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ABSTRACT

Advancements in the Understanding of Nonlinear Optics and Their Use in Material Analysis

 Shawn C. Averett
Department of Chemistry and Biochemistry, BYU

Doctor of Philosophy

Adhesion, heterogeneous catalysis, electrochemistry, and many other important processes 
and properties are driven by interactions at surfaces and interfaces. Vibrational sum frequency 
generation spectroscopy (VSFG) is an increasingly popular analytical technique because it can 
provide information about the nature and physical orientation of functional groups at these 
surfaces and interfaces. Analysis of VSFG data can be complicated by the presence of SFG 
signal that is not associated with a resonant vibration. This nonresonant sum frequency 
generation (NR-SFG) signal can interfere with the resonant signal and influence the detected 
spectrum. Methods have been developed to remove NR-SFG signal; however, these methods 
tend to be complicated and expensive. In fact many SFG practitioners do not have the ability to 
remove NR-SFG signal components, and systems designed to remove NR-SFG signal 
contributions may not be able to do so for some materials.

We have worked to help develop a better understanding of NR-SFG. As part of this work, 
a better understanding of the temporal and phase behavior of NR-SFG signal has been developed, 
based on the behavior of NR-SFG signal from Si(111) wafers. This work calls into question 
some assumptions underlying nonresonant suppression methods based on time-domain detection. 
A new method for nondestructively testing (NDT) materials has been developed that uses 
nonresonant second harmonic generation, the degenerate form of SFG. This new NDT 
technology has the potential to detect several forms of material damage, such as aluminum 
sensitization, and plastic deformation of materials, which are largely invisible to current NDT 
technologies. Methods for extracting functional group orientation from VSFG data that contains 
NR-SFG contributions are also demonstrated and used to investigate how the surface of high 
density polyethylene changes in response to mechanical deformation. This work shows that the 
inability to remove NR-SFG contributions from VSFG spectra does not mean that these 
instruments cannot be used to make important discoveries. It simply means that NR-SFG 
contributions must be properly understood and accounted for during experimental design, and 
kept in mind during the analysis of VSFG spectra.

Keywords: surface science, sum frequency spectroscopy, nonresonant sum frequency generation, 
high density polyethylene, nondestructive testing
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1 

Chapter 1: Sum Frequency Generation Overview and Brief 

Literature Review of Nonresonant SFG 

1.1: Introduction

Bacterial survival, material durability, energy storage, and data processing are among the 

many processes that are driven by surface chemistry. With the ability to provide surface specific 

chemical identification and morphological information, sum frequency generation (SFG) 

spectroscopy is an immensely powerful spectroscopic tool for the investigation of these, and 

other important, systems. In fact, the only vibrational spectra of water or polymer surfaces were 

taken with SFG.1 The SFG signal, however, can be complicated, and a failure to account for all 

of the signal sources can lead to inaccurate analysis and dubious conclusions. Much of the 

confusion concerning the treatment of SFG spectra comes from an incomplete understanding of 

the nonresonant component of SFG signal. Therefore, in this chapter I briefly review the 

commonly understood aspects of SFG theory and analysis, while going into more depth 

discussing the existing literature on the nonresonant component of SFG signal. An excellent in 

depth discussion of SFG can found in the book Fundamentals of Sum-Frequency Spectroscopy

by Y.R. Shen.2

1.2: Overview of SFG

SFG occurs when two photons interact with a material leading to the emission of a single 

photon with energy equal to the sum of the energy of the two input photons. SFG has a very low 

conversion efficiency, which means that SFG requires a relatively high intensity, coherent light 

source for practical application. Because of the requirement for large peak power, pulsed lasers 
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faare generally used to provide the excitation beams in SFG systems. Most SFG systems can be 

classified as either broadband or scanning systems. Scanning SFG systems are generally 

powered by lasers with nanosecond pulses that are relatively narrow spectrally. These systems 

scan through a range of IR wavelengths, stopping to acquire data at each wavelength of interest.

The spectral width of both excitation pulses, along with the number of scanned points, defines

the resolution of these systems. Broadband SFG systems tend to be powered by lasers with 

femtosecond pulses.3,4 The IR excitation beam is generally kept short in time and spectrally 

broad, while the visible excitation beam is often lengthened in time and narrowed in frequency to 

improve resolution. The envelope of IR wavelengths is tuned to include frequencies for the 

molecular vibrations of interest. The spectrally broad IR pulse can allow for an entire SFG 

spectrum to be measured at the same time. The resolution of broadband SFG systems is limited 

by the spectral width of the visible pulse. 

SFG signal intensity is significantly increased when the first photon interaction or the emitted 

photon has an energy corresponding to a vibrational or electronic transition. When an infrared

beam is used as the source for the first interaction, the SFG signal boost from a resonant 

interaction can be used to identify functional groups, much like traditional IR absorption 

spectroscopy. This vibrationally resonant SFG, or VSFG, can also be used to gain information 

about the physical orientation of these functional groups. 5-7

The intensity of VSFG signal depends on the intensity of the excitation sources and the 

nature of the material. This can be mathematically modeled as

(1)
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where is the intensity of the VSFG signal, is the intensity of the second excitation 

source, which is often in the visible region, is the intensity of vibrationally resonant excitation 

source, and describes the nonlinear susceptibility of the material, which takes into account 

the amount of material present and how strongly it interacts with the excitation beams.

The nonlinear susceptibility (2) is mathematically modeled by a 3×3×3 tensor shown in Eq.

2. Each tensor element represents a different interaction of the excitation and signal beams with 

the material.  

(2)

The VSFG (2) tensor elements are initially modeled using the electric dipole approximation. 

In an isotropic material, symmetry constraints require all of the (2) tensor elements go to zero.

For many materials, this means that VSFG signal cannot be produced in the bulk. At the surface 

of an azimuthally symmetric material; however, the tensor elements , , , , ,

and do not go to zero. This allows the polarization combinations (SSP), (SPS), (PSS), 

and (PPP) to generate VSFG signal, where the first, second, and third letters denote the 

polarization of the signal beam, the visible excitation beam, and the IR excitation beam

respectively.

Different polarization combinations can be used to find the average tilt angle of a functional

group. For example, the tilt angle of a methyl group, with C3 symmetry, at a surface can be 

found from the ratio of the and tensor elements using the relationship

(3)
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8 Several other methods involving the comparison of orthogonal 

stretching modes or the use of phase-sensitive VSFG can be used to find information about the 

orientation of a detected functional group.5-7 It should be noted that a sufficiently broad 

distribution of functional group orientations can lead to an apparent tilt angle of 39.2 , often 

called the VSFG magic angle.9,10

SFG signal that is not associated with an electronic or vibrational transition can also be 

produced. If present, this nonresonant signal can interfere with the resonant signal and 

significantly change the detected spectrum.11,12 When a nonresonant contribution is present in 

SFG signal, the mathematical model from Eq. 1 becomes 

(4)

which can be expanded into

(5)

where is a 3×3×3 tensor modeling the nonresonant susceptibility, is a 3×3×3 tensor 

modeling the resonant susceptibility, accounts for the relative phase between the resonant and 

nonresonant signals, and is a frequency-dependent phase term. Even a relatively small 

amount of nonresonant signal can make the detected signal different from the purely resonant 

signal.11 This can be understood by consideration of the third term in the parentheses of Eq. 5. 

Here the component indicates that a large resonant signal can amplify the observed 

effect of the nonresonant signal. This means that even if the first term of Eq. 5 is small, the third 

term, which also has a nonresonant contribution, may not be. 



5 
 

The ability of a small amount of NR-SFG signal to influence VSFG spectra can have 

significant consequences. Many methods for determining functional group orientation rely on a 

comparison of spectroscopic features. Because the relative phase between two different resonant 

SFG responses and the nonresonant signal may be different, the effect of nonresonant signal 

interference with the resonant responses may also be different. For example, a peak from the 

methylene symmetric stretch may be made smaller by interference with nonresonant signal while 

the peak from an antisymmetric methylene stretch may become larger. Changes in the system 

being studied can alter the intensity of the nonresonant SFG signal,11 which can make it difficult 

to accurately track the amount of a chemical species present at a sample surface or interface 

when nonresonant signal is present. These interactions between resonant and nonresonant signal 

components can make quantitative information unreliable when extracted from spectra with

nonresonant signal present.

Nonresonant SFG signal can come from three different sources: the electric dipole (ED), the 

magnetic dipole (MD), and the electric quadrupole (EQ), each of which can be modeled by an 

independent tensor as in Eq. 6.2

(6)

The tensor that models nonresonant signal generated from an electric dipole is subject to the 

same symmetry constraints as those of the electric dipole used to model resonant SFG signal, and 

thus does not allow nonresonant SFG signal to be generated in regions with inversion symmetry. 

The electric quadrupole and magnetic dipole, however, are not constrained by the same

symmetry considerations, and allow for the production of nonresonant SFG signal in isotropic 

regions, including the bulk of a material.2 The presence of quadrupolar or magnetic dipole

nonresonant contributions in SFG signal can be a significant concern.2 At a material surface, the 



6 
 

amount of nonresonant signal associated with the electric quadrupole or magnetic dipole is 

generally much less than the resonant signal from the same region. However, the fact that 

quadrupole or magnetic dipole interactions can generate nonresonant signal throughout the bulk 

of a material means that they can still produce significant amounts of NR-SFG.

