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ABSTRACT 

Multi-Instrument Surface Characterization of Display Glass 
 

Cody Vic Cushman 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 
 

 Flat panel displays (FPDs) are microfabricated devices that are often fabricated on 
specialized glass substrates known as display glass. The surface chemistry of the outer few 
nanometers of display glass can have an important influence on FPD performance and yield. 
Dsiplay glass surface characterization is difficult because (i) display glass surface composition 
varies significantly from its bulk composition; (ii) high-surface area forms of glass, such as 
fibers and powders, may not have the same surface composition as melt-formed planar surfaces, 
and (iii) the surface composition of display glass may be altered through exposure to chemical 
treatments commonly used during flat panel display production, including acids, bases, etchants, 
detergents, and plasmas.  

We have performed a detailed surface composition of Eagle XG®, a widely used 
commercial display glass substrate, using a range of surface analytical techniques including 
time-of-flight secondary ion mass spectrometry (ToF-SIMS), angle-resolved X-ray photoelectron 
spectroscopy (AR-XPS) and low energy ion scattering (LEIS). The information from these 
techniques has given us a detailed understanding of the elemental surface composition and 
surface hydroxylation of Eagle XG® at length scales ranging from ca. 10 nm from the surface to 
the outermost atomic layer. These analyses reveal that the surface composition of Eagle XG® 
varies significantly from its bulk composition, having generally lower concentrations of Al, B, 
Mg, Ca, and Sr, and higher concentrations of Si. Treatment with an industrial alkaline detergent 
results in significant recovery of aluminum concentration at the Eagle XG® surface, while 
treatment with hydrochloric and hydrofluoric acid result in further depletion of Al, B, Mg, Ca, 
and Sr at the sample surface.We used ToF-SIMS to quantify surface hydroxyls at the sample 
surface of this material. The SiOH+/Si+ peak area ratio was a useful metric of surface 
hydroxylation. We studied the effects of adventitious surface contamination on the 
measurements by analyzing samples dosed with perdeuterated triacontane, a model alkane, prior 
to analysis. Thick triacontane overlayers suppressed the SiOH+ signal, indicating that this 
approach gives inaccurately low estimates of surface hydroxylation for samples with high 
degrees of surface contamination, and accurate measurements are only possible for very-clean 
surfaces. The number of of hydroxyls on Eagle XG® surfaces varied as the surfaces were 
exposed to different chemical treatments. HF- and HCl- treated surfaces had the highest degree 
of hydroxylation, while detergent-treated surfaces had the lowest. 

 

 Keywords: ToF-SIMS, XPS, LEIS, flat panel display, display glass, surface hydroxyl, 
multivatiate curve resolution 
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CHAPTER 1: Introduction 

 

1.1 The Focus of This Work 

 

This work focuses on the surface characterization of glass substrates for flat panel displays 

(FPDs). In this application, glass is the substrate for microfabricated circuit elements that form 

pixels in these FPDs. FPDs are prevalent in electronic devices like smartphones, laptops, 

televisions, etc. The substrate material in FPDs fulfills two essential roles. First, it is a window. In 

most applications, FPDs generate color by passing white light through a color filter. This light 

passes through multiple layers of glass before reaching the users’ eyes. Second, glass must be a 

microfabrication substrate.1 Therefore, much of the value of display glass is as a surface for 

technical coatings. The vast majority of FPDs are fabricated on silicate glass substrates, while only 

a small fraction utilize other materials like organic polymers.  

Glass’s bulk material properties explain its prevalence as a display substrate; silicate 

glasses have excellent optical transparency, thermal stability, strength, and chemical durability.2-4 

However, display glass’s surface properties are increasingly important. To produce defect-free 

display panels, display glass surfaces must be free from particulates large enough to cause circuit 

defects (ca. 300 nm as of 2016).2, 4 They must also be free from any contamination that can impede 

thin-film adhesion to the glass surface or poison the materials that are later deposited on the glass.1-

2, 4 Current industry trends increase the demands placed on FPD substrates. At the time of writing, 

a brief internet search revealed commercially-available televisions with diagonal screen 

dimensions of 86 inches (2.2 meters), giving ca. 2.3 m2 of screen area. These may be fabricated in 

batches on sheets of glass up to 2.8 x 3.2 m2.1, 5 In contrast, the largest commonly used silicon 
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wafers are only 0.3 m in diameter, and the individual dies fabricated on these wafers are typically 

a few cm2. VLSI devices fabricated on silicon typically have much smaller critical dimensions 

than FPDs. However, FPD critical dimensions in hand-held devices continue to decrease as pixel 

counts increase. This decrease makes FPDs ever more sensitive to contamination and particulate 

related failures during device fabrication.2, 4 

The demands placed on display glass surfaces drive a need to understand how they interact 

with their environments, change with exposure to wet-chemical treatments common on FPD 

production lines, and how to tune display glass surface chemistry for each processing step. These 

are also important questions for glass surfaces in general. This is a multi-disciplinary problem. 

Some researchers investigate specific phenomena, e.g., static buildup and discharge on glass 

surfaces, while others try to understand glass surfaces at the theoretical level through 

computational modeling.6-9 

This work focuses on the surface characterization of Corning Eagle XG®, a widely-used 

display substrate. The goals are to provide comprehensive surface compositional analysis of this 

sample system and explore methodologies and best practices for performing this type of 

characterization. Detailed compositional information is essential to understand the link between 

glass surface composition and surface-mediated processes.  We characterized the surface of Eagle 

XG® using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass 

spectrometry (ToF-SIMS), and low energy ion scattering (LEIS). By combining information from 

these techniques, we gain insight into glass surface composition from a depth of 10 nm to the 

outermost layer. In addition, we analyzed surface hydroxyls on display glass substrates using ToF-

SIMS. Hydroxyls are among the most-important reactive functional groups at silicate glass 

surfaces, but few studies have proposed methodologies to measure them on low-surface area multi-
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component silicate glass substrates.10-15 Instead, most studies focus on samples with higher surface 

areas and simpler compositions, e.g. silica nanopowders.16-24 Accordingly, our hydroxyl 

measurements on Eagle XG® using ToF-SIMS represent an important contribution to glass surface 

science. The importance of surface hydroxyls and the challenges associated with measuring them 

will be discussed in greater detail below. 

We have also analyzed the optical properties of Eagle XG® using spectroscopic 

ellipsometry. While glass optical constants are bulk material properties, optical thin film 

measurements for films deposited on these substrates require a detailed knowledge of substrate 

optical constants. Accordingly, these studies are included as appendices to this dissertation. 

Display substrates are the focus of this work because there is a current industrial need to 

understand them. However, better knowledge of multicomponent glass surfaces helps address a 

wide range of manufacturing challenges and possibly enables new glass functionalities.25-27 This 

work is beneficial for any application where coatings are applied to glass surfaces to enhance their 

functionality and value. The findings presented here may also be useful for the surface analysis of 

oxide materials and coatings in general. Therefore, while we have chosen display glass as a model 

system, this work has value beyond addressing the needs of a single industry or providing a 

compositional analysis of a single material. 

 

1.2 Approach 

 

Our goal is to provide the compositional knowledge necessary for understanding the link 

between glass surface composition and the surface processes that impact display fabrication. 

Accordingly, this study focuses on the composition at the outermost atomic layer, which can 
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directly affect thin-film adhesion, contamination, and surface reactivity.28 In particular, we focused 

on the elemental composition and number of surface hydroxyls, which largely determine glass 

surface reactivity.11-13, 16-21, 29-31 We selected the analytical techniques based on their surface 

sensitivity. Angle-resolved XPS provides quantitative elemental information from ca. 10 – 2 nm. 

ToF-SIMS provides both elemental and molecular compositional information about a sample. 

ToF-SIMS’s information depth depends on numerous factors, but is typically cited between 2 nm 

and a few atomic layers.32-35 ToF-SIMS is generally considered more surface sensitive than AR-

XPS. LEIS analyzes the elemental composition of the outermost layer.28, 36-37  

A multi-instrument approach provides several advantages compared to relying on a single 

technique.38-39 The techniques used here each have unique characteristics, advantages, and 

drawbacks. They have different depths of analysis. They provide different types of information; 

XPS and LEIS give elemental information, while SIMS gives both elemental and molecular 

information. The disadvantages of each technique are mitigated by combining information from 

the other techniques. For example, LEIS is the most surface sensitive probe used in this study, but 

has poor detection limits for boron and poor resolution between aluminum and silicon. These 

issues are resolved in part by comparing the LEIS data to XPS and ToF-SIMS results. ToF-SIMS 

has the best detection limits of the techniques used here, but static SIMS is seldom used 

quantitatively due to potential strong matrix effects. Comparison to XPS and LEIS data helps 

determine whether a matrix effect is present. Angle-resolved XPS is not as surface sensitive as 

LEIS or ToF-SIMS, but quantitation in XPS is the most straightforward. Also, angle-resolved XPS 

is capable of gathering depth-resolved information without sputtering. This ability makes XPS 

valuable for detecting near-surface compositional gradients, which are scrambled during the 

equilibration period in a sputter depth profile analysis.34, 40By combining information from these 
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techniques, we obtained a deeper understanding about the compositional profile of Eagle XG® at 

its outer 10 nanometers and how this composition changes in response to production-line wet-

chemical treatments. An understanding of elemental composition is also an essential part of our 

efforts to quantify surface hydroxyls. 

This work is as much about developing analytical protocols as it is understanding display 

glass surfaces. Some of the analyses and conclusions herein are made possible through recent 

advances in instrumentation. In particular, the LEIS analysis presented here relied on recent 

advances in LEIS instrumentation that improved sensitivity and resolution.28, 36, 41-44 We also 

addressed significant challenges in data analysis and interpretation. We used chemometric 

techniques including principal components analysis (PCA) and multivariate curve resolution 

(MCR) to simplify data reduction interpretation of ToF-SIMS spectra. We tackled the difficult 

challenge of resolving overlapping contributions from aluminum and silicon in our LEIS analysis. 

Surface hydroxyl measurements by ToF-SIMS required the most method development of all the 

work presented here. We adapted an existing approach used to measure hydroxyls on fused silica 

surfaces and applied it to multicomponent glasses.11-13 This work required exploration of 

instrumental parameters, statistical analysis of variability between a high number of replicates, and 

experimental and computational studies on the influence of adventitious hydrocarbon surface 

contamination on these measurements. 

  

1.3 Background Information 

 

This section explains the need for the analyses performed in this work, and the challenges 

inherent in analyzing glass surfaces. It begins with a discussion of the technological importance of 
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glass and the basics of its structure and composition. It then reviews current knowledge of glass 

surfaces and commonly used analytical techniques. Finally, it discusses the theory of the analytical 

techniques we used in this dissertation.   

 

1.3.1 The Technological Importance of Glass and Amorphous Materials 
 

Glass is historically and technologically important. Naturally occurring glass is abundant 

in nature, with some specimens dated to 65 million B.C.25, 45 These ancient glasses demonstrate 

the long-term stability and chemical durability of the material. Glass played an important role in 

human history, being widely used to make stone-age tools starting ca. 75,000 years ago.45-46 Man-

made glass artifacts produced by casting date to before 1500 B.C.46 Syrians possibly invented 

glassblowing  ca. 650 B.C., and the Romans produced flat glass sheets by 200 A.D. through a 

process of blowing glass cylinders, cutting the cylinders lengthwise, and annealing and flattening 

the resulting segments.45 

Glass compositions and forming technology continued to develop as glass played an 

increasingly important role in practical, technological, and artistic applications. Glass is 

inexpensive and ubiquitous in our era due to modern advances in glass compositions and glass-

forming technology.45 Soda-lime float glass is an important construction material, forming nearly 

the entire exterior walls of some buildings. It is also an essential component of practically all 

automobiles.47 Glass fiber optics are essential in modern communications, and glass fibers are 

commonly used to reinforce polymer composites.48-49 Glass enables many important discoveries 

in modern synthetic chemistry because chemically durable and thermally stable glassware with 

elaborate geometries are essential to synthesize and purify substances.50 Glass is an integral part 
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of optical devices that influence astronomy, spectroscopy, microscopy, photonics, and 

microfabrication.47, 51-52 In addition, glass has a long history in electronics and computing. Glass 

vacuum tubes enabled the development of computers, radio, television, electronic amplifiers, 

etc.53-55 Many modern consumer electronics include FPDs, most of which are fabricated on glass.1-

2, 4-5 In previous technological generations, electronic displays mainly communicated information 

to the device operator. However, FPDs are now often the main input device for many consumer 

electronics. 

The prevalence of glass in modern civilization is partly due to its unique material 

properties. Although the definition of a glass varies depending on source and context, glass will 

be defined here as an amorphous solid showing a glass transition.45 The structure of glass is often 

described as a frozen liquid.45, 56 Zachariasen described glass by his widely-accepted continuous 

random network theory, where glass has an extended 3D network that lacks symmetry and 

periodicity.57 In other words, glass structures are described in terms of a few repeating molecular 

subunits, but the connectivity of these subunits is random throughout the network. This results in 

a distribution of local chemical environments, with possible distortions in bond angles and bond 

lengths. This is different from single-crystal and polycrystalline materials (e.g., silicon wafers and 

most metals, respectively). These materials are described in terms of repeating subunits with the 

same stoichiometry and structure. Accordingly, these structures have short- and long-range order 

and relatively fixed bond angles and lengths throughout the structure. The contrast between these 

two types of structures is shown in Figure 1.1. Figure 1.1a shows a crystalline material with 

stoichiometry of C2A3 where A is a cation and A is an anion. Figure 1.1b shows a material of the 

same stoichiometry but with a glassy structure.   
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Glass subunits are categorized into three types: network formers, network modifiers, and 

intermediate species.45, 51 Network formers bond to each other to create a polymeric network. Silica 

tetrahedra are the most important network former in silicate glasses. Network formers connect to 

one another via bridging oxygens (BOs), and in the case of SiO4
4- subunits, up to four BOs are 

possible. Boron also acts as a network former and exists in trigonal or tetrahedral subunits 

depending on glass composition. Network formers in glass are often referred to using Qn notation, 

where the superscripted number indicates the number of BOs associated with the network forming 

species. Modifier ions reduce the connectivity of glass networks by forming non-bridging oxygens 

(NBOs), as shown in Figure 1.2. Here, negatively charged non-bridging oxygens are charge-

compensated by the nearby presence of a Na+ ions. Network modifiers reduce network 

connectivity, decrease glass melt viscosity, improve workability, and promote glass-forming. 

Intermediate species like Al either act as a network former or a network modifier depending on 

glass composition.45 

Processing temperature is a key factor in glass production costs.47 Accordingly, modifiers 

are essential in producing highly-formable and inexpensive glasses. For example, fused silica 

consists entirely of Q4 silicon species, and requires high processing temperatures. On the other 

hand, soda-lime glass contains Na+ and Ca2+ modifier ions, which result in non-bridging oxygens 

in the silicate network. This leads to reduced network connectivity, which results in lower 

processing temperatures and better formability.  

Glass’s random structure influences its material properties. As a consequence, glass is often 

more compositionally flexible than crystalline materials.47 The ability to form glass over wide 

compositional ranges means it can be tuned to achieve application-specific physical properties.1, 

47 In optical applications, it is often tuned to achieve a desired refractive index.58 Its compositional 
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flexibility and chemical durability are essential for its application in nuclear waste storage.59 

Radionucilides can be added to glass formers in large percentages without phase-separation. 

Glass’s high chemical durability slows the release of these radionuclides into the environment.59 

Silicate glasses are the most widely used class of glass in the modern world.26 However, 

other glass compositions also have technological relevance. Chalcogenide consists of the 

chalcogen elements S, Se, and Te combined with metal ions. These glasses are important in IR 

optics, lasing, and phase-change memory devices.60-61 Bioglasses used in dental and bone implants 

consist of phosphate and silicate-phosphate glasses.62 Metallic glasses, alloys with an amorphous 

structure displaying a glass transition, have many of the properties of silicate glasses, e.g., high 

compressive strength, low Young’s modulus, and high wear resistance. They are used in high-

strength surgical implants, aerospace and defense applications, and ultrasharp surgical tools.63-64 

Numerous organic glasses also exist. Polymethylmethacrylate can form glasses. This material is 

known by many trade names, including plexiglass and lucite, and is widely used. Organic glasses 

generally have much lower forming temperatures and glass transitions than inorganic glasses and 

are used as model systems for studying glass structure and relaxation. While we acknowledge the 

importance of these glasses, we will only discuss silicate glasses in this work.65 

 

1.3.2 Display Glass and Flat Panel Display Fabrication 
  

Flat panel displays are microfabricated devices and most are fabricated on specially 

engineered glass known as display glass.1-4 The FPD fabrication process imposes stringent 

demands on display glass.1, 3-4 The glass must have precise geometry, including a high degree of 

flatness and uniform thickness. It must have excellent surface finish and optical properties. It must 
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be dimensionally stable during exposure to high processing temperatures. It must be rigid and 

strong, but many modern display designs also require a high degree of flexibility. It must be 

chemically durable with respect to the harsh chemistries it will encounter during FPD fabrication, 

and must not interfere with the circuitry fabricated on it, either chemically or electronically. Alkali 

ions are mobile in glass at high temperatures and may migrate under electrical fields. They have 

the potential to diffuse into display glass circuit elements and degrade their performance. As a 

result, most display glass compositions are alkali-free borosilicates.1, 3 Alkali-containing glasses 

are also used, but require additional steps to control alkali migration. These steps include acid 

leaching to remove alkali ions from the glass surface, or depositing barrier layers to limit alkali 

diffusion.  

Several processes are used for display glass fabrication including the microfloat, slot-draw, 

and fusion draw processes.1, 3 Fusion-drawn glass currently accounts for ca. 50% of total display 

glass production.2 Eagle XG®, the model system used in our studies, is formed by the fusion draw 

process. The fusion draw process produces glass with low surface roughness and excellent 

dimensional uniformity without the need for surface grinding or polishing.1 A schematic 

representation of the fusion draw process is shown in Figure 1.3. Here, molten glass is poured into 

a trough known as an isopipe. The isopipe is filled to overflowing, and molten glass flows down 

both sides of the isopipe. These two sheets of molten glass meet at the root of the isopipe and fuse 

to form a single sheet. Rollers near the edge of the sheet draw the glass to the desired thickness 

and length, after which the sheet is cut from the draw and stored. Notably, the surfaces of the 

finished glass never come into contact with forming mandrels of any kind during this process and 

only a small area near the edges of the sheet make contact with rollers.1 This is the main reason 

the fusion draw process produces a high-quality surface finish. A 2010 article states that generation 
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10 fusion drawn sheets can be as thin as 700 um and as large as 3.2 x 2.8 meters.1This is an 

impressive feat, given the surface finish and dimensional uniformity requirements for this material. 

Thinner fusion drawn glasses are also available. 

Fusion draw process requirements govern the range of compositions that are formed by 

this process. The fusion draw process requires glass viscosities in the range of 104-105 Pa.s.1 In 

contrast, viscosities of ca. 1000 Pa.s are typical in the float process.1 Display glass compositions 

with high glass transitions temperatures are preferred to achieve dimensional stability during high 

temperature processing steps of FPD production. Accordingly, Eagle XG® is a an alkali-earth 

modified boroaluminosilicate. Its main oxides are SiO2, B2O3, Al2O3, CaO, MgO, and SrO. Small 

amounts of tin are also added to the glass as a fining agent, i.e., to inhibit the formation of bubbles 

that in the glass melt, which can act as optical defects.1    

There are various device architectures for FPDs. Currently, the most common type of flat 

panel display is the active matrix (AM) thin-film transistor (TFT) liquid crystal display (LCD), 

commonly referred to as active matrix liquid crystal displays (AMLCDs).5 A schematic 

representation of an AMLCD is shown in Figure 1.4. There are four main components to the 

device: a backlight unit (BLU), TFT backplane, color filter, and liquid crystal between the TFT 

backplane and the color filter. Polarized light from the BLU provides illumination for the display. 

Each pixel on the display is divided into red, green, and blue subpixels by passing this light through 

the color filter layer. The light then passes through a second polarizer at the surface of the display, 

which acts as a light filter. The liquid crystal (LC) adjusts the polarization state of the light entering 

from the BLU, which determines light transmission through the second polarizer. Adjusting the 

voltages applied by the TFT backplane alters the orientation of the liquid crystal. Placing the 

polarization orientation of the liquid crystal in the the correct orientation allows maximum light 
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transmission and maximum brightness at a given subpixel. Placing the polarization orientation of 

the liquid crystal at 90 degrees to this position causes the light to be blocked by the second 

polarizer, resulting in near-zero light transmission through a subpixel. Accordingly, the red, green, 

and blue light intensities at each pixel on the display can be tuned by adjusting voltages at specific 

subpixel addresses on the TFT backplane. Other display types, like active matrix organic light 

emitting diode displays (AMOLED) are gaining increased market share. In these devices, red, 

green, and blue organic light emitting diodes provide the light for the display, and their intensity 

is controlled by a TFT backplane that governs current to each subpixel.5    

Both AMOLEDs and AMLCDS are microfabricated devices produced through 

photolithography, thin film deposition, and etching processes. They have simpler device 

architecture than most modern VLSI devices, and are often produced in 6 or fewer lithography 

steps.55 However, FPD fabrication poses its own unique challenges, especially considering the size 

of glass panels used. Many of these challenges relate to the surface composition of the display 

glass. Particulate-related failures currently account for 80% of FPD production line failures.2, 4, 55 

Display glass must be manufactured, stored, and shipped long distances without accumulating 

significant particulate contamination in order to be useful as a substrate material. Organic 

contamination on display glass surfaces can inhibit thin-film adhesion and degrade the optical 

quality of deposited films. It is important to understand what conditions give optimal thin film 

adhesion to glass surfaces. Unwanted static discharge can damage FPD circuitry.2, 6, 66 The surface 

composition of display glass influences its static charge accumulation and dissipation properties.6, 

66 Understanding the complex nature of glass surfaces is key to addressing many FPD production-

line challenges.  
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1.3.3 Glass Surface Properties and Glass Surface Analysis 
  

Glass has historically been used for its bulk material properties. While bulk glass material 

research continues to flourish, glass is increasingly used for its surface properties. Glass surfaces 

influence the manufacturing yield of many products.27 The value and function of glass goods are 

often improved by adding functional coatings to their surfaces. Coatings to improve glass strength, 

improve optical properties, enhance chemical durability, and improve aesthetic appeal are 

routinely applied67. These coatings can be producing an altered layer in the glass itself through 

leaching, etching, or ion bombardment.67 They can also be added to the surface by dip coating, 

chemical vapor deposition, and physical vapor deposition.67 For example, low-emissivity coatings 

on insulated glass units increase the energy efficiency of buildings.68-69 Self-cleaning coatings for 

windows are also available.69-70 Coverslip glasses on smartphones are typically used as touch 

screens. These may include anti-friction coatings to improve their feel, optical coatings to reduce 

glare, and antimicrobial coatings to improve device hygiene.2, 71 Complex coatings improve the 

glass/polymer interface strength of glass fibers used in composite materials.29-30, 48 Glass surfaces 

are also used as substrates for microfabricated devices.72 As such, the quality of the glass/coating 

interface directly affects device lifetime and yield., Wire-grid polarizers for visible light used in 

projectors and other optical devices are multi-layer devices often fabricated on glass 

wafers.73Perhaps the most ubiquitous example of glass as a microfabrication surface is its 

widespread use as a FPD substrate.1-4  

Because of the importance of glass surfaces, decades’ worth of studies focus on this 

topic.29-30, 74-79 Glass surfaces are important to advancing glass science but are an under-represented 

research area.26 Glass surfaces remain poorly understood compared to bulk glass composition and 

structure. Part of the reason for this knowledge gap is techniques that comprehensively 
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characterize bulk glass structure and composition are less applicable to surfaces. Techniques for 

bulk glass characterization include fourier transform infrared (FTIR) spectroscopy, Raman 

spectroscopy, and magic-angle spinning nuclear magnetic resonance (MAS-NMR), X-ray 

fluorescence (XRF), and X-ray diffraction (XRD), among others.46, 80 While ion beam and X-ray 

techniques provide near-surface compositional information, they cannot probe glass network 

connectivity as well as these bulk techniques.  

Glass surfaces pose unique analytical challenges. Silicate glasses are insulators, and sample 

charging hinders analysis with x-ray photoelectron spectroscopy, e-beam, and ion beam 

techniques.74 Sample charging also causes charge-induced migration of some glass species, which 

perturbs the surface composition.74 Knock-on effects also distort glass composition during sputter-

depth profiling. Advances in instrumentation and methodology have addressed some of these 

issues.74, 81  

Much of the interest and challenge in glass surface analysis is due to glass’s lability. Glass 

surfaces typically vary from their bulk composition.27, 67, 74, 77 Altered surface compositions are the 

norm, and surface compositions identical to bulk compositions occur only rarely. Production-line 

conditions alter surfaces during glass manufacturing. These alterations are especially evident in 

the float process, during which several environmental factors perturb glass surface composition. 

The glass comes into direct contact with water-cooled steel rollers, resulting in surface defects and 

water induced damage. A sulfur-dioxide atmosphere used during the float glass process creates a 

lubricious coating on the ‘air’ side of float glass melts. This coating reduces friction between the 

melt and the steel rollers used to draw it. Also, refractory materials from the glass furnace may fall 

on the glass, resulting in surface inclusions.45 One side of the glass melt is in contact with the 

molten tin float bath. As a consequence, a tin-enriched layer up to several µm deep forms on this 
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side of the glass.45, 82-85 Multiple studies observed significant differences in the reactivity and 

optical properties of the ‘air’ and ‘tin’ sides of float glass.82-83, 86-87 

Species may preferentially segregate toward glass surfaces during melting and forming to 

minimize surface free energy. For example, antimony oxide preferentially accumulates at the 

surface of some alkaline-earth aluminoborosilicate glasses.88 It follows that some species may also 

segregate away from the surface. This is the case for the tin-side of float glass, where a tin-enriched 

layer often occurs several microns below the glass surface, especially for iron-rich glasses. This 

effect is thought to be the result of differing redox conditions between the glass surface and its 

interior.84-85 

Glass’s thermal history influences its surface composition.79, 89 An ion scattering 

spectroscopy study in which a  binary alkali-silicate glass was heated in situ demonstrated these 

effects.89 (Ion scattering spectroscopy is an alternate name for LEIS). In this study, a sodium 

silicate glass fracture surface was heated in situ and its elemental composition was measured by 

ion scattering spectroscopy. At room temperature, the glass composition was stable. Measurements 

at elevated temperatures below the glass transition temperature (Tg), however, showed decreased 

modifier concentration indicative of sodium evaporation from the surface. Measurements taken 

above Tg showed modifier concentration similar to the bulk concentration, suggesting sodium 

diffusion from the bulk of the glass toward the surface.89 The formation of the tin-enriched layer 

below the surface of some float glasses also depends on the thermal history of glass. Higher 

temperatures favor diffusion of hydrogen through the glass melt, which affects the degree of tin 

enrichment and the depth of the layer.85  

Aqueous solutions, acids, etchants, and atmospheric contaminants readily alter glass 

surfaces.76-77 Hench and Clark described five basic types of silicate glass surfaces, shown 
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schematically in Figure 1.5.77 In type I surfaces, a thin hydrated layer less than five nanometers 

thick forms on the glass surfaces without any dissolution of the silicate network or leaching of 

modifier ions. For type II surfaces, leaching of modifier ions results in a silica-rich surface layer 

that inhibits further corrosion of the underlying glass. This type of surface requires a glass with a 

low modifier concentration and high network connectivity. Type III surfaces occur in 

aluminosilicate and phosphosilicate glasses. Alumina-silicate and/or calcium-phosphate layers 

form on top of silica rich layers, resulting in glass with excellent chemical durability. These layers 

form through modifier leaching or precipitate from solution. Type IV glass surfaces have silica-

rich layers, but the layer is porous and does not inhibit diffusion into and out of the underlying 

glass. As a result, it does not significantly inhibit glass corrosion. Leaching of modifier-rich glasses 

creates type IV surfaces. Type V surfaces result from congruent network dissolution. These 

surfaces have a composition approximately equal to the bulk composition. This type of surface 

may occur under controlled etching conditions, e.g., with HF or highly alkaline solutions.77  

Local fluctuations in solution phase chemistry further complicate glass surface alteration. 

Local glass structure or environmental factors limit the diffusion between the glass and solution 

phase. For example, glass powders altered solution often suffer from local concentration cell 

effects.76-77 As a result, these powders typically have different surface compositions than similarly 

treated planar shards. Deep scratches in glass surfaces also cause variations in solution-phase 

chemistry and will etch and corrode differently from smooth portions of the surface.76-77  

Studies on nuclear glass waste storage have expanded knowledge of solution phase glass 

corrosion. Nuclear waste storage glass sequesters radionuclides from the environment over 

geological time spans by incorporating them into a corrosion-resistant glass network. This glass is 

known as known as high-level waste (HLW) glass.59, 90-93 Archeological and geological glasses 
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provide evidence for the long-term chemical durability of glass, suggesting that it is a suitable 

vehicle for nuclear waste storage.94-96 However, HLW glass will likely be in contact with 

groundwater during its radioactive lifetime. Therefore, it is important to understand the extent of 

radionuclide release into the environment via glass corrosion. This concern has prompted a wide 

range of experimental and computational studies. To promote collaboration between nations, 

standard glass compositions were introduced, including international simple glass (ISG).90 ISG 

contains the same main oxides as French nuclear storage glass.90  

HLW glass corrosion studies have divided glass corrosion into four kinetic regimes which 

are shown in Figure 1.6:(i) initial dissolution, (ii)rate drop, (iii) residual dissolution, and (iv) 

resumption of initial dissolution.92 During initial dissolution,  low starting concentrations of rate 

limiting species are in solution.  Additionally, glass corrosion layers are not thick enough to limit 

diffusion between the glass and solution phase. These two factors create a very high initial 

corrosion rate. Ion exchange and hydrolysis are the main modes of glass corrosion during this 

phase. During the rate drop phase, accumulation of corrosion products in solution and the growth 

of a transport-limiting altered layer slows glass corrosion. Under static conditions, these processes 

eventually result in a low residual dissolution rate. However, corrosion abruptly resumes under 

certain conditions. For example, precipitation of zeolite phases from alumina-rich solutions results 

in reduced silica concentration in solution, which lead to an increased glass corrosion rate.92 

Solution-phase glass alteration is complex and involves multiple processes. Glass 

composition, solution temperature, pH, internal and applied stresses to the glass, concentration of 

glass corrosion products in solution, and any additional solution phase species all influence glass 

corrosion mechanisms.37, 76-77 Numerous studies have presented evidence for various modes of 
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glass corrosion. It is generally accepted that no single model can explain glass corrosion under 

every set of conditions.97      

The classical interdiffusion (CID) model has been an important theory for explaining glass 

surface alteration for several decades.98-99 CID describes glass alteration by two processes: (i) 

hydrogen interdiffusion and leaching of modifier species and (ii) dissolution of the silicate 

network. Interdiffusion dominates at low pH, resulting in type II, III, and IV surfaces. Network 

dissolution, in contrast, is rapid at pH values >10, resulting in more congruent network dissolution 

and type V surfaces.77 However, interdiffusion occurs over a wide pH range, and the final surface 

composition depends on the relative rates of interdiffusion and network dissolution.77 Early 

interdiffusion models focused only on extraction of the alkali elements and posited a 

concentration-dependent diffusion rate for these species.98 Further refinements to these models 

added charge compensation consideration for the presence of alkaline earth modifier ions and 

alumina tetrahedra, which were not previously considered to participate in ion exchange.77, 99 More 

recent work showed that alkali earth modifier ions participated in ion exchange with hydronium 

ions, albeit at a reduced rate compared to alkali earth ions.97 CID often dominates during the early 

stages of glass corrosion. It was once thought that CID was relatively unimportant in later stages 

of glass corrosion.  However, recent work revealed that CID continues even under conditions of 

silica saturation in the solution phase.100 Given the CID model’s importance for early-stage glass 

corrosion, it is probably the most important corrosion model for understanding the wet chemical 

treatments used in this work.  

Recent studies have posited the interfacial-dissolution-precipitation model (IDP), that 

congruent dissolution of the silicate network may occur simultaneously with the growth of an 

altered layer formed by products precipitated from solution.101 Precipitation occurs after a thin-
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film of interfacial water becomes super-saturated with layer precursors. The interfacial water is 

assumed to have different solvating properties and higher concentrations of glass corrosion 

products than the bulk solution phase. These characteristics facilitate altered layer deposition at 

the dissolution interface. The IDP mode of glass corrosion works under near-neutral pH conditions 

and with solution phase silica concentrations well below saturation levels. We note, however, that 

the solutions used in the presented studies are for the most part either highly acidic or highly 

alkaline.  

The chemical affinity model of glass corrosion describes glass corrosion in terms of 

differences in chemical potential between the solution phase and the bulk glass.100 Such an 

approach greatly improves our understanding of long-term glass corrosion behavior under static 

corrosion conditions. It potentially falls short, though, for understanding short-term glass alteration 

in solutions with low concentrations of glass alteration products.  

The formation of a gel layer during the initial phases of glass corrosion limits reactant 

transport to the unaltered glass surface in the passivating reactive interface (PRI) model.102 This 

passivating layer governs corrosion kinetics. The passivating gel layer is thought to form via 

classical interdiffusion. However, recent work shows that the passivating layer may also contain 

elements from solution. These findings suggest that precipitation from the solution phase can play 

a role in forming the PRI.102 

Altered glass surfaces are the norm rather than the exception. Therefore, understanding 

glass surface mediated processes requires direct measurement of those surfaces. For this reason, 

rather than using powdered samples, we focused our efforts on low-surface area planar samples 

and exposed them to chemical treatments representative of FPD production lines.   
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1.4 Glass Surface Composition Affects Surface Mediated Processes 

 

Glass surface properties and processes depend on surface composition, including wetting, 

adhesion, contamination, and electrostatic charge buildup and discharge. These processes and 

properties are important for thin film deposition and device fabrication on oxide surfaces, and are 

especially important for FPD fabrication.2, 5-6 

Surface hydroxyls play a governing role in the chemistry of glass and oxide materials.11-13, 

86, 103-104 Silanols are the most important class of hydroxyl on silicate glass surfaces. Other 

hydroxyls including boronols, aluminols, and hydroxyls associated with alkali-earth and modifier 

species may also be present. Silanols may be vicinal, geminal, or isolated.16-17, 21 Silanols can be 

described as H-bonding silanols or non-interacting silanols. Isolated silanols may be isolated or 

geminal as shown in Figure 1.7.16-17 On amorphous silica surfaces, approximately 60% of isolated 

silanols are geminal and 40% are isolated. H-bonding most often occurs for silanols in vicinal 

configurations.    

Silanols have been studied on high-surface area amorphous silica powders using a range 

of techniques including infrared spectroscopy, temperature programmed desorption mass 

spectrometry (TPD-MS), thermogravimetric analysis, etc.16-17, 21, 24, 105. An infrared spectrum from 

a study by Hair and coworkers is shown in Figure 1.8. Here, amorphous silica powder surfaces 

have been thermally treated and/or chemically treated to produce surfaces with only isolated 

silanols, only H-bonded silanols, or to completely remove all surface hydroxyls. Bands 

corresponding to interacting and non-interacting silanols can be seen. Non-interacting silanols give 

a sharp band at 3747 cm-1, while a broad band from ca 3700 to 3400 cm-1 corresponds to H-bonded 

silanols. The samples were heated in vacuo to remove physisorbed water prior to analysis. 

Correspondingly, there is no band for physisorbed water at ca. 3450 cm-1 in any of the spectra. The 
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diffuse nature of the interacting silanol band indicates a range of H-bonding environments exists 

on amorphous silica surfaces. Computational studies confirm this finding.106  

Zhuravlev and coworkers published a widely accepted model of surface hydroxyls on silica 

surfaces based on measurements of over 100 amorphous silica powders using vibrational 

spectroscopy, temperature programmed desorption mass spectrometry, deuterium isotope 

exchange experiments, and thermogravimetric analysis.21 They reported a least-squares average of 

4.6 OH/nm2 on a fully hydroxylated silica surface. This value agrees with early modeling studies 

based on cristobalite silica surfaces. TPD-MS experiments show several different dehydroxylation 

regimes. At temperatures below 200 °C, physisorbed water desorbs from the sample surface, but 

silanols do not condense to form bridging oxygens. At temperatures between 200 °C and 400 °C, 

vicinal silanols condense to form bridging oxygens, leaving a surface with mostly isolated silanols. 

These changes are reversible upon re-exposure to water. Treatment at higher temperatures further 

dehydroxylates the surface through a process of proton migration. The changes are increasingly 

non-reversible as heat-treatment temperature increases.21 Other studies proposed that strained 

siloxane bonds form during heat-treatment between 200 °C and 400 °C, but exposure to higher 

temperature allows the surface to remodel, relieving strain in the siloxane bonds and reducing their 

reactivity.11-12 Amorphous silica surfaces treated at 1100 °C are completely dehydroxylated.21 

These surface have only bridging siloxane bonds and are moderately hydrophobic. 

Rehydroxylation for these surfaces is an activated process and can take years at room temperatures. 

However, hydrothermal treatment, i.e., boiling the powder in deionized water, can rapidly restore 

it to a fully-hydroxylated state.21 Various chemical treatments can also hydroxylate silica surfaces, 

including strong acids/oxidizers like HCl or piranha solution, or etching with hydrofluoric acid or 

strong bases.11  
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High surface-area silica nanopowders are the most common sample system for studying 

surface hydroxyls. However, additional challenges arise when measuring surface hydroxyls on 

low-surface area samples.10, 13 The introduction to Chapter 4 includes a more detailed literature 

review on this topic. 

Surface hydroxyls are often the target of surface modification reactions.107-108 Organic 

moieties are frequently reacted with glass surfaces to modify their surface properties.29-30, 48 These 

surface modifications are essential in tailoring glass interfaces for thin film adhesion. Organic 

surface modification reactions are also used in several applications, including anti-corrosion 

coatings, anti-scratch and antiwear coatings, anti-friction coatings, antimicrobial coatings, and 

chemical sensing devices.71-72, 109-110 A range of reactive functions can be used to modify oxide 

surfaces, including silanes, phosphonates, carboxylates, catechols, alkenes, alkynes, amines, 

thiols, hydroxamic acids, and borates.111 Silanes are typically used for SiO2  surfaces. Silanes and 

carboxylates are frequently used to tailor reactive interfaces on multicomponent glasses.111 

Phosphonates form relatively weak bonds to SiO2
 surfaces but strong bonds to alumina and several 

other metal oxides.111 

Besides being the target of surface modification reactions, surface hydroxyls govern a 

number of other processes on glass surfaces. They are important adsorptive and reactive sites. 

Non-interacting silanols are the most effective adsorptive and reactive sites for most organic 

molecules. They are particularly strong adsorptive sites for molecules with lone pairs. H-bonded 

silanols only weakly adsorb most organic molecules.17 OH containing compounds like water and 

methanol, however, adsorb on H-bonded silanols. Water, in particular, adsorbs strongly and 

preferentially to H-bonded silanols.17  
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As important adsorptive sites, surface hydroxyls mediate the physisorption and 

chemisorption of water. Computational and spectroscopic studies have demonstrated that water H-

bonds in different orientations to interacting and non-interacting silanols, with adsorption 

preferentially occuring on H-bonded silanols.106, 112 The strength and orientation of the H-bonds 

relative to the sample surface influences their effectiveness as adsorptive sites.106 Water first 

physisorbs to H-bonded silanols, and then the physisorbed water acts as an adsorptive site for 

additional water.112 The physisorption of water is also important in forming surface hydroxyls. 

Rehydroxylation of silica surfaces occurs autocatalytically. In the first step, water physisorbs at 

surface hydroxyl sites. In the second step, that water reacts with neighboring siloxane bonds to 

form additional hydroxyls. Accordingly, rehydroxylation occurs by islanded growth.21 

Water physisorbed on glass and oxide surfaces alters their physical properties. This 

physisorbed water is an important adsorptive and reactive site in and of itself. It is important for 

charge transport on oxide surfaces, such that charge build-up and discharge is a function of surface 

hydroxylation and relative humidity.6, 66 A thin layer of physisorbed water can also act as a solvent, 

promoting corrosion for some glass compositions.113 Notably, some glass artifacts readily corrode 

as network modifiers dissolve in physisorbed water on the glass surface, resulting in a high-pH 

solution that can hydrolyze bonds in the silicate network.114-115 Physisorbed water on glass surfaces 

can absorb atmospheric gasses, including CO2, SO2, and NO2. These gasses can alter the pH of the 

water layer on the glass surface and affect the composition of the weathering layer that forms.115 

Physisorbed water can also participate in surface modification reactions. In some cases, the 

presence of physisorbed water catalyzes surface modification reactions, while in others, it acts as 

an interfering species.107-108, 116 
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As a key adsorptive site, surface hydroxyls play an important role in surface contamination 

and thin film adhesion. Highly-hydroxylated surfaces usually promote thin film adhesion. 

Paradoxically, hydroxylated surfaces also contaminate quickly, and this adventitious surface 

contamination impedes thin film adhesion.  In a series of studies on multi-component glasses, 

sputtered metal-oxide films, and sputtered metal-doped silica films, Takeda and coworkers found 

that the most hydroxylated surfaces contaminated the most severely over a period of 14 days, as 

indicated by increased water contact angles.86, 103-104  

Hydroxyls are important in electrostatic charge accumulation and discharge. Hydroxyls are 

important charging sites on glass surfaces, especially when in contact with aqueous solutions.117 

Hydroxyls are thought to play a role in contact electrification.6 Surface contamination and 

particulates promote electrostatic faults in microfabricated circuits.2, 4, 66 However, thin, adsorbed 

layers of hydrocarbon on glass surfaces can also reduce contact electrification.6  

The reactivity and hydroxylation behavior of multicomponent surfaces is significantly 

more complex and less-understood than for silica surfaces. Takeda’s studies suggest that adding 

only a few atom percent of a metal dopant to a silica surface can radically increase its surface 

hydroxyl density.104 More electropositive dopant metals (e.g., zirconium) promoted hydroxylation 

more effectively than relatively electronegative dopants (e.g. aluminum).103-104 Likewise, he 

showed that the number of hydroxyls at multicomponent glass surfaces varied according to glass 

composition. The number of surface hydroxyls generally scaled with the quantity of silicon at the 

sample surface. A notable exception to this trend was the tin-rich side of float glass, which had the 

most hydroxyls of any sample in the study, in spite of its relatively low silica concentration.86 

Multicomponent glass surfaces are likely to have multiple types of hydroxyls, including aluminols, 

boronols, and in the case of float glass, Sn-OH moieties.86, 118-119 Boronols have been shown to 
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play an important role in adsorption on multicomponent glass surfaces and have different 

adsorptive behavior depending on the identity of modifier ions in the glass.119 In addition, boronols 

may interact with and alter the reactivity of neighboring silanols. Hair and coworkers demonstrated 

that the addition of boron to silicon surfaces altered the reaction rate between silanols and 

chlorosilanes.16 While these other hydroxyls are known to play a role in glass surface reactivity, 

they are not as well-studied as silanols. Few studies exist for these hydroxyls in relatively simple 

model systems, and it is difficult to address their potentially complex interactions on 

multicomponent surfaces.16, 79, 119  

In addition to surface hydroxyls, multicomponent glasses include reactive functions that 

are not present in simple oxide materials. In particular, non-bridging oxygens and modifier ions 

influence multicomponent glass reactivity. Two notable studies examined bonding of carboxylic 

acids on silica surfaces and sodium borosilicate glass surfaces. Carboxyl functions are often used 

to link sizing agents to glass fiber surfaces.29-30 These studies showed that carboxylic acids bind to 

silica surfaces through silyl-ester linkages. There was no evidence of silyl-ester bonds on the 

sodium borosilicate surface. Rather, the carboxylic acids bonded preferentially to sodium ions by 

forming sodium carboxylates. Interestingly, no silyl-ester bonds could be observed on the 

multicomponent glass surfaces even when they were leached with acid to remove sodium from the 

surface prior to treatment with carboxylic acids. Aged sodium borosilicate surfaces displayed 

additional complexity. Carbonate corrosion products often form on multicomponent glass surfaces 

with exposure to atmospheric water vapor. These carbonates react with the acetic acid probe 

molecules to produce water and CO2, such that no covalent bond was formed between the acetic 

acid and the glass surface. Accordingly, corrosion products at the glass fiber surfaces can impede 

surface modification reactions.29-30  
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1.5 Surface Analytical Techniques for Glass 

 

There are many approaches for performing surface analysis on glass. The technique used 

depends on the form-factor of the glass available and the desired information. We have already 

made special mention of secondary ion mass spectrometry, x-ray photoelectron spectroscopy, low 

energy ion scattering, and spectroscopic ellipsometry. Given their direct importance to this work, 

we will provide a detailed discussion of each of these techniques. Other approaches for 

characterizing glass surfaces will also be briefly reviewed. 

 

1.5.1 Secondary Ion Mass Spectrometry of Glass Surfaces 
 

Secondary ion mass spectrometry provides both molecular and elemental information 

about glass surfaces. SIMS depth profiles appear often in glass analysis, showing the distribution 

of species in altered layers in corroded glass.120 These have been especially important in HLW 

glass corrosion studies, studies on the conservation of glass art and artifacts, and in elucidating the 

underlying mechanisms of glass corrosion.101, 115, 120 Most static SIMS studies on glass focus on 

adsorbates on glass surfaces but few focus on the glass itself. One study proposes an approach 

using XPS and SIMS data to measure chain length in zinc-phosphate glass.121 Importantly for this 

work, SIMS has been proposed as a technique for quantifying surface hydroxyls on oxide 

materials, and SIMS depth profiling is also used for quantifying bulk water- and hydrous-species 

concentrations in minerals and oxide materials.10-13, 118, 122-126 These efforts are discussed in more 

detail in the introduction to Chapter 4.   
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1.5.2 SIMS Theory and Instrumentation 
 

Secondary ion mass spectrometry (SIMS) probes a sample surface with a beam of primary 

ions with energies typically on the order of 10-30 keV. In a few cases, neutrals are used instead of 

ions. Common primary ion beams include O+, Cs+, Ga+, Bi+, Bi3
+, and Bi5

+.34, 40, 127 More recently, 

a range of SIMS cluster sources including C60
+ and argon clusters have improved SIMS ion yields 

and enabled low damage depth profiles for some material.40 When primary ions impact the sample, 

they initiate a collision cascade or thermal spike that sputters material from the sample surface.34, 

40 A fraction of these particles are ionized and can be analyzed by mass spectrometry. SIMS can 

either be performed at low ion doses, i.e., in static mode, or at high doses, i.e., in dynamic mode. 

Static SIMS is typically performed at an ion dose below 1 x 1013 ions/cm2. At these low doses, 

there is a low probability that any ion will strike a spot on the surface that has previously been 

altered by ion impact. As a result, each ion strike analyzes a pristine surface unaltered by sputter 

damage.34 Static SIMS can provide detailed elemental and molecular information about a sample 

surface. In contrast, dynamic SIMS operates at a high ion dose, resulting in erosion of the sample 

surface. By continuing eroding and analyzing the surface, dynamic SIMS can provide a 

compositional depth profile of a sample’s near-surface region. The high ion dose in dynamic SIMS 

results in an altered layer at the sputter-etch front arising from ion beam damage, preferential 

sputtering, and knock-on and charge-induced species migration, among other effects.40 This 

sputter-altered layer can extend ca. 20 nm into a material, and an equilibration period is needed 

for this altered layer to reach a steady-state composition before quantitative information can be 

obtained from it.40 The sample damage inherent to dynamic SIMS has traditionally limited its use 
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to obtaining elemental compositional information.34, 40 However, molecular information can also 

be obtained due to recent advances in cluster ion sources.40  

The most common types of mass spectrometers used in SIMS are quadrupole, sector, and 

time-of-flight mass spectrometers.34, 127 In principle, each of these instruments can be used for 

static or dynamic SIMS. Each of these geometries has unique advantages, with sector and 

quadrupole instruments being especially well-suited to high sensitivity and/or high depth 

resolution depth profiling experiments.127 Time-of-flight instruments offer parallel detection of all 

ions of a given polarity and can provide excellent resolution, ca. m/∆m of 10,000 in some cases. 

These features make them especially well-suited for static-SIMS analysis.33-34  

Only ToF instruments are used in this study and will be the focus of the remainder of this 

discussion. Figure 1.9 shows a schematic representation of common instrument geometry found 

in ToF-SIMS instruments. The analysis cycle starts with a short pulse of the primary ion beam, 

typically at oblique incidence to the sample surface, during which secondary ions sputtered from 

the sample surface are extracted at normal incidence into a time-of-flight mass analyzer. Extraction 

voltages in the range of 2-3 keV are typical for the instrumentation used in this study. Ion optics 

for focusing the primary beam, centering it through apertures, and rastering it across the target are 

essential components of most ion sources. Additional raster and focusing optics are included in 

the ToF analyzer for focusing the secondary ions and directing them toward the detector.  

The relationship between mass and time-of-flight for a given species is easily derived from 

the equation for kinetic energy, Ek = ½ mv2, where Ek is kinetic energy, m is mass, and v is 

velocity.34 Here, the ion’s charge, q, and the extraction voltage used to accelerate ions into the ToF 

analyzer, U, govern the kinetic energy of ions in ToF-SIMS. The ions’ velocities can be calculated 

from their kinetic energy. The time required for an ion to traverse the flight tube in a ToF analyzer 
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is given by t = d/v, where d is the length of the flight path and v is the velocity of the ion. Combining 

the equations for time and kinetic energy and solving them for mass, we have Equation (1.1):  

(1.1) 𝑚𝑚 =  2𝑞𝑞𝑞𝑞𝑞𝑞
2

𝑑𝑑2
 

The mass of ions can be calculated by measuring their time-of-flight. In practice, the kinetic 

energy of ions can be influenced by sample charging, and the distance of the flight path through 

the analyzer may vary depending on reflector voltage settings, as discussed in further detail 

below.34 Consequently, the mass scale in ToF-SIMS spectra is usually calibrated by identifying 

several peaks. Peaks from adventitious hydrocarbons are often present on samples and can be 

helpful in this process.  A priori knowledge of a sample’s elemental composition may be a further 

aid, as SIMS is a relatively hard-ionization mass spectrometry and produces strong atomic signals 

in addition to molecular fragments.40, 127    

ToF analyzers measure mass under the idealized assumption that all ions enter the analyzer 

at the same time (T0) and have the same kinetic energy (E0), which is mostly governed by the 

extraction voltage. T0 is assumed to be the time at which a pulse of primary ions strikes the sample 

surface. In practice, distributions in T0 (∆T0) result from the finite width of the primary ion pulse 

and from a finite distribution of secondary ion sputter and ionization times after the collision 

cascade process has been initiated. Ions may also sputter from the surface with different initial 

kinetic energies.34 Sample charging may influence the ions’ kinetic energy.34 Sample roughness 

can also impact mass resolution.34 These factors result in a distribution of initial energies (∆E0). In 

turn, ∆T0 and ∆E0 determine the mass resolution of ToF-SIMS instruments. 

Primary ion beam pulse width is a contributor to ∆T0, and it influences instrument mass 

resolution. Some ion beams include bunchers to generate ion pulses with high currents and narrow 

temporal widths. For applications requiring high mass resolution, buncher elements apply an 
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electrical field along the longitudinal axis of the ion pulse to compress the ions, resulting in narrow 

temporal distributions of primary ion impact at the sample surface.34 Bunchers can reduce primary 

ion pulse widths dramatically. Pulses that are tens of nanoseconds wide can be reduced to a few 

picoseconds.34 This narrow pulse width is key to obtaining high mass resolution in ToF-SIMS. 

However, narrow primary ion pulse-width comes at the expense of spatial resolution.34 Lateral 

resolution for liquid metal ion gun (LMIG) primary ion sources in high-current bunched mode is 

ca. 7 μm, while lateral resolutions of < 70 nm are possible in un-bunched mode.34, 40  

Distributions in kinetic energy of the sputtered secondary ions are an important contributor 

to ∆E0. Not all species follow the same kinetic energy distribution. Elemental species can have 

energies as high as 100 eV.  Molecular ions and small clusters follow lower kinetic energy 

distributions, typically ranging from 0-20 eV.34, 127 These energies are relatively small compared 

to the extraction energies used in ToF-SIMS. However, they result in a distribution of flight times 

for a given species and correspondingly degraded mass resolution. 

Reflectors in ToF analyzers improve mass resolution in two ways. First, they effectively 

double the length of the flight tube, which enhances the difference in flight time between species 

of different masses. Second, they provide a variable flight path to compensate for ∆E0.34 A 

schematic representation of a reflector ToF analyzer is shown in Figure 1.10, with hypothetical 

flight paths for ions of different energy represented by different colored lines. Ions with low kinetic 

energy only penetrate a short distance into the reflector element, resulting in a shorter overall flight 

path, while ions with higher kinetic energy penetrate further into the reflector, having a longer 

overall flight path. Varying their flight length to compensate for differences in velocity focuses 

their arrival time at the detector, improving mass resolution. The reflector has an additional 

important function, which is to set the analyzer acceptance energy, i.e., the maximum initial energy 
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an ion can have before it is no longer focused onto the detector.34 The importance of analyzer 

acceptance energy and its potential impact on quantitation of SIMS data is discussed in more detail 

in the context of the surface hydroxyl measurements performed in Chapter 4.   

 

1.5.3 SIMS Surface Sensitivity 
 

SIMS is among the most surface-sensitive analytical techniques, having better surface 

sensitivity than XPS and Auger electron spectroscopy (AES) but lower surface sensitivity than 

LEIS. Most sputtered species in SIMS originate from the outer monolayer.33, 127 Values given for 

SIMS surface sensitivity vary widely depending on source, and computational studies have shown 

that the actual depth depends on a number of factors. Sample composition, primary ion species, 

energy, and angle of incidence all influence SIMS surface sensitivity.33-35, 130 Finally, the 

maximum depth from which an ion can originate depends on its kinetic energy, with higher-energy 

ions originating from a greater sample depth.131  

 

1.5.4 Quantitation in SIMS 
 

A common misconception is that SIMS is not quantitative due to matrix effects. Provided 

that a suitable reference material is available, SIMS can provide both precise and accurate 

quantitation, and experiments have demonstrated long-term stability in instrument response.34, 127 

Dynamic SIMS is used quantitatively more often than static SIMS, given that reference materials 

based on known bulk compositions can be used.127 Alternatively, reference materials can be 

created by ion implantation, where a known ion dose is implanted to known depth within a matrix 
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of interest.127 Finding suitable reference materials for quantitative static SIMS is more challenging 

because composition at the extreme outer surface of a sample can vary in unpredictable ways from 

the bulk composition and because adventitious contaminants present at the surface can have an 

unanticipated impact on ion yield. Accordingly, it is difficult to ascertain that a chosen reference 

material is truly representative of the sample matrix at the extreme surface of a sample. For the 

cases where we have attempted quantitation of the static SIMS results presented herein, we have 

used glass fracture surfaces as our reference materials, under the assumption that they closely 

reflect glass bulk composition. There is precedent for using glass fracture surfaces to establish SIM 

relative sensitivity factors in dynamic SIMS.132-134 Fracture surfaces represent an idealized glass 

surface, are also used to establish elemental sensitivity factors for XPS and auger electron 

spectroscopy (AES) studies of glass surfaces.14-15, 135  

The matrix effect in SIMS arises from the complexity of the SIMS ionization process. The 

following processes may participate in SIMS ionization:127 

1. Electron Impact 

2. Atom Impact 

3. Surface Ionization 

4. Charge Transfer 

5. Thermal Ionization 

Species in SIMS are in intimate contact with one another prior to ionization and may react with 

each other in unpredictable ways. Matrix species and even adventitious hydrocarbon contaminants 

can impact ion yields, such that signal may not vary linearly with concentration for a given species. 

