a cloud computing cluster. They employ DeltaCloud to abstract the interface of

22

various clouds so their system is compatible with any cloud provider that is supported by

DeltaCloud. A so-called Cloud Enactor manages the jobs and provisions the VMs. HTCondor is

used for scheduling if the number of jobs submitted is larger than the number of VM instances.

The study used the system to run various flooding scenarios using the model CityCat. The details

of the system implementation were not described nor is the code openly available. However, this

example serves to illustrate the possibility of using cloud computing and HTCondor to create a

generic computing system to support water resources modeling.

There is a relatively new tool developed by the Microsoft Research team, called

SimulationRunner, that is designed for running parameter sweeps using either a Windows

executable, or one of several other supported programs including Python and Matlab (Liu, Zou et

al. 2015). It has a built-in batch scheduling mechanism, but currently only supports job

submission through its web interface. Data management is all handled through Azure Storage,

and input files can be uploaded through the web interface or retrieved from Dropbox. Output

files are automatically stored in an Azure Storage Container. While there are no licensing

restrictions for deploying an instance of SimulationRunner, it can only be deployed on Azure,

and the code is not publically available. Additionally, there is no mechanism for

programmatically provisioning resources or submitting jobs, and it is only capable of handling

simple embarrassingly parallel problems.

StarCluster (StarCluster 2014), while providing many of the same benefits as

SimulationRunner, also provides a way for programmatically provisioning resources, and since it

can use HTCondor, it has the ability to schedule embarrassingly parallel workflows as well as

hierarchical job workflows. Unlike many of the other systems previously described, StarCluster

creates generic HTC environments that are not specific to any modeling workflow or purpose.

23

However, it is limited in the type of VMs it can provision (only Linux), and it only works with a

single cloud provider (AWS).

In addition to the many examples of water resources applications that have leveraged

commercial cloud computing, there are also several examples in the literature of using

HTCondor to create HTC systems from local computing resources. For example, the

Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia is using

HTCondor to capture idle time on their organization computers consisting of 5000 nodes and ran

over 12,000 agricultural model jobs, each consisting of 325 different management scenarios, in

just over 10 days, rather than the estimated 30 years it would have taken to run the simulations

on a single computer (Zhao, Bryan et al. 2013). Furthermore, the agricultural model used in this

study required a Windows environment to run, an operating system that is uncommon for high

performance computing clusters, but was easily obtained using the existing desktop computers of

the organization, which eliminated the need to purchase additional, specialized computing

infrastructure. HTCondor has also been used to run hundreds of thousands of models while

applying the Bayesian inverse modeling technique Method of Anchored Distributions (MAD) to

find to find spatial random fields (Heße, Savoy et al. ; Osorio-Murillo, Over et al. 2015). These

examples highlight the benefits of using HTCondor to perform large-scale environmental

modeling, but they do not provide a way to use HTCondor in a scripting environment for

automating modeling workflows or for use in web applications. Taylor (2013) used Python

scripts to interact with HTCondor’s CLI in a Windows environment to automate the process of

using HTCondor to perform a stochastic analysis with the hydrologic model GSSHA. However,

these scripts were specific to the application and do not provide a general solution for scripting

HTCondor.

24

As stated earlier, there are four major requirements that are needed to provide a

comprehensive scripting toolkit for accessing HTC and cloud computing to support modeling:

(1) programmatic access to diverse, dynamically scalable computing resources, (2) a batch

scheduling system to queue and dispatch the jobs to the computing resources, (3) data

management for job inputs and outputs, and (4) the ability for jobs to be dynamically created,

submitted, and monitored from the scripting environment. None of the systems that were found

in the literature review provide all of these requirements in a generic, reusable form; however, I

leveraged some of these tools and previous work to provide a toolkit that does meet all four

requirements.

The features of the first requirement were met by building on the functionality already

provided in StarCluster. The only aspect that StarCluster lacked was to provide the desired

diversity of computing environments, which has two components: (1) diversity of supported

operating systems, and (2) diversity of supported cloud providers. Since StarCluster is open

source and written in Python, I modified it to enable creating clusters composed of both

Windows and Linux VMs, using either AWS or Azure. The modified form of StarCluster is

called TethysCluster and is described in Chapter 3.

The second and third requirements of the computing toolkit, a scheduling system and data

management, are both provided by HTCondor. TethysCluster uses HTCondor to configure the

clusters it provisions so these features are already built in to these clusters. While there are other

job management systems that could also have been chosen, HTCondor has the advantages of

providing opportunistic computing in addition to various runtime environments and mechanisms

of data management available through the different universes as explained in section 2.2.

25

The fourth requirement, a Python scripting environment for creating, submitting, and

monitoring jobs, is the last component needed to provide a comprehensive computing toolkit.

While HTCondor does have low-level Python bindings, they are only available on Linux

operating systems and do not have the level of abstraction desired to target the scripting tools for

scientists and engineers. In response, I created a higher-level, cross-platform Python interface for

HTCondor, called CondorPy, which is described in Chapter 4.

26

3 TETHYSCLUSTER: AUTOMATED PROVISIONING AND CONFIGURATION OF
CLOUD RESOURCES

To support various modeling workflows and web applications with unpredictable

workloads, a comprehensive computing toolkit needs to provide an automated way to provision

scalable computing resources. Furthermore, water resources models have various computational

requirements, so the tools need to be able to provide diverse resources to meet those

requirements. The flexibility and virtually infinite scalability of the cloud offers the computing

resources that are needed. However, provisioning cloud resources and configuring them into an

HTC system capable of processing water resources models is a complex and time-consuming

task. To make cloud-computing resources accessible from scripted modeling workflows and web

apps, the process of provisioning and configuring cloud resources must be automated.

StarCluster (described in section 2.4) is a Python tool that can automate provisioning cloud

resources and configuring them with HTCondor to operate as an HTC system, but it does not

provide the diversity of computing environments required for water resources applications since

it can only provision clusters of Linux VMs on AWS (Figure 3-1). I created a modified version

of StarCluster, called TethysCluster, that provides the necessary diversity (Figure 3-2).

27

Figure 3-1. StarCluster can provision an HTCondor pool
of Linux virtual machines on Amazon Web Services.

 Software Description

TethysCluster is adapted from StarCluster to provide greater flexibility in setting up a

computing environment by adding the capability to provision computing clusters with nodes

running the Windows operating system and to provision clusters using Microsoft Azure (Figure

3-2). It maintains backwards compatibility with AMIs that are created for StarCluster (although

some of the default configuration has changed).

28

Figure 3-2. TethysCluster can provision HTCondor pools of Linux virtual machines on
Microsoft Azure and both Linux and Windows Machines on Amazon Web Services.

The StarCluster code is organized with high-level classes like EasyEC2, Node, and

Cluster that represent the cloud provider, a single VM, and the group of VMs that form the

computing system, respectively (Figure 3-3). StarCluster is designed to work only with Linux

nodes on AWS, thus the Node class has elements that are specific to Linux, and the EasyEC2

class is specific to the AWS EC2 API. TethysCluster maintains the abstraction used by

StarCluster, but generalizes some of the classes so that they can provide a greater diversity of

computing resources (Figure 3-4).

29

Figure 3-3. Unified Modeling Language (UML) diagram showing classes and their
relationships in the StarCluster code.

30

Figure 3-4. UML diagram showing classes that I modified and the classes and modules that I added in TethysCluster.

31

3.1.1 The Node Class

The Node class represents a single node in a computing cluster and has methods that

handle the configuration of that node with the settings to make it function as part of the cluster.

The TethysCluster code generalizes the Node class to serve as the base class from which

operating system specific subclasses can be made. I extracted the methods of the Node class that

had code that was specific to Linux and put then a LinuxNode subclass. These were methods that

handled things like hostname configuration, managing user accounts, configuring Network File

Systems (NFS), generating SSH keys, and package management. These methods became (in

practice) abstract methods on the Node base class, meaning that subclasses would need to

implement them with code specific to an operating system. To add support for Windows nodes, I

created a WindowsNode subclass where I implemented these methods with code specific to the

Windows operating system. For example, the set_hostname method in the StarCluster Node class

used the Linux-specific program “hostname” to set the hostname of VM represented by the node.

I moved this code into the LinuxNode subclass (Figure 3-5) and implemented the set_hostname

method in the WindowsNode using the Windows Management Instrumentation Command-line

(WMIC) tool (Figure 3-6). Additionally, Windows requires that the system be rebooted to reset

the hostname, so the method also handles rebooting the system and waiting for it to come back

up. A UML diagram with the inheritance relationship between the Node class and its subclasses

is shown in Figure 3-7.

32

Figure 3-5. Implementation of the set_hostname method in the LinuxNode subclass.

Figure 3-6. Implementation of the set_hostname method in the WindowsNode subclass.

33

Figure 3-7. UML inheritance diagram showing the subclasses of the Node class.

34

StarCluster used a NodeManager class to create new nodes. In TethysCluster I modified

the make_node method of this class to determine the type of node that should be created based

on the VM instance that is passed in (Figure 3-8).

Figure 3-8. The make_node method in the NodeManager class determines the type of node
that should be made based on the platform attribute of the VM instance that is passed in.

Nodes are automatically configured into a unified computing cluster by running

commands remotely using secure shell (SSH). Linux VMs come with SSH, so configuring them

in this way is straightforward. Windows VMs, on the other hand, are generally not running SSH,

and therefore a customized Windows image must be created and configured to do so. For the

development of TethysCluster I configured the Windows VMs with the Linux emulator Cygwin,

which provided the SSH service needed to connect to them remotely.

Providing a Windows VM with SSH is only part of what is required to automatically

connect and configure it. SSH keys or certificates must also be configured to authenticate a

connection to a VM. Typically, cloud providers automatically configure Linux VMs with the

SSH key needed for the user to automatically connect to it, but Windows VMs, which are not

35

typically provisioned with SSH, do not get configured with the key. AWS provides a mechanism

to download instance metadata, including the necessary SSH public key, from the VM by

accessing a well-known server with the following permanent URI:

http://169.254.169.254/latest/meta-data/public-keys/0/ (Amazon Web Services 2016b). In the

Windows Amazon Machine Image (AMI) that I created for TethysCluster, I added a startup

script that downloads the SSH key from the well-known server location and adds it to the list of

authorized keys. Unfortunately, Azure does not provide a way to automatically retrieve SSH

keys on Windows VMs and therefore TethysCluster is not able to automatically configure

Windows clusters on Azure.

In summary, to allow TethysCluster to provision and configure Windows VMs (on

AWS), I added a WindowsNode subclass to the TethysCluster code. I also created a custom

Windows AMI and configured it with Cygwin, to provide an SSH connection, and with a startup

script, to retrieve the SSH key required to automatically connect to and configure the VM.