Several different strategies have been developed to deal with nonresonant signal. These 

approaches either suppress nonresonant signal with specialized detection or excitation methods, 

or seek to avoid nonresonant signal by selecting experimental conditions where little NR-SFG is 

expected. Because scanning SFG systems often lack the ability to suppress nonresonant signal,

researchers with nanosecond pulsed, scanning systems are often limited to working with samples 

that do not generate NR-SFG. 

It can be difficult to predict what conditions will generate NR-SFG, which can make 

avoiding nonresonant signal challenging. Because of this, spectra should be inspected for signs 

of nonresonant contributions. The presence of derivative and unevenly broadened line shapes, or 

a baseline that is at a different height on either side of a spectral feature, are strong indications

that a spectrum includes nonresonant signal. Figures 1.1 and 1.2 are examples of VSFG spectra 

with nonresonant signal contributions.

Vibrationally resonant SFG occurs when the IR input beam creates a vibrationally excited 

state that is then upconverted to a virtual state by interaction with the visible exaction beam. The 

vibrationally excited state can take several ps to dephase, which allows the effects of the IR pulse 

to persist after the pulse has left.13,14 Because of this relatively slow dephasing, vibrationally 

resonant SFG signal can still be created by the arrival of the visible pulse for some time after the 

end of the IR pulse.
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Figure 1.1. Platnum (111) 

substrate with saturation coverage 

of (a) di-cis bonded ethylene at 

202 K, and (b) end on bonded 

ethylidyne at 300K. From 

Reference 25. 
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Figure 1.2. PPP polarized SFG spectra of ODT/Au(111) at azimuthal angle -37 (inset), and 7 degrees. 

The relative phase between the resonant and nonresonant SFG singal is different at these two azimuthal 

angles. The differences in the spectra are a result of the difference in the relative phases at these two 

angles. From reference 42. 
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Currently accepted SFG theory assumes that the nonresonant signal dephases rapidly,

effectively decaying instantaneously with the removal of either excitation beam.2,14 Several 

methods of NR-SFG suppression take advantage of this behavior to remove nonresonant signal 

from the detected spectrum. Nonresonant suppression based on time-delay excitation does this

by delaying the pulse from the visible excitation source in time, relative to the resonant 

excitation pulse.13 If the second pulse is sufficiently delayed, the nonresonant excitation will 

have decayed away, but some of the longer-lived, resonant excitation will still be present. While 

this process can remove nonresonant contributions from the detected signal, the incomplete 

sampling in time also alters the resonant spectrum.15 The original resonant signal can be 

reconstructed15; however, this process is time consuming. 

Nonresonant suppression accomplished by delaying the visible pulse is commonly done by 

increasing the delay time between the excitation pulses until nonresonant signal is no longer 

produced from a standard, such as a gold mirror. The presence of resonant signal can cause the 

nonresonant signal to persist longer than it otherwise would,16 meaning that additional delay time 

may be required for full nonresonant suppression. This is particularly important when the second 

excitation pulse does not have a sharp leading edge. It should also be noted that the persistence 

of the resonant signal can be affected by the frequency of the second excitation beam.17 This

means that broadband systems using different frequencies for the visible excitation beam may 

produce different spectra when using the same delay time for the visible pulse.

Time-domain detection is also based on the assumption that NR-SFG cannot exist without 

the presence of both excitation beams. Detecting in the time-domain rather than the frequency 

domain, as is done with the time-delay suppression method, allows for the acquisition of phase 
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information along with the spectrum. VSFG can be mathematically modeled in the time domain

as18

(7)

Here is the SFG signal, is the molecular response, and are the 

visible and IR laser electric fields, is the time elapsed after the IR pulse interacts with the 

sample, is the time elapsed after the visible pulse interacts with the sample, and is the time 

between the peak maxima of the visible and IR pulses. If the nonresonant signal dephases 

quickly enough to be treated as instantaneous then  

(8)

which, when combined with the approximation that allows Eq. 7 to be simplified 

to

(9)

This allows the visible pulse to act as a temporal window, which can be used to select portions of 

the SFG response that are free of nonresonant signal.18 However, if the NR-SFG signal does not 

dephase instantaneously, the nonresonant signal cannot be removed from Eq. 7 and is still 

present in the detected VSFG signal.

Phase-sensitive SFG spectroscopy can be used to deal with nonresonant SFG signal in 

several ways, one of which is related to time-domain SFG detection. VSFG signal is complex,

with both a real and imaginary component. Phase-sensitive SFG assumes that nonresonant signal 

is only present in the real component of SFG signal and that the phase of the nonresonant 

.1 The fixed phase of the nonresonant signal component allows it to be 
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identified in time and removed from the overall signal.19 It should be noted that this assumption 

is called into question by some of the experimental work discussed in Chapter 3 of this text.

In addition to removing a portion of the signal in the time-domain, phase sensitive SFG also 

allows for a series of scans to be taken with the sample and a known standard. This data can then 

be mathematically analyzed to deduce the resonant signal.1 Much like time-domain VR-SFG 

suppression relies on the assumed instantaneous dephasing of NR-SFG, this approach relies on 

the assumed phase behavior of NR-SFG signal. The math behind this method is beyond the 

scope of this text but can be found in Reference 1.

To summarize, because NR-SFG signal can distort VSFG data, several methods have been 

developed to remove nonresonant signal contributions from SFG spectra.1,13,15,18,20

Unfortunately, these methods can be complex and expensive, and are not readily available to 

many of the research groups working with SFG. A thorough understanding of NR-SFG is 

essential for these groups so that they can effectively avoid nonresonant signal contamination, as 

well as recognize when nonresonant contributions are present in a spectrum. 

1.3: Brief Literature Review of Nonresonant SFG/SHG 

The publications discussed here were chosen because they help explain the fundamental 

nature of nonresonant SFG signal and what experimental conditions can affect the nonresonant 

response, aid in the understanding of my work presented later, or may be useful in future work 

that develops from the research discussed in later chapters.

Some of the literature discussed in this section deals with second harmonic generation 

spectroscopy, (SHG) which is a degenerate form of SFG, where the excitation photons have the 

same energy. In this section, nonresonant SHG is assumed to be a reliable model for most forms 
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of nonresonant SFG. Although SHG requires the interaction of two excitation photons with the 

material, many SHG systems use only one excitation beam, where both of the excitation photons 

come from the same beam.

1.3.1: Excitation Wavelength and Pulse Shape 

VSFG systems use a visible beam as the second excitation source. He et al.17 used a scanning 

SFG system to investigate the effect of different visible excitation wavelengths on resonant and 

nonresonant SFG. As shown in Figure 1.3, the intensity of nonresonant signal from a bare gold 

surface more than doubles as the visible excitation wavelength is moved from 600 nm to 475 nm 

with the IR excitation source held constant at 3400 nm. They proposed that this wavelength 

dependence was related to surface phonons, which can be created by light in the 450-500 nm 

range on a gold surface and are believed to enhance SFG signal.  

Another interesting finding from He et al.17 is that the dephasing time for vibrationally-

resonant SFG signal also varied with time. This work, shown in Figure 1.4, was done using a Au 

surface coated with 1-octadecanethiol (ODT) and looked at the dephasing time for the CH3 s,

as, and Fr vibrational modes at visible excitation wavelengths ranging from 475 nm to 800 nm. 

Differences of up to a ps in dephasing time were observed, which the authors ascribe to

influences from the electronic structure of the Au substrate.

The temporal and frequency profile of the excitation beams can also play a role in SFG signal 

generation, particularly in systems using time-delay nonresonant suppression.14 The time delay 

nonresonant suppression method is generally used with a broadband IR and spectrally narrow 

visible pulse. The wider the visible pulse used, the less spectral resolution of resonant features 

the system has. A visible pulse shaped in time by an etalon with a sharp leading edge, such as the
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Figure 1.3. (a) SFG spectra of ODT coated Au at different visible excitation beam wavelengths, (b) peak 
intensity of NR-SFG signal from bare, and ODT SAM coated, Au surfaces at different visible excitation 
beam wavelengths. From reference 15.  
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Figure 1.4. The vibrational dephasing time of the s, Fr, and as C-H vibrational modes at different 
visible excitation beam wavelengths. From reference 15. 
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one shown in Figure 1.5, brings the visible peak closer in time to the IR pulse peak without up-

converting nonresonant signal. This can allow for a more efficient suppression of nonresonant 

signal components and better upconversion of resonant signal components.14

1.3.2 Sample Charge 

The charge of the sample or sample substrate has also been found to affect the amount of 

nonresonant signal that is generated.2 Figure 1.6 shows an example of this work where Zhao et 

al. 21 studied platinum electrodes in a 0.1 M perchloric acid solution. Here the nonresonant 

response shows an interesting correlation to the charge of the scanned electrode. The signal

intensity goes down as the potential becomes more positive until the potential reaches 0.22 V, 

where the nonresonant SFG signal intensity begins to climb. Changes in the amount and nature 

of adsorbates are also known to affect the nonresonant response. They concluded that this was 

not a factor in these experiments because little to no OH vibrations were detected on the 

electrode. Resonant VSFG intensity has also been found to be sensitive to the charge of the 