Matrix effects can result in either suppression or enhancement of selected signals. Suppression can 

result when an ion reacts with matrix constituents to form a neutral species.118 Signal enhancement 
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can result  if matrix species act as a proton donor for a species of interest.40 Adventitious 

hydrocarbon attenuates signal from the underlying sample.131 However, the effect is kinetic-energy 

dependent, such that not all signals are affected to the same degree. Ions sputtered with high kinetic 

energy i.e., elements and small clusters, are less attenuated than ions with low kinetic energy, i.e., 

large clusters and molecular ions. Therefore, adventitious hydrocarbon contamination may skew 

quantitative results.131 

In some cases, matrix effects are used advantageously. Oxygen at the sample surface promotes 

the formation of positive ions. Consequently, O2
+ beams have become the ion source of choice for 

performing positive ion SIMS depth profiles.127 However, under most circumstances, matrix 

effects remain detrimental to SIMS quantitation. There is currently no theoretical model of SIMS 

ionization that can fully account for matrix effects.34, 127 Therefore, any reference material used in 

SIMS must closely match the matrix composition of the samples of interest.34, 127 In the absence 

of a good reference material, SIMS data is best interpreted semi-quantitatively.   

 

1.5.5 Data Reduction Tools for ToF-SIMS 
 

ToF-SIMS spectra may contain thousands of peaks.136-137 The data are even more complex 

in SIMS images where each pixel contains an entire mass spectrum.136-138 Therefore, SIMS data 

reduction can pose a significant challenge. In spite of the spectral complexity, a skilled analyst can 

provide insight into sample composition by a manual analysis of the peaks.136 A growing range of 

data analysis tools are now routinely used to consider the data from a multivariate perspective. 

These include principal components analysis (PCA) and multivariate curve resolution (MCR), 

among others.136, 139-140 PCA plots the data on a set of eigenvectors that optimally capture the 
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variance in the data. In the parlance of PCA, these eigenvectors are known as principal components 

(PCs). The eigenvectors consist of a linear combination of the original variables. The projections 

of the original variables on to the PCs are known as loadings. The samples are then plotted in this 

optimized coordinate system. The sample’s projections onto each of the eigenvectors are known 

as their scores.141 More detail about the algorithms used for PCA can be found in a recent review 

article.142 

The major advantage of using PCA is that it can dramatically reduce the dimensionality of 

a data set. This makes it much easier to consider the relative similarity or difference between 

samples and to identify outliers in a data set. For example, the SIMS data sets in this work contain 

over 1,000,000 data points each, and in the extreme case, the full-rank data could be plotted as a 

data point in 1,000,000 degree hyperspace. More practically, if we consider the data in terms of 

the number of peaks present, or even if we use a reduced set of selected peaks, a SIMS data set 

may still have hundreds of dimensions to consider. However, it is unlikely that all of these peak 

intensities vary independently. Rather, they are likely to vary in some correlated fashion. These 

correlations are naturally discovered when the data is plotted in PC space, and data sets with a high 

number of variables can often be plotted in simple 2- or 3-dimensional plots after PCA. This 

simplifies data interpretation, making it easy to identify outliers, visualize which samples are 

similar to one another, understand the spectral vectors along which samples vary, and identify 

subtle spectral variations between samples.136 

One disadvantage of PCA is that PCs must be orthogonal to one another. This is a necessary 

component of the algorithm. However, most chemical variance in a spectrum is not truly 

orthogonal. For example, hexane and pentane give very similar IR spectra even though they are 

different compounds, and it would be inappropriate to perform PCA on spectra from a mixture of 
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pentane and hexane and ascribe one of the PCs to pentane and another to hexane. In most instances, 

it is best to think of the PCs, scores, and loadings as useful mathematical abstractions. They can 

be helpful for determining if a given sample is rich in certain spectral components, but PCs may 

not correspond to unique chemical compounds. 

We have largely used PCA as a preliminary analysis in our work. It is a useful tool for 

determining the minimum dimensionality of a data set and understanding trends in the data prior 

to performing follow-up analysis either by manual peak integration or with other algorithms 

including multivariate curve resolution. 

Multivariate curve resolution (MCR) is similar to PCA in that it plots the data on a small 

number of spectral vectors that are derived by an algorithm. Unlike PCA, these spectral vectors 

are not required to be orthogonal to one another. Thus, it is a less-constrained form of data fitting 

than PCA. The spectral vectors are derived via a process of alternating least squares (ALS), as 

described in more detail in the introduction to chapter 2. The resulting vectors often closely 

resemble real spectra.143 MCR and other ALS algorithms have successfully derived the spectra of 

pure components in chemical mixtures in many instances.144-145 MCR requires the user to specify 

the number of spectral components to derive, and preliminary analysis with PCA can provide a 

useful starting guess. 144  

 

1.6 XPS Analysis of Glass Surfaces 

 

XPS is widely used for glass analysis, especially in analyzing altered layers on glass and 

in analyzing adsorbates on glass surfaces.14-15, 29-30, 86, 103-104 XPS analysis has demonstrated 

different bonding chemistries between adsorbates and fused silica, pristine multicomponent glass 



36 
 

surfaces, and weathered multicomponent glass surfaces.29-30 Recent efforts used elemental 

information from XPS to estimate the number of bridging oxygens, non-bridging oxygens, and 

surface silanols at multicomponent glass surfaces. Surface hydroxyls on glass and silica have also 

been analyzed using a chemical derivatization/XPS approach, where the hydroxyls are tagged 

through reaction with a fluorosilane, amine, or other appropriate molecules, and the total quantity 

of reactive groups is estimated through XPS analysis.86, 103-104  

 

1.6.1 X-ray Photoelectron Spectroscopy Theory and Data Analysis 
 

XPS is among the most widely used surface analytical techniques due to its surface 

sensitivity, minimal sample preparation requirements, and straightforward quantitation.146 XPS is 

based on the photoelectric effect. In XPS, a material is bombarded with X-rays. When X-rays 

interact with atoms at the sample surface, they can dislodge core-level electrons. An appropriate 

analyzer measures the the kinetic energy of the photoelectrons, and the core-level binding energy 

of the electron is calculated according to Equation (1.2),  

(1.2) 𝐸𝐸𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  =  𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +  𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 

where Ekinetic is the measured kinetic energy of the photoelectron, Ephoton is the energy of the photon 

used to excite the photoelectric transition, Ebinding is the core-level binding energy, and Ework is the 

work function of the instrument. Note that work function term only applies for conducting samples, 

given that their work function will align with the work function of the instrument when the two 

are in electrical contact. For electrically isolated samples, peak positions in XPS will shift 

depending on the voltage at the sample surface. This can be accounted for by adjusting the entire 
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energy scale based on a reference peak. Adventitious carbon is present on most samples and can 

be used for this purpose.   

The binding energies of core electrons are characteristic of their elements of origin. 

Generally, core electron binding energies scale with the nuclear charge Z of their corresponding 

atoms. They also increase with the decreasing principal quantum number n.146 Elements in the 

sample are identified by comparing photoelectron peaks in XPS spectra to tabulated or calculated 

photoelectron binding energies. The peak areas of photoelectron transitions for a given element 

are proportional to its concentration at the sample surface.  

Minor shifts in core level binding energies in XPS also provide information about the 

elements’ chemical environment.146-147 The partial-charge formalism often used in introductory 

chemistry can explain this effect. The electron density of an atom emitting a photoelectron is 

influenced by the electron-donating or -withdrawing properties of nearby atoms. The effect is most 

pronounced for atoms directly bonded to the atom of interest and much weaker for second-nearest 

neighbors. Electron-donating neighboring atoms will increase the electron density for the atom of 

interest, reducing coulombic attraction between the atom and the escaping photoelectron. The 

resulting photoelectron peak will appear at a lower binding energy than for an atom of the same 

species with no partial charge. The effect is reversed for an atom bonded to electron-withdrawing 

neighbors, which results in a partial positive charge on the atom of interest, increased coulombic 

attraction between the photoelectron and its parent atom, and a photoelectron peak appearing at 

higher binding energy compared to an atom with no partial charge. This effect is easily visualized 

in the high-resolution XPS spectrum of the Si 2p photoelectron transition for silicon oxide on 

silicon shown in Figure 1.11. The photoelectron peak for silicon oxide appears at higher binding 

energy than the peak for silicon in its unoxidized state.  
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Peak widths in XPS depend on instrumental resolution and on several sample-dependent 

parameters.146 Instrument resolution depends on the line width of the X-ray emissions used to 

excite photoelectron transitions and the energy resolution of the analyzer used to measure 

photoelectron energy. The intrinsic photoelectron line width is influenced by factors causing a 

distribution of energies in the initial core-level binding energies and distributions in energies of 

the final core-hole states. In general, crystalline samples, where atoms throughout the sample are 

in well-defined chemical environments give relatively narrow Lorentzian photoelectron 

transitions. Atoms in amorphous materials, where a distribution of bond angles, lengths, and 

chemical environments result in a broader, more Gaussian photoelectron transition. For example, 

In Figure 1.11, the width of the oxide peak is wider than for unoxidized silicon. 

The Si 2p peak in Figure 1.11 for unoxidized silicon is resolved into a doublet with a 2:1 

peak area ratio. This is due to spin orbit splitting, where core-level electron energies are influenced 

by magnetic effects stemming from interactions between the electron spin of the electron and the 

motion of the electron around the atom’s nucleus. Two degenerate core-level states result for all 

transitions with a value greater than 0 for the quantum number l.146 The peak area ratio for the 

peaks in doublet depends on the number of electrons in each of these degenerate states, with a 2:1 

ratio for p-transitions, a 3:2 ratio for d-transitions, and a 4:3 ratio for f-transitions. The energy 

separation between the doublets generally increases with Z.146             

XPS is a surface sensitive probe.The surface sensitivity of XPS is a result of electrons 

having a relatively short inelastic mean-free path (λ) through materials.146 For laboratory scale 

XPS instruments operating with Al or Mg anodes as X-ray sources, typical λ on the order of 2-3 

nanometers are typical. Lower kinetic energy photoelectrons have shorter mean free paths than the 

higher energy ones. λ is also a function of sample composition. The depth of analysis of XPS 
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instruments is usually cited as 3λ, but this fails to communicate some of the underlying complexity. 

Electron attenuation through a material can be expressed in terms of Beer’s law, Equation (1.3), 

(1.3)  𝐼𝐼 =  𝐼𝐼0𝑒𝑒−𝑑𝑑/𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 

where I is photoelectron intensity after attenutation and  I0 is the unattenuated photoelectron 

intensity of a layer of atoms at depth d is the depth within the sample measured normal to the 

sample surface.149 Photoelectron intensity attenuates exponentially as a function of pathlength 

through a material. Approximately 63% of total photoelectron intensity originates within 1λ of the 

sample surface, approximately 86% originates with 2λ, and approximately 95% originates within 

3λ.146 Because lambda is a function of photoelectron energy, not all electrons have the same 

surface sensitivity. In addition, quantitative results for XPS may be influenced by differential 

attenuation of photoelectrons with different kinetic energies.146 Corrections exist to account for 

differential signal attenuation by adventitious hydrocarbon overlayers.150 These corrections are 

nearly negligible for samples with <15 at. % of carbon.150 However, they become significant if the 

hydrocarbon overlayer is thick or there is large energy difference between the photoelectron 

transitions used for quantitation.150  

XPS is inherently quantitative. Photoelectron intensity is proportional to elemental 

concentration. Most commonly, concentrations are expressed in terms of atom percentage. Each 

photoelectron transition has a unique photoemission cross-section, and relative sensitivity factors 

are required. These are often provided by instrument manufacturers based on analysis of 

appropriate reference materials. Alternatively, they can also be calculated based on theoretical 

considerations, as from Schofield’s tables. In addition, sensitivity factors include corrective terms 

to account for the transmission function of photoelectron energy analyzers and may include terms 

to account for differences in mean-free path of photoelectrons through materials as a function of 
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their kinetic energy.  Once sensitivity factors have been established, the atom percentage for a 

given species can be expressed according to Equation (1.4), 

(1.4) 𝐶𝐶𝑎𝑎  =  (𝐼𝐼𝑎𝑎/𝐹𝐹𝑎𝑎)/(𝐼𝐼𝑎𝑎/𝐹𝐹𝑎𝑎  +  𝑖𝑖𝑏𝑏/𝐹𝐹𝑏𝑏  + 𝐼𝐼𝑐𝑐/𝐹𝐹𝑐𝑐 … ) 𝑥𝑥 100 

where Ca is the atom percentage of the species of interest, I is the photoelectron transition intensity, 

F is the sensitivity factor, and the subscripts a, b, c… denote species present in the sample. Here, 

all elements in the sample must be accounted for. Otherwise, the quantitation only provides relative 

ratios of the species included in the calculation.146 

The manufacturer-provided sensitivity factors often provide relative quantitation accurate 

to within 10%.146 Greater accuracy is possible if reference materials are used to derive sample-

specific sensitivity factors. Glass fracture surfaces are the preferred reference material for glass 

surface analysis. Accurate sensitivity factors can be derived by obtaining XPS spectra from glass 

fracture surfaces and assuming that their composition is equivalent to the known bulk composition 

of the glass, as verified2 by a suitable referee technique like X-ray fluorescence or inductively-

coupled plasma mass spectrometry.14-15   

 

1.6.2 XPS Instrumentation 
 

In lab scale instruments, like the one represented schematically in Figure 1.12, X-rays are 

generated by shooting an electron beam at a metal anode, most commonly Mg or Al for non-

monochromated X-ray beams and Al for monochromated X-ray beams. Quartz crystals are 

commonly used to generate monochromated beams for Al kalpha, Ag lalpha X-rays because the lattice 

spacing between quartz I0Ī0 planes corresponds to integer numbers of wavelengths for these X-

rays at ca. 78.25° angles of incidence. Monochromated beams simplify XPS analysis by 
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eliminating multiple peaks that result from multiple exciting X-ray wavelengths. In addition, 

monochromators are a focusing element, providing bright and relatively small X-ray spots.146  

XPS instruments commonly use electrostatic concentric hemispherical spherical analyzers 

(CHA), as shown in Figure 1.12. These analyzers act as an energy filter, allowing only 

photoelectrons of a specified kinetic energy, i.e., pass energy, to reach the detector. The pass 

energy is determined by the ratio of voltages between the outer and inner electrodes in the HSA. 

HSA energy resolution is a function of pass energy. Accordingly, HSAs are most often operated 

at fixed pass energies, and the range of photoelectron energies is scanned by adjusting voltages to 

retarding fields prior to the analyzer.146  

 

1.7 Low Energy Ion Scattering for Glass Surfaces 

 

Low Energy Ion Scattering (LEIS), also known as ion scattering spectroscopy (ISS), is a 

less prevalent technique than either XPS or SIMS. However, a few notable studies have used this 

technique to analyze glass.89, 151-153 One important study demonstrated that amorphous silica 

surfaces are oxygen-terminated.151 In contrast, sodium preferentially terminates the surface of 

sodium silicate glasses, presumably to minimize surface free energy by shielding negatively 

charged oxygens.151 Another study used LEIS to analyze the surface composition of sodium 

silicate glasses as a function of temperature.89 At elevated temperatures below the glass transition, 

modifier ions evaporated from the surface, leaving a sodium poor/silica rich surface. At 

temperatures approaching Tg, sodium ions migrated from the bulk to the surface, giving a 

composition equivalent to bulk fracture surfaces analyzed at room temperature.89 These studies are 

discussed in more detail in Chapter 3.  
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1.7.1 Low Energy Ion Scattering Theory and Instrumentation 
 

LEIS probes sample surfaces with a beam of low-energy ions with energies typically from 

1-10 keV.28 These atoms backscatter after colliding with atoms at the sample surface. The energies 

of the backscattered ions are measured using an appropriate analyzer, e.g., CHA or double-toroidal 

analyzer (DTA). The energies of the backscattered ions depend on their initial energy, their angle 

of incidence, and the mass of the elements from which they backscatter. The governing equation 

of LEIS Equation (1.5):28 

(1.5)  𝐸𝐸𝑆𝑆 = 𝑘𝑘 ∙ 𝐸𝐸𝑃𝑃 =
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Here, Es is the energy of the backscattered ion, Ep is the energy of the primary ion, Θ is the angle 

of backscattering, Ms the mass of the analyte surface species, and Mp is the mass of the particle. 

Accordingly, LEIS identifies elements by their mass. Resolution in LEIS depends on several 

factors, including the mass of the species analyzed, the mass of the probing ion, the angle through 

which backscattering occurs, and the angular acceptance (∆Θ) of the analyzer. Wide analyzer 

angular acceptances give good sensitivity but poor mass resolution, while low angular acceptances 

give high mass resolution and low sensitivity.  

LEIS is the most surface-sensitive analytical technique used in this study. In principle, 

LEIS can be performed with any ion source, but noble gas ions are preferred because they have a 

high neutralization cross-section. Only noble gas ions backscattered from the outermost atomic 

layer have a short enough interaction time with the sample to avoid neutralization.28 Accordingly, 
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LEIS analysis performed with noble gas ions analyzes the elemental composition of the outermost 

atomic layer of the sample.  

Quantitation in LEIS is straightforward. Peak areas in LEIS scale linearly with the surface 

coverage of elements.28  Quantitation requires the use of reference materials. In the case of oxide 

materials, it is often assumed that the peak area of the metal species scales linearly with their 

corresponding oxide. A sample that has 10% SiO2 surface coverage gives 10% of the silicon peak 

area as a pure SiO2 reference material. Response is dependent on the primary ion beam energy and 

identity, so it is imperative that reference materials be analyzed under the same conditions as the 

unknown samples.  LEIS is relatively insensitive to sample roughness, such that pressed powder 

pellets can often be used as reference materials.  

The double-toroidal analyzer, (DTA) represented schematically in Figure 1.13, is an 

important advance in LEIS instrumentation.36, 42-44 This analyzer collects ions through nearly a 360 

degree azimuthal angle while maintaining a low ∆Θ. This analyzer provides improved mass 

resolution and ca. 3 orders of magnitude improvement in sensitivity over LEIS instruments using 

CHAs.28  Commercially available instrumentation using this analyzer has only recently become 

available. This advance in LEIS instrumentation has enabled some of the conclusions in this 

dissertation, providing the mass resolution necessary to separate resolve and quantify Al and Si at 

the outermost atomic layer of our samples.  

We have authored a review article giving a practical introduction to this technique, which 

provides more discussion of theory and applications of LEIS analysis.41 It is included as an 

appendix to this dissertation. An even more in-depth discussion of LEIS theory can be found in 

Brongersma’s 2007 review article.28    
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1.8 Other Techniques for Glass Surface Analysis 

 

A range of other techniques are used for glass surface analysis. Rather than attempt a 

comprehensive review, we will mention some of the studies that have been influential to this work.  

Infrared spectroscopy is used extensively in glass analysis, though most IR studies probe 

bulk glass structure. Transmission IR spectroscopy is not inherently surface sensitive. However, it 

can provide valuable surface insight to samples with a high-surface-area form factor. In particular, 

infrared studies of high-surface area fused silica powders have been influential in establishing the 

chemistry of surface silanols.16-17, 23-24, 105 More recently, attenuated total reflection infrared 

spectroscopy (ATR-IR) has been used to analyze near-surface hydrous species in soda-lime float 

glasses.154 

Surface hydroxyls have been studied extensively by computational modeling.7-9, 106 These 

modeling studies have considered SiO2 model surfaces and simple multicomponent glass surfaces. 

They have shown that H-bonded and non-interacting silanols interact differently with physisorbed 

water. They have also identified important surface sites for surface hydroxyl formation. These 

include strained siloxane bonds, which are most likely to occur in rings consisting of two or three 

silica tetrahedra.    

Chemical derivatization is an important surface analysis strategy. Reactive groups at 

sample surfaces (usually hydroxyls in the case of glass) are tagged using a derivatizing agent.155 

The quantity of derivatizing agent reacted is then measured using a suitable technique, e.g., 

fluorescence spectroscopy or XPS. This can enable the detection of normally undetectable 

functional groups.155 For example, oxygen in surface silanols has only a very minor chemical shift 
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in XPS compared to bridging oxygens. By reacting surface hydroxyls with fluorosilanes and 

quantifying detected fluorine, the quantity of surface silanols can be measured. Numerous studies 

have used this approach to provide important insights into glass surface chemistry.13, 86 However, 

there are important limitations to chemical derivatization. The derivatizing agent may not be 

reactive towards all functional groups of interest. In particular, isolated silanols may react more 

readily with silanes than H-bonded silanols.17 Steric hindrance may also prevent reaction with 

some sites of interest, resulting in undercounting.16 The sample surface must be carefully prepared 

to remove all interfering contaminants, and all unreacted derivatizing agents must be removed 

from the sample surface prior to quantitation. Derivatization studies have played an important role 

in verifying that ToF-SIMS can be used to quantify surface hydroxyls.13 Derivatization/XPS 

measurements have also established that multicomponent glasses and fused silica have 

significantly different surface reactivities.29-30 

More recently, sum frequency generation (SFG) and evanescent wave cavity ringdown 

spectroscopy have been used to study the interaction of water and other adsorbates with surface 

hydroxyls.112, 156-157 These studies have shown that atmospheric water adsorbs on glass surfaces in 

islands.112 They have also provided insight into the spatial distribution of adsorption sites on glass 

surfaces.   

1.9 Conclusion 

 

The functionality and value of glass goods are often improved through surface modification 

and thin-film deposition. For this reason there is a need to better understand glass surface 

composition and reactivity. In particular, FPDs are microfabricated devices manufactured on the 

surface of specially engineered glass. Understanding how display glass surface composition 
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evolves with exposure to production line chemical treatments is key to addressing FPD 

manufacturing challenges, including particulate adhesion, surface charging, and thin film 

adhesion.  

Amorphous silica and multicomponent glasses have significantly different surface 

reactivities and corrosion mechanisms. Surface hydroxyls are the most important reactive function 

on these surfaces, but multicomponent glass contains additional potential reactive sites. These 

reactive sites include modifier ions, weathering products, non-bridging oxygens, aluminols, and 

boronols. These additional surface sites alter the reactivity of silanols on the glass surface.   

Glass corrosion and surface alteration are complex processes. Several different 

mechanisms have been posited for solution phase glass corrosion, and several types of glass 

surfaces have been documented on the literature. Previous work established that glass surface 

composition is a function of its thermal history and exposure to atmospheric water vapor, 

atmospheric contaminants, and wet chemical treatments. Powdered and fracture surfaces vary 

significantly from melt-formed surfaces. Therefore, understanding display glass surfaces requires 

analytical methodologies capable of analyzing low-surface area planar samples. In this study, we 

explore the chemistry of display glass surfaces exposed to common FPD fabrication chemical 

treatments using ToF-SIMS, XPS, and LEIS. 
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1.10 Figures 

 

 

Figure 1.1 (a) A continuous crystalline network with stoichiometry of C2A3 where C is a cation and A is 

an anion. (b) A continuous random network with the same stoichiometry. Adapted with permission from 

Zachariasen, W. H. The atomic arrangement in glass. Journal of the American Chemical Society 1932, 54 

(10), 3841-3851.57 
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Figure 1.2. Schematic representation of a sodium silicate glass. Note that one oxygen in each silicon 

tetrahedron is omitted for clarity. Adapted with permission from Le Bourhis, E., Glass: mechanics and 

technology. John Wiley & Sons: 2014.45 
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Figure 1.3. Schematic representation of the fusion draw process. 
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Figure 1.4. Schematic representation of an active matrix liquid crystal display (AMLCD). Adapted with 

permission from Souk, J.; Morozumi, S.; Luo, F.-C.; Bita, I., Flat Panel Display Manufacturing. John 

Wiley & Sons: 2018.5 
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Figure 1.5. The five types of solution-altered glass surfaces. Adpted with permission from Hench, L.; 

Clark, D. E. Physical chemistry of glass surfaces. Journal of Non-Crystalline Solids 1978, 28 (1), 83-

105.77 
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Figure 1.6. Kinetic phases of glass corrosion. Used with permission from Vienna, J. D.; Ryan, J. V.; Gin, 

S.; Inagaki, Y. Current understanding and remaining challenges in modeling long‐term degradation of 

borosilicate nuclear waste glasses. International Journal of Applied Glass Science 2013, 4 (4), 283-294.92 
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Figure 1.7. Types of silanols present on glass surfaces.  
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Figure 1.8. Infrared spectra of amorphous silica powder surfaces. (A) Surface heated to 800 °C to contain 

only free OH groups. (B) Surface heated to 800 °C and reacted with trimethylchlorosilane to produce 

surfaces with no OH groups. (C) Silica heated to 520 °C and reacted with trimethylchlorosilane. Surface 

contains H-bonded OH groups and methyl groups, but no free OH groups. Used with permission from 

Hair, M. L.; Hertl, W. Adsorption on hydroxylated silica surfaces. The Journal of Physical Chemistry 

1969, 73 (12), 4269-4276.17 
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Figure 1.9. Schematic representation of a ToF-SIM instrument. Used with permission from Cushman, C. 

V.; Brüner, P.; Zakel, J.; Major, G.; Lunt, B. M.; Grehl, T.; Smith, N. J.; Linford, M. R. A Pictorial View 

of LEIS and ToF-SIMS Instrumentation. February, 2016.128 
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Figure 1.10. Schematic representation of a time-of-flight analyzer. Ion trajectories for ions with different 

kinetic energies are shown in different colors. Blue represents ions with a low kinetic energy which travel 

only a short distance into the reflector. Green represent ions with moderate amount of kinetic energy 

which travel a greater distance into the reflector. Red represents ions with sufficient energy to penetrate 

the reflector entirely. These do not reach the detector, and are not counted. Used with permission from 

Cushman, C. V.; Fisher, L. S.; Zakel, J.; Linford, M. R. Sample Charging in ToF-SIMS: How it Affects 

the Data that are Collected and How to Reduce it. Vacuum Technology & Coating March, 2018.129 
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Figure 1.11. High resolution XPS spectrum of Si 2p envelope. Used with permission from Cushman, C. 

V.; Chatterjee, S.; Major, G. H.; Smith, N. J.; Roberts, A.; Linford, M. R. Trends in Advanced XPS 

Instrumentation. I. Overview of the Technique, Automation, High Sensitivity, Snapshot Spectroscopy, 

Gas Cluster Ion Beams, and Multiple Analytical Techniques on the Instrument. Vacuum Technology & 

Coating November, 2016, 20-28.148 
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Figure 1.12. Schematic representation of laboratory-scale XPS instrument with parts labeled. Used with 

permission from Cushman, C. V.; Chatterjee, S.; Major, G. H.; Smith, N. J.; Roberts, A.; Linford, M. R. 

Trends in Advanced XPS Instrumentation. I. Overview of the Technique, Automation, High Sensitivity, 

Snapshot Spectroscopy, Gas Cluster Ion Beams, and Multiple Analytical Techniques on the Instrument. 

Vacuum Technology & Coating November, 2016, 20-28.148 
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Figure 1.13. Schematic representation of a LEIS instrument equipped with a double-toroidal analyzer. 

Used with permission from Cushman, C. V.; Brüner, P.; Zakel, J.; Major, G. H.; Lunt, B. M.; Smith, N. 

J.; Grehl, T.; Linford, M. R. Low energy ion scattering (LEIS). A practical introduction to its theory, 

instrumentation, and applications. Analytical Methods 2016, 8 (17), 3419-3439.41 
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CHAPTER 2: Time-of-Flight Secondary Ion Mass Spectrometry of Wet and Dry Chemically 
Treated Display Glass Surfaces 

 

2.1 Statement of Attribution 

 

This document was originally published as Cushman, C. V.; Zakel, J.; Sturgell, B. S.; Major, G. 

I.; Lunt, B. M.; Bruner, P.; Grehl, T.; Smith, N. J.; Linford, M. R. Time-of-flight secondary ion 

mass spectrometry of wet and dry chemically treated display glass surfaces. Journal of the 

American Ceramic Society 2017, 100 (10), 4770-4784. 1  

It has undergone minor edits prior to publication here, including changes to paragraph 

breaks and updated Figure labels. 

 

2.2 Abstract 

 

Display glasses meet the demands of the flat panel display industry vis-à-vis their 

composition, flatness, and forming processes. Here we report the high-resolution time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) characterization of Corning® Eagle XG®, a widely 

used display glass, and subsequent chemometric analyses of these data. Samples analyzed included 

the as-formed glass, fracture surfaces from remelt bars, and as-formed surfaces subsequently 

exposed to process-relevant treatments including strong acids and bases, two industrial detergents, 

and an atmospheric-pressure plasma treatment. Elemental signals in the positive ion ToF-SIMS 

spectra respond to surface treatments. Acidic conditions leach non-silica components from the 

surfaces, while basic treatments extract these species less efficiently. The detergents leave residues 

of Na+ and K+. The atmospheric pressure (AP) plasma treatment had little effect on the surface 
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composition, while the melt surface differs significantly from the bulk fracture surface. Above ca. 

75 m/z, the negative ion spectra are dominated by two series of homologous cluster ions with 

compositions of SinO2n+2Al- and SimHO2m+1
-. The presence of these clusters suggests that 

analogous structures exist at the near surface regions of the samples. In a series of MCR analyses, 

two or three MCR components captured > 95% of the variance in the data for these samples.  

 

2.3 Introduction 

 

Flat panel displays (FPDs) are ubiquitous in modern electronic devices. They are frequently 

found in televisions, laptops, smartphones, and tablets, to name only a few applications. FPDs are 

microfabricated devices. They can be made on glass, plastic, or other substrates. Of these, glass is 

currently the dominant substrate because of its superior material properties.2-5 Current estimates 

for display glass production are ca. 460 million m2/year.3 The requirements on display glasses are 

stringent. Glass substrates for FPDs must (i) have a highly uniform, flat geometry, free from 

curvature, waves, or large deviations in thickness, (ii) have an excellent surface finish, including 

a low surface roughness and low particulate contamination, (iii) remain rigid throughout 

processing, (iv) be dimensionally stable at the highest processing temperatures used during display 

fabrication,  (v) be chemically compatible with the circuitry manufactured on it, (vi) have excellent 

optical properties, and (vii) be able to withstand the harsh chemistries used during display 

fabrication.2-3, 6 These requirements have resulted in the development of highly-engineered glass 

compositions that provide the desired bulk glass properties for display manufacture, as well as 

specialized forming processes to provide the precise geometry and surface finish required for 

microfabrication.2 In general, these requirements are becoming increasingly demanding as 
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displays become larger, pixel size becomes smaller, and display glass panels become thinner.3-4 

Detailed reviews on the development of display glass can be found in the technical literature.2, 6 

Surface chemistry influences important processes relevant to display manufacturing 

including thin film and particulate adhesion, the rate of surface contamination, charge build-up 

and discharge, conductivity, surface reactivity, chemical durability, glass strength, crack 

propagation, and water adsorption.7-14 Because surface chemistry has such a profound influence 

on these properties, it has been identified as an important, but underrepresented, area of study for 

advancing the future of glass science.15-16 That is, while the influence of surface chemistry on glass 

properties is recognized, its direct effect on the display fabrication process remains poorly 

understood. This is in part because few detailed surface characterizations of real-world display 

glasses have been reported. Nevertheless, the surface characterization of display glasses represents 

a significant challenge. For example, glass surface composition may vary from the bulk 

composition for a variety of reasons, including the loss of volatile species during glass formation, 

species migration to minimize surface free energy, and chemical/structural differences resulting 

from the difference in environment between the glass/air interface and the bulk glass.17-20 In 

addition, the surface composition of display glasses is modified by exposure to production-line 

chemistries, with examples including acids, bases, detergents, plasmas, or adsorption or 

incorporation of tin on the surface of glasses made by the float process.2, 21 The modifying effects 

of these treatments are complex and depend strongly on glass composition.22-23 Therefore, any 

attempt to understand the surface chemistry of display glasses as it relates to display fabrication 

must take these factors into account.  

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool for 

understanding the surface chemistry of materials. It has been applied extensively to glass surfaces, 
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especially in the areas of artifact identification/preservation and the chemical leaching of nuclear 

glasses.18, 24-28 ToF-SIMS is sensitive to all the elements, including hydrogen, as well as their 

isotopes, giving it an advantage over other high-vacuum surface analysis techniques like low-

energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS).29-30 However, 

hydrogen detected by SIMS may come from various sources, including the adventitious 

hydrocarbon contamination on a sample surface. In addition, ToF-SIMS provides chemical 

information about materials vis-à-vis molecular fragments, giving it another advantage over 

comparable surface analysis techniques. SIMS is a very surface sensitive technique. The depth of 

analysis in static ToF-SIMS ranges from a few monolayers to the outer several nanometers of a 

material, depending on the sample analyzed and the analysis beam parameters.31-34 Perhaps its 

most significant drawback is its matrix effect, which limits its use to semi-quantitative/qualitative 

measurements for complex matrices like glass.31 This limitation is relaxed in the comparative 

analysis of a series of similar samples with similar matrices, such as those studied here. 

ToF-SIMS spectra are generally complex, often containing hundreds or thousands of 

peaks.35 Accordingly, ToF-SIMS spectral analysis sometimes focuses on only a small subset of 

the chemically relevant information. In the hands of a skilled operator, this approach can yield 

useful conclusions. However, it often ignores much of the information in the spectra. In contrast, 

statistical/chemometric techniques can consider much larger fractions of the information in data 

sets.36 Among these, principal components analysis (PCA), hierarchical cluster analysis (HCA), 

and multivariate curve resolution (MCR) are widely used for categorizing/comparing spectra.35, 37-

43 A recent review discusses some of the numerous applications of chemometrics to ToF-SIMS 

data analysis.36 Among the various chemometrics methods, MCR has the advantage that its 

loadings (pure component spectra) are presented with positive values, giving plots that look like 
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spectra and can be more intuitively interpreted. In contrast the orthogonality constraints of PCA 

often lead to negative (and positive) scores and loadings, which are often more abstract. Both PCA 

and MCR use ‘scores’ plots and ‘loadings’ plots to visualize data sets. An important goal of an 

MCR analysis is to define and identify the number of ‘pure’ component spectra that define a data 

set.38  In MCR, loadings plots show which spectral features are associated with a certain pure 

component spectrum, while scores plots show how much of each pure component spectrum a 

sample contains. Accordingly, scores plots are often useful on their own for showing the degree 

of similarity or difference between certain sample types and for visualizing trends in data. 

However, loadings plots must be used to understand the chemical significance of scores plots.  

In this study, we use ToF-SIMS to analyze Corning Eagle XG® a widely used display glass, 

with an aim towards understanding how its surface chemistry evolves during the manufacturing 

process. Eagle XG® is an alkali-free alkaline-earth modified boroaluminosilicate glass, 

manufactured using Corning Incorporated’s fusion draw process. A description of the fusion-draw 

process and the development of this glass composition can be found elsewhere.2  The glass surface 

was analyzed in its as-formed state, prior to any chemical treatments, and after exposure to certain 

model aqueous chemistries such as HCl, HF, two industrial detergents, and a model base 

(tetramethyl ammonium hydroxide, TMAH), as well as to an atmospheric-pressure plasma. We 

also analyzed a fracture surface to better understand the differences between the bulk composition 

and that of the as-formed surface. We first discuss the effects of the chemical treatments on the 

elemental composition of the glass.  

HCl depletes the surface of B, Al, Mg, Ca, and Sr, leaving a surface that is relatively rich 

in silica. TMAH and the industrial detergents deplete these species to a lesser extent, and the 

detergents are a source of Na and K contamination. The fracture surface shows a significantly 
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higher concentration of B, Al, Mg, Ca, and Sr relative to the as-formed surface, suggesting that a 

silica-rich surface layer results during the glass forming process. We present multivariate curve 

resolution (MCR) analyses of the elemental compositions of the sample surface, and also of two 

homologous series of negative cluster ions. Based on widely accepted models of the SIMS process, 

these complex cluster ions are likely to be intact pieces of the glass network.32, 44 In the case of the 

SinO2n+2Al- type clusters, small peaks at lower mass show silicon substituted by additional 

aluminum, which suggests glass surface heterogeneity. For the fracture surface, there was a much 

higher fraction of SinO2n+2Al- type clusters, while clusters of the form SimHO2m+1
- were dominant 

in the HCl-leached surface. The untreated surface fell somewhere between these two extremes. 

Our motivation for performing this work is to understand the surface composition of this important 

microfabrication substrate as it evolves during exposure to production-line chemistries. This work 

will serve as a foundation for future studies exploring the link between glass surface composition 

and surface-mediated processes and material properties such as reactivity, contamination, 

particulate adhesion, and static charge buildup and discharge. It will also help us understand how 

these properties/processes in turn impact the display fabrication process. 

 

2.4 Introduction to Multivariate Curve Resolution (MCR) 

 

Here, we provide a basic introduction to MCR. A more detailed description of the 

algorithms and constraints associated with this technique can be found elsewhere.38 

MCR has its roots in classical least squares (CLS) analysis. In a simple embodiment of CLS, 

a pure spectrum is presumed to consist of component spectra, such that 

(2.1) 𝑨𝑨 = 𝑺𝑺 ∙ 𝑪𝑪,   
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where A is the mixture (measured) spectrum, S is a matrix of pure component spectra, which are 

also measured, and C is a vector that corresponds to the weights or concentrations of the pure 

spectra. For completeness, we could write Equation (2.1) as 

(2.2) 𝑨𝑨 = 𝑺𝑺 ∙ 𝑪𝑪 + 𝑬𝑬, 

where we have added, E, an error matrix. We assume here that the errors are randomly and 

normally distributed. If the error matrix, E, is ignored, we can solve Equation (2.1) for C to obtain: 

(2.3) 𝑪𝑪 = (𝑺𝑺𝑇𝑇𝑺𝑺)−1𝑺𝑺𝑇𝑇𝑨𝑨. 

Thus, if the pure component spectra are known, a best fit for C can be obtained. Note that this 

approach requires that the pseudo-inverse of S, (𝑺𝑺𝑇𝑇𝑺𝑺)−1𝑺𝑺𝑇𝑇, not be ill-conditioned.  

Consider now the situation in which we have collected a series of mixture spectra, A, that 

we believe are based on a set of pure components, S, but where these pure spectra are unknown. 

Writing the problem in matrix notation for two pure components (more might be possible), we 

have: 

(2.4) 

⎣
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⎢
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where we are again ignoring the error matrix, E. We again call the matrix on the left side of this 

equation A, and the first and second matrices on the right side of this expression S and C, 

respectively. Thus, we can write Equation (2.4) in an abbreviated fashion as: 

(2.5) 𝑨𝑨 = 𝑺𝑺 ∙ 𝑪𝑪.  

This equation is identical in form to Equation (2.1). However, as noted, both S and C are 

unknown in Equation (2.5). This is the fairly complex situation contemplated in MCR. However, 
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in a rather clever way, MCR finds the matrices S and C from the matrix A, as follows. We first 

solve Equation (2.5) separately for both C and S. Solving Equation (2.5) for C yields 

(2.6) 𝑪𝑪 = (𝑺𝑺𝑇𝑇𝑺𝑺)−1𝑺𝑺𝑇𝑇𝑨𝑨, 

and solving it for S gives:  

(2.7) 𝑺𝑺 = 𝑨𝑨𝑪𝑪𝑇𝑇(𝑪𝑪𝑪𝑪𝑇𝑇)−1. 

At this point, we tell the MCR algorithm how many pure spectra, S, should be in the system. 

The algorithm creates guesses for these pure spectra, and this estimate for the S matrix is inserted 

into Equation (2.6). The solution of this equation then yields a guess for the concentrations, C. 

This C matrix is then inserted into Equation (2.7) to yield a new guess for S. This process is 

continued, iteratively taking the result from one equation and inserting it into the other, until the 

results for S and C converge. Non-negativity constraints are imposed on the elements of C and S 

in this process. These constraints have a very important effect on the outcome of MCR – they make 

the pure spectra look like real spectra, which significantly increases the interpretability of the 

technique. Of course, these constraints are consistent with the fact that negative concentrations and 

absorbances are unphysical. The quality of the initial guesses has an important impact on the 

outcome of an MCR analysis, and various approaches exist for establishing these initial guesses. 

For example, the spectra that fall on the outer extremes of the hyperspace of the data are often 

representative of the pure components, and can be used as initial guesses.38 In MCR, it is assumed 

that the components give a linear response, and that the noise across the spectrum, i.e., the error 

matrix E, is homoscedastic. Appropriate preprocessing of the data may be required to correct for 

heteroscedasticity, non-linearity, and instrumental variation in response.36 To determine the 

number of pure components in a system before performing MCR, it is common to use another 

chemometrics method, e.g., PCA.  
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2.5 Experimental 

 

Untreated Eagle XG® samples were taken directly from the production line prior to any 

chemical or physical treatment and shipped in sealed containers that preserved one side of the glass 

in a clean and stable environment. This surface represented the cleaner “A-side” of the substrate, 

i.e., the side upon which transistors are constructed during panel manufacturing. Storage and 

transport in these containers effectively maintained a very low concentration of adventitious 

hydrocarbon at the sample surface, as confirmed by XPS to be about 4 - 5 atom%. These untreated 

Eagle XG® samples were packaged at a Corning facility in a cleanroom environment, with a 

controlled relative humidity of 40 ± 10%. Samples of Eagle XG® extracted from these containers 

were subjected to wet chemical treatments using the chemistries and concentrations listed in Table 

2.1. The industrial detergents here are alkaline mixtures containing some or all of the following 

bases: sodium hydroxide, potassium hydroxide, and tetramethyl ammonium hydroxide (TMAH). 

They additionally contain a proprietary mix of surfactants and chelators. ‘Detergent 1’, was 

provided to us by Corning Incorporated. Samples were treated by mixing/diluting a reagent or 

detergent with deionized water in a perfluorinated alkane (PFA) vial to a final volume of 50 mL. 

Ca. 20 mm x 90 mm pieces of Eagle XG® were chemically modified with each treatment. These 

were then cut to smaller sizes for storage and transportation to the analysis facility and for loading 

into the analysis instrument. The reagents were measured and delivered with 1 mL HDPE (high 

density polyethylene) syringes. The precision of this delivery method was verified gravimetrically 

using an analytical balance. After mixing, a vial was capped and agitated. For the samples treated 

at 60 °C, the vial was then submerged in a temperature-controlled water bath, and the temperature 
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was allowed to equilibrate for 20 – 30 minutes prior to sample introduction. No equilibration was 

necessary for the HF treatment, which was carried out at room temperature (the reagents were 

already at room temperature).  
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Table 2.1. Sample treatment conditions 

Reagent Grade Supplier Conc. pH Temp. (° 
C) 

Time 
(m) 

HCl Optima® Fisher Scientific 0.1 M 1* 60 10 
HF ACS EMD 0.1 M 2* 20 10 

TMAH TraceSelect® 
Ultra Fluka 0.1 M  11* 60 10 

Detergent 1 N/R N/R 1% 
v/v 12 60 10 

Detergent 2 N/R N/R N/R N/R N/R N/R 

N/R = not reported.*Calculated pH. 

After the wet chemical treatments, the samples were rinsed by decanting the solution in the 

PTFE vial, refilling it with deionized water, and decanting/refilling it again several times. The 

samples were then removed from the vial, rinsed for 1 minute with a spray of deionized water from 

a wash bottle, and blown dry with nitrogen. These samples were packaged in pre-cleaned glass 

vials for transport to the analysis facility. The samples treated at BYU were handled and packaged 

at the ambient humidity at Brigham Young University in Provo, Utah, where the building humidity 

was uncontrolled. Samples treated with another industrial detergent, designated ‘Detergent 2’ 

and/or atmospheric-pressure (AP) plasma, as well as control samples subjected to neither 

treatment, were also prepared at a Corning facility and shipped to us in the same type of storage 

containers described above for analysis. Detailed conditions of the AP plasma treatment were not 

quantified, but could be generally described as a plasma-cleaning in a mixture of clean dry air and 

nitrogen carried out at atmospheric pressure.  All samples were extracted from their containers just 

prior to analysis. Samples used here come from two shipments of glass produced at the same 

production facility. Those labeled ‘Untreated 1’, ‘HCl’, ‘HF’, ‘TMAH’, and ‘Detergent 1’, came 

from one shipment, while ‘Untreated 2’, ‘Detergent 2’, ‘Plasma’ and ‘Detergent 2 + Plasma’ came 
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from another. For the fracture surface, 5 x 5 mm rectangular bars cut from annealed patties of 

remelted Eagle XG® were prepared. These were mounted in a cross-sectional holder, scored with 

a glass cutter, and fractured in air immediately prior to loading into the vacuum chamber for 

analysis.  

ToF-SIMS was performed at the headquarters of IONTOF GmbH in Münster, Germany 

using af ToF-SIMS 5 instrument equipped with a bismuth cluster ion source. 30 keV Bi3
+ clusters 

were used to probe the sample. A 100 x 100 μm area was analyzed. The samples received an ion 

dose of ca. 108 ions/cm2, which was well below the static limit of 1013 ions per cm2. Charge 

compensation was accomplished with an electron flood gun. Various normalization schemes for 

these ToF-SIMS signals for the radar plots (vide infra) were explored prior to data visualization, 

including normalization of each peak to the sum of the peak areas selected from that spectrum, 

normalization to the total ion count from the spectrum, and normalization to a signal from an 

isotope of Si+. Of these, the total ion current proved unsatisfactory – it showed widely varying 

compositions from samples that were expected to be very similar. This may have been due to 

different levels of hydrocarbon contamination, which dominated the ion count. Normalization to 

the total area of the selected peaks appeared to work well in some cases, but also yielded some 

anomalous results, e.g., at least one signal (boron) appeared in high concentration that was shown 

by XPS to be in low concentration, and the normalized 30Si+ signal varied radically between the 

HCl and HF treated samples using this normalization scheme, while the raw 30Si+ signals varied 

by only ca. 1.6% between the two samples. Accordingly, we chose not to use this normalization 

scheme for plotting the data. The 28Si+, 29Si+ and 30Si+ peaks were also considered as references. 

Of these, the 28Si+ peak was too large – it showed more than one count per shot of primary ions 

(the detector was saturated). While a Poisson correction performed by the software may correct 
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for the effects of detector saturation, it is preferable to use a peak that does not require a numerical 

correction. Accordingly, the 29Si+ and 30Si+ peaks were considered. The 29Si+ peak overlapped with 

the 28SiH+ signal, while the 30Si+ peak was well-resolved from neighboring peaks. The results 

obtained with the 30Si+ signal agreed with our expectations of the materials, and were therefore 

chosen as the reference.  

MCR was performed using the PLS toolbox version 8.1 (Eigenvector Research, Manson, 

WA) for Matlab (2015B version 8.6.0.2672246, Mathworks, Inc, Natick, MA). The analyses were 

performed on series of manually integrated peaks from the positive and negative ion spectra (see 

Appendix 1, Table A1.1). The first data set that was analyzed consisted of elemental signals from 

both the positive and negative ion spectra. The second analysis focused on higher mass (m/z > 75) 

cluster ions in the negative ion spectra. The third analysis included all of the integrated peaks from 

the positive and negative ion spectra. For each analysis, peak areas were assembled into a data 

matrix with signals from the different spectra (samples) in rows. The data were then preprocessed 

in two steps. In the first, all of the peak areas from a spectrum were normalized to an area of 1. In 

the cases where the MCR analysis included both positive and negative ion data, the positive and 

negative ion peak lists were normalized separately, such that all of the peaks in the separate data 

set summed to unity. This normalization, a row operation, was performed to account for signal 

intensity variation between the samples, etc. In the second step, a column operation, the data were 

Poisson-scaled, i.e. each column of normalized integrated peak areas was divided by the square 

root of their mean. This was done to account for the heteroscedastic (non-constant) nature of the 

noise inherent in ToF-SIMS data.36, 45 To determine the number of pure components for MCR, a 

principal components analysis (PCA) was first performed. Here the data were normalized using 

the procedure outlined above, Poisson-scaled, and then mean-centered. In general, failure to mean-
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center would unnecessarily introduce an additional PC into the model that would account for the 

distance between the mean of the data points and the origin, but not provide meaningful chemical 

information. The eigenvalue plots obtained by PCA were used to make an initial guess for the 

number of components in the MCR analyses. In all cases, PCA suggested 2-4 components. 

 

2.6 Results and Discussion 

 

2.6.1 Analysis of the Positive Ion Spectra 
 

Positive ion ToF-SIMS detected all of the major elemental constituents of Eagle XG®, i.e., 

Si, Al, B, Mg, Ca, and Sr, as well as trace components at the surface like Na and K (see Figure 

2.1). In addition, the spectra showed cluster ions in both the positive and negative ion spectra, e.g., 

SiOH+, SiH2O2
+, CaOH+, and two homologous series of negatively charged cluster ions that will 

be discussed below. The sample used to obtain the data in Figure 2.1 was removed from its sealed 

carrier just prior to analysis. Complementary XPS measurements of these surfaces generally 

showed less than 4 atom% adventitious hydrocarbon, as averaged over the information depth of 

XPS. Nevertheless, as is common in ToF-SIMS, hydrocarbon signals are found throughout the 

positive ion spectra of these surfaces, which accords with the greater surface sensitivity of the 

latter technique. Fortunately, the mass resolution in the spectra was 6500 - 7500 for most peaks, 

which was sufficient to distinguish between peaks with nominally identical m/z values (see Figure 

2.2). Table A1.1 lists ions generated from the untreated surface, which appear to varying degrees 

in all of the spectra.  

Cody Cushman
Which table is this referring to?
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The elements identified in our spectral analyses were designated as major or minor 

components based on prior knowledge of the bulk glass composition. Various normalization 

schemes were considered for the resulting radar plots (vide supra). Figures 2.3 and 2.4 show a 

series of radar plots that compare the major and minor components, respectively, of the elements 

in the differently treated samples. The signals along each axis in these radar plots were linearly 

scaled so that the highest intensity peak had a value of unity. Figure 2.3A shows that both the HF 

and HCl treated surfaces were depleted (leached) of all major non-silica constituents relative to 

the untreated surface. Moreover, under the conditions explored herein, HCl appeared to leach the 

surface somewhat more effectively than HF. This observation accords with the expectation that 

mineral acids like HCl will efficiently leach network-modifying species, as well as soluble 

network-formers, leaving behind a silica-rich hydrated surface layer.  HF-based chemistries 

meanwhile tend toward fluoride attack of the oxide network, and, in general, more congruent 

dissolution.46  Our findings reveal however that, at the information depth of ToF-SIMS, a finite 

degree of leaching occurs in the acidic HF solution ahead of the dissolution front, leaving behind 

an ostensibly thin, but detectably altered, surface layer. Figure 2.4a similarly shows that HCl and 

HF leach the surface of its minor components, although HCl again appears to be quite a bit more 

effective. The HF treatment leaves behind Sn and K relative to the untreated surface. The source 

of potassium on these surfaces is not entirely clear, although again it is to be noted that differences 

in these normalized ion signals are comparative only, and likely represent a very small actual 

quantity on the surface. 

Turning now to alkaline treatments, Figure 2.3B shows that TMAH and the detergents have 

a similar leaching effect on Ca, Mg, Sr, and B at the information depth of ToF-SIMS. As was the 

case for the HCl-treated surface, the network modifiers were somewhat more strongly leached than 
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boron, a network former. Interestingly, neither TMAH nor Detergent 2 appeared to substantially 

extract aluminum in a preferential sense from the surface, and the relative concentration of 

aluminum actually increased after the wash with Detergent 1. As for the minor/trace components, 

Figure 2.4B shows that TMAH and the detergents deplete the surfaces of Li+, Sn+, and Cs+. 

However, it is significant that the detergents increase the surface concentrations of K and/or Na to 

ca. 40 times the levels found on the untreated surface. This observation is attributable to the fact 

that most commercial detergents designed to clean glass are alkaline in nature, and often contain 

mixtures of alkali hydroxides (NaOH, KOH) to enable slight dissolution of the glass and good 

cleaning efficiency.  As a result, the increase in residual Na and/or K contaminants is clearly one 

way that commercial detergents can affect the glass surface after washing.  That said, ToF-SIMS 

is exquisitely sensitive to these elements, and these concentrations may still be vanishingly small 

from a practical point of view, noting that these alkali metals are present at only trace levels in the 

bulk glass.  

Figure 2.3C shows results from untreated/as-formed samples, versus those exposed to an 

atmospheric pressure (AP) plasma with or without a detergent wash. The yellow trace in Figure 

2.3C comes from a sample that was washed with Detergent 2. The green trace represents a similar 

sample that was also detergent washed, but that underwent an additional AP plasma treatment. The 

results from these analyses are essentially identical. In a similar fashion, the blue trace in the figure 

is derived from an untreated sample, and the black trace is from a similar unwashed sample that 

was plasma-treated. These results are nearly identical. We conclude that the AP plasma had little 

or no effect on the inorganic composition of the surfaces here – it is probably helpful in removing 

organic contamination, but that capability was not probed here. The Untreated 1 and Untreated 2 

samples in this figure came from different production batches. The corresponding traces in Figure 
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2.3C are fairly close together and have the same shape. The relatively small differences between 

them may be due to batch-to-batch variability or differences in the environments the samples were 

exposed to in transit to analysis. Figure 2.4C similarly shows that the ‘Detergent 2’ and ‘Detergent 

2 + Plasma’ and also the ‘Untreated 2’ and ‘Plasma’ surfaces are very similar. Also, Detergent 2 

leaves strong Na and K residues on the samples. The ‘Untreated 2’ and ‘Plasma’ samples again 

follow the shape of the ‘Untreated 1’ sample fairly well, except at the Cs signal, but this signal 

was quite weak and is clearly a very minor/trace species on the glass surface. 

Figure 2.3D shows considerable differences between the as-formed and fracture Eagle 

XG® surfaces, the latter being taken to be representative of the bulk glass composition.  These 

findings indicate that all of the major components in the as-formed surface are significantly 

depleted relative to the bulk composition. While the measured differences are not quite so large in 

Figure 2.4D, and the K signal from the two surfaces is essentially the same, the untreated surface 

is again noticeably depleted of most inorganic ion species compared to the fracture surface. These 

stark differences between surface and bulk composition have previously been observed to occur 

as a function of forming operation, thermal history, and surface preparation,18-19 and this system is 

no exception: knowledge of the bulk composition of a glass is insufficient to understand its surface. 