3.1.2 Cloud Providers

StarCluster has a module called awsutils that is used to simplify using the AWS API in

the ways that are needed by the StarCluster code. Generalizing this code to allow TethysCluster

to function on multiple cloud providers was more complicated than generalizing the Node class.

This is because the design of the StarCluster code is so tightly integrated with the AWS API and

relies on features that were unique to EC2 that, to truly generalize it, would require redesigning

the entire code base. Rather than pursuing this route, I wrote wrappers around the Azure API to

give it the same interface as the AWS API in a module called azureutils (see Figure 3-3). Since

there are fundamental differences between the architectures of the two clouds, there was not

36

always a perfect translation from the Azure API to the AWS API, but I made adaptations to

allow Azure to function in at least the most vital ways for the purposes of TethysCluster.

StarCluster relies on the following AWS API objects: SecurityGroup, PlacementGroup,

Instance, and Reservation. In the azureutils module I created corresponding classes that act as

wrappers for Azure API objects, but that have same interface (or partial interface, as needed by

the TethysCluster code) as the AWS objects. The SecurityGroup object wraps the Azure

HostedService object and is discussed in detail later. The PlacementGroup in AWS represents a

group of VMs that are located on the same physical hardware. This is inherently part of an Azure

HostedService, so the custom PlacementGroup object is just a wrapper around the custom

SecurityGroup object. The Instance object is a wrapper around the Azure RoleInstance, and a

Reservation in AWS represents a request to provision one or more VM instances, so the custom

Reservation object just contains a list of the custom Instance objects. These relationships and the

parallel organization of the awsutils and the azureutils moduels is shown in the UML diagram in

Figure 3-9.

The TethysClusterConfig class creates the object that represents the cloud provider. I

modified the get_easy_ec2 method in the StarCluster code to be get_easy_cloud and made it

determine the cloud provider class to instantiate based on the configuration file Figure 3-10.

37

Figure 3-9. Detail UML diagram of the azureutils module showing the parallel structure to the awsutils module.

38

Figure 3-10. Modified method in the TethysClusterConfig class that determines which
cloud provider class to instantiate.

A fundamental requirement that is at the core of the StarCluster design is that all the

nodes in a cluster need to be able to communicate with each other. This requires that each node

has a predefined hostname (e.g. master, node001, node002, etc.) and that the cloud provider

allows network traffic between the nodes and handles hostname resolution (i.e. translating the

hostname to the IP address). This way the images that nodes are made from can be pre-

configured with the hostnames (and hostname patterns) for other nodes in the cluster. The key to

getting this to work is what AWS calls a security group (SG) (Amazon Web Services 2016a).

SGs work like a virtual firewall where rules for network traffic are set up. StarCluster uses SGs

for two purposes. First, they are used to set network traffic rules allowing all of the VMs in a

cluster to communicate with one another; it is important to note that AWS automatically handles

hostname resolution within a security group. Second, SGs are used as a way of labeling or

tagging a group of VMs with a common name so that they can be identified as a cluster. When

StarCluster is used to provision a new cluster, it first creates a corresponding SG. Any VMs that

are then provisioned in that cluster are placed in that SG.

Although Azure recently created what is called a network security group (NSG), which

has many of the same purposes and functionality as an SG on AWS, there is a key difference:

39

hostname resolution is not handled automatically. This prevents TethysCluster from being able

to use NSGs on Azure in the same way that SGs are used on AWS because the configuration of

the clusters will not work without automatic hostname resolution.

To circumvent this problem, TethysCluster relies on what Azure calls cloud services,

which are represented by the HostedService class in the Azure API. This gets down to a

fundamental difference between AWS and Azure. In AWS’s EC2 the basic computing unit is a

VM instance, which is essentially a virtual server. On Azure the basic computing unit is a cloud

service (formerly hosted service). Cloud services were designed to support scalable web apps,

which traditionally have a web front end and a back end that handles the heavier computations.

Reflecting this structure, cloud services originally provided two roles (or types of VMs): a web

role and a worker role, each of which were configured using code that was bundled into a special

file called a cloud service package. Each role could have multiple instances, allowing the web

app to scale as needed. Therefore, a cloud service is a container that can host a group of role

instances; however, it only has a single public IP address and domain name. Eventually Azure

added support for the more traditional virtual machine architecture but did this by just creating a

new role type, called a VM role, in a cloud service. The implications of this are that there can be

multiple instances of a VM role in a cloud service that are all grouped behind one public IP

address (Plankytronixx 2014). Since Azure does handle hostname resolution automatically

within a cloud service (Microsoft 2016), and since a cloud service naturally groups VM instances

together, TethysCluster can use cloud services to accomplish the same two purposes that SGs do

on AWS.

However, a consequence of using cloud services is that although each VM instance has

its own private IP address and hostname, which allows them to communicate with each other

40

internally, there is only a single public IP address and domain name for all of the VMs in the

cloud service. This becomes problematic when connecting to individual nodes externally because

port 22, the default port for SSH connections, can only be mapped to one of the VMs in the

cloud service. TethysCluster solves this problem by mapping the local port 22 on each VM to a

unique external port. The master node is mapped to the external port 22 and all other nodes are

mapped using the pattern ‘22’ + [node-index], where node index is the index of the node (e.g. the

index for node001 is 001).

Another consequence of using cloud services is that the name of the cloud service is used

as the domain name. This creates some problems with the naming convention used for SGs.

StarCluster uses a naming convention to easily identify the SGs that represent clusters (i.e., that

were created by StarCluster), and to ensure that the names are unique from other SGs that are

created outside of StarCluster. The slightly modified convention used in TethysCluster is: @tc-

[cluster-name], where [cluster-name] is replaced by the name the user gives to the cluster. SG

names must be unique within an AWS account, which means that a user cannot create two

separate clusters with the same name. On Azure the name of the cloud service is also used as the

domain name, thus the naming convention is invalid (the @ symbol cannot be used in a domain

name). Moreover, domain names must be universally unique; so if a user of TethysCluster

somewhere in the world created a cluster named ‘mycluster’ then the corresponding domain

name would be taken and no other user of TethysCluster anywhere in the world could create a

cluster with the same name. It is reasonable to expect a user to create unique names for clusters

on their own account, but not have to create a universally unique name. To circumvent these

challenges, TethysCluster translates between the naming convention used throughout the code

and a separate naming convention used to name cloud services on Azure, which follows the

41

pattern: tc-[cluster-name]-[azure-subscription-id], where [azure-subscription-id] is a unique

identifier for the subscription being used.

StarCluster has utilities to aid in creating and verifying SSH keys that are required to

provision and connect to VMs on AWS. Azure uses SSH keys as well as Secure Sockets Layer

(SSL) certificates. I added utilities for working with SSL certificates to TethysCluster to

facilitate working with VMs on Azure.

To summarize, the design of the StarCluster code is so integrated with the AWS API that

generalizing it would require an almost entire rewrite of the code. To avoid this, I added support

for Azure by wrapping Azure API objects in custom objects that provide the same interface as

the AWS API objects. These custom objects essentially translate between the Azure objects and

the interface that is expected throughout the rest of the code and thus prevent the need to

completely rewrite the code in TethysCluster.

 Discussion

The primary purpose of creating TethysCluster was to allow clusters to be created with

Windows nodes so that computing resources could be automatically provisioned for models that

required a Windows environment. While StarCluster offers a rich set of features for working

with Linux nodes on AWS, TethysCluster currently only supports the most basic and essential

features for Windows nodes. The major features that TethysCluster does not yet support for

Windows nodes are being able to attach Elastic Block Store (EBS) volumes, configuring NFS,

and running graphical applications with X Windows System (X11). Though these features would

be useful on Windows nodes, they were not the primary focus of this research. Future research

might look at the possibility of adding these features.

42

As was discussed earlier, there are a few customizations that are required in order for a

Windows AMI to work with TethysCluster. This is not unusual since the Linux AMIs also

require some pre-configuration. The standard configuration for Linux nodes requires installing

some library dependencies, installing SGE and HTCondor, installing Python and any packages

desired, configuring NFS, and configuring root login though SSH. The configuration for the

Windows AMIs included installing Cygwin and several of the Cygwin packages (including

SSH), configuring the SSH server and allowing root login, opening port 22, setting up a startup

script to download the public SSH key, and installing HTCondor. Adding the features mentioned

above will likely consist of mostly (if not entirely) additional configuration of the Windows

AMI.

It is unfortunate and a bit ironic that Windows nodes could not be configured to work on

Azure. The only configuration step that is dependent on the cloud provider is getting the public

SSH key. AWS provides a URI that can be accessed by the node to download the key; however,

I was unable to find a comparable solution or work-around for Azure. Azure is a quickly

evolving cloud platform, and has recently released preview versions of a new Python API. It is

possible that a mechanism for retrieving the key will soon be available.

If the primary purpose of TethysCluster was to create a way to provision a cluster of

Windows nodes, which was successfully accomplished with AWS but not with Azure, then what

was the benefit of providing support for Azure? While the primary purpose was to create

diversity of computing environments, the underlying objective of a comprehensive computing

toolkit is to make computing more accessible to modelers. It is possible that in some situations a

modeler may have access to one cloud and not to another (for example, because of grants,

43

affiliation, or sponsorship). By making TethysCluster compatible with both Azure and AWS it

becomes a more flexible tool that provides greater access to computing resources.

So, if adding support for Azure was beneficial, why weren’t other cloud providers also

supported? Ideally, TethysCluster would be compatible with any and all cloud computing

providers. Unfortunately, because the cloud computing industry originated in the private sector

and grew so rapidly, standards were not established, and each provider created their own

infrastructure and API (Monteiro, Pinto et al. 2011). There are some efforts to create

interoperable APIs that interface with multiple cloud provider APIs, such as DeltaCloud (Apache

Software Foundation 2011); however, these currently only provide support for basic capabilities

that are common among most providers (like provisioning and deleting a VM). Since

TethysCluster has very specific requirements to enable it to configure VMs as a computing

cluster, APIs like DeltaCloud do not provide the support needed. StarCluster was designed

around the capabilities of AWS, and because of this research, suitable adaptations were made in

TethysCluster to allow it to function with Azure. It is possible that there are other clouds that

also have the features to support TethysCluster, but additional research would be needed to

evaluate other clouds and write wrappers around their APIs to function in TethysCluster.

44

4 CONDORPY: A PYTHON INTERFACE TO HTCONDOR

Modeling workflows and web applications need the capability to dynamically create,

submit, and monitor jobs in a scripting environment. For example, a user of a modeling web app

will enter job parameters into a web interface, and the server-side code of the app will need to

package the parameters into a job and submit it to a scheduling system to be executed.

HTCondor pools provisioned with TethysCluster as described in Chapter 3 provide the compute

resources and scheduling system. The next step is to create a Python library that can take

advantage of all of the necessary features of HTCondor to create, submit, and monitor jobs.