substrate, with different stretching modes exhibiting unique responses.2

The sensitivity of SFG signal to regional charge has some interesting implications for 

aqueous systems. For example, changing the pH of an aqueous solution containing 

-lactoglobulin (BLG), bovine serum albumin (BSA), or lysozyme (LSZ) caused changes in 

the interfacial charge at the air/liquid interface, 22 which are shown in Figure 1.7. As the pH 

increased, the methyl, methylene, and aromatic VSFG signal at the left of the spectra are 

suppressed and the signal intensity from OH stretches, shown in the middle of the spectra,  
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Figure 1.5. (a) Temporal profile of a narow-band visible pulse shaped by an air-space etalon, (b) 
spectrum of the pulse. From reference 3.
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Figure 1.6. NR-SFG signal intensity as a function of the applied  potential on a Pt(110) electrode in  
0.1M perchloric acid. The line represents a fifth-order polynomial fit. From reference 2.
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Figure 1.7. VSFG spectra of the air-water interface of (a) -lactoglobulin (BLG), (b) bovine serum albumin 
(BSA), and (c) lysozyme (LSZ) proteins at different electrolyte pH levels. From reference 19.  
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increased significantly. It was also found that the presence of NaCl in a solution could mask an 

applied charge at a fused silica/water and polystyrene/water interface.22

Fundamental thermodynamic values, such as surface pKa, have been determined using the 

sensitivity of nonresonant SHG to interfacial charge. In Figure 1.8, an acid functionalized silica

surface/water interface was interrogated with nonresonant SHG at different pH levels and salt 

concentrations.23 The surface charge was determined from the intensity of the SHG response,

which was used along with the SHG data from different ion concentrations (shown in the inset), 

to calculate the pKa for two observed acid base equilibria at the studied interface.   

SFG can directly probe an interfacial potentials with the application of the (3) method.24 This

is done by adding a third-order, nonlinear optical term to the standard, second-order SFG optical 

response.25 The third-order nonlinear susceptibility can be coupled with the two excitation beam 

electric fields and the static electric field charge from the interfacial potential, which allows the

interfacial potential to be probed.24

1.3.3: Quadrupole and Magnetism Contributions to Nonresonant SFG

Although often ignored, the electric quadrupole and magnetic dipole can both provide 

significant amounts of nonresonant SFG signal.2 For example, the surface of liquid hexane, 

which has no dipole, produces nearly as much nonresonant signal as the surface of water, which

has a strong dipole. The best explanation for this observed behavior is that the hexane 

quadrupoles are able to generate significant nonresonant SFG signal.26

Another possible example of quadrupole-related SFG signal comes from work done by 

Cremer et al.,27 which is shown in Figure 1.1. Here SFG spectra were taken of ethylene that had

absorbed onto a Pt(111) surface in two different ways. In panel a the molecule is adsorbed side  
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Figure 1.8. SHG electric field (ESHG) as a function of pH from an acid-functionalized silica/water 
interface at room temperature. The solid line is the pKa fit, with the dashed lines showing 1 standard 
deviation from that fit. The inset shows ESHG as a function of salt concentration in the bulk at a pH of 6.5. 
From reference 20.
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on, while in panel b it has a head on orientation. Although not discussed in the text, both spectra 

display the derivative line shape associated with nonresonant and resonant signal interference. 

The spectrum from the side bonded ethylene in panel a, however, has a more Gaussian profile, a 

deeper dip at the right edge of the peak, and a more pronounced difference between the apparent 

left and right baselines. All of these features indicate a stronger nonresonant signal from the side 

bonded samples. This larger nonresonant signal may be caused by the adsorbed molecules 

enhancing the ability of the substrate to generate NR-SFG; it may be directly produced from the 

ethylene quadrupole, which is available to generate signal in the side-on conformation, but not 

end on.

The potential for nonresonant signal production from electric quadrupoles should be taken 

into consideration by researchers. Because SFG signal originating from electric quadrupoles does 

not have the same symmetry constraints as the electric dipole, SFG signal can be generated from 

an isotropic bulk.2 This means that in many systems a small quadrupole susceptibility can still 

generate significant amounts of nonresonant signal and interfere with resonant signal from the

surface of interest. 

Magnetic dipoles can also generate enough nonresonant signal to be problematic. In fact,

SHG has been used to investigate surface magnetism.2 The discovery of SHG sensitivity to 

surface magnetism was done using a Fe(110) single crystal held between the jaws of an 

electromagnet, which aligned the magnetic domains in the sample.28 SHG signal was taken with 

both an “up” and “down” magnetization. Both magnetic field directions were perpendicular to 

the plane of incidence of the SHG beams and pointed in opposite directions. Figure 1.9 shows a 

schematic of the experimental setup with the magnetic field in the up direction. Samples were 

scanned under ultra-high vacuum at three different times after sample preparation with typical 
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Figure 1.9. Schematic of the experimental setup with relevant crystalographic directions shown in the 
inset. Sample magnetization was along the 001 direction. The excitation beam and SHG signal were both 
P polarized. From reference 26. 
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results shown in Figure 1.10. SHG signal was taken from 250 shots at each time. Each shot was 

normalized to the expected SHG signal from a standard Fe(110) single crystal sample for Figure 

1.10 with the horizontal bars showing the average of these shots. The loss of the magnetized 

effect over time was ascribed to the absorption of CO to the sample surface.28

Section 1.3.4: Surface Adsorption 

Nonresonant SFG/SHG signal has often been used to track or detect the absorption of 

molecules onto a conducting or semiconducting substrate. Examples include tracking surface 

contaminants on Ag, Si, and Ge, Na adsorption onto clean Ge, O2 adsorption onto Si(111),2

thiocyanate onto gold electrodes,29 CO on Pt,30 and CO on W(110).31 Nonresonant SFG has been 

shown to be sensitive to both the nature and quantity of the adsorbate.21 Nonresonant SFG signal 

has also been found to increase as the work function decreases in response to the adsorption of 

O2 onto a W(110) surface,31 as is shown in Figure 1.11. Changes in the nonresonant signal have 

also been observed from silicon wafers and gold when coated with a polystyrene thin film,12 and 

from soda lime glass in response to surface contamination (discussed in more detail in section 

3.3.2).

Section 1.3.5: Surface Plasmon Enhancement of Nonresonant SFG and the Importance of Linear 

Optical Constants

In the late 1980s, theoretical calculations suggested that nonresonant SHG intensity should 

be enhanced by one or more orders of magnitude, relative to the bare reflector, when coupling 

with one of several forms of surface plasmons.32 This prediction has since been experimentally

confirmed.2  Further work has shown that SHG signal enhancement from surface plasmons can 
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Figure 1.10. SHG signal intensity with the magnetic field pointing up (as shown in Figure 1.9) and down 
at (a) 45 min, (b) 60 min, and (c) 180 min after sample preparation. Solid lines represent the average of 
the 250 shots at each orientation. SHG signal was normalized to the expected signal level from the sample 
without the influence of magnetization. From reference 26. 
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Figure 1.11. (a) NR-SFG signal intensity and (b) substrate work function during O2 adsorption onto a 
W(110) substrate. From reference 29.
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be predicted by calculations similar to those used in surface enhanced Raman scattering 

(SERS).2,33

The coupling of nonresonant SFG with surface plasmons helps to explain the increase in 

nonresonant SHG signal produced from roughened conductor surfaces.2,34,35 Further 

understanding can be gained by considering theoretical work for SERS, which found that only 

non-radiative plasmons form on a smooth surface. These non-radiative plasmons can’t enhance 

the Raman signal,36 and are likely to have a similar relationship with SFG. In addition to 

allowing for the formation of SHG enhancing plasmons, roughening a surface may also make it 

possible for the excitation beams to couple with surface plasmons more strongly.32  Even without 

coupling to plasmons, roughening the surface may still allow for increased nonresonant signal if 

the processing creates asymmetry in the local field and orthogonal polarization components in 

that field.37

     Another significant and often overlooked factor in the intensity of nonresonant SFG signal 

is the linear ability of a material to absorb and emit photons at the SFG excitation and signal 

wavelengths. This was well expressed by Krause et al.35 when they wrote “Interestingly, the 

aluminum sample has the highest bulk susceptibility, even though silver produces the strongest 

SHG signal…. (2) of aluminum i (2) of silver clearly 

demonstrates that the total SHG yield depends not only on surface condition and the nonlinear 

 This means that the ability of the material to absorb and emit radiation 

of the SFG excitation and signal frequency can affect the amount of SFG signal generated.
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1.3.6: Effects of Crystal Structure

As mentioned in the previous section, roughening a sample surface can increase the 

nonresonant SFG/SHG signal.2,34,35 At a more atomic level, lattice dislocations, defects, and 

lattice strain also have an effect on the amount of nonresonant signal generated.38-41 Vazquez et 

al.39 showed that, in at least some cases, dislocations had a much stronger effect on the 

nonresonant signal than surface roughening. Their work was focused on improving the surface 

quality of laser waveguides with Nd:YAG as the material of interest. Standard polishing methods 

create dislocations just below the material surface which interfere with the smooth transmission 

of light. To remove the dislocations created by polishing, the crystal was bombarded by 

accelerated Ne and N atoms with energies as high as 2 MeV. In addition to removing the buried 

dislocations, the bombardment also roughened the surface. After bombardment, the crystal was 

resmoothed by immersion in an orthophosphoric acid bath, the results of which are shown in 

Figure 1.12 where panel a is after one smoothing bath, and panel b is after two. During this 

process SHG was used to track the removal of dislocations. These results are shown in Figure 

1.13, where the signal drops by roughly 90% after bombardment and then increases again after 

each acid treatment. The authors did not speculate as to why the acid treatment caused the SHG 

signal level to change.       