That is, the results presented herein demonstrate that it is difficult to infer the surface composition 

from the bulk composition and vice versa. 

 

2.6.2 Analysis of the Negative Ion Spectra  
 

The low mass region of the negative ion spectrum in Figure 2.5 is dominated by peaks 

attributable to the elements and small cluster ions, e.g., H-, O-, C2H-, SiO-, and SiOH-. However, 
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the most interesting features in this spectrum occur at higher mass, where two homologous series 

of peaks appear. These ions have formulas SinO2n+2Al- and SimHO2m+1
-, where ions with m and n 

values of 1 – 6 are shown in Figure 2.5. As a guide to the eye, these peaks are enclosed in dashed 

red lines. Interestingly, as seen in the high-resolution views (see Figure 2.6), these peaks do not 

appear alone. As expected, to their high mass side we see isotope peaks, i.e., the same clusters but 

with 29Si or 30Si, or the base cluster with an additional proton. In the case of the SinO2n+2Al- cluster 

ions, peaks at lower mass are present that are attributable to Si substituted by Al (most often both 

have tetrahedral coordination in glassy networks).47-48 The peak envelopes containing the 

SimHO2m+1
- ions appear to be composed of overlapping signals from the unprotonated and 

protonated clusters with their associated isotopologues. Similar cluster ions have been observed in 

ToF-SIMS spectra of silicon’s native oxide.49 These assignments were confirmed by a classical 

least squares fit of the peak envelope to the isotope patterns of the given protonated and 

deprotonated ions, e.g., SiO3
-, SiO3H. Appendix 1, Figure A1.1, compares these fits to the raw data 

for the untreated sample. The Appendix 1 also includes a spreadsheet showing all of the CLS fits 

for the samples not shown in the figure. 

 

2.6.3 MCR Analysis of the ToF-SIMS Spectra 
 

While the manual analysis of the data above proved useful, it considered only a handful of 

peaks out of the hundreds present. MCR allowed us to examine a greater number of signals, and 

to visualize how the samples group vis-à-vis the expected variable reduction. We narrowed the 

scope of our MCR analysis to three sets of peaks that had been individually integrated. In the first 

analysis, we selected all of the elemental peaks we could identify in both the positive and negative 
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ion spectra, with the goal of understanding how the elemental compositions of the samples evolve 

with chemical treatment. In the second analysis, the high-mass (m/z ≥ 75) clusters in the negative 

ion spectra were analyzed. The third and final analysis used all of the integrated peaks listed in 

Table A1.1. The advantage of narrowing the focus of these analyses is that it greatly simplifies 

interpretation and reduces the chance of modeling peaks/regions that are not of interest, e.g., 

hydrocarbon peaks, or regions where there is only baseline signal. The potential drawback to this 

approach is that some of the variance in the spectra is still not considered.  

For the first analysis (the elemental analysis), the exploratory PCA suggested 2 – 3 

components. However, the corresponding two-component MCR model, shown in Appendix 1, 

placed the fracture surface at one end of a continuum and the HCl-treated and untreated surfaces 

at the other. This result was inconsistent with our radar plots, which showed significant differences 

between the untreated and HCl-treated surfaces. Also in this model, the Q-residuals for the fracture 

surface fell outside of its 95% confidence interval. The three-component MCR analysis of the data 

is shown in Figure 2.7. Here, most of the samples fall on a line/trajectory between the fracture 

surface, which is expected to be the least leached/richest in network modifiers, and the HCl-treated 

sample, which is the most modifier-leached/silica-rich. The samples treated with detergents fall on 

a different trajectory due to the presence of Na and K contamination. These results agree with our 

radar plots (see Figures 2.3-2.4). In this three-component model, one sample (‘Detergent 1’) had 

Q-residuals outside of the 95% confidence limits due to a high concentration of Na on this sample, 

which was poorly captured by the model.  

The pure component loadings for the three-component model of the elemental species are 

shown together with the peak selections corresponding to the ‘HCl’, ‘Fracture’, and ‘Detergent 2 

+ Plasma’ samples in Figure 2.8. Component 1 closely matches the elemental composition of the 
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‘HCl’ sample, Component 2 is quite similar to the ‘Fracture’ surface, and Component 3 closely 

resembles the ‘Detergent 2 + Plasma’ surface. Samples with high scores on Component 1 have 

relatively high concentrations of H+, Si+, H-, O-, and Si-, and low concentrations of Na+, K+ Mg+, 

Ca+, Sr+ and Al+. Accordingly, Component 1 represents the degree of leaching from the glass 

surface. Samples with high scores on Component 2 have high concentrations of Mg+, Al+, Ca+, 

and B+, and low Si+, H+, Na+, and K+ signals. This component is essentially measuring the 

concentration of the modifiers/non-silica species. Therefore, samples falling on the trajectory 

between Components 1 and 2 are ordered according to their degree of leaching. Component 3 

shows high Na+ and K+, moderate levels of H+, Al+, Si+, and relatively low levels of H- and O-. It 

captures the surface contaminants introduced by detergent treatment. While Li, Ti, Sn, Cl, and Br 

were detected in trace amounts on the sample surfaces, they appear to contribute little to this model.  

MCR was next performed on the high-mass (m/z >75) cluster ions in the negative ion 

spectra. Based on the widely accepted precursor model and subsequent modifications thereof, the 

higher mass cluster ions are likely to be intact pieces of the glass network.32, 44  Therefore, these 

species represent an interesting subject for analysis. An initial exploratory analysis by PCA 

suggested 2-3 principal components for this model. Both two- and three-component MCR models 

could discriminate between sample treatments. The two-component scores plot, shown in Figure 

2.9, was the easiest to interpret. This model placed the samples on a continuum ranging from the 

fracture surface to the HCl-treated surface.  

The loadings for these components (see Appendix 1) closely resemble the corresponding 

‘spectra’ from the fracture and HCl-treated surfaces. Samples closer to the HCl-treated surface in 

the scores plot were richer in SimHO2m+1
- clusters, while samples closer to the fracture surface were 

richer in SinO2n+2Al- clusters. While the small peaks surrounding the major cluster ion peaks were 
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included in the model, they had little influence due to their low intensities, such that the model 

focused primarily on the main peaks in the homologous series described above (see also Appendix 

1). As expected, the SinO2n+2Al- clusters are correlated with each other in one component (appear 

with significant intensities), while the SimHO2m+1
- clusters are correlated with each other in the 

second. In this analysis, the HF-treated sample is relatively similar to the HCl-treated sample. The 

untreated, plasma-treated, TMAH-treated, and detergent treated samples fall somewhere in the 

middle of the trajectory, indicating that these treatments have little effect on the generated cluster 

ions relative to the untreated surface. The ‘Detergent 1’ sample falls closer to the fracture surface 

than the other samples. This agrees with the radar plots, which show aluminum enrichment for this 

sample. In summary, this analysis suggests that the cluster ions formed by ToF-SIMS are sensitive 

to surface treatment, and indicate that the glass structure within the information depth of the sample 

surfaces also varies as a function of chemical treatment. In the three-component MCR model (see 

Appendix 1) the Fracture and HCl-treated surfaces are found at the extremes of two of the 

components, and the detergent treated, plasma-treated, and untreated surfaces are described more 

fully by the third component. 

In a final MCR analysis, all of the peaks listed in Table A1.1 were considered in a single 

model with the goal of understanding the variance within the samples while considering as many 

signals as possible. Here, the exploratory PCA analysis indicated up to four PCs, and an MCR 

model using four components was initially attempted (see Appendix 1). It provided good 

discrimination between all sample types. However, the fourth component mostly captured the 

difference between samples treated with Detergents 1 and 2. Given that the fourth component was 

only useful for one of the samples, a three-component model was selected. The scores plot for this 

model is shown in Figure 2.10. The sample groupings on this plot are similar to those obtained in 



90 
 

the first MCR analysis. Here, the ‘HCl’, ‘Plasma + Detergent 2’ and ‘Fracture’ samples have the 

highest scores on Components 1, 2, and 3, respectively. The chemically treated samples fall along 

a trajectory between Components 1 and 2, while the untreated/plasma treated samples and the 

fracture surface fall on a trajectory between Components 1 and 3. The loadings plots for this model 

(Figure 2.11) show that the elemental species from the positive and negative ion spectra as well as 

the high mass cluster ions in the negative ion spectra are strongly influential in this model. The 

fact that the groupings here correspond so closely to those in the elemental MCR analysis indicates 

a strong correlation between the elemental composition of the samples and the cluster ions 

generated from them.            

 

2.7 Conclusion 

 

The surface composition of nominally-alkali-free display glasses like Eagle XG® can 

change markedly in response to aqueous production-line chemistries. For example, acids leach the 

surface of non-silica components, while bases/detergents studied here deplete Ca, Mg, Sr, and B,  

to a lesser extent than the acids. Treatment with ‘Detergent 1’ leaves the surface enriched in 

aluminum, and treatment with either of two detergents leaves a residue of sodium and/or potassium 

(ca. a 40-fold increase relative to the untreated surface). However, the ToF-SIMS results here are 

insufficient to establish absolute concentrations of these species, which may be quite low given 

the exquisite sensitivity of the technique to the alkali metals. We observe significant differences 

between the compositions of the fracture and as-formed surfaces, wherein the as-formed surface 

is depleted in all of the major non-silica glass constituents (Al, B, Mg, Ca, Sr). The difference 

between these two surfaces is greater than those between the as-formed surface and any of the 
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chemically-treated surfaces, which suggests that the as-formed surface of Eagle XG® naturally 

forms a silica-rich surface layer on some scale during production.  

The negative ion spectrum contains two series of homologous cluster ions with formulas 

SinO2n+2Al- and SimHO2m+1
- , n = 1 – 6 and m = 1 – 6. These dominant peaks show their 

corresponding isotopologues, and the SinO2n+2Al- ions appear with a series of peaks at lower mass 

that can be attributed to substitution of the Si in the clusters with Al. These peaks are likely 

representative of near-surface structural units. An MCR analysis of these peaks shows that their 

composition changes in response to surface treatment, with the fracture surface showing a 

relatively high concentration of SinO2n+2Al- clusters, and the leached surfaces showing a higher 

fraction of  SimHO2m+1
-  ions. There appears to be little difference in the cluster ions between the 

untreated, plasma-treated, and ‘Detergent 2’ samples. However, the ‘Detergent 1’ sample, which 

showed aluminum enrichment in the radar plot analysis, also appears to have a higher fraction of 

SinO2n+2Al- ions than the untreated surface. These results suggest that these cluster ions are 

indicative of the near-surface glass structure.  

In general, the MCR analyses performed herein provided a useful way to visualize how the 

samples group and to quickly understand what differentiates them. In all cases, the samples appear 

to group based on their degree of leaching, with the fractured surface falling at one end of a 

continuum, and the HCl-treated sample falling at another. For the elemental analysis and that of 

all the integrated peaks, a third dimension was needed in the models to account for surface 

contaminants introduced by the detergents. Here, the untreated surface appears roughly in the 

middle of a continuum between the fracture surface and the HCl-treated surface, indicating that it 

is relatively depleted of non-silica glass constituents compared to the bulk composition, and that 

acidic conditions further leach elements from its surface. The final MCR analysis, which 
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considered all of the integrated peaks in Table A1.1, gave groupings very similar to those in the 

elemental analysis. This, together with the loadings plots from the model, suggests that the cluster 

ion composition and the elemental composition are closely correlated.  

The ultimate goal of this analysis is to provide a framework for understanding the link 

between display glass surface composition and surface attributes critical to performance in end 

use. Careful characterizations, like this one, are important first steps to understanding the glass 

surface so that topics like glass contamination behavior or surface reactivity can be understood as 

a function of surface composition.    

2.8 Acknowledgments 

 

This study was funded by Corning Incorporated. 

  



93 
 

 

2.9 Figures 

 

 

 Figure 2.1. Positive ion ToF-SIMS spectrum for the untreated surface of Eagle XG®. The peak for Al in 

this low-resolution view appears large because of an interfering hydrocarbon peak.  
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Figure 2.2. High resolution mass spectra from the untreated Eagle XG® surface, showing differentiation 

between organic and inorganic species for the (a) positive and (b) negative ion spectra.  
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Figure 2.3. Radar plots comparing relative ToF-SIMS ion elemental signals for the major glass 

components (network formers and modifiers) from different Eagle XG® surfaces, as normalized to the 

30Si+ signal. 
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Figure 2.4. Radar plots comparing relative ToF-SIMS ion signals for minor and contaminant species 

from different Eagle XG surfaces, as normalized to the 30Si+ signal. 
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Figure 2.5. Low resolution negative ion mass spectrum of untreated Eagle XG®. Red squares are a guide 

to the eye to show peaks in homologous series. 
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Figure 2.6. High resolution views of the peaks surrounding a Si2O6Al- cluster (a) and a Si3O7H- cluster 

(b).  
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Figure 2.7. Scores plot for the MCR analysis of the elemental components of glass samples. The loadings 

for the pure component spectra are shown in Figure 2.8. 
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Figure 2.8. Loadings plots for MCR analysis of elemental species shown in Figure 2.7, compared to 

selected preprocessed spectral data. (a) Component 1 (red) compared to ‘HCl’ sample (blue). (b) 

Component 2 compared to ‘Fracture’ sample. (c) Component 3 compared to ‘Detergent 2 + Plasma’ 

sample.  Here, the preprocessed spectral data has been divided by a scaling factor so that the most intense 

peaks in each graph have the same intensity. 
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Figure 2.9. Scores on two component MCR of negative cluster ions. The loadings for the pure component 

spectra are shown in Figure A1.3 of Appendix 1.  
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Figure 2.10. Scores for 3 component MCR of all integrated species shown in Table A1.1. The loadings 

for the pure component spectra are shown in Figure 2.11. 
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Figure 2.11. Loadings plot associated with MCR analysis shown in Figure 2.10, with prominent peaks 

labeled. 
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CHAPTER 3: Low Energy Ion Scattering (LEIS) of As-Formed and Chemically Modified 
Display Glass and Peak-Fitting of the Al/Si LEIS Peak Envelope 

 

3.1 Statement of Attribution 

 

This document was originally published as Cushman, C. V.; Brüner, P.; Zakel, J.; 

Dahlquist, C.; Sturgell, B.; Grehl, T.; Lunt, B. M.; Banerjee, J.; Smith, N. J.; Linford, M. R. Low 

Energy Ion Scattering (LEIS) of As-Formed and Chemically Modified Display Glass and peak-

fitting of the Al/Si LEIS peak envelope. Applied Surface Science 2018, 455, 18-31.1  

 

3.2 Abstract 

 

Flat panels displays (FPDs) are commonly manufactured on highly-engineered glass 

substrates known as display glasses. As FPD pixel sizes decrease and pixel densities increase, the 

surface composition and surface properties of these glasses have an increasingly important impact 

on device yield, influencing static electricity buildup and discharge, particulate adhesion, rate of 

contamination, and device lifetime. Here, we apply low energy ion scattering (LEIS) to the analysis 

of Eagle XG®, a widely used display glass. Surfaces were treated with production-line relevant 

chemistries including acids, bases, etchants, industrial detergents, and plasmas. The resulting 

surfaces were compared to as-formed melt surfaces, fracture surfaces, and fibers formed from 

remelted Eagle XG®. LEIS revealed the elemental composition of the outermost atomic layer of 

these materials, detecting all major Eagle XG® constituents except boron. The surface composition 

of the glass differed as a function of forming process used to fabricate it as well as surface 

treatment. The surface concentration of aluminum on the as-formed melt surface differs 
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significantly from the bulk composition (1-5% vs. 30-31% Al2O3 surface coverage, respectively). 

HCl treatment depleted the surface of all species except silica. HF treatment depleted modifier 

species from the glass surface to a lesser extent. An alkaline industrial detergent produced an 

increase in alumina relative to the as-formed glass surface (8-12% vs. 1-5% Al2O3 surface 

coverage, respectively). Treatment with an atmospheric-pressure plasma had no detectable impact 

on the elemental surface composition of the glass. Aluminum and silicon generally give 

overlapping signals in LEIS, and these signals could only be resolved here through a combination 

of optimized experimental conditions and data fitting. Various approaches to this data analysis 

were explored, including a guided least-squares approach referred to herein as informed sample 

model approach (ISMA), wherein the pure spectral components required for the fit were 

mathematically derived from the sample spectra. Most commercial display glasses contain both 

Al and Si, but there is little discussion of the deconvolution of these LEIS signals in the technical 

literature. 
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3.3 Introduction  

 

Flat panel displays (FPDs) have become essential components of many modern electronic 

devices, including smartphones, laptops, tablets, and televisions. FPDs are most often fabricated 

on glass substrates due to their superior material properties, which include extraordinary flatness, 

low birefringence, high strength, rigidity (but also flexibility), and transparency.2-3 Accordingly, 

specialized glass compositions and forming processes have been developed to meet the demands 

of the display industry.3-4 These glasses must conform to stringent requirements, maintaining 

dimensional stability at high processing temperatures and withstanding harsh processing 

chemistries. Display glasses must also be compositionally compatible with the electronic circuits 

fabricated on them. Most display glasses are alkali-free borosilicates.3-4  

The maximum sizes of FPDs continue to increase while their minimum pixel sizes 

decrease.5 As these critical pixel dimensions become more demanding, surface-mediated processes 

and contamination have an increasingly important influence on FPD device yield. In particular, 

the composition and chemistry of display glass surfaces influence material attributes that include 

surface adhesion, particle contamination, wetting, static charge buildup, and reactivity.6-9 Of these, 

particulate adhesion and electrostatic discharge have become important modes of FPD device 

failure during manufacturing.5-6 However, to fundamentally understand these processes and their 

influence on FPD fabrication, it is necessary to know the surface compositions of glass substrates 

at a variety of depth scales. This is a challenging prospect. It is generally accepted that glass surface 

compositions can vary significantly from bulk compositions.10-12 Furthermore, glass surfaces are 

relatively labile; their compositions typically change with exposure to production line chemistries, 

which may include acids, bases, detergents, etchants, and plasmas.13-15 Thus, the surface 

composition of a display glass is a function of its production line history, and attempts to establish 
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the relationship between display glass surface composition, surface mediated-processes, and FPD 

device yield must take these effects into account.   

There are numerous publications on the surface and material analysis of silicate glasses, 

which include glasses for nuclear waste storage and archeological and art specimens.7, 16-18 

Techniques for analyzing these surfaces have included X-ray photoelectron spectroscopy (XPS), 

time-of-flight secondary ion mass spectrometry (ToF-SIMS), spectroscopic ellipsometry, and 

atomic force microscopy.10, 19-20 However, in spite of the growing technological importance of 

FPDs, there have been relatively few published studies on the surface composition and properties 

of display glasses. Thus, surface analytical studies probing display glass composition and chemical 

alterations of these surfaces are important for the glass community and for the advancement of 

display glass technology in general. 

Low energy ion scattering (LEIS), also known as ion scattering spectroscopy (ISS), 

provides quantitative elemental analysis on the outermost atomic layer of a material.14, 21-22 It is 

the only surface analytical technique that provides this information. Even otherwise surface 

sensitive techniques like XPS and ToF-SIMS probe at least a few molecular layers into a material 

and give information averaged over this depth, and thus cannot definitively establish the 

composition of the terminating atomic layer of a material. Therefore, LEIS can provide insight 

into surface-mediated processes that these other techniques may not. For example, the activity of 

catalytic materials often shows a direct correlation to compositional information from LEIS, even 

when it shows no such correlation to compositional data from XPS or ToF-SIMS.23 To emphasize 

the enhanced sensitivity of modern LEIS instrumentation, it is often referred to as high-sensitivity 

LEIS (HS-LEIS).24-26 
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ISS has previously been used to analyze fused silica and sodium silicate glasses.27 These 

studies revealed that the fracture surface of fused silica is oxygen-terminated, and that the fracture 

surface of sodium silicate glasses has a higher-than-bulk concentration of sodium. The authors 

hypothesized that sodium migrated toward the fracture surface to shield negatively charged 

oxygens and also dangling bonds formed in the fracture process. A follow-up study used in situ 

heating during LEIS to monitor the surface composition of a fracture surface as a function of 

temperature.28 Here, during heating below the glass transition temperature, modifier species were 

depleted from the sample surface. However, above this temperature, the network modifiers 

diffused from the bulk toward the surface to give a composition very similar to the original fracture 

surface. Other recent studies have used HS-LEIS to study mixed alkali silicate glasses and silicate 

glasses containing both alkali and alkaline earth modifiers.29-30 These reports compared the melt-

formed and fracture surfaces of these glasses to their bulk compositions, albeit in all cases after 

Ar+ ion sputter cleaning. It was determined here that all modifiers were depleted at the glass melt 

surface relative to the bulk composition, and that the fracture surface was enriched in alkali species 

relative to the bulk composition. In addition, both studies showed that barium was not as prone to 

fracture-induced migration as were the alkali species. These studies provide ample evidence that 

a bulk glass composition is not predictive of its surface composition, and that the surface 

composition of a glass can be strongly affected by its processing history. In summary, mobile 

network modifiers are easily depleted from glass melt surfaces, and fracture surfaces are not 

necessarily representative of bulk glass compositions at the length-scale of LEIS analysis.  

This LEIS analysis is part of our ongoing wider effort to characterize display glass surfaces 

and other glass materials with a variety of surface-analytical tools, including ToF-SIMS,11 and 

spectroscopic ellipsometry.31-33 In particular, the objective of this project is to create a foundation 
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for understanding the link between display glass surface composition and surface-mediated 

phenomena that affect the FPD manufacturing process and device performance. With a sufficiently 

accurate and quantitative understanding of the surface of the glass, it should be possible to estimate 

the average areal densities of important functional groups at the glass surface, e.g., the number of 

silanols, boronols, aluminols, and non-bridging oxygens. Such calculations for glass surfaces have 

previously been made from XPS measurements.34 However, given the greater surface sensitivity 

of LEIS, calculations based on this technique should be even more predictive of surface functional 

group concentrations, assuming one can detect all the elements of interest. 

Here, for the first time, we apply HS-LEIS to the analysis of a multicomponent display 

glass, Corning Eagle XG®. Samples analyzed include the as-formed melt glass surface, as well as 

the same melt surfaces exposed to two important acids, a base, two detergents, and an atmospheric-

pressure (AP) plasma. These surface treatments were chosen because similar chemistries are often 

used industrially to prepare display glass panels for FPD fabrication. We compared these 

chemically-treated glass surfaces to a fracture surface of remelted glass from the same stock with 

an operationally identical bulk composition (hereafter referred to as “Fracture”). We also wished 

to better understand and describe the limitations and capabilities of LEIS for glass analysis. Indeed, 

while the above-mentioned LEIS studies focused on relatively simple model glass systems,27-30 

most silicate glasses used industrially are significantly more complex, and such multicomponent 

matrices create analytical challenges. For example, Eagle XG® contains oxides of Si, Al, B, Mg, 

Ca, Sr, and Sn. This material is an especially challenging sample for LEIS due to nearly 

overlapping signals from Al and Si, which results from their similar masses. Fortunately, recent 

advances in LEIS instrumentation have improved the resolution of the technique sufficiently to at 

least partially resolve these and other such pairs of elements through optimization of instrument 
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parameters and data fitting.25, 35 Below, we discuss our approach to this deconvolution and the 

challenges associated with it. Another analytical challenge is to obtain appropriate reference 

materials for quantitative analysis, especially with calcium. Finally, due to factors that include low 

concentrations and low cross sections, some species of interest may not be directly detectable by 

LEIS. In analysis of Eagle XGⓇ, this unfortunately included boron—an important network former.  

3.4 Theory of LEIS  

 

The theory and applications of LEIS have been discussed in several recent review 

articles.14, 22, 24-25 Here, we provide only a very short introduction. In LEIS, a beam of low energy 

(< 10 keV) noble gas ions probes a sample surface, and the kinetic energies of the backscattered 

ions are measured at a selected backscattering angle. This backscattering process can be modeled 

as a single inelastic collision between two bodies,21 where the following governing equation for 

LEIS is obtained from the classical equations for the conservations of mass and energy: 

(3.1) 𝐸𝐸𝑆𝑆 = 𝑘𝑘 ∙ 𝐸𝐸𝑃𝑃 =
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Here, ES is the energy of the backscattered ion, EP is the energy of the primary ion, Θ is the angle 

through which backscattering occurs, MS is the mass of the species at the sample surface, and MP 

is the mass of the projectile ion. In a typical LEIS experiment, EP, MP, and Θ are fixed and ES is 

measured, such that Equation (3.1) can be solved for the remaining unknown, MS.  Accordingly, 

LEIS identifies elements at a surface by their masses. LEIS is surface sensitive because only the 

backscattered ions (not the neutrals) are detected, and only noble gas ions that backscatter from 

the outermost atomic layer of a material have short enough interaction times to avoid 
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neutralization.22 These elemental surface signals appear as Gaussian peaks, and they are 

quantitative; with few exceptions, their areas scale linearly with surface coverage. Thus, unlike 

ToF-SIMS, LEIS is generally free from matrix effects.22 For some sample systems, LEIS can also 

provide information about the subsurface distribution of species. This information is obtained from 

ions that penetrate into a material and backscatter below the surface. As these ions enter the 

material, they are almost immediately neutralized, but as they exit, a fraction of them is re-ionized 

and subsequently detected. These ions lose energy as they travel through the material, and the 

resulting signals appears as a tail on the low-energy side of the corresponding LEIS surface 

peaks.14, 22 

LEIS (ISS) has existed as a technique for several decades.21 However, recent advances in 

its instrumentation, especially the invention and development of the double-toroidal analyzer, have 

dramatically improved the resolution and sensitivity of the method.22, 25, 36-38 A dedicated LEIS 

instrument with a double toroidal analyzer (see Figure 3.1) is now commercially available.25 This 

unique instrumental geometry allows ions to be collected over a 360 degree azimuthal angle while 

maintaining a narrow range of backscattered angles. These improvements lead to ca. 3 orders of 

magnitude better sensitivity while providing higher mass resolution than previous LEIS/ISS 

instruments based on concentric mirror or hemispherical analyzers.22, 25  This so-called high-

sensitivity LEIS (HS-LEIS) has been used to probe a number of materials, including solid-oxide 

fuel cells, catalysts, extreme UV optics, semiconductors, and films deposited by atomic layer 

deposition.39-43  

  



115 
 

3.5 Experimental 

 

3.5.1 Materials and Sample Preparation 
 

The sample system for this study was Eagle XG®, a widely used display glass. Eagle XG® 

is an alkali-free, alkaline-earth modified boroaluminosilicate glass manufactured using Corning 

Incorporated’s patented fusion draw process. A discussion of the development of this composition 

and the fusion draw process can be found elsewhere.3 Pieces of Eagle XG® (0.5 mm thick) were 

taken from the production line immediately after forming and prior to any washing steps and 

shipped to us in containers that preserved one side of the glass in a sealed environment. These 

pristine native melt surfaces (hereafter referred to as “Untreated”) were analyzed, in addition to 

pristine samples that were subsequently treated with HCl, HF, tetramethylammonium hydroxide 

(TMAH), and an industrial alkaline detergent (Detergent 1). In order to understand the effects of 

plasma on the surface composition, a series of samples that had been exposed to an atmospheric-

pressure plasma and/or an additional industrial detergent (Detergent 2), as well as an untreated 

control sample (Untreated 2) were also analyzed. The conditions of the various wet chemical 

treatments explored herein are summarized in Table 3.1. In addition to these samples, 100 x 5 x 5 

mm bars of remelted Eagle XG®, also prepared by Corning Incorporated, were used to create and 

evaluate fracture surfaces. Glass fibers (16-19 μm diameter) formed from remelted Eagle XG® 

were similarly analyzed. The N2 BET surface area of these fibers was 1.10 m2/g.  

Samples treated with HCl, TMAH, Detergent 1, and HF were prepared at Brigham Young 

University (BYU), while those treated with Detergent 2 and/or atmospheric-pressure plasma were 

prepared at a Corning production facility and shipped in sealed containers. For the samples 
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prepared at BYU, pieces of Eagle XG® were removed from their sealed containers, cut into ca. 2 

cm x 5 cm pieces, and inserted into perfluorinated alkane (PFA) vials containing 50 mL of reagent. 

For the treatments carried out with heated solutions, the reagents were heated for 20 minutes in a 

heated water bath prior to sample introduction. For the HF treatment, all reagents, including water, 

were equilibrated to room temperature prior to sample immersion. Ultrapure water (18 MΩ) was 

used as the diluent for all wet chemical treatments. Immediately following a wet chemical 

treatment, the contents of the reaction vials were exchanged with ultrapure water several times, 

after which the samples were removed and rinsed with a spray of ultrapure water for ca. 1 minute. 

Finally, the samples were blown dry and stored in sealed, precleaned glass vials until analysis. The 

Corning Incorporated manufacturing facility was maintained at a relative humidity of 40 ± 10%. 

The humidity at BYU was uncontrolled.  
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Table 3.1. Reagents and conditions for wet chemical treatments of Eagle XG®  

Reagent Grade Supplier Conc.  pH Temp. (°C) Time (m) 
Detergent 1 N/R N/R 1% v/v 12 60 10 
Detergent 2 N/R N/R N/R N/R N/R N/R 
HCl Optima® Fisher Scientific 0.1 M 1* 60 10 
HF ACS EMD 0.1 M 2* 20 10 
TMAH TraceSelect® Ultra Fluka 0.1 M  11* 60 10 

N/R = Not reported. *Calculated pH.   

3.5.2 LEIS Analysis 
 

LEIS was performed at the IONTOF GmbH headquarters in Münster, Germany using a 

Qtac100 HS-LEIS instrument. Untreated and chemically treated samples were removed from their 

sealed containers, cut into ca. 1 cm x 1 cm pieces, loaded onto the analysis stage, and immediately 

introduced into the instrument for analysis. The cumulative exposure time of sample surfaces 

outside their sealed vessels to the air was on the order of a few minutes. Fracture bar samples were 

fractured in ambient air and loaded into the instrument’s preparation chamber as quickly as 

possible, experiencing ca. 1 min or less of air exposure. For the analysis of the fibers, a large 

bundle of them was simply clamped into a sample holder. Once in the instrument, samples were 

cleaned in situ with the downstream products of an oxygen plasma, i.e. atomic oxygen, 

immediately prior to analysis. This downstream approach ensured that radical/activated species 

did not impinge on sample surfaces with high kinetic energy. Accordingly, organic surface 

contamination was removed under gentle conditions that minimized surface rearrangement, sputter 

damage, and any increase in sample temperature. Atomic oxygen is widely used for removing 

adventitious hydrocarbon from surfaces for LEIS and for other purposes.24, 44-46 This surface 

cleaning is important because adventitious hydrocarbons, which are H-terminated, do not give a 
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LEIS signal for most angles of analysis.22 Instead, they have the effect of attenuating all LEIS 

signals due to hydrogen’s low mass (see Equation 3.1), which causes forward scattering, not 

backscattering, of incident noble gas ions except at very shallow backscattering angles. Cleaning 

with atomic oxygen typically oxidizes surface species to their highest oxidation state. However, 

because the components of these display glass surfaces are, in general, already expected to be in 

their highest oxidation states and are devoid of highly-mobile modifier ions like Na+, this treatment 

probably does not measurably perturb/alter their surface chemistry. In practice, samples were 

exposed to increasing doses of atomic oxygen until additional cleaning resulted in little or no 

change in the spectra. Figure 3.2 shows LEIS spectra for as-received Eagle XG® samples exposed 

to increasing doses of atomic oxygen. For the first 10 minutes, significant increases in signal are 

observed. However, after another five minutes the change in the oxygen and Al/Si peak areas were 

less than 5%. Based on these results, all samples in this study were exposed to 15 minutes of atomic 

oxygen cleaning prior to analysis.  

All samples were analyzed using 3 keV 4He+. To provide better mass resolution, positive 

identification, and easier quantitation of the higher mass species, the surfaces were also analyzed 

with 5 keV Ne+.14 For all analyses, a 2 mm x 2 mm area was probed. To avoid beam-induced 

sputter damage, the ion doses were kept below 1 x 1014 ions/cm2 and 1 x 1013 ions/cm2 for analyses 

performed with 4He+ and Ne+, respectively, i.e., these analyses were performed below the static 

limit. To establish the reproducibility of the technique, three replicate analyses were performed on 

Eagle XG® fracture surfaces using both 3 keV He+ and 5 keV Ne+. One of these replicates showed 

zinc contamination, likely from the tool used to break the fracture bars. This replicate was excluded 

from the analysis. The remaining replicates are shown in Figures 3.3a – 3.3b. The absolute percent 

differences in peak areas between these replicates are listed in Table 3.2.  
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Table 3.2. Percent differences between peak areas for the two replicate Eagle XG® fracture surfaces 

highlighted in Figure 3.3.  

Species O Al/Si Ca Sr Sn 
% Difference 14 10 9 5 18 

 

A subset of the samples was also analyzed with 6 keV 4He+ with the goal of resolving the 

Al and Si signals. These samples included Untreated Eagle XG®, a fracture surface of remelted 

Eagle XG®, and samples treated with Detergent 1 and HCl. SiO2 grown thermally on a silicon 

wafer was used as the SiO2 reference for this analysis, and Al2O3 deposited by atomic layer 

deposition (ALD) on an Eagle XG® substrate was used as the Al2O3 reference. This film of alumina 

was sufficiently thick that no signals from the Eagle XG® substrate were present in the 

corresponding LEIS spectrum. A film of MgO grown on a magnesium substrate was used as the 

magnesium reference. Peak fitting, including a guided form of linear least squares analysis referred 

to herein as informed sample model approach (ISMA), was performed on these samples to resolve 

the Al and Si signals. All data fitting was performed with CasaXPS (Version 2.3. 18PRI.0). 

 

3.5.3 Sample Charging and Spectral Calibration  
 

Sample charging in LEIS can result in shifted peaks, distorted spectra, and in extreme 

cases, a complete loss of signal. Given that our samples are insulators, a low energy electron flood 

gun was used for charge compensation (ca. 4 μA of current at 12 eV of electron energy). While 

the flood gun dramatically reduced the effects of sample charging, some peak shifting between the 

spectra remained. Peak shifting in LEIS due to sample charging can be modeled by Equation (3.2), 
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(3.2)  𝐸𝐸′ = 𝐸𝐸 + 𝑈𝑈 �1 − 𝐸𝐸
𝐸𝐸0
� , 

where 𝐸𝐸′is the measured backscattered energy of a LEIS signal, E is the expected energy of that 

signal in the absence of charging,  𝐸𝐸0 is the energy of the analysis beam, and 𝑈𝑈 is the voltage at 

the sample surface. A consequence of Eq. 2 is that peak shifting due to sample charging is not a 

constant value across a LEIS spectrum, but rather a function of the backscattering energy.  In 

practice, a spectrum can be calibrated by calculating 𝑈𝑈 based on the known analysis beam energy 

and the measured position of a reference peak. The spectrum can then be replotted on a shifted 

energy scale by solving Equation (3.2) for 𝐸𝐸. All spectra shown here were calibrated according to 

the above-described method, using the oxygen signals as the reference peaks. The oxygen signal 

was chosen for sample calibration because it was a strong signal that was free from spectral 

interferences.     

  

3.6 Quantitation and Data Treatment 

 

Quantitation in LEIS is usually straightforward. With very few exceptions, LEIS is free 

from matrix effects and gives linear signal responses.22 Each element has a unique backscattering 

cross-section, so reference materials are often used to establish LEIS surface coverages.24 In the 

case of the glass studied here, elements were expected to be in their typical, highest oxidation 

states, and, where possible, oxide surfaces were used as reference materials. The surface coverage 

of an oxide is assumed to scale linearly with the metal peak for that oxide. For example, if an SiO2 

reference material gives a silicon peak area of 1000 arbitrary units, and a sample gives a silicon 

peak area of 100 arbitrary units, the surface is said to have 10% SiO2 coverage. With this approach 

to quantitation, it is assumed that the areal population of the topmost surface atoms is comparable 
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in both reference and sample, and this assumption may be imperfect in the case of glass. For 

example, aluminum is expected to be tetrahedrally coordinated in the glass samples studied here, 

but the ALD-deposited Al2O3 used as a reference material likely contains both tetrahedrally and 

octahedrally coordinated aluminum.47 Nevertheless, describing glass species in terms of their 

respective surface oxide coverages provides a useful interpretation of LEIS data that has solid 

support in the literature.14, 22, 48-49 

LEIS is well-suited to the analysis of powders and otherwise rough samples like bundled 

fibers, because it is relatively insensitive to sample roughness.22 However, in some cases, rough 

samples result in attenuated signals due to shadowing effects.50 A previous analysis of several 

different powders demonstrated that roughness has the effect of attenuating all LEIS signals, such 

that the absolute signal magnitude is diminished but the ratios between given elements remained 

constant.50 For these samples, a corrective geometry factor is necessary. This factor can be 

assigned so that a reference peak in a rough sample gives the same response as in a comparable 

smooth sample. The glass fiber samples analyzed here required such a geometry factor. Because 

the fracture surface and the planar samples all gave approximately the same oxygen intensity in 

the 3 keV 4He+ spectra, the spectrum from the glass fiber sample was scaled so that it had the same 

oxygen intensity as these other samples. The resulting geometry factor was 1.9, and this same 

factor was applied to the 5 keV Ne+ spectrum for this sample.   

Most element pairs are well resolved in LEIS, so peak fitting of LEIS data is relatively rare. 

However, a significant challenge for the current glass samples is that Al and Si have similar masses 

and give strongly overlapping signals. Accordingly, to quantify Al2O3 and SiO2 surface coverages, 

these signals must be resolved via data fitting. In situations in LEIS data analysis where peak fitting 

has been required, the background has often been fit with an error function, and the LEIS surface 



122 
 

signals are fit with symmetric shapes including Gaussian and Lorentzian lineshapes.49  However, 

one recent publication used asymmetric line shapes and the Shirley background commonly 

employed in XPS.51-52 In addition, at least one publication argues that asymmetry is inherent in 

LEIS signals.49  Linear least squares (LLS) analysis has previously been used to fit LEIS spectra 

with overlapping signals.45 We attempted to fit our Al/Si LEIS peak envelopes using both ISMA 

and by fitting with synthetic lineshapes. A detailed discussion of these efforts is provided below. 

While LEIS results for samples containing both aluminum and silicon have previously been 

reported,35, 53 we are not aware of any publication that discusses the challenge of resolving these 

significantly overlapping signals. Accordingly, we hope that our thorough treatment of this issue 

will provide a useful point of reference for future LEIS analyses of commercial glasses, given that 

many of them contain both aluminum and silicon. 

3.6.1 Introduction to Linear Least Squares and Informed Sample Model 
Approach (ISMA) 

 

LLS assumes that sample spectra can be represented as a linear combination of basis 

spectra, per Equation (3.3), 

(3.3) 𝑨𝑨 = 𝑺𝑺 ∙ 𝑪𝑪, 

where C is a matrix containing the concentrations or weighting factors for the basis spectra in the 

matrix S.  

Equation (3.3) can be solved for C according to Equation (3.4),  

(3.4) 𝑪𝑪 = (𝑺𝑺𝑇𝑇𝑺𝑺)−1𝑺𝑺𝑇𝑇𝑨𝑨. 

Accordingly, if A and S are known, the concentrations or weightings of the reference 

spectra in each sample spectrum can be easily determined. Linear least squares assumes good 

alignment and good agreement between peak shapes and peak widths between spectra. An 



123 
 

advantage of this approach is that no synthetic peaks need to be created. Instead, the peak shapes 

are represented entirely by the reference spectra. 

Informed sample model approach (ISMA) is useful in situations where some of the basis 

spectra in an LLS analysis cannot be obtained by analyzing reference materials. ISMA relies to a 

degree on the analyst’s a priori knowledge of a sample to mathematically derive pure spectral 

components from a series of related samples. This approach has much in common with the 

multivariate curve resolution (MCR) approach used in Chapter 2. The difference between MCR 

and ISMA is that the component spectra in MCR are derived entirely by an iterative fitting 

algorithm while ISMA requires significantly more user input. In ISMA, the analyst performs 

weighted subtractions according to Equation (3.5), 

(3.5) 𝑺𝑺𝑹𝑹 = 𝑺𝑺𝟏𝟏 − 𝐶𝐶2 ∙  𝑺𝑺𝟐𝟐,   

where SR is the user-derived reference spectrum, S1 and S2 are spectra of sample materials, 

and C2 is a scalar weighting factor. Assuming that an ensemble of appropriate sample spectra with 

varying concentrations of the species of interest are available, pure basis set components can often 

be derived by application of Equation (3.5) to the correct samples. Sample spectra can then be fit 

using a linear combination of basis spectra as in Equation (3.4), i.e., once the basis sets are 

mathematically derived, a simple LLS analysis is performed. A very similar analytical approach 

has been used to deconvolve complex XPS peak envelopes, where it was called informed 

amorphous sample model (IASM). This name reflected the fact that basis spectra were 

mathematically constructed from measurements of polycrystalline reference materials and then 

used for quantitation of amorphous samples.55-56 However this analytical approach could 

potentially be applied to any analysis where a linear response can be assumed and there are a 

sufficient number and variety of spectra to extract the desired information. Accordingly, we have 
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used the more generally-applicable name of informed sample model approach (ISMA). The 

technique has also been called by this name in online tutorial videos and training seminars.        

 

3.6.2 Peak Fitting Lineshapes and Constraints 
 

For all peak fitting performed on the 6 keV spectra, a Shirley background was applied and 

the peaks were represented by an LF line shape. The LF line shape is a function of four parameters 

𝐿𝐿𝐿𝐿(𝛼𝛼, ß,𝑤𝑤,𝑚𝑚).  It is based on a Voigt function (convolution of Gaussian and Lorentzian line 

shapes) with additional parameters to suppress the Lorentzian tails to different degrees on either 

side of the peak. It also includes a parameter to control the width of the Gaussian function in the 

convolution. Here, the Lorentzian line shape is given by  

(3.6) 𝐿𝐿(𝑥𝑥) =  1

1+4�𝑥𝑥−𝐸𝐸𝐹𝐹 �
2 

where E is the peak position and F is the FWHM of the peak. The parameters 𝛼𝛼 and ß modify the 

Lorentzian contribution to the final lineshape according to 

(3.7)       𝐿𝐿𝐿𝐿(𝛼𝛼, ß,𝑤𝑤,𝑚𝑚) =  𝑓𝑓(𝑥𝑥) = �
𝐺𝐺(𝑚𝑚, 𝑥𝑥) ∗ [𝐿𝐿(𝑥𝑥)]𝛼𝛼→𝐴𝐴 , 𝑥𝑥 < 𝐸𝐸
𝐺𝐺(𝑚𝑚, 𝑥𝑥) ∗ [𝐿𝐿(𝑥𝑥)]ß→𝐴𝐴, 𝑥𝑥 ≥ 𝐸𝐸

 

The parameters α and ß are forced to smoothly increase to a constant value A as the energy x 

approaches E ± w. In CasaXPS, the parameter A is fixed at a value of 3. The parameter 𝑚𝑚 controls 

the width of the Gaussian convolved with the Lorentzian curve. Setting the parameters 𝛼𝛼 and ß 

equal to one another results in a symmetric shape, while setting them to different values imparts 

asymmetry to the peak. A more detailed description of this lineshape can be found in the CasaXPS 

software documentation, which is available online.  
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The widths of the oxygen peaks for a given sample were determined by fitting them with 

an LF(1,1,25,280) line shape. Both symmetric and asymmetric LF shapes were investigated for 

fitting the Al and Si peak shapes, and both gave similar quantitative results. However, the 

asymmetric shapes gave lower residuals for the reference materials, and were used in all 

subsequent fits. The Al contribution was fit using an LF(1.05,1.2,25,280) and the Si contribution 

was fit using an LF(1.1,0.91,28,400).  

The peak positions in the fits were constrained to those of the reference materials. Two 

different sets of peak width constraints are discussed below: fits with widths constrained to those 

of the reference materials, and fits where a fixed width ratio was used between the oxygen peaks 

and the Al/Si peaks, based on the ratios obtained from the reference materials. The Al/O width 

ratio was determined to be 1.335, and the Si/O width ratio was determined to be 1.615.  

3.7 Results and Discussion 

 

All major components of Eagle XG® except boron were detected by LEIS in at least some 

of the samples. Acquisitions using a range of different spectrometer settings were required to 

resolve signals from some of these species. Boron is difficult to detect in LEIS because it has a 

low backscattering cross-section and because it occurs in a spectral region with a high background 

due to sputtered particles. Accordingly, boron was below the detection limit in all the samples 

analyzed here. Detection limits in LEIS depend on the angle of analysis, so in theory boron 

detection may be improved by analyzing at a shallower backscattering angle than the 145° used 

here. However, this angle, which optimizes a tradeoff between mass resolution and detection limits 

for most species, is fixed in the instrument analyzer.  We additionally note that other surface 

sensitive techniques like X-ray photoelectron spectroscopy and Auger electron spectroscopy can 
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be useful for quantifying boron at sample surfaces, albeit with lower surface sensitivity than 

LEIS.57 Mg was only detected/quantified on the fracture surface of Eagle XG®. Due to its 

proximity to the Al/Si envelope, it was difficult to assign an appropriate background to fit this peak 

with synthetic lineshapes, and, accordingly, we report only the quantity obtained via ISMA 

analysis. 

 

3.7.1 Analysis of the 3 keV  4He+ and 5 keV Ne+ Spectra  
 

3 keV He+ LEIS spectra for selected glass samples are shown in Figure 3.4a. Well-resolved 

peaks corresponding to oxygen and calcium can be seen. In contrast, Al and Si are poorly resolved 

due to their similar masses, resulting in a single broad peak. While Sr is detected under these 

settings, it is better resolved from neighboring peaks and identified with more certainty in the 5 

keV Ne+ spectrum shown in Figure 3.5a. Figure 3.4b shows a zoomed-in view of the Ca peak 

envelope from Figure 3.4a. Here, the amount of Ca in the samples varies as a function of the 

chemical treatments applied to the surface. The fracture surface has the most Ca, and the Untreated 

melt surface has significantly less Ca than the fracture surface. The HCl and HF-treated samples 

have the lowest amounts of Ca, while samples treated with TMAH and Detergent 1 solutions—

both of which are strongly basic—show Ca depletion to a much lesser degree. Ca2+ in glass is most 

often charge-balanced by non-bridging oxygens. However, CaO is not a suitable reference material 

for LEIS because it readily reacts with water, giving it unpredictable surface stoichiometry. 

Accordingly, we used the more stable CaF2 as a reference material, and its spectrum is also shown 

in Figure 3.4. While this is a less-than-ideal mimic of Ca speciation in glass, it provides a point of 

reference for comparing these samples and also for comparing results from this study to future 
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LEIS analyses. The quantitative values provided for calcium in Table 3.3 are given as an area 

percentage of the CaF2 reference material.  
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Table 3.3. Quantitative results for Ca, Sr, and Sn for all Eagle XG® samples calculated from peak areas 

from 3 keV 4He+ and 5 keV Ne+ LEIS spectra. n/d = not detected.   

 

Sample 
Ca (% of 
ref.) SrO % Cov.  

SnO2 % 
Cov. 

Fracture 10.6 2.1 0.12 
Fiber 8.2 1.7 0.26 
Untreated 3.6 0.7 0.16 
Untreated 2 3.6 0.6 0.08 
Det.2 + Plasma 3.5 0.4 0.09 
Plasma 3.2 0.6 0.08 
Det. 1 2.6 0.5 0.15 
Det 2. 2.5 0.3 0.11 
TMAH 1.8 0.4 0.08 
HF 1.1 0.1 0.21 
HCl n/d n/d 0.04 

 

Figure 3.5 shows the Sr and Sn LEIS signals from treated and Untreated Eagle XG glass®. 

Here SrO and SnO2 were used as the reference materials for Sr and Sn, respectively, and the Sr 

and Sn peaks are well resolved. Quantitative results obtained from these data are reported as SrO 

and SnO2 surface coverage in Table 3.3. The compositional trends in Sr surface coverage here are 

the same as for Ca surface coverage; the fracture surface has the most Sr in this sample set, the 

Untreated surface has significantly less Sr than the fracture surface, and the samples treated with 

HCl and HF are almost entirely devoid of Sr. Samples treated with TMAH and Detergent 1 are 

only moderately depleted in Sr. The coverage of Sn does not follow the same trend as the Ca and 

Sr coverages. Here, the Untreated and fracture surfaces have about the same amount of Sn, while 

the HF-treated sample has the most Sn. Similar to the Ca and Sr results, the HCl-treated surface is 

the most strongly depleted of Sn. 
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3.7.2 Analysis of Si/Al (and O and Mg) Envelopes for Selected Samples Using 
3 keV and 6 keV 4He+ 

 

Because of their similar masses, Al and Si give interfering signals in the 3 keV 4He+ LEIS 

spectra shown in Figure 3.4a. Given that most other LEIS element pairs are easily resolved, there 

are relatively few publications that deal with the deconvolution of LEIS signals, and even fewer 

that focus specifically on overlapping aluminum and silicon signals. One recent publication 

showed quantitative results for alumina in silicate zeolite materials, but provided little discussion 

of the data fitting process employed.35 The quantitation of Al and Si in samples of atomic layer-

deposited alumina on silicon wafers was reported in 2015 in a conference presentation. However, 

again, this presentation gave quantitative results while providing little discussion of the data fitting 

process.53  Motivated by these precedents, we attempted to deconvolute the Al and Si signals in 

the spectra from our fracture sample, Untreated sample, and samples treated with Detergent 1 and 

HCl. These surfaces were chosen because they showed the widest variation in surface aluminum 

concentration in our previous ToF-SIMS analysis.11 These samples were analyzed using both 3 

keV and 6 keV 4He+ beams. Additional reference materials for this analysis included thermally 

grown SiO2 as the silica reference and a fully-closed, ALD-deposited Al2O3 film on a different 

substrate as the alumina reference. The 3 keV settings generally give better sensitivity than the 6 

keV settings, as evidenced by the higher count rate, but the separation between the Al and Si 

reference peaks is only ca. 31% of the silica peak’s FWHM with 3 keV 4He+ while it is 55% for 6 

KeV 4He+.  Accordingly, the analyses at 6 keV greatly improve the ability to resolve contributions 

from aluminum and silicon in these samples. The increase in peak separation at 6 keV can be 

explained by Eq. 1, where the backscattered energy varies directly with the primary ion energy, 

resulting in greater peak separations at higher analysis energies. This effect was counteracted to 
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some degree by a greater degree of peak broadening at the higher energies, which is also observed 

in Figure 3.6b. The differing count rates between the  3 keV 4He+ and 6 keV 4He+ spectra is the 

result of differing back scattering, neutralization, and reionization cross sections between the 

spectra as a function of incident ion energy.58 The Al/Si envelopes obtained with 6 keV 4He+ from 

the Eagle XG® samples and corresponding reference materials are shown in Figure 3.7a, and the 

oxygen envelopes for these samples recorded under the same conditions are shown in Figure 3.7b. 

In addition to the Al/Si signal, a small contribution corresponding to Mg can be seen here for the 

fracture surface.  

We tried two basic approaches to resolve the overlapping signals in Figure 3.7: peak fitting 

with synthetic line shapes, and ISMA. We have made no attempt to account for possible double-

scattering events in any of these fits because we see no double scattering peaks near other well-

isolated signals like oxygen. For fitting with the synthetic line shapes, we report results obtained 

using two different sets of fitting constraints. The data here were fit using a Shirley background 

and two peaks that represent spectral contributions from Al and Si. To reduce the influence of 

noise on the background intensity, an average of the neighboring ±15 data points were used to 

determine the intensity of each background end point.  Fits were attempted using both Gaussian 

and asymmetric Gaussian/Lorentzian (LF) lineshapes. Both types of line shapes gave very similar 

quantitative results, but the asymmetric shapes gave lower residuals, and accordingly, they were 

used in all fits. For the asymmetric shapes, the magnitude of the Gaussian and Lorentzian 

contributions and the degree of asymmetry were determined by fitting the line shapes to the SiO2 

and Al2O3 reference spectra. Once good fits were obtained for the reference materials, the resulting 

lineshapes were used to represent the Al and Si contributions in the subsequent fits. An 
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LF(1.1,0.91,28,400) was used for the Si peak, and an LF(1.05,1.2,25,280) was used for the Al 

peak.   

The constraints on the parameters in this analysis had an important effect on the outcomes 

of the peak fits. When the peak positions and widths were unconstrained, the fits yielded positions 

and widths that differed significantly from those of the reference spectra. Even when the Al and 

Si peak positions and widths were constrained to a relatively narrow window, e.g., ± 7 eV for 

width and ± 5 eV for position, the fits placed the positions and widths at their constraint limits for 

all the samples. This suggested that these envelopes could not be uniquely fit with unconstrained 

peak positions and widths, i.e., obtaining a reasonable fit would require reasonable constraints. We 

first attempted to constrain the peak positions and widths in the sample fits to those of the reference 

spectra. While this is the most obvious approach, it assumes no variation in peak widths due to 

sample charging. A fit for the Detergent 1-treated sample spectrum using this approach is shown 

in Figure 3.8a, and a fit to the Untreated samples is shown in Figure 3.9a. The quantitative results 

from this fitting approach are listed in Table 3.4. Figures showing the fits to the remainder of the 

samples obtained with this approach are in the Supporting Information.  
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Table 3.4. Surface coverages of Al2O3 and SiO2 by the different fitting approaches taken in this work for 

the samples shown in Figure 3.7, wherein % coverage of individual species is defined relative to reference 

materials. 

 

  
Approach 1 (fixed 
width) 

Approach 2 (width 
ratio) ISMA 

Sample % Al2O3 % SiO2 % Al2O3 % SiO2 % Al2O3 % SiO2 % MgO 
Fracture 31.1 77.1 29.7 80.8 29.7 79.5 8.8 
Untreated 4.6 79.4 2.8 83.9 1.1 80.9 n/d 
Det. 1 12.0 87.8 10.9 90.2 7.8 89.9 n/d 
HCl 0.0 89.0 0.0 91.2 0.0 86.3 n/d 

 

To determine the degree to which the peak widths might vary between the spectra, we 

performed an analysis of the oxygen peak envelope shown in Figure 3.7b. This analysis indicated 

that the oxygen peak widths varied over a range of 7.5 eV, i.e., ca. 12% of the average oxygen 

peak width for these samples. This variation in peak width is probably due to sample charging. To 

account for these variations, we attempted a second fit wherein the peak widths of the aluminum 

and silicon contributions were constrained to a fixed ratio relative to their corresponding oxygen 

peaks. The Al/O width ratio determined from the alumina reference was 1.335, and the Si/O width 

ratio determined from the thermal silicon oxide was 1.615. Fits for the Detergent 1-treated and 

Untreated samples using these constraints can be seen in Figures 3.8b and 3.9b, respectively, and 

the quantitative results for these fits are presented in Table 3.4. The fits to the remainder of the 

samples fitted in this manner are given in the Supporting Information. 