While HTCondor currently has Python bindings that could be used in a scripting environment,

they are only available on the Linux distribution, and they are designed to be low-level, targeting

power users who have extensive knowledge of HTCondor’s ClassAds and daemons. For the

objectives of a comprehensive computing toolkit, a high-level, cross-platform HTCondor

interface is needed. Work done previously at Brigham Young University used high-level Python

scripts for performing stochastic analysis with hydrologic models using HTCondor (Taylor

2013). These scripts would use Python to write a job description file and then would submit it

using the HTCondor CLI. This allowed HTCondor to be programmatically accessed from

Windows through Python. I used this same pattern to develop CondorPy, but designed it to be

more general and expandable.

45

 Software Description

CondorPy is a simple Python interface to HTCondor that facilitates using HTC to execute

large modeling tasks from a scripting environment. To accomplish this, I designed the code to

meet the following objectives: (1) provide a high-level, job-centric abstraction; (2) have cross-

platform functionality; (3) allow remote job scheduling; and (4) offer a job template system to

provide reasonable defaults and eliminate repetitive job configuration. The UML diagram in

Figure 4-1 shows a class relationship diagram of the classes that I developed to meet these

objectives. The following subsections describe how these classes were implemented.

Figure 4-1. Class relationship UML diagram for the classes in CondorPy.

46

4.1.1 Job-Centric Abstraction

CondorPy uses a high-level, job-centric abstraction, allowing the modeler to focus more

intuitively on the computing job and not have to worry about the various system components of

HTCondor, such as the scheduler, the job queue, etc. A job-centric abstraction means that a user

of CondorPy can create a job object and perform all needed actions (i.e. submit, wait, status,

remove, etc.) directly on that object. Figure 4-2 is a detailed UML diagram of the Job class

showing its properties and methods.

Figure 4-2. UML diagram for the CondorPy Job class.

47

The only required parameter when creating a job object is the name. The job name not

only identifies the job, but also is used to create a job submission file, log files, and the initial

directory for the job. The initial directory acts as the home base for that job and is where the job

submission file and the log file(s) get written and where any files created by the job are copied

back to (when using the file transfer option in HTCondor). The initial directory is automatically

created in the job’s working directory, which is, by default, the system’s current working

directory (CWD) when the code is executed, but can be set as any directory. The input files that

are required for the job are referenced relative to the initial directory. It is possible to use a

different name for the initial directory, and even the name of a directory that already exists, but

by default a directory is created using the name given to the job.

Additional job attributes can be passed in as a Python dictionary when creating a job

object or added later. Job attributes are key-value pairs and can be any of the submit description

file commands that are described in the HTCondor user manual (Condor Team 2014). The

executable property, while not required when creating a job object, must be set before the job can

be submitted. Unlike the input files, which are defined relative to the initial directory, the

executable is defined relative to the job’s working directory. This is a result of the way

HTCondor handles these parameters.

The Job class in CondorPy provides as set of action methods, such as submit, wait,

remove, and edit, that allow job objects to interact with HTCondor. The commands rely on the

HTCondor CLI, which is discussed more in the following section. Objects created from the Job

class also have several properties. Notably, the status property is dynamically updated by calling

the appropriate CLI command. Since a job can be made up of multiple sub-jobs each with their

own status, the status property represents the status of all of the sub-jobs. If the status of all of

48

the sub-jobs is the same, then that is the value of the status property. If the sub-jobs have

different statuses, then the value of status will be ‘various’. There is an additional property called

statuses that returns a list of the individual sub-job statuses so that the actual status of each sub-

job can be examined.

In addition to the Job class, CondorPy also provides a Workflow class to represent a

DAG. The Workflow class follows the same pattern as the Job class, but allows users to create a

set of jobs, define hierarchical relationships among them, and submit them all as a single

workflow. To define the relationships between jobs, CondorPy uses node objects. A node is a

wrapper for a job object that has additional attributes to define parent and child relationships to

other node objects. Figure 4-3 and Figure 4-4 show UML diagrams listing the properties and

methods of the Workflow class and the Node class, respectively. The relationships among the

jobs in a workflow can be as simple or complex as needed, or even have no relationship to each

other at all (as would be the case for a simple parameter sweep. Figure 4-5 shows various

diagrams of possible job relationships within a workflow. The purple boxes represent the nodes

and the red arrows indicate a relationship going from the parent node to the child node.

4.1.2 Cross-Platform

One of the objectives of CondorPy is to be cross-platform so that it can be used in any

environment that HTCondor can run in, which in many cases for water resources modeling is a

Windows environment. This means that it cannot use the native Python bindings of HTCondor

since these are only available on the Linux platform. For this reason, CondorPy is built around

HTCondor’s CLI, which has the same interface on all platforms. Using the CLI also allows

49

Figure 4-3. UML diagram for the CondorPy Workflow class.

Figure 4-4. UML Diagram for the CondorPy Node class.

50

Figure 4-5. Diagrams of various workflows showing the levels of complexity that can be
represented in CondorPy.

CondorPy to use the more intuitive language of the job description file, rather than the ClassAd

language used by the native Python bindings.

CondorPy wraps the HTCondor CLI commands that interact with the job in methods on

the Job and Workflow classes. All of these methods provide reasonable default options, but can

accept custom options. Any options that can be passed to the CLI commands can be passed to

these methods as a string or list of strings. It is important that the system’s CWD is set as the

job’s working directory when these methods are executed so that relative paths can be resolved

properly. By default, the job’s working directory is the system’s CWD, but if a different working

directory is defined for the job then CondorPy changes the system’s CWD to be the job’s

51

working directory before executing methods that require it and then change it back once the

method returns. This is done using a custom Python decorator that I created (Figure 4-6).

Figure 4-6. Code for the custom decorator that ensures HTCondor CLI commands are
executed from the job’s working directory.

To submit a job using the CLI, CondorPy must write the job description file to disk and

then execute the CLI submit command. To identify and interact with the job later, CondorPy

saves the job ID that is created when the job is submitted. Since the CLI is used to execute

commands to HTCondor, getting feedback from the commands requires parsing the output from

the command line. Regular expressions are used to match the output and extract the pertinent

parts (e.g. the job ID). This is not as efficient as using the native Python libraries, but the

overhead from doing this is generally small in comparison to the runtime of the job.

52

Figure 4-7. The submit method of the HTCondorObjectBase class, which parses the output
of a submit command using a regular expression to get the cluster id.

4.1.3 Remote Scheduling

Remote job submission decouples the submitting machine from the HTCondor

computing resources by not requiring that HTCondor be installed on the submitting machine.

This feature of CondorPy accomplishes many of the same things as the HTCondor add-on

package RemoteCondor (Condor Team 2010), but it does it in different ways. First,

RemoteCondor is written in Bash, whereas the remote scheduling component of CondorPy is

written in Python, allowing CondorPy to maintain cross-platform functionality. Secondly, while

RemoteCondor is configured to work with a single remote scheduler, in CondorPy each job can

be configured to submit to a separate scheduler. Both RemoteCondor and CondorPy execute

HTCondor commands on the remote machine via SSH, however RemoteCondor uses SSH

Filesystem (SSHFS) to mount the remote file system locally to accommodate file transfer, while

CondorPy uses a Python implementation of Secure Copy Protocol (SCP) to transfer files to and

from the remote scheduler, again to maintain cross-platform compatibility. RemoteCondor

requires that all of the necessary files are located on the mounted remote file system. CondorPy

53

requires that the user provides a list of local paths to the files that will be copied over to the

remote scheduler. This list is the remote_input_files property of a CondorPy job object.

CondorPy creates a directory on the remote scheduler using a universally unique identifier

(UUID) for the name, and all the files listed in the remote_input_files property are copied into

that directory. The job’s initial directory is also created in that remote directory, so when

specifying file paths in the job attributes, such as executable, or input_files, they should be the

paths relative to the initial directory on the remote scheduler.

The remote scheduling feature of CondorPy allows modelers to use an HTCondor

computing pool without having to install and configure HTCondor on their computer. This is just

one of the ways that CondorPy eases the burden of using HTCondor for modeling. Also, this is a

valuable feature for integrating HTCondor into web applications where having HTCondor

installed on the front end web server may not be desirable.

All of the code that is needed to interact with the remote schedule is the

HTCondorObjectBase class, which is the parent class for both the Job class and the Workflow

class. This gives both subclasses the remote capability while keeping the code for handling

remote interactions in one place. A UML diagram showing the properties and methods of the

HTCondorObjectBase class is shown in Figure 4-8.

54

Figure 4-8. UML diagram for the CondorPy HTCondorObjectBase class.

4.1.4 Job Templates

To further simplify job creation, I created job templates, which make it easy to include a

group of commonly used job description attributes together with reasonable defaults where

possible. For example, the base template configures all of the logging files. The

vanilla_transfer_files template builds on the base template and adds job attributes needed for a

job running in the vanilla universe using the file transfer mechanism. By using job templates, a

modeler need only worry about a few key job attributes such as the job executable and the input

files, while attributes that deal with the Condor environment are abstracted away. The sample in

Figure 4-9 illustrates how to create a job from a job template and submit it with CondorPy using

a few short lines of Python code.

55

Figure 4-9. Code sample for submitting an HTCondor job with CondorPy.

While Job templates ease the burden on the modeler by preconfiguring many job

attributes, any attribute from a template can be overwritten. Thus templates can be used to

simplify the process of creating a job, but they do not restrict the user from accessing any of the

options of HTCondor. In addition to the job templates that I included in CondorPy, I also created

a way for custom templates to be loaded from file.

 Discussion

I created CondorPy to facilitate automating modeling tasks that require HTC by

providing a simple interface for HTCondor. In this section I describe the motivation and rational

for the design choices and the broader implications of CondorPy.

First, why does the hydrologic modeling community need a Python interface for

HTCondor? Before addressing the specifics of this question it is helpful to first answer the more

general question of why a scripting language is needed to access computing resources. As

hydrologic models are becoming more sophisticated, they typically require larger amounts of

data, and larger amounts of computing resources. The data are often spatially distributed and

may come from many different sources and in many different formats. Creating scripts to

56

retrieve, combine, and reformat data can save a significant amount of time, especially if the

process needs to be repeated. Also, these scripts document the provenance of the data that is used

in a model, which is critical for research. When modeling requires large-scale computing, such

as an HTC system, then the process of executing the models also becomes much more complex,

and scripting the process yields the same benefits of time-savings and reproducibility.

Furthermore, scripting the entire processes from data manipulation to model execution is

necessary for automating modeling workflows, which can be deployed on the web to make them

more easily accessible to end users. Thus, having a scripting interface to access computing

resources facilitates the modeling processes. So, turning back to the original question of why a

Python interface is needed for HTCondor, there are two specifics that still need to be addressed:

why Python?, and why HTCondor?

Python is a general-purpose, cross-platform language that has an expressive and easily-

readable syntax and is widely adopted by the scientific community for scientific computing, web

development, and for “steering” workflows (Oliphant 2007; Pérez, Granger et al. 2011). Since

CondorPy was designed to be used by scientists and engineers to facilitate accessing computing

resources in modeling workflows and in a web environment, Python was a natural choice.