Theoretical work by Lyubchanskii et al. 40 showed that lattice dislocations do not produce 

SHG at all symmetry-allowed polarization combinations. The work was done using a 

polarization analysis of scattered second harmonic light to separate the terms of a nonlinear 

photoelastic tensor. Using this process, it was found that lattice strain was able to generate SHG 

signal at all polarization combinations. Lattice dislocations, however, were only available to 

generate P polarized signal with either a P or S polarized excitation beam. 
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Figure 1.12. SEM images of Nd:YAG crystal face after bombardment with nitrogen ions and (a) one or 
(b) two  orthophosporic acid baths. From reference 37.
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Figure 1.13. SHG signal intensity for Nd:YAG samples. Amorphisation accomplished with 
bombardment from  (a) neon ions, and (b) nitrogen ions. From reference 37.
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Differences in the morphology of crystal surfaces can also play a role in the amount of 

nonresonant SFG/SHG signal generated. Pt(100) and Pt (110) electrodes were found to respond 

differently to charging in a 0.1 M perchloric acid solution.21 SHG was used to detect the 

reconstruction of Au(111) surfaces after coating with an alkyl thiol monolayer.42 SHG was also 

used to detect the reconstruction of the buried GaAs surface at the ZnSe/GaAs(001) interface.43

Texture in polycrystalline materials and the azimuthal angle in (111) single crystals have also 

been shown to affect nonresonant SFG/SHG signal. Clean Al (111) surfaces were investigated 

with SHG and found to have different SHG responses at different azimuthal angles.44 The

nonresonant SFG response (PPP polarization) from Au(111) single crystals coated in 

octadecanethiol, shown in Figure 1.14, were found to oscillate as the azimuthal angle was 

changed with a 60 periodicity. It was also discovered that the relative phase between the 

resonant and nonresonant signal was different at different azimuthal angles, as is shown in 

Figure 1.2. These findings are similar to our own results with polystyrene coated Si(111) wafers, 

which are discussed in Chapter 3.  

Nonresonant SHG has been used to detect texture in extruded aluminum as well as barium 

titanate thin films.41,45 As with the single crystal samples discussed in the previous paragraph, 

these polycrystalline samples were scanned at a range of azimuthal angles. The results for 

extruded aluminum can be seen in Figure 1.15 and show a 90 periodicity with a 180  periodicity 

in maximum SHG intensity. It is particularly interesting to note that the SHG intensity pattern 

observed for extruded aluminum is very similar to the pattern produced by rotating the excitation 

beam polarization on a-textured barium titanate thin films, shown in Figure 1.16. Here a-textured 

growth has the c axis parallel to the substrate surface, and c-textured growth (shown in Figure 

1.17) has the c axis perpendicular to the substrate surface. Like the a-textured thin film, the 
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Figure 1.14. NR-SFG signal intensity from ODT/Au(111) as a function of the azimuthal angle. From 
reference 42.
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Figure 1.15. P polarized SHG signal intensity as a function of azimuthal angle from an extruded 
aluminum sample. From reference 44. 
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Figure 1.16. P polarized SHG signal intensity as a function of the excitation beam polarization angle 
from a-textured barium titanate thin film. From reference 39.
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Figure 1.17. P polarized SHG signal intensity as a function of the excitation beam polarization angle 
from c-textured barium titanate thin film. From reference 39.
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c-textured film also has a 90  periodicity, but the c-textured film does not have the alternating

peak heights exhibited by both extruded aluminum and a-textured barium titanate thin films.

Differences in the orientation of the crystals can also produce different amounts of 

nonresonant SFG signal.46 Figure 1.18 shows an example of this. Here polycrystalline copper 

covered with an ODT monolayer was imaged with optical microscopy (panels a and c) and SFG 

microscopy (panels b and d). Grain boundaries are highlighted in the SFG images with red lines. 

Differences in the intensity of NR-SFG signal were used to identify much smaller domains than 

can be seen with optical microscopy. Electron backscattering diffraction (EBSD) was used to 

confirm that the domains identified with nonresonant SFG correspond to different crystal facets 

at the surface of the copper. 

1.4: Conclusion 

SFG can be a powerful analytical tool with the ability to gain surface specific chemical and 

morphological information unavailable to any other established technique. Nonresonant SFG 

signal components, however, can interfere with resonant SFG signal and change the detected 

spectrum. A wide range of physical conditions can change the nonresonant SFG signal intensity. 

This means that the nonresonant signal component cannot be ignored or treated as a consistent 

background.  

Several methods have been developed to account for nonresonant SFG signal, all of which 

are based on the idea that the nonresonant SFG signal dephases, and thus effectively disappears, 

as soon as one or more of the excitation sources is removed, while resonant signal components 

can persist. Time-delay methods bring in the visible excitation source after the IR source has left, 
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Figure 1.18. (a) Optical image and (b) unprocessed NR-SFG image of polycrystalline copper with an 
ODT monolayer at azimuthal angle 0 . Optical image and (c) (b) unprocessed NR-SFG image of 
polycrystalline copper with an ODT monolayer at azimuthal angle 180 with the grain boundaries marked 
in red. From reference 44. 
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leaving a portion of the resonant signal to be detected in the frequency-domain. Time-domain 

and phase-sensitive methods detect the SFG signal in time and rely on mathematical treatments 

as well as the assumption that nonresonant signal is locked into a given time window, to remove 

nonresonant components from the detected signal.

Nonresonant SFG signal has been shown to be useful in acquiring information about the 

morphology of crystalline materials as well as physical information, such as material charge at a 

surface or interface, adsorbate density, and crystalline defects. Much of my work discussed later 

involves either learning more about the nature of nonresonant SFG signal, using nonresonant 

signal to detect material damage, or developing ways to accurately analyze VSFG signal that

contains nonresonant components.
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Chapter 2:VSFG Instrument Operation

2.1: Introduction

The vibrational sum Frequency generation (VSFG) instrument used for this work was

primarily built by Dr. Alexander Dean Curtis. A description of how the instrument was built, and 

why specific components and geometries were used, can be found in Chapter 3 of his doctoral 

dissertation.1 The main purpose of this chapter is to discuss capabilities that were added or 

refined after Dr. Curtis published his dissertation. This chapter is also intended to act as an

operator’s instruction manual, with protocols for maintaining and optimizing the system, as well 

as troubleshooting advice for common problems.

2.2: Additions to Dr. Curtis’s Instrument Design

There are three significant modifications that have been made to the VSFG instrument since 

Dr. Curtis described it in his dissertation.

1. A new sample mount was designed to allow the sample to rotate 360 in the plane of

the sample surface.

The initial rotational mount was designed in cooperation with Dr. Angela Calchera and 

Therin Garrett of the BYU Precision Machining Lab. A technical drawing of the assembly is 

shown in Figure 2.1.

2. The sample mount was redesigned to allow a sample to be scanned and rotated while

under load from a modified Instron 3345 single arm material testing machine.
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Figure 2.1. Technical drawing of the original rotational sample mount.   
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The redesign of the rotational mount was done in cooperation with Therin Garret and Joshua 

Hanson, an undergraduate research assistant. A technical drawing of the assembly is shown in 

Figure 2.2. This mount was designed to incorporate portions of the first rotational sample mount 

for standard samples. Alternatively, the components from the first rotational mount can be 

removed and replaced with the assembly shown in Figure 2.3. This modification will allow for 

samples to be scanned while under a controlled load. A schematic of the sample clamps is shown 

in Figure 2.4. The cable that connects the clamps to the Instron is inserted in the hole at the back 

of a clamp and held in place with the corresponding set screw. Full technical drawings for the 

latest sample mount can be found in Appendix A.

3. The collection beam path was modified to allow for S or P polarized light to be 

filtered out of the signal.

Polarized filtering of the collection beam is accomplished by manipulating a waveplate and a 

polarizing beamsplitter cube in the collection path. The polarizing beamsplitter is mounted on a 1

inch translational stage following the waveplate in the collection beam path.  When positioned in 

the beam path, the beamsplitter will pass P polarized signal and send S polarized signal out of the 

detection pathway. The waveplate rotates S polarized signal to be P polarized. The stage can be 

manually pulled back and locked out of the beam path. Set points for the waveplate post holder 

base are bolted onto the optics table so that the waveplate can be easily removed and returned to

the same position. To remove P polarized SFG from the signal, place both the waveplate and the 

cube in the signal beam path. To remove S polarized SFG from the signal, place only the cube in 

the signal beam path. NOTE: The polarizing beamsplitter cube can be positioned so that it does 

not reduce the signal level of the desired polarization; however, this requires careful adjustments 

and should be checked periodically.
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Figure 2.2. Assembly drawing of the current rotational and live-pull sample mount.   
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Figure 2.3. Assembly drawing of the live pull adapter for the current sample mount.   
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Figure 2.4. Assembly drawing of a sample clamp used with the live pull adapter for current sample 

mount.   
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2.3: Instrument Overview and Operation

2.3.1: Instrument Overview

Figure 2.5 includes a diagram and a picture of the VSFG system with the visible, infrared 

(IR), and signal beam paths marked in red, purple, and orange respectively. The locations of key 

optical elements are highlighted in yellow with an accompanying site number. 