We initially attempted an LLS fit of the Al/Si region of our sample data using reference 

spectra from Al2O3, SiO2, and MgO as the basis sets. However, this three-component LLS fit gave 

poor results because the shape of the background in the Eagle XG® samples is poorly captured by 
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the reference materials. The difference in backgrounds between samples is easily observed in 

Figure 3.7a, where the Eagle XG® fracture surface gives a significantly higher background than 

all the other spectra. This difference in background intensity is probably the result of background 

contributions from Ca and Sr, which are more abundant in the fracture surface than in the other 

samples. Accordingly, we hypothesized that a successful least squares fit of these spectra would 

require a basis set containing background contributions from species outside of the spectral range 

that could be derived by ISMA. That is, it was assumed that the Eagle XG® sample spectra could 

be represented by four basis spectra: an Al2O3 spectrum, an SiO2 spectrum, a spectrum 

representing background contributions from other elements in Eagle XG®, and a contribution for 

Mg (detected only in the fracture surface). Since the fracture surface had the highest Mg, Ca and 

Sr concentrations, it was used to derive the Eagle XG® background spectum. To do this, the SiO2 

spectrum was first subtracted from the fracture spectrum, leaving contributions from Al2O3, Mg, 

and the Eagle XG® background. The Al2O3 spectrum was then subtracted, presumably leaving 

only contributions from Mg and the Eagle XG® background. Finally, an MgO reference spectrum 

was subtracted from the fracture spectrum, leaving only the background contribution from the 

other elements of Eagle XG® in this spectral region. This process can be represented 

mathematically as 

(3.8) 𝑺𝑺𝒃𝒃 =  𝑺𝑺𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 −   𝐶𝐶𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐 ∙  𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐 −  𝐶𝐶𝑨𝑨𝑨𝑨𝟐𝟐𝑶𝑶𝟑𝟑  ∙  𝑺𝑺𝑨𝑨𝑨𝑨𝟐𝟐𝑶𝑶𝟑𝟑 −  𝐶𝐶𝑴𝑴𝑴𝑴𝑴𝑴 ∙  𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴, 

where Sb is the Eagle XG® background spectrum,  𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐 is the SiO2 reference spectrum, 𝑺𝑺𝑨𝑨𝑨𝑨𝟐𝟐𝑶𝑶𝟑𝟑 is 

the Al2O3 reference spectrum, and 𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴 is the magnesium reference spectrum.   𝐶𝐶𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐,  𝐶𝐶𝑨𝑨𝑨𝑨𝟐𝟐𝑶𝑶𝟑𝟑 , 

and  𝐶𝐶𝑴𝑴𝑴𝑴𝑴𝑴 are the manually-assigned weighting factors. The three reference spectra and the ISMA-

derived background spectrum are shown in Figure 3.10. Using these spectra, we performed LLS 

fits of our samples. The raw data vs. the ISMA LLS fits for the Detergent 1 and Untreated samples 
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are shown in Figures 3.8c and 3.9c, respectively, together with the contributions from each of the 

reference spectra. The fits to the remainder of the samples fitted in this manner are shown in the 

supporting information. To quantify the Al and Si in each sample, simple peak area measurements 

were taken from the Al and Si contributions to the fit data using Shirley backgrounds. These 

backgrounds can also be seen in Figure 3.8c and 3.9c. The quantitative results from this fit are 

given in Table 3.4, together with the results from the other two approaches. One consequence of 

using the fracture sample to derive our basis sets is that it is fit perfectly with no residuals, i.e., the 

quantitative results obtained for the fracture surface are the direct consequence of the weightings 

of the SiO2, Al2O3, and MgO reference spectra that were manually subtracted from it during ISMA 

to derive the Eagle XG® background spectrum. However, in spite of this being a manual process, 

the quantities of Al and Si measured in the fracture surface by this method are in decent agreement 

with the quantities obtained by peak fitting, indicating that a reasonable subtraction was performed.        

Each of the fitting approaches considered herein has its advantages and drawbacks. Peak 

fitting is sensitive to the choice of background and the positioning of the background endpoints. 

For peak fitting with synthetic line shapes, it is assumed that the data are well-modeled by the line 

shapes chosen. The advantage of ISMA over peak fitting with synthetic line shapes is that the peak 

shapes are determined entirely by the reference spectra, and the analyst does not need to assign 

background shapes or endpoints in the initial fit, though backgrounds may be applied to the spectral 

contributions during quantitation. We have assumed here that an accurate representation of 

background contributions from elements other than Al, Si, and Mg can be derived from the Eagle 

XG® fracture surface via a process of manual subtraction. This subtraction process relies on the 

skill and experience of the analyst. An advantage of this approach is that an analyst may have 
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knowledge about the samples or the analytical technique that are not easily considered by fitting 

algorithms. One potential drawback is that different analysts may get different results.  

While each fitting approach attempted has its theoretical merits, we believe it is significant 

that they all give very similar results. For example, the residuals for the different fitting approaches 

for the Detergent 1 and the untreated samples are shown in Figures 3.8d and 3.9d, respectively 

(residuals for the remainder of the samples are shown in the Supporting Information). Indeed, for 

most of the samples, the difference in residuals between the fixed-width synthetic peak fits and the 

ratioed-width peak fits are very small. The residuals for the ISMA LLS fits also gave very similar 

residuals to the two synthetic peak fitting approaches. In terms of aluminum coverage, all three 

approaches rank the samples as Fracture (most) > Detergent 1> Untreated > HCl (least). This is in 

good agreement with Chapter 2. The quantitative differences in coverage obtained between the 

two sets of constraints used for fitting with synthetic lineshapes are subtle, while the ISMA analysis 

gives systematically lower Al in all the samples than the other two approaches. As expected, all 

three approaches indicate that the HCl-treated surface has an aluminum content below the 

detection limit. However, surprisingly, and perhaps very significantly, they also reveal aluminum 

concentrations on the Untreated sample in the range of 1 – 5%. In contrast, the Fracture surface 

shows a much higher concentration of this element (29 – 31% Al). Thus, the outermost atomic-

layer of natively-formed Eagle XG® is strongly depleted in aluminum. This result will have 

important future consequences for modeling and thinking about Eagle XG® and similar 

aluminosilicate glasses. For example, because the natively formed surface of Eagle XG® appears 

to be strongly depleted of aluminum to merely 1-5% percent, and because –OH groups, including 

aluminols are very important in glass surface chemistry, one can probably conclude that aluminols 

play a minor role at most in the apparent surface chemistry of this glass in its as-formed condition. 
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That said, our fitting results also reveal significantly increased aluminum for the Detergent 1-

treated surface relative to the Untreated surface, which is in good agreement with Chapter 2. This 

latter result has similarly important practical implications, since most display glass sheets are 

cleaned in detergent media—usually at alkaline pH—at some point in their production path in 

order to reduce particles from handling. It follows then that the process of washing the as-formed 

surfaces in alkaline detergent media “recovers” the concentration of Al at the outermost atomic 

layer to a level closer to that of the bulk.  Processes downstream of washing thus experience a 

somewhat different surface, in which Al may play a more important role in governing apparent 

surface chemistry.  

The fitting approaches taken herein also allow the samples to be ranked according to their 

silicon concentrations. However, the amount of silicon in each sample varies by less than 10% 

between the various chemical treatments. That is, the SiO2 coverage remains relatively constant as 

a function of surface treatment while the concentrations of the other constituents can vary 

dramatically. We also note that the SiO2 surface coverage falls significantly short of that of the 

reference material for all the samples. This includes those entirely depleted of other surface 

species, e.g., the HCl sample.  

 

3.7.3 Discussion of Quantitative Results 
 

The data in Tables 3.3 and 3.4 provide several interesting insights regarding the surface 

composition of treated and Untreated Eagle XG®. First, there are stark compositional differences 

between the Eagle XG® Fracture surface and the as-formed, Untreated surface. The Untreated 

surface has approximately half as much Ca and Sr as the Fracture surface. In addition, Mg is 
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detected at the Fracture surface, but it is below the detection limit in the other surfaces (the 

Untreated surface, the Detergent 1-treated surface, and the HCl-treated surface), where 

quantitation was only attempted in the 6 keV 4He+ spectra. These LEIS results are consistent with 

previous ones that have indicated that glass fracture and melt surfaces can have significantly 

different compositions.27-30 Modifier depletion layers are common at silicate glass surfaces.13 They 

are also known to form in glass held at elevated temperatures below the glass transition 

temperature.28 These observations are especially applicable to glasses with higher vapor pressure 

constituents, with the alkali metals and boron being typical examples. It is noteworthy that the 

marked discrepancy between fracture- and melt-formed surface compositions also applies to 

alkaline-earth species at the outermost surfaces of these nominally alkali-free glasses. In summary, 

the results in Tables 3.3 and 3.4 emphasizes that it is generally not possible to infer surface 

composition from bulk composition, and vice versa, and moreover that differences between the 

bulk and the surface are amplified as the information depth of the interrogation technique 

decreases.11 In this regard, LEIS provides the ultimate sensitivity to such discrepancies in bulk vs. 

surface composition of a given glass.  

Interestingly, glass fibers formed from remelted Eagle XG® had a composition more 

similar to the fracture surface than the Untreated surface, where they was only a minor depletion 

of Ca and Sr for this sample (Al and Mg were not quantified). While the Untreated, fracture, and 

fiber samples have the same nominal bulk compositions, they exhibit different surface 

compositions depending on their thermal histories and the glass forming process used to make 

them. These observations emphasize that the forming process used to make a glass melt surface 

also has a strong impact on its final surface composition, especially at the monolayer scale of LEIS. 

For the results shown here, the thermal history of the glass may be an important factor, given that 
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species have a longer time to evaporate or migrate inward the longer that a glass spends at high 

temperatures.28, 59 It has also been noted elsewhere that the atmosphere surrounding the glass at 

elevated temperatures plays an important role in its final surface composition.59 Attempts to 

understand the correlation between glass surface and bulk properties and composition must take 

these issues into account. 

Some of the wet chemical treatments considered in this study have the expected effects on 

the glass surface while others alter the sample surfaces in more unexpected ways. For example, 

our results show that leaching with HCl removes Ca, Sr, Al, and Sn from the sample surface. 

Strong depletion of these species was also seen in our previous ToF-SIMS analysis.11 However, at 

least some of each of these species was present by ToF-SIMS, while all of them except Sn are 

depleted to below their detection limits in the LEIS analysis. This difference is most likely due to 

LEIS’s greater surface sensitivity; it suggests that these species are readily depleted from the 

outermost atomic layer seen by LEIS, while some quantity of them remain immediately below the 

surface to be detected by ToF-SIMS with its ca.1 nm information depth. In contrast to the leaching 

behavior expected for HCl, HF is generally expected to exhibit closer-to-congruent network 

dissolution resulting in a composition similar to a fracture surface. Instead, the HF-treated sample 

shows significant depletion of Ca and Sr, suggesting that a finite amount of leaching occurs in a 

thin layer ahead of the HF etching front for the conditions studied here. This is an important result. 

It suggests that selection of the acid, and presumably its concentration and reaction time, can be 

used to tune surface properties/composition. These changes could be “missed” when viewed 

through the lens of less-sensitive analytical techniques. Another study has also noted some degree 

of preferential extraction for glass surfaces treated with dilute HF.60  
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Detergent 1 also gives some intriguing results. This detergent solution contains strong 

bases, including sodium hydroxide and tetramethyl ammonium hydroxide, and has a measured pH 

of 12 with no appreciable Al in its formulation. Accordingly, it would also be expected to interact 

with the glass primarily through a congruent dissolution mechanism. Instead, it changes the Ca 

and Sr concentrations at the outermost surface slightly, while dramatically increasing the Al 

compared to the Untreated surface. Based on the well-established observation that alkaline-pH 

media typically interact with silicate glasses through a relatively slow, congruent dissolution 

mechanism (on the order of 1-10Å/min under the conditions studied), a logical interpretation of 

the “recovery” of Al by alkaline-solution exposure is that the Al depletion on the native melt 

surface extends only to a vanishingly-thin depth on the order of a one-or-so monolayers, which is 

then dissolved away upon base-washing to expose more of the underlying glass with greater Al 

concentrations.  An alternative possibility is that Al increases in concentration as a result of 

selective extraction of other surface species, leaving an Al rich film, and/or possibly through re-

deposition of dissolved Al from solution. Precipitation of Al rich phases from strongly basic 

solutions has been observed in some previous glass corrosion studies, albeit on a much longer time 

scale than that studied here.18 However, the detergents in question contain chelating components 

to help prevent such redeposition. In summary, these results show that washing display glass 

surfaces with common cleaning chemistries can significantly alter their surface compositions, 

sometimes in surprising ways—especially at the scale of the outermost monolayer. Attempts to 

understand how display glass composition affects FPD production and performance must take 

these effects into account, since both glass manufacturers and panel makers typically wash glass 

in similar media. Finally, as suggested by the multiple spots analyzed by ToF-SIMS and LEIS, the 
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increase in Al concentration we detected appears to take place uniformly across the surface, though 

more exhaustive surface imaging would be needed to fully confirm this conclusion. 

Tin is added to Eagle XG® in small quantities as a fining agent.3 And while there are clear 

trends in the amounts of Ca, Sr, and Al at the various Eagle XG® surfaces, any trends in the Sn 

concentrations at these surfaces are less obvious. For example, the Untreated sample has more Sn 

at its surface than the fracture sample. As is the case for Ca and Sr, the HCl-treated sample has the 

lowest concentration of Sn, suggesting that Sn is leached from the surface by this treatment. In 

contrast, the HF treated sample had the most tin of any of the samples by a significant margin, in 

spite of the fact that HF had a depleting effect on Ca and Sr. Here, SnO2 may resist attack by the 

HF,61 leaving a Sn-enriched surface. It is also possible that the solution used for HF treatment 

contributed small amounts of Sn contamination. However, the grade of reagent used here is 

certified to have < 5 ppm of heavy metal contaminants, including Sn. Other surface treatments had 

a relatively minor effect on Sn, generally depleting it slightly relative to the Untreated surface. 

Of all the treatments studied here, atmospheric-pressure (AP) plasma appears to have the 

lowest impact on the elemental composition of the outermost atomic layer of Eagle XG®. This 

sample subset included samples that were treated with AP plasma (‘Plasma’), and/or washed with 

a detergent, i.e., ‘Detergent 2’, ‘Detergent 2 + Plasma’, and ‘Untreated 2’. All of these samples 

have approximately the same levels of Ca, Sr, and Sn, regardless of treatment. Accordingly, we 

conclude that the AP plasma conditions used here do not alter the elemental surface composition 

of the glass. Likewise, Detergent 2 appears to have no effect on Ca, Sr, or Sn concentration in the 

glass (Al was not quantified for this sample). While seemingly a trivial result, these findings are 

actually significant in that they demonstrate the possibility of applying such techniques (e.g. 

organic removal) without any significant alteration of the underlying glass composition—even at 
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the monolayer scale.  That said, it should be recognized that AP plasmas may alter the glass surface 

in other ways, e.g., by the removal of adventitious hydrocarbon or by altering the hydroxylation 

state of the glass. LEIS is relatively insensitive to these types of changes, especially considering 

that atomic oxygen was used to clean these samples prior to analysis. Nonetheless, the degree of 

hydrocarbon coverage and the surface hydroxylation of the glass are both expected to have a strong 

impact on glass surface properties. For example, one study demonstrated that a thin overlayer of 

carbonaceous material can dramatically reduce the contact-induced charging of a glass surface,6 

while another argues that surface hydroxyls govern the rate of contamination on glass surfaces.7 

While LEIS is a powerful tool for understanding the elemental surface compositions of materials, 

these important aspects of glass surface chemistry are somewhat of a “blind spot” for LEIS.   

In general, the LEIS results reported herein are in good agreement with our previously 

published ToF-SIMS analysis of the same materials, while they also address several of its 

shortcomings. ToF-SIMS suffers from a significant matrix effect, where, in most cases, it is semi-

quantitative at best. In contrast, LEIS generally gives linear responses, although there are a few 

examples of matrix effects with this technique. Accordingly, the LEIS results reported herein are 

expected to be much more quantitative than the SIMS results. In the case of Ca, no suitable oxide 

reference could be found to establish surface coverages. However, given that signal responses can 

be assumed to be linear in LEIS, relative quantitation is still possible here, e.g. it can be confidently 

stated that the Untreated surface has ca. 40% as much Ca as the Fracture surface, where we have 

provided surface coverages relative to a CaF2 reference to facilitate comparisons between these 

surfaces and other glass compositions. This study also provides more surface sensitive 

measurements. That is, while ToF-SIMS is very surface sensitive, LEIS is even more so. Estimates 

for the depth of analysis in ToF-SIMS range from a few atomic layers to several nm, depending 
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on the sample and the ion beam conditions.62-65 Meanwhile, LEIS is uniquely sensitive to the 

outermost atomic layer.22 Accordingly, these results are more representative of the outermost 

surface than those from ToF-SIMS. For example, ToF-SIMS detects Ca in all the glass samples in 

our previous study, while LEIS shows a significant Ca signal in some of the samples and none in 

others. It follows that LEIS provides insights about glass that cannot be gained from other surface 

analytical techniques.  

The previous ToF-SIMS analysis also addresses some of the shortcomings of this LEIS 

analysis. That is, there is some complementarity between these methods. For example, boron is 

not observed by LEIS due to instrumental limitations for this species, but it is easily detected by 

ToF-SIMS. Detection limits by ToF-SIMS are also better for most species in Eagle XG®, and it 

can be used to detect trace contaminants on the glass surface like Na and K, even if they can’t be 

readily quantified. In addition, while the Al and Si signals are difficult to resolve by LEIS, they 

are well separated in SIMS, and SIMS has no trouble resolving silicon’s isotopes. SIMS can also 

provide information about surface hydroxylation, hydrocarbon contamination, and molecular 

fragments that LEIS cannot. Thus, these two techniques provided complementary information that 

give a fairly complete picture of the surface composition of Eagle XG® glass, and show once again 

the power of a multi-technique approach to provide a more complete picture of a material.66-68 

 

3.8 Conclusion  

 

LEIS provides valuable information about the concentrations of Al, Si, network modifiers, 

and Sn at a display glass surface. Surface coverage estimates for Al, Si, Mg, Sr, and Sn were 

provided by comparing the glass surfaces to reference oxide materials. No suitable oxide surface 
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reference was available for Ca, so CaF2 was used. These LEIS results are in good agreement with 

Chapter 2. However, ToF-SIMS yields a signal that is derived from several atomic layers, while 

LEIS directly measures the composition of the outermost atomic layer of a material. Accordingly, 

ToF-SIMS could not definitively conclude that various atomic species were or were not depleted 

from the Eagle XG® surface, and/or to what degree they are present at the outermost atomic layer 

of the material. XPS, which is generally considered to be less surface sensitive than ToF-SIMS, 

faces similar, and arguably even greater, limitations. In contrast, LEIS clearly shows that network 

modifiers are present at the as-formed Eagle XG® surface, albeit in depleted quantities relative to 

the bulk composition represented by the Fracture surface. Furthermore, these results show that a 

brief treatment in 0.1 m HCl depletes Ca, Sr, and Sn to below their LEIS detection limits. However, 

even with the modern instrument used here, LEIS has some limitations with regards to the analysis 

of boroaluminosilicate glasses. Its detection limits for B are poor, such that this element was not 

even detected in the Fracture surface. In addition, silicon and aluminum give overlapping signals, 

and even under optimized analysis conditions, these signals could only be resolved via peak fitting 

or least squares analysis. We have provided a detailed discussion of fitting approaches for 

resolving these signals and the underlying assumptions for each approach. While others have 

quantified these species by LEIS, to the best of our knowledge, we are the first to provide a detailed 

discussion of the deconvolution of these signals in the peer-reviewed literature. All in all, LEIS 

has provided detailed information about the surface composition of a real-world multicomponent 

display glass that will be valuable in future efforts to model its structure, composition, and 

influence on surface-mediated processes. 
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3.10 Figures 

 

Figure 3.1. Representation of the Qtac100 LEIS analyzer. Figure used with permission from ION-TOF, 

GmbH (Münster, Germany).  
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Figure 3.2. LEIS spectra of Eagle XG® exposed to increasing doses of atomic oxygen as obtained with 3 

keV 4He+.  
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Figure 3.3. Replicate LEIS measurements of an Eagle XG® fracture surface obtained with (a) 3 keV 4He+ 

and (b) 5 keV Ne+. 
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Figure 3.4. LEIS spectra taken with 3 keV He+ of treated and Untreated Eagle XG® samples shown 

together with a spectrum of a CaF2 reference material. (a) Wide energy range spectrum with selected 

peaks identified. (b) Zoomed-in view of the Ca peak.  
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Figure 3.5. LEIS spectra taken with 5 keV Ne+ of treated and Untreated Eagle XG® samples and 

reference materials. (a) Sr peak, and (b) Sn peak.  
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Figure 3.6. LEIS spectra showing aluminum and silicon peaks for Al2O3 and SiO2 reference materials 

taken with (a) 3 keV 4He+ and (b) 6 keV 4He+, with peak separation (Δ) and the FWHM of the silicon 

peak noted in each plot.  
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Figure 3.7. 6 keV 4He+ LEIS spectral regions of (a) the Al/Si signal and (b) the oxygen signal for selected 

Eagle XG® samples and reference materials.  
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Figure 3.8. Fits to the Al/Si peak for Eagle XG® treated with Detergent 1. (a) Synthetic peak fitting with 

positions and widths fixed to values from reference materials. (b) Synthetic peak fitting based on 

reference materials, with peak widths set to a fixed ratio relative to the oxygen peak. (c) ISMA LLS fits, 

using the basis spectra shown in Figure 3.10. (d) Residuals for all three methods. 
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Figure 3.9. Fits to the Al/Si peak for Untreated Eagle XG®. (a) Synthetic peak fitting with positions and 

widths fixed to fits from reference materials. (b) Synthetic peak fitting based on reference materials, with 

peak widths set to a fixed ratio relative to the oxygen peak. (c) ISMA LLS fits, using the basis spectra 

shown in Figure 3.10. (d) Residuals for all three methods.  
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Figure 3.10. Spectra used as a basis set for ISMA LLS analysis. (a) SiO2 reference material. (b) Al2O3 

reference material. (d) MgO reference spectrum. (d) ISMA-derived Eagle XG® background spectrum.  
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Chapter 4: Angle-Resolved X-ray Photoelectron Spectroscopy Analysis of Chemically Treated 
Display Glass Surfaces 

 

4.1 Statement of Attribution 

 

This data was not published in a peer-reviewed journal at the time of publication. This data 

represents a work in progress. We have provided qualitative interpretation of the data here, which 

generally supports conclusions from other chapters in this dissertation. However, we plan to 

perform additional modeling before publishing these results in a peer-reviewed research journal. 

I would like to acknowledge the contributions of George Major, Landon S. Fisher, Sean 

Chapman, Jeff Chapman, Adam Roberts, Paul Mack, Tim Nunney, Joy Banerjee, and Nicholas J. 

Smith, who have assisted with the collection and interpretation of this data. 

 

4.2 Introduction 

 

Angle-resolved X-ray photoelectron spectroscopy (AR-XPS) provides depth-resolved 

elemental compositional information about the outer ca. 6-10 nm of a sample.1-4 Photoelectrons 

collected at different take off angles originate from different depths within the sample. Simple 

comparison between compositions measured at different take off angles can be used to detect and 

interpret compositional gradients near the sample surface. Mathematical modeling is required to 

derive quantitative depth scales for AR-XPS data. This process typically requires a priori 

knowledge about the composition and structure of the sample.1, 4  
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The complexity of the modeling for AR-XPS data scales with the complexity of the 

sample’s composition. Relative depth and layer thicknesses are easily derived for samples with 2-

3 discrete layers with well-defined stoichiometries.1, 4 Continuous compositional gradients 

substantially increase the modeling complexity.1, 5-8 The glass samples we analyzed likely have 

continuous compositional gradients based on the various glass corrosion mechanisms discussed in 

Chapter 1.9-10 We can currently only provide qualitative interpretation of this AR-XPS data, but 

we may derive depth-resolved compositional profiles with additional work.    

Even interpreted in a qualitative sense, the AR-XPS data presented here provides valuable 

insight into our samples. The results in Chapters 2 and 3 show clear differences between surface 

and bulk compositions of Eagle XG®, where the bulk composition was obtained by analyzing 

Eagle XG® fracture surfaces. However, the analyses in Chapters 2 and 3 provide no indication as 

to whether composition changes rapidly as a function of sample depth at the outer 10 nm. Even 

with the qualitative interpretation presented here, the AR-XPS data demonstrate a relatively steep 

compositional gradient over the outer ca. 10 nm of Eagle XG®. The surface composition also varies 

strongly as a function of the wet-chemical sample treatments used in this study, consistent with 

previous results.11-12  
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4.3 Theory of AR-XPS 

 

The fundamental equation of XPS assumes that photoelectron kinetic energy is a function 

of the exciting photon energy, core-level electron binding energy, and work function of the XPS 

instrument, according to Equation (4.1),13 

(4.1) 𝐸𝐸𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 

where Ephoton is the photon energy, Ebinding is the core-level binding energy, and Ework is the 

instrument work function. Core-level electron binding energies are characteristic of the elements. 

They scale with atomic number, Z, and increase with decreasing principal quantum number n.13 

XPS measures the kinetic energies of photoelectrons emitted from the sample surface, calculates 

their binding energy using Equation (4.1), and identifies and quantifies the elements present in the 

sample based on the binding energies and intensities of the photoelectron signals in the resulting 

spectra. XPS spectra are typically plotted according to the very simple assumptions of Equation 

(4.1).  

Equation (4.1) does not account for energy lost from inelastic scattering. Photoelectrons 

that scatter inelastically before escaping the sample lose kinetic energy and, according to the 

simplified assumptions of Equation (4.1), are plotted at higher binding energy than photoelectrons 

from the same core-level that do not scatter inelastically. Electrons that do not undergo inelastic 

scattering give relatively sharp peaks in XPS spectra, while the inelastically scattered 

photoelectrons contribute to the stair-step background shapes common in XPS.13 

AR-XPS analyzes the elemental composition of the outer ca. 10 nm of a sample. The 

surface sensitivity of XPS stems from the fact that free electrons only travel a short distance 

through a solid material before undergoing inelastic collisions. The inelastic mean free path (λ) of 

electrons through solid materials is a function of their kinetic energy and also depends on the 
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composition of the material they traverse.1, 13 For lab-scale XPS instruments operating with 

aluminum anode X-ray sources, photoelectron kinetic energies of 0-1486 eV are possible, and λ 

from 1-3 nm are typical.13 Changing the angle at which photoelectrons are collected varies the 

depth from which photoelectrons originate relative to sample normal. Figure 4.1 illustrates this 

schematically. 

In Figure 4.1, it is assumed that photoelectrons can travel a maximum distance of 3λ 

through the sample. Their maximum depth of origin normal to the sample surface is given by 

3λcosΘ, where Θ is the photoelectron take off angle relative to surface normal. Some sources 

define take off angle relative to surface horizontal, in which case the maximum depth of origin is 

given by 3λsinΘ. Assuming a typical λ of 3 nm, data recorded at a take off angle of 78.25° (the 

most surface sensitive take off angle used in this study) integrates information over a depth from 

0 to 1.8 nm, while data recorded at normal incidence integrates information from 0-9 nm. Thus, 

data recorded at a higher take off angle provides compositional information nearer to the sample 

surface, while data recorded nearer to normal incidence provides information from a greater 

sample depth. 

Different take off angles do not probe discrete sample volumes. For example, a take off 

angle of 76.25° integrates information from 0-2 nm relative to surface normal, while a take off 

angle of 23.75° integrates information from 0-8 nm, such that there is some overlap in information 

depth between the two take off angles.1 In contrast, sputter depth profiling erodes the sample 

during the analysis, such that each scan records information from a discrete slice of the sample. 

As a result, interpreting AR-XPS data is generally more complicated than analyzing sputter depth 

profile data. The differences in sampling between these two methods are illustrated schematically 

in Figure 4.2. 
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Sputter depth profiling is usually used over greater information depths than AR-XPS. In 

ToF-SIMS, the analysis depth for each individual scan in a depth profile ranges from 0-3 nm, 

depending on numerous factors. By eroding the samples and taking many scans, depth profiles are 

routinely taken from depths ranging from ca. 20 nm to several hundred nanometers.14-15 AR-XPS 

is limited to a maximum information depth of ca. 10 nm. AR-XPS is unique in its ability to provide 

depth-resolved information over this narrow information depth. This is possible because AR-XPS 

is a non-destructive process. In contrast, sputter depth profiling involves bombarding samples with 

a high-energy beam. The sample’s composition is altered during this process through atomic 

mixing and preferential sputtering. Several seconds of sputter time may be required before the 

composition in the sputter volume reaches a steady state useful for compositional analysis.15-16 

In Figure 4.2, we represented XPS sampling depths as tapered shapes to indicate that the 

greatest fraction of photoelectrons is collected within 1λcosΘ of the surface. Photoelectron signal 

intensity attenuates through inelastic collisions as a function of depth according to the Beer-

Lambert law, Equation (4.2), 

(4.2)  𝐼𝐼 =  𝐼𝐼0𝑒𝑒−𝑑𝑑/𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆, 

where I is photoelectron intensity after attenuation and I0 is the unattenuated photoelectron 

intensity of a layer of atoms at depth d within the sample measured normal to the sample surface.1 

Based on these assumptions, the photoelectron signal integrated from sample depths of 0λcosΘ to 

1λcosΘ accounts for 63% of total photoelectron intensity in an XPS spectrum for a sample with 

homogeneous composition. Only 8.5% of total photoelectron peak intensity originates from a 

sample depth between 2λcosΘ and 3λcosΘ. In summary, while the sampling depth of XPS is often 

stated to be 3λcosΘ, the majority of the signal in an XPS spectrum originates from within 1λcosΘ 

of the surface. 
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Modeling AR-XPS data to obtain depth-resolved compositional profiles is challenging 

because the model must account for Beer’s law attenuation of photoelectrons as a function of 

sample composition, structure, and photoelectron kinetic energy.1 The fact that XPS data obtained 

at different take off angles provides overlapping information rather than discrete information, as 

shown in Figure 4.2, further complicates modeling. The complex mathematics underlying 

modeling of AR-XPS data are the subject of numerous publications and reviews and articles.1-2, 4, 

6-8 We limited ourselves to a qualitative interpretation due to the inherent complexity of modeling 

AR-XPS data.  

Our data shows that AR-XPS is a powerful tool for understanding near-surface 

compositional gradients in multicomponent glasses. However, we are not aware of any publication 

using AR-XPS for this purpose. AR-XPS has been used to measure the growth of oxide films on 

various substrates including magnesium and iron, to measure the nitrogen profiles in thin silicon 

oxynitride films, and to characterize self-assembled monolayers, among other applications.3, 5, 17-

18  When samples consist of discrete layers with well-defined stoichiometries, AR-XPS often 

provides excellent film thickness measurements. AR-XPS can also be used to model compositional 

gradients in samples. In these cases a unique fitting solution is usually not possible, and the final 

fit results strongly depend on modeling assumptions and constraints.1, 3 Compositional gradients 

are likely for our glass samples, and advanced modeling will be required to extract quantitative 

depth distributions from the data below. We hope to address this in the near future. However, even 

qualitative interpretation of the data gives useful insight into the near-surface composition of 

multicomponent display glass.  
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4.4 Experimental 

 

Samples in this study were produced from Eagle XG® display glass harvested directly from 

a Corning production line and stored in airtight containers until the time of analysis. We have 

confirmed by XPS that this storage method maintains pristine surfaces with <5 atom % of 

adventitious carbon contamination. These samples were treated with the chemical treatments 

shown in Table 4.1, following the same protocols used in previous chapters of this dissertation. 

Following treatment, samples were stored in sealed glass vials until the time of analysis (ca. 1 

week). 

Table 4.1. Wet chemical treatment conditions. 

Reagent Grade Supplier Conc.  pH Temp. 
(°C) Time (m) 

Industrial 
Detergent N/R N/R 1% v/v 12 60 10  

HCl Optima® Fisher 
Scientific 0.1 M 1* 60 3.3, 10, or 

100  

HF ACS EMD 0.1 M 2* 20 10 

TMAH TraceSelect® 
Ultra Fluka 0.1 M  11* 60 10  

N/R = not reported.*Calculated pH.  

All XPS data was acquired at ThermoFisher headquarters in East Grinstead, UK, using a 

ThermoFisher Thetaprobe instrument. This instrument acquires AR-XPS data at multiple angles 

in parallel using electron optics that disperse photoelectrons according to their take off angles 

across a position-sensitive detector, as shown in Figure 4.3. For this analysis, the data was 

retroactively partitioned into eight take off angle data channels. Two replicates were taken for each 

sample treatment, where a new sample was used for each replicate. The average compositions from 

two replicate measurements are reported at each angle for each species. 
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Data was collected from the Si 2p, Al 2p, B 1s, Ca 2p, Mg 1s, Sr 3d, O 1s, and Sn 3d 

transitions for each sample. Data was analyzed using the Avantage software package 

(ThermoFisher, East Grinstead, UK. Ver. 5.967). The peak areas at each transition were measured 

by applying a ‘Smart’ type background included in the analysis software package. This 

background is a variation of the commonly used Shirley background with the additional constraint 

that the background intensity should not exceed the data intensity at any point. The resulting peak 

areas were used to calculate the relative concentration in units of atom % and mole %. 

We used the known bulk composition of an Eagle XG® fracture surface to derive elemental 

sensitivity factors. The bulk composition of Eagle XG® is proprietary, and is not published here. 

However, the AR-XPS analysis revealed no compositional gradients in the Eagle XG® fracture 

surface. Prior to quantitation, we corrected all data for signal attenuation from adventitious carbon 

overlayers following a published protocol.19 

 

4.5 Results and Discussion 

 

Figure 4.4 displays XPS results for Eagle XG® exposed to various sample treatments. 

Quantitative surface compositional information for Eagle XG® is considered confidential 

information. Therefore, the data in each plot has been scaled to the concentration for untreated 

Eagle XG® obtained at a take off angle of 23.75°, which is the least surface sensitive take off angle 

in this study. Thus normalized, the plots provide useful compositional comparison between the 

various sample treatments and present evidence of near-surface compositional gradients in these 

samples while protecting sensitive compositional information.  Modifier, Al, and B concentrations 

generally decrease as the scans move to shallower analysis depths (greater take off angles) in 
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Figure 4.4b-f. In contrast, the concentration of Si increases near the sample surface in Figure 4.4a. 

These results are consistent with the previous LEIS and SIMS quantitative analyses, which suggest 

relatively Si rich surfaces form on most chemically treated Eagle XG® samples.11-12 Significant 

scatter occurs in some of the plots, especially for the less-abundant species. Scatter in the B 1s data 

may be attributed to its relatively low photoemission cross-section. The Sr 3d transition proved 

challenging due to its low concentration and difficult background arising from proximity to the Si 

2p and Al 2s transitions. Only small fractions of Sn and Mg were detected while excellent signals 

were obtained for Si, Ca, and Al.  

Similar quantities of oxygen are detected in all Eagle XG® samples in Figure 4.4g. Oxygen 

concentration increases sharply in the more surface sensitive scans. Relative increases of ca. 8% 

in oxygen are seen for all samples between the least surface sensitive data, recorded at 23.75°, and 

the data with the greatest surface sensitivity, recorded at 76.25°. There are several possible 

explanations for this apparent compositional gradient. Oxidized adventitious hydrocarbon species 

(e.g., alcohols and carboxylic acids) contribute some oxygen to the sample surface. Also, 

physisorbed water contributes to the total measured oxygen. Without heating the samples, it is 

impossible to remove or account for oxygen from physisorbed water.20 Surface hydroxyls also 

increase the amount of detected oxygen compared to unhdroxylated surfaces.20-21 Water and 

hydrous species, e.g., hydronium, may also penetrate the glass to some extent, contributing to an 

oxygen gradient near the sample surface.9  

Unfortunately, it is difficult to distinguish between oxygen from water and oxygen from 

the glassy network by XPS.20 All of our samples, including the fracture surfaces used to derive the 

elemental sensitivity factors, were prepared in air and are likely to include a layer of physisorbed 

water and surface hydroxyls. This is a source of uncertainty in the elemental sensitivity factors for 
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oxygen, but will not affect the relative ratios of other elemental signals. Accordingly, the remainder 

of the discussion focuses on sample composition in terms of mole % of oxides, assuming that the 

concentrations of SiO2, B2O3, Al2O3, SnO2, CaO, MgO, and SrO scale with the Si 2p, B 1s, Al 2p, 

Sn 3d, Ca 2p, Mg 3d, and Sr 3d signals, respectively, applying stoichiometric factors where 

necessary. In other words, we have calculated the molar concentrations of these species without 

using the O 1s signal. 

Molar percentages of each oxide as a function of take off angle are shown in Figure 4.5 for 

all samples. Again, all concentrations have been normalized to the intensity of the concentrations 

for the untreated Eagle XG® sample measured at a take off angle of 23.75° to protect sensitive 

compositional information. Removing the oxygen signal from our analysis and analyzing the data 

in terms of molar composition has simplified the interpretation of compositional trends in some 

cases. For example, Figure 4.4a shows a dip in Si concentration at intermediate take off angles 

while Figure 4.5a shows monotonically increasing SiO2 concentration nearer to the surface. B2O3 

concentration appears to decrease most sharply nearest to the surface for all samples, while more 

gradual decreases are seen for Al2O3 and CaO. Noisier data for MgO and SrO limit their 

interpretation, but concentrations for both species appear to decrease near the surface. SnO2 is 

detected in small quantities, but the signal-to-noise ratio is too low for further interpretation.    

This data suggests a significant compositional gradient occurs in the outer ca. 10 nm of 

Eagle XG®. This is a relatively shallow depth of modifier depletion. For example, there is a ca. 

25% relative decrease Al2O3 concentration for untreated Eagle XG® between analyses performed 

at 23.75° and 76.25°. More advanced modeling of the data may reveal an even steeper 

compositional gradient. This result is in good agreement with our previous LEIS analysis, which 

showed very low Al2O3 surface coverage at the outermost atomic layer of untreated Eagle XG®.11   
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This study included samples exposed to 0.1 m HCl for different periods of time (3.3 

minutes, 10 minutes, or 100 minutes). The depletion of modifiers, Al, and B for these samples 

follows the expected trend, with the greatest degree of depletion for the sample treated the longest. 

Interestingly, modifiers, Al, and B are also strongly depleted from the HF-treated sample, which 

gives only slightly higher concentrations than the sample treated with HCl for 3.3 minutes. This 

result agrees with the previous LEIS and ToF-SIMS analyses in Chapters 2 and 3. It suggests that 

both etching and ion exchange occur for HF-treated Eagle XG® under the described reaction 

conditions. 

Detergent-treated Eagle XG® has increased Al2O3 compared to the as-formed surface, in 

agreement with our previous LEIS and ToF-SIMS analyses.11-12 This sample has ca. 20% greater 

Al2O3 concentration than the untreated surface in the analysis performed at 23.75°, and ca. 40% 

greater aluminum concentration in the analysis performed at 76.25°. Possible explanations for this 

phenomenon include precipitation of an Al2O3-rich layer from solution on the glass surface, or 

etching of a Si-rich layer that naturally forms on Eagle XG® to reveal a more bulk-like Al2O3-rich 

composition.  

Interestingly, while other samples shown monotonically decreasing Al2O3 concentrations 

towards more surface sensitive angles, the Al2O3 initially decreases at take off angles from 23.75° 

to 53.75° showing a flat or slightly increasing concentration after that. This may indicate the 

formation of an Al-rich layer on the surface of this sample, though mathematical modeling of the 

data is required to determine this conclusively.  
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4.6 Conclusion 

 

We have analyzed chemically-treated display glass surfaces with AR-XPS. The results 

indicate a strong compositional gradient over the outer ca. 10 nm of the sample surface in all cases. 

The AR-XPS analysis shows a surface depleted of modifiers, Al, and B, and relatively rich in silica 

in good agreement with previous results.11-12 Samples treated with industrial alkaline detergent 

have increased Al2O3 surface concentration compared to untreated Eagle XG® surfaces.   

These results reinforce the conclusion that even short chemical treatments can result in 

important differences in the surface composition of Eagle XG®. They also show that a relatively 

steep compositional gradient occurs in the near-surface region of Eagle XG® during these short 

chemical treatments. This suggests that some of the noted differences between the LEIS and SIMS 

quantitative results in Chapters 2 and 3 may be due to the different information depths between 

the two techniques.  They also demonstrate that understanding the surface composition of display 

glass as it relates to surface mediated processes requires extremely surface sensitive analyses. 

Here, XPS taken at 23.75° (analysis depth of ca. 8 nm) gave significantly different elemental 

compositions than those recorded at 76.25° (information depth of ca. 2 nm) in all cases. Therefore, 

standard XPS analysis does not accurately represent the composition of the outermost atomic layer 

of these display glass surfaces. The composition of the outermost atomic layer likely has the 

strongest influence on surface mediated processes on display glass surfaces. Therefore, 

understanding surface mediated processes requires extremely surface sensitive analysis. 

Further modeling of this data may provide insight into glass alteration mechanisms at the 

Eagle XG® surface. For example, the mechanism of aluminum enrichment during treatment with 

alkaline industrial detergent remains unknown. A compositional depth profile of aluminum will 

improve our understanding. If the modeling reveals an Al2O3-rich film on top of a surface with 
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composition similar to untreated Eagle XG®, it may indicate that an Al2O3 enriched film 

precipitates from solution onto the surface of this sample. In contrast, a more gradual, continuous 

increase in Al2O3 concentration from surface to bulk would suggest that detergent treatment etches 

through an Al2O3-depleted/SiO2-rich layer at the Eagle XG® surface to reveal a more bulk-like 

composition. In principle, such modeling of our data is possible provided reasonable constraints 

can be applied to the fits, as indicated by other AR-XPS studies of diffusion.1 
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4.7 Figures 

 

 

Figure 4.1. Schematic representation of the operating principle of AR-XPS.  
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Figure 4.2. Schematic representation of sampling depths in sputter depth profiling and AR-XPS. (a.) 

Sampling in sputter depth profiling, where a discrete slice of sample is analyzed with every sputter cycle. 

(b.) Sampling in AR-XPS, where greater take off angles relative to surface normal analyze shallower 

depths. Note that the greatest fraction of photoelectrons always occurs within 1λcosΘ of the sample 

surface, symbolized by the tapered shapes in the drawing.  
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Figure 4.3. Overview of the ThermoFisher Thetaprobe XPS instrument. (a.) Electron optics in the 

instrument disperse the electrons across a 2-dimensional position sensitive detector. The electrons are 

dispersed according to energy in one axis and according to angle on the other axis. (b.) Schematic 

representation of the position sensitive detector using silicon oxide on silicon as an example. Electrons are 

dispersed by energy on the x-axis and by take off angle on the y-axis. At surface sensitive angles (nearer 

to 90°), only the SiO2 is detected.   
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Figure 4.4. AR-XPS results showing relative elemental composition of Eagle XG® samples as a function 

of take off angle. Concentrations have been normalized to the concentration obtained for the untreated 

sample at a take off angle of 23.75° to protect confidential compositional information about this material. 
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Figure 4.5. Relative molar percent compositions for samples for Eagle XG® samples as a function of take 

off angle. Concentrations have been normalized to the concentration obtained for the untreated sample at 

a take off angle of 23.75° to protect confidential compositional information about this material. 
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Chapter 5: ToF-SIMS Analysis of Surface Hydroxyls on Multicomponent Display Glass 
Surfaces 

 

Cody V. Cushman, Cameron T. Dahlquist, Scott S. Parker,  J. Brigham Clawson, Landon 

S. Fisher, Andrew Ralph, Jeff Chapman, Albert J. Fahey, Christine M. Mahoney, James Coombs, 

Barry M. Lunt, Joy Banerjee, Nicholas J. Smith, and Matthew R. Linford. 

 

5.1 Abstract 

 

Surface hydroxyls govern a number of surface-mediated processes on glasses and oxides. 

Understanding glass surface chemistry at this level is necessary for improving alkali-free display 

glass substrates—currently the premier substrate for fabricating flat panel displays. Methodologies 

for measuring surface hydroxylation on low-surface-area multicomponent glass substrates in a 

planar form factor are needed. This study evaluates in detail time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) as a method for quantifying surface hydroxyls on multicomponent 

glasses, examining the impact of instrumental parameters, the influence of adventitious surface 

contamination, and variability of results, both spot-to-spot (within a sample) and between 

replicates (sample-to-sample). Results for a common multicomponent display glass surface 

indicate that as-formed and detergent treated surfaces generally have fewer surface hydroxyls than 

those treated with acidic treatments including hydrofluoric and hydrochloric acid.  
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5.2 Introduction 

 

5.2.1 Overview  
 

Flat panel displays (FPDs) are microfabricated devices, where display pixels are typically 

fabricated using photolithographic processes, thin-film deposition, and etching. These devices are 

often fabricated on the surface of specially engineered display glass substrates.1-4  Consequently, 

display glasses must meet exacting requirements in terms of their macroscale dimensional 

uniformity, cleanliness, nanoscale roughness, and ability to withstand the processing conditions 

associated with FPD production.1 This requires glass compositions that are dimensionally stable 

with exposure to high temperature and chemically durable with respect to the conditions they will 

encounter. The glass must also be free from more-mobile elements that can diffuse from the glass 

substrate into the microelectronics fabricated thereon. As a result, most display glasses have 

nominally-alkali-free borosilicate compositions.1 

The surface composition of display glass is fundamentally important for its intended use.1 

Glass surface chemistry influences wetting, thin-film adhesion, particulate adhesion, the rate of 

organic contamination, and static buildup and discharge on glass surfaces, all of which can 

potentially influence FPD device yield and performance variability during fabrication and/or over 

the lifetime of the device.5-8 Current industry trends are increasing the demands placed on display 

substrates. On one hand, FPD panel sizes are increasing, driving a need to provide glass 

substantially free of contamination or defects over large surface areas. On the other hand, increased 

pixel counts have resulted in more challenging critical dimensions.9 As a result, particulate 

adhesion and static discharge have become important modes of FPD device failure during 
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fabrication.9 The demands placed on display glass surfaces will likely increase with the 

introduction of curved and flexible display geometries.9   

Understanding display glass surface chemistry at the nanoscale, as it relates to FPD device 

fabrication, is a difficult analytical challenge. In its as-formed state, the surface composition of 

multicomponent glasses can differ significantly from its bulk composition and is further dependent 

on the method of manufacture by which that surface is created.10-11  Furthermore, display glass 

surfaces can be considered somewhat labile, in that their surface elemental compositions at the 

nanoscale can be altered by brief exposures to typical production-line wet chemical treatments 

including acids, bases, industrial detergents, and/or etchants employed during glass sheet finishing 

and display device fabrication.11-13 Our previous efforts focused on characterizing the elemental 

surface composition of display glasses exposed to various model process chemistries.12-13 In this 

work, we turn our attention to understanding how the surface hydroxylation state of display glass 

changes with exposure to these treatments.  

As surface hydroxyls are among the most polar and reactive sites on an oxide surface, they 

are considered to play a governing role in several surface-mediated properties and processes of 

oxide glass materials.6, 14-21 Therefore, methodologies for quantifying surface hydroxyls are 

important for improving display substrates and addressing production-line challenges. From a 

wider perspective, glass surface modifications and coatings are used to add functionality and value 

to a wide range of products, and a better knowledge of surface hydroxylation is potentially 

important for all such applications.22       

 

 



183 
 

5.2.2 Surface Hydroxyl Measurements on Powders and Fibers 
 

Surface hydroxyl measurements have been an important research topic for over fifty years. 

High-surface area silica, including powders and gels, are the most-studied class of material because 

(i) they are technologically important in their own right, being used in catalysis, chemical 

separations, as filler materials in polymers, etc. and (ii) because their high surface area makes it 

possible to readily detect and characterize surface hydroxylation using techniques such as infrared 

spectroscopy, gravimetric analysis, and temperature-programmed desorption mass spectrometry.5, 

17-18, 23-28 These studies have been foundational in establishing the hydroxylation properties of 

oxide surfaces. Infrared spectroscopy studies on powdered synthetic silica, for example, detect 

multiple types of silanol sites on its surface—so-called vicinal, geminal, and isolated silanols—

each of which have different reactivities due to differing hydrogen-bonding states from proximity 

to neighboring silanols.17 IR studies have also shown that the reactivity of silanols could be altered 

significantly with the addition of boron on these surfaces, as is common for many technologically 

important multicomponent borosilicate glasses.5, 17 There have also been numerous attempts to 

quantify the maximum number of silanols per unit surface area on powdered silica, which have 

reported varying results.18, 23, 25, 28 A review article summarizes many of these attempts.18  Silica 

surface hydroxylation has also been modeled in several computational studies, which have 

established that three-coordinated Si, strained siloxane bonds, and non-bridging oxygens are 

important sites for surface hydroxyl formation.29-32 

More recently, a comprehensive model for the hydroxylation of silica surfaces has been 

proposed based on  a detailed characterization of more than 100 high-surface area amorphous silica 

powders using a combination of thermogravimetric analysis, temperature-programmed desorption 

mass spectrometry (TPD-MS), Brunauer–Emmett–Teller (BET) surface area measurements, 
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infrared spectroscopy, and other techniques.18 According to this work, a fully-hydroxylated 

amorphous silica surface has 4.6 OH/nm2 (least squares average).18 This value is widely accepted, 

but has not gone entirely undisputed.25 At low temperatures, silica surfaces are typically covered 

in physisorbed water—i.e. adsorbed molecular H2O—from the atmosphere. Heating in vacuo to 

ca. 200 °C completely removes physisorbed water from the silica surface.14, 18 At higher 

temperatures, first vicinal and then geminal silanols condense to form siloxane bonds and liberate 

water as a desorption product—a process referred to as dehydroxylation. At temperatures between 

200 and 400 °C, these changes are mostly reversible upon re-exposure to water vapor 

(rehydroxylation). Treatments of silica at higher temperatures induces further dehydroxylation but 

also causes the surface to reconfigure, resulting in long-lasting changes to its hydroxylation state 

upon subsequent cooling.  Surfaces treated at 1000 °C can take years to fully rehydroxylate at 

room temperature, and the maximal extent of rehydroxylation has been debated.18 Therefore, 

silica’s hydroxylation state is a strong function of its thermal history.  

Studies of surface hydroxyls and other surface functions have also been performed on 

multicomponent glass surfaces in powdered and fiber formats.8, 33-34  Multicomponent glasses are 

more complex than silica because they include non-bridging oxygens, modifier species, and 

sometimes alternate species incorporated into the network such as aluminum and boron. As a 

result, multicomponent glass surfaces can have significantly different site speciation and 

reactivities than silica surfaces.8, 35 In addition, sub-surface hydrous species can form during the 

leaching of modifier ions from multicomponent glass surfaces.33  Previous studies attempted to 

derivatize hydroxyl functions on glass fibers with fluorosilanes and quantify them using 19F 

nuclear magnetic resonance (19F-NMR).34, 36 The lower surface area of glass fibers compared to 

silica powders required long acquisition times in order to quantify surface hydroxyls. Due to steric 
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considerations, this technique was estimated to have an upper measurement limit of ca. 3.0 

OH/nm2, with A glass and E glass fibers giving 0.78 and 1.31 OH/nm2, respectively.34 Other 

studies have examined surface adsorptive sites using temperature programmed desorption inverse 

gas chromatography (TPD-IGC).35 One study demonstrated that (i) there are weak and strong 

adsorption sites on multicomponent glass surfaces; (ii) the type of modifier ions used and their 

concentrations heavily influences the type and number of adsorptive sites; and (iii) boronols (B-

OH) are an important adsorption site for some glass compositions, in addition to the more widely-

studied silanols.37    

 

5.2.3 Surface Hydroxyl Measurements for Planar Substrates 
 

While previous studies on powder surfaces have expanded theoretical understanding of 

surface hydroxylation, powder surfaces may not be representative of melt-formed planar 

surfaces.10-11 This is especially true for multicomponent glasses, where elements can be lost to 

evaporation or preferentially diffuse to the surface during the glass forming process.10, 38-39  Also, 

altered surfaces can result from exposure to aqueous chemistries or atmospheric contaminants.11, 

40 Therefore, understanding the hydroxylation state of planar display glass substrates requires 

direct measurement of these surfaces. Given the low surface area inherent in planar samples, 

however, this poses a significant analytical challenge. Techniques such as Fourier transform 

infrared spectroscopy (FTIR) lack inherent surface sensitivity/specificity and instead access 

surface information by increasing the ratio of surface-to-bulk within the analytical volume.  This 

strategy is often not available to quantify hydroxyls on planar surfaces, wherein the low surface 

area provides an exceedingly small number of hydroxyls to measure within a specified analytical 
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volume. This limits analytical possibilities to methods with a high degree of (surface) sensitivity, 

as well as possible coupling with strategies to improve surface-specific signals (e.g. chemical 

tagging).14 

Over the past three decades, several approaches have been attempted for measuring 

hydroxyls on planar substrates. Despite its inability to directly detect H, hydroxyl measurements 

by X-ray photoelectron spectroscopy (XPS) have been attempted in some cases, often by peak 

fitting of the O 1s envelope to resolve signal contributions from surface hydroxyls versus non-

bridging and bridging oxygens.41-42 While such an approach is possible for some materials, e.g., 

hydroxyls on tin oxide, it is now generally accepted that there is not an appreciable chemical shift 

between silanol oxygens and bridging oxygens in fused silica and silicate glasses.43-44 Any results 

obtained through this route are based on rather arbitrary peak fitting assumptions, and our own 

attempts with multicomponent display glasses in question have yielded similarly arbitrary or non-

unique fit results.45  Alternatively, chemical derivatization of surface hydroxyls has also been 

widely used.6, 8, 46 This approach uses reactions with surface silanols to “tag” the sites with a more-

readily detected heterospecies (or in some cases a fluorophore). Subsequently, the number of 

reacted groups is quantified using a suitable technique like XPS, FTIR, or fluorimetry. This 

approach has been used successfully in several studies, but it also has several drawbacks. Steric 

limitations can prevent all surface hydroxyls from reacting with the derivatizing agent.47-49 It is 

also assumed that the reaction efficiency of the tagging species is complete, and that all unreacted 

derivatizing agent has been removed from the surface prior to quantitation.14, 45, 49 In addition, 

some reagents used for this purpose may be selective toward freely-vibrating silanols and have 

limited reactivity toward H-bonded silanols.8, 46 Sum frequency generation spectroscopy and 
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evanescent wave cavity ring down spectroscopy have also been used to study the interaction of 

surface silanols on amorphous silica surfaces with water and adsorbates.50-52  

More recently, a calculation-based approach using surface composition obtained from XPS 

has been used to estimate the number of surface hydroxyls.43, 53 This approach is based on the fact 

that surface hydroxyls contribute more oxygen to the surface than bridging oxygens. Therefore, 

the number of surface hydroxyls can be estimated from excess oxygen quantified within the 

information depth of XPS at a sample surface. This requires a careful measurement of the glass's 

elemental composition using appropriate sensitivity factors to estimate the number of bridging and 

non-bridging oxygens in the network based on stoichiometric assumptions. The samples must also 

be heated to remove physisorbed water because XPS cannot distinguish between oxygen from 

physisorbed water and oxygen from the sample surface.43 Ca. 2.5 OH/nm2 were measured for 

unleached soda-lime silicate glass, while 4.6 OH/nm2 were measured on an acid-leached surface.43 

A key advantage of this approach is its ability to quantify not only surface hydroxyls but also other 

important surface sites like bridging and non-bridging oxygens. One key disadvantage is that it 

can only average information over the depth of analysis of XPS, which is typically cited as ca. 10 

nm.45 However, significant gradients in glass composition can occur even over this short length 

scale.38  

 

5.2.4 Secondary Ion Mass Spectrometry for Surface Hydroxylation 
Measurements on Low-Surface Area Samples  

 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers some advantages 

compared to other surface analytical approaches for surface hydroxyl measurements. It can directly 
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detect hydrogen and hydrogen-containing fragments.54 In contrast, the presence of hydrogen is 

only inferred in XPS, low energy ion scattering (LEIS), and Auger electron spectroscopy. Also, 

ToF-SIMS is among the most surface-sensitive analytical techniques. The depth of analysis 

commonly cited for the Ga+ beam used in this study is 1-3 atomic layers, though the exact depth 

of analysis is dependent on many factors, including the beam energy, angle of incidence, and 

analyte composition.54-56 This extreme surface sensitivity is well-suited for measuring surface 

functions at the outermost atomic layer of a sample. SIMS has among the lowest detection limits 

of all surface analytical techniques, ranging from ppm to ppb for most elemental species.57 ToF-

SIMS detects all ions of a selected polarity.54 Accordingly, it simultaneously obtains information 

about a sample’s surface composition, its degree of surface contamination, and signals relating to 

surface hydroxylation. Its surface sensitivity, low detection limits, ability to detect hydrogen, and 

high information content make ToF-SIMS a promising tool for measuring the surface 

hydroxylation state of a variety of oxide materials.  