HTCondor is one of many job scheduling and managing middleware that could be used to

provide access to large-scale computing resources. It is a leader, however, in its ability to

scavenge idle processing time from regular workstations, making it possible for modelers to gain

access to an HTC system without the need to invest in additional infrastructure. Additionally,

HTCondor is cross-platform and has the flexibility to be used with almost any computing

resource including cloud resources.

57

If, as has been stated, the modeling community does indeed need a Python interface for

HTCondor, then why aren’t the native Python bindings sufficient, or at the very least why

doesn’t CondorPy use these bindings to build from? Although, the native Python bindings are

more efficient than parsing the output from the CLI, they are only available on Linux. The CLI,

on the other hand, has the same interface on all platforms allowing CondorPy to be cross-

platform, which is important as many hydrologic models natively run in Windows. The use of

the CLI also allows CondorPy to use the notation of the submit description file, which is more

human-readable than the ClassAd notation, making CondorPy more approachable by those not

well-versed in HTCondor.

I have explained the rationale for selecting the foundational components that I used to

build CondorPy, and I will now focus on the design objectives. The four design objectives of

CondorPy emerged while working to generalize the Python scripts created by Taylor (2013) for

use in other modeling applications, including web-based applications, and I formed each

objective with the goal of simplifying the process of working with HTCondor. The first

objective, providing a job-centric abstraction, allows modelers to work with the code in a natural

way, and makes the code easy for others to read and maintain. Next, having cross-platform

functionality gives modelers the flexibility to work in the environment most suited to their

model. Providing remote job scheduling has two purposes: First, it is common for modelers to

work from laptops where it may not make sense to install HTCondor; remote job scheduling

allows for jobs to be submitted from a computer where HTCondor is not installed as long as it

can connect to a remote scheduler. The second reason is for using CondorPy in a web

environment; remote submission allows the duties of an HTCondor agent (e.g. maintaining a job

queue and advertising jobs to the central manager) to be offloaded from the main web server.

58

Finally, the job template system was created to eliminate the repetitive parts of creating a new

job, such as setting up logging files, and to reduce the number of job settings that the user needs

to specify.

59

5 COMPUTING TOOLS IN TETHYS PLATFORM

One of the main motivations for creating a comprehensive computing toolkit is to provide

a way for accessing computing resources in a web development environment. While it is

increasingly popular to deploy complex modeling workflows as web applications (or web apps),

integrating all of the components required for such apps can be a significant barrier (Swain, Latu

et al. 2015). As part of a National Science Foundation-funded project, called CI-WATER, that

enhanced the cyberinfrastructure for water resources, we developed a tool called Tethys Platform

which lowers this barrier by providing a web development platform that incorporates many of

the visualization, geospatial, and computational components needed in water resources web apps

(Swain, Christensen et al. In Press). In addition to other contributions, I added the Tethys

Compute module to Tethys Platform. Tethys Compute leverages TethysCluster and CondorPy to

provide a comprehensive computing toolkit within the Tethys Platform development

environment. Access to these tools is provided through the Compute API and the Jobs in the

Tethys SDK as well as through the Tethys Compute admin pages in Tethys Portal. Figure 5-1 is

an expanded Tethys Platform component diagram that indicates the specific components in

Tethys Portal and the Tethys SDK that I created or contributed to as part of the Tethys Compute

tools.

60

Figure 5-1. Expanded Tethys Platform component diagram showing the sub-components of
Tethys Portal and the Tethys SDK.

 Compute API

I designed the Compute API to enable provisioning cloud computing resources and

getting access to those resources. It is a fairly simple API that offers direct access to the

TethysCluster API to support dynamic scalability of computing resources. Accessing those

61

resources is facilitated by Schedulers, which are database objects that contain the connection

information of an HTCondor agent in a computing cluster. The Compute API offers functions to

access the Scheduler objects, which are needed to submit jobs to the clusters.

5.1.1 Using TethysCluster in Tethys

The Compute API provides the function get_cluster_manager from the TethysCluster

API, which returns a ClusterManager object. The ability to provision clusters and scale them up

or down can all be done through the cluster manager. The get_cluster_manager function accepts

the path to a TethysCluster configuration file as an optional argument. This allows Tethys apps

to create custom configuration files for TethysCluster that contain specifications for clusters

designed to meet the need of the app, such as the number and size of nodes, and the image ID

from which to make the nodes. The configuration file must contain credentials for the cloud

provider that will be used to provision the clusters. These can either be provided through

configuration of the app by the administrator of the Tethys Portal where the app is installed, or

the app can collect credentials from users so that the each user is paying for the resources that

they use. This is a choice of the app developer. Tethys does not currently have a user payment

system, so the only way for a user to pay for the resources he or she uses is to provide the

credentials to his or her cloud account. Otherwise the cloud usage of all users will be charged to

the account provided by the Tethys Portal administrator.

In addition to being able to manage cloud-computing resources in Tethys apps through

the Tethys SDK, resources can also be managed at a portal level through the admin pages. This

is discussed more in section 5.3. Whether clusters are provisioned by apps or through the admin

pages, accessing the clusters is facilitated through Schedulers.

62

5.1.2 Schedulers

A scheduler represents an agent in an HTCondor pool, (i.e. a computer that has the ability

to submit jobs to the pool). I used the Django’s Object Relational Model (ORM) to create

database objects to represent schedulers. These scheduler objects store the IP address or

hostname of the computer along with the credentials needed to connect to the computer through

SSH. To be able to submit jobs to a computing cluster from a Tethys app a scheduler must be

defined with the credentials for one of the nodes in the cluster. Creating schedulers can either be

done in the app through the Compute API, or they can be created using the admin pages (see

section 5.3).

 Jobs API

CondorPy already provides a scriptable interface for creating and submitting jobs to a

compute pool. However, running computing jobs in a web environment introduces additional

complexities such as dealing with asynchronous interactions, load balancing, and requiring a

web-based user interface. This section describes how CondorPy is used in Tethys to address

these challenges through the Jobs.

5.2.1 Job Manager

To facilitate the asynchronous nature of computing in the synchronous environment of

web apps, I wrap CondorPy job objects in a database model using the Django ORM. The details

of interacting with the database are abstracted through a job manager object. The job manager is

part of the Tethys SDK and gives the developer a simple interface for creating and retrieving

jobs. The job manager automatically filters jobs based on the app and user so the developer can

63

easily retrieve pertinent jobs. The details of creating new jobs, including the underlying

CondorPy job, are also handled by the job manager and facilitated with the use of Tethys job

templates.

5.2.2 Tethys Job Templates

In Tethys, jobs are defined through job templates. These are distinct from CondorPy job

templates, but serve a similar purpose. Tethys supports multiple job types, but the principle job

type is the CondorJob type, which serves as a wrapper for CondorPy Job objects. A job template

in Tethys specifies the job type and defines any job parameters that will be common to all jobs

created from that template. When creating a job, the name of the job template is passed to the job

manager, which then returns a job object that has been initialized with from the job template. Job

templates help to organize jobs and simplify the process of creating new jobs.

The CondorJob type can take advantage of CondorPy’s remote scheduling capability to

offload the task of maintaining the job queue from the main web server. This is done by setting

the scheduler property in the job template. If a scheduler is not defined for a job, Tethys assumes

that the local machine is configured as a scheduler and will attempt to submit the job locally,

which requires that HTCondor be installed on the Tethys server. If a job does have a scheduler

defined, then Tethys uses the remote scheduling capability of CondorPy to copy the required

files to the scheduler (if needed) and submit the job to the scheduler’s HTCondor pool.

5.2.3 Jobs Table Gizmo

We developed Tethys Platform to simplify the process of creating a web application

capable of running large computing jobs. One way we accomplished this is through Gizmos.

64

Gizmos are user interface elements that can be configured through the Tethys SDK. These

elements have predefined HTML and JavaScript components that get included automatically. I

created the jobs table gizmo to help users interact with their jobs (Figure 5-2).

Figure 5-2. The Jobs Table gizmo.

While the jobs table gizmo is accessed through the gizmos API in the Tethys SDK, it is

closely connected with the Jobs API because it provides the user with information about

computing jobs. The fields of the table are configurable so the app developer can decide which

attributes of the jobs to display. The default configuration of the gizmo provides controls that

allow a user to run or delete jobs, and a link to view the job results when jobs are completed. It

also handles updating the job statuses automatically at a configurable interval. The jobs table

gizmo handles much of the background code for creating a web interface for interacting with

jobs while still giving developers the flexibility to configure it according to their needs.

65

 Tethys Compute Admin Pages

Tethys Portal includes admin pages that allow administrators to manage database entries

that are part of the Tethys Platform database model. I added a set of Tethys Compute admin

pages that allow Tethys Portal administrators to create and manage portal-wide computing

clusters and schedulers and to manage jobs from all of the apps in one place (Figure 5-3).

Figure 5-3. Tethys Portal admin page for Tethys Compute.

I created a simple interface for TethysCluster in the admin pages so that setting up a new

cluster only requires a name (one that is unique among the clusters on the cloud provider account

being used) and a size. Optionally, image IDs can be provided to create the cluster with

customized images. I didn’t include all of the features and flexibility that are available through

the TethysCluster API in the admin page because the purpose of the web interface was to provide

a quick and easy way to create computing clusters. However, It is possible that additional

features will be added to the cluster admin page in the future (Figure 5-4).

66

Figure 5-4. Tethys Portal admin page for creating/editing clusters.

Additional settings that aren’t specific to a single cluster, such as cloud provider

credentials and the default cluster template, are on the Tethys Compute Settings admin page

(Figure 5-5).

67

Figure 5-5. Tethys Portal admin page Tethys Compute Settings.

Adding portal-wide schedulers to allow jobs to be submitted to computing resources is

done through the Tethys Compute Schedulers admin page (Figure 5-6). Only the name and the

host properties are required. If a username is not provided then default, “root,” is used. Some

method for authenticating the user on the scheduler is required whether that is a password, a

private key, or a private key/passphrase combination. Schedulers do not necessarily have to be

part of one of the clusters that is set up through the admin pages. They can be connected to any

HTCondor pool that is accessible from the network where Tethys Portal is running, which can

include on-premise pools.

Jobs are also managed through the Tethys Compute admin pages. The Tethys Compute

Jobs page (Figure 5-7) provides tools for editing or deleting jobs, but not for creating them; jobs

can only be created using the Jobs in the Tethys SDK. Care should be taken when editing certain

68

properties, like the workspace, the subclass (i.e. the job type), or the status, as jobs may become

invalid if these properties are changed.

Figure 5-6. Tethys Portal admin page for creating/editing schedulers.