The optical elements at each point are:

1. The beam is split at this point with 70% going to the TOPAS-C and 30% following the 

visible beam path marked in red. 

2. The TOPAS-C is an optical parametric amplifier (OPA) that uses the visible beam to 

produce a tunable IR pulse, which then follows the IR beam path marked in green.

3. The visible pulse is narrowed spectrally and shaped temporally by the etalons here. It is 

also down collimated to reduce the beam size here.

4. Most samples will be burned by the visible beam unless a neutral density filter is placed 

in the mount here. 

5. This is a half waveplate that allows you to select either S or P polarization for the visible 

excitation beam. We generally use an S polarized visible beam. 

6. This is a computer controlled stage which allows you to change the arrival time of the 

visible pulse relative to the IR pulse. 

7. The visible and IR beams are focused onto the sample in this area.

8. The diverging signal beam is collimated here. 
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Figure 2.5. Diagram and annotated picture of the VSFG instrument. Key optical elements are highlighted 

in yellow. They are: 

1) beam splitter, 2) OPA, 3) etalons, 4) neutral density filter, 5) half waveplate, 6) computer controlled 

stage, 7) Lenses to focus the visible and IR beams onto the sample, 8) collimator, and 9) half wave plate. 
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9. This half waveplate allows you to change the polarization of the signal beam. This may 

be done for filtering purposes, or to make the signal beam P polarized, which the Andor 

CCD is more sensitive to.

10. A polarizing cube can be placed here to filter the signal. It is not shown in the 

accompanying picture. 

Figure 2.6 has blue arrows that indicate adjustment points and common problem areas. 

a. The TOPAS-C is very sensitive to the pointing of the input visible beam. A small bump 

at either of these locations will generally significantly reduce the IR power. 

b. Portions of these mirrors are off the table and are easily bumped. Check the beam overlap 

and positioning irises to make sure they are in the right place. 

c. The stage and mirror here allow you to adjust the IR beam focal point and position on the 

sample.

d. This mirror allows you to adjust the visible beam position on the sample. 

e. The collimator is on a stage which allows you to adjust the collimation. This should only 

need to be done if significant changes were made upstream. 

f. The mirrors at points f and g allow you to adjust the signal beam path.

2.3.2: Establishing Signal

The directions for establishing signal are made with references to Figure 2.6.
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Figure 2.6. Diagram and annotated picture of the VSFG instrument. Key adjustment points are pointed 

out with blue arrows.  
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To establish signal:

1. Tune the etalons. This should not need to be done unless conditions have been 

changed upstream of them, but if the visible beam looks weak the etalons should be 

checked. 

2. Tune the TOPAS-C and insure that it is generating a minimum of 6mW of power. 

Note: This should only be done by authorized personnel; the TOPAS-C is touchy and 

expensive to get fixed. 

3. Position the excitation beams with the mirrors at locations c and d. In particular,

check the IR beam as it can clip the edge of the sample mount and make sure that the 

visible beam is in the center of the sample mount.

4. Overlap the excitation beams spatially. Because of chromatic aberrations this is 

difficult to do if you are wearing glasses. The excitation beams can be overlapped on 

an IR viewer card, or a piece of cardstock covered in pencil lead. The beams can also 

be overlapped with a Cleartran crystal, however this method tends to overlap the 

beams in the bulk of the crystal not the crystal face which doesn’t put them in the 

right position to generate signal from a sample. When overlapping the beams on a 

graphite covered card

1. Make sure that the graphite layer is thick.

2. With the visible beam blocked, look for a spark on the graphite that will 

indicate the location of the IR beam. You may need to frequently move the 

graphite covered card to keep the IR spark visible.

3. Move the IR beam spark into the same position as the visible beam.
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5. Place the yellow Cleartran crystal in the sample mount and overlap the excitation 

beams in time by moving the stage at point b to the point where the Cleartran glows 

the brightest. 

6. Replace the yellow Cleartran crystal with the transparent Cleartran crystal. Check the 

signal beam path with a card and adjust mirrors f and g so that the beam goes through 

the center of the irises after mirror g. 

7. the acquisition time to 1s or less then optimize

the signal by adjusting mirror f to give the largest detected signal on the Andor 

software. Note: the CCD will often be saturated before the optimal position of mirror 

f is reached. However, as alignment is improved the width of the saturated peak will 

increase. This can be used to continue optimizing the pointing with the Cleartran after 

the CCD has been saturated.

8. Replace the crystal with a gold mirror and optimize the signal. Start with a large 

Andor aperture setting (1000-

1. Optimize the IR focus and beam overlap with the stage and mirror at point c. 

2. Use the motorized delay stage software to optimize the temporal overlap.

3. Optimize the signal beam path by adjusting mirrors f and g so that the signal 

travels through the center of the irises after mirror g. 

4. Make fine adjustments to mirror g to optimize the signal. 

9. Reduce the Andor aperture setting until 20-40 counts of signal is detected with an 

integration time of 1s and repeat the optimization steps 3 and 4. 

For workable data acquisition you should have at least 100 counts from gold with a 1s 

Andor slit width. 
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2.3.3: Daily Operations

2.3.3.1 Startup SOP for Integra-C Laser

1. Turn on the laser warning light and oscilloscope.

2. Make sure that the external beam is blocked.

3. Open the laser enclosure and turn on the oscillator.

4. Turn the key to the right until the system starts up, then when prompted press Select.

5. Recall the regen setup on the oscilloscope and make sure the cables are attached 

correctly (green on input 1, black on input2).

6. Wait for the system to complete its startup routine, typically around 5min.

7. Once the startup routine is completed switch the Integra to external PRF: 

1. Press Menu and choose Settings.

2. Press Select.

3. Choose Set Mode and press Select.

4. Press Select again to leave the laser in PRF mode. (NEVER CHOOSE CW 

MODE)

5. Choose Ext, and press Select.

6. Press Select again to confirm settings.

8. Open the laser shutter and verify that the pump laser is operating properly.

9. Turn on the TEC.

10. Gradually increase the operating current to the last set point and watch for the regen 

pulse train on the scope. The optimal current may be slightly different from the last 

time the Integra was run.
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11. After the system has warmed up for 15-20 min, adjust the current again to optimize 

the pulse train.

12. After the system has warmed up for ~50 min, optimize the current for IR power as 

measured after the TOPAS-C.

13. Measure the IR and Integra power then record them along with the current and 

voltage in the laser logbook. 

2.3.3.2 Shutdown SOP for Integra-C Laser

1. Block the external beam from the laser. 

2. Close the shutter.

3. Turn off the TEC. 

4. Turn off the main key switch.

5. Wait approximately 5min for the shutdown routine to complete then turn off the 

oscillator. 

6. Turn off the scope and laser warning light. 

2.3.3.3 Taking SFG Data

Before taking an SFG spectrum, check the signal level by taking a 3s scan from a gold mirror 

with the Andor

acquisition. Close the TOPAS-C shutter and block the visible beam then replace the gold mirror 

with the sample. 
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To acquire data: 

1. Save the spectrum from gold. This may be needed later to determine if differences in 

spectral shape and intensity are due to a material change or a change in the SFG 

system.

2. Check that the sample of interest is properly loaded and that the visible beam is 

unblocked.

3. Turn off the monitor and lights inside the laser bay. 

4. Login to the SFG computer from outside the laser bay. The computer name is: 

lsrlabgx745.

5. Adjust the CCD settings in Andor. 

6. Check that the TOPAS-C is tuned to the correct IR wavelengths.

7. Acquire a background, and then check the background for unusual and/or large 

features.

8. Take data.

9. Save the data and in the file name record: the date of acquisition (YearMonthDay), 

sample name, scan settings, signal filtering if any, and all treatment the sample had 

received prior to the scan. 

10. Check that the spectrum has saved correctly. 

2.3.4: Live-Pull Equipment Set-Up

The sample mount shown in Figure 2.7 has been designed to facilitate the scanning of a 

sample while it is under load from the lab’s Instron material testing machine. The equipment 

shown in Figure 2.8 is used to connect the Instron to the sample mount. 
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Figure 2.7. Back of the current sample mount. The connection point for the Instron is circled in red. 
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Figure 2.8. Adapter that allows the Instron to interface with the sample mount. The points circled in red 

connect to the sample mount. One of the connection points is circled in red in Figure 2.7.
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To set up the live-pull equipment:

1. Unbolt and remove the sample holder and plunger from the front of the sample mount 

and replace it with the live pull mount face shown in Figure 2.3.

2. Replace the upper Instron clamp with the hook attachment leaving the force 

transducer in place.

3. Remove the lower Instron clamp and clamp housing, then bolt the base of the 

equipment in Figure 2.8 to the Instron where the lower clamp assembly was. 

4. Position the Instron behind the sample mount and connect the rod ends circled in red 

in Figure 2.8 to the sample mount using the threaded holes, one of which is circled in 

Figure 2.7.

5. Run the cable connecting the clamps outside of the pulleys on the sample mount face 

shown in Figure 2.3, then back through the center of the sample mount. 