Dynamic SIMS is routinely used to measure bulk water concentration in minerals and thin 

films.58-66 However, there are comparatively few studies using static SIMS to measure surface 

hydroxylation.14-16, 20, 41, 44-45 There are a few possible reasons why this method is not more widely 

used and accepted. There are still questions about the best experimental protocol for static SIMS 

measurement of surface hydroxyls. Studies to date have provided little discussion of the influence 

of instrument parameters and settings on measurements, and few provide statistics on spot-to-spot 

and sample-to-sample measurement repeatability. An additional challenge is that any SIMS 

hydroxyl measurements can be affected by redeposition of water or hydrogen from the vacuum 

chamber.62  Direct measurement of hydrogen and hydrogen containing fragments is complicated 

by the presence of background water and hydrogen gas in vacuum systems and can be sensitive to 
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analysis conditions.58, 62-67 However, these considerations have largely been discussed in the 

context of achieving low detection limits for dynamic SIMS measurements of trace amounts of 

hydrogen or OH- fragments in minerals or oxide materials, and different considerations may apply 

for the present study. Some studies call for lengthy sample heating in vacuo to remove physisorbed 

water from the sample surface, adding to the time and expense of the measurement.14-16 Also, 

adventitious surface contamination can interfere with surface hydroxyl measurements, though the 

mechanisms and extent of this effect have not been explored in detail. 44-45  Finally, many of the 

static SIMS surface hydroxylation studies cited here predate the widespread use of modern ToF-

SIMS instruments, relying instead on sector or quadrupole instruments.14-16, 45 While these 

instrument geometries have unique advantages for some applications, ToF-SIMS is especially 

well-suited for static SIMS analysis because of its parallel detection and high mass resolution.54  

Previously, SIMS was used to measure surface hydroxylation of thin films of SnO2 using 

a combination of sector and quadrupole SIMS instruments.44 Both the SnOH+ and OH- signals 

showed a positive correlation with the degree of surface hydroxylation, where both signals were 

normalized to matrix signals for the sake of quantitation. In practice, the SnOH+/Sn+ ratio was used 

as a metric for hydroxylation in positive ion mode, and the OH-/O- was used in negative ion mode. 

This study suggested that a thick hydrocarbon overlayer could suppress the SnOH+ signal, and 

provided some potential mechanisms to explain this phenomenon.44 Cleaning the surface with 

water plasma to remove adventitious hydrocarbon enhanced the SnOH+ signal. In addition, 

physisorbed water at the sample surface enhanced the SnOH+ signal, and had to be removed by 

heating in vacuo to achieve accurate hydroxyl measurements. These SIMS findings agreed with 

XPS results published in the same study.44 Note that there is an appreciable chemical shift in the 
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O 1s peak position between bridging oxygens and surface hydroxyls in SnO2, while the shift is 

very minor for SiO2.44
  

An early static SIMS study analyzed fused silica surfaces as a function of chemical 

treatment and temperature.45 Several SIMS peak area ratios correlated with surface hydroxylation, 

including the SiOH+/Si+ and OH-/O- ratios. The SiOH+/Si+ ratio was considered less susceptible to 

influence by background gas levels in the vacuum chamber than the OH-/O- ratio.45 Sputter-etched 

silica surfaces gradually reacted with residual water vapor in the vacuum system to form 

hydroxyls, as indicated by an increase in the sample’s SiOH+/Si+ ratio. Significant scatter in the 

data occurred below 200 °C, which was attributed to the presence of physisorbed water.   

Later studies demonstrated that physisorbed water could be removed from silica surfaces 

by heating the sample in vacuo to 200 °C, after which the SiOH+/Si+ ratio varied linearly with 

surface hydroxyl concentration.14-16 Sensitivity factors were established for the SIMS 

measurements by analyzing powdered silica reference samples using both SIMS and transmission 

infrared spectroscopy, and reported 4.6 OH/nm2 for a fully-hydroxylated fused silica fracture 

surface. This value agrees with results from powdered silica studies.15, 18 SIMS SiOH+/Si+ ratios 

also correlated linearly with complementary measurements from chemical derivatization/XPS 

measurements.14  

These studies also explored the dehydroxylation and rehydroxylation behavior of vacuum-

fracture fused silica surfaces as a function of temperature.15-16 The surfaces dehydroxylated 

reversibly between 200 and 400 °C, with complete rehydroxylation occurring upon exposure to 

water vapor. Above 400 °C, the rehydroxylation kinetics get appreciably slower and 

rehydroxylation is potentially incomplete due to remodeling of the fracture surface at higher 

temperatures.18 The initial hydroxylation state of fracture surfaces was only weakly correlated with 
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water vapor partial pressure at the time of fracture.15 A two-step model for the hydroxylation of 

fracture surfaces was proposed. In the first step, dangling bonds that formed during the fracture 

process immediately react with neighboring species to form bridging siloxane bonds. In the second 

step, water vapor reacts with strained-siloxane bonds at the sample surface. Fused silica fracture 

surfaces dosed with water vapor in vacuum typically gave ca. 2.5 OH/nm2
.
15

    

More recently, studies have used SIMS to measure hydroxylation on sputtered silicon oxide 

films doped with various metals, as well as other metal-oxide films.19-20 These studies show a 

strong correlation between the wetting and contamination behavior of these films as measured by 

water contact angle goniometry and their hydroxyl coverage, as indicated by SIMS and chemical 

derivatization/XPS measurements. However, these studies do not mention sample heating to 

remove physisorbed water prior to SIMS measurement. 

We are currently aware of only one published study using static SIMS to analyze hydroxyls 

on multicomponent glass surfaces.41  This study was visionary in that it was one of the earliest to 

propose the use of static SIMS for surface hydroxyl measurements. However, it attempted 

quantitation by cross-calibration to XPS peak fitting results. It is now generally accepted that such 

peak fitting results are unreliable. In addition, no effort was made to remove physisorbed water 

from the samples, which is a likely source of error in the quantitative results.    

 

5.3 Aims 

   

Most SIMS hydroxylation studies to date focus on relatively simple oxide surfaces, and we 

are aware of only one that applied static SIMS to multicomponent glass surfaces.41 In addition, 

most studies focus on surfaces carefully prepared in vacuum by sputtering or fracture, or surfaces 
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cleaned with UV-generated ozone (UVO). While these studies on model surfaces are valuable, 

there has been consequently only limited discussion about the influence of adventitious 

hydrocarbon contamination on the reproducibility and validity of SIMS surface hydroxylation 

measurements.  This type of contamination is expected on any “real-world” glass surface that has 

been exposed to ambient atmosphere and thus presents a noteworthy analytical challenge for 

applying the SIMS approach to glass sheet products of technological interest. 

The principle aim of our study is to use ToF-SIMS to characterize surface hydroxylation 

on multicomponent display glass surfaces—both in as-formed (melt surface) conditions, as well 

as changes therein upon exposure to model wet chemical treatments expected to alter the chemistry 

of the surface. Treatments include exposure to HCl, HF, tetramethylammonium hydroxide 

(TMAH), and an industrial detergent, with the long-term goal of understanding how surface 

hydroxylation affects surface-mediated processes and downstream performance for display 

substrates. This study will also give needed insight into the applicability of ToF-SIMS 

measurements of surface hydroxylation for the general class of compositionally-complex oxide 

materials, given the prevalence of multicomponent oxides and glasses in other technological 

applications including optical coatings, memory devices, chemical sensors, etc. A secondary goal 

of this study is to explore the effects of instrument settings and surface contamination on the 

measurements, and to provide a more detailed statistical analysis of the reproducibility of SIMS 

surface hydroxylation measurements than in previous studies.  

While the focus of this work is on display substrates, this study may have a much wider 

impact, given that oxide films and materials are technologically important in the fields of catalysis, 

chemical separation, optics, semiconductors, photonics, sensing, etc. Surface hydroxyls play an 

important role in many of these applications. 
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5.4 Experimental  

 

5.4.1 Sample Preparation and Storage 
 

Samples for this study included chemically treated surfaces of fused quartz slides (GE 124, 

Type-I silica), purchased from Structure Probe Incorporated (SPI supplies, Westchester, PA), and 

Corning® Eagle XG® display glass. Eagle XG® was sampled directly from the production line 

immediately after forming and stored in airtight containers lined with UHV foil to preserve the 

surface until the time of analysis. We have confirmed by XPS that this sample storage protocol 

limits adventitious hydrocarbon contamination to nominal levels (ca. ~3-4 at.%) over extended 

periods. Therefore, this starting material represents a reasonable approximation of the melt-formed 

glass surface in its as-formed state—free of undue adventitious contamination—and allows us to 

perform a representative study of the surface evolution as it is subsequently exposed to typical 

production-line chemistries. In addition, we used fracture surfaces formed from bars of re-melted 

Eagle XG® to establish elemental sensitivity factors for SIMS signals to obtain quantitative 

information about the surface composition of these samples. We fractured these samples in air and 

introduced them into the vacuum chamber as rapidly as possible in order to limit contamination 

by adventitious hydrocarbon. They were typically exposed to air for ca. 3 minutes. This is a single-

point calibration approach and assumes a linear response over the compositional range of interest. 

Complementary analysis by AR-XPS was used to validate this assumption.  

We analyzed these surfaces in their as-treated state as well as after exposure to wet-

chemical treatments typical of FPD production lines including HCl, HF, TMAH (a base commonly 

used as an etchant and a common ingredient in some photoresist developers), and industrial 
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alkaline detergents. We also treated fused quartz surfaces with boiling water because this treatment 

was used in SIMS surface hydroxyl studies of fused quartz elsewhere.15 Sample treatment 

conditions are summarized in Table 5.1. For chemical treatments performed at 60 °C, we preheated 

the solution by immersing the reaction vessel in a heated water bath for 20 minutes prior to 

introducing the sample. For reactions performed at room temperature, all reagents were 

equilibrated to room temperature prior to mixing the solution and introducing the sample. We 

typically treated ca. 1 x 5 cm2 glass segments in 50 mL of solution. Immediately after chemical 

treatment, the solution contents of the vial were exchanged five times with deionized water to 

quench the reaction, after which the sample was extracted with tweezers, rinsed under a deionized 

water spray for ca. 1 minute, and finally blown dry with nitrogen. Smaller coupons were cut from 

these samples using a glass cutter. Prior to chemical treatment, the back side (“B” side) of the 

Eagle XG® samples was marked with titanium pen to ensure that all analyses were performed on 

the opposing (“A” side) surfaces that were protected from the environment. All samples were 

stored in airtight, pre-cleaned glass vials with UHV-foil-lined caps immediately after chemical 

treatment to preserve their surfaces until they could be analyzed.  

To study the effects of surface contamination on our measurements, we dosed fused quartz 

surfaces with perdeuterated triacontane (C30D62). Triacontane is a long-chain aliphatic C30 

molecule that can be taken as a model for adventitious carbon contamination commonly observed 

on air-contaminated surfaces, which is often substantially aliphatic in nature.  Perdeuterating this 

molecule replaces all H with deuterium, D—forming CD3(CD2)28CD3—and thus allows for signal 

specificity when probing this molecule on dosed glass surfaces.  For the substrate, we used HF-

treated fused quartz as the starting material for these studies because HF treatment was shown to 

remove carbonaceous surface contaminants detected in significant concentrations on the as-
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received fused quartz samples. These surfaces were dosed with ca. 20 µL of 500 µg/mL solution 

of perdeuterated triacontane in methylene chloride (Restek Incorporated, Bellefonte, PA).    

Table 5.1. Wet chemical treatment conditions. 

Reagent Grade Supplier Conc.  pH 
Temp. 

(°C) 
Time (m) 

Industrial 

Detergent 
N/R N/R 1% v/v 12 60 10  

HCl Optima® 
Fisher 

Scientific 
0.1 M 1* 60 10  

HF ACS EMD 0.1 M 2* 20 10† 

TMAH 
TraceSelect® 

Ultra 
Fluka 0.1 M  11* 60 10  

N/R = not reported.*Calculated pH. †HF-treated Fused Quartz 2 was treated for 24 hours.   

 

5.4.2 Instrumental Details 
 

All SIMS measurements were taken using a TOF-SIMS IV instrument (IONTOF, Munster, 

Germany), using a 25 KeV Ga+ ion source. An electron flood gun at ca. 5 nA of current and 20 eV 

of electron energy was used for charge compensation. Prior to recording data, we explored the 

effects of several instrument parameters, including reflector voltage/acceptance energy, sample 
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cooling time prior to measurement, chopper width (ion dose per Ga+ pulse), and beam damage 

effects.   

In a typical experiment, two measurements were taken at room temperature, after which 

the temperature was rapidly ramped to 200 °C and held for ca. 8 hours. A 200 x 200 µm spot size 

was used at 128 x 128 pixels and 120 µs cycle time. Measurements were taken every ca. 30 minutes 

for the first 200 minutes to monitor physisorbed water desorption. After that, measurements were 

taken every 40 minutes until the end of a day’s run (8-10 hours). In order to limit the potential 

effects of beam damage and also understand spot-to-spot variability, a new spot was used for each 

spectrum. For some samples, we also acquired several positive ion spectra at arbitrary sample 

positions in rapid temporal succession to understand whether statistical scatter or drift in our data 

resulted from temporal variation (e.g. gradually decreasing main chamber pressure over the course 

of an experiment), spot-to-spot variation in our samples, or some other unidentified source of 

random variance. 

For some experiments, sample temperature was ramped stepwise from 200 °C to 400 °C. 

For others, we reversed the temperature ramp from 400 °C to 200 °C to understand how much 

samples rehydroxylated in vacuo. Alternatively, some samples were rehydoxylated by removing 

them from vacuum and exposing them to the water vapor in ambient air.  After ca. 12 hours of 

laboratory air exposure, these (ostensibly) rehydroxylated samples were re-inserted into the 

vacuum chamber and re-heated from room temperature to 200 °C to evaluate their hydroxylation 

state. 

Typical Ga+ beam current for measurements was ca. 0.3 pA, though we adjusted beam 

current as necessary to avoid exceeding one uncorrected count per Ga+ pulse for important signals 

in the spectra. For the majority of measurements, 30 second acquisitions were used in both positive 
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and negative ion mode, though longer acquisition times were used to achieve better signal-to-noise 

ratios for samples treated with perdeuterated triacontane. In all cases, measurements were well 

below the static limit of 1 x 1013
 ions/cm2, which would allow approximately 2000 seconds of 

analysis at 0.3 pA over 200 x 200 µm2. Mass resolution (m/∆m) in this study usually ranged from 

5000-7500. Typical system pressure immediately after sample introduction was 5 x 10-7 mbar, 

while pressure near the end of a run was typically ca. 1.5 x 10-8 mbar. Analyzer acceptance energy, 

as determined by reflector voltage, had an important influence on instrument response, and an 

acceptance energy of 90 eV was used throughout the study. This topic is discussed in more detail 

in the Results and Discussion section.  

 

5.5 Data Analysis 

 

For data analysis, we imported dead-time corrected ToF-SIMS spectra into CasaXPS (Casa 

Software Ltd. ver. 2.3.20 rev1.1o). Data regions without overlapping peaks were analyzed by 

applying a zero-type background and selecting peak integration limits, while regions with 

overlapping signals were fit using LF-type lineshapes, which can be described as asymmetric 

Gaussian-Lorentzian shapes.68 We have provided mathematical description of this lineshape 

elsewhere.13 Peak fitting was better for deconvoluting overlapping signals than arbitrarily 

establishing integration limits.68-69 In addition, peak-fitting is somewhat adaptive to peak width 

changes due to sample charging, which varied from spot to spot and sample to sample. Signal 

intensities measured in CasaXPS were used in all further data analysis. In the case of resolving 

29SiOH+ and SiOD+ signals, the SiOD+ peak area was obtained by subtracting the 29SiOH+ peak 

area calculated based on its isotope ratio to 28SiOH+ from the overall 29SiOH+/SiOD+ envelope.  
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Some outliers were removed from the data. A complete list of outliers is provided in the 

Supporting Information. Data points were considered outliers if their SiOH+/Si+ ratios were 

significantly different than the majority of the data points. They were also considered outliers if 

their count rates and resolutions were significantly different than all other data points in a data set, 

which could suggest artifacts due to incorrect instrument settings or sample charging. In most 

cases, evidence of sample contamination or errors in instrument settings could be found to explain 

the outlying data.    

 

5.6 Sensitivity Factors for SIMS Quantitation 

 

We attempted to quantify the elemental surface composition of the Eagle XG® samples in 

this study using static SIMS. SIMS is not often used for quantitation of matrix species, but it is 

possible, in principle, provided that suitable reference materials are available. We used fracture 

surfaces of rectangular bars formed from remelted Eagle XG® to derive relative sensitivity factors 

(RSFs) by assuming that instrument response from the fracture surface corresponded to the known 

bulk composition of Eagle XG®. These Eagle XG® surfaces were fractured in air and rapidly 

loaded into the sample chamber. Typical air exposure for these surfaces was ca. 3 minutes. These 

surfaces were incompatible with our heating stage, and were analyzed at room temperature.  We 

note that the experimentally-determined bulk composition of Eagle XG® is proprietary, and have 

not reported it here, though it was analyzed for the purposes of RSF determination.    

We applied equations commonly used for deriving RSFs in XPS analysis to our SIMS data. 

Three spectra each were obtained from two separate Eagle XG® fracture surfaces for a total of six 

replicates. Each spectrum was obtained at a new sample location. The relative intensities of the 
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B+, Si+, Al+, Mg+, Ca+, and Sr+ signals were assumed to vary linearly with the relative 

concentrations of their respective oxides. A similar assumption is often used in the LEIS analysis 

of oxide materials.70-71 The sensitivity factors were calculated according to Equation (5.1),  

(5.1) 𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥 = � 𝐴𝐴𝑥𝑥
𝑀𝑀𝑀𝑀𝑀𝑀%𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

�  ×  �
𝑀𝑀𝑀𝑀𝑀𝑀%𝑆𝑆𝑆𝑆𝑆𝑆2

𝐴𝐴𝑆𝑆𝑆𝑆+
� , 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥 is the relative sensitivity factor for a selected elemental signal, 𝐴𝐴𝑥𝑥 is the elemental 

peak area for the species of interest, 𝑀𝑀𝑀𝑀𝑀𝑀%𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the molar percentage of the element’s 

corresponding oxide in the reference material, 𝑀𝑀𝑀𝑀𝑀𝑀%𝑆𝑆𝑆𝑆𝑆𝑆2 is the known molar percentage of SiO2 

in the reference material, and 𝐴𝐴𝑆𝑆𝑆𝑆+is the Si+ peak area. The average RSFs obtained from six 

replicates were used in subsequent measurements of sample elemental composition for this glass. 

Uncertainties in RSFs ranged from 6-12%. Reproducibility in measurements from the fracture 

surface were lower than for planar surfaces, likely due to uneven sample topography, which can 

have an influence on SIMS quantitative results.72-73 RSFs in SIMS are matrix dependent, and we 

have made the assumption that Eagle XG® fracture surfaces are of a sufficiently similar matrix to 

the melt-formed and chemically-treated surfaces in this study to act as a valid calibration. We have 

checked this assumption by comparing the SIMS quantitative results to XPS results. 

Molar percentages of oxides in the samples of interest are calculated according to Equation 

(5.2), 

(5.2)   𝑀𝑀𝑀𝑀𝑀𝑀%𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝐴𝐴𝑥𝑥/𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋
∑𝐴𝐴𝑖𝑖/𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

, 

where the summation in the denominator includes the areas and sensitivity factors for the B+, Si+, 

Al+
, Mg+, Ca+ and Sr+ signals.    

Notably, we did not attempt to derive an RSF for oxygen. We could not assume that oxygen 

concentration at the fracture surfaces was equivalent to their bulk concentration because (i) we 
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could not heat the fracture surfaces to remove physisorbed water, which would contribute to the 

oxygen signal; (ii) adventitious hydrocarbons may also contribute to the oxygen signal; and (iii) 

surface hydroxyls contribute more oxygens to an oxide surface than bridging oxygens, making it 

difficult to know the exact oxygen concentration at an air-fracture surface. Also, the O+ signal had 

a low intensity in our spectra, which would contribute to its uncertainty. Accordingly, sensitivity 

factors we derived for the component oxides of the glass based on the Si+, B+, Ca+, Sr+, Mg+, and 

Ca+ signals are expected to be more robust than elemental sensitivity factors that include and 

account for the oxygen signal. For calculations below that require an estimate of oxygen 

concentration, we have inferred oxygen concentration from the stoichiometry of the glass’s 

component oxides, noting this to be only an approximation.      

We note that much of the compositional information obtained through this route is 

considered confidential information for Corning Incorporated, and has been removed from this 

report. 

 

5.7 XPS Analysis 

 

XPS data in this study was acquired using a ThermoFisher Thetaprobe XPS instrument. 

This instrument obtains angle-resolved XPS data without the need for tilting the sample. For the 

purposes of this study, we compared the SIMS results to results obtained at the most surface-

sensitive take-off angle—76.25° from surface normal—giving an approximate information depth 

of ca. 2 nm. A more detailed AR-XPS analysis of these glass surfaces is intended to be the topic 

of a future publication. 
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We obtained RSFs for the quantitation of the XPS data using the same protocol as for the 

SIMS RSFs, assuming that relative areas of the Si 2p, Al 2p, B 1s, Ca 2p, Mg 1s and Sr 3d signals 

scale with the concentrations of their respective oxides and deriving sensitivity factors by 

analyzing an Eagle XG® fracture surface. This allows for easy comparison between the SIMS and 

XPS results. We have also ignored the O 1s signal in the XPS analysis, again noting that 

adventitious hydrocarbon and physisorbed water may contribute to this signal.  

This elemental information is considered proprietary, and much of it has been removed 

from this report. 

 

5.8 Results and Discussion 

  

5.8.1 Instrumental Factors Influencing Measurement Reproducibility 
 

A major concern in this study was understanding how instrumental parameters affected the 

repeatability of our measurements. We examined the reflector voltage/acceptance energy, beam 

damage as a function of ion dose, and beam current per ion shot as governed by the chopper width 

setting. In addition, the heater could not be switched on during measurements as it resulted in 

spectral artifacts, so we tested whether allowing the sample to cool briefly between measurements 

influenced instrument response. Of these factors, we found that ion dose per shot (chopper width) 

had no influence provided that we avoided saturating the detector (i.e. there was < 1 uncorrected 

count per Ga+ shot for a given signal). Allowing the sample to cool from 200 °C for 10 minutes 

before analyzing it (resulting in a temperature of ca. 100 °C) gave the same response as analyzing 

it immediately after turning off the heater. To evaluate the effects of beam damage, we repeatedly 
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recorded spectra from the same spot in 30 second increments for a total of 300 seconds at beam 

current of 0.3 pA. Figure 5.1 displays the measured SiOH+/Si+ ratios from this experiment, where 

there is no appreciable change as a function of cumulative ion dose. Thus, beam damage is a minor 

concern, provided ion dose is maintained below the static limit of 1 x 1013 ions/cm2. Mole ratios 

derived from elemental SIMS signals were also measured. There was no systematic drift in 

response as a function of cumulative ion dose in these ratios. However, for later spectra we opted 

to analyze a new spot with each spectral measurement in any case, given that a typical day’s worth 

of measurements required ca. 25 positive ion and 25 negative ion SIMS measurements. Recording 

measurements at different sample locations also gave us insight into the spot-to-spot variability 

across a sample. 

The measurements shown in Figure 5.1 are also a useful indicator of measurement 

reproducibility, given that they were taken at identical instrument settings in rapid temporal 

succession at the same sample location. The relative standard deviation for the SiOH+/Si+ ratio 

was 1% for these measurements. Relative standard deviations for molar ratios of the Eagle XG’s 

major oxides, not shown, ranged from 0.01%-2% depending on the relative abundance of the 

species in question. Thus, the random error from the instrument itself is < 2%. We note, however, 

that this experiment only accounts for short-term measurement reproducibility, and cannot account 

for long-term instrument drift.   

Reflector voltage, which governs the acceptance energy in a ToF-SIMS instrument, had an 

important influence on instrument response. Acceptance energy is the maximum initial kinetic 

energy an ion can have while still reaching the detector. This is represented schematically in Figure 

5.2a, where ions with an excessive initial kinetic energy with respect to reflector voltage settings 

penetrate the reflector entirely, or at minimum, are not focused onto the detector, and thus go 
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undetected. Elemental and molecular species typically have different initial kinetic energy 

distributions in SIMS, with elemental species having up to ca. 100 eV, while molecular species 

have a maximum of ca. 20 eV.74 Consequently, changing the reflector voltage directly impacts the 

measured SiOH+/Si+ ratio.  For example, a relatively low acceptance energy may capture 

practically all of the SiOH+ ions while only capturing a fraction of the Si+ ions, as shown in Figure 

5.2b. Meanwhile, a wider acceptance energy results in a higher total measured Si+ peak area and a 

lower overall measured SiOH+/Si+ ratio, as shown in Figure 5.2c. 

Figure 5.3a shows a plot of the SiOH+/Si+ ratio versus acceptance energy and demonstrates 

that the measured ratio changes as a function of acceptance energy. Here, we measured acceptance 

energy starting from the reflector voltage that resulted in essentially no signal at the detector.  

There is steep downward trend in the SiOH+/Si+ ratio in Figure 5.3a and an upward trend in overall 

measured counts in Figure 5.3b for acceptance energies between 0 and ca. 30 eV. Some scatter in 

overall count rate in Figure 5.3b may also be attributable to fluctuations in primary ion beam 

current, explaining the higher level of scatter in Figure 5.3b. Above acceptance energies of 50 eV, 

the trends are relatively flat, suggesting that practically all Si+ ions and SiOH+ ions are accepted.  

Analyzer acceptance is also impacted by sample charging, which influences the initial 

kinetic energy of ions leaving the surface through electrostatic interaction. Insulating surfaces may 

charge unpredictably.  To account for these sample charging effects, we used a nominal acceptance 

energy of 90 eV, placing our measurements on the flat region of Figure 5.3a, where unpredictable 

spot-to-spot variations in secondary ion energy due to sample charging would have a minimal 

impact on instrument response. This setting also gave optimal mass resolution, as shown in Figure 

5.3c. Other studies have recommended or used high acceptance energies to achieve repeatable 

analysis of insulating materials.75-76 For example, an interlaboratory study on the reproducibility 
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of static SIMS used an acceptance energy of 50 eV.76 A ToF-SIMS depth profiling study on glass 

samples also used relatively high reflector voltages.63 Generally, higher acceptance energies offer 

improved sensitivity at the expense of mass accuracy.75 However, we have focused primarily on 

species with m/z <100, where extreme mass accuracy is not needed to identify the species present.  

 

5.8.2 Discussion of Selected Mass Spectra 
 

Figure 5.4 shows positive ToF-SIMS spectra for as-received fused quartz and HF-treated 

fused quartz.  In Figure 5.4a, contaminant peaks for Ca, Na, and various hydrocarbon fragments 

are prominent on the as-received fused quartz surface. Figure 5.4b illustrates that a brief etch with 

hydrofluoric acid removes most of these contaminants, suggesting that they were adventitious 

surface contaminants rather than bulk impurities. Similarly, the other wet-chemical treatments in 

this study effectively reduced or eliminated contaminants from the fused quartz surface. In 

contrast, the as-received Eagle XG® (Figure 5.5a) surfaces show relatively small Na+ and 

hydrocarbon signals, suggesting that the careful storage protocol used here effectively maintained 

its cleanliness after shipping from the production line. We note here that both fused quartz and 

Eagle XG® are nominally alkali-free in their bulk composition. In addition, ToF-SIMS is very 

sensitive to Na+, and this species is thus often detected on most SIMS samples to some degree.  

The mass spectrum for the HF-treated Eagle XG® surface shown in Figure 5.5b has decreased 

network modifier concentrations (Mg, Ca, and Sr) and hydrocarbon signals compared to the 

untreated surface. These results agree with our previously published results.12-13  
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5.8.3 SiOH+/Si+ Peak Area Ratios for Samples Held at 200 °C 
 

Most samples in this study were analyzed at a constant temperature of 200 °C. We chose 

this temperature based on the required temperature to fully remove physisorbed water from a fused 

silica surface in a previous study.14 A range of temperatures have been reported for the complete 

removal of physisorption of water in other studies.18 Zhuravlev and coworkers found that a 

temperature of 190 ± 10 °C was sufficient to remove physisorbed water from silica surfaces and 

micropores for a range of amorphous silica powders without causing significant dehydroxylation 

of the surface.18 Therefore, the conditions used in this study are in reasonable agreement with 

established literature precedent. We have made the assumption that water removal temperature for 

fused silica can be applied to multicomponent silicate glasses and acknowledge that this may be 

an imperfect assumption. However, given that there are relatively few studies on water desorption 

from multicomponent glass surfaces, it is currently the most reasonable assumption we can make.    

An annotated plot of the SiOH+/Si+ ratio as a function of heating time for an HF-treated 

Eagle XG® surface held at a constant temperature of 200 °C is shown Figure 5.6. The first two 

data points indicated by 5.6a, which were taken at room temperature, show a much higher 

SiOH+/Si+ ratio than all other points.  This is attributable to the formation of SiOH+ ions during 

bombardment when significant quantities of physisorbed water are still present on the glass 

surface.  As the sample is heated in vacuo, a gradual decrease in the measured ratio (Fig. 5.6b) 

results from the presumptive desorption of physisorbed water from the sample surface. After 

approximately 190 minutes, the measured SiOH+/Si+ ratios indicated by 5.6c have a near-zero 

slope. Two data points were taken at adjacent 200 x 200 μm2 spots across the sample at each time 

interval, with a new spot used for every acquisition. Noticeable scatter in the data can be observed, 

even after 190 minutes of heating. We attribute this scatter to spot-to-spot variation in the samples, 
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given that each data point represents a new sample location, especially in light of the excellent 

repeatability for repeated analysis of the same spot shown in Figure 5.1a. In order to gain a better 

understanding of the magnitude of spot-to-spot variation, we began obtaining ca. 10 spectra in 

rapid succession at arbitrary sample locations at the end of each run, seen here as a cluster of data 

points near 625 minutes (indicated by 5.6d). Possible explanations for this spot-to-spot variation 

include variable levels of adventitious surface contamination across the sample surface, variations 

in electrical field due to sample charging affecting analyzer transmission as a function of sample 

location, or spot-to-spot variations in the degree of surface hydroxylation. These possibilities are 

explored in greater detail below.   

For samples held at a constant 200 °C, we have assumed that physisorbed water has been 

completely removed from the sample surface after 190 minutes, and have taken the average 

SiOH+/Si+ ratio of all data points obtained thereafter as a measure of the degree of surface 

hydroxylation, as shown in Figure 5.6c. Figure 5.7 shows these average SiOH+/Si+ ratios for all 

samples held at a constant 200 °C. Error bars are given as standard deviations, and samples are 

labeled according to their chemical treatments. A new sample was prepared for each of the 

replicates.  Relative standard deviations in the SiOH+/Si+ ratios range from 5% to 12%, and 

replicates mostly give overlapping error bars. However, for some sample types, some replicates 

give significantly different mean SiOH+/Si+ ratios. In particular, HCl-treated Eagle XG®, 

Detergent-treated Eagle XG®, and fused quartz treated with boiling water all have at least one 

replicate with a statistically different mean SiOH+/Si+ than the others. Pooled averages for each 

sample type are shown in Figure 5.8, where pooled standard deviations are ca. 7-12%.  

These SiOH+/Si+ ratios are only an instrument response, and converting them to an areal 

density number in terms of SiOH/nm2 requires the use of a suitable reference material with known 
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hydroxylation behavior to establish a sensitivity factor. However, even without using a reference 

material, these SiOH+/Si+ ratios show some interesting trends. The hydroxylation rankings seem 

reasonable if we only make comparisons between samples prepared from the same substrate. 

Ranking the Eagle XG® sample treatments from most hydroxylated to least, we have HCl ≈ HF > 

TMAH > Detergent > Untreated. For the fused quartz surfaces, we have HF ≈ HCl > boiling water 

> as-received. These rankings agree with other studies that have shown that aqueous treatments 

with acids and bases, as well as hydrothermal treatment with boiling water, significantly 

hydroxylate silica surfaces.15, 18 The trends make less sense if we compare Eagle XG® samples to 

fused quartz samples.  Fused quartz samples in their as-received state had significantly lower 

SiOH+/Si+ ratios than all other sample types, giving less than half the ratio of the as-received Eagle 

XG®. The HF- and HCl-treated Eagle XG® surfaces also gave higher SiOH+/Si+ ratios than the 

HF- and HCl-treated fused silica samples. It seems physically unreasonable that an as-received 

fused quartz surface would have a lower silanol count than an as-received multicomponent glass 

surface, due to the great degrees of compositional freedom and the lower bulk Si content in the 

latter.  It seems equally implausible that a chemically-treated multicomponent glass surface could 

have more OH/nm2 than a comparably treated fused quartz surface. This suggested that there were 

additional factors at play in our measurements, prompting us to explore the variability in elemental 

composition between spectra obtained from our samples and to perform experiments on the 

influence of hydrocarbon contamination on these measurements.       
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5.8.4 Variability in Elemental Composition of Eagle XG® Surfaces  
 

To better understand the sources of variance in our data, we analyzed the elemental 

composition of the Eagle XG® samples using the positive ion SIMS spectra. Relative sensitivity 

factors were derived as described in the experimental section using Eagle XG® fracture surfaces 

as reference materials. The molar percentages of the oxides were calculated for each positive 

spectrum recorded from the sample. All of the mole percentages recorded throughout the day 

(typically ca. 25 positive SIMS spectra) were averaged and renormalized to 100 mole% to obtain 

the average surface composition for the sample. These molar ratios are not shown due to their 

confidential nature. 

SIMS is not often used for quantitative elemental analysis for matrix constituents due to 

the matrix effect that is often present. Rather, it is most often used to measure concentration of 

trace constituents.57 However, some dynamic SIMS studies have attempted to quantify matrix 

species in glass based on relative sensitivity factors derived from fracture surfaces.77-80 We have 

attempted it here based on the assumption that the Eagle XG® fracture surface has a sufficiently 

similar matrix composition to our samples of interest to act as a valid reference. In order to prove 

the validity of this approach, we compared SIMS results to results obtained by XPS for similarly 

treated samples. These XPS data were obtained at take-off angles of 76.25° to surface normal, 

giving information depths of approximately 2 nm. Sensitivity factors for the XPS data were also 

derived from Eagle XG® fracture surfaces, and the concentrations were also measured in units of 

mole % of Eagle XG’s component oxides. These data are also not shown due to their confidential 

nature. We note here that a detailed analysis of angle-resolved XPS data for these samples is 

intended to be the subject of a future publication.  
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The SIMS and the XPS data generally agreed well with one another. SIMS is generally 

more surface sensitive than XPS and has better detection limits. Meanwhile, XPS is generally free 

from matrix effects, and is typically considered to be more quantitative. Concentrations fall in a 

similar range for both techniques. Agreement to within 8 mole % between the XPS and SIMS 

results was obtained for SiO2, which is the most abundant species in Eagle XG®
.  Agreement to 

within 2.6 mole % or better for was obtained for Al2O3, CaO, and B2O3, and agreement to within 

0.25 mole % was obtained for MgO, and SrO. The SIMS results generally showed surfaces that 

are more silica-rich/modifier depleted than XPS. These differences are attributable to the greater 

surface sensitivity of ToF-SIMS. We additionally note that signal-to-noise was low for a few 

species by XPS, including boron, strontium, and magnesium, and that signal-to-noise ratios in XPS 

suffer at more surface-sensitive take-off angles, contributing to measurement uncertainty.  

Therefore, it is no surprise that there are minor compositional discrepancies between XPS and 

SIMS for some species. However, the good overall agreement between the XPS and ToF-SIMS 

results suggests that no significant matrix effect is present in the quantified SIMS elemental results 

over the compositional ranges considered here. 

Spot-to-spot variations in elemental concentration within samples are small, as reflected 

by low RSDs between concentrations calculated from spectra recorded at different locations within 

a sample. RSDs in SiO2 concentration calculated from all spectra recorded from a given sample 

ranged from 0.1% to 2.5%, with an average value of 0.6%. Variances between replicates are also 

small. The largest spread in silicon concentration for a group of replicates was 3 mole %, occurring 

for the HF-treated samples. Accordingly, Si+ is a suitable normalization to which to compare the 

SiOH+ peak intensity, given that error bars are small and SiO2 mole percentages are repeatable for 

a given sample treatment. This indicates that the relatively wide variations in the measured 
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SiOH+/Si+ ratios within a sample group cannot be attributed to variations in the intensity of the Si+ 

signal. Rather, the SiOH+ signal is varying. Possible explanations for this variance are: (i) there 

are legitimate differences in surface hydroxylation; (ii) the SiOH+ signal is enhanced or suppressed 

by the presence of some other surface species (e.g. physisorbed water); or (iii) instrumental 

phenomena, e.g., field effects, are influencing the signal.  

In addition, the SiO2 concentration varied significantly depending on sample treatment, 

with detergent-treated surfaces showing a relatively Al2O3 rich/SiO2 poor surface, and acidic 

treatments giving surfaces that are relatively rich in SiO2 and relatively depleted in all other oxides. 

These results are consistent with those published in a previous SIMS analysis of similarly-prepared 

Eagle XG® samples.12 Given that we are using the SiOH+/Si+ ratio as a metric for surface 

hydroxylation, it is necessary to account for differences in surface Si concentration between 

sample types when calculating the number of OH/nm2 for the multicomponent glass samples.      

In relative terms, compositional variations between replicates for B2O3, Al2O3 and 

modifiers in Eagle XG® are more dramatic than for SiO2. The differences in Al2O3 and B2O3 

concentrations are the most pronounced. This is reasonable, given that these components are 

readily extractable during wet chemical treatments at acidic or basic extremes of pH, and their 

concentrations may be sensitive to slight variations in the sample treatment conditions. There is a 

more marked variation in the concentrations of these species between sample treatments. Detergent 

and TMAH treated surfaces give significantly higher aluminum concentrations than the untreated 

Eagle XG® surface. B, Al, and network modifiers are depleted from the sample surface after 

treatment with HCl or HF. In general, these findings are in good agreement with our previously 

published LEIS and ToF-SIMS studies on similarly treated glass surfaces.12-13    
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To better visualize spot-to-spot variations in elemental composition within a sample, 

Figure 5.9a plots the percent standard deviations in molar composition obtained from each 

spectrum from an HF-treated Eagle XG® sample. Here, very low standard deviations can be 

observed (noting again that a new sample spot was used for each data point). SiO2, the most 

abundant species in this glass, has < 0.17% standard deviation in concentration as a function of 

sample location. The less-abundant species give slightly higher values, but all have < 8% standard 

deviations as a function of sample location. This was generally the norm. Importantly, the 

measured elemental ratios did not fluctuate when we removed the physisorbed water during the 

early stages of sample heating.  

There were significant spot-to-spot variations in elemental composition for at least one 

sample, an HF-treated Eagle XG® surface that was ramped to 400 °C. The relative standard 

deviations in molar composition for this sample are shown in Figure 5.9b, where there were ca. 

87% standard deviations in CaO concentrations across sample locations and similarly high 

deviations in MgO concentration. Error bars for other species in this sample are generally higher 

than those shown in Figure 5.9a. In a follow-up analysis, we converted several of the spectra from 

this sample to images, and discovered calcium-rich regions in several of them. These are shown in 

the Supporting Information. These Ca+-rich regions often correspond to spots with a higher-than-

average C3H7
+ signal, suggesting that both may have come from adventitous contamination. We 

can only speculate as to the source of this calcium enrichment. However, we note that variations 

in surface composition correlate with high variances in the SiOH+/Si+ ratio. These are shown in 

Figure 5.18b, and will be discussed further in the context hydroxyl behavior at higher temperatures.  
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5.8.5 The Influence of Adventitious Hydrocarbon Contamination on Surface 
Hydroxyl Measurements 

 

The degree of adventitious surface contamination on these samples is a potentially 

important dimension of variance between samples. It is also possible for ‘clean’ and ‘dirty’ regions 

to exist within a single sample. Figure 5.10 shows the average C2H3
+/Si+ ratios for all samples 

analyzed at 200 °C taken for all data points after 190 minutes of heating. Here, as-received fused 

quartz has the highest degree of hydrocarbon contamination by a significant margin, as indicated 

by the C2H3
+/Si+ ratio. Figure 5.8 also shows that this sample has the lowest SiOH+/Si+ ratio of 

any sample. The same effect may be present to a lesser degree for some fused quartz surfaces 

treated with boiling deionized water. In contrast, even the “dirtiest” of the Eagle XG® samples had 

a much lower C2H3
+/Si+ ratio than the heavily-contaminated fused quartz surfaces. With the 

exception of the very-contaminated samples already mentioned, however, there is no correlation 

between the degree of adventitious hydrocarbon surface contamination and the measured 

SiOH+/Si+ ratios. Sometimes the most contaminated sample in a group gives the highest SiOH+/Si+ 

ratio, and sometimes it gives the lowest. In some cases, replicates show almost exactly the same 

level of adventitious hydrocarbon contamination, and yet give noticeably different SiOH+/Si+ 

ratios.  

From these observations, we hypothesized that high concentrations of hydrocarbon 

contamination on a surface may suppress the measured SiOH+/Si+ ratio, while other effects may 

dominate the measurement when the surface is substantially cleaner and free of this contamination. 

To test this hypothesis, we dosed HF-treated fused quartz surfaces with perdeuterated triacontane 

(C30D62)—a simple alkane taken to be representative of aliphatic hydrocarbon contamination. The 

presence of deuterium in the molecule allowed us to observe specific reaction products between 
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the substrate and the adventitious hydrocarbon overlayer. However, only ions are detected, and so 

this experiment is insensitive to reaction pathways that result in neutral species.  

Triacontane is volatile enough that it can be mostly removed from a sample surface with 

mild heating in vacuo. Figure 5.11a shows a fused quartz surface with a high dose of perdeuterated 

triacontane analyzed at room temperature. Here, there are peaks from perdeuterated alkane 

fragments. While there is still a significant Si+ signal at m/z = 28, the SiOH+ signal at 45 is 

significantly suppressed. Figure 5.11b shows a zoomed-in view of the m/z 45 region from Figure 

13a, demonstrating that the SiOH+ signal is still present. The SiOH+/Si+ ratio for this sample was 

0.10, placing it well below the values obtained for a clean HF-treated fused quartz surface. Figure 

5.11c shows a spectrum from the same surface after most of the perdeuterated triacontane has been 

removed by heating the sample to 100 °C. Only a small deuterated signal at m/z 34 remains on the 

surface, having a comparable magnitude to the non-deuterated CH3
+ signal resulting from 

adventitious hydrocarbons at m/z 15. The SiOH+ signal at m/z 45 has a much higher relative 

intensity in this spectrum. The SiOH+/Si+ ratio from this spectrum was 0.25, a significant rebound 

from the quantity measured before contamination removal. This is strong evidence that a 

significant carbon overlayer can suppress the SiOH+/Si+ ratio. There are two plausible 

mechanisms for this suppression: (i) suppression through chemical reaction, and (ii), kinetic-

energy dependent attenuation of substrate signals by the hydrocarbon overlayer. The chemical 

route was posited in a previous study on SnO2 surfaces, where it was hypothesized that H- ions 

reacted with SnOH+ ions to form neutral, undetectable recombination products.44 A similar logic 

likely applies for reaction of SiOH+ ions with H- ions. A substrate ion’s ability to penetrate a carbon 

overlayer is also a function of that ion’s kinetic energy. One study analyzed polyelectrolyte self-
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assembled monolayers (SAMS) on silicon substrates, and found that the SAMS attenuated the 

SiOH+ signals more strongly than the Si+ ions, due to the lower kinetic energy of the SiOH+ ions.81   

Ions formed from reactions between the substrate and the hydrocarbon overlayer may also 

enhance the SiOH+/Si+ ratio. Figure 5.11d is a zoomed in view of the m/z 46 region of the spectrum 

shown in 11c, showing that SiOD+ fragments are formed by recombination reactions between the 

hydrocarbon fragments and the substrate. This demonstrates that pathways are available through 

which non-deuterated hydrocarbons can enhance the SiOH+ signal. It can be seen in Figure 5.11d 

that there is significant overlap between the 29SiOH+ and the SiOD+ signals. For comparison, 

Figure 5.11d also shows a spectrum from a clean HF-treated fused quartz surface where no SiOD+ 

peak is present. The blank spectrum has been normalized to have the same peak intensity for SiOH+ 

at m/z 45 as the perdeuterated triacontane-treated sample. Thus normalized, both spectra give the 

same 29SiOH+ intensity at m/z 46 as expected based on the expected isotope ratio between SiOH+ 

and 29SiOH+. Clearly, there is sufficient mass resolution to distinguish between 29SiOH+ and 

SiOD+. However, resolving signals that are overlapping to this degree via peak fitting can be 

challenging without a priori knowledge of their shapes, positions, and widths. Instead, we 

subtracted the area of the 29SiOH+ contribution from the envelope based on the known isotope ratio 

between SiOH+ and 29SiOH+. The resulting calculated SiOD+ peak areas are shown in Table 5.2. 

A plausible molecular mechanism for formation of SiOD+ is that SiO+ induces hydrogen 

atom transfer from a neighboring alkane to produce the even-electron SiOH+ ion, which is 

consistent with  even-electron species that tend to be favored in SIMS.57 To gain insight into this 

possibility, we performed gas-phase electronic structure density functional theory (DFT) 

calculations using the Gaussian 09 software. All calculations used the M06-2X density functional 

with unrestricted orbitals, which provides accurate structures and energies of organic and main-
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group compounds.82-83 Unrestricted M06-2X/6-31G** structures and energies were confirmed to 

be stationary points and minima by vibrational frequency analysis. 

Figure 5.12a,b shows the energies and shapes of the frontier (HOMO and LUMO) occupied 

and unoccupied DFT orbitals for the open-shell SiO+. Because the shape of the αHOMO orbital at -

19.5 eV matches the shape of the βLUMO at -12.9 eV, this orbital is half filled and primed to induce 

hydrogen atom transfer. Using propane as a model alkane, we examined the thermodynamics and 

possible transition states for hydrogen transfer. The highly reactive SiO+ initially forms a relatively 

stabilized van der Waal/charge-transfer complex that is (∆G) exergonic by 25 kcal/mol.  This [SiO-

C3H8]+ is reactive, and hydrogen atom transfer to the Si atom center has a very low barrier as 

shown in Figure 5.12c. More importantly, to achieve the separated propyl radical and H-SiO+, 

relative to a pre-complex, requires a thermodynamic change ∆G of 49 kcal/mol. However, H-SiO+ 

can isomerize to SiO-H+ that is exergonic by 46 kcal/mol, but requires an intramolecular 

isomerization barrier of 28 kcal/mol. 

As we have noted, molecular species typically have kinetic energies ranging from 0-20 eV 

and atomic species typically have kinetic energies ranging from 0-100 eV in the SIMS sputter 

plume. At these energies, the proposed reactions are easily possible. In Figure 5.12b, it can be seen 

that SiO+ can also abstract a hydrogen from water molecules at a slightly higher energy cost than 

for a reaction with propane. It is generally accepted that physisorbed water can enhance the 

measured SiOH+/Si+ ratio, and this effect is evident in Figure 5.6. If reactions are occurring 

between the substrate and physisorbed water, then it stands to reason that the more energetically 

favorable reaction must be occurring to some extent between the substrate and physisorbed 

alkanes. 

Smith, Nicholas J
Uhhh…non-chemist dummy reading here.  LUMO is in grey, HOMO is in blue, right?

codyvc
The whole thing is the HOMO, with gray and blue representing portions of the wave function with positive and negative phases.

When you get orbital overlap between phases of the same sign, you’ve got a bonding interaction, and when you’ve got orbital overlap between phases with opposite signs, you’ve got an antibonding interaction.

It’s all pretty arcane to me, and it’s a long way back to P-chem, but I remember it being useful to think of it as constructive or destructive interference between waves. Similar concept, anyway.   

Smith, Nicholas J
I’m not sure what squiggly shapes are matching here, but I guess I believe you…
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We analyzed SiOD+ formation in relation to the quantity of deuterated alkane present on 

the surface. We recorded 14 spectra, 7 each from two different HF-treated fused quartz samples 

heated between 100 ° and 200 °C. We chose to take these measurements from gently-heated 

surfaces so that the C2D5
+ intensity was comparable to the C2H5

+ intensity, i.e., to obtain conditions 

more representative of “typical” adventitious hydrocarbon contamination rather than a thick 

deposited overlayer. The C2D5
+/Si+ ratios in Table 5.2 indicate non-uniform perdeuterated 

triacontane coverage across the sample surface. There was little correlation between sample 

temperature and the C2D5
+/Si+ ratio for this temperature range. This suggests that, after the initial 

desorption of loosely-bound triacontane from the sample surface, relatively high temperatures are 

needed to desorb the remainder. The average SiOD+/C2D5
+ ratio was 0.35 ± 0.19.  

We attempted to use the SiOD+/C2D5
+ ratio as a correction factor to account for the 

influence of adventitious hydrocarbons on our measurements, assuming that the SiOH+ peak area 

from adventitious hydrocarbon could be approximated by the C2H5
+ peak area multiplied by 0.35. 

By this assumption, between 5% and 20% of the total SiOH+ peak area for the samples in Figure 

5.7 could be attributed to contributions from adventitious hydrocarbon, with the notable exception 

of the as-received fused quartz samples which were significantly more contaminated than all other 

sample types. Ultimately, this correction factor proved ineffective. An effective correction factor 

should result in lower observed spot-to-spot variation for measurements within a sample and better 

agreement between mean SiOH+/Si+ ratios between replicates. However, attempts to apply this 

correction resulted in increased standard deviations within a sample, and no measurable 

improvement in reproducibility between replicates. The large error bars on the average 

SiOD+/C2D5
+ ratio suggest a high degree of variability in SiOD+ formation as a function of 
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perdeuterated triacontane coverage, such that attempts to apply such a correction may introduce 

more error into our measurements than they remove.  

In summary, experiments with perdeuterated triacontane gave insight into the influence of 

hydrocarbons on surface hydroxylation measurements by SIMS. However, effects due to 

hydrocarbon contamination cannot fully account for spot-to-spot variation within a sample, nor 

the differences in measured surface hydroxylation between replicates.  Given that reaction 

pathways are present that can both suppress and enhance the SiOH+ signal, it is difficult to know 

to what extent each occurs as a function of hydrocarbon coverage. We also note that different types 

of surface contamination may have different proclivities for suppressing or enhancing the SiOH+ 

signal.  One implication of these results is that SIMS is probably best suited for measuring 

hydroxyls on clean surfaces prepared in the laboratory and stored carefully, and that it may be 

difficult to measure surface hydroxylation of “real-world” samples that have had the chance to 

accumulate significant contamination. Any remedial efforts to remove said contamination—such 

as through certain cleaning treatments—may in fact alter the underlying hydroxylation state 

intended to be measured, as indicated by the data in Figure 5.7. 
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Table 5.2. Selected peak areas and ratios for fused quartz surfaces dosed with perdeuterated triacontane. 

Sample Temp. (°C) Si+ (cts) C2H5
+ (cts) C2D5

+ (cts) SiOD+ (cts) C2D5
+/Si+ SiOD+/C2D5

+ 

1 100 654478 9124 8843 8481 0.014 0.82 

1 100 642062 7695 5587 9297 0.009 0.58 

1 100 614998 8635 10790 8765 0.018 0.38 

1 100 577767 9324 12086 8123 0.021 0.39 

1 200 598306 8557 36380 5789 0.061 0.33 

1 200 634733 8649 30144 5976 0.047 0.45 

1 200 517746 9476 53595 4853 0.104 0.27 

2 115 170959 2278 18517 2235 0.108 0.15 

2 115 421603 5067 18227 6382 0.043 0.25 

2 165 368223 3999 33752 5028 0.092 0.18 

2 165 399051 4497 14976 5930 0.038 0.33 

2 180 319560 4930 54092 3439 0.169 0.15 

2 180 408526 5057 37231 4904 0.091 0.27 

      

Average 0.35 

      

St. Dev. 0.19 
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5.8.6 Summary of Spot-to-Spot and Sample-to-Sample Variability in 
SiOH+/Si+ Ratios 

 

We have identified and explored several possible sources for spot-to-spot and sample-to-

sample variability in our data, including variability from hydrocarbon contamination, variability 

in elemental composition, and instrumental performance. Electrical field effects that affect ion 

transmission are also possible when analyzing insulating surfaces. Finally, it is also possible that 

the observed spot-to-spot and sample to sample variability in the SiOH+/Si+ ratio is due to 

legitimate variations in surface hydroxylation. This is difficult to experimentally verify or refute, 

but it may be possible to eliminate some other possible explanations.  

