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A B S T R A C T

As a prominent indicator of economic development, urbanization can exert a significant impact
on the PM2.5 level. Using panel data from 126 countries (areas) over the period 1990–2016, this
study investigates the relationship between urbanization level and PM2.5 density. A modified
stochastic impacts by regression on population, affluence, and technology model is applied as the
empirical strategy. Results show that the relationship between urbanization and PM2.5 density
has an inverted U shape. The effects of urban agglomeration and technological progress reduce
the density of PM2.5 in the late stage of urbanization. This study can help policymakers design
appropriate measures relevant to PM2.5 attenuation in the context of breakneck urbanization.

1. Introduction

Air pollution exert profound and non-negligible effects on people's physical and mental health, and it adds to the burden of
medical expenditures and sabotages the sustainable development of many economic entities (Pangaribuan, Chuang, & Chuang, 2019;
Signoretta, Veerle, & Bracke, 2019; Yang & Zhang, 2018). The reasons for the decrement in air quality must be explored from public
and private perspectives so that proper actions can be implemented and effective policies can be designed.

China's urbanization rate increased from<20% in 1980 to 59.58% at the end of 2018. Although the hukou system1 and other
factors hinder the free movement of labor internally, many rural workers have found urban employment and now live in cities. This
trend is accompanied by the economic reform and upgrading that have been in place since the 1980s. Urbanization and the speed of
aggregation in the population and industries in cities play a key role in the national economy and society. On the one hand, rapid
urbanization implies that economic or labor resources are more accessible to cities than before, thereby accelerating their devel-
opment (Dijst et al., 2018). On the other hand, urbanization causes many problems, such as increased auto emissions, water
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1 The household registration system (hukou system) is a long-standing practice in China. In 1958, China promulgated the “People's Republic of
China Household Registration Ordinance” and implemented two household registrations for agricultural and non-agricultural populations.
Meanwhile, population mobility was strictly controlled and regulated. After 1978, household registration regulation underwent a semi-deregulation
stage. The agricultural population can migrate into urban areas and register as an urban population through household registration exchange, land
development, marriage, higher education, buying a house, etc. Meanwhile, a large group of the agricultural population poured into factories in the
coastal provinces of China. A large population labeled as “migrant workers” began to appear without urban household registration.
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contamination, and declining air quality measured in terms of PM2.5, as shown in Fig. 1. The relationship between urbanization and
the environment has been widely investigated. However, the relationship between urbanization and PM2.5 has not been explained in
literature partly because tracking of PM2.5 began only recently.

The rapid degradation of air quality has attracted the attention of many scholars (Zhou et al., 2018; Wang, Zhu, Guo, & Peng,
2018; Chen et al., 2017; Chen, Barros, & Gil-Alana, 2016; Xu and Lin, 2016; Ma et al., 2016). Most studies have focused on the
impacts of economic and energy indicators on air quality, particularly carbon dioxide (CO2) emissions (Zhao et al., 2018; Wang et al.,
2018; Ma et al., 2016; Xu and Lin, 2016). These studies identified relevant economic and energy indicators. By contrast, research on
the relationship between urbanization effects and air quality, particularly the PM2.5 level, is rare despite its importance. To fill this
gap in literature, the current work explored the casual relationship between urbanization and air quality.

The goal of this study is to examine how urbanization affects air quality, specifically the PM2.5 level. To establish a reasonable
estimation and mechanism, we used a two-way fixed-effect model to obviate the unobservable variables. We investigated quadratic
and nonlinear effects by adding quadratic and cross terms to the empirical model. An instrumental variable and the general method of
moments (GMM) were utilized to address the endogeneity problem further. Moreover, a robustness test was conducted using proxy
variables, mixed effects, and NASA PM2.5 variables to ensure the robustness of the estimation.

This study contributes to literature. First, most current studies focus only on the situation in China. We used cross-country level
data to examine the relationship between PM2.5 concentration and urbanization. Doing so provides policy implications for countries
that are accelerating their urbanization process, especially China whose urbanization level remains to be far below that of developed
countries. Second, this study considers the turning point where PM2.5 concentration declines with the increase in urbanization rate.
The stochastic impacts by regression on population, affluence, and technology (STIRPAT) model was adopted to investigate the major
socioeconomic driver of PM2.5 concentration. The results are expected to help policymakers implement feasible measures for re-
ducing this type of air pollution. Lastly, we use NASA satellite data to further confirm the robustness of our conclusions. To the best of
our knowledge, we are the first to do so.

The rest of the paper is organized as follows. Section 2 reviews related literature. Section 3 presents the empirical model and the
selection of variables and their corresponding definitions. Section 4 shows the empirical results and analysis, and Section 5 concludes
the study.