 Discussion

I used the comprehensive computing toolkit provided by TethysCluster and CondorPy to

build Tethys Compute, which provides the development tools for HTC computing in a web

environment. These tools are integrated into the Tethys SDK through the Compute API and the

Jobs. The Compute API is essentially a direct interface to the TethysCluster API, but in the Jobs

API I created a set of tools around CondorPy to provide the necessary functionality for the web.

69

Figure 5-7. Tethys Portal admin page for editing jobs.

These additional tools around CondorPy were needed because the web environment adds

complexities that require additional consideration. Some of these issues have already been

addressed. However, the primary issue is that of persisting jobs beyond individual server-client

transactions. To illustrate this problem, consider a web application that allows a user to execute a

job by clicking a button on a web page. Behind the scenes, the browser sends a request to the

server indicating that the button to run a job has been clicked. The server responds by executing

70

some code to process the request; in this case CondorPy is used to create a job and submit it to an

HTCondor pool. The server can then wait for the job to finish running before sending a response

back to the browser, but if the job takes longer than a minute or two, the connection with the

browser will time out. Alternatively, if the server sends a response to the browser before the job

is finished then the CondorPy job, which is in the server’s memory, is deleted and the server then

knows nothing about the job and cannot check the job status or retrieve the job results. To get

around this problem the server must save the information about the CondorPy job before it

responds to the browser. In Tethys Platform the information from the CondorPy job is stored in a

database. This way when another request is made to the server (for example, to check the status

of the job), the server can reconstruct the CondorPy job from the information in the database and

then use the CondorPy API to retrieve the job status.

71

6 APPLICATIONS

I used TethysCluster, CondorPy and Tethys Compute to support other research projects.

These projects illustrate the need and utility of a comprehensive computing toolkit. Four projects

are described and represent research that I did in collaboration with others. I give enough

background on each project to provide the context, but I mainly focus on the computing aspects

of the projects that I performed.

 Canned GSSHA: Pre-computed Modeling for Flood Warning

Parameter sweeps are a common type of modeling task that help characterize the solution

space that corresponds to a parameter space. The parameter space is defined by the permutations

of a set of parameters that are varied over the possible range of values. Each permutation defines

a different parameterization for the model. A parameter sweep involves running the model with

each of the parameterizations to determine the distribution of the resulting solutions. One

application of this type of modeling in water resources is to pre-compute a large set of

parameterizations that represent a set of hydrologic conditions and archive the results so that they

can be quickly retrieved to determine if and to what extent forecasted conditions will produce

flooding. This requires that many (often tens of thousands) model scenarios (or

parameterizations) be computed to adequately cover the parameter space. This method and the

work represented here is discussed in grater detail in (Dolder, Jones et al. 2015).

72

6.1.1 Methods

To demonstrate this application a GSSHA model of the Hobble Creek watershed was

developed and a set of seven parameters were selected to vary: temperature, temperature

amplitude, precipitation duration, precipitation intensity, rain start time, snow line, and snow

gradient. The Latin hypercube method was used to divide each parameter distribution into

quantiles. A different number of quantiles was used for different parameters to achieve greater

resolution for those that are more important (i.e. have a grater influence on the result). Ultimately

this resulted in 57,600 unique scenarios of randomly generated parameterizations that evenly

cover the full parameter space.

The GSSHA model I used takes between about a minute to almost a day to run,

depending on the parameterization. I used an early version of CondorPy to facilitate creating and

submitting jobs to compute each of the 57,600 model instances to an HTCondor pool made up of

55 lab computers that each had 4 cores. At first all of the jobs were submitted into the queue

simultaneously; however, this crashed the scheduling daemon on the submitting computer. To

prevent the scheduler from becoming overloaded the remaining jobs were placed in a DAG

(without any relationships), which enabled the number of jobs that were queued at a single time

to be limited. Since the pool consisted of 220 cores the limit on the number of jobs queued was

set at around 250, ensuring that there would be no delay in a computing resource from getting a

new job from the queue when it became available. A Tethys app was created to visualize the

results. The steps involved in this study are summarized in Figure 6-1, and the step that I

performed is indicated with the red, dashed box.

73

Figure 6-1. Summary of the steps in the Canned GSSHA study.

6.1.2 Results

The results of the 57,600 model runs were archived and a Tethys app was designed to be

able to explore the parameter space. There are sliders to select the value for each of the

parameters. The resulting parameter set is represented by the yellow area on the radar plot. The

green area on the plot shows the closest match from the 57,600 parameterizations that were

computed. The pre-computed results of that simulation, including the hydrograph and a max

flood map, are also shown (Figure 6-2).

Due to the scheduler crashing, the scenarios were not all computed continuously. The

computing took place in several stretches over a 46-day period. Figure 6-3 shows a timeline of

the entire period with the periods of active computing marked. Table 6-1 summarizes the time

statistics for the entire computing task.

74

Figure 6-2. The Canned GSSHA Tethys app allows users to explore the solution space of
the 57,600 archived simulations.

Figure 6-3. Timeline showing the active computing time for running 57,600
GSSHA models using HTCondor.

Table 6-1. Summary of Compute Time for the Canned GSSHA Parameter Sweep

Unfortunately, due to the complications in finding the most stable way to run the jobs, the

statistics for individual model runs were not saved for all 57,600 jobs. However, the order in

Statistic Value Units
Total Time 45.39 days

Active Time 29.39 days
Active Time 64.8 %

75

which the parameterizations were run was randomized so the statistics for the 37,244 jobs that

were saved should be a representative sample. These statistics are summarized in Table 6-2.

Table 6-2. Summary of Statistics for Individual Model Runs and the HTCondor Pool

The statistics listed are specific to HTCondor and merit some explanation. Wall time is

the total amount of time that the 37,244 jobs were being processed on the HTCondor pool. Good

time is the total amount of time that actually contributed to completed jobs. If a job is evicted

from a computing resource during the middle of execution (because the computing resource

becomes unavailable) then the job must be restarted on a new resource. Any time that was spent

computing the job on the original resources doesn’t contributed to the completion of the job,

which is why the good time is lower than the wall time. The goodput is the percent of the total

time that contributes to completed jobs, or the ratio of the good time to the wall time. The min,

max, and average job times are calculated from the good time for the individual jobs. This

includes in any overhead, such as time transferring files, in addition to the actual simulation time.

The average CPU time is the wall time divided by the number of CPUs, and represents the

average amount of time each CPU in the pool was actively being used for this task. The pool

Statistic Value Units
Jobs 37,244 count

Wall Time 2,752.48 days
Good Time 2,090.73 days
Goodput 76.0 %

Max Job Time 23.73 hours
Min Job Time < 1 min
Avg. Job Time 1.35 hours

CPUs 220 count
Avg. CPU Time 12.51 days
Pool Utilization 42.6 %

76

utilization is the ratio of the average CPU time to the total active time, and represents the how

much of the total capacity of the pool was used for this task.

6.1.3 Discussion

This study was done early on in the development of CondorPy and provided valuable

insight in how to best run jobs of large magnitude, which directed the development of CondorPy.

When the queue on the HTCondor scheduling node is larger than about 5,000 then it becomes

unstable. By using a DAG to schedule a large number of jobs then the DAGMan can control how

many jobs are submitted to the queue at one time. This keeps the scheduler stable, but also has

the added benefit of allowing for recovery and resubmission of partially completed DAGs (using

a rescue DAG) if for some reason the DAG is unable to complete all of the jobs. As a result of

this study I added the Workflow capabilities to CondorPy to facilitate creating and submitting

DAGs.

The goodput indicates that only 76% of the compute time on the HTCondor pool actually

contributed to completing jobs. This means that 24% of the compute time was spent on jobs that

were evicted before they were completed. This wasted time comes because HTCondor cannot

anticipate when a computing resource will become unavailable, or how long a particular job will

take to complete. HTCondor has mechanisms that help increase the goodput such as

checkpointing (only on Linux nodes), or by having a job that is interrupted mid-execution wait

on that resource until the resources becomes available again and then the job will resume where

it left off. Deciding whether to have a job wait on a resource or be rescheduled elsewhere is a

function of how expensive it is to restart a job. If there is a significant amount of file transfers

that have to happen, or if there is the potential for a job to be interrupted after a large amount of

77

wall time then it may be more advantageous to suspend the job on the current resources and have

it wait until the resource becomes available again.

The pool utilization is an indication of how available the pool was for running this task.

Since 42.6% of the pool time was used to compute this task it means that 57.4% of the time it

was claimed by users of the computers or by other HTCondor jobs. Because of HTCondor

almost half of the processing time of 220 cores was made available for HTC tasks without

needed to invest in any additional computing resources. However, if tasks are time critical or

don’t lend themselves well to interruption, then dedicated resources, such as cloud resources,

should be used.

 Data Access/Formatting Apps

Obtaining and formatting input data required by a model is part of any modeling process.

Because data are now available from many different sources and in many different formats this

part of the process can be quite complex and time consuming. As the spatial and temporal

resolution of data increases, the computing requirements to process the data can be come large.

The NASA Earth Observing System Data and Information System (EOSDIS) provides

many datasets that are useful for water resources modeling. Since the datasets provided are

national or global scale and often have a large temporal domain, NASA has an online tool for

selecting subsets of the data both spatially and temporally, the Simple Subset Wizard (SSW)

(Figure 6-4).

78

Figure 6-4. The Simple Subset Wizard web tool allows users to obtain subsets of large data
sets.

The SSW is a convenient way to get just the data needed without having to manage large

datasets; however, the format the data are provided in is not as convenient. The SSW provides a

link to download each time step of the requested data individually (Figure 6-5). If data spanning

a long period of time are requested, then downloading and managing the data can become

unwieldy.

Precipitation and soil moisture data were used from the North American Land Data

Assimilation System (NLDAS) data sets to populate GSSHA models for a research project

looking at watersheds all over the United States. The data were accessed through the SSW,

which provided them in netCDF format, but for the purposes of this project the data were

ultimately needed in ASCII grid format so they could be loaded into Watershed Modeling

System (WMS) to be used in as GSSHA input. Since the process of obtaining the datasets and

reformatting them needed to be done for many watersheds and by many people, I automated the

79

process with Python scripts and then integrated them into two Tethys apps, which can be

accessed by multiple users simultaneously.

Figure 6-5. Links for downloading data from the SSW.

6.2.1 Methods

The first of the two Tethys apps, the SSW Downloader, is designed to download and

aggregate data from the SSW. A URL that returns a list of the URLs for the data time steps is

copied into the app and then a job is launched to download all of the data time steps and

aggregate them into a single netCDF file. The Jobs was used to create a CondorJob that submits

a Python script to an HTCondor Pool. The Python script downloads and aggregates the data and

then the resulting netCDF file is made available to download or to pass to the second app.

80

Figure 6-6. SSW Downloader Tethys app.