We established in Figure 5.1 that the short-term repeatability in the SiOH+/Si+ for our 

instrument is better than 1% when the same spot is analyzed repeatedly. In contrast, the SiOH+/Si+ 

ratio for samples shown in Figure 5.7 where we analyzed a new spot with every acquisition, the 

relative standard deviation in SiOH+/Si+ is typically from 8-12%, which is much larger than can 

be explained by short-term instrument variability alone. Relative standard deviations for elemental 

composition within a sample were shown to be low in Figure 5.9a , but in Figure 5.9b we observed 

at least one case of marked spot-to-spot variability in elemental composition within a sample, 

which was attributable to the presence of contaminants. Sample-to-sample variation in elemental 

composition was generally low for SiO2, but somewhat more pronounced for Al2O3, B2O3, and 

modifier species in a multicomponent glass. Therefore, the spot-to-spot variance in the SiOH+/Si+ 

ratios is not attributable to spot-to-spot variations in elemental composition, with the notable 

exception of the sample shown in Figure 5.9b.  However, there are small but noticeable differences 

in elemental composition between replicates, and these may account for some of the sample-to-

sample variance in the SiOH+/Si+ ratios.   
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Our experiments with perdeuterated triacontane have demonstrated that hydrocarbons have 

the potential to influence the measured SiOH+/Si+ ratios. Thick overlayers clearly suppress this 

ratio, while at low hydrocarbon coverages, there are reaction pathways through which it was shown 

that perdeuterated hydrocarbons can react to form SiOD+. Implied is a corresponding mechanism 

for common (non-perdeuterated) hydrocarbons to react to form SiOH+ ions and perturb the 

measured SiOH+/Si+ ratios away from those intrinsic to the underlying glass surface. However, as 

we have already noted, there is not a clear correlation between level of surface contamination 

shown in Figure 5.10 and the SiOH+/Si+ ratios in Figure 5.7 for any but the most-contaminated 

samples. 

Electrical fields above insulating surfaces can influence quantitative results because they 

have a kinetic energy-dependent impact on ion transmission.72-73 We have not performed any 

experiments that will allow us to rule out these effects, and acknowledge that they may account 

for some of the variance in the measured SiOH+/Si+ ratios. We also acknowledge that we have not 

completely ruled out long-term drift in instrumental performance. 

In summary, the spot-to-spot and sample variances in our data do not appear to be 

attributable to short-term random instrumental error. With one notable exception, we cannot 

attribute spot-to-spot variations in the SiOH+/Si+ ratio to spot-to-spot variations in elemental 

composition. However, variations in elemental composition may account for some of the variance 

between replicates. Sample contamination appears to play an important role at high hydrocarbon 

loadings, but we can find no correlation between contamination levels and the SiOH+/Si+ for 

relatively clean samples. While the remainder of the variance in the SiOH+/Si+ may be due to 

legitimate spot-to-spot variances in the level of surface hydroxylation, we cannot rule out the 

possible impact of charging-induced electrical fields on ion transmission as a source of variance.     
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5.8.7 Surface Hydroxyls per Square Nanometer (OH/nm2) 
 

Having explored the dimensions of variance in our data to the best of our ability, we 

attempted to calculate the number of hydroxyls per square nanometer for the samples measured 

here. Based on previous studies, we presumed the HF-treated fused quartz samples to be fully 

hydroxylated, and that they had 4.6 OH/nm2 per the widely-accepted literature value.18 We have 

used the average SiOH+/Si+ ratio from HF-treated fused quartz as our reference material, given 

that this treatment has been proven an effective hydroxylating treatment.84-85 Treatment in boiling 

water has also been shown to be an excellent hydroxylating treatment for silica surfaces.15, 18 

However, the high levels of carbonaceous contamination on some of the fused quartz samples 

treated with boiling water seem to have suppressed their measured SiOH+/Si+ ratios, rendering 

them unsuitable as reference materials. For the Eagle XG® samples, we also included a factor for 

the fraction of silicon at each sample surface. Equation (5.3) shows this calculation, 

(5.3)     𝑂𝑂𝑂𝑂
𝑛𝑛𝑛𝑛2 =  𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 𝑥𝑥 4.6 𝑂𝑂𝑂𝑂

𝑛𝑛𝑛𝑛2  𝑥𝑥 𝐴𝐴𝐴𝐴.%𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑋𝑋𝑋𝑋

𝐴𝐴𝐴𝐴.%𝑆𝑆𝑆𝑆𝑆𝑆2
 

where Rsample is the average SiOH+/Si+ ratio for the sample being measured, Rreference is the 

measured SiOH+/Si+ for the reference material, At%sample is the atom percentage of silicon in the 

Eagle XG® sample being measured, and At%SiO2 is the atom percentage of silicon in the SiO2 

reference material.  

The scaling factor based on the atom percentage of silicon in the multicomponent glass 

samples is necessary because we used the SiOH+/Si+ ratio as a metric of surface hydroxylation, 

but not all samples have the same atom fraction of Si, resulting in bias in normalization between 

different sample types. Multiplying by the ratio of Si in Eagle XG® to Si in SiO2 approach is 

reasonable because, to a first approximation, the sputter yield of a given species in SIMS is 
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proportional to its concentration.86 Accurate calculations of the atom percentage of silicon in Eagle 

XG® require oxygen in the sample to be accounted for. However, as we have noted in the 

experimental section, we could not find a suitable reference for quantifying oxygen. Accordingly, 

the fraction of oxygen in the sample was estimated based on the molar ratios of the oxides 

measured from the Si+, Al+ B+, Mg+, Ca+ and Sr+ signals. This approach likely slightly 

underestimates oxygen at the sample surface because it does not account for differing oxygen 

contributions between bridging siloxanes and hydroxyls.43, 53 However, the errors are expected to 

be small. In similar fashion, we have assumed that the atom percentage of silicon in SiO2 is 33.3% 

in all cases. Again, this assumption likely underestimates the amount of oxygen at the sample 

surface, but we expect the error to be small. The composition of Eagle XG® is considered 

proprietary, and we have removed this compositional information from this report. 

We calculated areal densities of hydroxyls (OH/nm2) for the multicomponent glass samples 

based on Equation (5.3) and the assumptions discussed in the previous paragraph. However, these 

quantities are considered confidential information of Corning Incorporated. To protect this 

confidential information while presenting some our results, Figure 5.13 shows the number of 

hydroxyls on Eagle XG® surfaces by sample type as a percentages of the sample with the most 

hydroxyls (HF-treated Eagle XG®). Relative error bars for most sample types were ca. 12%, owing 

in part to the relatively large error bars for the HF-treated SiO2 samples we have used as our 

reference material. The detergent washed surface, which had the lowest fraction of silica for this 

sample group in our previous SIMS study also give the lowest number of surface hydroxyls.12 

Meanwhile, the TMAH-treated surface gives an intermediate value. These results are consistent 

with previous findings that the number of silanols at glass surfaces scale with their  SiO2 

concentrations.6  
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5.8.8 Dehydroxylation at Temperatures up to 400 °C 
 

We now turn our attention to sample behavior at higher temperatures. In Figure 5.14a, a 

HCl-treated fused quartz sample was heated in vacuum to 400 °C (the upper temperature limit for 

our instrument), held at that temperature overnight, and then temperature ramp was reversed the 

following day. Following the reverse temperature ramp, the heater was set to 30 °C, and the sample 

was held overnight at this temperature. The sample dehydroxylated with each increase in 

temperature up to 400 °C, with the largest step occurring between 300 °C and 400 °C. These 

elevated temperatures are known to result in the condensation of vicinal silanols to form siloxane 

bonds.18 Very little rehydroxylation in vacuum occurred during the reverse temperature ramp, 

suggesting that holding the sample at 200 °C is sufficient to prevent readsorption and reaction of 

water with the sample surface. However, a small degree of rehydroxylation occurred while holding 

the sample in vacuum overnight at 30 °C. Figure 5.14b shows an HCl-treated fused quartz sample 

that was heated to 400 °C in vacuo, rehydroxylated overnight by exposure to ambient air, and then 

reheated in vacuo to 200 °C the following day to remove physisorbed water and measure the final 

hydroxylation state. Here, the same stepwise dehydroxylation behavior can be seen during the 

initial temperature ramp. Following exposure to ambient air, the sample rehydroxylated to a 

significant extent, though the final SiOH+/Si+ ratio measured for this sample was lower than for 

similarly treated samples heated only to 200 °C, suggesting that some non-reversible changes in 

the sample surface begin to occur by 400 °C.  

Figure 5.15a shows the results of ramping an HF-treated Eagle XG® sample to 400 °C. The 

extent of dehydroxylation is much lower than for that of the fused quartz surface. Significant 

scatter can be seen for this sample. Nonetheless, a step-wise decrease in the measured SiOH+/Si+ 

ratio can be seen with each increase in temperature. This sample was rehydroxylated by exposure 
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to ambient air overnight and re-analyzed the following day at a constant temperature of 200 °C. 

The resulting average SiOH+/Si+ ratio after 190 minutes of heating was ca. 0.18 ± 0.03. Figure 15b 

shows the SiOH+/Si+ ratio for a HF-treated surface ramped to 400 °C and held overnight. Again, 

stepwise decreases in the SiOH+/Si+ can be seen with each temperature increase. Significant 

variability in the molar composition of this samples was noted, as shown in Figure 5.9b, which 

may explain some of the scatter in this data. Figure 5.15c shows the results for a similarly heated 

untreated Eagle XG® sample, where again, stepwise decreases in the measured SiOH+/Si+ ratio 

can be seen with increasing temperature. It is interesting to note that while the SiOH+/Si+ ratio 

clearly decreases with sample heating for the Eagle XG® samples, the magnitude of the decrease 

is lower than for the fused quartz samples. This may indicate that a greater fraction of hydroxyls 

on Eagle XG® surfaces are non-interacting, making it difficult for them to condense with 

neighboring hydroxyls groups to form siloxane bonds. Alternatively, it may suggest that some 

fraction of the SiOH+ signal results from subsurface hydrous species, in spite of the excellent 

surface sensitivity of ToF-SIMS.  

 

5.9 Conclusion 

 

Surface hydroxyls on fused quartz and display glass surfaces exposed to various chemical 

treatments were analyzed using ToF-SIMS. We have provided some discussion of instrumental 

factors that may influence instrument response. In particular the analyzer acceptance energy had a 

strong influence on instrument response, and we chose an acceptance energy that optimized mass 

resolution and minimized the influence of charging on instrument response. We explored possible 

explanations for spot-to-spot and sample-to-sample variability in our data, including variability in 
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sample elemental composition and the influence of adventitious hydrocarbon contamination. Most 

samples showed low spot-to-spot variability in elemental composition, with one notable exception. 

We noted small but significant differences in elemental composition between some replicates. At 

high hydrocarbon coverages, the SiOH+/Si+ ratio was suppressed compared surfaces not dosed 

with hydrocarbons. At low hydrocarbon coverages, an SiOD+ peak appeared, suggesting that 

undeuterated hydrocarbons contribute to the SiOH+ signal via recombination reactions with 

substrate species. While it may be possible to correct for these effects, additional experiments will 

need to be performed to understand the extent of the contribution and suppression effects as a 

function of hydrocarbon concentration.  

Our results are in good qualitative agreements with previous studies performed on silica 

surfaces, showing that acidic treatments such as hydrofluoric or hydrochloric acid are effective in 

hydroxylating these surfaces. HF- and HCl-treated multicomponent glass surfaces gave the highest 

degree of surface hydroxylation, industrial detergent treatment gave the lowest degree of surface 

hydroxylation, and treatment with TMAH resulted in intermediate values. Higher temperature 

treatment of Eagle XG® and fused quartz resulted in significant dehyroxylation for both surfaces. 

Interestingly, the Eagle XG® surfaces show much lower degree of dehydroxylation upon heating 

to 400 °C than do fused quartz surfaces, as indicated by a lower fractional decrease in the 

SiOH+/Si+ ratio. 
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5.11 Figures 

 

Figure 5.1. SiOH+/Si+ ratio as a function of increasing beam exposure for a series of spectra taken at the 

same sample location.  
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Figure 5.2. Schematic representation of the influence of acceptance energy, governed by reflector 

voltage, on the measured SiOH+/Si+ ratio. a) Schematic representation of ToF analyzer with a reflectron. 

Ions with low kinetic energy (blue) and moderate kinetic energy (green) are focused onto the detector, 

while ions with too high a kinetic energy (red) do no reach the detector. b and c) hypothetical Boltzmann 
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distributions for SiOH+ and Si+ ions, where the blue line indicates acceptance energy, and the shaded 

regions indicate the fraction of ions accepted by the analyzer for that acceptance energy.  
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Figure 5.3. The influence of acceptance energy on instrument response. a) SiOH+/Si+ ratio. b) total ion 

counts in 30 second acquisition. c) Mass resolution for Si+ and C2H3
+ peaks. 
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Figure 5.4. Representative spectra for fused quartz samples with selected peaks labeled. a) As-received 

fused quartz. b) HF-treated fused quartz surface.  
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Figure 5.5. Representative ToF-SIMS spectra for Eagle XG® samples. a) As-received Eagle XG®. b) HF-

treated Eagle XG®. Both spectra have been multiplied 15x starting at m/z 61 to better show lower 

intensity signals. 
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Figure 5.6. Annotated data recorded from an HF-treated Eagle XG® surface held at 200 °C, where each 

data point is recorded from a new sample position.  a) The first two data points are recorded at room 

temperature. SiOH+/Si+ ratio is high due to presence of physisorbed water b.) SiOH+/Si+ ratio declines as 

physisorbed water is removed from sample. c) SiOH+/Si+ ratio reaches steady-state after removal of 

physisorbed water starting at ca. 190 minutes. d) data points recorded in rapid temporal succession at 

different sample locations to characterize spot-to-spot variation in SiOH+/Si+ ratio.   
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Figure 5.7. Average SiOH+/Si+ signal ratios for samples analyzed at a constant temperature of 200 oC, 

where error bars are given as standard deviations. FQ = fused quartz *AR = as-received, BW = boiling 

deionized water. 
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Figure 5.8. Pooled average SiOH+/Si+ ratios and pooled standard deviations by sample type for samples 

shown in Figure 5.7. *AR = as-received, BW = boiling deionized water.  
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Figure 5.9. Percent standard deviation in molar composition for selected samples as a function of heating 

time. a)  Percent standard deviations in molar composition from an HF-treated Eagle XG® surface 

analyzed at 200 °C, calculated from 36 spectra recorded at different sample locations. b) Standard 

deviations in molar composition from an HF-treated Eagle XG® surface ramped to 400 °C, calculated 

from 56 spectra recorded at different sample locations.  

codyvc
Replace with a plot of standard deviations
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Figure 5.10. C2H3
+/Si+ ratio for samples analyzed at a constant temperature of 200 °C. *AR = as-received, 

BW = boiling deionized water.  
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Figure 5.11. a) Spectrum for an HF-treated surface analyzed at room temperature with a high surface 

loading of perdeuterated triacontane, as evidenced by deuterated hydrocarbon fragments. b) A zoomed in 

view of the m/z 45 mass region in spectrum  a)  showing a reduction in the SiOH+ signal at high 

hydrocarbon coverages. c) Spectrum from the same sample after mild heating to reduce triacontane 

coverage d) zoomed-in view  of the m/z 46 region from the same spectrum as c), plotted with a spectrum 

from an HF-treated fused quartz blank. The HF-treated fused quartz blank spectrum has been scaled to 

have same SiOH+ intensity as spectrum c) at m/z 45, such that their 29SiOH+ intensities at m/z 46 are 

easily compared. 
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Figure 5.12. a) SiO+ unrestricted M06 orbital energies (eV). b) 3D images of SiO+ HOMO orbitals. c) 

Unrestricted M06-2X/6-31G** energies for hydrogen atom transfer between SiO+ and propane and 

intramolecular isomerization. 
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Figure 5.13.  Relative hydroxyl coverages by Eagle XG® samples, based on Equation (5.3). To protect 

confidential information, the number of hydroxyls for all samples have been normalized to HF-treated 

Eagle XG®, which gave the highest number of hydroxyls per nanometer for the multicomponent glass 

samples in this study. Accordingly, the data are presented as hydroxylation percentages relative to this 

sample.   

  

codyvc
Remove. Consider replacing with a plot of only Eagle XG. 
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Figure 5.14. SiOH+/Si+ ratios for fused quartz samples ramped to 400 °C. (a.) A sample that was heated 

and cooled entirely in vacuo. (b.) A sample that was exposed to ambient air after ramping in vacuo to 400 

°C, with follow up analysis in vacuo at 200 °C. 
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Figure 5.15. SiOH+/Si+ ratios for Eagle XG® samples ramped to maximum temperature of 400 °C. (a.) 

HF-treated Eagle XG® ramped to 400 °C in vacuo then exposed to ambient air, with follow-up analysis at 

200 °C in vacuo. (b.) HF-treated Eagle XG® ramped to 400 °C and held overnight at this temperature. (c.) 

Untreated Eagle XG® ramped to 400 °C.  
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Chapter 6: Conclusion 

 

6.1 Key Findings from Each Chapter 

 

Display glass surface composition is important to its end use. In particular, display glass 

surface composition affects particulate adhesion, thin film adhesion, adsorption of atmospheric 

contaminants, and thin film adhesion. These processes directly influence display glass’s suitability 

as a microfabrication substrate.1-4 Understanding these processes in greater detail begins with 

obtaining a detailed knowledge of display glass surface composition as a function of the 

environments it is exposed to. In this dissertation, we analyzed display glass surfaces exposed to 

various wet chemical treatments, addressed data analysis challenges, and proposed a method for 

measuring surface silanols on multicomponent glass substrates. In the process, we gained detailed 

surface compositional understanding of Eagle XG® at multiple length scales. 

In Chapter 2, we performed a multivariate data analysis of Eagle XG® using SIMS and 

multivariate curve resolution (MCR).  Manual examination of the elemental signals showed that 

as-formed Eagle XG® is significantly modifier-depleted/silica rich compared to Eagle XG® 

fracture surfaces. We considered the spectra from a wider perspective by using MCR, which 

revealed three compositional extremes for the samples we studied. Samples treated with 

hydrochloric acid were depleted in modifier species, boron, and aluminum, leaving a substantially 

silica-enriched surface. In contrast, the bulk composition of Eagle XG®, represented by a fracture 

surface, showed high modifier, aluminum, and boron concentrations. Samples treated with 

industrial detergents differed from all other samples in their concentrations of sodium and 

potassium. However, because SIMS is extremely sensitive to these species, the increase it detected 
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does not necessarily correspond to a dangerously high level of sodium from a device perspective. 

Treatment with industrial detergents also increased Al concentration at Eagle XG® surfaces 

compared to the as-formed Eagle XG® surfaces.   

The negative ion spectra showed oxide cluster ions extending to high masses. One group 

of clusters contained both aluminum and silicon, while the other contained only silicon. We 

verified the identity of these clusters by checking their isotopic ratios. A multivariate curve 

resolution analysis of these cluster ions showed that the Al-containing clusters increased in 

intensity with elemental aluminum concentration. Clusters that contained only Si, on the other 

hand,  were dominant in acid-treated Eagle XG® surfaces. Previous work has attempted to derive 

information about glass network connectivity through larger cluster ions like these.5 While it is 

possible that the cluster ions in our samples convey information about their chain length, we need 

control samples of known compositions and with well-characterized network connectivities to 

make any such conclusions.  

Multivariate curve resolution results for models containing over 200 peaks gave similar 

results to models containing only elemental signals. This useful finding suggests that elemental 

signals alone provide useful conclusions about these samples in spite of their spectral complexity. 

Also, the large negative-ion cluster intensities showed a high degree of correlation with the positive 

ion elemental signals for Al and Si.  

Our efforts focused on the inorganic glass composition and paid little attention to organic 

contaminants. The chemical treatments we used generally reduced adventitious hydrocarbon 

contamination compared to the untreated samples, as indicated by a decrease in hydrocarbon 

signals like C2H3
+. However, we made no effort to identify organic contaminants introduced by 

these treatments. 
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In Chapter 3, we analyzed the elemental composition of the outermost atomic layer of 

Eagle XG® using low-energy ion scattering. The results were in good general agreement with those 

presented in Chapter 2, but the modifier depletion appeared much more severe due to LEIS extreme 

surface sensitivity. The LEIS results suggested that sodium, calcium, and magnesium were 

completely absent from the outermost atomic layer of Eagle XG® following acid treatment. The 

results also indicated that as-formed Eagle XG® surfaces had approximately 30-50% the modifier 

ion concentration of Eagle XG® fracture surfaces. Magnesium was only detected in the fracture 

surface, though its detection limit was likely impacted by interference from the Si/Al peak 

envelope, especially for LEIS spectra recorded with 3 keV 4He+. Interestingly, LEIS analysis 

detected no sodium, even for the detergent-treated samples. This finding suggests sodium 

contamination is only present at trace levels and is only detected in SIMS analysis due to its 

extreme sensitivity towards sodium.  

Resolving the Al and Si signals in this analysis was a major challenge. We are not the first 

to attempt resolving these signals, but we are the first to publish instrumental parameters and data 

analysis protocols for addressing this challenge. Resolving these signals required analysis at 6 keV, 

giving peak separation of 55% of the Si FWHM compared to only ca. 30% at 3 keV. We attempted 

peak fitting the 6 keV 4He+ LEIS data under several different sets of fitting constraints. The 

positions and widths of the Al and Si peaks in the fit were poorly determined in the absence of 

fitting constraints. Reasonable fitting results were only obtained by constraining the positions and 

widths of peak fit components to those obtained by reference materials.    

We also attempted a linear least squares (LLS) approach using reference spectra from 

Al2O3, SiO2, and MgO as basis sets. This approach required an additional spectral component to 

account for LEIS background from the modifier species in Eagle XG®. We derived this 
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background spectrum through a series of difference spectra between the Eagle XG® fracture 

surface and reference materials spectra. In general, all three of the fitting approaches gave good 

agreement, with the LLS approach showing the lowest levels of Al at the samples’ surface by a 

small margin.  

This analysis demonstrated that as-formed Eagle XG® surfaces were severely depleted in 

aluminum. While the fracture surface gave Al2O3 coverages of ca. 31%, the as-formed Eagle XG® 

surfaces had only 1-4% and the HCl treated surfaces had no detectable aluminum at the sample 

surface. These findings suggest that aluminum is not a major contributor to the surface mediated 

processes on as-formed and leached Eagle XG®. However, in keeping with the findings from SIMS 

analysis in chapter 2, the aluminum concentration at the Eagle XG® surface increased significantly 

compared to the as-formed surface when treated with industrial alkaline detergent. This surface 

gave ca. 17% Al2O3 coverage.  

Fitting the Al/Si peak envelope in LEIS remains a significant challenge. While SIMS and 

XPS analysis corroborate our LEIS peak fitting results, the method could be further validated. 

Analyzing a series of simple sodium aluminosilicate glass fracture surfaces of known bulk 

composition with varying aluminum concentrations would determine the limits of uncertainty in 

the fits, better understand variability in spectral background, and identify artifacts from sample 

charging.   

Chapter 4 briefly discussed the angle-resolved XPS analysis of these glass surfaces. These 

analyses are vital to the conclusions of this dissertation because they demonstrate that Eagle XG’s 

surface composition varies significantly even over a ca. 6 nm length scale. Results from this study 

support the SIMS elemental analysis in Chapter 4.  
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The XPS results show dramatic differences between as-formed Eagle XG® surfaces and all 

chemically treated surfaces, and are in good agreement with all other elemental analysis presented 

in this dissertation. The acid-treated surface showed modifier, Al, and B depletion, while the 

detergent-treated surface showed a marked increase in Al compared to the as-formed surface.  

All surfaces showed a compositional gradient. In general, the extent of modifier, Al, and 

B depletion increased at more surface-sensitive take-off angles. These near-surface compositional 

gradients cannot be detected through sputter depth profiling. The trend in Al concentration for the 

detergent-treated sample varied from all other samples. It showed a maximum in relative Al 

concentration at a take-off angle of 61.25°, rather than a monotonic decrease in Al2O3 

concentration as observed for all other samples. Further modeling of this data may provide insight 

into the mechanism of aluminum enrichment for this sample treatment. We also varied the severity 

of HCl treatment in this study, and longer-duration treatments yielded more modifier, Al, and B 

depletion.  

We only interpreted this data in a qualitative sense. Turning these measurements into true 

concentration profiles requires mathematical modeling. Given the complexity involved in 

modeling gradients in AR-XPS data, such a task is not possible without making reasonable 

assumptions and applying reasonable fitting constraints. Because classical interdiffusion (CID) is 

the most likely corrosion process for these samples, we could derive reasonable profiles 

by constraining the fit to solutions consistent with this corrosion model. 

In Chapter 5, we developed a ToF-SIMS protocol for measuring surface silanols on 

multicomponent glass surfaces. This protocol is likely our most significant contribution to glass 

surface science, as surface hydroxyls are among the most important reactive groups at 

multicomponent glass surfaces. We explored instrumental parameters that influenced our 
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instrument response and the impact of adventitious hydrocarbon contamination on measurements. 

We quantified the elemental composition of the samples using SIMS, explored their 

dehydroxylation behavior at elevated temperatures, and reported the number of surface hydroxyls 

per square nanometer (OH/nm2) on various chemically treated Eagle XG® samples. In the process, 

we collected a large number of positive SIMS spectra, giving us statistical insight into the 

variability of this measurement protocol and the sources of variance. 

Adventitious hydrocarbon contamination greatly influenced SIMS surface hydroxylation 

measurements. At high hydrocarbon loadings, the SiOH+/Si+ ratio was suppressed. There were two 

possible explanations for this effect. First, chemical reactions between SiOH+ and H- ions produced 

neutral, undetectable species.6 Second, SiOH+ ions with their low kinetic energy may penetrate the 

hydrocarbon overlayer less effectively than the Si+ ions.7 For the relatively clean samples, there 

was no clear correlation between their contamination levels as indicated by their C2H3
+/Si+ ratios 

and SiOH+/Si+ ratios. Samples dosed with perdeuterated triacontane showed reactions between the 

substrate and adventitious hydrocarbons occur during ionization and enhance the SiOH+/Si+ signal. 

However, only a weak correlation existed between the degree of surface contamination and the 

magnitude of this effect. From all these findings we concluded that ToF-SIMS surface hydroxyl 

measurements required substantially contamination-free samples. 

To calculate the samples’ degree of surface hydroxylation we measured their elemental 

compositions. Although SIMS is rarely used for this purpose, we demonstrated good agreement 

between SIMS and XPS quantitative results when Eagle XG® fracture surfaces were used to derive 

sensitivity factors for both techniques. This finding was significant because it demonstrated that 

static SIMS results can be interpreted quantitatively for clean glass surfaces. We have only 

demonstrated this for one composition, though, and more exploration is required to understand the 
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type and extent of matrix effects across a broad range of glass compositions. For this reason, 

studies repeating these results for a range of glass compositions are still needed. 

We found that HF- and HCl- Eagle XG® were generally more hydroxylated than as-

received surfaces or surfaces treated with alkaline detergents. The HF- and HCl treated surfaces 

were also the most silica rich, as indicated by SIMS analysis in Chapter 2 and XPS analysis in 

Chapter 5. These results are in good agreement with previous findings that show surface silanol 

concentration scales with silica concentration in multicomponent glass surfaces. Because we 

developed a suitable method for measuring surface hydroxylation, follow-up studies can now focus 

on understanding how surface-mediated processes vary with hydroxyl concentration. 

This study advanced the science of surface hydroxyl measurements but also presented new 

questions. Is there a way to remove hydrocarbon contamination from glass surfaces so this surface 

hydroxyl measurement method can be applied to failure analysis of production-line samples? The 

method is currently best suited for very clean model surfaces, but understanding the link between 

surface hydroxylation and other surface mediated processes may require analyzing samples with 

long atmospheric exposures and high-levels of adventitious contamination. Removing 

hydrocarbon contamination without altering the underlying surface hydroxyls is a challenge. Wet-

chemical, plasma, and most sputter cleaning approaches likely alter the surface hydroxyl 

concentration to some degree.  

Is this protocol applicable to a wide range of multicomponent glasses? Our study focused 

only on Eagle XG®, and though the surface composition of Eagle XG® varies dramatically as a 

function of chemical treatment, we did not explore other common compositions including soda-

lime and sodium-borosilicates.  
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Can SIMS be used to detect other types of surface hydroxyls, e.g. aluminols and boronols? 

Although we discovered other hydroxyls in our SIMS analysis, including relatively small signals 

CaOH+ and AlOH+, it is unclear whether these signals have any quantitative value. Our analysis 

benefitted from previous studies on silica powder and SIMS studies on amorphous SiO2. There is 

little comparable literature for aluminols, boronols, and hydroxyls associated with modifier 

ions.  Understanding the behavior of these signals requires exploring their simple model systems, 

e.g., their pure oxides where possible, and simple binary and ternary silicate glasses when pure 

oxides are not possible. 

 

6.2 Overarching Conclusions 

 

Taken together, these results depict Eagle XG’s surface composition, which transitions 

from bulk-like to silica-like at the surface. Modifier, Al, and B depletion are readily apparent in 

the AR-XPS data in Chapter 5. This depletion appears more severe in the more surface-

sensitive  SIMS elemental analyses in Chapters 2 and 4. LEIS results in Chapter 3 show absolute 

modifier and Al depletion at the sample surface. Accordingly, in terms of its reactivity the surface 

chemistry of Eagle XG® is expected to be similar to surface chemistry of SiO2. The surface 

hydroxyl results in Chapter 4 support this conclusion. Leached Eagle XG® surfaces have 

compositions that are ca. 90% SiO2 by SIMS, and give surface hydroxyl quantities in the range of 

4.6 OH/nm2. These values are similar to the value widely accepted for SiO2.  In spite of the 

similarity in surface composition, however, Eagle XG® appears to dehydroxylate to a lesser extent 

than fused silica when heated in vacuo to 400 °C. The as-formed Eagle XG® surface is also 

somewhat modified, with Al and B depleted relative to the bulk composition. 



256 
 

The formation of an Al-rich layer with detergent treatment is a surprise. The detergent 

solutions in this study had pHs of ca. 12, and should etch the Eagle XG® surface through 

dissolution of the silicate network.8 This would normally give a type V surface with a composition 

similar to the bulk. Detergent-treated surfaces do not give modifier concentrations equivalent to 

the bulk in any of our analyses, though, suggesting that some degree of ion exchange occurs at the 

outer few nanometers of the sample. Etching possibly explains the aluminum-rich surface layer. 

The alkaline solution may etch through the silica-enriched layer that appears on as-formed Eagle 

XG® to uncover a more bulk-like layer. An alternative possibility is that some alumina precipitates 

from solution.8 However, this seems unlikely, given that detergent contains chelating agents to 

prevent this sort of reprecipitation. A more thorough analysis of the AR-XPS data may 

conclusively answer this question. A thin alumina-rich layer over an alumina-depleted, silica-rich 

layer would indicate precipitation, while a gradual increase in aluminum from surface to bulk 

would imply an etching mechanism.  

HF treatment also depletes modifiers from the Eagle XG® surface for the reaction 

conditions used in this study. This is unexpected, given that HF is an etchant and would normally 

produce congruent network dissolution and compositions similar to bulk Eagle XG®.8 This 

suggests that some finite degree of ion exchange occurs ahead of the network dissolution front. It 

indicates that the surface composition of etched Eagle XG® is not always equivalent to its bulk 

composition. 

This analysis enhanced our knowledge of display glass surface composition. It 

demonstrated that a multi-technique approach provides glass elemental composition at length 

scales ranging from the outermost atomic layer to a depth of  6-10 nm.  This information is valuable 

because this region’s composition influences surface mediated processes. In addition, sputter depth 
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profiles struggle to obtain this information.9-10 The compositional knowledge we obtained is an 

important first step to understand surface mediated processes on display glass.  

We also demonstrated that the surface sensitivity of the analytical approach is of paramount 

importance. For example, we would have a very different perception of Eagle XG® surface 

composition if we had considered only XPS results, which revealed a noticeable fraction of 

modifiers, Al, and B at the sample surface. In contrast, LEIS revealed that the outermost atomic 

layer of Eagle XG® surfaces are often entirely depleted of modifiers and Al.  

We developed a protocol for measuring surface hydroxyls on multicomponent glass using 

ToF-SIMS. In the process, we addressed previously ignored issues including how to account for 

varying elemental compositions between glass samples and the influence of adventitious 

hydrocarbon contamination on the measurements. We showed the technique’s potential, identified 

several remaining questions about its efficacy, and proposed additional experiments to address 

these concerns. 

Multi-instrument surface analysis is a synergistic approach. Each technique provides 

different information at different length scales with different detection limits. For example, only 

SIMS detected some contaminants in this study, and neither XPS nor LEIS detected surface 

hydroxyls. However, we would have little confidence in SIMS quantitative elemental results 

without confirmatory data from XPS and LEIS. SIMS and XPS detect and quantify boron, but 

LEIS has poor detection limits for this element. Of these techniques, only SIMS provides 

molecular information, which is key to its ability to measure surface hydroxyls on glass surfaces. 

SIMS also detects large cluster ions from glass surfaces. The level of detail in compositional 

knowledge we obtained using a multi-instrument approach is valuable in future experiments and 

computational studies probing surface mediated processes on glass substrates. 
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Appendix 1: Supporting Information for Chapter 2 

 

Table A1.1. Peak masses from the positive and negative ion spectra and proposed assignations.  

Positive Species Negative Species 
Mass Proposed assignation Mass Proposed assignation 
1.008 H+ 1.009 H- 
7.016 Li+ 10.014 10B- 
10.013 10B+ 11.010 B- 
11.009 B+ 15.996 O- 
12.017 BH+ 17.005 OH- 
13.025 BH2

+ 17.999 H2O- 
15.995 O+ 18.999 F- 
16.019 NH2

+ 19.007 H3O- 
17.003 OH+ 26.004 CN- 
17.027 NH3

+ 27.004 BO- 
18.010 H2O+ 27.977 Si- 
19.020 H3O+ 28.985 SiH- 
22.990 Na+ 29.974 30Si- 
23.986 Mg+ 29.984 29SiH- 
24.986 25Mg+ 29.993 SiH2

- 
24.993 MgH+ 30.982 30SiH- 
25.983 26Mg+ 31.972 S- 
26.982 Al+ 31.990 O2

- 
27.977 Si+ 32.981 HS- 
28.975 29Si+ 32.997 O2H- 
28.984 SiH+ 34.970 Cl- 
29.972 30Si+ 36.966 37Cl- 
29.983 29SiH+ 42.002 10BO2

- 
29.992 SiH2

+ 42.976 AlO- 
30.981 30SiH+ 43.001 BO2

- 
31.001 SiH3

+ 43.972 SiO- 
31.989 30SiH2

+ 44.980 SiHO- 
32.001 29SiH3

+ 45.969 30SiO- 
32.998 O2H+ 45.979 29SiHO- 
38.965 K+ 45.994 NO2

- 



260 
 

38.986 NaO+ 47.967 SO- 
39.963 Ca+ 58.972 AlO2

- 
40.971 CaH+ 58.994 SiCH3O- 
40.986 MgOH+ 59.969 SiO2

- 
43.954 44Ca+ 60.974 SiHO2

- 
43.970 SiO+ 62.971 30SiHO2

- 
43.984 AlOH+ 63.966 SO2- 
44.981 SiHO+ 74.991 SiCH3O2

- 
46.977 30SiHO+ 75.964 SiO3

- 
46.996 SiH3O+ 76.972 SiHO3

- 
47.951 Ti+ 78.918 Br- 
54.011 MgBOH3

+ 78.967 30SiHO3
- 

54.987 SiH3Mg+ 79.968 SO3
- 

55.957 CaO+ 86.948 SiO2Al- 
56.968 CaOH+ 91.957 SiO4

- 
57.973 CaH2O+ 92.965 HO4Si- 
59.950 44CaO+ 101.970 AlBO4

- 
59.965 SiO2

+ 102.943 SiO3Al- 
59.980 AlO2H+ 102.967 SiO4B- 
60.959 44CaOH+ 103.941 Si2O3

- 
60.975 SiHO2

+ 103.966 Al2O3H2
- 

60.988 AlH2O2
+ 117.944 Al2O4

- 
61.983 SiH2O2

+ 118.939 SiO4Al- 
62.992 SiH3O2

+ 119.935 Si2O4
- 

63.945 S2
+ 120.939 Si2HO4

- 
63.962 Mg2O+ 131.919 Si3O3

- 
63.979 30SiH2O2

+ 132.926 Si3HO3
- 

66.965 TiH3O+ 135.929 Si2O5
- 

66.988 SiC2HN+ 136.938 Si2HO5
- 

67.938 SiCa+ 158.922 Si3O4B- 
67.957 SiOMg+ 162.908 Si2O5Al- 
68.965 SiHOMg+ 162.935 Si2O6B- 
70.954 SiOAl+ 176.914 Al3O6

- 
71.949 Si2O+ 177.911 SiO6Al2- 
72.956 Si2HO+ 178.906 Si2O6Al- 
74.933 CaCl+ 179.904 Si3O6

- 
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77.979 SiH2O3
+ 180.903 Si3HO6

- 
78.987 SiH3O3

+ 195.895 Si3O7
- 

80.966 Mg2O2H+ 196.903 Si3HO7
- 

82.939 CaAlO+ 236.880 SiO8Al3- 
82.963 CaBO2

+ 237.876 Si2O8Al2
- 

82.983 MgBO3
+ 238.872 Si3O8Al- 

83.055 BO4H8
+ 239.870 Si4O8

- 
83.935 SiOCa+ 240.869 Si4HO8

- 
83.955 SiO2Mg+ 255.861 Si4O9

- 
83.990 Mg2O2H4

+ 256.868 Si4HO9
- 

84.942 SiHOCa+ 294.826 Si5O8Al- 
84.962 SiHO2Mg+ 296.840 Si2Al3O10

- 
84.999 Mg2O2H5

+ 297.840 Si3Al2O10
- 

85.908 86Sr+ 298.838 Si4O10Al- 
86.975 87Sr+ 299.837 Si5O10

- 
87.905 Sr+ 300.833 Si5HO10

- 
87.944 Si2O2

+ 315.822 Si5O11
- 

88.914 SrH+ 316.834 Si5HO11
- 

88.952 Si2HO2
+ 354.794 Si6O10Al- 

95.922 Ca2O+ 357.802 Si4Al2O12
- 

96.929 Ca2OH+ 358.800 Si5AlO12
- 

97.971 Al2BO2H+ 359.799 Si6O12
- 

99.931 SiO2Ca+ 360.796 Si6O12H- 
100.939 SiHO2Ca+ 376.798 Si6O13H- 
100.957 SiHO3Mg+ 418.766 Si6AlO14

- 
101.903 86SrO+    
102.912 86SrOH+    
103.902 SrO+    
104.910 SrOH+    
104.949 Si2HO3

+    
110.980 CaB2O3H+    
111.915 Ca2O2

+    
112.924 Ca2O2H+    
114.955 CaBO4

+    
115.926 SiO3Ca+    
116.935 SiHO3Ca+    
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119.902 Sn+    
136.906 SnOH+    
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Figure A1.1. Classical least squares fit of isotope ratios (blue) to integrated peak areas from untreated 

Eagle XG® (red) for selected isotope clusters. (a.) SiO3H-, (b) Si2O5H-, (c) Si3O7H-, (d) Si4O9H-, (e) 

Si5O11H-, (f) Si2AlO6
-, (g) Si3AlO8

-, (h) Si4AlO10
-, (i) Si5AlO12

-, and (j) Si6AlO14
- (labeled according to the 

most prominent peak in each cluster).        



264 
 

 

Figure A1.2. Two-component MCR analysis scores plot for elemental species. The loadings for the pure 

component spectra are shown in Appendix 1, Figure A1.3.  
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Figure A1.3. Loadings and Q residuals for two-component MCR of negative cluster ions, shown in 

Figure A1.9. (Top) Component 1 loadings (red) compared to preprocessed data for ‘HCl’ sample (blue). 

(Middle) Component 2 loadings (red) compared to preprocessed data for ‘Fracture’ sample (blue). 

(Bottom) Q residuals.   
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Figure A1.4. Scores for three component MCR of high mass negative cluster ions. The loadings for the 

pure components are shown in Figure A1.5. 
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Figure A1.5. Loadings for 3 component MCR of negative cluster ions shown in Figure A1.4, with 

prominent peaks labeled.  
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Figure A1.6. Scores for 4 component MCR analysis of all integrated peaks. The loadings for the pure 

components are shown in Figure A1.7. 
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Figure A1.7. Loadings for 4 component MCR analysis of all integrated peaks shown in Figure A1.6. 

Prominent peaks are labeled. 
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Appendix 2: Supporting Information for Chapter 3 

 

 
Figure A2.1. (a) 3 keV 4He+ LEIS spectra for samples treated with detergent and/or atmospheric plasma 

compared to an untreated melt surface and a fracture surface. (b) 5 keV Ne+ LEIS spectra for the same 

samples.  
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Figure A2.2. (a.)3 keV 4He+ LEIS spectra comparing Fracture, Untreated, and Fiber samples. (b.) A 

zoomed-in view showing the Al.Si, Ca, and Sr peaks. A geometry factor of 1.9 has been applied to the 

Fiber spectrum as dicussed in the Experimental section.  
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Figure A2.3. (a) 5 keV Ne+ spectra, comparing Fiber, Fracture, and Untreated Surfaces. (b) Raw 5 keV 

Ne+ spectrum for the Fiber surface compared to the Savitsky-Golay-smoothed data.   
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Figure A2.4. Fits for the Al/Si peak for HCl-treated Eagle XG®. (a) Synthetic peak fitting with positions 

and widths fixed to fits from reference materials. (b) Synthetic peak fitting based on reference materials, 

with peak widths set to a fixed ratio relative to the oxygen peak. (c) ISMA LLS fits, using the basis 

spectra shown in Figure A2.10. (d) Residuals for all three methods.  
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Figure A2.5. Fits for the Al/Si peak forEagle XG® Fracture surface. (a) Synthetic peak fitting with 

positions and widths fixed to fits from reference materials. (b) Synthetic peak fitting based on reference 

materials, with peak widths set to a fixed ratio relative to the oxygen peak. (c) ISMA LLS fits, using the 

basis spectra shown in Figure A2.10. (d) Residuals for all three methods. Here, the residuals for the ISMA 

LLS fits are null because the Fracture surface was used to derive one of the basis sets.   
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Appendix 3: Supporting Information for Chapter 5 

 

A3.1 Image Analysis for HF-Treated Eagle XG®, Ramped to 400 °C  

 

This sample’s elemental composition varied as a function of sample position, as shown in 

Figure 5.11b of the main document. A correspondingly high variance in the SiOH+/Si+ ratio can 

be seen in Figure 5.18b. 

We converted several of the positive ion spectra from this sample into SIMS images, which 

are shown in Figures A3.1-A3.6. In selecting samples to display here, we were most interested in 

samples that displayed Ca+-rich and Ca+-poor regions in a single spectrum, such that we were 

capable of observing boundaries between these regions. Na+ and C3H7
+ are also imaged. These 

species are not native to Eagle XG®, and are most likely from adventitious hydrocarbon. Some of 

these regions also shown Na+-rich and hydrocarbon-rich regions can be observed. In some cases, 

hydrocarbon-rich regions correspond to Ca+ rich regions, suggesting that some of the Ca we 

detected may have also come from adventitious sources for this sample.  

We have not made an attempt to display images from all spectra. Each figure notes the 

timestamp at which the spectrum was recorded and the sample coordinates. 

These figures also show the Si+ and Ca+ spectra reconstructed from Ca+-rich and Ca+ poor 

regions of interest (ROIs). The ROIs used to construct these spectra are shown in the figures. We 

have normalized these spectra according to their Si+ peak areas, such that differences in the relative 

intensities of the Ca+ signals are easily observed. In some cases, Na+ peak intensities from ROI 

spectra are also shown.  
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We note that these images are the result of a retrospective analysis. Of our data, and that 

the analysis conditions were optimized to achieve optimal mass resolution rather than optimal 

lateral resolution. The images were recorded with the primary beam set in high-current bunched 

mode. This mode affords optimal mass resolution and relatively poor spatial resolution. Beam spot 

size is estimated at 7μm. Pixel-binning in these images was set at 4 pixels to achieve reasonable 

signal to noise. The images themselves have nominal dimensions of 200 x 200 μm2 and a resolution 

of 128 x 128 pixels. i.e., the spot size is much larger than the pixel size, giving poor overall spatial 

resolution. In spite of these limitations, Ca+ rich regions are readily observed, generally 

corresponded to regions that are also high in C3H7
+.    
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Figure A3.1. Spectrum taken at 10:13 AM at coordinates X: 0.3674mm and Y: 19.9762mm. Spectral 

images of Si+(A), SiOH+(B), C3H7
+(C), and Ca+(D) are shown. Peaks corresponding to areas of the 

regions of interest (I) for each species are shown with (E) Si+, (F) SiOH+, (G) C3H7
+, (H) Ca+. ROI 1 is 

shown as a grey peak, while ROI 2 is shown as a purple peak.  
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Figure A3.2. Spectrum taken at 10:15 AM at coordinates X: 0.3646mm and Y: 19.7804mm. Spectral 

images of Si+(A), SiOH+(B), C3H7
+(C), and Ca+(D) are shown. Peaks corresponding to areas of the 

regions of interest (I) for each species are shown with (E) Si+, (F) SiOH+, (G) C3H7
+, (H) Ca+. ROI 1 is 

shown as a grey peak, while ROI 2 is shown as a purple peak. 
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Figure A3.3. Spectrum taken at 11:12 AM at coordinates X: -0.0284mm and Y: 20.3901mm. Spectral 

images of Si+(A), SiOH+(B), Ca+(C), and Na+(D) are shown. Peaks corresponding to areas of the regions 

of interest (I) for Sodium are shown (E). ROI 1 is shown as a grey peak, while ROI 2 is shown as a red 

peak. 
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Figure A3.4. Spectrum taken at 11:13 AM at coordinates X: 0.1654mm and Y: 20.3870mm. Spectral 

images of Si+(A), SiOH+(B), Na+(C), and Ca+(D) are shown. Peaks corresponding to areas of the regions 

of interest (I) for each species are shown with (E) Si+, (F) SiOH+, (G) Na+, (H) Ca+. ROI 1 is shown as a 

grey peak, while ROI 2 is shown as a purple peak. 
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Figure A3.5. Spectrum taken at 2:55 PM at coordinates X: 0.7596mm and Y: 19.589mm. Spectral images 

of Si+(A), SiOH+(B), C3H7
+(C), and Ca+(D) are shown. Peaks corresponding to areas of the regions of 

interest (I) for each species are shown with (E) Si+, (F) SiOH+, (G) C3H7
+, (H) Ca+. ROI 1 is shown as a 

grey peak, while ROI 2 is shown as a purple peak. 
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Figure A3.6. Spectrum taken at 3:51 PM at coordinates X: -0.629mm and Y: 19.3744mm. Spectral 

images of Si+(A), SiOH+(B), C3H7
+(C), and Ca+(D) are shown. Peaks corresponding to areas of the 

regions of interest (I) for each species are shown with (E) Si+, (F) SiOH+, (G) C3H7
+, (H) Ca+. ROI 1 is 

shown as a grey peak, while ROI 2 is shown as a purple peak. 
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A3.2 Acknowledgement of Outliers  

 

Some outliers were removed from the data prior to analysis. Table A3.1 is a list of the 

datasets from which outliers were removed. We performed follow-up analysis inasmuch as we 

were able to understand why these data points may have deviated from the rest, and the causes for 

deviation are listed in the table inasmuch as we could find them.  

During data acquisition, we recorded mass resolution, reflector voltage, and instrument 

count rate as a first-pass indicator that the instrument was performing to specification. The 

instrument also automatically records important information, including various instrument 

voltages and sample coordinates, which were helpful in explaining the cause of outlying data 

points.  

Table A3.1. A list of outliers removed from data sets prior to analysis.  

Sample 
# of 

outliers Reason 
TR 4 4 Noted severely low count rates, suggesting 

incorrect instrument settings 
FQ HCl 3 2 One sample was taken with the heating element 

still on. The other had low resolution due to sample 
charging. 

FQ HF 1 1 Spot with intense sodium signal, suggesting 
contamination 

EXG Det 2 4 Spectra taken too close to sample edge 
EXG HCl 2 1 Cause unknown. Sample fails Q test. 
EXG HCl 3 2 Severely low count rates, suggesting incorrect 

instrument settings 
EXG U 3 2 Lower than average counts, reflector voltage lower 

than normal 
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Appendix 4: Eagle XG® Glass: Optical Constants from 196 – 1688 nm (0.735 – 6.32 eV) by 
Spectroscopic Ellipsometry 
 

A4.1 Statement of Attribution 

 

This article was originally published as Cushman, C. V.; Johnson, B. I.; Martin, A.; Lunt, 

B. M.; Smith, N. J.; Linford, M. R. Eagle XG® glass: Optical constants from 196 to 1688 nm 

(0.735–6.33 eV) by spectroscopic ellipsometry. Surface Science Spectra 2017, 24 (2), 026001. 1 

Surface Science Spectra is a peer-reviewed spectra data base. Accordingly, this document 

is formatted to present much of the data in tabular format.. We have omitted some information 

fields from this document to improve its readability in this format. We refer readers to the original 

document for complete sample and instrument information. We have also presented some 

information in paragraph format instead of tabular format as in the original publication.  

 

A4.2 Abstract 

 

Corning® Eagle XG® glass is widely used in the manufacture of electronic displays. In a 

previous submission, we provided its optical constants from 230 – 1690 nm (0.73 – 5.39). This 

spectral range reflected the fact that for a thickness of 0.5 mm the material had zero transmission 

below 230 nm. These previously reported optical constants relied on a simple curve fitting 

approach that consisted of pole-pole (Sellmeier), Tauc-Lorentz (T-L), and Gaussian oscillators. 

However, while the model agreed well with the experimental data over the selected spectral range, 

when extrapolated to shorter wavelengths it showed a sharp decrease in absorption, which seemed 
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physically unreasonable. To improve upon the previous model, we have now obtained 

transmission data down to 196 nm using thin (100 and 200 µm) samples. Using this data, the 

optical constants were modeled using a T-L oscillator, 2-3 Gaussian oscillators, and a pole in the 

infrared. The center energies of the Gaussian oscillators corresponded approximately to previously 

reported absorptions from iron and tin in silicate glasses, and the band gap of the T-L oscillator 

was fixed at 5.8 eV, corresponding approximately to previously reported values of the onset of 

intrinsic absorptions.  The resonance energy of the T-L oscillator was initially fixed at 12 eV 

following published values for fused silica, after which it was allowed to adjust. The optical 

constants for the 100 and 200 µm samples could be fit simultaneously using the same model, but 

slight adjustment to the amplitude and broadening of the Gaussian oscillators was required to fit 

the transmission data of standard 0.5 mm (500 µm) Eagle XG®. We attribute this apparent 

difference in the optical properties of these nominally identical materials, which were 

manufactured at different sites, to differences in the concentrations of iron and tin. Iron is a trace 

impurity in Eagle XG®, while tin is a minor constituent.2 These have a profound effect on the UV 

absorption of glass. For the simultaneous fit of the 100 and 200 µm thick samples, our approach 

gave an unweighted MSE of 1.19, while the model adapted to fit the 0.5 mm sample gave an 

unweighted MSE of 0.97. These models gave non-zero, but still quite small values of k, at shorter 

wavelengths. Additionally, in situations where the glass is not analyzed in transmission mode, the 

refractive index can be reasonably modeled over this entire spectral range using only a Sellmeier 

model. This model showed an MSE value of 1.09, where, of course, k was null throughout it. This 

reflection approach may be useful where transmission data is not included in the model. 
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A4.3 Introduction 

 

Eagle XG® glass is a widely used substrate for manufacturing flat panel displays. SE 

characterizes materials by their optical properties. It has previously been used to analyze display 

glass3, float glasses4, fused silica5, silicon nitride6, aluminum nitride7, and a variety of related 

materials that show transparency in the visible region of the electromagnetic spectrum. Several 

approaches for modeling the optical constants of glasses have been reported, including fitting the 

data to a Cauchy or Sellmeier dispersion relationship or with a B-spline.4, 8 Unlike the Cauchy and 

Sellmeier models, the B-spline can fit the absorption features of a glass.4, 9 Gaussian oscillators are 

also well suited for modeling absorption features in amorphous materials like glass,10-12 and a 

Bruggeman effective medium approximation (BEMA) roughness layer is often necessary to 

account for surface roughness to correctly model glasses’ optical constants.13 In addition, Tauc-

Lorentz (T-L) oscillators are widely used to model the optical properties of amorphous 

semiconductors and other materials.14-15 For example, Synowicki and Tiwald used multiple T-L 

oscillators to fit absorptions in ZrO2 in the UV.16  

The absorbing features in optical glasses have been described as the sum result of intrinsic 

absorptions from the glass, absorptions from trace impurities/minor constituents (often iron or tin), 

absorptions from included water, and absorptions from lattice vibrations in the glassy network.11 

In addition, color centers in glass may be induced by exposure to high-energy photons.11-12 Iron 

impurities in particular are present at low (ppm) levels  in most commercially available silicate 

glasses, and is derived from low levels of iron in glass batch materials.11-12 The absorbing features 

from iron and tin have been characterized by UV-VIS spectroscopy in previous studies.11-12, 17 One 

of them showed that iron gave silicate glasses absorbing features throughout the UV, visible, and 

IR regions of the spectrum, though the specific absorbance features across the visible region are 
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orders of magnitude weaker than those in the UV and IR regions such that they may not be detected 

at low concentrations.11 Another study identified the locations of several absorbing bands from 

iron and tin species in the UV region of the spectrum, even when these are only present at ppm 

concentrations.12 The positions of these absorbing features depend on the oxidation states of the 

metals and their coordination numbers, which in turn depend on the forming conditions for the 

glass melt.12, 17 Glass composition also has a strong influence on the positions of these absorbing 

bands, with the bands appearing at different positions for fluoride, phosphate, and borosilicate 

glasses.12 The optical properties of silicate glass in the UV are also influenced by the onset of 

intrinsic absorptions from luminescence centers (L-centers) in silicate glasses.11-12, 18 Glebov and 

coworkers placed the onset of these absorptions at ca. 5.8 eV.11 There are relatively few studies on 

the optical constants of glass at higher energies. Ultra-pure soda-lime silicate glass was analyzed 

up to photon energies of 22 eV.19 For this glass, there was a maximum absorption at ca. 12 eV, 

with additional features near 8 and 10 eV. The position of maximum absorption compares well to 

reported values for fused silica, which also appear around 12 eV.20  

In a previous SSS submission, we fit the optical constants of Eagle XG® using a rather 

simple curve fitting approach.3 A pre-fit of the optical constants was obtained using a B-spline, 

and then oscillators were fit to the shape of this curve. In a final step, the fit parameters of the 

oscillators were allowed to vary to fit the experimental data. We had little physical justification for 

the positioning of these oscillators except the goodness of fit. This approach worked well over the 

range where transmission data was available (above 230 nm). However, when extrapolated to 

shorter wavelengths, these models gave a sharp decrease in the extinction coefficients, k. This 

seemed unphysical, given the expected increases in absorption for fused silica and silicate glasses 

(vide supra).  
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Here, we have expanded the spectral range of our analysis by more than 1 eV, which will 

be useful for applications of Eagle XG® at shorter wavelengths. Using very thin samples of this 

glass (100 and 200 µm), we obtained transmission data down to ca. 196 nm (6.4 eV). The optical 

constants were then modeled from 191-1690 nm using a Tauc-Lorentz oscillator, three Gaussian 

oscillators, and a pole in the IR region. As in our previous publication, a B-spline fit was the 

starting point for this approach.3, 9 Following published values for soda-lime glass and fused 

silica,19-20 the position of the T-L oscillator was initially fixed at 12 eV (ca. 100 nm), after which 

it was allowed to vary. The band-gap energy (Eg) for the T-L oscillator was fixed at 5.8 eV, 

corresponding approximately to the onset of intrinsic absorptions in the glassy network.11 Thus, 

the T-L oscillator fit the Urbach-like absorbing features in the UV and also helped to fit the real 

portion of the dielectric function (ε1) over the visible, eliminating the need for the UV-pole 

employed in the previous approach. The Gaussian oscillators were used to account for absorptions 

in the UV region, probably resulting from the tin included in this glass and low-level iron 

impurities. Here, we have reduced the number of oscillators to three, corresponding to the number 

of distinct features that appear to be present in the transmission spectra of the thinner Eagle XG®. 