2. Literature review

2.1. Environmental effect of urbanization

Many previous studies have been conducted on the relationship between urbanization and the environment. Chen, Jin, and Lu
(2018) examined the nexus between urbanization and CO2 emissions by using data on 188 Chinese prefecture-level cities and
concluded that this nexus has an inverted U shape in western China because the West–East Gas Pipeline Project2 encourages people in
western China to use coal. Lin and Zhu (2018) examined SO2 and PM10 pollutants and confirmed this finding with cross-sectional data
on 282 cities in China. Zhang, Yu, and Chen (2017) used data on 141 countries during the period 1961–2011 to verify the inverted U-
shaped relationship between urbanization and CO2 emissions and estimate the turning point. Shahbaz, Loganathan, Muzaffar,
Ahmed, and Jabran (2016) analyzed the same relationship by using a special case of Malaysia and the STIRPAT model. Chen (2018)
studied the nexus between urbanization and municipal solid waste and found that urbanization has a significant impact on municipal
solid waste. Yang et al. (2018) analyzed the effects of urbanization on China's residual energy consumption and discovered that the
impact of urbanization varies as it increases energy consumption, thereby narrowing the gap in energy consumption between urban
and rural areas. Sheng and Guo (2018) used province-level data and random-effect panel data and found that expanding urbanization
increases energy consumption, but also raises energy efficiency to a limited degree. Han, Xie, and Fang (2018) investigated the
dynamics of PM2.5 density in urban and rural areas of China under the background of rapid urbanization. They reported that PM2.5

concentration increased rapidly during 2000–2014. Wu, Zheng, Zhe, Xie, and Song (2018) found that the relationship between PM2.5

concentration and urbanization has an inverted N or inverted U shape, and it varies in different regions of China.

2.2. Factors that account for PM2.5

Research on the explanatory factors that account for PM2.5 emissions had been scarce until recently (Cao, Kostka, & Xu, 2019; Ji,
Yao, & Long, 2018; Jiang, Yang, Huang, & Liu, 2018; Wang et al., 2018; Yang, Liu, Lin, & Li, 2018). Several researchers have focused
on the dynamics and persistence of PM2.5 in massive cities of China (Chen et al., 2016; Kong et al., 2017). Later on, other studies
started to track the factors that drive PM2.5 levels, with particular emphasis on the relationship between the air pollutant PM2.5 and
socioeconomic factors. Yu et al. (2017) explored the situation and characteristics of PM2.5 emissions of different gas turbine aircraft
engines.

According to Ji et al. (2018), the association between increasing income levels and PM2.5 demonstrates diminishing marginal
effects, and the proportion of the service sector negatively influences PM2.5. Yang et al. (2018a) found that natural factors, such as the
environment and climate, contribute more to PM2.5 level than socioeconomic factors do. However, industrial activities contribute

2 It involved a set of natural gas pipelines that run from the western part of China to the east. This natural gas transmission project began in 2002
and aimed to achieve mutual and sustainable development for different regions of China.
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more to PM2.5 concentration than any other factor does; city size and public activities also have significant impacts on PM2.5 levels
(Jiang et al., 2018). Lin, Liu, and Yang (2012) reported that per capita GDP and energy intensity are the most decisive factors that
affect PM2.5 levels. Li, Fang, Wang, and Sun (2016) claimed that the PM2.5 level of China is driven by economic growth, urbanization,
and industrialization simultaneously. They proved this claim by performing a panel Granger causality test with prefecture data of
China. Wang et al. (2018) assessed the direct and indirect effects of political globalization and democracy on PM2.5 concentration and
showed that the effect of political globalization on PM2.5 levels is significantly positive in countries with high emissions. Meanwhile,
Feng, Dong, Wen, and Chang (2018) and Cao et al. (2019) used the turnover data of a municipal party committee from 2013 to 2016
to analyze the influence of a turnover event on the emission of air pollutant, including SO2, COD, soot, NHx, and PM2.5.

3. Methodology, variables, and data specification

The influence, population, affluence, and technology (IPAT) model, which was proposed by Ehrlich and Holdren (1971), is widely
used to describe the effects of human activities on the environment. In the model, environmental impact (I) is decomposed into three
main driving factors: population size (P), affluence (A), and environmentally unfriendly technology level or the impact per unit of
economic activity (T). The model's mathematical equation has a simple framework but has been criticized for not allowing hypothesis
testing and assuming a strict proportionality between factors.

= ∗ ∗I P A T (1)

On the basis of the IPAT model, Dietz and Rosa (1997) formulated the STIRPAT model, as follows:

=I α P A T eit i it
b

it
c

it
d

it (2)

In the STIRPAT model, the parameter αi is a constant, and b, c, and d are parameters corresponding to P, A, and T, respectively.
The variable eit is a random error term. The countries are denoted by i (i=1, 2, …, n), and the period is t (t=1, 2,…, T). Other studies
used different variables (Liu & Xiao, 2018; Zhang et al., 2017). For example, Waggoner and Ausubel (2002) used I for impact (all/
emission), P for population (parents/capita), A for affluence (workers/GDP per capita), C for intensity of use (consumers/energy per
GDP), and T for efficiency (producers/emission per energy).

By taking the logarithmic form of both sides of Eq. (2), Eq. (3) uses panel data in a linear specification and reduces the correlation
between variables.

