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A B S T R A C T

We study the impact of a national energy efficiency program on total factor productivity (TFP)
growth in firms in China's iron and steel industry. Using detailed firm-level survey data and
multiple approaches to estimate program effects, we find participating firms experienced greater
annualized TFP change. Our base specification estimates the program increased annual TFP
growth by 3.1 percentage points, implying an annual private benefit of 148.7 million RMB/year
per firm, with approximately equal contributions from technical change and scale efficiency
change. Our results suggest that firms undervalued energy efficiency investments prior to the
start of the program.

1. Introduction

Public- and private-led efforts to increase the efficiency of energy use in industrial production are common worldwide. Yet there is
little evidence of how these interventions affect the productivity growth of targeted firms, especially in developing countries. We
quantify the effect of a national energy efficiency program in China on the short-run total factor productivity growth (TFPG) of firms
in the iron and steel industry. Using multiple empirical approaches, we find modest positive productivity effects of the program in the
years following its implementation. We interpret these positive short-run effects as evidence that the program interacted with pre-
existing investment inefficiencies, defined as the undervaluation of discounted savings relative to upfront costs, in managers' private
valuation of energy-saving investments (Allcott, Hunt, & Greenstone, 2012). If investment inefficiencies are particularly important in
developing countries, as our research suggests is the case in China's iron and steel industry, there is scope for informational and
target-setting programs to improve both firms' energy decisions and productivity outcomes.

A growing body of scholarship empirically estimates the impact of energy and environmental regulation on firms. A recent review
of the literature finds broad evidence of small, statistically significant negative effects in the short run on productivity, especially in
sectors most exposed to regulatory costs (Dechezleprêtre & Sato, 2017). By contrast, there exists little empirical support for the notion
that regulation can enhance productivity and, more broadly, firm competitiveness (for more discussion see Porter and Van der Linde
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(1995) and Ambec, Cohen, Elgie, and Lanoie (2013)).1

However, two questions remain underexplored. First, most prior work focuses on firms in developed countries; it is possible that
some causes of investment inefficiencies, such as information barriers, credit constraints, subsidized energy pricing, and general
allocative distortions (e.g., as described in Hsieh & Klenow, 2009), may be more salient for firms operating in developing country
settings. Second, regulations differ in the ways that affect firms' private costs and benefits. Energy efficiency programs theoretically
imply both private costs and benefits, because initial investments, while costly, also reduce a firm's effective cost of energy services
per unit of real output. By contrast, many environmental policies require protective measures, such as end-of-pipe treatment tech-
nologies, which are costly to both install and operate. Thus, in theory it is more plausible that firms would reap productivity benefits
from an efficiency-oriented intervention, relative to a regulation that uniformly imposes clean-up costs and yields distributed benefits
to society that firms do not capture.

When it comes to energy efficiency in particular, there is an ongoing debate on whether or not firms optimally invest. Industry,
government, and think tank analysis has claimed that energy efficiency has great potential to address environmental and security
concerns, and has called for interventions to lower the barriers to realizing these gains, as described in Allcott et al. (2012). Building
on Hausman (1979), prior work has largely focused on characterizing investment decisions by individuals; a limited body of research
in applied microeconomics has empirically examined energy-related investments by firms (see for example DeCanio, 1993; DeCanio
& Watkins, 1998; Ryan, 2018). Proposed explanations for this so-called “energy efficiency gap” include information barriers,
transaction or ancillary costs, credit constraints, principal-agent conflicts, behavioral explanations, or a combination of multiple
factors (see Gillingham and Palmer (2014) for a review of the literature). These factors may be more prevalent or pronounced in
developing countries. Examining effects on firm productivity are one way of measuring the existence and extent of these in-
efficiencies.

Whether or not mandating increases in a firm energy efficiency helps or harms productivity growth is ultimately an empirical
question. In this analysis, we estimate the impact of a program in China designed to raise energy efficiency, the Top 1000 Firms
Energy Conservation Program (here “T1000P”), on firm productivity in the iron and steel industry. The program represented the first
attempt of China's state leadership to mandate increases in industrial energy efficiency to support newly introduced, legally binding
energy intensity targets for industries and provinces during the Eleventh Five-Year Plan (2006–2010) (Cao, Garbaccio, & Ho, 2009;
Zhang, Aunan, Seip, & Vennemo, 2011). As is typical of many energy efficiency programs, the T1000P targeted the country's largest
energy users. Within the industrial sector, the Chinese iron and steel industry has been both a major engine of economic expansion
and a significant source of local air pollution and carbon dioxide emissions due to its high direct use of coal (He, Zhang, Lei, Fu, & Xu,
2013; Lin, Wu, & Zhang, 2011). We first estimate total factor productivity change in the population of Chinese iron and steel firms
using both cost function and production function approaches at the sub-industry (four-digit industry code) level. Then, in a differ-
ence-in-difference (DID) design, we evaluate the program's effect on the productivity growth of treated firms. For identification, we
use three main approaches (propensity score matching, variation in the inclusion threshold for provincial programs, and an in-
strument for program treatment) to isolate the effect of the program from potential confounders.

Our results are consistent with the existence of investment inefficiencies in China's iron and steel firms prior to the start of the
program. On average, firms included in the program experienced faster TFP growth. We estimate that TFP grew on average by 6.4%
in the industry as a whole. In our benchmark specification, we find that the average treated firm's TFP change is higher by 3.1
percentage points per year over the first three years of the program (2006 to 2008). The evidence that T1000P firms benefitted is
robust to a range of alternative specifications and tests that explicitly consider attrition, the influence of a potentially confounding
program, and the use of a production function instead of a cost function to estimate productivity. Our cost function results further
distinguish the contributions of technical and scale efficiency change, which are positive, significant, and contribute about equally to
the overall effect of the program on TFP change in our main specification.

Our findings imply several lessons for the future design of energy efficiency interventions in developing countries. First, the
targets assigned by the T1000P may have raised the average treated firm's perceived net benefit of mobilizing external resources to
support energy efficiency investments. Prior work has suggested that when investment inefficiencies exist, “mandating or sub-
sidizing” energy efficiency could increase welfare (Allcott et al., 2012). In our study, all firms had the opportunity to apply for
financial assistance to support energy efficiency investments. However, only treated firms faced binding targets and incentives to
meet them. Our results suggest that targets prompted T1000P firms to direct more internal effort to evaluating their organization's
energy use and to pursuing external sources of support to raise efficiency, relative to firms that did not face targets. Second, in
addition to raising the perceived net benefit of energy efficiency, the program may have made payoffs to investments more certain.
Managers undertaking energy efficiency investments, especially for the first time, face the risk that realized savings could be lower
than anticipated at the outset, a phenomenon consistent with empirical evidence in other settings (Burlig, Knittel, Rapson, Reguant, &
Wolfram, 2017; Fowlie et al., 2018; Davis, Fuchs, & Gertler, 2014). Under the T1000P, firms received benefits in the form of
accolades and avoided unfavorable treatment by participating in the program and achieving targets. The relative certainty of these
near-term benefits may have increased the expected net benefit associated with energy efficiency investments in treated relative to
control firms.

1 The Porter Hypothesis proposes that, in the medium to long run, firms facing environmental regulation would accelerate technological progress
and gain a positive productivity advantage.
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2. Literature and empirical setting

2.1. Impact of energy efficiency on firm productivity

The vast majority of studies that estimate the impact of energy efficiency programs examine developed country settings, typically
focus on individual or household decisions, and do not consider productivity effects. These studies have found evidence that the
engineering projections of recurring savings used to justify energy efficiency programs have been overestimated. One study of a
weatherization program in the U.S. estimated that model-projected savings exceeded actual savings by 2.5 times, while the actual
rate of return to the program was negative (Fowlie et al., 2018). A recent study of housing rental markets in the U.S. found different
rates of energy efficiency investment, depending on whether tenants or owners paid for energy (Myers, 2018). Such studies in
developing countries are rare, but similar to Fowlie et al. (2018) suggest savings are initially overstated. For instance, Davis et al.
(2014) found that a large-scale appliance replacement program in Mexico achieved only one-quarter of the energy savings projected
ex ante. All of these studies involve individual or household decisions; in a study involving schools, Burlig et al. (2017) found that
energy efficiency projects resulted in savings of 2–5% on average, while realized savings were 50% lower than ex ante projected
savings.