The second Tethys app, Convert NetCDF to GSSHA Input, takes a netCDF file passed

from the SSW Downloader app and allows the user to select one of the variables to export as

either a GRASS ASCII raster or an Arc/Info ASCII gird (Figure 6-7). The same method was

used for this app as the previous app to submit a Python script as an HTCondor job using the

Jobs. Since the ASCII grid format doesn’t support multiple time steps a new grid is generated for

each time step and then the whole set is compressed into a zip archive, which is made available

to download.

To test the performance of the apps three datasets were downloaded that had the same

spatial domain (bounding the state of Texas; see Figure 6-9), but different temporal domains

ranging from two days to a month in April 2015. For each dataset both hourly precipitation and

81

soil moisture were included. That datasets were retrieved with the SSW Downloader app and

then the precipitation was reformatted to ASCII grids using the conversion app.

Figure 6-7. Convert NetCDF to GSSHA Input Tethys app.

To compare the effect of the number of variables and the size of the domain two

additional sets of three datasets were processed using the same time extents as the first set. One

set had a smaller domain surrounding Austin, TX (Figure 6-10), and the other used the original

spatial domain, but only downloaded the precipitation data. The processing time of each of the

nine datasets were compared.

The steps for developing these apps and using them to format data for GSSHA input is

summarized in Figure 6-8 with the steps I performed boxed in the red, dashed line and the steps I

helped with boxed in the blue dashed line.

82

Figure 6-8. Summary of steps in developing the data access and formatting apps for use in
GSSHA models.

6.2.2 Results

The data sets resulting from the processing of the first app were netCDF files that

contained both the soil moisture and the precipitation data. Figure 6-9 and Figure 6-10 show the

soil moisture for April 1, 2015, on the large and small domains respectively, and Figure 6-11

shows the hourly precipitation near Austin, TX for the whole month of April 2015.

The times it took to download and aggregate each of the data sets are listed in Table 6-3

and plotted in Figure 6-12.

The processing times recorded on the Convert NetCDF to GSSHA Input app ranged from

5 seconds to 25 seconds; however, the mechanism for timing only updated every 5 seconds, so it

is likely that these times are not accurate.

83

Figure 6-9. Soil moisture data from the NLDAS data set over the larger domain.

Figure 6-10. Soil moisture data from the NLDAS data set over the smaller domain.

84

Figure 6-11. Hourly precipitation for April 2015 near Austin, Texas.

Table 6-3. Summary of Processing Time on the SSW Downloader Tethys
App for Three Datasets

6.2.3 Discussion

From Figure 6-12 it appears that the size of the domain has a slight impact on the

compute time, but the number of variables has a significant impact. There was a separate file to

download for each variable for each time step, so the downloading time is likely the largest

factor in the total time.

Days

Time to Process [sec]
2 Vars.

Large Domain
2 Vars.

Small Domain
1 Var.

Large Domain
2 274 157 78
7 732 596 665

30 2661 2276 1234

85

Figure 6-12. Plot of the processing times for various datasets with
1 or 2 variables on a large or small domain.

If the end goal were only to reformat the data, then it would have been more efficient not

to have aggregated the netCDF file for each time step into a single dataset since the ASCII grid

format can only store a single time step in each file anyway. However, aggregating the datasets

made it easier to download and visualize the data before converting it to the ASCII format.

While these examples are not particularly compute intensive, the main benefit of

automating the workflow in a web app is that multiple users can access it from anywhere at the

same time. If multiple requests are made simultaneously then the computational load could

become significant. Using the computing tools allows the computations to be offloaded to a

distributed computing system that can queue and processes the jobs as necessary.

 GSSHA Index Editor

Predicting the change in a runoff hydrograph due to changes in land-use is a common

modeling task that is important to consider when determining the impact of a new development

in a city, or events, such as a forest fire, that significantly change the hydrologic characteristics

86

of a large area. Since the specific location of the land-use changes can play a large role in the

how the hydrology is affected, it is useful to use a spatially-distributed model, like GSSHA

(Downer and Ogden 2004), that can represent the spatial characteristics of the land-use change

(Ogden, Raj Pradhan et al. 2011). However, distributed hydrologic models are generally more

complex than their lumped-parameter counterparts and take more time and expertise both to

modify and to run (Singh and Woolhiser 2002). Anderson (2015) addressed these challenges by

developing a Tethys app, which provides a simple and straightforward workflow where the user

selects an existing model, makes edits to the land-use maps, and submits the modified model to

be run (the original is also run if the results have not already been saved). The interface of the

app is shown in Figure 6-13.

One of the challenges with running GSSHA in a web app is that it is compiled for a

Windows environment, but it is common to use Linux servers to host websites. An additional

challenge is that, due to the nature of the web, it is possible for many people to simultaneously

access the app and submit jobs, causing a large computing load. These challenges are addressed

with the Tethys computing tools.

6.3.1 Methods

The GSSHA Index Map Editor app interface was designed to allow users to manually

draw polygons to change the land-use, or to upload shapefiles with new land-use polygons. A

Python library called GsshaPy was used to load the GSSHA files into a PostGIS database. GIS

functions on the database were used to update the land-use index map.

87

Figure 6-13. Map interface of the GSSHA Index Map Editor Tethys app.

I added the capability for the app to use the Tethys Platform job manager to connect to

computing resources that can be scaled to handle the workload and configured with the proper

environment for the compute jobs. I used the job manager to create the GSSHA modeling jobs,

which are then submitted to an HTCondor pool of Windows nodes that are configured to run

GSSHA. CondorPy copies the GSSHA files that were modified through the app to the remote

scheduler and then remotely schedules the job to run. Once the job is complete, CondorPy then

copies the results back to the local Tethys server so they can be visualized. This file transfer

configuration limits the size of the GSSHA models that the app can process to those that can

reasonably be copied back and forth over the network.

The steps for creating the GSSHA Index Map Editor app are summarized in Figure 6-14

with the step that I performed boxed in the red, dashed line.

88

Figure 6-14. Summary of steps in creating the GSSHA Index Map Editor app.

6.3.2 Results

The result of interest for the GSSHA Index Map Editor is the difference in the

hydrographs produced by the original and the modified models. Once the jobs have finished

computing and the results of the models are copied back to the Tethys server, the app can graph

both of the hydrographs for comparison. Figure 6-15 shows an example of the results page of

the app.

6.3.3 Discussion

The GSSHA models used here ran in approximately three minutes. As in the previous

example the computation load is not particularly significant, but the main benefit of deploying

this workflow as a web application is to allow ubiquitous and simultaneous access to a simplified

modeling workflow where the computational environment only needs to be set up and

maintained in one location. Because of the possibility of multiple users accessing the app and

submitting jobs at the same time, the Tethys Compute tools are needed to offload the

computation to an HTC system.

89

Figure 6-15. Example results of GSSHA Index Map Editor app workflow.

In order for CondorPy to submit jobs to a remote Windows scheduler it is necessary to

configure it with an SSH server. If TethysCluster is used to provision the cluster on AWS then

the nodes will already have SSH configured.

 Streamflow Prediction Tool

As part of an effort led by the National Water Center to create high-resolution in-stream

forecasts for rivers throughout the United States, Snow, Christensen et al. (In Press) developed a

method for downscaling and routing global runoff ensemble forecasts generated by the European

Centre for Medium-Range Weather Forecasts (ECMWF) using the Routing Application for

Parallel computatIon of Discharge (RAPID) model (David, Maidment et al. 2011). This method

processes a 52-member ensemble weather forecast by downscaling and routing precipitation

runoff through the nearly 2.7 million reaches of the National Hydrography Plus Version 2

90

Dataset (NHDPlusV2), (Horizons Systems Corporation 2011). While the processing is

computationally expensive, the ensemble members are independent of each other and thus can be

processed in parallel in a distributed computing system making it an ideal application of HTC.

Furthermore, a new forecast is released every 12 hours, requiring a scheduled and automated

system to process the computations.

6.4.1 Methods

The NHDPlusV2, which covers the continental United States, is divided into 12

hydrologically independent regions. Each of the 52 ensemble members of the runoff forecast was

processed for each of the 12 regions, thus the computational load was subdivided both by region

and by ensemble member, creating 624 subtasks that needed to be computed every 12 hours. The

process of downscaling and routing the forecasted runoff consists of running a geoprocessing

tool to map the runoff from the coarse grid to catchments defined by the NHDPlusV2 and then

running the RAPID model to route the runoff through a stream network using Muskingum

routing. We configured each of the compute nodes, or HTCondor resource nodes, with the

geoprocessing script, the RAPID model code, and a shared file system that contained the static

input files for each region. We created a Python script to download ECMWF ensemble forecast

to the shared file system, thus eliminating the need to transfer a large amount of data between the

compute nodes and the scheduling node. The Python scripted used CondorPy to create and

submit jobs to process the 52-member ensemble forecast for each of the 12 regions. The script

was scheduled to run every 12 hours on the scheduler node.

The steps for setting up the streamflow prediction tool are summarized in Figure 6-16

with the steps that I helped with boxed in the blue, dashed line.

91

Figure 6-16. Summary of steps for setting up the Streamflow Prediction Tool.

6.4.2 Results

This process was tested using a local compute cluster and using a computing cluster on

AWS. The time to compute the same jobs serially was estimated based on the individual

computation times to determine the savings of using distributed computing vs. serial computing.

The results from each region are listed in Table 6-4.

The modeling workflow for each region results in 52 point netCDF files that contain the

15 day in-stream flow prediction for each reach in that region. The netCDF files are uploaded to

a data repository where they are accessible to a Tethys app that was created to visualize the

results (Figure 6-17).

92

Table 6-4. Results of Computation Time Based on Area and the Number of Reaches

6.4.3 Discussion

The increased performance of using AWS relative to the local cluster is likely due to

faster hardware. The estimated serial run time for the NFIE Mississippi Region alone is much

longer than 12 hours (43,200 seconds). Thus the distributed computing, facilitated through

CondorPy, is necessary to process the forecasts on the 12-hour release cycle.

Even though a Tethys app was created to visualize the results of the app, the modeling

workflow is run as a scheduled service on a cluster that is independent of Tethys; CondorPy is

used as a stand-alone library to facilitate submitting jobs to the HTC clusters in the workflow.

While not run operationally, we developed a script that has the ability to use

TethysCluster to dynamically provision the clusters needed every 12-hours, and then shut them

down once the jobs were finished computing. If AWS or Azure were used to run the forecasts

operationally then this could significantly reduce the cost of the computing resources.