6. Connect the clamps cable to a cable running down from the hook attached to the 

Instron force transducer and through the pulley at the top of the equipment in Figure 

2.8.

2.4: Common and Potential Problems

2.4.1: The Time Delay Stage

The motorized stage, used for the VSFG visible beam time delay, tends to be temperamental.

The most common problem is that the operating software either fails to identify, or loses

connection with, the stage motor control box. To give yourself the best chance of the stage 

working, always start the stage control software before any other programs and don’t try to run 

two stages from the same computer. 
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When the stage control software stops working:

1. Close all software.

2. Unplug the control cube, and leave it unplugged for at least 1 minute.

3. Repower the control cube.

4. Start the APT controller configuration software and make sure that the control cube

has been identified.

5. Close the APT controller configuration software and open the APT stage control

software.

2.4.2: Excitation Beam Power Loss

There are three common sources of power loss in the excitation beam that you might be 

able to address. The first issue to be aware of is laser power loss due to insufficient cooling. This 

can occur when the air flow to the cooling system is restricted, or when the room temperature is 

too high. If needed, the air flow can be supplement with a large external fan, and/or the 

instrument can be run at night when the lab is generally cooler.

The second issue is laser power loss due to moisture in the pump laser. This can be prevented 

by monitoring the desiccant and replacing it when indicated by the gauge on the top left. If this is 

the problem, your laser power will start out fine but drop off after operating for a few hours.

The third common issue is a change in the beam alignment in the TOPAS-C. This problem 

can be identified when the IR power drops well below previous values, and the laser power 

doesn’t. The TOPAS-C can be realigned by following the directions on page 26 of the 

accompanying user manual. The system diagram on page 15 of the TOPAS-C user manual may 



60 
 

also be useful. NOTE: Only personnel authorized by Dr. Patterson should attempt to realign the 

TOPAS-C.

2.4.3: Light Contamination

The VSFG signal is visible light, which can make background light contamination a real 

problem. Light contamination is especially problematic when working with samples that produce

low levels of signal, such as glass, or samples that do not have a perfectly smooth and flat 

surface, such as polymer dogbones. Long acquisition times are needed to obtain meaningful 

spectra from samples like these, which make scans very sensitive to background light. Getting 

low enough levels of background light in these situations often requires that the acquisition be 

done at night, with the collection path fully boxed. Even with these precautions, any scan that 

requires more than four hours total, two hours for the background and two hours for the data, 

will have too much noise to be useful. 

The most common and problematic source of light contamination at night has come from 

cleaning and security staff, who enter the lab despite the warning light being on. This problem 

can be reduced with clear and prominent signage, and by actively intercepting nighttime staff 

before they get to the lab door. Maintenance staff may move or remove signage, so check to 

make sure all measures are still in place before starting a long acquisition.

Attempting to acquire VSFG spectra in the OH stretching region will require additional

precautions, as there is a large, narrow noise source that shows up in that region of the CCD.

This noise appears to come from the Integra laser itself, and travels along the visible beam path. 

Closing the alignment irises before and after the delay stage to the point where they just begin to 
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cut into the beam, closing the collection path alignment irises to the point just before they cause 

the signal level to drop, and narrowing the Andor aperture to 100 can remove this noise.

When running long scans of HDPE samples you can also get light contamination from SFG 

signal generated on the Teflon face of the plunger that holds the sample in place. This will be a 

problem with samples which require long scans and are not completely opaque. This issue can be 

avoided by placing a sheet of glass attached to a sheet of frosted glass with double sided tape 

between the polymer sample and the Teflon plunger face.

2.4.4: Potential Problems in the Live-Pull 

The Instron 3345 material testing machine is much better at responding to changes in the 

extension than it is changes in the load. This means that if you want the Instron to stop before it 

breaks the sample, extension (or strain) must be used for program cues, not load (or stress). Also 

note that the Bluehill software has two different places where the test can be programmed to end 

and will stop when either is reached. This can be useful, but can also ruin a test, so double check 

both. You should also be aware that the faster the Instron pull rate, the lower the load and 

extension at which a sample is likely to break. For example, it is difficult to get our high density 

polyethylene samples to develop a good neck at pull rates above 0.003mm/s. 

There is also a potential issue in the live pull sample mount. As it currently exists, the clamps 

that hold the sample are not tightly constrained in any direction other than by the cables which 

transfer the load. This means that if a cable twists during loading, the sample face will also twist 

which will put the signal beam out of alignment. The VSFG instrument collection path is very 

sensitive to alignment, so even a very small change in the orientation of the sample face can lead 

to a loss of signal.  
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Chapter 3: Investigations Into the Nature of Nonresonant SFG 

3.1: Introduction

Sum frequency generation spectroscopy can be a powerful tool. Vibrational SFG can give 

interface and surface specific information about the nature and physical orientation of functional 

groups. Many sample systems also produce a second, nonresonant SFG signal. Interference with 

the nonresonant SFG signal can significantly alter the detected, resonant SFG spectrum.1,2

Methods have been developed to remove nonresonant interference, but these methods rely on the 

assumption that NR-SFG signal has a predictable phase and decays instantaneously with the 

removal of either excitation pulse.3-5 Existing literature and work discussed in this chapter 

strongly suggest that, in at least some cases, these assumptions are wrong. 

Ignoring or improperly treating NR-SFG can lead to inaccurate analysis and incorrect 

conclusions. Furthermore, ignoring NR-SFG signal contributions throws away valuable 

information that can provide unique and useful insights into the nature and dynamics of a system.

This chapter is an amalgamation of research projects that were intended to add to the 

understanding of the nature of NR-SFG signal. The hope is that this work will help researchers 

better use, and account for, NR-SFG signal in their efforts. A portion of this work was published 

in Optics Letters volume 40 issue 21 on September 29, 2015 as “Polarization and phase 

characteristics of nonresonant sum-frequency generation response from a silicon (111) surface”.

The published text has been reformatted to align with the style of this dissertation, with figures 

and references from the published paper integrated into the rest of the chapter. Other than these 

cosmetic changes, the paper is included as published in section 3.2.
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3.2 Optics Letters Publication

Polarization and phase characteristics of nonresonant sum-

frequency generation response from a silicon (111) surface

Shawn C. Averett,1 Angela R. Calchera,1,2 James E. Patterson1,*

1Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602

2Present location: Intel Corporation, Hillsboro, OR 97124

*Corresponding author: jepatterson@chem.byu.edu

Received 12 August 2015; revised 26 September 2015; accepted 28 September 2015; posted 29 

September 2015 (Doc. ID 247760); published 19 October 2015

Silicon (111) [Si(111)] surfaces both with and without a thin film of polystyrene are 

investigated with sum-frequency generation (SFG) spectroscopy with S-polarized visible 

and P-polarized infrared inputs. On uncoated Si, the nonresonant polarization changes 

from S to P, with the maximum signal in each polarization component repeating every 60° 

of sample rotation. With polystyrene on Si(111), the resonant features go in and out of

phase with the nonresonant signal every 120°. The resonant response is only S-polarized, as 

expected, however the nonresonant response again switches between S and P polarization. 

Implications for proper collection and interpretation of SFG spectra from crystalline 

substrates are discussed.

OCIS Codes: (190.4350) Nonlinear optics at surfaces, (300.6420) Spectroscopy, nonlinear, 

(300.6490) Spectroscopy, surface. http://dx.doi.org/10.1364/OL.99.099999
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Vibrational sum-frequency generation (VSFG)6,7 has become a powerful tool for 

investigating the molecular structure of free surfaces and buried interfaces.In this nonlinear 

optical technique, two laser pulses, one visible and one infrared, interact with a surface or 

interface, producing a nonlinear polarization that oscillates at the sum of the two input 

frequencies. Under the dipole approximation, the nonlinear susceptibility, , is identically zero 

for an isotropic medium, thus no VSFG signal is produced from amorphous bulk material. A 

surface or interface, however, is by definition anisotropic, therefore some elements of the 

susceptibility tensor are nonzero; this fact provides VSFG with inherent selectivity for surfaces 

and interfaces of isotropic media. As we show in this Letter, however, the situation can be 

significantly more complicated when a thin film of amorphous polymer is supported by a 

crystalline substrate. Changes in the selection rules of the spectroscopy manifest in the 

polarization and phase of the SFG response from the substrate, and these effects must be 

included in the analysis and interpretation of the spectral data.

In VSFG, the frequency of the infrared pulse is tuned so as to be resonant with normal 

vibrational modes of molecules located at the surface or interface under investigation. One aspect 

of the VSFG measurement that has not received as much attention, however, is the nonresonant 

response. The nonlinear susceptibility that governs the VSFG process is typically written as

(1)

where the overall susceptibility consists of a nonresonant (NR) term, typically considered to be 

frequency-independent, and a resonant (R) term that consists of individual elements for each 

discrete vibrational resonance, represented by a Lorentzian profile with amplitude AR, central 

frequency R R. Both the resonant and nonresonant terms are complex 
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functions, meaning the various contributions can interfere with each other. The measured VSFG 

signal can be mathematically represented as follows:

(2)

where (ww) is a frequency-dependent phase. This last term in Eq. (2) accounts for the 

interference between the resonant and nonresonant contributions and often results in dispersive 

line shapes of the resonant features. 