This approach gave an unweighted MSE of 1.19, and provided a good fit to the transmission data 

when both the 100 and 200 µm samples were fit simultaneously.  

Interestingly, the standard 0.5 mm (500 µm) thick sample could not be fit simultaneously 

with the thinner samples, regardless of whether we used the above-mentioned oscillator model or 

a B-spline. This suggests that there is a difference in the optical properties between the thicker and 

thinner samples. However, a good fit for the thicker sample could be obtained by allowing the 

amplitudes and widths of the Gaussian oscillators to vary while fixing their energies (positions) to 

the same values used for the thinner samples. We additionally fit the amplitude and resonance 
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energy of the T-L oscillator and the amplitude of the IR pole in this model. Because transmission 

was null below 230 nm for this sample, it was relatively insensitive to the third Gaussian oscillator 

positioned at 5.866 eV. Accordingly, we fixed the amplitude and width of this oscillator at the 

values obtained for the 100 and 200 µm samples. Thus, while this analysis indicates that there is 

some variability in the UV optical properties of this glass depending on its provenance, these 

differences can be accounted for with relatively minor adjustments to our basic model. 

Accordingly, this modeling approach serves as a general procedure for fitting the absorbing 

features of Eagle XG® in the UV region. 

Finally, we note that under the analytical conditions described herein, reflection 

ellipsometry essentially provides a single-bounce measurement from the sample surface, and is 

much less sensitive to absorptions than transmission data. Accordingly, we only report the optical 

constants for the absorbing features (k and ε2) over the spectral range where there is non-zero 

transmission, i.e., from 196 to 1690 nm for the thinner samples, and from 230 to 1690 nm for the 

0.5 mm sample. When no transmission data is included in the analysis, the optical constants are 

well-modeled by assuming k = 0 and using a Sellmeier model. This approach gave an MSE of 

1.09. Obviously this model does not account for absorptions in the material and thus would only 

be appropriate for modeling reflection data.  

To account for surface roughness, the models included a Bruggeman effective medium 

approximation (BEMA) layer with optical constants corresponding to 50% void and 50% bulk 

glass volume fractions.4, 13 For the 100 and 200 µm samples, the BEMA layer gave roughnesses 

(BEMA layer thicknesses) of 0.76 and 0.74 nm, respectively. For the 0.5 mm sample, the BEMA 

layer in the oscillator and Sellmeier models gave roughnesses of 0.47 and 0.48 nm, respectively. 

These values are systematically higher than those obtained by atomic force microscopy (AFM) for 



290 
 

the 0.5 mm sample (0.3 nm, Ra or Rq), and may reflect small amounts of surface contamination or 

a gradient in the near-surface composition in addition to physical roughness. 

 

A4.4 Specimen Description 

 

Eagle XG® is a commercially available boroaluminosilicate display glass, manufactured 

by Corning Incorporated. This glass is widely used as a substrate for manufacturing flat panel 

displays.  Samples were ca. 1.5 cm x 1.5 cm rectangles of glass with thicknesses of 100, 200, and 

500 µm thicknesses. The samples were transparent from 400-1690 nm and lightly to strongly 

absorbing below 400 nm. 

The glass samples were derived from different production lots corresponding to different 

draw rates to achieve the target thickness with high surface quality. The 100 and 200 µm Eagle 

XG® samples were shipped to us by Corning Incorporated in a non-airtight container. They were 

washed prior to packaging and shipping. The 0.5 mm samples were sent to us directly from a 

Corning production facility in a sealed container that protected one side of the sample from 

exposure to the environment. This sample was packaged prior to any industrial washing or 

treatments, and thus represents the glass in its pristine state. We have confirmed by XPS that this 

packaging method is effective in limiting contamination from adventitious hydrocarbons. 

Reflection ellipsometry and transmission data were collected from 191 - 1690 nm. For the 

0.1, 0.2, and 0.5 mm samples, transmission was null below ca. 195, 215, and 230 nm, respectively. 

To collect reflection ellipsometry data from these samples, it was necessary to suppress unwanted 

reflections from their bottom surfaces. For the 0.5 mm sample, this was accomplished by 

sandblasting. To avoid contaminating the surface that was to be analyzed by ellipsometry, this 
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sandblasting was performed while one surface of the sample remained sealed in its original 

shipping container. Portions of the back of the sample were masked off using painter’s grade easy-

release masking tape so unroughened glass was available for transmission measurements. The 

glass was sandblasted using 80 grit glass based media at ca. 20 psi. Prior to opening the shipping 

container, the outside surface of the glass/shipping container was blown off with compressed air 

to remove particulates. The masking tape was then removed and the back side of the sample was 

thoroughly swabbed with methanol to remove any remaining particulates and/or adhesive residue 

from the tape. Once we were certain we had removed contaminants from the outside of the 

shipping container, it was opened and the sample was portioned into roughened segments for 

ellipsometry and unroughened portions for transmission measurements. These samples were 

plasma cleaned for one minute before analysis. 

We similarly attempted to sandblast the thinner samples. At 20 psi, the 100 µm samples 

were destroyed by the sandblasting. At lower pressures their backsides could be roughened, but 

the samples then bowed, such that the smooth side of the glass formed a concave surface. We 

believe that sandblasting erodes a stressed layer of glass from one side of the sample, resulting in 

unbalanced stresses. With the samples bowed, it was difficult to perform ellipsometry on them. 

Accordingly we tried an index-matching approach on unroughened glass using both Scotch tape 

and an index-matching fluid (cedar oil, n = 1.51).22 Both approaches gave similar results, and we 

ultimately opted to use the more traditional index matching fluid method. The transmission and 

reflection ellipsometry measurements on the 100 and 200 µm samples were obtained from the 

same piece of glass. For these transmission measurements, the samples were removed from their 

shipping container, plasma cleaned, and analyzed. They were then pressed onto a droplet of cedar 

oil on the stage of the ellipsometer to obtain reflection ellipsometry measurements. 
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Transmission measurements were obtained using both a UV-VIS spectrophotometer and the 

spectroscopic ellipsometer. Both gave similar results, but the ellipsometer in this case produced 

higher-quality data. Only the ellipsometery data were used in the model, while the UV-VIS 

confirmed the presence of an artifact near 193 nm in the data obtained with the ellipsometer. 

 

A4.5 Instrument Description 

 

Data were recorded using an m2000DI ellipsometer (J.A. Woollam, Inc., Lincoln, NE), a 

variable angle spectroscopic ellipsometer equipped with a CCD array detector, a rotating analyzer, 

and near IR extension to allow data collection out to 1690 nm. 

Data were recorded at 52°, 57°, 62°. Transmission data were also obtained at normal 

incidence to the sample surface with the ellipsometer. For the analyses where transmission data 

was considered, two replicate transmission measurements were taken for each sample to confirm 

reproducibility, but only one transmission data set was included in the fit. The raw transmission 

data showed some transmission at ca. 193 nm. We confirmed that this feature was an artifact by 

obtaining transmission data with a UV-VIS spectrophotometer. We chose to use the data taken 

with the ellipsometer rather than with the UV-VIS instrument because (i) the ellispometer had a 

broader spectral range and (ii) the ellipsometer produced less noisy data.   

A4.6 Data Analysis 

 

All modeling was performed with the CompleteEASE® software package from the J.A. 

Woollam Co. For the analyses in which we modeled the absorbing features of the glass, a B-spline 

fit acted as a starting point for the models. All models included a BEMA roughness layer consisting 
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of 50% volume fractions of glass and void, where the optical constants of the glass in the BEMA 

layer were coupled to the glass in the underlying layer.  

The 100 µm and 200 µm samples were fit simultaneously in a multi-sample analysis. We 

had previously confirmed the thicknesses of the samples using a micrometer (agreement to within 

1.6% with the nominal values). The two samples were allowed to have different roughnesses in 

the model. The same optical constants were used to fit both sets of data. The model consisted of 

one pole in the IR region (EIR fixed at 0.124 eV), one T-L oscillator, and three Gaussian oscillators. 

Here, the band-gap energy (Eg) of the T-L oscillator was fixed at 5.8 eV,11 corresponding 

approximately to a literature value for the onset of intrinsic absorptions in glass, while the 

amplitude and broadening captured the effects of absorbing features outside the spectral range 

(effectively acting as a UV pole).   

For the thicker (0.5 mm) sample, we retained (fixed) the fit energies for the Gaussian 

oscillators obtained in the analysis of the thinner samples, but allowed their widths (BG) and 

amplitudes (AG) vary. Because the transmission data was null below 230 nm, the highest energy 

Gaussian oscillator was fixed to the values obtained for the thinner sample. The amplitude and 

energy of the T-L oscillator, as well as the amplitude of the IR pole were also allowed to vary. 

For the Sellmeier analysis of the reflection ellipsometry data, the model consisted of two 

poles. The position and amplitude of the UV pole were fit, as was the amplitude of the IR pole. 

The position of the IR pole was fixed at the same position as it was in the other models. 

For the first fitting approach, The T-L oscillator had three free parameters: the resonance 

energy (ER), the broadening (BTL), and the amplitude (ATL). Here, ER was initially fixed at 12 eV. 

This starting position was based on a strongly absorbing feature in soda lime silicate glass.19 It was 

then allowed to vary after all the other parameters had been initially fit. The Gaussian oscillator 



294 
 

had three parameters: the amplitude (AG), the peak broadening (BG), and the center energy (EC). 

The IR pole energy was fixed at 0.435 eV following literature values for hydroxyl absorptions in 

silicate glass.23 The amplitude of this pole (AIR) was allowed to vary. The thickness of the BEMA 

roughness layer also varied.  

When the optical constants for the 0.5 mm sample were modeled, the positions of the 

Gaussian oscillators (EG) obtained from the thinner glass were fixed, as well as the broadening 

(BTL) and bandgap (Eg) of the T-L oscillator. However, the widths (BG) and amplitudes (AG) of 

the lower-energy Gaussian oscillators were allowed to vary, as well as the energy (ER) and 

amplitude (ATL) of the T-L oscillator.  

For the second (pole-pole) approach, the free parameters were the UV pole energy, EUV, 

and amplitude, AUV, and the IR pole amplitude, AIR. We again fixed the IR pole energy at 0.435 

eV.  

There is excellent agreement between the refractive indices obtained for all the samples 

between the various modeling approaches described herein (to ca. 0.5%, with the worst deviation 

occurring at photon energy > 5.9 eV).  

N.B.: While we have attempted to base our models as much as possible on data available 

in the technical literature, it is difficult to ascribe too much meaning to the parameters of the T-L 

and Gaussian oscillators employed herein. For example, while the T-L oscillator includes a fit 

parameter for bandgap, this is not the physical bandgap of the material. Nevertheless, they have 

physically relevant shapes, and the fact that they fit our data may indicate that they have some 

physical meaning in our model. We have  primarily used these oscillators as curve fitting 

tools/shapes for describing the absorption of the material, as has been previously done.16   
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A4.7 Oscillator Equations 

 

The information in this section was derived from a series of technical notes from the J.A. 

Woollam Company and a paper by Jellison and Modine.14-15, 24-25 While the equation for the 

Gaussian oscillator as it appears in this document was taken from a J. A. Woollam technical note, 

a more detailed discussion of the Gaussian oscillator as it applies to fitting absorbing features in 

glasses can be found in an article by De Sousa Meneses.10  

The pole-pole model is given by Equation (A4.1),  

(A4.1)      𝑛𝑛2 = 𝜀𝜀∞ + 𝐴𝐴𝑈𝑈𝑈𝑈𝜆𝜆2

𝜆𝜆2−𝜆𝜆𝑈𝑈𝑈𝑈
2  +  𝐴𝐴𝐼𝐼𝐼𝐼𝜆𝜆

2

𝜆𝜆2−𝜆𝜆𝐼𝐼𝐼𝐼
2  

where n is the refractive index, AUV is the UV amplitude, AIR is the IR amplitude, λuv  is the position 

of the UV pole, λIR is the position of the IR pole, and λ is the wavelength for which the refractive 

index is being calculated. ε∞ is the  low-frequency offset, which should be fixed at an appropriate 

value – we used the default value for this parameter provided in our software, i.e., unity. We have 

provided the values for λuv and λIR below in terms of energy instead of wavelength. Accordingly, 

their symbols have been changed to EUV and EIR in the tables below.  𝜀𝜀∞, AUV, and AIR are unitless. 

In the case of the analyses where absorbing features were fit using transmission data, no UV pole 

was used, i.e. AUV was fixed at 0.  

The Bruggeman effective medium approximation is given by Equation (A4.2), 

(A4.2)          

where fa is the volume fraction of material a, fb is the volume fraction of material b, and ε is the 

dielectric constant of the composite material derived from the dielectric constants of the 

component materials εa and εb. The model materials in this case were the glass substrate and void, 

0
22

=
+
−

+
+
−

εε
εε

εε
εε
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b
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where the optical constants of the glass substrate in the BEMA layer were coupled to the fit optical 

constants in the underlying layer. This model gave a roughness of ca.0.75 nm for the thin samples, 

and 0.48 nm for the thick samples. This result is probably reflective of a combination of physical 

roughness, a small amount of surface contamination, and a compositional gradient in the near-

surface region of the glass. The surface roughness (Ra or Rq) of our 0.5 mm samples measured by 

AFM is 0.3 nm. We consider our ellipsometry results to be in good agreement with the AFM 

measurement, given that previous studies have shown a linear correlation, but not necessarily a 

1:1 correspondence, between roughnesses measured by by the two techniques.26-27  

  The equation for a Guassian oscillator is  

(A4.3) 𝜀𝜀2(𝐸𝐸) = 𝐴𝐴𝐺𝐺 �𝑒𝑒
−�𝐸𝐸−𝐸𝐸𝐺𝐺𝜎𝜎 �

2
−  𝑒𝑒−�

𝐸𝐸+𝐸𝐸𝐺𝐺
𝜎𝜎 �

2
�, 

where E is the photon energy in eV, AG is the unitless oscillator amplitude, and EG is the center 

energy in eV. The value for σ is given by Equation (A4.4), 

(A4.4) 𝜎𝜎 = 𝐵𝐵𝐺𝐺
2�𝑙𝑙𝑙𝑙 (2)

 

where BG is the broadening (FWHM) of the oscillator in eV. 

The equation for a T-L oscillator is  

(A4.5)   𝜀𝜀2(𝐸𝐸) =  𝐴𝐴𝑇𝑇𝑇𝑇𝐸𝐸𝑅𝑅𝐵𝐵𝑇𝑇𝑇𝑇�𝐸𝐸−𝐸𝐸𝑔𝑔�
2

(𝐸𝐸2−𝐸𝐸𝑅𝑅
2)2+𝐵𝐵𝑇𝑇𝑇𝑇2𝐸𝐸2

∙ 1
𝐸𝐸

 ,𝐸𝐸 >  𝐸𝐸𝑔𝑔 

  

        𝜀𝜀2(𝐸𝐸) = 0,𝐸𝐸 ≤ 𝐸𝐸𝑔𝑔,  

where ATL is the amplitude of the oscillator, ER is the resonance energy, BTL is a broadening term, 

and Eg is the bandgap of the material, all given in terms of photon energy (here in eV).  

For both the Gaussian and the T-L oscillators, the real portion of the dielectric function, ε1, 

is calculated using the Kramers-Kronig integral, as shown here,  
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(A4.6)  𝜀𝜀1(𝜔𝜔) = 1 +  2
𝜋𝜋
𝑃𝑃 ∫ 𝜔𝜔′𝜀𝜀2�𝜔𝜔′�

𝜔𝜔′2−𝜔𝜔2

∞
0 𝑑𝑑𝜔𝜔′, 

where ω is the frequency of light and P is the principle value of the integral, given by Equation 

(A4.7),  

(A4.7) 𝑃𝑃 ∫ 𝑑𝑑𝜔𝜔′  ≡  lim
𝛿𝛿→0

�∫ 𝑑𝑑𝜔𝜔′ +  ∫ 𝑑𝑑𝜔𝜔′∞
𝜔𝜔+𝛿𝛿

𝜔𝜔−𝛿𝛿
0 �∞

0 .28 

The MSE for the fits was calculated using Equation (A4.8),  

(A4.8) 𝑀𝑀𝑀𝑀𝑀𝑀 =  � 1
4𝑛𝑛−𝑚𝑚

 ∑ [�
𝑁𝑁𝐸𝐸𝑖𝑖− 𝑁𝑁𝐺𝐺𝑖𝑖
0.001

�
2

+ �
𝐶𝐶𝐸𝐸𝑖𝑖−𝐶𝐶𝐺𝐺𝑖𝑖
0.001

�
2

+  �
𝑆𝑆𝐸𝐸𝑖𝑖−𝑆𝑆𝐺𝐺𝑖𝑖
0.001

�
2

 + �6 ∗
𝑇𝑇𝐸𝐸𝑖𝑖−𝑇𝑇𝐺𝐺𝑖𝑖
0.01

�
2

𝑛𝑛
𝑖𝑖=1   , 

where N = cos(2Ψ), C = sin(2Ψ)cos(Δ), S = sin(2Ψ)sin(Δ), and T represents the transmission 

measurements. Terms subscripted with an E denote the experimentally measured values at data 

point i, and terms subscripted with a G indicate the data generated by the model. n is the number 

of wavelengths at which measurements were taken, and m is the number of fit parameters included 

in the model. Note here that the term for transmission data has been multiplied by a weighting 

factor of 6 to compensate for the fact that the ellipsometry data is represented by three measured 

parameters whereas the transmission data is only represented by one, and also because we have 

three sets of ellipsometry data and only one set of transmission data per sample. This weighting 

factor was automatically assigned by the instrument software based on the number of ellipsometry 

and transmission data sets in our model. The normalization factors for each parameter (0.001 for 

N, C, and S, and 0.01 for T) reflect the typical magnitude of systematic and random error in these 

values for the M-2000 ellipsometer. Thus normalized, the MSE for a “good” fit is 1.  Note that this 

is an “unweighted” MSE, i.e., the standard deviation of the measurement at each data point has no 

effect on its weight in the fit, such that noisier data provides a higher MSE. The term in Equation 

(A4.8) accounting for the transmission data was omitted in the Sellmeier model, which did not 

include this type of data. 
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Table A4.1. Fit parameters for the 100 and 200 µm samples. 

Parameter Value Error 

Roughness0.1 mm 
(nm) 0.84 0.009 

Roughness0.2 mm 
(nm) 0.86 0.009 

ATL (eV) 62.60 0.38 

BTL (eV) 3.152 0.014 

ER (eV) 12.863 0.014 

AIR (unitless)  1.16 x 10-2 1.6 x 10-4 

AG1 (unitless)  2.3 x 10-4 3.1 x 10-5 

BG1 (eV) 1.39 0.95 

EG1 (eV) 5.03 0.011 

AG2 (unitless)  6.5 x 10-4 8.2 x 10-5 

BG2 (eV) 0.70 0.048 

EG2 (eV) 5.503 0.031 

AG3 (unitless)  1.32 x 10-3 8.3 x10-5 

BG3 (eV) 0.38 0.016 

EG3 (eV) 5.848 5.4 x 10-3 

MSE 1.186   
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Table A4.2. Fit parameters for the 0.5 mm sample (with transmission data). 

Parameter Value Error 

Roughness 
(nm) 0.46 0.007 

ATL (eV) 65.7 0.62 

ER (eV) 13.00 0.018 

AIR (unitless) 9.7 x 10-3 2.0 x 10-4 

AG1 (unitless)  1.76 x 10-4 3.0 x 10-6 

BG1 (eV) 1.36 0.011 

AG2 (unitless) 7.0 x 10-4 2.8 x 10-5 

BG2 (eV) 0.69 0.01 

MSE 0.973   

  

Table A4.3. Fit parameters for the 0.5 mm sample (reflection ellipsometry data only, Sellmeier model). 

Parameter Value Error 

Roughness 
(nm) 0.48 0.008 

AUV (unitless) 197.4 0.37 

EUV (eV) 12.62 0.011 

AIR (unitless) 7.9 x 10-3 2.0 x 10-4 

MSE 1.094   
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Table A4.4. Spectral features of interest for the 100 and 200 μm Eagle XG®. Slightly differing values over 

a more limited spectral range are available for the 500 μm sample.  

Spectru
m ID # Identity Compositi

on Feature 
Energ
y  
(eV) 

Waveleng
th (nm) n k ε1 ε2  

41-44 Substrat
e 

Eagle 
XG® 
Glass 

Range 
minimu
m 

0.734 1688.2 1.4
9 0 2.22 0 

41-44 Substrat
e 

Eagle XG® 
Glass 

Range 
maximu
m (k/ε2) 

6.27 197.6 1.6
4 

0.001
7 2.67 0.005

7 

41-44 Substrat
e 

Eagle XG® 
Glass 

Shoulde
r (ε2) 5.89 210.3 

1.6
1 

5.9 x 
10-4 2.6 0.001

8 

41-44 Substrat
e 

Eagle XG® 
Glass 

Shoulde
r (ε2) 5.26 235.7 1.5

9 
2.1 x 
10-4 2.51 6.8 x 

10-4 

41-44 Substrat
e 

Eagle XG® 
Glass 

Band 
Edge  3.1 399.5 1.5

2 0 2.32 1 x 
10-6 

 

A4.8 Fit Parameters Fixed in the Model 

  

We fixed the energy of the IR pole at 0.435 eV (2850 nm) based on a reported value for hydroxyl 

groups in silicate glasses.23 Provided it is at low enough energy, the position of this pole appears 

to have little effect on the MSE in our models, i.e. we get very similar results if we fix it at 0.124 

eV, following values for fused silica,20 or if we fix it at the software default of 1 x 10-8 eV, as in 

our previous submission.3 

The bandgap energy (Eg) of the T-L oscillator for some of our approaches was fixed at 5.8 

eV, following literature values for the onset of intrinsic absorptions for some glasses.11 Including 

this fit parameter gave little improvement in the MSE. 
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Positions and widths of some oscillators for the fit of the 0.5 mm sample were fixed based 

on the results obtained for the thinner samples. Specifically, the center energies of all the Gaussian 

oscillators as well as the amplitude and width of the highest-energy Gaussian oscillator were fixed. 

Additionally, the width and band gap energy of the Tauc-Lorentz oscillator were fixed. Including 

these parameters in the fit only slightly improved the MSE.    

 

A4.9 Relevant Reference Materials 

 

Data available for materials comparable to Eagle XG®, including soda-lime silicate glass,11, 

18-19, 23 borosilicate glass,12 and fused silica20 have been useful in establishing our theoretical 

approach to modeling this material and for fixing some values within the models.   
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A4.11 Figures 

 

Figure A4.1. Raw (lines) and modeled (symbols) N, C, and S values for 100 and 200 µm samples (left, 

overlayed), and 500 µm sample (right), obtained at 52° (black), 57° (red) and  62° (blue). For the 500 µm 

sample, the modeled data from the T-L + Gaussian and Sellmeier approaches are shown in open squares 

and solid circles, respectively. For the modeled data, every tenth data point is shown to avoid occluding 

the raw data.   
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Figure A4.2. Raw (lines) and modeled (open squares) transmission data obtained using a T-L + Gaussian 

modeling approach. (Left) data for 100 (black) and 200 µm (blue) samples. (Right) 500 µm sample.  
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Figure A4.3. Optical constants n and k obtained using the various modeling approaches. (Left) Refractive 

index for the 100 and 200 µm samples (black), the 500 µm sample modeled using a T-L + Gaussian 

approach (red), and the 500 µm sample modeled using a Sellmeier approach (blue). The blue and red 

lower lines are essentially identical. (Right) extinction coefficient for the 100 and 200 µm samples 

(black), and the 500 µm sample (red). The extinction coefficient is reported only over the range where 

there is non-zero transmittance for each set of samples. 
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Figure A4.4. Optical constants, ε1 and ε2, obtained using various modeling approaches. (Left) ε1 for the 

100 and 200 µm samples (black), the 500 µm sample modeled using a T-L + Gaussian approach (red), 

and the 500 µm sample modeled using a Sellmeier approach (blue). (Right) The extinction coefficient for 

the 100 and 200 µm samples (black), and the 500 µm sample (red). The extinction coefficient is reported 

only over the range where there is non-zero transmittance for each set of samples. 

  



308 
 

A4.12 References 

 

1. Cushman, C. V.; Johnson, B. I.; Martin, A.; Lunt, B. M.; Smith, N. J.; Linford, M. R. Eagle 
XG® glass: Optical constants from 196 to 1688 nm (0.735–6.33 eV) by spectroscopic 
ellipsometry. Surface Science Spectra 2017, 24 (2), 026001. 

2. Ellison, A.; Cornejo, I. A. Glass Substrates for Liquid Crystal Displays. International 
Journal of Applied Glass Science 2010, 1 (1), 87-103. 

3. Cushman, C. V.; Sturgell, B. A.; Martin, A. C.; Lunt, B. M.; Smith, N. J.; Linford, M. R. 
Eagle XG® glass, optical constants from 230 to 1690 nm (0.73-5.39 eV) by spectroscopic 
ellipsometry. Surface Science Spectra 2016, 23 (1), 55-60. 

4. Synowicki, R. A.; Johs, B. D.; Martin, A. C. Optical properties of soda-lime float glass 
from spectroscopic ellipsometry. Thin Solid Films 2011, 519 (9), 2907-2913. 

5. Tan, G. L.; Lemon, M. F.; French, R. H. Optical properties and London dispersion forces 
of amorphous silica determined by vacuum ultraviolet spectroscopy and spectroscopic 
ellipsometry. Journal of the American Ceramic Society 2003, 86 (11), 1885-1892. 

6. Gautam, L. K.; Ye, L.; Podraza, N. J. LPCVD SiNx thin film on c-Si wafer by 
spectroscopic ellipsometry. Surface Science Spectra 2016, 23 (1), 51-54. 

7. Jones, D.; French, R.; MuÈllejans, H.; Loughin, S.; Dorneich, A.; Carcia, P. Optical 
properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry 
data. Journal of materials research 1999, 14 (11), 4337-4344. 

8. Ghosh, G. Sellmeier coefficients and dispersion of thermo-optic coefficients for some 
optical glasses. Applied optics 1997, 36 (7), 1540-1546. 

9. Johs, B.; Hale, J. S. Dielectric function representation by B‐splines. physica status solidi 
(a) 2008, 205 (4), 715-719. 

10. De Sousa Meneses, D.; Malki, M.; Echegut, P. Structure and lattice dynamics of binary 
lead silicate glasses investigated by infrared spectroscopy. Journal of non-crystalline solids 2006, 
352 (8), 769-776. 

11. Glebov, L. B. In Optical absorption and ionization of silicate glasses, Laser-Induced 
Damage in Optical Materials: 2000, International Society for Optics and Photonics: 2001; pp 343-
358. 

12. Ehrt, D. UV-absorption and radiation effects in different glasses doped with iron and tin in 
the ppm range. Comptes Rendus Chimie 2002, 5 (11), 679-692. 

13. Jellison, G.; Sales, B. Determination of the optical functions of transparent glasses by using 
spectroscopic ellipsometry. Applied optics 1991, 30 (30), 4310-4315. 

14. Jellison Jr, G.; Modine, F. Parameterization of the optical functions of amorphous materials 
in the interband region. Applied Physics Letters 1996, 69 (3), 371-373. 



309 
 

15. Jellison Jr, G.; Modine, F. Erratum: "Parameterization of the optical functions of 
amorphous materials in the interband region ". Applied Physics Letters 1996, 69 (14), 2137. 

16. Synowicki, R.; Tiwald, T. E. Optical properties of bulk c-ZrO 2, c-MgO and a-As 2 S 3 
determined by variable angle spectroscopic ellipsometry. Thin Solid Films 2004, 455, 248-255. 

17. Uchino, T.; Nakaguchi, K.; Nagashima, Y.; Kondo, T. Prediction of optical properties of 
commercial soda–lime-silicate glasses containing iron. Journal of Non-Crystalline Solids 2000, 
261 (1), 72-78. 

18. Glebov, L.; Boulos, E. Absorption of iron and water in the Na 2 O–CaO–MgO–SiO 2 
glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions. Journal 
of non-crystalline solids 1998, 242 (1), 49-62. 

19. Bagley, B.; Vogel, E.; French, W. G.; Pasteur, G.; Gan, J.; Tauc, J. The optical properties 
of a soda-lime-silica glass in the region from 0.006 to 22 eV. Journal of Non-Crystalline Solids 
1976, 22 (2), 423-436. 

20. Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme 
ultraviolet to far infrared at near room temperature. Applied optics 2007, 46 (33), 8118-8133. 

21. Cushman, C. V.; Sturgell, B. A.; Martin, A.; Lunt, B. M.; Smith, N. J.; Linford, M. R. 
Eagle XG® Glass: Optical Constants from 230 – 1690 nm (0.73-5.39 eV) by Spectroscopic 
Ellipsometry. Surface Science Spectra 2016, Submitted. 

22. Synowicki, R. Suppression of backside reflections from transparent substrates. physica 
status solidi (c) 2008, 5 (5), 1085-1088. 

23. Boulos, E.; Glebov, L.; Smirnova, T. Absorption of iron and water in the Na 2 O–CaO–
MgO–SiO 2 glasses. I. Separation of ferrous and hydroxyl spectra in the near IR region. Journal 
of non-crystalline solids 1997, 221 (2), 213-221. 

24. Tiwald, T. Sellmeier Dispersion. J.A. Woollam Co., Inc. Annual Newsletter January, 
2009,  (10), 8-9. 

25. Tiwald, T. The Gaussian Oscillator. J.A. Woollam Co., Inc. Annual Newsletter January, 
2008,  (9), 4-5. 

26. Dahal, L. R.; Sainju, D.; Podraza, N.; Marsillac, S.; Collins, R. Real time spectroscopic 
ellipsometry of Ag/ZnO and Al/ZnO interfaces for back-reflectors in thin film Si: H photovoltaics. 
Thin Solid Films 2011, 519 (9), 2682-2687. 

27. Akagawa, M.; Fujiwara, H. Optical characterization of textured SnO2: F layers using 
spectroscopic ellipsometry. Journal of Applied Physics 2012, 112 (8), 083507. 

28. Fujiwara, H., Data Analysis. In Spectroscopic Ellipsometry, John Wiley & Sons, Ltd: 2007; 
pp 147-207. 

 

  



310 
 

Appendix 5: Low Energy Ion Scattering (LEIS). A Practical Introduction to its Theory, 
Instrumentation, and Applications 

 

A5.1 Statement of Attribution 

 

This document was originally published as Cushman, C. V.; Brüner, P.; Zakel, J.; Major, 

G. H.; Lunt, B. M.; Smith, N. J.; Grehl, T.; Linford, M. R. Low energy ion scattering (LEIS). A 

practical introduction to its theory, instrumentation, and applications. Analytical Methods 2016, 8 

(17), 3419-3439.1 Before that, major portions of this article were published in Vacuum Technology 

& Coating.2-6 

 

A5.2 Abstract 

 

Low energy ion scattering (LEIS) probes the elemental composition of the outermost 

atomic layer of a material and provides static depth profiles of the outer ca. 10 nm of surfaces. Its 

extreme surface sensitivity and quantitative nature make it a powerful tool for studying the 

relationships between surface chemistry and surface related phenomena such as wetting, adhesion, 

contamination, and thin film growth. The high depth resolution obtained in LEIS in its static and 

sputter depth profile modes are useful for studying the layer structures of thin films. LEIS 

instrumentation has improved significantly in recent years, showing dramatic increases in its 

sensitivity and further expanding its potential applications. In this article, we provide a practical 

introduction to the technique, including a discussion of the basic theory of LEIS, LEIS spectra, 
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LEIS instrumentation, and LEIS applications, including catalysts, solid oxide fuel cells (SOFCs), 

and thin films in integrated circuits.  

 

A5.3 Overview 

 

Atoms at the surface of a material are generally in a different chemical environment than 

those buried within the bulk. This often results in important compositional and morphological 

differences between the surface of a material and its interior. For example, surface-bound water 

molecules experience very different environments than those in bulk water. Surface composition 

is important because materials interact with their surroundings through their surfaces, and many 

important phenomena are governed by their surfaces, including wetting, adhesion, contamination, 

reactivity, corrosion, and catalysis. Because understanding these phenomena is so important, the 

analysis of surfaces and interfaces has become an important and specialized area of analytical 

chemistry.    

Analyzing surface composition is challenging because, in general, only a relatively small 

portion of a material is actually at the surface and available for analysis. Depths of analysis in 

surface studies range from a single atomic layer to a few hundred nm. Surface analysis techniques 

must be sensitive enough to obtain information from a very small sample volume before damage 

from the analysis significantly alters the surface. They must also be sufficiently discriminating to 

differentiate between signals originating from the surface and bulk. The challenge of obtaining 

information from a surface often increases as the depth of analysis decreases — fewer 

atoms/molecules become available for analysis, and contamination or damage during the analysis 

become increasingly important considerations.         
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In this work, we provide a practical introduction to low energy ion scattering (LEIS). LEIS 

is an extremely versatile surface analysis technique that is performed under ultra-high vacuum 

(UHV) conditions. LEIS is specifically sensitive to the elemental composition of the outermost 

atomic layer of a material, and additionally provides depth profile information about its outer ca. 

10 nm. Information from deeper within the material can be obtained via LEIS sputter depth 

profiling. Sensitivity to the elemental composition of the outer atomic layer of a material is LEIS’s 

principle asset. Indeed, it is the only technique of which we are aware with its degree of surface 

sensitivity and specificity. Therefore, LEIS is a powerful tool for understanding the relationship 

between surface composition and material properties.  Here we provide an overview of the basic 

theory of LEIS, LEIS instrumentation, quantitation in LEIS, LEIS depth profiling, and applications 

of the technique to catalysts, semiconductor materials, and solid-oxide fuel cells (SOFCs). In 

particular, we discuss how recent advances in LEIS instrumentation have dramatically improved 

the limit of detection of the method. This article is not intended to be a comprehensive review on 

the topic, but rather a practical introduction. A more detailed description of the theory and 

development of the technique can be found elsewhere,7-11 particularly in a review by Brongersma 

and coworkers.12 

A5.4 Introduction to the Theory of LEIS13  

 

LEIS has existed as a technique since the late 1960’s, but recent advances in 

instrumentation have dramatically improved its capabilities and applicability.7-8, 12, 14 Unlike X-ray 

photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-

SIMS), which sample the first few nanometers of materials, LEIS is sensitive to their outermost 

atomic layer.7-8, 12, 14-15 That is, XPS and ToF-SIMS give incredibly useful information about the 
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outer few nanometers of materials, where to some degree they average this information, but they 

struggle to provide definitive information about the final atomic layer of a material.16 Thus, LEIS 

occupies an important niche that will likely become more important with time, where LEIS is a 

powerful tool for understanding the relationship between surface composition and important 

phenomena such as catalysis, wetting, diffusion, adhesion, and adsorption.12, 17-20 In this section, 

we discuss the basic theory of LEIS, which will include an introduction to interpreting LEIS 

spectra. 

Surface instrumentation is often categorized based on the probing species that is directed 

onto a surface and what leaves it. In XPS, X-rays enter the surface and photoelectrons (energetic 

electrons) exit. In ToF-SIMS, primary ions bombard the surface and secondary ions are emitted. 

Scanning electron microscopy has electrons in and electrons out. LEIS probes a surface with noble 

gas ions, and then detects the same backscattered ions (see Figure A5.1). There is an obvious 

similarity between LEIS and Rutherford backscattering (RBS), which is also based on the 

backscattering of atoms.8, 21 The primary difference between RBS and LEIS is the energy of the 

incoming ions. LEIS uses a ca. 1 to 10 KeV beam of noble gas ions, while RBS uses primary ions 

with MeV energies. For this reason, RBS is essentially a bulk technique, probing on the order of a 

micron into materials. The much lower energy primary ions in LEIS are significantly less 

penetrating. Furthermore, the noble gas ions that are used in LEIS have a high probability of being 

neutralized when they interact with a material. Since only ions are detected in LEIS, and only ions 

that scatter off of the outermost atomic layer of a material have short enough interaction times to 

avoid neutralization, LEIS is uniquely sensitive to the atomic composition of the outermost layer 

of a material.8, 15, 22 Indeed, LEIS is so surface sensitive that even a monolayer of contamination, 

e.g., adventitious carbon, can obscure the signal from a material. 
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Equation (A5.1) is the governing equation of LEIS. A list of its underlying assumptions 

can be found in an article by Smith.7  

(A5.1) 𝐸𝐸𝑆𝑆 = 𝑘𝑘 ∙ 𝐸𝐸𝑃𝑃 =
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The variables in this equation are the energy of the primary ion, EP, the energy it has after 

scattering, ES, the mass of the primary ion, MP, and the mass of the particle it scatters off of, MS. 

The other variable in this equation, Θ, is the angle through which the scattering takes place (see 

Figure A5.1). A condition for Equation (A5.1) is that MS/MP ≥ 1 (the surface atom from which 

scattering occurs must be heavier than the ion striking it). If this condition is not fulfilled (MS/MP 

< 1), e.g., He+ striking a hydrogen atom, no backscattering takes place, only forward scattering. 

As an analogy, imagine what would happen if the pins in a bowling alley were heavier than the 

bowling ball. In this case, the bowling ball would recoil upon striking a pin. This would entirely 

change the game. Bowling, as it stands, is based on forward scattering of the ball, not 

backscattering. Not to belabor the point, consider what would happen if you used a ping pong ball 

for bowling, which is obviously much lighter than a bowling pin. Clearly if the much lighter ping 

pong ball were to strike the bowling pin head on, it would bounce back in the direction from which 

it came. This metaphor helps us appreciate how scattering depends on the masses of the projectile 

and the object it strikes. Because in a LEIS experiment EP, MP, Θ, and ES are known or defined by 

the instrument, MS can be determined. Equation (A5.1) can be derived entirely from classical 

physics using the principles of conservation of energy and momentum; the ideal scattering energy 

in LEIS can be described without quantum mechanics. In practice, however, there are inelastic 

contributions to the scattering process, which shift the measured scattering energies to slightly 
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lower energies than those calculated using Equation (A5.1) and give the peaks in LEIS spectra a 

Gaussian shape.12  

When one encounters a new equation in physics, it is often a good idea to evaluate it in its limits.  

Consider the case where MS is increasingly large compared to MP, e.g., the case of He+ scattering 

off of a very heavy atom. First, we multiply Equation (A5.1) by (MP/MS)/(MP/MS), which yields 

(A5.2) 𝐸𝐸𝑆𝑆 =
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Rearranging the equation, we obtain 

(A5.3) 𝐸𝐸𝑆𝑆 =
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Now, consider the limit of MP/MS  0. Of course this is not physically possible, but it 

becomes a more reasonable approximation as MS gets large compared to MP, e.g., 4He+ scattering 

off of 238U, which gives MP/MS ≈ 4/238 ≈ 0.02. In any case, as MP/MS  0 in Equation (A5.3) 

becomes 

(A5.4) 𝐸𝐸𝑆𝑆 = 𝐸𝐸𝑃𝑃. 

Thus, for the case of an infinitely heavy MS atom, the energy of the scattered ion, ES, is 

equal to the energy of the primary ion, EP, i.e., all the energy of the primary ion is in the 

backscattered ion. Figure A5.2 is a plot of the percentage of the energy backscattered in LEIS as a 

function of MS. The previous discussion about Equation (A5.1) in its limit helps us understand 

why the curve in Figure A5.2 for He+ (the projectile) asymptotically approaches 100% at high MS. 

Obviously the other curves in Figure A5.2 are also approaching this limit. 
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LEIS identifies elements by their masses, and successful identification of an element 

depends upon optimizing the analysis parameters so that one nuclear mass can be distinguished 

from another.12, 14 The most important parameters that the user can control in LEIS are the type 

and energy of the ions used to probe the surface. The steepness of the curve for He+ in Figure A5.1 

at lower MS suggests that LEIS with He+ is very discriminating to the lighter elements. For 

example, using Equation (A5.1), we calculate an energy difference of 94 eV for 3 KeV He+ 

backscattered at 145° from 12C and 13C. Since the widths of these peaks will be around 80 eV, 

these signals can be resolved. 

In contrast to the steep rise in backscattering energy at low values of MS, the increasing 

flatness/asymptotic behavior of the curve in Figure A5.1 for He+ at higher MS shows that LEIS 

lacks discrimination/resolution for the heavier elements with this lighter probe. For example, for 

3 KeV He+ at 145° backscattering, the energy difference between 58Ni and 59Co is only 10 eV. 

LEIS also shows little discrimination between 208Pb and 197Au under these analysis conditions. 

That is, even though they have a greater mass difference, the higher masses of Pb and Au lead to 

an energy difference of only 11 eV between their peaks. Thus, LEIS with He+ nicely resolves the 

lighter elements while it is less effective at resolving the heavier ones.  

A solution to the lack of resolving power of He+ at higher MS is to use heavier projectile 

ions.12 Figure A5.2 contains plots of the scattering energy for He+ and three other noble gas ions: 

Ne+, Ar+, and Kr+ as a function of MS. These curves were derived directly from Equation (A5.1). 

It is interesting to note the slopes of these lines. At about MS = 40 u, the curve for Ne+ has a higher 

slope than that for He+, i.e., the resolving power of Ne+ becomes higher than that of He+ at this 

point. Then, a little over 100 u, Ar+ shows a higher slope than Ne+, and finally after about 200 u, 

Kr+ has the highest slope. Figure A5.3 is a plot of the energy difference per nominal mass vs. MS, 
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i.e., it is the plot of the slopes (derivatives) of the curves in Figure A5.2. Note that the plot does 

indeed show He+ being the most effective probe up to MS ~ 40 u, followed by Ne+ up to MS ~ 100 

u, etc. Thus, in general, LEIS better resolves heavier atoms with heavier projectiles. This is all 

consistent with our earlier analogy – imagine how hard it would be to differentiate between 16 lb. 

and 18 lb. bowling balls by measuring the backscattering energy of ping pong balls bouncing off 

of them. Equation (A5.1) would apply to this classical problem, and the mass ratio MS/MP would 

be extremely large, essentially giving the same backscattered energy (ES = EP, Equation A5.4) for 

the ping pong balls. 

Before going on, let’s revisit the discussion of LEIS of 58Ni and 59Co. It will illustrate 

another important concept – consideration of the different isotopes of elements to be analyzed by 

LEIS. The discussion above on 58Ni and 59Co was true for isotopically pure samples of these 

elements. However, a real sample of nickel will consist primarily of 58Ni (68.1%) and 60Ni (26.2%). 

59Co, in contrast, exists as one stable isotope. It has an odd number of protons (27) so one would 

expect it to have fewer isotopes than nickel, which has an even number of protons (28). All of this 

means that a real sample of nickel will produce a broader LEIS signal than the corresponding 

signal from Co. Accordingly, detecting a small amount of Co in a sample of Ni by LEIS is a 

difficult proposition – the Co signal lies between the two Ni signals. In contrast, a small amount 

of Ni in Co can be more readily detected and quantified – the nickel will produce a lower, broader 

signal that will surround the sharper signal from the Co. We emphasize here that it would be a 

good idea to perform LEIS in conjunction with other analyses. In this regard, LEIS is the same as 

any other surface/material analytical method. For example, because of the overlap between the Ni 

and Co signals, it might be a good idea to perform XPS on any samples that are suspected of 

containing these two elements. XPS might show, for example, that one of these elements is absent, 
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which would simplify one’s data analysis. Of course, as mentioned above, XPS probes much 

deeper into materials than LEIS. 

 We now discuss the energy of the backscattered ion and its impact on signal. We noted 

above that the slope of the scattering energy in Figure A5.2 changes with increasing MS. We also 

noted that the energy difference between He+ backscattered from isotopically pure 58Ni and 59Co 

was 10 eV for the given conditions. In contrast, the energy differences for 5 KeV Ne+ and 8 KeV 

Ar+ backscattered at 145° from 58Ni and 59Co are 33.1 and 30.3 eV, respectively. There is little 

difference between these energies, so one might assume that it does not matter whether one uses 5 

KeV Ne+ or 8 KeV Ar+. However, the average backscattering energies (kinetic energies) for these 

ions are ca. 1363 and 365 eV, respectively. Thus, the Ne+ ion is moving much faster than the Ar+ 

ion. As a consequence, the Ne+ ion will have a much shorter interaction time with the surface than 

the Ar+ ion during backscattering. This longer interaction time for Ar+ gives it more time to be 

neutralized and thus the LEIS signal of Ar+ backscattering off of 58Ni and 59Co is greatly reduced. 

This shows that, in addition to selecting the projectile ion that maximizes mass resolution, its effect 

on signal amplitude must be taken into account. Therefore, the energy of the backscattered ion in 

LEIS is another important factor to consider in optimizing an experiment.12  

 LEIS is primarily considered to be a surface analysis technique, and this is arguably its 

greatest strength. Nevertheless, scattering from deeper layers occurs and provides additional 

important information. The information depth for LEIS is 5 – 10 nm. LEIS is unique in its ability 

to nondestructively provide depth resolved information over this range, yielding much higher 

depth resolution than RBS.12, 14 Because this depth profile is obtained without the need for 

sputtering, it is often called a static depth profile. Of course, sputter depth profiling is performed 

in both XPS and ToF-SIMS, but the corresponding sputtering process can rapidly scramble the 
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composition of the outermost layers. Figure A5.4a illustrates the interesting mechanism by which 

static depth profiling information is obtained in LEIS. For a surface scattering event like the one 

illustrated in Figure A5.4a to be detected, the incident ion cannot be neutralized when it is 

scattered. However, when a noble gas ion enters a solid it is neutralized and travels through the 

solid in this uncharged form. As it moves along, it loses energy due to electronic and nuclear 

stoppage events. At some point, a backscattering event may occur, which reverses the trajectory 

of the atom and directs it out of the solid. In its neutral state, the projectile will not be detected by 

the instrument. Fortunately, when neutral noble gas atoms leave a solid, a fraction of them are 

reionized. But unlike most of the processes considered to this point, which can be explained by 

classical physics and are independent of chemical bonding or other such complexities, this 

reionization depends on the surface chemistry of the sample. For example, due to resonance 

between the core electron levels of He atoms and oxygen atoms, oxygen is particularly effective 

at reionizing helium atoms as they leave the surface of a sample. Therefore, the magnitude of the 

depth signal tends to scale with oxygen concentration at the outer surface of a sample.12 

Backscattering from atoms that are below the surface results in the long, relatively flat tails/steps 

present in Figure A5.4. The depth of an analyte within a material corresponds to the lengths of 

these tails. More specifically, the lengths of these tails can be converted to physical depths within 

the sample if the energy loss per depth interval (eV/nm) is known for the energy used. This can 

either be measured directly from known samples or calculated by use of modeling software for ion 

implantation such as TRIM/SRIM.23-25 Software for analyzing RBS data has also been successfully 

applied to LEIS static depth profiles.26 

 Figure A5.4b shows the theoretical LEIS spectrum for the ZrO2 film on Si shown in Figure 

A5.4a. The tall, sharp Zrsurf peak at high energy in the spectrum confirms the presence of this 
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element at the outermost surface of this sample. This sharp signal shows a flat tail, labeled Zrdepth, 

towards lower energy. In accord with the previous discussion, this tail is due to ions that have 

entered the solid, been neutralized, undergone backscattering (by Zr atoms), and been reionized 

during their emission from the solid. Their reionization was favored because ZrO2 is an oxide. 

Obviously deeper Zr atoms in the film correspond to signal on the tail that is further from the Zrsurf 

peak. Below this tail for Zr is an arrow pointing to where the signal for silicon would appear if 

silicon atoms terminated the material. They do not, and no signal is observed here. The next lower 

signal in energy labeled Osurf is from surface oxygen atoms. The presence of this peak and the Zrsurf 

peak confirm that this solid is terminated with these atoms. Finally, there is a step labeled Sidepth. 

This signal is due to backscattering from silicon atoms below the ZrO2 film. Notice that unlike the 

Zrsurf and Zrdepth signals that are fused together in Figure A5.4b the hypothetical Sisurf and real 

Sidepth signals are separated in energy because of the presence of the ZrO2 film. 

 One of the best ways to come to understand a new technique is to study the real data it 

produces. Accordingly, in Figure A5.5 we show a series of real LEIS spectra from the atomic layer 

deposition (ALD) of ZrO2 onto silicon. ALD is a technique for producing highly conformal thin 

films, and films deposited by ALD are very relevant to semiconductor manufacturing.27-30 Each 

ALD cycle here consists of the appropriate two half reactions. These surfaces were cleaned with 

atomic oxygen prior to analysis, and therefore the outermost layer of the material is expected to be 

fully oxidized. The spectra in question (see Figure A5.5) were obtained after 10, 20, 30, 40, 50, 

70, and 100 ALD deposition cycles. These real spectra correspond to the idealized representation 

of this system and LEIS spectrum in Figure A5.4. These spectra primarily contain three peaks that 

are assigned, based on their backscattering energies, to O, Si, and Zr. Qualitatively, the positions 

of these signals on the energy scale correlate with their mass numbers – Zr is the heaviest atom, 
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which produces the highest backscattering energy, followed by Si, followed by O. All of this is 

reasonable. The signal from the Si substrate is initially rather intense, and it has a tail (high 

background) to lower energy that corresponds to signal from subsurface atoms. The fact that there 

is any signal from the Si substrate is quite interesting. The idealized view of ALD is that it creates 

perfectly uniform and conformal layers on a substrate, i.e., one might argue that under ideal 

conditions even a small handful of ALD cycles should completely cover the substrate with ZrO2. 

Clearly this is not the case after even 10 deposition cycles. Two possibilities here are (i) that the 

ALD cycles have led to submonolayer deposition of Zr that is uniformly dispersed across the 

surface, leaving a significant number of exposed substrate atoms, i.e., not very much material is 

depositing per cycle, or (ii) that growth of the ZrO2 is occurring from nucleation sites on this 

material, which is also leaving a considerable amount of the original surface exposed. Atomic 

force microscopy or high resolution scanning electron microscopy would help elucidate the actual 

surface structure. Again, the multi-instrument characterization of materials is often important for 

these types of problems.31-33 For now, it is enough to know that LEIS has suggested that some 

rather interesting complexity is present in this ALD. 

 The general trends in the peak intensities in Figure A5.5 are consistent with the ALD of 

ZrO2. The substrate peak, labeled ‘Si’, gradually decreases in intensity with increasing number of 

deposition cycles, which is perfectly consistent with another material gradually covering the 

substrate. At the same time, the Zr signal is increasing in intensity, i.e., the expected deposition 

and increasing surface coverage of ZrO2 is occurring. Interestingly, the oxygen signal stays nearly 

constant throughout these depositions, suggesting that its surface concentration stays nearly 

constant. This is reasonable because the samples were all treated with atomic oxygen prior to 

analysis. This result is also consistent with oxygen in SiO2 at the surface being replaced with 
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oxygen in ZrO2, such that the oxygen concentration at the surface stays roughly constant. As the 

Zr signal increases in intensity, the tail to its low energy side also increases in intensity. At 100 

deposition cycles, this tail is initially flat, suggesting a uniform concentration of Zr to some depth 

below the surface. The length of the tail corresponds to a thickness of about 2.5 – 3 nm of ZrO2. 

The tail then decreases in intensity, which suggests that lower in the film the concentration of Zr 

has decreased. At 100 deposition cycles, the Si signal is finally gone – all the silicon surface atoms 

are covered. Quite a few ALD cycles were required to completely cover the substrate. These results 

are consistent with ZrO2 growth from nucleation sites, i.e., growth here does not take place as 

perfectly homogeneous, uniform layers but from select locations. In summary, the real spectra in 

Figure A5.5 correspond to the rather complex, and interesting, deposition of ZrO2. It is clear how 

valuable the remarkable surface sensitivity of LEIS is in this problem. 

 Finally, we see in Figure A5.5 another analogy between LEIS and RBS. Like LEIS, in RBS 

incoming projectile ions scatter with greater energy from heavier atoms. Thus, an ideal situation 

in RBS is the analysis of heavy atoms on a light substrate because the signal from the heavy atoms 

will be well separated from the substrate signal and most easily analyzed/quantified.32 These 

signals often have little or no noise around them. Note that we have this situation for the Zr signal, 

especially for lower numbers of deposition cycles. 

 

A5.5. LEIS Instrumentation34 

 

As noted above, LEIS has been in use since the late 1960’s. However, recent developments 

have dramatically improved its sensitivity and applicability.7, 12 Here, we discuss some of the 

basics of LEIS instrumentation, including recent advances in instrument design. The main 
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components of a LEIS instrument are a noble gas ion source and an energy analyzer/detector for 

measuring the energies of backscattered particles and for quantifying this signal. Obviously, ion 

optics are needed to control the incoming ion energy, to focus the probe beam, and to set the pass 

energy into the kinetic energy analyzer. LEIS analysis takes place under ultra-high vacuum 

conditions, requiring a vacuum chamber with associated pumps, gauges, and load-locks. Given the 

extreme surface sensitivity of LEIS, sample preparation is of vital importance. Many LEIS 

instruments include a sample preparation chamber in which samples are cleaned, cleaved, heated, 

and/or treated with various gasses to simulate the operating conditions of the materials being 

analyzed. If the samples cannot be prepared in situ, the preferred type of cleaning in LEIS is 

treatment with atomic hydrogen or oxygen. These species can remove surface contamination 

without causing sputter damage. In comparison, sputter cleaning and plasma cleaning bombard a 

surface with high-energy particles, which causes some degree of material removal and surface 

rearrangement. 

The most common type of LEIS instrument is a converted XPS instrument. The 

electrostatic analyzers (ESA) commonly used in XPS measure the kinetic energies of surface-

emitted photoelectrons. To use an ESA for LEIS it is only necessary to reverse its polarity to 

accommodate particles with positive charges. A hemispherical ESA configured for LEIS analysis 

is shown in Figure A5.6. Here, the two main components are a set of ion optics that set the pass 

energy, and a pair of concentric hemispheres with applied voltages. Incoming ions with too little 

energy collide with the negative hemisphere, while ions with too much energy collide with the 

positive hemisphere. Only ions with the correct pass energy maintain a stable trajectory through 

the analyzer and reach the detector.  