= + + + +I α P c A d T eln ln b ln ln lnit i it it it it (3)

Several studies have added explanatory variables to the STIRPAT model on the basis of the research subject (Martínez-Zarzoso
et al., 2007; Poumanyvong & Kaneko, 2010; Rafiq, Nielsen, & Smyth, 2017). Similarly, we added a variable for urbanization level,
which affects PM2.5 concentration in the STIRPAT model. Therefore, the revised model can estimate the impact of urban development
on PM2.5 concentration. The model is expressed as follows:

= + + + + +I α P c A d T β urban eln ln b ln ln ln ln .it i it it it it (4)

I is the total environmental impact in the STIRPAT model. Accordingly, in our empirical models, we used total PM2.5 (pm2.5) as a
dependent variable in line with the studies of Sadorsky (2014) and Salim and Shafiei (2014). The explanatory variables were selected
based on data availability and their frequency of use in previous literature. Following Dietz and Rosa (1997), we utilized population
density (density) and GDP per capita (gdpp) to measure the impact of demographic and economic factors. Similar to Al-Mulali,
Saboori, and Ozturk (2015) and Liddle and Lung (2010), we considered them in our models. Trade openness (open) is the share of
imports and exports over the total GDP. In this study, we applied the share of the urban population (urban) in the total population in
the basic model. Aside from the share of the total urban population, the percentage of the population in an urban agglomeration
of> 1 million people (agg) is also important for describing the urbanization level. Therefore, urban agglomeration was used as an
alternate variable in our robustness tests. Other control variables, such as the proportion of the secondary industry, energy efficiency,
and proportion of fossil fuel, were considered. We logged all of these variables in the regression to investigate the effect of percentage
change in each explanatory variable on the percentage change in PM2.5 density.

With regard to empirical methods, this study initially applied a two-way fixed-effect model for panel data to control for un-
observable factors. To explore the nonlinear effect of urbanization, this study also added quadratic and cross terms. Instrumental
variables and two-stage least-squares (2SLS) methods were used to address the endogeneity problem caused by reverse causality. A
robustness test was also conducted to ensure the robustness of the results.

In addition to linearizing PM2.5 density with urbanization, we added quadratic and cross terms of urbanization to our regression.
We assumed that urbanization has a high-order impact on PM2.5 density, and this assumption was tested in our empirical analysis. We
also added cross terms to our empirical analysis to examine the interaction of variables and nonlinear effects. The statistical de-
scriptions of the variables are provided in Appendix Table 1. The standard deviation of lndensity is> 1 because the populations of
countries vary considerably. Furthermore, the member countries of the Organization for Economic Cooperation and Development
(OECD), which are developed countries, are likely to produce less PM2.5 than poor countries and have higher levels of urbanization.

We obtained data from World Bank Open Data, which include 126 countries and economic entities from 1990 to 2016. Before
2010, PM2.5 data were recorded every five years and annually afterward.

Small island developing states and members of the Organization of Petroleum Exporting Countries (OPEC) have particular
characteristics; hence, they were omitted from the sample. Countries with missing data on the variables were also omitted. We
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adopted an unbalanced panel dataset of 126 countries over the period 1990–2016. In consideration of the differences in economic
development, we divided these countries into three groups, namely, OECD, non-OECD, and less developed countries, in accordance
with the standards used by the World Bank.

4. Empirical results and analysis

We initially applied a basic two-way fixed-effect model. We added quadratic and cross terms to consider the nonlinear effects.
2SLS regression and an alternate-variable mixed-effect model were used to address endogeneity problems and check the robustness of
the empirical results.

4.1. Basic model

The null hypothesis of random effects was rejected on the basis of the results of Hausman tests. Hence, we applied a two-way fixed
model to evaluate the impact of urbanization on PM2.5 density. Our basic STIRPAT model can be written as follows:

= + + + +

+ + + + +

pm α β industry β intensity β open β energy
β density β urban γ λ e

ln 2.5 ln ln ln ln
ln ln ,

it it it it it

it it i t it

1 2 3 4

5 6 (5)

where γi and λt are the individual and time effects, respectively.
Table 2 shows that the coefficients of lnurban are significantly positive in three of the four columns, indicating that PM2.5 density

is significantly increased by urbanization, particularly in developing countries. This scenario is intuitive because cities are prone to
pollution in the urbanization process. In most cases, non-OECD and poor countries cannot deal with the high cost of environmental
improvements. The magnitude of the coefficient of lnurban suggests that a 1% increase in urbanization level is associated with an
increase in PM2.5 density of about 0.329%–0.39% in most countries. Additionally, the coefficients of lnurban in the full sample
resemble those of non-OECD countries, which are much lower than those of poor countries. Presumably, this is due to the lack of
institutions and regulations of environmental protection in poor countries.

The coefficient of lnurban is negative in the OECD countries. According to Chauvin (2017), the factors that prompt urbanization in
many countries are similar; however, equilibrium can vary among economies. In OECD countries, advanced urbanization leads to
environmental improvement because of the relatively comprehensive regulation and advanced technology, but developing and poor
countries do not obtain this benefit.