In the case of firms, a multiple studies have found negative productivity effects of environmental regulations (e.g. pollution limits)
on firms (Gollop & Roberts, 1983; Gray & Shadbegian, 2003; Greenstone, List, & Syverson, 2012; Koźluk & Zipperer, 2013). Gollop
and Roberts (1983) focus on sulfur dioxide emissions limits in the US electric power industry by estimating a cost function using
observations of 56 electric utilities between 1973 and 1979. They find a negative effect of the regulation on TFP growth of 0.59
percentage points per year, mainly due to the higher cost of low sulfur fuel. Gray and Shadbegian (2003) study the effect of the US
Clean Air and Clean Water Acts of the early 1970s on 116 pulp and paper mills in the United States from 1979 to 1990. They find that
higher pollution abatement operating costs lowered TFP levels by about 2.6% annually, and that the magnitude of this effect de-
pended on a plant's technology. Greenstone et al. (2012) study the effect of the Clean Air Act Amendment on TFP levels in a large
sample of US manufacturing plants over the period from 1972 to 1993. TFP levels of polluting plants located in non-attainment
counties (subject to more stringent pollution limits) are found to be significantly negatively affected in the range of 2.6 to 4.8% on
average (Greenstone et al., 2012).

There is little empirical evidence of the magnitude and direction of the firm-level productivity impact of efforts to raise industrial
energy efficiency anywhere in the world. Despite this, energy efficiency programs have been widely adopted in developing countries
on the basis that they will not impede economic growth, because these programs index energy saving targets to economic activity.
Indeed, the term “energy saving” can be misleading because economic growth at a rate that exceeds the rate of decline in energy
intensity in a given period will result in an increase in absolute energy use. Many developing countries, including China and India,
have adopted efficiency or intensity-based targets to implement their national climate change mitigation goals. The closest setting to
ours, which uses a different (experimental) methodology, is Ryan (2018), which finds manufacturing plants in India respond to an
energy efficiency treatment by hiring more skilled labor and increasing output, resulting in higher energy use in the treatment
relative to the control group.

To study the productivity impacts of state-mandated increases in energy efficiency in a developing country setting, we choose to
focus on China in the mid-2000s, when its central government introduced an energy efficiency program for the first time. China
experienced rapid economic growth averaging 10% in real terms between 1980 and 2010, and emerged by the end of this period as
the world's largest energy-using nation. Prior studies of China's energy efficiency programs have quantified changes in energy effi-
ciency or emissions levels (see for example Xu and Lin (2016) and Zhou and Yang (2016)), but not firm productivity. Our work also
contributes to a large literature that estimates trends and probes determinants of productivity growth in China (see Tian and Yu
(2012) and Wu (2011) for an extensive review).

2.2. Intuition

The impact of an energy efficiency program on firm productivity depends on how firm managers trade off the upfront cost of
energy efficiency investments against discounted energy savings. Below, we define investment inefficiencies with respect to energy
efficiency capital, and show how positive productivity effects could result from reducing the magnitude of these inefficiencies. We
begin with the basic framework from Allcott et al. (2012), which suggests that firms will invest in energy efficiency if the upfront cost
c is lower than the discounted benefits, formalized in Eq. (1):

>
g pm e e

r
c

( )
1

i i 0 1
(1)

where e0 is the baseline energy intensity and e1 is the energy intensity of the efficient variant of a production technology. Energy
prices p and unobserved opportunity costs or benefits ξ are assumed constant across firms, while a firm's taste for an energy efficient
good is captured by mi. The parameter gi captures the extent to which a firm under- or over-values energy savings, and serves as a
sufficient statistic for a broad range of investment inefficiencies (Allcott et al., 2012). The only difference from the earlier Allcott and
Greenstone (2012) framework is that here we explicitly allow gi to be firm specific, similar to the setting in Allcott, Mullainathan, and
Taubinsky (2014). For instance, agents may misperceive expected energy cost savings; savings may be genuinely uncertain for a fixed
amount of investment; agents may not reap savings because buyers of their products lower prices to reflect the reduction in costs; or
firms may lack access to credit at the risk-adjusted discount rate.
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We are interested in how the productivity impact of mandating an increase in energy efficiency depends on a firm's value of g.
Governments do not observe g when designing energy efficiency programs. If g=1 or g > 1, increasing energy efficiency will lead to
overinvestment in energy efficiency and TFP loss. However, common assumptions supported by empirical findings suggest g≤1
(Allcott et al., 2014). Therefore, if an energy efficiency target requires a firm for which g < 1 to raise its energy efficiency by
investing at a level corresponding to g=1, its costs would fall because its additional investment has unlocked discounted energy
savings that, contrary to the firm's original assessment, more than offset the firm's upfront cost, hence increase the TFP. If the
efficiency target exceeds the optimal level, the firm will overinvest in energy efficiency, and TFP may decrease compared to the level
without policy.

In practice, g varies across firms. An intervention that mandates improvements in energy efficiency will therefore affect different
firms differently. In a population of heterogeneous targeted firms, the net impact of mandating increased efficiency on the pro-
ductivity of the average firm is ultimately an empirical question.

2.3. Industry context

We estimate the impact of an energy efficiency program on firm productivity in China's iron and steel industry in the mid-2000s.
Our research setting typifies the conditions of an energy-intensive industry in a developing country during a period of rapid economic
expansion, although we recognize that the scale, pace, and drivers of China's economic expansion are in many respects unique.
Between 1985 and 2013, the industry's output grew on average by 10.8%, and constituted 49.8% of global iron and steel output in
2013 (IISI, 1986, 2002; WSA, 2014). Total energy consumption in the industry increased at a slightly slower rate of 8.7% per year
between 1985 and 2010 (Lin & Wang, 2014). In 2013, the iron and steel industry accounted for 29% of the total energy used in
China's manufacturing sector and 23.6% of total energy used in industry (NBS, 2014). Iron and steel production is also one of the
country's major sources of pollution (He et al., 2013). During the study period, the industry ranked third as a source of carbon dioxide
emissions in China (after power generation and cement), accounting for roughly 10% (Zeng, Lan, & Huang, 2009). The iron and steel
industry's high energy consumption is in large measure attributable to the characteristics of its production processes. Compared to the
iron and steel industries of developed nations, aggregate measures (above the firm level) suggest that China's industry uses energy
more intensively in production (He et al., 2013; Ross & Feng, 1991; Zhang & Wang, 2008).

2.4. Energy efficiency treatment

The central government launched the national Top 1000 Firms Energy Conservation Program (T1000P) at the start of the
Eleventh Five-Year Plan (FYP) in April 2006 (Zhou, Levine, & Price, 2010). It required the country's largest 1008 energy-consuming
industrial firms, defined as firms consuming a minimum of 180,000 tons of coal equivalent (tce) in 2004, in nine industries to
substantially reduce their energy intensity (the ratio of energy used to output produced) (Price, Wang, & Yun, 2010). The energy
consumption cutoff was the sole criterion used to determine program participation. The program was designed to support the Ele-
venth FYP's (2006–2010) target of reducing national energy intensity (energy use per GDP) by 20% (State Council, 2006). The
government rolled out the program rapidly in response to the observation that by 2004, a long decline in the energy intensity of
China's economy, largely attributed to the gradual dismantling of central planning since the 1980s, appeared to have reversed (Ke
et al., 2012). One study notes that energy conservation was not an industry priority before the mid-2000s (Zhang & Wang, 2008). The
program was administered by the National Development and Reform Commission (NDRC), China's major economic planning body,
and was the first of its kind in China.