324 
 

The advantage of using a converted XPS instrument for LEIS analysis is that for the 

additional expense of installing a noble gas ion source, a single instrument can serve both 

functions. However, the geometry of a hemispherical ESA only allows the capture of a small 

fraction of the total number of backscattered ions. Since the goal in LEIS is almost always to 

analyze the outermost layer of the material, and the surface can only take a limited ion dose before 

surface damage from the probe beam influences the analysis, the entrance apertures of the ESA 

are usually opened to the maximum amount possible to achieve sufficient sensitivity. This results 

in a spread of several degrees in the accepted backscattered angle, Θ, represented by the dotted 

lines above the sample in Figure A5.6. As indicated in Equation (A5.1), the energy of 

backscattered particles depends on Θ, so a spread in Θ results in peak broadening and concomitant 

loss of mass resolution. For example, using 3 keV He+ ions at a scattering angle of 145° and a 

spread in the angle of ± 5°, the peak for 65Cu is broadened by 29 eV. This corresponds to the 

difference in scattering energy separating Cu and Zn (it is nominally 24 eV), so their identification 

becomes challenging. As discussed in the previous section, heavy elements are often analyzed with 

heavier projectile ions. If we tried to resolve Cu and Zn using this same instrumentation, but with 

5 KeV Ne+ ions as the probing beam, the nominal spacing between these signals increases to 88 

eV. This is positive. Unfortunately, however, we get an energy spread of 98 eV from the angular 

spread in Θ. Obviously this difference is large enough that it is again challenging to distinguish 

these neighboring peaks, especially when other sources of peak broadening are taken into account. 

For heavier elements, the effect of peak broadening by the wide acceptance angles employed in 

converted XPS instruments is even more pronounced. Thus, LEIS instruments derived from XPS 

systems are usually used only with He+ ions and are not well suited for resolving analytes of high 

nuclear mass.  
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Even with a wide acceptance angle, a high ion dose may still be required to achieve a good 

signal-to-noise (S/N) ratio in a converted XPS instrument, resulting in sample damage. That is, the 

first ions to backscatter from a region provide information about the pristine surface. However, 

any ions that strike a sputtered region will provide information about the damaged surface. 

Therefore, an analysis must be performed within the static limit to obtain information about the 

pristine sample surface. The static limit, which is also an important consideration in ToF-SIMS, is 

the ion dose below which there is a low probability of the same spot being struck twice. With 

converted XPS instruments, the sensitivity of the analyzer may not be sufficient to get a good S/N 

ratio while maintaining an ion fluence below the static limit. This obstacle can be overcome by 

analyzing multiple spots on the same sample, but this approach requires a uniform surface. 

The first papers on the double toroidal analyzer (DTA) were published in the 1980s.10-11, 35 This 

design was refined over the next 20 years,22 and finally incorporated into a commercial instrument. 

A schematic representation of a DTA can be seen in Figure A5.7. The DTA is similar in function 

to the hemispherical ESA used in XPS; in both cases, only an ion of the correct kinetic energy can 

traverse the space between two charged plates without colliding with one of them. With this 

geometry, the probe beam strikes the sample vertically, and a nearly 360 degree azimuth of 

backscattered ions is collected. With this large azimuthal collection angle, it is possible to sample 

a very narrow range of backscattering angles, Θ, while still collecting a much larger number of 

ions than with a hemispherical ESA. The typical spread in Θ for an analysis with a DTA-equipped 

instrument is 1° - 2°, which clearly results in much less peak broadening than with a hemispherical 

ESA instrument. Accordingly, instruments with DTAs are suited for use with all types of noble 

gas ions, not just He+, and practically all pairs of elements can be separated. 36 Thus, DTA equipped 

instruments can achieve much lower detection limits before the static limit of analysis is reached. 



326 
 

ION-TOF has commercialized this technology in their Qtac100 instrument, which is a dedicated, 

commercial LEIS instrument. In addition to incorporating a DTA into their design, ION-TOF has 

introduced other features that further improve the performance of the instrument. The first that 

bears mentioning is a position sensitive detector. As shown in the Figure A5.7, the DTA can 

simultaneously pass ions of a range of energies (5 - 10 % of the pass energy). Ions of different 

energies have different trajectories through the analyzer. Thus, they strike the position sensitive 

detector plate at different positions, so that their individual energies are determined based on the 

position at which they strike it. This arrangement has the advantage of accepting a higher scattered 

ion flux without loss of energy resolution. Similar technology has long been available for use with 

hemispherical ESAs, but a considerable amount of engineering was required to make a position 

sensitive detector compatible with the DTA geometry while covering a wide energy range of 

parallel detection.  Another feature included in the instrument is time-of-flight-filtering (ToF-

filtering), which allows the backscattered projectile ions to be isolated from sputtered background 

ions of the same energy. The most abundant background ion in any LEIS analysis is from adsorbed 

hydrogen that has been sputtered from the sample and ionized in the sputtering event. These 

secondary hydrogen ions may have the same kinetic energies as backscattered noble gas ions. 

However, their lower mass gives them a much higher velocity resulting in a much shorter time-of-

flight. Therefore, by detecting only ions with the correct flight time for each energy, this 

background signal can be eliminated. This is especially beneficial in the low-energy region of a 

LEIS spectrum, where the background signal can be strong enough to obscure the peaks of the 

light elements.15 For example, Figure A5.8 shows a LEIS spectrum taken with a conventional 

XPS-based instrument.37 The very high background at lower scattering energies is obvious. These 
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advances in LEIS instrumentation have dramatically improved the sensitivity and applicability of 

this technique to a variety of samples.  

 

A5.6. A Photographic Tour of the Qtac100, a Double-Toroidal Analyzer-Equipped 
LEIS Instrument38      

 

 

Figure A5.9 shows a Qtac100 LEIS instrument with the locations of a few key components 

labeled. Clearly, a LEIS instrument will require an ion source (A), a gun for accelerating the ions 

(B), and an energy analyzer (top of the main chamber, (D)). In addition, instruments can be 

equipped with sputter guns (C) for depth profiling. In LEIS, ions must travel rather long distances 

without colliding with other atoms besides those at the sample surface, i.e., have long mean free 

paths. Thus, LEIS is carried out under ultra-high vacuum (UHV) conditions. Figure A5.9 also 

shows some of the key components that are necessary for UHV analysis. These include the analysis 

chamber (D) – these kind of look like divers’ helmets, a sample introduction chamber (E, load 

lock), and a sample manipulator (transfer arm) (F) to move samples from the load lock to the UHV 

analysis chamber. Almost all UHV analysis systems have this type of two-chamber design – an 

introductory chamber and an analytical chamber. The purpose of this important design feature is 

to reduce contamination in the main chamber so that pump down times are not excessively long. 

The vacuum pumps for the system are housed beneath the analysis chamber (G), which is typical 

of many UHV surface analytical instruments. 

Obviously a LEIS system can be configured with/connected to other analytical instruments. 

Figure A5.10 shows a combined LEIS/ToF-SIMS instrument. The main chambers of the two 
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instruments are connected so that samples can be transferred from one instrument to the other 

without breaking vacuum. Clearly this capability (i) adds noticeably to the cost of the instrument, 

but (ii) allows sample analysis at a level that is not possible if the material must come in contact 

with the air prior to or between analyses. 

Figure A5.11 shows the sample preparation and loading process for the Qtac100. Because 

of the extreme surface sensitivity of LEIS, sample cleanliness is very important. Gloves are used 

for handling samples and the sample holder. We note the irony that gloves are worn in most 

chemistry laboratories to protect the workers from chemicals, while gloves are worn in most 

surface analysis labs to protect the samples and instruments from humans!  Samples with 

dimensions of ca. 15 mm x 15 mm fit on these sample holders, and depending on the instrument 

configuration, one or several samples may be loaded at a time. The sample holders connect to a 

holder pen for easy handling. Because of LEIS’ surface sensitivity, adventitious carbon can quickly 

reduce or eliminate surface signals. The adventitious hydrocarbon typically gives no signal since 

it is often H-terminated, and LEIS is not sensitive to hydrogen.  Accordingly, atomic oxygen or 

hydrogen cleaning is a common step in sample preparation, where each sample may require a 

different cleaning time. The samples are typically given increasing doses of atomic oxygen until a 

stable instrument response is obtained. An optional feature for the Qtac100 is an environmental 

chamber in which samples can be heated, cooled, and/or dosed with various gasses. Single-sample 

sample holders are practical in LEIS because each sample may need different cleaning times or 

undergo different treatments in the environmental chamber.  

Figure A5.12 shows a close-up view of a Qtac100 instrument with some key components 

labeled. This particular instrument is configured to hold multiple sample holders simultaneously. 

It also has an optional environmental chamber installed in which the samples may be heated and 
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dosed with various gases. Identified in this picture are the atomic oxygen generator (A), a sputter 

gun for sputter depth profiling (B), the analytical (main) chamber (C), the sample introduction 

chamber (D), the sample preparation chamber (E), and the environmental chamber (F). Three 

separate transfer arms are visible in this picture – they move samples between the various 

chambers. Note the small size of the sample introduction chamber on this instrument. Small 

introduction chambers make for faster pump downs and help minimize contamination of the 

analytical (main) chamber.  Figure A5.13 shows a screenshot of the instrument software. 

Practically all of the instrument components are controlled through this software, which includes 

tools for peak fitting spectra.  

 

A5.7 Quantitation in LEIS39 

 

We now discuss the quantitative nature of LEIS, why LEIS is inherently quantitative, and 

how quantitation is accomplished in LEIS. We also mention some of the few cases in which LEIS 

is not quantitative.  

LEIS is inherently quantitative.12 Thus, unlike ToF-SIMS, there is no matrix effect, with a 

few exceptions that will be noted below. The governing equation of LEIS (Equation A5.1) is 

derived entirely from classical principles, where this process (essentially the ricochet of a lighter 

particle off of a heavier one) occurs independently of the chemical environment of the analyte ion. 

However, a factor that influences the backscattered intensity is the probability of the ion being 

neutralized during the scattering event. Recall that the analyzer only detects ions, not backscattered 

neutrals. Because neutralization effects are dominated by the binary interaction between the ion 

and the analyte atom, and because of the relatively high energy and short interaction time of the 
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collision, the chemical environment of the atom and/or the state of the surface as a whole is 

irrelevant. Because there is no matrix effect, the signal in LEIS is directly proportional to the 

surface coverage of elements, which makes quantitation straightforward. In contrast, the strong 

matrix effect in ToF-SIMS causes signals of certain ions to be enhanced or suppressed depending 

on which other atomic species/compounds are present. In some cases, this can be used 

advantageously to enhance certain signals, or most of them, as in metal assisted SIMS (MetA-

SIMS).40-42 However, it also means that for most circumstances ToF-SIMS is at best semi-

quantitative. While there is no matrix effect in LEIS, each element has its own sensitivity factor. 

In this regard it is analogous to XPS. Indeed, each element has a unique LEIS backscattering cross-

section and also a neutralization cross-section. These vary depending on the projectile ion and 

projectile energy used. While scattering cross sections can be calculated, there is currently no 

computational model for predicting neutralization cross sections, and in practice sensitivity factors 

are established empirically, either by the use of standards or correlation plots.12 In some sense this 

is the same as in ToF-SIMS, where the sputtering process is quite well understood and can be 

modelled by molecular dynamics simulations, while the ionization effects are still not possible to 

predict. 

The data in Figure A5.14A illustrates the absence of a matrix effect in LEIS. This data was 

collected from tungsten surfaces onto which different amounts of bromine were adsorbed. The 

signal for tungsten is plotted on they y-axis, and the signal for bromine is plotted on the x-axis. 

Because LEIS measures atomic surface coverages, as the surface coverage for bromine increases, 

we should see a decrease in the tungsten signal, and vice versa. This is exactly what the data show. 

When the tungsten signal is high, the bromine signal is low, and vice versa. The fact that there is 

no matrix effect is proved by the linear, anticorrelated relationship shown here. If there were a 
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matrix effect, we would see a departure from these linear trends. For example, if bromine had a 

suppressing effect on the tungsten signal, we would see the tungsten signal increase in a non-linear 

fashion as the bromine concentration decreased. Numerous experiments with other two-

component systems have shown similar results. For example, Figure A5.14B shows the steady 

increase in the LEIS Zr signal in the atomic layer deposition (ALD) of ZrO2 onto SiO2 with the 

expected, concomitant decrease in the Si signal. The linear relationship between these signals 

further confirms the absence of a matrix effect in LEIS. Besides serving as a proof that there is no 

matrix effect, the anticorrelation plots in Figure A5.14 are also used to obtain the sensitivity factors 

for the analytes. When such a plot can be constructed, the signal for 100% surface coverage of 

each analyte can be obtained by extrapolating to the axes. For the example of W/Br system shown 

in Figure A5.14A, the signal for the 100% tungsten surface coverage is about 650 arbitrary units, 

and the signal for 100% bromine surface coverage is at about 175 arbitrary units.  

Correlation plots are useful when two (or sometimes three) components in a series of 

samples vary in coverage.43 In those cases, the sensitivity factors can be determined without 

knowledge of any of the sample surface compositions and without pure reference materials. 

However, samples with many analytes require the use of standards. Pressed oxide powders are the 

most commonly used reference materials in LEIS. Many samples of interest are oxides, so oxide 

powders are a natural choice for these applications. Furthermore, samples are often cleaned with 

atomic oxygen in preparation for LEIS analysis, and samples cleaned in this way will have their 

outer surfaces oxidized, again making oxide powders a good choice as standards. Most metal 

oxides are oxygen-terminated, and the metal atoms in the structures are shielded to some degree 

by oxygen atoms. In these cases, e.g., the samples illustrated in Figure A5.14B, the metal signal is 

taken to be representative of the metal oxide coverage. For example, if pure zirconium oxide 
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powder gives a Zr signal of 100 counts for a given set of analysis conditions, then a sample that 

yields a signal of 50 counts will have a surface coverage of 50% ZrO2. LEIS is largely insensitive 

to surface topography, so the inherent roughness of a pressed powder standard poses no problems. 

One notable advantage that powders have over their bulk counterparts is that they tend to dilute 

surface contamination. Contaminants often diffuse to the outside of a material to minimize surface 

energy. Since bulk materials have low specific surface areas (surface area per unit mass), 

contaminants can become concentrated at their surfaces. For example, a 1 mm thick sample has 

on the order of 5 x 106 atomic planes. If the bulk concentration of a contaminant is 0.2 ppm, there 

are enough atoms of the contaminant to form a complete layer on the surface, provided all the 

contaminant atoms are mobile. Powders, with their much higher specific surface areas, tend to 

dilute these contaminants. Of course, not all samples are oxides. When metals are analyzed, pure 

metals can be used as standards, although some degree of sputtering may be necessary to remove 

the native oxide layer. In principle, any material having a known coverage of the element of interest 

and being reasonably easy to prepare is suited as a reference, e.g., PTFE (Teflon) for fluorine.  

There are some circumstances in which LEIS may be subject to a matrix effect. Most often, these 

occur in situations where the model of a purely binary, inelastic collision interaction between two 

particles no longer applies. One such example is the difference in sensitivity factor between sp2 

and sp3 hybridized carbon. The difference in response here is a result of resonant charge exchange 

between the partially occupied 1s level in the He+ ion and the filled valence band of graphitic 

carbon. For sp3 carbon, this additional source of neutralization does not exist, so the sensitivity 

factor is significantly different. In some cases, this effect can be turned into something useful. By 

using this difference and its dependence on the primary energy, graphitic and sp3 carbon can be 

distinguished. There may also be tunneling between the partially occupied level of the noble gas 
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ions and the valence band of the material being analyzed – for materials with low work functions, 

only a small energy barrier must be tunneled through by an electron to neutralize the ion. Since 

this no longer is a binary interaction, but rather an interaction between the ion and the whole 

surface, quantification is difficult. Typically, these cases depend on the nature or energy of the 

projectile, and these matrix effects can be detected or even overcome by changing the primary ion 

beam energy or the projectile ion used.    

In summary, the principle strength of LEIS is that it provides quantitative information 

about the outermost atomic layer of a material. In general, LEIS has no matrix effect – it is 

inherently quantitative; its signals are directly proportional to surface coverage. Quantitation in 

LEIS can be accomplished either with reference samples or, for simple systems where multiple 

samples are available, by way of a correlation plot. Standards are often chosen based on the goal 

of the analysis. If the goal is to quantify the concentration of an oxide, oxide powders are used, 

while metals are used when metallic samples are probed. With the resulting quantitative 

information, materials for which performance strongly depends on surface composition can be 

understood at a deeper level. 

 

A5.8  Comparison of LEIS to Other Surface Analytical Methods44 

 

Table A5.1 compares the attributes of LEIS, ToF-SIMS, and XPS. Of course, ToF-SIMS 

and XPS are two of the most commonly used surface analysis techniques for probing the surface 

chemistry of materials. Indeed, for years, XPS and ToF-SIMS have been used in tandem for surface 

analysis because of their powerful complementarity. We have written on XPS and ToF-SIMS a 
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number of times in recent tutorial articles in Vacuum Technology and Coating,45-47 and in our 

papers.48-52 

 As Table A5.1 shows, LEIS is more surface sensitive than the other two techniques, which 

are already very surface sensitive. LEIS acquires static depth profiles (see below) in a more natural 

way than XPS, and ToF-SIMS does not have this capability. LEIS can also be used to acquire 

dynamic depth profiles in the same way as ToF-SIMS and XPS, i.e., in conjunction with a sputter 

gun. Its analysis time is very fast (minutes), which is generally faster than for XPS and comparable 

to the acquisition time for ToF-SIMS. Its detection limits are generally poorer than those for ToF-

SIMS (extremely low) and XPS (moderately low), especially for lighter elements like boron. 

However, to be fair to LEIS, XPS averages its signal over 10-20 atomic layers, while LEIS only 

gets its signal from the outermost layer. Therefore, with regards to the detection limit from the 

outermost atomic layer, LEIS is more sensitive than XPS. LEIS has essentially no matrix effect – 

in this regard it is more similar to XPS than ToF-SIMS. Of course, ToF-SIMS shows a significant 

matrix effect, which is one of its disadvantages. Like XPS, one of LEIS’ greatest strengths is that 

it gives quantitative results. This is in contrast to the limited quantitative information that is usually 

available from ToF-SIMS. LEIS does not give oxidation state information about elements at 

surfaces, while XPS provides this information in a direct way,52 and ToF-SIMS does so indirectly. 

In addition, LEIS does not provide molecular information about surfaces, while ToF-SIMS does 

so in a direct way and XPS gives it indirectly. The lateral resolution of ToF-SIMS (micron to 

submicron) is the highest of the three techniques, and those of LEIS and XPS (ca. 10 µm) are 

similar. The cost of the instrumentation for all three techniques is quite high. Perhaps a fair 

concluding statement would be to say that while no surface analytical technique can provide all of 

the information one might desire about a surface, LEIS, ToF-SIMS, and XPS are clearly 
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complementary so that they can provide powerful surface and material characterization when used 

together. A clear advantage of employing all three techniques is that they probe materials at 

different depths. In summary, it is clear that LEIS has significant capabilities that neither XPS nor 

ToF-SIMS has. We are confident that in the future we will see more surface analyses that employ 

all three techniques. 
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Table A5.1. Comparison of attributes of LEIS, ToF-SIMS, and XPS. 

Properties LEIS ToF-SIMS XPS 

Surface sensitivity Outermost atomic 
layer a few atomic layers ca. 5 nm 

Static depth profiling Inherent, ca. 10 nm No 

If multiple scans 
taken at multiple 
angles (angle 
resolved XPS), ca. 
10 nm 

Dynamic depth profiling With sputter gun With sputter gun With sputter gun 
    
Analysis time per 
spectrum Typically minutes Typically minutes Somewhat longer 

Detection limits 

a few % of a 
monolayer for the 
lighter elements, 
up to 0.1 – 1 % for 
the heavier 
elements 

ppm 0.1 – 1% of a 
monolayer 

Matrix effect Essentially none Strong Essentially none 
    
Quantitative results Excellent Relatively poor Very good 
    

Oxidation state 
information None 

Somewhat, 
through molecular 
fragments 

Yes 

    

Molecular information None 
Yes, through 
molecular 
fragments 

Yes, through 
chemical shifts 

    

Lateral resolution ca. 10 microns Submicron ca. 10 microns 
    
Cost of instrumentation High, ca. $1e6 High, ca. $1e6 High, ca. $0.5-1e6 
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A5.9. Static Depth Profiling in LEIS44 

 

Obviously, LEIS is not the only technique that can provide depth profile information about 

the outer ca. 10 nm of a material. Angle resolved XPS (AR-XPS) can also yield this information 

without the need for sputtering. However, it is generally difficult to obtain quantitative depth 

information from AR-XPS data. That is, AR-XPS analyses are usually valuable in a qualitative to 

perhaps semi-quantitative way, but more precise information requires modeling, which can be 

challenging.53 Thus, the static depth profile information provided by LEIS, which is obtained in a 

more direct fashion, is especially useful for very thin films, e.g., in semiconductor devices. It 

provides better depth resolution than AR-XPS, where the depth resolution in LEIS is high (0.2 – 

1 nm, depending on sample composition).20 The interpretation of LEIS depth signals is 

probabilistic – it depends on the number of possible paths a particle can take to get to and from a 

certain depth. Obviously, this number increases with depth. Thus, the uncertainty on the depth 

resolution in LEIS is less from signals that originate close to the surface, so thinner films are better 

resolved than thicker ones. LEIS static depth profiles also have clear advantages relative to sputter 

depth profiles. They avoid the mixing of atomic layers that almost inevitably results when samples 

are sputtered. This attribute of LEIS static depth profiles has been applied to study diffusion in 

very thin films.20, 54 

LEIS is a powerful tool for performing sputter depth profiles. This capability is especially 

useful for thicker samples (up to about 100 nm). Sputter depth profiles in LEIS provide some 

unique advantages relative to XPS and ToF-SIMS. The first is that the extreme surface sensitivity 

of LEIS yields a much higher (finer) depth resolution than can be achieved in XPS or ToF-SIMS, 

provided the sputtering conditions are chosen to keep the atomic mixing low. Second, the 

quantitation of LEIS surface signals is straightforward. Third, the static depth profile and the 
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sputter depth profile in LEIS provide complimentary information. Ter Veen et al. demonstrated 

that the static depth profile information from an Si/SiOx/W/Al2O3 ALD stack provided a useful 

preview to subsequent sputter depth profiles, making it possible to identify artifacts that result 

from sputter beam effects.55 A fourth advantage of combining LEIS and sputter depth profiling is 

that because many spectra are obtained with varying compositions within the depth profile, 

sensitivity factors for elements can be obtained without the need for reference materials. This 

further simplifies the process of using LEIS to obtain quantitative depth profile information. Ter 

Veen et al. explain this method in detail in their article.55 

 

A5.10 Application of LEIS to Semiconductors44 

 

Critical dimensions in semiconductor devices continue to decrease. Therefore, surface 

sensitivity is becoming an increasingly important attribute for techniques used to analyze thin films 

in them. A 2006 study by Stokhof and coworkers takes advantage of the extreme surface sensitivity 

of LEIS to study the nucleation and growth (to closure) of WNXCY films deposited by ALD with 

the goal of better understanding copper diffusion barrier layers in semiconductor devices.56 Their 

article notes that as a consequence of shrinking critical dimensions, copper has replaced aluminum 

as an interconnect material in semiconductor devices. However, while copper has superior 

conductivity to aluminum, a barrier layer must be used with it to stop unwanted diffusion into 

neighboring materials. To stop this diffusion, the barrier must be made from a material with low 

copper diffusivity, must coat copper conformally, and must form a completely closed coating. This 

diffusion barrier should also be as thin as possible so that the advantage gained from copper’s 

increased conductivity is not entirely negated by the wasted volume and added resistivity of the 
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barrier layer. ALD is a coating method that can meet these demands, although sputtered barrier 

layers remain dominant in the industry.57  

In Stokhof and coworkers’ study, WNXCY was deposited by ALD over two different 

dielectric layers: SiOX, deposited by plasma enhanced chemical vapor deposition (PECVD), and 

Aurora® 2.7, a proprietary low-k dielectric. The thickness of the WNxCY layer was controlled by 

varying the number of ALD cycles. After the first ALD cycle, a strong W LEIS peak appeared at 

the surface, indicating that the deposition of the WNXCY film had begun. However, a Si surface 

signal remained clearly visible. This Si surface signal only disappeared after 40 ALD cycles, 

indicating film closure. The trends were the same for deposition over the Aurora® 2.7 dielectric 

material, with film closure again occurring after 40 ALD cycles. For this study, the growth rate 

was 0.8 Å per ALD cycle, meaning that a film thickness of approximately 3.2 nm was needed to 

achieve a completely closed film. Here, the surface sensitivity of LEIS permitted an analysis that 

would have been difficult with XPS or ToF-SIMS because these techniques have probe depths that 

exceed the thicknesses of most of the WCXNY films examined in this study. 

While the closure of an ALD-deposited WCXNY film over dielectric layers is a fairly 

specific example, it again illustrates an important problem—films in semiconductor devices are 

becoming thinner than the depth of analysis of the dominant surface analysis techniques. For 

example, gate oxide thicknesses in semiconductors have been in the sub 10 nm range since the 

early 1990’s.58 When semiconductor technology reached the 22 nm node in 2011, the gate oxide 

thickness was down to 0.5-0.8 nm.58 The target for diffusion barrier layer thickness at the 22 nm 

node is 3 nm.27  This downward trend in film thicknesses will probably continue as technology 

advances to the 10 nm and 7 nm nodes. In short, as films get thinner, surface sensitivity will 

become increasingly important for understanding film properties in semiconductors. 
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Diffusion is an important process in the fabrication of microfabricated devices. Sometimes it is 

wanted, as when a wafer is heated to allow dopants to diffuse through a material. Other times, it is 

destructive, as when copper from interconnects poisons neighboring materials. Because of its 

extreme surface and near surface sensitivity, LEIS is a powerful tool for understanding diffusion 

in thin films. Indeed, LEIS’ short analysis times make it suitable for time resolved studies. LEIS 

systems can be outfitted with heating stages to perform in situ diffusion studies. 

While various useful conclusions can often be drawn about diffusion in a sample simply 

by observing the changes in the surface signal when a sample is heated, the static depth profile 

provides more useful and direct information about diffusion in thin films. One reason for this is 

that surfaces may have different properties than their underlying layers. In 2009, De Rooij-

Lohmann et al. studied diffusion non-destructively using LEIS static depth profiling.20 The total 

depth of their analysis was 5-10 nm. In particular, the authors studied the diffusion of a Mo/Si 

system (see Figure A5.15). These materials find use in extreme UV optics. In order to determine 

the stopping power of silicon, SSi, the authors prepared Mo films covered with Si films of known 

thickness (4 – 7 nm). From this data, they determined that SSi was 36 ± 3 eV/nm. The samples were 

then analyzed during heating to 500 °C over a period of 40 – 50 seconds, and the shape of the Mo 

depth signal was used to extract the diffusion coefficient of Mo in Si for this system. Figure A5.16 

shows these 500 °C LEIS results. In a follow up study in 2010,54 they studied the more complex 

Mo/B4C/Si system, where B4C acts a diffusion barrier. Using a methodology similar to the one 

employed in their previous study, they were able to show two distinct diffusion regimes, which 

corresponded to amorphous and nanocrystaline MoSi2. The results they obtained by LEIS were 

supported by transmission electron microscopy (TEM) and hard X-ray XPS (HAXPS) analyses. 
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The extreme surface sensitivity, straightforward quantitation, static depth profile 

information, and excellent sputter depth profiling capabilities in LEIS make it a potentially 

powerful tool for studying semiconductor systems. Its utility for studying the closure of very thin 

films and understanding diffusion has been noted. We anticipate that because of the recent 

advances in LEIS instrumentation, there will be more LEIS studies on semiconductor materials. 

 

A5.11 LEIS of Solid Oxide Fuel Cells34 

 

We now discuss some recent publications in which high-sensitivity LEIS has been used to 

probe the surfaces of materials used in solid oxide fuel cells (SOFCs). 

As is the case with all fuel cells, SOFCs directly oxidize a fuel to produce electricity. This 

is in contrast to the more common combustion-based electrical generation tools that convert fuels 

to thermal energy, thermal energy to mechanical motion, and then mechanical motion to 

electricity. As the name implies, SOFCs use solid oxides as electrolytes. Typically, this electrolyte 

transports oxygen anions from the cathode to the anode. The solid oxide electrolyte is the defining 

feature in an SOFC, but the cathode and the anode materials must also be able to sustain high 

temperatures and transport charge carriers.59 These cathodes and anodes are usually made of 

ceramics or ceramic-metal hybrids. SOFCs are being researched for their application to clean, 

efficient energy generation using a variety of fuels. The major obstacle to the widespread adoption 

of SOFC technology is their high operating temperature.59 The materials used in SOFCs must 

function at between 500 and 1000 ○C to conduct oxygen anions. These temperature constraints 

often require that SOFCs undergo a lengthy pre-heating prior to operation, limit the materials that 

can be used in their construction, and shorten device life spans. This reduces the applicability and 
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increases the cost of this technology.59 Therefore, much effort has gone into researching materials 

that can enable SOFCs with lower operating temperatures. The characterization of SOFC materials 

been an active area for LEIS.18-19, 59-62 

Perovskite type materials are being heavily investigated for SOFC applications. These have 

the general chemical formula ABX3, where A is a relatively large cation, B is a relatively small 

cation, and X is an anion that binds to both. There are other more complex variations of this 

structure that are also of interest. These are explained in more detail below, as well as in a paper 

by Druce et al.16 Understanding the surface properties of the materials used as SOFC cathodes is 

important for improving these devices because oxygen exchange at their surfaces strongly 

influences device performance – before oxygen ions can be conducted through the electrolyte, O2 

molecules must be split and oxygen incorporated into the material. This is determined by the 

material’s surface properties. With regards to SOFCs, Druce et al. noted that “… the exchange of 

oxygen, at elevated temperatures, between the solid and the ambient gas, mediated by the 

immediate surface, is a very important process as it determines the oxygen stoichiometry and hence 

the functional properties”.16 In addition, at elevated temperature, even minor contamination from 

the bulk of the ceramic can diffuse to the surface, and this can strongly limit its performance. 

Indeed, only a little bulk contamination is required to form a full monolayer of an alkaline earth 

oxide, which will significantly compromise the performance of the oxide.62 Therefore, 

understanding which cations dominate the surface of the electrolyte is important for understanding 

oxygen transport through it.  

Working towards understanding and improving SOFC cathodes, Burriel et al. recently 

performed a multi-instrument surface analysis of La2-xSrxNiO4+δ, which is a promising material for 

intermediate temperature SOFCs (IT-SOFCs) (they operate from 650 to 800 °C).19, 59 Prior to this 
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analysis, the outer surface of this material had only been studied computationally. The 

computational results indicated that the material would be terminated in nickel-oxide, where Ni is 

a B-type cation. Computational models of similar perovskite materials predicted that cathodes 

would be catalytically inactive if terminated in LaO, where lanthanum is an A-type cation. 

Burriel’s characterization utilized crystal truncation rod (CTR) X-ray scattering, angle resolved 

XPS (AR-XPS), and LEIS to probe the outer few layers of the material. She notes in her paper that 

analyzing the outermost layer of a material can be challenging. Any exposure to the atmosphere 

contaminates a surface with adventitious carbon. Furthermore, as noted above, most surface 

analysis techniques average over several atomic layers and do not provide information specific to 

the outermost layer. The LEIS analysis was performed using a Qtac100 instrument. Two single-

crystal samples of different orientation were analyzed, both were cleaved and one was heat treated 

in air at 450 ○C for 72 hours. Prior to analysis, all samples were cleaned with atomic oxygen to 

remove hydrocarbons. Because each element has its own sensitivity factor, high-purity oxide 

powders were used as standards to establish sensitivity factors and detection limits for each 

analyte. 

A 5 keV 22Ne+ LEIS spectrum from her paper is shown in Figure A5.17. Contrary to the 

predictions of the computational model, the LEIS spectrum shows signals for the A-type cations, 

Sr and La, while no Ni is detected at the surface. Both of the samples produced similar results. 

While neither CTR X-ray scattering nor AR-XPS gave a quantitative analysis of the composition 

of the outermost layer, both provided information about the near-surface region. CTR-X-ray 

scattering is a modeling based technique (analogous in some sense to ellipsometry) – data are 

obtained and fit with either theoretical or empirical models, and conclusions about the material are 

drawn based on which model gives the best fit. In this case, a model of a La/Sr oxide terminated 
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material provided a good match to the experimental data with some deviations attributed to surface 

effects, while a model of an NiO2 terminated material gave a poor fit. This is in good agreement 

with the LEIS results. Using AR-XPS, the ratio of lanthanum and strontium to nickel ((La + Sr)/Ni) 

ratio was calculated at depths ranging from 0.6 to 7.0 nm. The data were compared to a theoretical 

ratio based on the stoichiometry of the bulk material, which was calculated to be 2.0. At a depth 

of analysis of 7.0 nm, the measured ratio was at 2.3, close to the bulk value, while the ratios at 

depths of 1.8 and 0.6 nm were 8.5 and 5.3, respectively. These results indicate that the near-surface 

region is enriched in La and Sr, again supporting the La/Sr oxide terminated surface suggested by 

LEIS. When three established surface analysis techniques support the same conclusion, it is 

probably true, and of course, it is almost always better to probe a material with multiple analytical 

techniques than a single one.32, 63-64 

These results challenged the previous computational models of oxygen transport through 

this cathode material. With regards to the role LEIS analysis played in this study, the author wrote, 

“…it is clear that the unique monolayer sensitivity provided by LEIS, complemented by other 

state-of-the-art surface techniques, can provide a complete picture of the surface and near-surface 

chemistry of this important class of materials”, and that “…the new surface information provided 

by these techniques will significantly contribute to the understanding of surface processes in mixed 

conducting materials...”19             

In another study, Druce et al. used LEIS in conjunction with a sputter beam to depth profile 

three polycrystaline perovskite-based electroceramics for use in SOFC applications: 

La0.6Sr0.4Co0.2Fe0.8O0.3-δ (LSCF-113), GdBaCo2O5+δ (GBCO-1125), and La2NiO4+δ (LNO-214).16 

LCSF-113 has the single perovskite structure, ABO3, GBCO-1125 has the ordered double 

perovskite structure, AA’B2O5+δ, where A and A’ cations alternate in layers of the structure, and 
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LNO-214 has the Ruddelson-Popper structure, with a formula of A2BO4+δ, where layers of the 

perovskite structure are interrupted by layers of AO with the rock salt structure. For this study, the 

samples were pretreated at high temperature in oxygen to mimic their operating conditions. As in 

the example above, the samples were cleaned with atomic oxygen prior to LEIS analysis to remove 

hydrocarbon contaminants. Three spectra at different sputtering depths are shown for each sample 

in Figure A5.18. Interestingly, spectra taken at different depths show different compositions. The 

dominant species at the surfaces of these materials are Sr, Ba, and La, for LSCF-113, GBCO-1125, 

and LNO-214, respectively. This means that for LCSF-113, the A-site cation terminates the 

surface. For GBCO-1125, which consists of alternating layers of two oxides, the A’ site cation 

terminates the material, and for LNO-214, the A-site cation terminates the material. At its outer 

surface, LNO-214 additionally shows a Pb peak that is attributed to contamination in the starting 

materials used for the synthesis. Here, Pb is only detectable at the outermost surface, indicating 

that it preferentially segregates to the surface. With sputtering of this material, no Pb is observed 

and LEIS analysis gives concentrations corresponding to the theoretical bulk stoichiometry. Given 

that the properties of these electrode materials depend so much on their surface compositions, these 

experiments provide valuable information. They clearly demonstrate that the surfaces of these 

materials can vary significantly from their bulk compositions. The authors emphasize that while 

other surface analytical techniques have shown enrichment of certain species near the surface of 

these materials, LEIS, with its extreme surface sensitivity, was unique in its ability to provide 

information about the composition of the outermost layer. 

While we have only shown two examples here related to the development of better 

materials for SOFC applications, it is easy to see how information obtained by LEIS would be 

generally useful for understanding a variety of materials, e.g., gas sensors, catalysts, etc. 



346 
 

In the examples highlighted here, LEIS has revealed how several materials proposed for 

SOFC applications are terminated. In one case the results were contrary to the predictions of 

computational models. Both papers highlighted herein noted that while other more conventional 

surface analytical techniques provide valuable information about the near-surface region of 

materials, only LEIS provides a quantitative elemental analysis of the outermost atomic layer. This 

definitive information about surface composition is obviously of value for the characterization and 

development of SOFCs, where surface composition plays an important role in catalysis and oxygen 

anion transport. 

 

A5.12 LEIS of Catalysts65 

 

The basic purpose of a catalyst is to speed up a chemical reaction by lowering its activation 

energy. Industrially, heterogeneous catalysts, catalysts that differ in phase from their reactants and 

products, are preferred because they are easily separable from chemical reagents. That is, they are 

more easily recovered and will not contaminate the product. In practice, this means that most 

industrial catalysts are solids.66 Catalysts have changed our world. For example, the level of 

agricultural production needed to sustain the world’s population would not be possible without the 

Haber-Bosch process for ammonia production, which depends on a heterogeneous catalyst.66 Most 

industrially important building block molecules, such as ammonia, benzene, sulfuric acid, and 

styrene are synthesized with the help of heterogeneous catalysts.67 Petroleum refinement also 

depends heavily on the use of heterogeneous catalysts.67 Because catalysts are so pervasive, there 

is an ongoing need to characterize them, both to understand their fundamental science and also to 

better synthesize them.  
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Catalysis depends on reactants interacting with the catalyst in a way that favors the desired 

chemical reaction. In the case of solid catalysts this means that catalysis generally happens at the 

outermost atomic layer of the material. Accordingly, LEIS, with its extreme surface sensitivity, is 

especially well suited for analyzing these materials. And many heterogeneous catalysts are 

complex, multicomponent systems. For example, the catalyst used in the Haber-Bosch process 

consists of magnetite (Fe3O4) with 2.5-4% Al2O3, 0.5-1.2% K2O, 2.0-3.5% CaO and 0.0-1.0% 

MgO.66 In such materials, the surface concentration of a species can vary significantly from its 

bulk concentration. LEIS provides useful information in these situations by directly measuring the 

surface concentrations of all species. Additionally LEIS static and sputter depth profiles can be 

used to determine how the surface composition varies from the bulk stoichiometry.  Ter Veen et 

al. published a short article on the application of LEIS to a catalyst.43 They stated that: “…the 

availability of a technique that analyzes the chemical composition of this [outermost] layer is of 

crucial importance in the fundamental study of catalysis as well as in the optimization of industrial 

catalysts.” In contrast, XPS, with its greater depth of analysis provides less information about the 

outermost atomic layer where catalysis takes place. An article by Celaya Sanfiz et al.68 states that: 

“…in cases where conventional surface analytic techniques, such as XPS, do not show correlation 

with the catalytic activity, the extreme surface sensitivity of LEIS gives a direct relationship 

between composition and catalysis.” To add to the utility of LEIS, LEIS instruments are often 

equipped with environmental chambers wherein the working environment of a catalyst can be 

simulated by heating it to a desired temperature and dosing it with gases. Here, a reaction can be 

rapidly quenched before the sample is transferred to the analytical chamber. This allows a surface 

to be studied at or near its operating state, giving insight into the surface composition of the catalyst 
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as it is used. LEIS is relatively insensitive to surface roughness so real industrial catalysts, not just 

model, planar systems, can be analyzed. 

Below, we discuss two examples of LEIS studies of heterogeneous catalysts. 

Celaya Sanfiz et al. performed a detailed analysis of an MoVTeNbOx catalyst, which is 

used for the selective oxidation of light alkanes, e.g., propane to acrylic acid.68 Previously, this 

catalyst had shown enhanced activity after grinding. The authors were interested in studying the 

(001) plane of the M1 phase of the catalyst. It had previously been suggested that this plane had 

active and selective sites for partial oxidation reactions.  When fractured (ground), M1 phase 

crystals expose their (001) plane. Accordingly, the authors coated catalyst crystals with silica and 

then ground them. In theory, the silica should have covered all the planes except for those that 

were exposed by fracturing during grinding, which, again, would preferentially expose (001) 

crystal planes. They used uncoated crystallites as a control, and analyzed the catalytic activity of 

the silica-coated and ground, and untreated crystals. LEIS played an important role in their 

analysis. First, it was used to determine whether the silica-coated samples had been completely 

coated. The absence of any surface signals except for Si and O showed that the coating was 

complete. Based on depth profile information from LEIS, the thickness of this coating was 

estimated to range from a few atomic layers up to about 20 nm. TEM supported this conclusion. 

LEIS was also used to determine how much catalyst surface was exposed during grinding. As 

expected, the percentages of V2O5, Nb2O5, MoO3, and TeO3 were much lower in the coated, ground 

samples than in the untreated samples. By comparing the signal ratios between the samples, the 

authors determined that 70% of the ground samples remained coated in silica, while 30% of the 

surface was freshly exposed. Here, LEIS yielded a much higher percentage of newly exposed 

surface area than did a shape analysis using SEM images, indicating that in addition to fracturing, 



349 
 

some silica was abraded from the particles during the grinding process. This hypothesis was 

supported bv TEM images taken post-grinding.  To determine if the (001) plane played a special 

role in determining the selectivity of the catalyst, the authors compared the catalytic activity of the 

coated, ground sample to the uncoated one. When normalized for exposed catalyst area, the 

catalytic activity was about the same for both samples. Based on the results, the authors concluded 

that the selectivity and activity of this catalyst could not be due uniquely to the (001) plane of the 

material. 

LEIS was also used to probe the composition of this catalyst. Given the complexity of this 

material, a calibration plot could not be used for quantitation, and instead, oxide powders (SiO2, 

V2O5, NB2O5, MoO3, TeO2) were used as references. The authors noted that, because these 

samples were cleaned with atomic oxygen before analysis, they expected all surface species to be 

in their highest oxidation states, making oxide powders the correct choice for standards.  Energy 

dispersive X-ray analysis (EDX) was used to measure the bulk composition, and the bulk and 

surface compositions were compared. For the unground material, the surface was enriched in 

tellurium and deficient in vanadium. For the coated, ground material, the surface was enriched in 

tellurium and deficient in molybdenum. 

Phivilay et al.69 recently used LEIS in the multi-instrument characterization of a (Rh2-

yCryO3)/GaN catalyst, which is used in the UV splitting of water for production of H2 and O2. Their 

goal was to understand the relationship between catalyst structure and photoactivity. While GaN 

is catalytically inactive in splitting water, the addition of Rh2-yCryO3 nanoparticles to its surface 

makes it active. Their catalyst system is depicted in Figure A5.19. In addition to probing the 

surface with LEIS, the authors used high-resolution XPS, Raman spectroscopy, ultraviolet/visible 

spectroscopy (UV-VIS), and photoluminescence to understand their material. This study is an 
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excellent example of how bulk techniques (Raman, UV-VIS), and in particular the multi-

instrument characterization of materials,32, 45, 63 play a role in understanding surfaces. Their UV-

VIS analysis showed that the addition of (Rh2-yCryO3) nanoparticles to the GaN surface resulted 

in no change in the bandgap of the bulk GaN, implying that the changes they observed must be 

occurring at the material’s surface. HR-XPS provided information about the chemical states of the 

species in the system. Based on chemical shifts, the Rh and Cr in the outer 3 nanometers of this 

material were assigned to their +3 oxidation states. There was no Cr6+ or metallic Rh at the surface. 

LEIS played an important role in this work by providing compositional information for GaN and 

for the (Rh2-yCryO3)/GaN catalyst. In addition to analyzing the surface region, the near surface 

region was probed by depth profiling. Interestingly, for the GaN, there was virtually no N signal 

at the surface. With sputtering, the N signal gradually appeared and the oxygen signal gradually 

decreased. This indicates that the stoichiometry of the outermost layer is best described as GaOx, 

and the subsurface region is best described as GaOxNy. The authors noted that this was the first 

time a surface characterization had revealed this compositional information. The Ne+ LEIS 

spectrum for (Rh2-yCryO3)/GaN showed contamination from tin and barium. Again, contaminants 

often diffuse to the surface of a material and become concentrated there to minimize surface free 

energy. The authors attributed the contamination they found to the (Rh2-yCryO3) precursors. A 

depth profile (Figure A5.20) showed that the material became richer in Cr with increasing sputter 

depth. LEIS measurements indicated that both species were enriched in the near surface region 

compared to their expected bulk concentrations.  The authors used pure metal references to 

quantify the surface coverage of Cr and Rh because they were interested in the surface coverages 

of the pure metals rather than their oxides. Using the quantitative information they obtained about 

the Rh concentration at the surface, they calculated a turnover frequency (TOF) for the material, 
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which is defined as the number of H2 molecules produced per exposed Rh3+ site per second. 

Obviously, this calculation would not have been possible without a technique capable of 

quantifying the Rh concentration at the final surface.  

In summary, LEIS proved to be very useful in this study. The authors were surprised by 

the composition of the outer layers of their GaN film, and by the fact that the surface was 

significantly enriched in Rh and Cr. They were also surprised by the presence of Sn and Ba. 

Quantitative information about Rh was used to calculate the turnover frequency for hydrogen.  

 

A5.13 Conclusion 

 

LEIS is powerful analytical tool for understanding the outermost atomic layer of a material. 

The operating principles of LEIS, summarized in Equation (A5.1), can be understood in terms of 

classical physics. Surface signals in LEIS are Gaussian, while the signal in LEIS static depth 

profiles appears as a tail on the lower energy side of the surface signal. The components of a typical 

LEIS system are an ion source, a kinetic energy analyzer, and a detector. All of these are housed 

in a high vacuum chamber. Advances in detector geometry have significantly improved the 

sensitivity of the technique. Quantitation in LEIS is generally straightforward, and with very few 

exceptions, there is no matrix effect in LEIS. For some systems, LEIS can be accomplished without 

the use of reference samples. For more complex systems, reference powders are used to establish 

sensitivity factors for each element. 

The applications we have shown demonstrate the unique information LEIS can provide. In 

a study of ALD deposited gate-oxide films, the extreme surface sensitivity of LEIS was valuable 

for understanding film closure. The static depth profiling capabilities of LEIS are useful in 
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characterizing the diffusion in thin films for extreme UV optics. In the study of solid-oxide fuel 

cells, LEIS provided information about the outermost surface that challenged previous conclusions 

from computational studies about the structure of the material. LEIS is extremely useful for 

studying catalysts, where the outermost layer plays a determining role in the activity and rate of 

catalysis.  

We again emphasize the importance of multi-instrument surface and material 

characterization.32, 63 The fact that LEIS is insensitive to the chemical environments of analytes 

makes it powerful for quantifying surface compositions. LEIS is complementary to XPS and ToF-

SIMS. In general, it is much more surface sensitive than either of these two techniques. However, 

it only provides information about elemental composition, whereas ToF-SIMS gives molecular 

information, and XPS is sensitive to chemical environment. We believe that in the future more 

studies involving all three techniques will be performed, and that this approach will become 

increasingly necessary for the full characterization of advanced materials. 
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A5.15 Figures 

 

Figure A5.1. (Left) Noble gas ion bombardment of a surface with two types of exposed atoms. (Right) 

LEIS signal corresponding to the surface on the left. Note that there is no LEIS signal from the ‘red’ 

atoms. Figure used with permission from IONTOF.  
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Figure A5.2. Percentage of kinetic energy, obtained through Equation (A5.1), retained by the 

backscattered projectile ion (ES/EP x 100 %) plotted as a function of the mass of the analyte atom, MS. The 

colored vertical stripes show which noble gas ion is commonly used to probe elements of the 

corresponding mass range in LEIS. Figure used with permission from IONTOF.  
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Figure A5.3. Plot of energy difference per unit nominal mass vs. Ms, i.e., the derivative of the curves in 

Figure A5.2. The colored vertical stripes indicate the noble gas ion that is commonly used to probe 

elements of the corresponding mass range. The projectile ion that provides the largest energy 

discrimination per unit mass corresponds to the highest line (curve) at any given Ms in the plot. Figure 

used with permission from IONTOF.  
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Figure A5.4. (A) Noble gas ion scattering off of a ZrO2 film on Si.  Shown are: (i) ion scattering from the 

surface, and (ii) particle penetration, neutralization, backscattering, and reionization. (B) Mock LEIS 

spectrum for the material shown on the left. Figure used with permission from IONTOF. 
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Figure A5.5. LEIS spectra for ALD deposited zirconium oxide on a silicon substrate for 10, 20, 30, 30, 

50, 70, and 100 cycles. Figure used with permission from IONTOF. 
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Figure A5.6. Representation of a converted XPS instrument for LEIS analysis. The angle of acceptance 

permitted by the entrance slits of the hemispherical ESA is represented by a pair of dotted, grey lines. The 

trajectories of ions with too much energy (red), too little energy (blue), and the correct amount of energy 

(yellow) are shown.  
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Figure A5.7. Schematic representation of a double-toroidal analyzer, as included in the Qtac100 

instrument by ION-TOF. Figure used with permission from IONTOF. 
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Figure A5.8. LEIS spectrum taken with a conventional XPS instrument using a 1 keV 4He+ ion beam. 

Reprinted from ‘X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl[sic]-

3-methyl-imidazolium bis(trifluoromethane) sulfonamide’ by S. Caporali, U. Bardi, and A Lavacchi in 

Journal of Electron Spectroscopy and Related Phenomena 151 (2006) 4 – 8, Copyright 2005, with 

permission from Elsevier. 
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Figure A5.9. LEIS Qtac100 instrument with locations of key components labeled. (A) Ion source. (B) Ion 

gun.  (C) Sputter gun for depth profiling. (D) Analysis chamber (the double toroidal analyzer is located at 

the top of this chamber). (E) Sample introduction chamber (load lock). (F) Sample manipulator (transfer) 

arm. (G) Vacuum pumps and other hardware are housed below the instrument. Figure used with 

permission from IONTOF. 
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Figure A5.10. TOF.SIMS 5 and Qtac100 instruments (left and right, respectively), with their main 

chambers connected. Figure used with permission from IONTOF. 
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Figure A5.11. Sample loading process for the Qtac100. (A) Glass sample, handled with tweezers and 

gloves. (B) Placing the sample on the holder (silver colored). (C) Securing the sample to the holder with a 

spring clip. (D) Sample transfer to the load lock while handling the holder with a special sample-holder 

pen. Figure used with permission from IONTOF. 
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Figure A5.12. Close-up view of the Qtac100 instrument at IONTOF with selected components labeled. (A) 

Atomic oxygen generator. (B) Sputter gun. (C) Analytical (main) chamber (cube). (D) Sample 

introduction chamber. (E) Sample preparation chamber. (F) Environmental chamber. Figure used with 

permission from IONTOF. 
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Figure A5.13. Screenshot of the Qtac100 instrument software. Data collection window (Top). Stage 

control window (Bottom left). Instrument setting window (Bottom right). Instrument controls (Far right). 

Figure used with permission from IONTOF. 
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Figure A5.14. (A)  Results from a LEIS analysis in which bromine was adsorbed in situ onto a tungsten 

substrate under different conditions. (B) Results from a LEIS analysis of a series of samples with 

increasing amounts of ZrO2 deposited on SiO2 by atomic layer deposition (ALD). In both cases, the 

resulting linear relationship between the signals shows that the technique is free of any matrix effect. 

Figure used with permission from IONTOF. 
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Figure A5.15. The evolution of an Mo/Si system at 660 °C as a function of time as probed by LEIS. 

Reprinted with permission from [“Diffusion and interaction studied nondestructively and in real-time with 

depth-resolved low energy ion spectroscopy” by V.I.T.A. de Rooij-Lohmann, A. W. Kleyn, F. Bijkerk, H. 

H. Brongersma, and A. E. Yakshin in Appl. Phys. Lett. 94, 

063107 (2009); http://dx.doi.org/10.1063/1.3081034]. Copyright [2009], AIP Publishing LLC. 
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Figure A5.16. The evolution of an Mo/Si system at 500 °C as a function of time as probed by LEIS. 

Reprinted with permission from [“Diffusion and interaction studied nondestructively and in real-time with 

depth-resolved low energy ion spectroscopy” by V.I.T.A. de Rooij-Lohmann, A. W. Kleyn, F. Bijkerk, H. 

H. Brongersma, and A. E. Yakshin in Appl. Phys. Lett. 94, 

063107 (2009); http://dx.doi.org/10.1063/1.3081034]. Copyright [2009], AIP Publishing LLC. 
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Figure A5.17. LEIS spectrum of La1.67Sr0.33NiO4+δ shown with and without a background correction. 

Reproduced from ‘Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals’ by Mónica 

Burriel,  Stuart Wilkins,  John P. Hill, Miguel A. Muñoz-Márquez, Hidde H. Brongersma,  John A. 

Kilner,  Mary P. Ryan, and Stephen J. Skinner in Energy Environ. Sci., 2014, 7, 311–316, DOI: 

10.1039/c3ee41622d with permission of The Royal Society of Chemistry.19 
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Figure A5.18. LEIS spectra of three SOFC materials: (a) GBCO-1125 (left), (b) LNO 214 (middle), and 

(c) LSCF-113 (right). Spectra taken at the outer surface (top), the near surface region (middle), and the 

bulk of the material (bottom). Data were originally plotted in a different format in ‘Surface termination 

and subsurface restructuring of perovskite-based solid oxide electrode materials’ by J. Druce, H. T´ellez, 

M. Burriel, M. D. Sharp, L. J. Fawcett,  S. N. Cook, D. S. McPhail, T. Ishihara, H. H. Brongersma,  and J. 

A. Kilner in Energy & Environmental Science, 2014, DOI: 10.1039/c4ee01497a. 
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Figure A5.19. Representation of a (Rh2-yCryO3)/GaN catalyst. Reprinted (adapted) with permission from 

(‘Fundamental Bulk/Surface Structure–Photoactivity Relationships of Supported (Rh2–yCryO3)/GaN 

Photocatalysts’ by Somphonh P. Phivilay, Charles A. Roberts, Alexander A. Puretzky, Kazunari Domen, 

and Israel E. Wachs, dx.doi.org/10.1021/jz401884c | J. Phys. Chem. Lett. 2013, 4, 3719−3724). 

Copyright (2013) American Chemical Society. 

  



373 
 

 

Figure A5.20. Depth profile concentrations of Cr and Rh in a (Rh2-yCryO3)/GaN catalyst as determined by 

LEIS. Reprinted (adapted) with permission from (‘Fundamental Bulk/Surface Structure–Photoactivity 

Relationships of Supported (Rh2–yCryO3)/GaN Photocatalysts’ by Somphonh P. Phivilay, Charles A. 

Roberts, Alexander A. Puretzky, Kazunari Domen, and Israel E. Wachs, dx.doi.org/10.1021/jz401884c | 

J. Phys. Chem. Lett. 2013, 4, 3719−3724). Copyright (2013) American Chemical  

Society. 
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