Other factors, such as lndensity and lnenergy, can have a significantly negative impact on PM2.5 density. A large population
increases the denominator of the equation for calculating PM2.5 density. Consequently, PM2.5 density decreases. The PM2.5 level rises
as the proportion of the secondary industry increases because the secondary industry causes considerable pollution. With regard to
energy intensity, negative coefficients indicate that the rise in energy consumption per GDP increases PM2.5 density. For urbanization
level, positive GDP growth is associated with an increase in PM2.5 density, indicating that in most countries, a high level of economic
development leads to a high PM2.5 level. However, trade openness does not play a beneficial role in decreasing pollution in cities. In
other words, trade can lead to increased pollution in several countries, as verified in many previous studies (Grether & Mathys, 2013;
Lin, 2017).

4.2. Basic model with the quadratic term added

Fig. 2a shows the linear fit between lnpm2.5 and lnurban, and Fig. 2b shows the quadratic fit between lnpm2.5 and lnurban. The
scatterplot of PM2.5 and urbanization in Fig. 2b has an inverted U shape that looks like a Kuznets curve. We assumed that urbani-
zation has a quadratic relationship with PM2.5 emissions. Therefore, we added the quadratic term of a logarithmic form of urbani-
zation (Brajer, Mead, & Xiao, 2011; Shen, 2006).

Table 3 presents the regression results after the quadratic term of a logarithm of urbanization was further added to the empirical
equation. According to Table 3, the coefficient of urbanization in poor countries became insignificant when the quadratic term of
urbanization was added. Developing countries are not growing rapidly, especially those struggling with war and political turbulence.
In this case, urbanization tends to stabilize at a certain level. In the three other groups, the first term of urbanization is positive,
whereas the second term of urbanization negatively affects PM2.5 emissions. Both terms are significant.

Table 1 shows that with the development of urbanization, the PM2.5 density increases initially then declines. Almost all developed
countries and emerging market entities have undergone this experience. That is, when an economic entity begins to accelerate its
development, as urbanization proceeds, the entity is supposed to utilize cost merits to attract investments. When it enters a relatively
adroit level, it tends to improve the environmental situation. This scenario is in accordance with the graph shown above, also
verifying the Kuznets curve. The other variables do not range drastically compared with those in the previous analysis.

4.3. Basic model with the interaction term added

Next, we explored the nonlinear effect of urbanization on air quality. We integrated urbanization and GDP per capita as cross
terms because the impact of urbanization on the PM2.5 level may vary with the value of GDP per capita. In Table 4, ug is the cross term
of urbanization and GDP per capita. After this cross term was included in the model, ug became significant with respect to the level of

Q. Dong, et al. China Economic Review 59 (2020) 101381

5



Fi
g.

2.
(a
)
Li
ne

ar
fi
t
be

tw
ee
n
ln
pm

2.
5
(b
)
Q
ua

dr
at
ic

fi
t
be

tw
ee
n
ln
ur
ba

n
an

d
ln
pm

2.
5
an

d
ln
ur
ba

n.

Q. Dong, et al. China Economic Review 59 (2020) 101381

6



PM2.5 in OECD countries.
In OECD countries, the inverted U-shaped curve still holds. In particular, in addition to the significantly positive coefficient of

lnurban, which remains the same as in the empirical estimation, the interaction term is statistically significant. This finding de-
monstrates that when the increase in GDP per capita in this group of countries exceeds 1.02% (0.61/0.598), urbanization has a
negative impact on PM2.5. Hence, the inverted U-shaped curve is verified.

The inverted U-shaped curve still holds in poor countries. However, the threshold for the adverse effect of urbanization is much
higher than that before. In this group of countries, only when the GDP per capita increment rate is raised to higher than 2.92% (13.1/
4.493) can urbanization decrease the PM2.5 density. However, this observation does not indicate that these countries quickly move to
the right-hand side of the Kuznets curve. With regard to the marginal effect of GDP per capita, when the increase rate in urbanization
is higher than 3.24% (14.54/4.493), GDP per capita growth helps decrease the PM2.5 level. Therefore, a decline in the PM2.5 level
requires relatively rapid increases in urbanization and GDP per capita.

On the contrary, in non-OECD countries, an increase in urbanization drives the PM2.5 level despite the inclusion of an interaction
term for urbanization and GDP per capita, which makes sense in emerging markets.

4.4. Endogeneity test

In our analysis, we set the logarithm of PM2.5 as the explanatory variable, and urbanization was the primary explanatory variable.
Endogeneity problems were considered in the causal estimation. Here, the primary source of endogeneity problems is reverse

Table 1
Definition of variables.

Variable label Variable Definition Measurement

pm25 PM2.5 density mean annual exposure⁎ Micrograms per cubic meter
industry industrial structure value of secondary industry divided by GDP %
intensity efficiency of fossil fuel-based energy actual fuel used divided by total fuel %
open trade openness trade value divided by GDP %
energy proportion of fossil fuel-based

energy
fossil fuel-based energy divided by total energy %

density density of population population divided by area of a country per sq. km. of land area
urban urbanization rate ratio of the population living in cities %
gdpp GDP value of a country per capita production value of a country 2010 US dollars
agg urban agglomeration percentage of the population living in urban agglomerations of > 1

million people
%

Note: The descriptive statistics of these variables are provided in Appendix Table 1.
⁎
Population-weighted exposure to ambient PM2.5 pollution is defined as the average level of exposure of a country's population to concentrations

of suspended particles.

Table 2
Results of the basic model.