Energy intensity targets for firms participating in the T1000P were set in agreements between the provincial government and the
firm (Price et al., 2010; Zhao, Li, Wu, & Qi, 2014). Targets were initially assigned in proportion to each province's energy-saving
targets, which during the Eleventh FYP were very similar and corresponded closely to the national target of reducing energy intensity
by 20% by 2010, relative to 2005 levels. Targets were then adjusted based on a firm's pre-regulation share in the energy use of all
firms included in the T1000P (Zhao et al., 2014; Zhao, 2016). As the program was set up very rapidly, the target setting process was
not based on an assessment of individual firms' energy conservation potential or costs (Price et al., 2010; Price et al., 2011).

In each program year, covered firms self-reported their progress toward energy intensity targets directly to the Chinese National
Bureau of Statistics (NBS) following predefined reporting standards (Zhou et al., 2010). For many firms, this was the first time
reporting was required. Provincial governments evaluated data quality and firm compliance on an annual basis. Assessment included
short on-site inspections, but was mainly based on firms' self-reporting, due to limited inspection capacity and the complexity of
calculating the energy conservation indicator (Li, Zhao, Yu, Wu, & Qi, 2016; Zhao et al., 2014, 2016). If discovered, fraudulent
reporting could lead to a criminal investigation (Zhou et al., 2010).

Penalties for non-compliance were both financial and non-financial. While the nature and extent of penalties varied at the
provincial level, all firms faced heightened public scrutiny. The government publicly released the list of firms in the T1000P, drawing
heightened media attention (Price et al., 2011). Some firms reportedly implemented incentive payments for their staff conditional on
the achievement of energy conservation targets, which also included salary limits if compliance was not achieved (Zhao et al., 2014).
Furthermore, state administrators evaluated leaders of state-owned enterprises (SOEs) and local government officials based on their
achievement of the T1000P energy-saving targets (Li et al., 2016; State Council, 2007; Zhao et al., 2014). For the first time, energy
conservation achievement was included in the personnel appraisal system (Zhou et al., 2010). Leaders of state-owned firms or local
governments could be denied promotions and honorary titles if targets were not met (Koakutsu, Usui, Watarai, & Takagi, 2012). Non-
compliant firms were required to submit a written report to government authorities specifying a plan for rectifying non-compliance

M. Filippini, et al. China Economic Review 59 (2020) 101364

4



(Zhao et al., 2014).
The T1000P was introduced on top of a program that provided government support for energy-efficiency investments to all firms,

not only those participating in the T1000P (Ke et al., 2012; Price et al., 2010; Zhao et al., 2014). These resources included consulting
support and energy audits, information benchmarking firm performance to peers, and information on how to apply for financial
assistance for approved energy retrofits. Provincial energy conservation centers were established to make these resources available to
firms (Qi, 2013).

By its initial benchmarks, the program exceeded expectations. At the outset, the program targeted a “reduction” of 100 mtce by
2010, relative to estimated energy use assuming no change in firms' energy intensity (NDRC, 2006). Target achievement was reported
early in 2008 when the NDRC announced savings of approximately 106 mtce (Ke et al., 2012), similar to Price et al. (2011), who
estimated savings of 124 mtce by 2008. By 2010, estimates of energy conservation for the entire five-year period far exceeded the
initial target: Zhao (2016) reported savings of 165 mtce, while Ke et al. (2012) found savings of 150 mtce. Program compliance was
reportedly high: at the conclusion of T1000P in 2010, only 1.7% of the firms did not comply (NDRC, 2011).2 Citing these measures of
progress achievement, the NDRC expanded the T1000P to the Top 10,000 Enterprises Program in the Twelfth FYP (2011-2015)
(Zhao, 2016).

3. Data

3.1. Industrial survey

Our data set is assembled using firm entries in the Chinese Annual Industrial Survey (CAIS) for the years 2003 to 2008, which is
compiled by the NBS. The CAIS represents the most extensive source of firm level information on the Chinese manufacturing sector
available to researchers. It contains yearly observations of the balance sheet, income statement, and other non-financial information
for all industrial firms registered in China with a yearly sales value higher than 5 million Chinese renminbi (RMB), which corresponds
to approximately 800,000 US dollars, and all SOEs (independently of their sales value). Most firms are single plant firms (Brandt, Van
Biesebroeck, & Zhang, 2012). All costs and output values are deflated to a reference year (1998) using four-digit industry-specific
input and output deflators, which were used by Brandt et al. (2012) and provided by Johannes Van Biesebroeck at KU Leuven.
Information on firms participating in the T1000P was obtained from the NDRC. Of these firms, 1001 out of 1008 (99.3%) were
successfully matched with the CAIS. While the prices of labor and capital are derived from information contained in the CAIS, the
price of material was not provided. The subindustry- (iron and steel, steel rolling, and ferroalloy smelting) and province-specific
annual price of material is calculated based on information on subindustry inputs and outputs obtained from the NBS (2007), coal
prices and electricity prices extracted from CEIC (2015) and iron ore prices from CCM (2015). These prices then are adjusted for
inflation using an overall price deflator provided by the NBS (2013).

3.2. Characteristics of treated and non-treated firms

The CAIS records a total of 13,278 firms in the iron and steel industry (or more precisely, in the ferrous metal smelting and rolling
industry) over the period of 2003 to 2008. In this sample, 5340 firms are considered for the empirical analysis, after cleaning and
panel construction as described in Appendix A. The panel of firms is unbalanced with 2047 observations (or 38.3%) forming a
balanced panel, while 37.3% of the sample was observed for five years, 18.4% for four years, 5.0% for three years, and 0.9% for two
years. Descriptive statistics of the 5340 firms for the full sample period are given in Table 1 in columns 1 to 4. Firm heterogeneity
with respect to several of these variables is large. For example, the 25th percentile of gross output value is 7.3 times smaller than the
75th percentile value, while it is 4.5 for the number of people employed. The iron- and steelmaking subindustry accounts for 18.3% of
the observations, steel rolling for 64.3%, and ferroalloy smelting subindustry for 17.4%. Furthermore, 0.6% of the observations are
central SOEs, 9.4% are local SOEs, and 90.0% are non-SOEs, whereby a firm is defined as being an SOE if its controlling (minority or
majority) shareholder is the state. In China's iron and steel industry, state ownership fell dramatically during the period of economic
reform, resulting in only a limited number of SOEs remaining by our study period.

4. Empirical strategy and identification

In our base specification, we implement a two-stage approach to estimate the effect of the T1000P on firm productivity growth.
We first specify a cost function as the basis for computing total factor productivity (TFP) change and for further resolving its
subcomponents, technical change and scale efficiency change.3 Second, a difference-in-difference (DID) approach is used to estimate

2 881 firms remained in the program at the end of the T1000P in 2010, and 15 firms were found non-compliant. The share of non-compliant firms
was 3.9%, 3.1%, and 1.7% in 2008, 2009 and 2010, respectively (NDRC, 2009; NDRC, 2010; NDRC, 2011).

3 TFP changes cumulatively translate into differences in a firm's TFP (see Ehrlich, Gallais-Hamonno, Liu, and Lutter (1994) for more discussion).
Using the same underlying data set as ours, find TFP change to be more informative than TFP levels, in the sense that between 1998 and 2007
surviving entrants in the Chinese manufacturing sector were found to be selected based on TFP change rather than TFP levels. An additional
rationale for using changes rather than absolute levels is that the values of changes across treatment and control firms are more comparable, as
discussed in Wagner et al. (2014). For robustness, we estimate program effects on TFP levels using a production function, and results are similar.
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the effect of the program on TFP change.4 The disaggregation of TFP change into its subcomponents yields further insights in terms of
whether firms responded to the regulation via technical change TC (e.g., by installing new machinery) or scale efficiency SEC (e.g., by
realizing economies of scale as output increased).