Watershed Name

 Compute Time [sec]

Area [sq km] Number of Reaches Serial AWS Local Cloud
NFIE Souris-Red-Rainey Region 213,488 29,053 7,343 49 141
NFIE Rio Grande Region 564,840 55,854 9,083 64 175
NFIE New England Region 169,445 65,858 10,906 63 210
NFIE Texas-Gulf Region 464,493 66,373 10,417 68 200
NFIE Great Basin Region 367,058 96,269 8,589 43 165
NFIEGreat Lakes Region 324,434 104,645 15,873 115 305
NFIE Mid-Atlantic Region 277,755 125,398 16,900 109 325
NFIE California Region 421,995 140,759 22,367 164 430
NFIE Colorado Region 660,454 187,010 28,105 210 540
NFIE Pacific Northwest Region 814,493 231,806 24,325 180 468
NFIE South Atlantic-Gulf Region 675,734 323,096 41,083 319 790
NFIE Mississippi Region 3,302,913 1,242,008 316,930 1,558 6,095

93

Figure 6-17. The Streamflow Prediction Tool displaying streamflow forecasts for a reach in
the Great Basin Region.

94

7 DISCUSSION AND CONCLUSIONS

The objective of this research has been to facilitate the use of HTC and cloud computing

in modeling workflows and web applications. I accomplished this by creating a comprehensive

Python toolkit consisting of the two libraries, TethysCluster and CondorPy, which together meet

the following requirements: (1) programmatic access to diverse, dynamically scalable computing

resources; (2) a batch scheduling system to queue and dispatch the jobs to the computing

resources; (3) data management for job inputs and outputs; and (4) the ability for jobs to be

dynamically created, submitted, and monitored from the scripting environment. This chapter

discusses the contributions that this research has made and describes future work that could be

done to expand upon the research presented here.

 Technical Contributions

With the adaptations that I made to StarCluster to create TethysCluster I was able to

successfully meet the first three requirements that I defined. The main contribution of

TethysCluster is adding the ability to provision cloud-computing clusters composed of Windows

VMs on AWS and add the ability to provision Linux VMs on Microsoft Azure. This makes

TethysCluster a more flexible tool, able to provide the diverse computing environments that are

needed to support water resources modeling. By using HTCondor as the middleware for

configuring an HTC system on the clusters configured by TethysCluster I meet the second two

requirements. I integrated TethysCluster into Tethys Platform in the Compute API as well as

95

through admin tools to allow HTC clusters to easily be provisioned from a web app development

platform. TethysCluster can also be used to dynamically scale computing resources to support

scheduled workflows, as demonstrated with the Streamflow Prediction Tool.

I created CondorPy as an object-oriented interface for HTCondor to meet the last

requirement by enabling programmatic creation and submission of HTC jobs. I used CondorPy

to facilitate executing 57,600 instances of a GSSHA model for the Canned GSSHA project and

helped with the development of a scripted workflow that uses CondorPy to process 624 forecasts

for the Streamflow Prediction Tool. To further facilitate the use of CondorPy in web apps, I

created the Jobs API in Tethys Platform, which I then used to create two data management apps

and to add the ability to submit GSSHA models to be run in the GSSHA Index Map Editor app.

TethysCluster and CondorPy are free and open source software. TethysCluster maintains

the GNU Lesser General Public License that StarCluster was licensed under, and CondorPy is

licensed under the BSD 2-clause license. Tethys Compute was contributed to the Tethys

Platform open source project (under the BSD 2-clause license). All of these code repositories are

on GitHub (see Appendix A).

 Future Work

Because of the contributions made by this research there are numerous possibilities to

either leverage these contributions or expand upon them in future research. Several of these

possibilities are described here.

96

7.2.1 Enhancements to TethysCluster

TethysCluster provides the basic functionality needed to support hydrologic modeling

workflows. Additional features could provide further benefit. Since Microsoft Azure is in the

process of developing a new Python API, it may become possible to access the public SSH key

that is necessary to support Windows nodes. Also, additional research could find ways to extend

the full set of features that are supported on Linux nodes, to Windows nodes. Also, StarCluster

supports automated load balancing (i.e. the ability to scale the cluster size) based on the job

queue when using SGE. This feature is not supported when using HTCondor. Additional

research could extend this feature to both TethysCluster and StarCluster. TethysCluster

diversifies the available computing resources that can be used by supporting Azure in addition to

AWS. Adding support for additional cloud providers would increase the flexibility of

TethysCluster. While not all cloud providers currently support all of the features needed by

TethysCluster, a likely candidate that should be explored is OpenStack, which is used by the

commercial cloud provider RackSpace, but also is used by many private clouds.

7.2.2 Enhancements to Tethys Compute

Tethys Compute has been proven to support HTC in web applications. However, there

are enhancements that could make it an even more powerful and flexible set of tools. A

WorkflowJob in the JobsAPI would allow users to take advantage of CondorPy Workflows to

provide support for hierarchical jobs in Tethys. Additional options and tools could be integrated

into the Tethys Compute admin pages to allow the web interface to take advantage of all of the

flexibility in creating cluster that is provided by TethysCluster.

97

7.2.3 Additional Applications

The comprehensive computing toolkit has supported several research applications that

needed programmatic access to HTC resources. Additional research applications could also make

use of these tools.

One such application, parent-child modeling with GSSHA, is currently being researched.

Hydrologic modeling often requires modeling large domains because downstream locations of

interest are dependent on the hydrologic processes of the watershed upstream. When using

advanced hydrologic models that are spatially-distributed and physically-based, like GSSHA,

modeling large domains can be computationally demanding and time consuming. For some

models this problem can be partially alleviated by having a variable discretization with higher

resolution over areas of greatest interest. However, many models only support uniform grid size

and therefore if a high-resolution grid is desired over part of the model it must be used over the

whole domain. While GSSHA only supports uniform grids it does have a mechanism for

handling differing grid sizes over a domain through parent-child models.

Parent-child modeling is a method for decomposing a large domain into cascading,

hierarchical sub-domains. First level sub-basins, in the highest part of the watershed can all be

run independently from each other, and thus in parallel. Second level sub-basins rely on input

from the first level sub-basins but are independent from one another. A watershed may be broken

into various hierarchical levels ending at the base level, which relies on all previous levels. When

the domain is broken up into various sub-domains, each represented by its own model, the sub-

domains can have differing grid sizes, making it possible for there to be higher resolution only in

the area of interest.

98

Since the model is structured in a hierarchical way, with sub-basins at the same level

being independent of each other, it is a perfect application for a CondorPy workflow. By

implementing the parent-child models in a workflow the computation can be more efficient since

sub-basins can be run in parallel while sill keeping the necessary parent-child order.

Another application that could facilitate additional research would be to develop a Tethys

app to run stochastic GSSHA models. Many study areas could benefit from a stochastic analysis

to understand and characterize uncertainty, but the challenge of getting enough computational

resources to run the models hundreds or thousands of times is prohibitive. A Tethys app that

would allow any model to be uploaded and then run stochastically would allow modelers to

spend more time focusing on the hydrologic questions that the model should answer rather than

focusing on the modeling process. This research has produced the tools necessary to build this

type of application, and it could just as easily be done for models other than GSSHA.

Related research could develop methods for managing, analyzing, and summarizing the

large amounts of data that result from a stochastic analysis in a web environment. Tethys

Platform provides many tools for visualizing data, but research is needed to find meaningful and

manageable ways to visualize large amounts of data produced by stochastic modeling in this

environment.

My research has produced tools to support dynamically accessing computing resources

for large water resources modeling tasks, which meet the four requirements that I identified.

These tools have been shown to support the computing needs of research that has pushed the

boundaries of water resources modeling, and have the potential to continue to do so in many

other applications.

99

REFERENCES

Amazon Web Services, I., 2014. What is Cloud Computing?

Amazon Web Services, I., 2016a. Amazon EC2 Security Groups for Linux Instances - Amazon
Elastic Compute Cloud. Amazon Web Services, Inc.

Amazon Web Services, I., 2016b. Instance Metadata and User Data - Amazon Elastic Compute
Cloud. Amazon Web Services, Inc.

Anderson, J. M., 2015. A Cloud-Based GSSHA Index Map Editor Utility for Watershed
Decision Support, Brigham Young University, All Theses and Dissertations.

Apache Software Foundation, 2011. Deltacloud API. Apache Software Foundation.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, I. Stoica and M. Zaharia, 2010. A view of cloud computing. Commun. ACM
53:50-58.

Behzad, B., A. Padmanabhan, Y. Liu, Y. Liu and S. Wang, 2011. Integrating CyberGIS gateway
with Windows Azure: a case study on MODFLOW groundwater simulation. In:
Proceedings of the ACM SIGSPATIAL Second International Workshop on High
Performance and Distributed Geographic Information Systems. ACM, Chicago, Illinois,
pp. 26-29.

Bockelman, B., 2013. HTCondor Python Tutorial. In: HTCondor Week. Madison, Wisconsin.

Buyya, R., C. Vecchiola and S. T. Selvi, 2013. Mastering cloud computing, Tata McGraw-Hill
Education, ISBN 1259029956

Condor Team, 2010. Remote Condor.

Condor Team, 2014. HTCondor™ Version 8.3.1 Manual. University of Wisconsin-Madison.

Couvares, P., T. Kosar, A. Roy, J. Weber and K. Wenger, 2007. Workflow Management in
Condor. In: Workflows for e-Science, I. Taylor, E. Deelman, D. Gannon and M. Shields
(I. Taylor, E. Deelman, D. Gannon and M. Shields(I. Taylor, E. Deelman, D. Gannon and
M. Shieldss). Springer London, pp. 357-375.

100

David, C. H., D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets and V. Eijkhout, 2011. River
Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology 12:913-934.

Delipetrev, B., A. Jonoski and D. P. Solomatine, 2014. Development of a web application for
water resources based on open source software. Computers & Geosciences 62:35-42.

Doherty, J. and D. Welter, 2010. A short exploration of structural noise. Water Resources
Research 46:W05525.

Dolder, H. G., N. L. Jones and E. J. Nelson, 2015. Simple Method for Using Precomputed
Hydrologic Models in Flood Forecasting with Uniform Rainfall and Soil Moisture
Pattern. Journal of Hydrologic Engineering 0:04015039.

Downer, C. W. and F. L. Ogden, 2004. GSSHA: Model To Simulate Diverse Stream Flow
Producing Processes. Journal of Hydrologic Engineering 9:161-174.

Fienen, M. N., J. P. Masterson, N. G. Plant, B. T. Gutierrez and E. R. Thieler, 2013. Bridging
groundwater models and decision support with a Bayesian network. Water Resources
Research 49:6459-6473.

Fisch, K. M., T. Meißner, L. Gioia, J.-C. Ducom, T. Carland, S. Loguercio and A. I. Su, 2014.
Omics Pipe: A Computational Framework for Reproducible Multi-Omics Data Analysis.
bioRxiv 10.1101/008383.

Foster, I., Y. Zhao, I. Raicu and S. Lu, 2008. Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, 2008. GCE'08. Ieee, pp. 1-10.

Glenis, V., A. S. McGough, V. Kutija, C. Kilsby and S. Woodman, 2013. Flood modelling for
cities using Cloud computing. Journal of Cloud Computing 2.