Full sample OECD Non-OECD Poor countries

lnurban 0.390⁎ −3.587⁎ 0.329⁎⁎⁎ 1.401⁎⁎

(0.172) (1.707) (0.090) (0.439)
lnindustry 0.0332 0.0448 0.0400 −0.238

(0.0224) (0.0585) (0.0242) (0.302)
lnintensity 0.0230 0.00932 0.0425 0.362

(0.0251) (0.0532) (0.0276) (0.217)
lnopen 0.0288⁎ 0.124⁎⁎ 0.0230 0.773⁎⁎

(0.0133) (0.0424) (0.0142) (0.266)
lnenergy −0.136⁎⁎⁎ −0.00484 −0.147⁎⁎⁎ −0.701⁎⁎⁎

(0.0253) (0.0529) (0.0279) (0.165)
lndensity −0.645⁎⁎⁎ −0.569⁎⁎⁎ −0.597⁎⁎⁎ −0.929⁎⁎⁎

(0.0377) (0.0935) (0.0422) (0.143)
lngdpp 0.284⁎⁎ 1.083 0.337⁎⁎⁎ 6.038⁎⁎

(0.0868) (0.704) (0.0983) (2.316)
_cons 0.795 −10.170 0.423 −44.86⁎⁎

(0.650) (7.508) (0.736) (14.43)
N

R2
1061
0.981

210
0.988

851
0.970

77
0.982

Note: Each column shows results from an ordinary least-squares regression in which the dependent variable is lnpm2.5, and the key explanatory
variable is lnurban. Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.
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causation resulting from the possibility that PM2.5 density can affect urbanization; that is, as PM2.5 density increases, people are likely
to emigrate to other areas or cities where air pollution is less severe (Aunan & Wang, 2014; Bayer, Keohane, & Timmins, 2009).

This study used the lag of variables as instrumental variables (IV). In the overall sample, a one-phase lag of the urbanization level
was used as the IV because we assumed that PM2.5 density does not affect urbanization in the lag phase. The results of 2SLS are shown
in Table 5, and the regression outcome in this section is consistent with that in the previous analysis wherein the endogeneity

Table 3
Basic model with the quadratic term added.

Full sample OECD Non-OECD Poor countries

lnurban 1.841⁎⁎⁎ 3.090⁎⁎⁎ 2.053⁎⁎⁎ 1.537
(0.331) (0.5908) (0.360) (3.724)

lnurban2 −0.237⁎⁎⁎ −0.344 −0.272⁎⁎⁎ −0.0903
(0.0465) (0.339) (0.0512) (0.581)

lnindustry 0.0313 0.0364 0.0390 −0.0998
(0.0219) (0.0593) (0.0236) (0.371)

lnintensity 0.0454 0.0107 0.0720⁎⁎ 0.342
(0.0252) (0.0540) (0.0276) (0.243)

lnopen −0.0281⁎ −0.138⁎⁎ −0.0217 −0.967⁎⁎⁎
(0.0131) (0.0441) (0.0140) (0.277)

lnenergy −0.143⁎⁎⁎ −0.00558 −0.161⁎⁎⁎ −0.484⁎⁎
(0.0244) (0.0545) (0.0267) (0.159)

lndensity −0.649⁎⁎⁎ −0.590⁎⁎⁎ −0.596⁎⁎⁎ −0.921⁎⁎⁎
(0.0370) (0.0927) (0.0415) (0.174)

lngdpp 0.190⁎⁎⁎ −0.329⁎⁎⁎ 0.278⁎⁎⁎ −0.803⁎
(0.0251) (0.0871) (0.0291) (0.399)

_cons −1.426⁎ −1.672 −2.419⁎⁎ −3.768
(0.668) (6.512) (0.744) (6.453)

N
R2

1061
0.982

210
0.971

851
0.988

77
0.982

Note: Each column shows results from an OLS regression where the dependent variable is lnpm2.5, and the key explanatory variable is lnurban.
lnurban2 is the quadratic term of lnurban. Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.

Table 4
Baseline model with interaction terms added.

Full sample OECD Non-OECD Poor countries

lnurban 1.946⁎⁎⁎ 0.610 2.149⁎⁎⁎ 13.10⁎⁎

(0.333) (3.063) (0.360) (4.069)
lnurban2 −0.315⁎⁎⁎ −0.674 −0.365⁎⁎⁎ −2.514⁎⁎⁎

(0.0581) (0.584) (0.0623) (0.753)
ug 0.0591⁎ −0.598⁎ 0.076⁎⁎ −4.493⁎⁎⁎

(0.0268) (0.284) (0.0291) (0.969)
lnindustry 0.0364 0.0560 0.0451 −1.174⁎⁎

(0.0219) (0.0586) (0.0236) (0.396)
lnintensity 0.0494⁎ 0.0146 0.0766⁎⁎ 0.0897

(0.0251) (0.0528) (0.0275) (0.217)
lnopen 0.0282⁎ 0.0993⁎ 0.0219 0.523⁎

(0.0130) (0.0460) (0.0139) (0.257)
lnenergy −0.131⁎⁎⁎ −0.0181 −0.145⁎⁎⁎ 0.916⁎⁎⁎

(0.0248) (0.0535) (0.0272) (0.166)
lndensity −0.639⁎⁎⁎ −0.564⁎⁎⁎ −0.586⁎⁎⁎ −0.590⁎⁎⁎