4.1. Formulation of the cost function and derivation of TFP change

TFP analysis can be performed using parametric and non-parametric approaches. For instance, within the parametric methods, it
is possible to use a production or a cost function/cost frontier approach, whereas within the non-parametric methods, it is possible to
use index numbers such as the Törnqvist index or Data Envelopment Analysis. To derive TFP change, here we use a parametric
approach based on the estimation of a cost function.5 However, as robustness check, we also compute the TFP change of the firms
using two index number approaches (Törnqvist index, as described in Coelli, Estache, Perelman, and Trujillo (2003), and the index
used by Allcott et al. (2012), and three methods based on the parametric estimation of a production function proposed by Wooldridge
(2009), Levinsohn and Petrin (2003), and Ackerberg, Caves, and Frazer (2015).

Table 1
Descriptive statistics of firms. All values are annualized.

Years 2003 to 2008 Years 2003 to 2005 (pre-regulation period)

All firms Treatment group Control group Difference

Mean Std. dev. Min. Max. Mean Mean

(1) (2) (3) (4) (5) (6) (7)

Gross output (mRMB) 353.8 2226.1 0.016 89,784.2 4795.8 115.4 4680.4
Employees 506.2 3202.1 8 120,628 9009.8 225.0 8784.8
Total assets (mRMB) 340.0 3113.6 0.324 127,167.6 5989.5 88.9 5900.6
Current assets (mRMB) 129.4 1013.2 −2.181 38,334.2 2263.3 47.1 2216.2
Intermediate inputs (mRMB) 298.1 1810.3 0.001 73,139.0 3909.5 98.7 3810.8
Age 7.85 8.78 0 108 22.19 6.48 15.71
Exporter (1 if exporting) 0.096 0.295 0 1 0.273 0.067 0.206
Total costs C (mRMB) 335.9 2158.5 0.482 90,363.0 4595.1 107.3 4487.7
Capital price PK (kRMB / K) 0.245 1.297 0.000 93.831 0.145 0.232 −0.087
Labor price PL (kRMB / L) 15.77 13.96 0.030 618.37 20.62 12.79 7.83
Intermed. inputs price PM

(index)
156.14 38.12 68.31 313.80 133.15 137.13 −3.98

Profitability 0.030 0.091 −2.722 2.102 0.046 0.027 0.019
# firms / # observations 5340 / 27,076 148 / 410 5192 / 12,173

Sub-industry shares in [%]: iron- and steelmaking / steel rolling / ferroalloy smelting:
18.3 / 64.2 / 17.4 44.9 / 45.9 / 9.3 18.2 / 64.5 / 17.3

Share in [%] of central SOE / local SOE / non-SOE:
0.6 / 9.4 / 90.0 3.7 / 40.5 / 55.9 0.5 / 4.0 / 95.5

Share in [%] of regions East / Central / West:
59.2 / 23.4 / 17.4 45.6 / 34.1 / 20.2 59.5 / 23.5 / 17.0

Distribution of firm size (number of employees) in [%] of observations in intervals [0;50], (50;100], (100;500], (500;1,000], (1,000;5,000] and more than 5,000:
24.4 / 24.6 / 39.9 / 5.5 / 4.1 / 1.5 0.0/0.2/2.7/9.8/49.8/

37.6
26.3/25.6/40.2/5.4/
2.3/0.2

Note: This table shows descriptive statistics of the sample (columns 1 to 4) for the period 2003 to 2008 and conditional on treatment (columns 5 and
6) for the pre-regulation period of 2003 to 2005. Data is at firm level with monetary values given in real 1998 values. Profitability is the ratio of total
profits to gross output. Column 7 shows the difference in means of the treatment and control group.

4 As discussed in Wang and Schmidt (2002), using a two-stage approach is not always an option solution. For this reason, as a robustness test, we
present in Section 5.9 the results using a one-stage approach based on the measurement of TFP change using two productivity index numbers, and
they are robust.

5 One advantage of a cost function over a production function is that fewer explanatory variables are likely to be endogeneous. In the estimation of
a production function all the inputs usually are endogenous. In the estimation of a cost function the variable that potentially could be endogenous is
the output. In model specification (3) we cannot exclude a priori that the output is endogenous. However, we can assume that the input prices are
exogenous. This is supported by the fact that in China input prices are either set by the state (e.g. for electricity) or determined in commodity
markets (e.g. for coal), rendering them plausibly exogenous to firm decisions. In order to solve the potential endogeneity of the output variable we
could use an IV or a GMM approach. In our case, also because we don't have a powerful instrument, we think that the use of a fixed effects approach
is already attenuating this potential problem. Moreover, to probe the robustness of our results, we also estimate and perform the empirical analysis
using values for the TFP change obtained via a non-parametric method, as well as the methods of Wooldridge (2009), Levinsohn and Petrin (2003),
and Ackerberg et al. (2015). For a review of all methods to measure the TFP change see del Gatto, Di Liberto, and Petraglia (2011). For a
presentation of the use of a cost function see Lowell and Kumbhakar and Lovell (2000).
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Following Coelli et al. (2003) and applying the quadratic approximation lemma of Diewert (1976), as proposed by Orea and Luis
(2002), TFP change (TFPC) of firm i between two periods t and t – 1 can be estimated as

=

= +
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TFP change is further disaggregated into the two subcomponents of scale efficiency change (SEC, the term on the second line) and
technical change (TC, the term on the third line). Total costs are represented by Cit and the single output is Y. Output elasticities
(which are the inverse of the returns to scale elasticity) at a data point are estimated as described in Coelli et al. (2003).

A calculation of TFP change according to Eq. (2) necessitates the empirical specification of a cost function for the Chinese iron and
steel industry, which can be divided into three sub-industries s: iron- and steelmaking, steel rolling, and ferroalloy smelting. To
improve comparability, we empirically estimate a separate cost function for each sub-industry. In this study, we assume a sub-
industry s-specific production process as follows:

=C c Y P P P t( , , , , )it
s

it L it K it M srt, , , (3)

Total costs C are defined as the sum of intermediate input costs (which includes all energy costs), labor costs and capital costs.
Costs include depreciation and interest expenses and an assumed opportunity cost of equity of 3%.6 The single output Y is deflated
gross output.7 The price of labor PL is represented by the ratio of the sum of wage and welfare payments to the number of employees.
The price of capital PK is defined as capital costs divided by the real capital stock. The calculation of the real capital stock is based on
the perpetual inventory method (see Appendix A). The main materials used in the production of iron and steel are coal, coke, iron and
electricity. The subindustry s- and province r-specific price of material PM is derived via a Törnqvist price index of these four main
material inputs. A linear time trend t is added to the cost function in order to control for technical change. All costs and output are
deflated to 1998 values using the respective input and output deflators, as described in Appendix A. Descriptive statistics of the main
covariates are given in Table 1.

For the estimation of Eq. (3) we use a translog functional form (Berndt & Christensen, 1973; Christensen, Jorgenson, & Lau, 1973),
since this form does not impose a priori restrictions on the technology parameters. The subindustry s-specific cost functions are
specified as
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with lower case letters y and p indicating output and prices in natural logarithms. The intercept α0 represents total costs at the
approximation point. Firm fixed effects are captured by αi and control for firm-specific, time-invariant unobserved heterogeneity.8

The error term is given by εit. Sub-industry-specific median values of the explanatory variables are chosen as approximation points of
the translog cost functions. Eq. (4) is estimated using a fixed effects estimator, that is, running OLS on = +c c x x( ) ( )it i it i it i
using Huber (1967)/White (1980) cluster robust sandwich estimates at the firm level (accounting for both heteroskedasticity and
serial correlation), where =c T ci i t it

1 . The variables xi and i are constructed analogously.

6 Opportunity costs of equity of 3% follow from assumptions of a 20% return to capital, 12% depreciation, and an interest rate of 5%. For an
overview of returns to capital in China, see Bai, Hsieh, and Qian (2006).