Gunarathne, T., B. Zhang, T.-L. Wu and J. Qiu, 2013. Scalable parallel computing on clouds
using Twister4Azure iterative MapReduce. Future Generation Computer Systems
29:1035-1048.

Harvey, B. and S. Ji, 2015. Cloud-Scale Genomic Signals Processing for Robust Large-Scale
Cancer Genomic Microarray Data Analysis. Biomedical and Health Informatics, IEEE
Journal of PP:1-1.

Heße, F., H. Savoy, C. A. Osorio-Murillo, J. Sege, S. Attinger and Y. Rubin, Characterizing the
impact of roughness and connectivity features of aquifer conductivity using Bayesian
inversion. Journal of Hydrology http://dx.doi.org/10.1016/j.jhydrol.2015.09.067.

Horizons Systems Corporation, 2011. National Hydrography Plus Version 2 Dataset. In:
Weaving the National Hydrologic Geospatial Fabric, Horizons Systems Corporation
(Horizons Systems Corporation)Horizons Systems Corporations).

http://dx.doi.org/10.1016/j.jhydrol.2015.09.067

101

Huang, Q. and C. Yang, 2011. Optimizing grid computing configuration and scheduling for
geospatial analysis: An example with interpolating DEM. Computers & Geosciences
37:165-176.

Huang, X., G. Cao, J. Liu, H. Prommer and C. Zheng, 2014. Reactive transport modeling of
thorium in a cloud computing environment. Journal of Geochemical Exploration
http://dx.doi.org/10.1016/j.gexplo.2014.03.006.

Humphrey, M., N. Beekwilder, J. L. Goodall and M. B. Ercan, 2012. Calibration of watershed
models using cloud computing. In: E-Science (e-Science), 2012 IEEE 8th International
Conference on. pp. 1-8.

Humphrey, M., Z. Hill, K. Jackson, C. van Ingen and R. Youngryel, 2011. Assessing the Value
of Cloudbursting: A Case Study of Satellite Image Processing on Windows Azure. In: E-
Science (e-Science), 2011 IEEE 7th International Conference on. pp. 126-133.

Hunt, R. J., J. Luchette, W. A. Schreuder, J. O. Rumbaugh, J. Doherty, M. J. Tonkin and D. B.
Rumbaugh, 2010. Using a Cloud to Replenish Parched Groundwater Modeling Efforts.
Ground Water 48:360-365.

Jones, N., J. Nelson, N. Swain, S. Christensen, D. Tarboton and P. Dash, 2014. Tethys: A
Software Framework for Web-Based Modeling and Decision Support Applications. In:
Ames, D.P., Quinn, N.W.T., Rizzoli, A.E. (Eds.), Proceedings of the 7th International
Congress on Environmental Modelling and Software, June 15-19. San Diego, California,
USA.

Juve, G., E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman and P. Maechling, 2009.
Scientific workflow applications on Amazon EC2. In: E-Science Workshops, 2009 5th
IEEE International Conference on. IEEE, pp. 59-66.

Kim, I., J.-Y. Jung, T. F. DeLuca, T. H. Nelson and D. P. Wall, 2012. Cloud computing for
comparative genomics with windows azure platform. Evolutionary bioinformatics online
8:527.

Kollet, S., J. Schumacher, C. Bürger and D. Bösel, 2011. Cloud computing with ParFlow:
Introduction of a newly developed Web interface. MODFLOW and More:52-57.

Li, Y. and M. Mascagni, 2003. Analysis of Large-Scale Grid-Based Monte Carlo Applications.
International Journal of High Performance Computing Applications 17:369-382.

Litzkow, M. J., M. Livny and M. W. Mutka, 1988. Condor-a hunter of idle workstations. In:
Distributed Computing Systems, 1988., 8th International Conference on. IEEE, pp. 104-
111.

Liu, Y., A. Y. Sun, K. Nelson and W. E. Hipke, 2012. Cloud computing for integrated stochastic
groundwater uncertainty analysis. International Journal of Digital Earth 6:313-337.

http://dx.doi.org/10.1016/j.gexplo.2014.03.006

102

Liu, Z., H. Zou and W. Ye, 2015. Simulation Runner: A Cloud-Based Parallel and Distributed
HPC Platform. In: Cloud Computing (CLOUD), 2015 IEEE 8th International Conference
on. IEEE, pp. 885-892.

Livny, M., J. Basney, R. Raman and T. Tannenbaum, 1997. Mechanisms for high throughput
computing. SPEEDUP journal 11:36-40.

Lu, W., J. Jackson and R. Barga, 2010. AzureBlast: a case study of developing science
applications on the cloud. In: Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing. ACM, Chicago, Illinois, pp. 413-420.

Luchette, J., G. K. Nelson, C. McLane and L. I. Cecan, 2009. Unlimited virtual computing
capacity using the cloud for automated parameter estimation. In: Proceedings of the 1st
PEST Conference. pp. 1-16.

Lusk, E., S. Huss, B. Saphir and M. Snir, 2012. MPI: A message-passing interface standard 3.0.

Microsoft, 2016. Name Resolution for VMs and Role Instances. Microsoft.

Miras, H., R. Jiménez, C. Miras and C. Gomà, 2013. CloudMC: a cloud computing application
for Monte Carlo simulation. Physics in Medicine and Biology 58:N125.

Monteiro, A., J. S. Pinto, C. Teixeira and T. Batista, 2011. Cloud Interchangeability-Redefining
Expectations. In: CLOSER. pp. 180-183.

Ogden, F. L., N. Raj Pradhan, C. W. Downer and J. A. Zahner, 2011. Relative importance of
impervious area, drainage density, width function, and subsurface storm drainage on
flood runoff from an urbanized catchment. Water Resour. Res. 47:W12503.

Oliphant, T. E., 2007. Python for Scientific Computing. Computing in Science & Engineering
9:10-20.

Osorio-Murillo, C. A., M. W. Over, H. Savoy, D. P. Ames and Y. Rubin, 2015. Software
framework for inverse modeling and uncertainty characterization. Environmental
Modelling & Software 66:98-109.

Pérez, F., B. E. Granger and J. D. Hunter, 2011. Python: An Ecosystem for Scientific
Computing. Computing in Science & Engineering 13:13-21.

Petri, I., H. Li, Y. Rezgui, Y. Chunfeng, B. Yuce and B. Jayan, 2014. A HPC based cloud model
for real-time energy optimisation. Enterprise Information Systems
10.1080/17517575.2014.919053:1-21.

Plankytronixx, 2014. I’m confused between Azure Cloud Services and Azure VMs – what the
****? Microsoft Corporation, MSDN Blogs.

Raicu, I., 2009. Many-task computing: Bridging the gap between high-throughput computing
and high-performance computing, Ph.D., The University of Chicago, Ann Arbor.

103

Rouholahnejad, E., K. C. Abbaspour, M. Vejdani, R. Srinivasan, R. Schulin and A. Lehmann,
2012. A parallelization framework for calibration of hydrological models. Environmental
Modelling & Software 31:28-36.

Singh, V. and D. Woolhiser, 2002. Mathematical Modeling of Watershed Hydrology. Journal of
Hydrologic Engineering 7:270-292.

Smemoe, C. M., 2004. Floodplain risk analysis using flood probability and annual exceedance
probability maps, Thesis (Ph D), Brigham Young University. Dept. of Civil and
Environmental Engineering, 2004.

Snow, A. D., S. D. Christensen, N. R. Swain, E. J. Nelson, D. P. Ames, N. L. Jones, D. Ding, N.
Noman, C. H. David and F. Pappenberger, In Press. A Cloud-Based High-Resolution
National Hydrologic Forecast System Downscaled from a Global Ensemble Land Surface
Model. JAWRA Journal of the American Water Resources Association.

StarCluster, 2014. STAR: Cluster - Home. MIT.

Subramanian, V., W. Liqiang, L. En-Jui and C. Po, 2010. Rapid Processing of Synthetic
Seismograms Using Windows Azure Cloud. In: Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Conference on. pp. 193-200.

Sun, A., 2013. Enabling collaborative decision-making in watershed management using cloud-
computing services. Environmental Modelling & Software 41:93-97.

Swain, N. R., S. D. Christensen, A. D. Snow, H. G. Dolder, E. Goharian, J. Anderson, N. L.
Jones, E. J. Nelson, D. P. Ames, G. P. Williams and S. J. Burian, In Press. The Design
and Implementation of an Open Source Platform for Water Resources Web App
Development. In: Environmental Modelling & Software.

Swain, N. R., K. Latu, S. D. Christensen, N. L. Jones, E. J. Nelson, D. P. Ames and G. P.
Williams, 2015. A review of open source software solutions for developing water
resources web applications. Environmental Modelling & Software 67:108-117.

Taylor, S., 2013. High Performance Computing of Hydrologic Models Using HTCondor,
Brigham Young University.

Thain, D., T. Tannenbaum and M. Livny, 2005. Distributed computing in practice: the Condor
experience. Concurrency & Computation: Practice & Experience 17:323.

Vaquero, L. M., L. Rodero-Merino, J. Caceres and M. Lindner, 2008. A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39:50-55.

Wang, L., J. Tao, M. Kunze, A. C. Castellanos, D. Kramer and W. Karl, 2008. Scientific Cloud
Computing: Early Definition and Experience. In: HPCC. pp. 825-830.

104

Wu, Z. Y. and M. Khaliefa, 2012. Cloud Computing for High Performance Optimization of
Water Distribution Systems. In: World Environmental and Water Resources Congress
2012. pp. 679-686.

Zhao, G., B. A. Bryan, D. King, Z. Luo, E. Wang, U. Bende-Michl, X. Song and Q. Yu, 2013.
Large-scale, high-resolution agricultural systems modeling using a hybrid approach
combining grid computing and parallel processing. Environmental Modelling & Software
41:231-238.

105

APPENDIX A SOFTWARE AVAILABILITY

The software described in this document is open source and publicly available to use and

enhance. Links to access each project is listed below:

 TethysCluster

Project Home Page: http://www.tethysplatform.org/TethysCluster/

Code Repository: https://github.com/tethysplatform/TethysCluster/

Documentation: http://tethyscluster.readthedocs.org

 CondorPy

Project Home Page: http://www.tethysplatform.org/condorpy/

Code Repository: https://github.com/tethysplatform/condorpy/

Documentation: http://condorpy.readthedocs.org

 Tethys Compute (Tethys Platform)

Project Home Page: http://www.tethysplatform.org

Code Repository: https://github.com/tethysplatform/tethys/

Documentation: http://docs.tethysplatform.org

http://www.tethysplatform.org/TethysCluster/
https://github.com/tethysplatform/TethysCluster
http://tethyscluster.readthedocs.org/en/dev/
http://www.tethysplatform.org/condorpy/
https://github.com/tethysplatform/condorpy/
http://condorpy.readthedocs.org/en/latest/
http://www.tethysplatform.org/
https://github.com/tethysplatform/tethys/
http://docs.tethysplatform.org/