(0.0373) (0.0954) (0.0416) (0.167)
lngdpp −0.0302 2.225 −0.00526 14.54⁎⁎⁎

(0.103) (1.214) (0.112) (3.328)
_cons −0.881 −9.600 −1.624⁎ −69.81⁎⁎⁎

(0.710) (7.437) (0.800) (15.30)
N

R2
1061
0.982

210
0.988

851
0.972

77
0.982

Note: Each column shows results from an OLS regression in which the dependent variable is lnpm2.5, and the key explanatory variable is lnurban. ug
is the interaction term of lnurban and lngdpp. Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.

Q. Dong, et al. China Economic Review 59 (2020) 101381

8



problem was controlled for.
With regard to the impacts of each variable, the coefficient and significance level of lnurban and other variables remained similar

to those in the baseline estimation.

4.5. Further investigation and robustness test

4.5.1. Alternative variables
A notable feature of urbanization in most countries is urban agglomeration, which is defined as urban concentrations of popu-

lations of> 1 million; urban agglomeration used to describe population sizes in large cities (Zhang et al., 2017). High agglomeration
usually indicates overconcentration and inefficient urbanization. A strand of literature has explored the effects of urbanization on the

Table 5
Regression using 2SLS.

Full sample OECD Non-OECD Poor countries

lnurban 0.160⁎ 0.0437⁎⁎⁎ 0.158⁎ 0.762⁎⁎⁎

(0.0680) (0.015) (0.0772) (0.161)
lnindustry 0.0554⁎ 0.109⁎ 0.0498⁎ 0.148⁎

(0.0216) (0.0520) (0.0245) (0.0580)
lnintensity 0.0478 0.138⁎⁎ 0.0577 0.0729

(0.0282) (0.0437) (0.0332) (0.103)
lnopen 0.00151 0.0157 0.000858 0.0134

(0.0121) (0.0378) (0.0136) (0.0447)
lnenergy −0.0563⁎ −0.117⁎⁎ −0.0659⁎ −0.0912⁎⁎

(0.0258) (0.0446) (0.0302) (0.0310)
lndensity −1.097⁎⁎⁎ −1.106⁎⁎⁎ −1.090⁎⁎⁎ −1.734⁎⁎⁎

(0.0363) (0.112) (0.0408) (0.105)
lngdpp −0.00706 −0.372⁎⁎⁎ 0.00525 0.253⁎

(0.0255) (0.0620) (0.0293) (0.119)
N

R2
976
0.981

197
0.995

779
0.982

69
0.995

Note: Each column shows results from the GMM method in which the dependent variable is lnpm2.5, and the key explanatory variable is lnurban.
The instrumental variable is the lag term of lnurban, which is the endogenous variable. Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.

Table 6
Regression with urban agglomeration.

Full sample OECD Non-OECD Poor countries

lnagg 0.488 5.001⁎⁎⁎ 0.350 3.481⁎⁎

(0.344) (1.183) (0.382) (1.114)
lnagg2 −0.148⁎ −0.748⁎⁎⁎ −0.314⁎⁎⁎ −0.0338

(0.0587) (0.181) (0.0759) (0.160)
ag −0.120⁎⁎⁎ 0.0166 −0.118⁎⁎⁎ −0.454⁎⁎

(0.00989) (0.0513) (0.0194) (0.135)
lnindustry −0.136 0.114 −0.259⁎ 0.315

(0.114) (0.307) (0.131) (0.222)
lnintensity 0.453⁎⁎⁎ 0.594⁎⁎ 0.286⁎⁎⁎ 0.292

(0.0764) (0.199) (0.0842) (0.164)
lnopen 0.885⁎⁎⁎ 1.668⁎⁎⁎ 0.687⁎⁎⁎ 0.389⁎

(0.0548) (0.121) (0.0619) (0.185)
lnenergy −0.0826 −0.252 −0.0307 −0.879⁎⁎⁎

(0.0655) (0.198) (0.0759) (0.161)
lndensity −0.149⁎⁎⁎ −0.212⁎⁎⁎ −0.133⁎⁎⁎ 1.099⁎⁎⁎

(0.0278) (0.0428) (0.0330) (0.147)
_cons 0.825 −11.01⁎⁎⁎ 1.592 −10.46⁎⁎⁎

(0.800) (3.190) (0.847) (1.801)
N

R2
827
0.973

194
0.982

633
0.972

65
0.981

Note: Each column shows results from an OLS regression in which the dependent variable is lnpm2.5, and the key explanatory variable is lnagg.
lnagg2 and ag are the quadratic terms for lnagg and the interaction terms lnurban and lngdpp, respectively. Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.
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environment (Han et al., 2018; Liang, Wang, & Li, 2019; Liu, Tian, Li, Song, & Ma, 2018), particularly the effect of urban ag-
glomeration. Replacing the urbanization level with urban agglomeration as the key explanatory variable helps explain the effect of
urbanization on the environment in cities. Thus, the natural logarithm of urban agglomeration was used as a proxy variable in our
empirical analysis in this section.