7 We are aware that a physical measure of TFP would be superior to a value-based measure, because quality or market power varying over time in
a heterogeneous way could also influence these values. Unfortunately, as in several other studies estimating a cost or production function for
industrial sectors (see e.g., Allcott et al. (2012), Gray and Shadbegian (2003), or Levinson and Petrin (2003)), we do not have quantity or quality-
related information.

8 As discussed in Lee, Stoyanov, & Zubanov (2019), when measuring TFP changes it is important to consider firm fixed effects in the econometric
analysis. These fixed effects, for instance, should capture time-constant conditions affecting the outcome of a firm, e.g., geographic heterogeneity
like a favorable geographic location close to iron and coal mines or ports (Greenstone, 2002), preferential political treatment, regional differences in
the application and enforcement of regulation targets etc.
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4.2. Identification strategy

To estimate the effect of the T1000P on TFP change using a difference-in-difference (DID) approach, two important assumptions
need to be satisfied for identification (Bertrand, Duflo, & Mullainathan, 2004). First, a firm's selection into the energy conservation
program should be exogenous. Second, prior to treatment, there should be a parallel trend in the outcome variable for both treatment
and control firms.

Two lines of reasoning support the validity of the first assumption. First, the program originated at the central government level,
without consent or input from firms regarding its creation or initial design. For instance, the energy use threshold (180,000 tce/year)
that determined program inclusion was relatively arbitrary. Importantly, firms could not self-select into the program. A nationwide
program focused on raising energy efficiency was new to China at the time, issued in response to unexpected evidence that China's
multi-decadal decline in energy intensity had reversed in 2004, making it unlikely that firms anticipated the program's introduction;
previously, many firms did not even emphasize or track energy use (Ke et al., 2012).

Second, we might worry that treated firms differed systematically from untreated firms in observed or unobserved ways that
affected their response to the program. For this reason, we use several alternative approaches to construct a more comparable control
group, including matching and stratification. We include firm fixed effects αi to avoid bias in case time-invariant unobserved firm
level heterogeneity is not orthogonal to the treatment effects or other covariates. We also include time fixed effects, θt, to capture
year-specific shocks to firm performance common to all firm, for instance, output market disruptions or political shifts on a national
level.

For the DID approach to yield valid results, the second assumption of parallel trends prior to treatment must be satisfied. If the
parallel trend assumption holds, the average effect of the regulation on TFP change in treated firms, or the average treatment effect
on the treated (ATT), can be identified as

= + + + + + +TFPC X .it i t ATT i t it t i it0 (5)

This procedure can be followed analogously to analyze the ATT for TC and SEC by replacing TFPC with one of these other
outcome variables. Treatment status is captured by the binary variable ρt, equal to one for all regulation periods and zero otherwise,
with the first year of treatment being 2006. The binary variable τi indicates whether or not a firm was part of the treatment group.
The ATT is estimated by the coefficient βATT. Vector Xit contains variables for ownership structure and firm size to control for time-
varying heterogeneity affecting firm performance. Size effects are controlled for by the natural logarithm of the number of firm
employees. Ownership-related effects are measured by a binary variable differentiating between SOEs and non-SOEs. Province-year
effects θtπi control for province πi- and year θt-specific shocks. The two-way fixed effects model in Eq. (5) is estimated again using
cluster robust sandwich estimates at the firm level. This avoids a potential downward bias in the estimated standard errors of the
treatment effect due to uncontrolled positive serial correlation.

We test the parallel trends assumption by estimating the following expression, with the year of implementation of the regulation
indicated by T*:

= + + + + + + <TFPC t t t TX | .it i t t
tr

i
tr

it t i it0 (6)

Eq. (6) estimates a time trend for the treated group (indicated by “tr”), titr = tτi, and uses observations of the pre-treatment period
only. Our implementation follows Autor (2003), Lachowska and Myck (2018), and Angrist and Pischke (2008). The finding of no
significant difference in the productivity trend in treatment versus control firms supports the null hypothesis of = 0t

tr
, i.e., is

consistent with the parallel trends assumption.

= + + + + + + +TFPC Xit i t i
tr

ATT i t it t i it0 ,2005 (7)

A similar test shown in Eq. (7) probes for pre-treatment effects i
tr
,2005 = τiθ2005 in 2005. If =^ 0i

tr
,2005 is not rejected, our assumption

of no pre-treatment effects remains unchallenged. In contrast to Eq. (6), Eq. (7) makes use of the full panel of observations. It also
includes an estimation of the ATT. Firm fixed effects αi capture the information in the covariate (treatment status) as well, and
therefore it is not included in the above three specifications. Tests for a parallel trend and pre-treatment effects in TC and SEC are
conducted analogously by replacing TFPC with one of these variables.

5. Results

Table 2 presents estimated values of TFP change (TFPC) and its subcomponents, technical change (TC) and scale efficiency change
(SEC). Results were derived using the estimated cost function coefficients (reported in Table C.2 in the Appendix). The cost functions
for the three subindustries are well behaved, i.e. monotonic (see Table C.3 in the Appendix) and quasi-concave (Table C.4 in the
Appendix). Details of the monotonicity and quasi-concavity test are described in Appendix D.

TFPC is positive for all three subindustries between 2003 and 2008. In the main specification, TC contributes about 60% to the
average TFP change, while the remainder is attributed to SEC. Firms in all three subindustries on average were found to exhibit
positive returns to scale, see Table C.5 in the Appendix). The iron- and steelmaking subindustry shows the highest average TFP
growth, followed by the steel rolling and ferroalloy smelting subindustries. TC is the dominant contributor to TFP growth in the steel
rolling subindustry, while TC and SEC are roughly equally important in the ferroalloy smelting industry.
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5.1. Effect of the regulation on TFP change

In what follows, we describe the effects of the T1000P on TFP change and its subcomponents using a DID approach. Focusing first
on the two tests for parallel trends, we do not reject the hypothesis of parallel trends in TFP change and its subcomponents (see Table
C.1). While the visual evidence in Appendix Fig. C.1 shows higher TFPC in the control group, the evolution of TFPC before the
introduction of the policy does not differ statistically between treated and control firms: The regression results find no evidence of a
statistically significant difference in pre-treatment TPFC, regardless of whether specification (6) or (7) is used, as shown in Table C.1,
Panel A and B, respectively.

Treatment effects are estimated based on Eq. (5), and results are shown in Table 3.9 We estimate and compare three model
specifications (DD–1 to DD–3). The most parsimonious specification is the first model (DD–1). The second model (DD–2) additionally
accounts for time varying heterogeneity related to ownership and size. Finally, the third model (DD–3) allows for year-specific shocks
on a provincial level as local government officials and SOE leaders are evaluated annually on the achievement of their T1000P (and
other) targets. Political shocks on a provincial level could potentially affect the enforcement of the regulation in a particular year. All
three models include firm fixed effects and capture shocks at the national level via year fixed effects.

Table 2
Descriptive statistics of estimated TFPC, TC and SEC.

Mean Median Std. dev. 10% perc. 90% perc.

Full period (2003–2008)
All subindustries [# firms: 5340 / # observations: 27,076]
TFPC 0.064 0.056 0.108 −0.028 0.171
TC 0.041 0.042 0.039 0.001 0.085
SEC 0.023 0.015 0.098 −0.053 0.110

Iron- and steelmaking [# firms: 1025 / # observations: 4968]
TFPC 0.100 0.086 0.119 −0.009 0.222
TC 0.064 0.068 0.037 0.016 0.108
SEC 0.035 0.023 0.111 −0.058 0.133

Steel rolling [# firms: 3353 / # observations: 17,391]
TFPC 0.058 0.051 0.085 −0.016 0.141
TC 0.039 0.040 0.022 0.011 0.066
SEC 0.019 0.013 0.081 −0.048 0.094

Ferroalloy smelting [# firms: 962 / # observations: 4717]
TFPC 0.051 0.053 0.155 −0.102 0.203
TC 0.024 0.030 0.069 −0.069 0.106
SEC 0.028 0.019 0.134 −0.073 0.149

Note: This table shows the descriptive statistics of overall and subindustry-specific mean TFPC, TC and SEC values for the period of 2003 to 2008.
The overall values (first panel “All subindustries”) are based on all observations of the sample, i.e. the three subindustries are implicitly weighted by
their number of observations.