The nonresonant contribution is an important part of a VSFG measurement because of the 

interference and the distortions it causes; it should not be thought of simply as a “background” to 

the resonant response. While the source of the nonresonant signal is still an area of investigation, 

it is generally accepted that this contribution arises from fast electronic responses in the 

sample.8,9 Interference with the nonresonant signal is also used to determine the absolute 

orientation of molecules relative to the surface,10,11 which requires knowledge of the relative 

phase of the resonant and nonresonant responses. In this Letter, we examine the polarization and 

phase characteristics of the nonresonant sum-frequency response from Si(111) both with and 

without a thin film of polystyrene. In particular, we have observed that the polarization and 

phase of the nonresonant response are dependent on the orientation of the sample relative to the 

probe beams. Our observations serve as a caution to practitioners in the field to pay careful 

attention to how they treat the nonresonant response, particularly from crystalline substrates.

Our VSFG system has been described previously.2 Briefly, a portion of the output of an 

amplified Ti:sapphire laser (Integra C, Quantronix) is used to pump a broadband infrared optical 

parametric amplifier (OPA)  (TOPAS-C, Light Conversion via Quantronix). The visible 

upconversion beam is spectrally narrowed with two Fabry-Perot étalons. In all cases, the IR light 
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was P-polarized and the visible light was S-polarized. According to the selection rules for VSFG, 

an azimuthally symmetric surface, such as an amorphous polymer, can only generate an 

S-polarized output with these inputs; this combination of input and output polarizations is 

typically labeled SSP. The time delay between the visible and infrared pulses was set to 

maximize the overall VSFG signal. Introduction of a time delay between the two pulses 

experimentally suppresses the nonresonant response,12 however for the spectra shown in this 

Letter, no such suppression was used to better observe the nonresonant response. The samples 

were mounted in a rotational stage that allowed for full rotation of the sample about the surface 

normal.

The collection path has two elements, a half-wave plate and an analyzing polarizer, that can 

be included or removed to isolate a specific polarization component of the VSFG signal. In all 

cases, the signal at the spectrometer was P-polarized for the most efficient detection. For 

unfiltered spectra, the analyzing polarizer was not included, but the waveplate was used to rotate 

the predominantly S-polarized light to P-polarization. For filtered SSP spectra, both the 

waveplate and polarizer were in place to isolate the S-polarized component. To isolate the 

P-polarized component, the waveplate was removed and the polarizer was included.

We begin with a simple sample, ~100 nm thick polystyrene (PS) on Si(111). Fig. 3.1 a

contains SSP spectra with and without the polarizer in the collection path. (The waveplate was in 

place, thus the polarizer passed the light that was S-polarized at the sample.) The dominant 

2 mode at 3069 cm–1 and the 20b mode at 3027 cm–1.13 Note that the 

intensity of the nonresonant signal on either side of the resonant features differs with the 

insertion or removal of the analyzing polarizer. A more dramatic example of this effect is seen in 

Fig 3.1 b, which shows similar SSP spectra for a polystyrene sample that was kept in ambient air 
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Figure 3.1. a) Unfiltered and filtered ssp VSFG spectra of polystyrene on Si(111). b) Unfiltered and 
filtered ssp VSFG of “dirty” PS in Si(111). 
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and became contaminated with organic material. Here, the IR profile was centered between the 

aromatic and aliphatic C–H stretch regions. Note that the nonresonant intensity again rises and 

falls with frequency depending on whether the polarizer was in or out of place.

The differences in the nonresonant response with the presence or absence of the polarizer 

suggest that some signal is present in the P-polarized component; with S-polarized visible and 

P-polarized IR, this combination is termed PSP. From an azimuthally symmetric surface, such as 

the polystyrene thin film, the PSP polarization combination is strictly forbidden (within the 

dipole approximation), however this is not necessarily true for the crystalline Si(111) substrate. It 

also appears that the SSP and PSP components of the nonresonant response interfere with each 

other in a frequency-dependent fashion; in both Figs. 3.1 a and 3.1 b, the interference changes 

from constructive to destructive along the spectrum.

These interference effects are more than a mere curiosity, but rather have significant practical 

consequences. One of the hallmarks of VSFG spectroscopy is the ability to determine the 

orientation of functional groups at surfaces and interfaces.10,11 Such an analysis is based on the 

relative intensities of the various vibrational modes and how they interfere with the nonresonant 

response. As is clearly seen in both Figs. 3.1 a and 3.1 b, the relative intensities of the resonant 

features are significantly different in the filtered and unfiltered spectra, indicating that any 

orientations determined from the filtered and unfiltered spectra would also be different. There 

also appear to be some changes in the line shape with and without the polarizer. Analysis of 

VSFG spectra typically treats the nonresonant response as purely nonresonant, i.e. no 

dependence on frequency, therefore any post-processing methodology that included this 

assumption would not correct for these observed effects. 
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To further investigate the polarization characteristics of the nonresonant response, and how it 

depends on the substrate material, we collected SSP VSFG spectra on three uncoated substrates: 

polycrystalline Au, polycrystalline stainless steel (SS), and single crystal Si(111). The half-wave 

plate was in place for these measurements, therefore the polarizer passed the S-polarized light 

from the sample. Fig. 3.2 a shows the relative intensity with the polarizer compared to total 

intensity without the polarizer, in other words the fraction in the S-polarization component, for 

Au and SS as a function of the rotational position of the sample. As can be seen, the fraction of 

S-polarized light is basically unchanged with respect to the angle of the sample for the 

polycrystalline substrates; some variation is seen due to the sample mount and/or slight 

polarization impurity, but not deemed to be significant, especially when compared to the results 

for single crystal Si(111), shown in Fig. 3.2 b.

On the single crystal material, the polarization state of the nonresonant response switches 

back and forth between S and P polarization every 30°, with a 60° period as the sample is 

rotated. This appears similar to what was seen with the second harmonic generation (SHG) 

response of Si(111) as a function of sample angle.14-16 It should be noted that the S- and 

P-polarized components were measured separately and that the waveplate was not in the optical 

path for the measurement of the P-polarized component, thus the two measurements do not 

necessarily add up to 100% at each angle. The pattern of oscillation, however, is unmistakable, 

as is the fact that measurement of unfiltered VSFG light from Si(111) will contain a mixture of 

polarization states, depending on sample orientation.

Clearly the single-crystal nature of Si(111) results in very different polarization 

characteristics compared to the polycrystalline Au and SS. Because we have previously seen that 

the presence of a PS film affects the nonresonant response,2,17 we coated both SS and Si(111) 
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Figure 3.2. a) Percentage of S-polarization in the purely nonresonant response from Au and stainless steel 
as a function of sample orientation relative to plane of incidence. b) Percentage of S- and P-polarization in 
the purely nonresonant response from Si(111) as a function of sample orientation relative to plane of 
incidence.
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with ~100 nm PS. The SS samples were aged for 3 weeks whereas the Si(111) samples were 

annealed at 120°C in a vacuum oven for 2 h, followed by cooling overnight. Fig. 3.3 a contains

unfiltered and filtered SSP spectra of PS on SS at three rotational angles. To better isolate the 

resonant and nonresonant components from each other, the center frequency of the OPA was 

tuned to place the PS resonances on the side of the IR profile. Also included in Fig. 3.3 a are the 

corresponding filtered spectra that isolate the P-polarized component of the signal. (The 

waveplate was not in place for these measurements.)  The results at these angles are 

representative of all angles used, 16 in total, showing no dependence on sample orientation. Note 

that the P-polarized component is completely devoid of any resonant response; the resonant 

response is only in the S-polarized component, as dictated by the VSFG selection rules for a thin 

film of amorphous polymer.

The situation is very different for PS on Si(111), as shown in Fig. 3.3 b.  As with the spectra 

in Fig. 3.3 a, the IR profile was positioned such that the resonant features are displaced from the 

intensity maximum, which allows us to observe the resonant and nonresonant behavior 

separately. In the unfiltered spectra, the nonresonant response looks similar at each angle, but the 

resonant response goes in and out of phase with the nonresonant response. What is particularly 

striking about this pattern is that it repeats every 120°, rather than every 60° as is seen in the 

variation of the polarization state of the nonresonant response. Note also that the destructive 

interference is incomplete; at a sample rotation of 90°, the resonant features exhibit dispersive 

line shapes. As with the SS substrates, polarization filtering to isolate the P-polarized component 

removes all the resonant response, however the nonresonant polarization varies in the same 

manner as seen for the uncoated Si(111), as shown in Fig. 3.3 c.
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Figure 3.3. a) Unfiltered and P-filtered VSFG spectra of polystyrene on stainless steel at three sample 
angles relative to plane of incidence. Spectra offset for clarity. b) VSFG spectra of polystyrene on Si(111) 
at a series of angles relative to plane of incidence. Spectra offset for clarity. c) Percentage of p-
polarization in the nonresonant response of uncoated and coated Si(111) as a function of sample angle.
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These polarization and phase characteristics likely reflect underlying symmetries of the 

Si(111) surface, as shown in Fig. 3.4. It should also be noted that although SFG and SHG should 

be expected to give similar results when looking at bare Si(111), the situation can be very 

different with the presence of a polymer film. When detecting the response of only the crystalline 

substrate, either with SHG or SFG, all phase information is lost; only the first term of Eq (2) 

contributes to the measured signal. The presence of the polymer film, however, allows for 

interference, as described by the last term in Eq (2).  Thus, 120° appears to be the actual 

periodicity of the phase and polarization characteristics of the nonresonant response from 

Si(111).  These periodicities are consistent with the hexagonal packing of the (111) surface as 

seen in Figure 3.4, however several more crystalline systems need to be investigated before we 

can offer a detailed physical model of how the polarization and phase of the nonresonant 

response depend on surface structure. Preliminary measurements on Si(100), for example, seem 

to show no dependence on sample orientation.