Table 7
Mixed-effect model.⁎

(1) (2) (3)

Random intercept 1: grouped by countries Random intercept 2: grouped by time Random intercept and slope model

lnurban 1.980⁎⁎⁎ 1.297⁎⁎⁎ 1.808⁎⁎⁎

(0.305) (0.390) (0.319)
lnurban2 −0.287⁎⁎⁎ −0.254⁎⁎⁎ −0.265⁎⁎⁎

(0.0423) (0.096) (0.0444)
lnindustry 0.125⁎⁎⁎ 0.494⁎⁎⁎ 0.122⁎⁎⁎

(0.0198) (0.0417) (0.0197)
lnintensity 0.597⁎⁎⁎

(0.0489)
0.694⁎⁎⁎

(0.0379)
0.649⁎⁎⁎

(0.0577)
lnopen 0.0146 0.0793⁎⁎⁎ 0.0162

(0.0119) (0.0227) (0.0117)
lnenergy −0.0607⁎⁎ −0.0303 −0.0685⁎⁎

(0.0220) (0.0260) (0.0218)
lndensity −0.00672 −0.110⁎⁎⁎ −0.0102

(0.0229) (0.0109) (0.0228)
lngdpp 0.0477⁎⁎ 0.312⁎⁎⁎ 0.0515⁎⁎⁎

(0.0153) (0.0167) (0.0152)
_cons 0.200 3.134⁎⁎⁎ 0.643

(0.565) (0.763) (0.590)
N

Log likelihood
chi2

1070
219.664
342.630

1070
−1546.104
731.490

1070
221.218
326.440

Note: Each column shows results from a mixed-effect model, in which the dependent variable is lnpm2.5, and the key explanatory variable is lnurban.
Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.

Table 8
Robustness test that includes NASA data.

(1) (2) (3) (4)

Full sample OECD Non-OECD Poor countries

lnurban −0.355⁎⁎ 1.254⁎ −0.523⁎⁎⁎ 0.889⁎⁎⁎

(0.125) (0.575) (0.134) (0.198)
lnindustry −0.315⁎ −0.838⁎⁎ −0.711⁎⁎⁎ 0.270

(0.127) (0.295) (0.152) (0.450)
lnintensity −0.374⁎⁎⁎ −0.672⁎ −0.253⁎ −0.941⁎⁎⁎

(0.0866) (0.260) (0.0984) (0.205)
lnopen 2.050⁎⁎⁎ 2.133⁎⁎⁎ 1.745⁎⁎⁎ 0.231

(0.0831) (0.0994) (0.112) (0.281)
lnenergy −0.306⁎⁎⁎ −1.224⁎⁎⁎ −0.344⁎⁎⁎ 1.231⁎⁎⁎

(0.0786) (0.176) (0.0895) (0.186)
lndensity −0.264⁎⁎⁎ −0.137⁎⁎ −0.289⁎⁎⁎ 0.550⁎⁎⁎

(0.0314) (0.0475) (0.0378) (0.0845)
lngdppn −0.0284 −2.156⁎⁎⁎ 0.306⁎⁎⁎ −4.645⁎⁎⁎

(0.0389) (0.447) (0.0606) (0.365)
_cons 6.104⁎⁎⁎ 27.27⁎⁎⁎ 6.468⁎⁎⁎ 33.17⁎⁎⁎

(0.860) (4.144) (0.931) (2.292)
N

R2
1005
0.987

224
0.975

781
0.972

66
0.963

Source: https://nasasearch.nasa.gov/search?query=PM2.5&affiliate=nasa&utf8=%E2%9C%93/.
Note: Each column shows results from an OLS regression, in which the dependent variable is lnpm2.5, and the key explanatory variable is lnurban.
Standard errors are in parentheses.

⁎
p < 0.1.

⁎⁎
p < 0.05.

⁎⁎⁎
p < 0.01.
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Table 6 shows that we substituted the logarithm of urbanization level with the natural logarithm of urban agglomeration (lnagg).
The regression results are similar, and the level of significance remains the same because of the close relationship between urban
agglomeration and urbanization, thereby verifying our previous empirical results. In particular, the inverted U-shaped curve and
interactions still hold. As demonstrated in Table 7, energy efficiency and industrial structure significantly boost PM2.5 levels in non-
OECD countries. Table 7 shows that urban agglomeration significantly increases PM2.5 levels, except in poor countries. PM2.5 density
is curbed by energy consumption and the demographic structure but increased by trade openness.

4.5.2. Mixed effects
Considering the heterogeneity of the samples and the omitted values, we applied a mixed-effect model to address this problem and

serve as a robustness test. In light of the grouping variable (i.e., country and time), we used country and time in the random intercept
model, respectively. We also included a random intercept and slope model, assuming that the grouping variable may also influence
the coefficient of lnurban. The results in Table 7 are highly consistent with those of the earlier analysis and thus confirm that our
results are robust.

4.5.3. Robustness test with NASA indicators
Given the variety of ways to measure the degree of PM2.5, we applied other indicators to test the robustness of our empirical

results. Data in many developing countries may lead to inaccurate estimations because monitoring in these countries is sparse. Data
collected by satellites may be more comprehensive. Consequently, we used PM2.5 data from 2001 to 2016 from NASA.3Fig. 3 il-
lustrates the worldwide distribution of PM2.5 based on NASA data.