Table 3
Average treatment effects on the treated (ATTs) on TFPC, TC and SEC.

DD version: DD–1 DD–2 DD–3

ATT on TFPC 0.029 (0.004) 0.029 (0.004) 0.031 (0.005)
ATT on TC 0.013 (0.002) 0.013 (0.002) 0.012 (0.002)
ATT on SEC 0.017 (0.003) 0.016 (0.004) 0.019 (0.004)
# firms / # obs. 5340 / 21,736 5340 / 21,736 5340 / 21,736
R2 (TFPC / TC / SEC) 0.368 / 0.685 / 0.300 0.373 / 0.686 / 0.307 0.399/ 0.749 / 0.324
F-statistic (TFPC / TC / SEC) 22.63/ 2.00 / 25.45 4.70 / 21.26 / 3.07
Size No Yes Yes
Ownership No Yes Yes
Province × Year No No Yes

Note: This table shows the ATT on TFPC, TC and SEC between 2006 and 2008 using Eq. (5). Only estimates of βATT are shown. For the sake of
conciseness, estimates of θt, γ and province-year effects are not shown. All three model specifications (DD–1 to DD–3) control for firm fixed effects.
R2 values of the estimations with TFPC, TC or SEC as the dependent variable are unadjusted. F-statistics show the joint significance of the size,
ownership and province-year variables. Robust standard errors at the firm level are reported in parenthesis.

9 We only have observations for three years when the regulation was in place. Prior literature suggests firms undertook energy conservation
measures immediately, because the T1000P held firms accountable to targets in each program year. Zhao et al. (2014) study the behaviour of a
power plant and observe this plant to have addressed most of the internal energy management reforms, including retrofits, by 2007. See also Price
et al. (2010) for a description of energy efficiency measures undertaken by firms in the first year of the T1000P.
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We find positive, statistically-significant effects of the program on firm TFPC. Estimated treatment effects are robust in terms of
sign, magnitude and significance across all three model specifications. The third model is our preferred specification, as it most
extensively controls for potential cofounding factors. Model specification DD–3 estimates a 3.1 percentage point increase in the
annual TFP growth rate due to the program, equivalent to an annual private benefit to the average treated firm of 148.7 million RMB/
year.10 Both subcomponents TC and SEC are significantly affected by the program and, on average, contribute about equally to the
overall treatment effect. Fig. C.1 presents yearly TFPC, TC and SEC values for the treatment and control groups.

5.2. Extended analysis

We undertake six alternative approaches to estimate the effect of the T1000P on treated firms. These include approaches to ensure
comparability of our control group (stratification and matching), to examine an analogous intervention at the provincial level to
address concerns about differences in firm scale, to evaluate robustness to sample attrition and a possible confounder, to address
endogeneity in program targeting by instrumenting for treatment, and to test sensitivity to the approach used in productivity esti-
mation. Taken together, estimated treatment effects using these approaches are similar in sign and magnitude to our benchmark
results. Results of these extended analyses are summarized in Table 4, and described below.

5.3. Classical sample stratification by size and ownership

Firm size and ownership could plausibly affect a firm's response to the T1000P. Firms that differ in size may face divergent
possibilities to reduce energy intensity by altering the scale of operations; firms that differ in ownership may face different costs of
capital or receive different levels of state assistance that could affect their responses to the program. We therefore stratify the sample
by size and ownership to improve the comparability of treated and control firms (Greenstone, 2002; Meyer, 1995).11 Every stratum
contains a sufficient number of observations of treated firms to support statistical inference (see Table C.6 in the Appendix). First, we
re-estimate model (4) based on a sample that only includes firms in the fourth quartile of the size distribution. As the main selection
criterion of the T1000P was energy consumption of at least 180,000 tce in 2004, only large firms were exposed to the regulation and
thus all treated firms belong to the fourth quartile of the size distribution. Shown in Table 4, our results are similar to our benchmark
results in Table 3, with treatment effects being slightly larger for the sample including only large firms (see Table C.7 in the Ap-
pendix).

Second, we stratify by firm ownership. Prior work suggests that productivity levels differ among firms of different ownership, with
SOEs less productive than private (non-SOE) firms (Dougherty, Herd, & He, 2007). Responses to the program may also differ. We

Table 4
Average treatment effects on the treated (ATTs) on TFPC in the extended analyses.

Extended analysis DD–1 DD–2 DD–3

Stratification by size 0.034 (0.005) 0.033 (0.005) 0.035 (0.005)
Stratification by ownership
SOE 0.020 (0.009) 0.020 (0.010) 0.023 (0.012)
Non-SOE 0.024 (0.006) 0.020 (0.006) 0.023 (0.008)

Stratification by matching
Matching approach 1 0.034 (0.009) 0.033 (0.009) 0.034 (0.010)
Matching approach 2 0.028 (0.009) 0.026 (0.009) 0.026 (0.009)

Provincial Energy
Conservation Program

0.010 (0.014) 0.006 (0.015) 0.013 (0.018)

Sample Attrition 0.028 (0.004) 0.028 (0.004) 0.033 (0.005)

Instrument 0.032 (0.013) 0.035 (0.013) 0.036 (0.014)

Time-varying cofounder 0.030 (0.007) 0.027 (0.008) 0.034 (0.010)

Production Function 0.041 (0.023) 0.045 (0.024) 0.044 (0.026)

Note: This table summarizes the ATTs on TFPC of the extended analyses. The list of firms that were required to shut down, retire or update part of
their production capacity included 344 firms in ten provinces, including Beijing, Hebei, Shanxi, Liaoning, Jiangsu, Zhejiang, Jiangxi, Shandong,
Henan, and Xinjiang (NDRC, 2007). We successfully matched 115 firms with the CAIS data. Among the ten provinces, only Shanxi and Jiangsu had
more than ten firms matched (47 and 40 firms respectively, in total 87 firms). Therefore, we limit the sample for this robustness check to these two
provinces and remove these 87 firms from the main analysis to avoid any potentially confounding effect from this program.

10 An annual increase in TFP change of 3.1 percentage points corresponds to a yearly increase in TFP levels of treated firms of e0.031− 1 ≅ 0.031
compared to non-treated firms. Treated firms showed an average gross output of 4795.8 mRMB in 1998 values before the introduction of the
regulation. Hence, on a per firm basis, a back-of-the-envelope calculation of average annual private benefits induced by the regulation through
productivity gains for the period of 2006 to 2008 yields 148.7 million RMB (in 1998 values).

11 In addition to size and ownership, we also test whether stratification with respect to subindustry affiliation and geographic region change our
results (see Table C.7-Table C.12). Results using stratified samples are in line with the results of the benchmark specification of Table 3.
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define SOE firms as have a controlling minority or majority state shareholder. We find that the program has a similar effect on TFP
change and its subcomponents for both SOE and non-SOE firms (see Table C.8 in the Appendix), suggesting that ownership did not
play a major role in shaping firm responses.