The overall impression provided by Fig. 3 is consistent with that of the World Bank Database. Thus, NASA data were combined
with our original dataset to calculate PM2.5 density and conduct an empirical analysis. The results are presented in Table 8.

The results in Table 8 confirm the robustness of our empirical results because the sign of most variables remains the same as those
in our previous analysis. Owing to the limited time range, several differences were found in the values and significance levels
compared with those in the previous analysis. Nevertheless, most variables, particularly lnurban, have the same sign and significance
level as before.

5. Conclusion and policy caveats

China has undergone extensive economic development and urbanization and thus experiences severe air pollution. To address
pollution while continuing with national development, the Chinese government has proposed that all cities in China attain air quality
rated as “good” or better on at least 80% of the days monitored. Hence, exploring the impact of urbanization and other economic
indicators on air quality is useful.

By applying economic and demographic data on different countries from 1990 to 2016, this study provides robust evidence on the
impact of urbanization on PM2.5 density. By using several empirical methods to address the endogeneity problem and check ro-
bustness, we found that the emissions due to urbanization and PM2.5 density have an inverted U-shaped relationship. In other words,
as a crucial indicator of modernization, urbanization initially increases the PM2.5 density level. As urbanization proceeds, urban
agglomeration and technological progress help reduce PM2.5 density.

The empirical results suggest specific policy implications. For countries with low levels of urbanization, urban development is
likely to be the priority of policymakers, and infrastructure construction is of great importance. Both can drive urbanization. With the
advantage of a scale economy and agglomeration effects, urbanization significantly boosts industrial development and thus accel-
erates the structural transformation of the economy.

When the GDP per capita approaches that of high-income countries and the economic growth rate converges to a low level, PM2.5

density is eventually reduced. At this stage, governments should not pursue economic growth at the cost of environmental protection.
Policymakers should recognize the importance of the pattern of urbanization, which is a prerequisite for ensuring that the relevant
policy is efficient and appropriate.

This study explored the impacts of urbanization on the PM2.5 density level, which has been rarely covered in extant literature. To
do so, we conducted an extensive country-level analysis with numerous robustness tests. The results were confirmed with data from
NASA. The environmental Kuznets curve on the nexus of urbanization and PM2.5 density was confirmed, and policy caveats were
provided for the reference of policy makers to address this environmental issue in the context of breakneck urbanization.
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Appendix Table 1
Descriptive statistics of the variables.

Obs. Mean Std. dev. Min Max

Full sample
lnpm2.5 1940 3.123 0.698 1.195 4.909
lnindustry 6539 3.263 0.473 0.632 5.365
lnintensity 3447 4.912 0.574 1.515 7.088
lnopen 8193 4.173 0.672 −3.863 6.758
lnenergy 5743 4.052 0.718 0.495 4.605
lndensity 11,548 4.020 1.678 −2.316 9.971
lnurban 11,976 3.733 0.673 0.731 4.605
lnurban2 11,976 14.391 4.591 0.534 21.208
lngdp 10,808 24.550 2.970 16.881 31.955

OECD countries
lnpm2.5 230.000 2.357 0.342 1.642 3.013
lnindustry 697.000 3.330 0.212 2.481 3.802
lnintensity 598.000 4.777 0.381 3.840 6.131
lnopen 1257 4.046 0.590 2.189 6.039
lnenergy 1272 4.323 0.315 2.328 4.605
lndensity 1187 3.917 1.586 0.311 6.220
lnurban 1288 4.298 0.171 3.554 4.584
lnurban2 1288 18.503 1.431 12.631 21.009
lngdp 1231 26.635 1.647 21.442 30.440

Poor countries
lnpm2.5 270.000 3.611 0.497 2.061 4.882
lnindustry 981.000 2.890 0.429 0.632 3.853
lnintensity 267.000 5.607 0.672 3.418 7.088
lnopen 1160 3.889 0.473 2.412 5.741
lnenergy 480.000 2.660 1.047 0.495 4.549
lndensity 1394 3.533 1.144 0.887 6.156
lnurban 1508 2.902 0.699 0.731 4.109
lnurban2 1508 8.912 3.810 0.534 16.882

Non-OECD
lnpm2.5 1220 3.313 0.599 1.195 4.882
lnindustry 4276 3.287 0.456 0.632 4.572

(continued on next page)

Fig. 3. Depiction of PM2.5 derived by NASA.
Source: https://nasasearch.nasa.gov/search?query=PM2.5&affiliate=nasa&utf8=%E2%9C%93/.
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Appendix Table 1 (continued)

Obs. Mean Std. dev. Min Max

lnintensity 2224 5.012 0.610 1.515 7.088
lnopen 4877 4.087 0.674 −1.787 6.276
lnenergy 3512 3.910 0.807 0.495 4.605
lndensity 7056 3.860 1.582 −2.316 9.860
lnurban 7160 3.621 0.701 0.731 4.605
lnurban2 7160 13.604 4.615 0.534 21.208
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