5.4. Sample stratification by matching

Matching is conducted using propensity score matching to the nearest two neighbors with replacement in year 2005, applying a
caliper of 0.25 following Rosenbaum and Rubin (1985). We implement two approaches. In matching approach 1, we match based on
gross output, with exact matching based on four-digit sector code categories. Matching is only conducted on firms employing more
than 100 employees, as in 2005 no treated firm employed fewer. While achieving closer similarity in the control and treatment
groups on a range of observables (see Table 1 and Table C.9 in the Appendix), the resulting sample is still unbalanced on firm size (see
Table C.9 in the Appendix). In a similar setting, Wagner, Muûls, Martin, and Colmer (2014) face a similar situation, in which treated
firms (in the European Union's Emissions Trading System) are systematically larger than control firms after matching. Therefore, in
matching approach 2, we follow Wagner et al. (2014) and match based on capital intensity, i.e. the ratio of the real capital stock to
output. Matching based on capital intensity helps to ensure that both groups of firms are similar in terms of production technology.
Firm size is explicitly controlled for in the subsequent difference-in-difference estimation. Matching approach 2 also includes exact
matching on the four-digit sector code to further improve comparability of production technology.

After applying the above procedure, 95 and 218 matched firms form the control groups for matching strategy 1 and 2, respectively
(see Table C.6 in the Appendix). A comparison of Table 1 and Table C.9 in the Appendix shows that the matched control group is
indeed more similar to the treatment group compared to the population average of non-treated iron and steel firms, while matching
based on capital intensity yields two statistically-similar groups (see Table C.10 in the Appendix). Results of the second stage shown
in Table C.11 and Table C.12 in the Appendix are robust to our benchmark results in terms of magnitude and significance for the
overall effect on TFP change. While the magnitude of the effect on technical change decreased, the effect on scale efficiency change
increased.

5.5. Provincial energy conservation program

To further ensure that our results are not driven by variables correlated with the large size threshold of the national program, we
evaluate the productivity impact of a variant of the T1000P introduced by several provinces to augment the national program.12 For
these provincial energy conservation programs, energy use thresholds for inclusion were much lower than the national program and,
importantly, varied across provinces. Hence, we can now compare firms of similar size and activity composition that differed only in
treatment status across provincial boundaries as well as within provinces on either side of the energy use cutoff that determined
program coverage, although our sample size is unfortunately reduced. We focus on 19 firms that were part of a provincial energy
conservation program (and excluded from the national program). These firms on average were around 7.7 times smaller in terms of
gross output compared to firms treated by the national program. Results shown in Table C.13 in the Appendix indicate robustness of
our benchmark results on the program's overall effect on TFP change in terms of sign, with some reduction in magnitude. Sig-
nificance, however, is mostly lost, which is perhaps unsurprising given the small sample size. The statistically-significant effect of the
regulation on productivity is dominated by the channel of technical change, suggesting that the scale efficiency channel is less
important in smaller firms of comparable size.

5.6. Sample attrition

Firm exit could result in an upward bias of treatment effects, if firms experiencing low TFP growth leave the sample over time
(Baltagi, 2008). The sample without attrition is defined by the 2047 firms observed for the full range of years 2003 to 2008 plus the
1354 firms first observed in 2004 that are older than zero years and are subsequently observed until 2008. The re-definition of the
sample necessitates a re-calculation of the approximation points of the subindustry-specific translog cost functions and a subsequent
re-estimation of TFPC, TC and SEC values. The estimated coefficients of the subindustry-specific cost functions are given in Table C.14
in the Appendix and the firm performance estimates given in Table C.15 in the Appendix. The null hypothesis of a parallel trend in
firm performance before the introduction of the regulation is not rejected for the new sample (see Table C.16 in the Appendix).
Results using the sample with no attrition yields results that are similar in terms of sign, magnitude and significance compared to
those based on the corresponding benchmark specification (see Table C.17 in the Appendix). The benchmark estimates are robust to
attrition bias, while the effect of technical change TC gains slightly in importance when using a more balanced panel.

5.7. Instrumenting for regulation exposure

We apply an instrumental variables (IV) approach as an additional strategy to account for potential time-varying unobserved
heterogeneity not orthogonal to T1000P exposure. For example, unobserved, time-varying firm characteristics (e.g., political con-
nections) could be correlated with both treatment status and the outcome variable(s). We therefore construct an instrument for

12 In preceding analysis, we excluded all firms known to be part of these programs from our estimation sample.
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T1000P participation that equals the distance-weighted index of the ratio of the number of treated firms to the total number of firms
in the geographic cluster of the firm and its neighboring clusters. The geographic clusters within such a group are indexed by h, with
an individual cluster being defined by a county q. As shown by Fig. C.2 in the Appendix, a county has on average seven neighbors.
The instrument draws its validity from the observation that in China, clusters of iron and steel firms are found in particular areas of
the country (see Fig. B.1 and Fig. B.2 in the Appendix). Industrial clusters capture unobserved time varying heterogeneity affecting
T1000P exposure such as social, environmental, political or institutional characteristics of a formerly planned economy. As firm fixed
effects are controlled for, our instrument would be expected to have only limited influence on the performance of an individual firm.
The instrument τi

IVis based on year 2005 observations, and for a firm i in county q is given as

=i
IV h

d h

h
d

1

1
qh

qh (8)

where dqh is the distance in kilometers between the firm's county q and neighboring counties. The distance weight of a firm's own
county is 1. The ratio of treated firms to the total number of firms in a cluster is ϕh. Note that τi

IV does not differ between firms
belonging to the same cluster q. Descriptive statistics of τi

IV are given in Table C.18 in the Appendix.
The empirical estimation is based on a panel data two-stage least squares (2SLS) within estimator, and controls for firm fixed

effects and allows for a correlation of errors between the two stages. Given that τi is a binary variable and the outcome variable of the
second stage is continuous, we follow Angrist (2001) and use a linear probability model (LPM) in the first stage. As noted in Angrist
(2001), the estimation of a 2SLS model applying a LPM in the first stage bears the benefit of consistency, irrespective of whether or
not the first-stage conditional expectation function is linear. As all variables included in the first stage are of limited range, the
supporting restriction for LPM (i.e., of no regressor having infinite support) is satisfied. Eq. (4) is first within transformed, thereby
accounting for αi, and then a 2SLS methodology is applied instrumenting for τi by τi

IV in the first stage. This approach is described in
detail in Baltagi (2008). Our instrument τi

IV is found to be valid.13 Results indicate that instrumenting for T1000P selection yields
overall treatment effects (see Table C.20 in the Appendix) that are very similar in terms of magnitude and significance to the
benchmark results of all three model specifications (see Table 3). TC gains in magnitude, while SEC loses significance. However, the
estimated effect of the T1000P on treated firms' annual TFP change is consistent with the benchmark specification.

5.8. Time-varying confounders

Our main results rely on the assumption that there are no omitted time-varying and firm-specific effects correlated with T1000P
participation and the outcome variable. We have conducted an extensive review of policies potentially affecting the iron and steel
sector during the study period, and found one program that could be a potential confounder. Along with the goal of reducing
inefficient energy use in energy-intensive industries via the T1000P program, the national government also implemented a program
to eliminate outdated production capacity during the Eleventh FYP. The program defined production technologies that would be
limited or eliminated in all sectors (NDRC, 2005a). For the iron and steel sector, outdated technologies included blast furnaces for
iron smelting with a capacity less than 300 cubic meters (NDRC, 2005b). A detailed implementation plan was announced in 2006
(NDRC, 2006). To test for potential confounding effects, we located a list of firms in a subset of provinces that were subject to the first
phase of this program (NDRC, 2007). These firms were required to shut down, retire or update part of their production capacity.
Though significance of the treatment effects drops mildly due to a much smaller sample size, the size of the effects remains very close
to the benchmark results of all three model specifications listed in Table 3 (see Table C.21 in the Appendix).

5.9. TFP change based on production function and index numbers

To test the robustness of our results to the choice of productivity estimation approach, we also used alternative approaches to
measure TFPC based on the estimation of a parametric production function and on the use of index numbers. In the case of the
former, we implemented the production function approach of Wooldridge (2009).14 In addition, we also applied the models of
Levinsohn and Petrin (2003) and Ackerberg et al. (2015). All models are based on a value-added production function. The results of
overall treatment effects on TFP change are robust in terms of magnitude and significance.

Further, we decided to use the Törnqvist index, as described in Coelli et al. (2003), and an index derived from a Cobb-Douglas
production function. Since the entire population of Chinese iron and steel firms between 2003 and 2008 is observed (5340 firms or
27,076 observations, see Table 1), following Greenstone et al. (2012) we estimate transitive multilateral TFP by applying an index

13 First stage results are shown in Table C.19 in the Appendix. The Davidson-MacKinnon test of exogeneity (Davidson & MacKinnon, 1993) rejects
at a 1 percent significance level, indicating that the benchmark ATT variable may be endogenous. The Kleibergen-Paap rk LM and rk Wald F-
statistics (Kleibergen & Paap, 2006) both reject at a significance level of 1%.

14 Wooldridge (2009) shows that the moment conditions of the complicated two-step semi-parametric approach of Olley and Pakes (1996) to
control for the simultaneity bias and the modification to it proposed by Levinsohn and Petrin (2003) can be implemented in a GMM framework
yielding more efficient estimates among other advantages. The approach proposed by Olley and Pakes (1996) cannot be applied because
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number approach.15 We employ a Cobb-Douglas production function with homogeneity in input factors and Hicks-neutral (Hicks &
John, 1963) productivity differences. The corresponding generic production function can be given as

=TFP y k l mit it Kt
s

it Lt
s

it Mt
s

it (9)

with small letters indicating variables in natural logarithms. Year- and subindustry s-specific input elasticities, i.e. input cost shares,
are denoted by βs. Capital costs kit consist of interest and depreciation expenses. Opportunity cost of equity is assumed to be 3%. Labor
costs lit are the sum of wage and welfare payments and mit is the cost of intermediate inputs. Subsequently, TFP change is derived by
taking the first derivative of the TFP estimates. As this non-parametric approach lacks the capacity to control for noise, TFP changes
outside the 0.1 and 99.9 percentiles have been excluded. The control group is matched using propensity score matching to the nearest
five neighbors with replacement, resulting in 118 matched firms and a total of 538 control group observations. The assumption of a
parallel trend holds for the new treatment and control samples (see Table C.22 in the Appendix). We find a positive effect of the
regulation on firm level TFP change at a significance level of 10% (see Table C.23 in the Appendix) in the three model specifications.
Also using a Törnqvist index we come to the same empirical results in terms of magnitude and significance of treatment effects.
Finally, we include the treatment effect variable directly into the cost function of Eq. (4) and find a negative and significant (at 5%
level) effect of the treatment on costs. This implies that directly using a classical difference-in-difference approach on cost confirms
the results obtained through a “two-step approach” (via TFPC). Results are available upon request.

6. Conclusion

We find that the first major national energy efficiency program in China had a positive, statistically-significant effect on an-
nualized TFP change in iron and steel firms. The gains we observe are economically significant and robust to multiple alternative
empirical strategies. In our base specification, we estimate that the average annual private economic benefit due to enhanced pro-
ductivity for a treated firm was 148.7 mRMB in 1998 values. A back-of-the-envelope calculation using one estimate of US $22.5
billion (IEPD, 2007) to approximate the investment in energy conservation by T1000P firms suggests that on average each firm
invested approximately 171 mRMB between 2006 and 2008. Inflating our estimate of annualized benefits to ~200 mRMB in 2007
values, we find that the energy efficiency investments undertaken imply an undiscounted payback period of less than one year for the
average firm. Importantly, this estimate does not account for any subsidies provided to firms, nor does it capture the cost of ad-
ministering the program.

Our main estimation results suggest that technical change and scale efficiency change were about equally important in con-
tributing to productivity improvements under the national T1000P. This implies that to some extent firms may have been able to
comply with the program simply by increasing the scale of their operations. However, scaling up was not the whole story. At least half
of the productivity growth is, on average, attributed to technical change. This share was even larger in the extended analysis
employing a production function and in the provincial program estimation, which focuses on smaller firms and better controls for
differences in firm scale. Technical change encompasses equipment adjustments or upgrades, or changes to management practices
that increased emphasis on energy conservation in performance targets and personnel incentives. Consistent with a role for technical
change, prior studies qualitatively describe how T1000P firms in the iron and steel industry upgraded equipment and processes to
improve energy efficiency (Ke et al., 2012), and did so relatively quickly after the program began (Price et al., 2010).

An important exercise would involve quantifying the heterogeneity in investment inefficiencies across firms. In other words, we
would be interested to know the distribution of gi in Eq. (1). Firms included in the program were all large energy users, but these firms
likely differed in their awareness of, and access to, support for energy efficiency upgrades. Our observation of net positive pro-
ductivity effects on average mask heterogeneity in firm level effects. Some firms may have overinvested relative to the efficient level
prior to the program, in which case we expect the T1000P to have negatively affected the productivity of these firms. Future research
could help to characterize this heterogeneity, as well as the degree to which one-size-fits-all programs impose a high cost on some
firms.

A striking feature of our estimates is that they suggest firms benefited from energy efficiency investments in a relatively short
amount of time, i.e. within the first few program years. The substantial short-run benefits we estimate contrast with nearly all prior
studies of the productivity effects of energy and environmental regulations, which point to short-run costs (Dechezleprêtre & Sato,
2017; Koźluk & Zipperer, 2013). These short-run benefits are further consistent with evidence of input cost savings achieved by the
average treated firm: when we estimate model (1) using the log of materials cost instead of TFP growth as the independent variable
(and control for scale), we find the program is associated with a reduction in materials cost of 13.5% (in log points) that is statistically
significant at the 10% level. The lack of reliable sources of firm data for extending our panel beyond 2008 constrains our focus to
short-run effects; however, estimating long-run effects as well as general equilibrium effects of energy efficiency programs in rapidly
developing countries is an important area for future research.

The positive effects of the T1000P suggest that investment inefficiencies in developing countries may be substantial. Moreover,

(footnote continued)
investments of many firms in our sample are observed to be negative, whereby investments are derived from changes in the real capital stock.

15 Given that we observe the entire population of firms, our approach of measuring TFP via four-digit industry specific cost shares used as input
elasticities avoids several well-known caveats associated with estimating TFP from a subsample of a population. Examples discussed extensively in
the literature are a simultaneity between unobserved productivity and either input choices or entry/exit decisions (attrition bias).
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these inefficiencies do not appear to be due to capital constraints specific to particular firm categories (e.g., SOEs). Instead, it seems
that raising awareness and pressure to save energy prompted firms to take up profitable energy efficiency investments. Importantly, it
may have created a new form of reputational benefit associated with target achievement that reduced uncertainty in the payoff to
participating firms. Future work is needed to more precisely characterize the origins of the energy efficiency gap in these settings, and
derive lessons for the design of effective interventions. While our study has focused on a state-led intervention, a wide range of
private initiatives exist to raise energy efficiency, e.g. between buyers and suppliers, for which the productivity consequences are not
well understood. Our findings suggest that state-led programs such as the T1000P (and subsequent T10000P) in China and the
analogous Perform, Achieve, and Trade energy efficiency scheme in India may, however imperfectly, be addressing investment
inefficiencies, even if they do not reduce energy use in absolute terms.

Importantly, although energy efficiency programs are often justified as pro-environmental, they are not a substitute for, and at
best may be complementary to, policies that directly address the environmental externalities of energy use, such as emissions taxes or
cap-and-trade programs. In many countries, energy efficiency programs form a pillar of national strategies for reducing energy-
related air pollution and mitigating greenhouse gas emissions. However, energy use decisions would not reflect these social costs as
long as the associated externalities remain unpriced. Subsidies for energy in developing countries exacerbate the problem, to the
extent that they encourage overuse of fossil energy sources. On the other hand, with prices that reflect the marginal social cost of
energy use, carefully targeted energy efficiency policies that address investment inefficiencies could support the effectiveness of
price-based mechanisms.
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