The nonresonant SFG response is important because it can complicate the accurate 

orientation analysis of molecules at surfaces and interfaces. Because the measured signal 

includes interference effects, as shown in Eq. (2), and the individual components cannot 

generally be measured independently, improper assumptions in treating the nonresonant response 

can lead to erroneous results.16 In particular, we have shown that modeling the nonresonant 

response with

(3)

where BNR is the amplitude and represents the phase of the substrate, is problematic for thin 

film samples. The results in this Letter add further weight to this concern because if Eq. (3) were 

used to model the nonresonant response of Si(111), the phase term would need to depend on 
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Figure 3.4. Representation of the Si(111) surface. Open circles are the top atomic layer. Black circles 
represent the second atomic layer, with the third atomic layer directly beneath the second. Gray circles 
represent the fourth atomic layer.
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sample orientation, otherwise it would be uncertain if the relevant functional groups were 

pointing away from or into the surface.

These results also raise some concerns about other methods to post-process VSFG spectra, 

especially those collected with heterodyne4 or phase sensitive detection,18 or with time-domain 

SFG.5,8 The assumption has been made that the nonresonant response is “instantaneous” and 

should therefore only be included in the real portion of the signal, meaning the imaginary 

component is purely resonant.5 While this assumption may be valid for monolayer samples on 

polycrystalline substrates of the type used in the prior work, where the molecules are in the 

immediate proximity of the substrate, we have serious reservations about applying this approach 

to polymer thin films, where the surface molecules that give rise to the resonant response are 

spatially separated from the substrate. The fact that we see phase changes in the nonresonant 

response relative to the resonant response with orientation of the sample strongly suggests that 

the nonresonant response must be included in both the real and imaginary components of the 

VSFG response from a sample consisting of a polymer thin film on a single crystal substrate.

There are experimental methods for removing the nonresonant response, but only for 

broadband systems based on an ultrafast laser. This is done by introducing a temporal delay 

between the IR and visible probe pulses.12 This time delay affects the measured resonant 

response because of apodization in the time domain,3 but these effects can be corrected through 

additional measurements at multiple delay times.19 For practitioners with such a system, we 

therefore strongly recommend experimentally suppressing the nonresonant response to measure 

the purely resonant response and minimize the number of assumptions that must be made in the 

post-processing of the data. We make this recommendation even for those using heterodyne 

detection. For those using narrowband, frequency-scanning systems, the nonresonant response 
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cannot be removed experimentally. For samples with single crystal substrates, therefore, we

recommend orienting the sample to maximize the resonant response, which should enable better

extraction of the resonant parameters, although multiple sample orientations should probably be

probed to gain a more complete understanding of the sample.  

This work also highlights another potential use of the nonresonant SFG response. Instead of 

being at best a background and at worst a nuisance, it may provide important structural 

information about a material. Further work is underway on additional materials of different 

symmetry, and we foresee adding nonresonant SFG to the list of optical methods to determine 

degree of crystallinity and even the orientation of crystalline samples. We encourage other

practitioners to contribute to this effort by explicitly measuring the polarization and phase of the

nonresonant response on their particular systems of interest. We also encourage the removal of

the analyzing polarizer occasionally to ascertain the presence of “forbidden” contributions to the 

nonresonant response. As a more detailed picture emerges of how the nonresonant response 

relates to surface/material structure and properties, it will allow researchers to make significant 

use of what has often been an underutilized component of the VSFG measurement. 

Acknowedgments The authors thank Alexander D. Curtis for helpful discussions in the early 

stage of this work and Logan Kitchen for assistance in sample preparation.

3.3: Additional Findings

3.3.1: Variations in Phase and Persistence of Nonresonant SFG

Vibrational SFG occurs when the IR input beam vibrationally excites molecules. The 

vibrationally excited state can persist after the IR pulse has left, effectively preserving the effects
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of the IR pulse in time. Until the molecular vibrations caused by the IR beam have dephased, the 

system can create SFG signal with the arrival of the visible pulse.3,12 This means that VSFG can 

still be created by the second, visible pulse several ps after the departure of the IR pulse. Because 

nonresonant SFG does not involve resonant molecular vibrations, which can preserve the effects 

of the IR beam, it is assumed that, unlike resonant SFG signal, nonresonant SFG signal cannot be 

created without the temporal overlap of both excitation pulses.3-5,20,21 This assumption is at the 

heart of both time-delay, and time-domain, nonresonant SFG signal suppression methods. Time-

delay nonresonant signal suppression works by delaying the arrival of the visible excitation pulse 

until after the first IR pulse has left.3 The correct delay time is generally found experimentally by 

increasing the time between the visible pulse and IR pulse arrival until nonresonant signal is not 

generated from a standard sample, such as a gold mirror. Time-domain methods detect the SFG 

signal in the time domain and then process the data to remove the portion of the signal that is 

expected to have nonresonant components. 4,5 This section discusses three experimental findings 

that suggest that the assumption of instantaneous nonresonant decay, which is central to time-

domain suppression methods, is not valid for some systems. 

Figure 3.3 b in section 3.2 shows a polystyrene thin film on a Si(111) wafer. The relative 

phase between the resonant and nonresonant response changes as the azimuthal angle of the 

sample is changed. Differences in the relative phase between resonant and nonresonant signal 

components have also been observed at different azimuthal angles from an octadecanethiol

(ODT) monolayer on a Au(111) substrate.22 Interestingly a Si(100) wafers does not exhibit the 

same nonresonant behavior as a Si(111) wafer. Figure 3.5 shows spectra taken from a Si(100) 

wafer with a polystyrene thin film coating. Unlike the 120 phase periodicity seen from

polystyrene coated Si(111), the VSFG spectra from this sample are almost identical at azimuthal 
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Figure 3.5. VSFG spectra of a polystyrene coated Si(100) wafer at four different azimuthal angles. 
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angles 0 , 60 , 90 , and 330 . The observation that the nonresonant phase of Au(111) and 

Si(111) vary with azimuthal angle, but the phase of nonresonant signal from Si(100) does not, 

suggests that the crystalline structure of the substrate is primarily responsible for the observed 

phase behavior.  

The argument may be made that the changes in the relative phase between resonant and 

nonresonant signal contributions can be attributed to changes in the phase of the resonant signal. 

The fact that the same effect was observed from both polystyrene coated Si(111) and ODT 

coated Au(111), where the only similarity was the crystal structure of the substrate, argues that 

the changing phase comes from the substrate, and is thus a change in the phase of the

nonresonant signal components. The fact that polystyrene thin films on Si(111) and Si(100) 

substrates did not behave the same supports the assertion that the observed azimuthal 

dependence of the relative resonant and nonresonant phase is caused by changes in the 

nonresonant phase. If the persistence and phase of nonresonant SFG signal is only dependent on 

the temporal properties of the excitation beams, then rotating a sample, as was done in these 

experiments, should not change the phase of the nonresonant signal contributions. The fact that it 

does strongly suggests that the phase of nonresonant signal contributions can be influenced by 

the material from which the nonresonant components are produced.

Commonly accepted assumptions predict that the NR-SFG temporal profile should be the 

same no matter what material the nonresonant signal is produced on. As is shown in Figures 3.6

and 3.7, this is not the case. Figure 3.6 comes from reference17. Here the authors measured the 

intensity of nonresonant SFG signal as a function of the delay time between the IR and visible 

excitation beams for Au, a polystyrene thin film on fused silica, and a bare silicon wafer. Each 
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Figure 3.6. Maximum SFG signal from gold, a polystyrene thin film on fused silica, and a silicon wafer 
at different visible delay times. The maximum signal level from gold was chosen as time zero. From 
reference 17.
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Figure 3.7. MaximumS-polarized NR-SFG signal level from a Si(111) wafer at different visible delay 
times. Measurements were taken at azimuthal angles of 0 , 30 , 60 , and 90 .
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material exhibited a different response, both in the rate of nonresonant decay, and in the optimal 

delay time for maximum nonresonant signal. 

Some of my related exploratory work, using an as received Si(111) wafer, is shown in Figure 

3.7, here normalized, S-polarized nonresonant signal intensity is plotted vs the time delay of the 

visible pulse. Time zero was arbitrarily assigned, as was the 0 azimuthal angle. It is 

immediately apparent from Figure 3.7 that the temporal behavior of the nonresonant SFG signal 

is affected by the azimuthal angle of the sample. Furthermore, the optimal time delay appears to 

oscillate, with very similar temporal behavior at azimuthal angles 30 and 90 . This apparent 60

periodicity recalls the 60 periodicity of the relative phase between the resonant and nonresonant 

signal, shown in Figure 3.3 b. This behavior supports the assertion that the changes in the 

relative phase between resonant and nonresonant signal components, shown in Figure 3.3 b,

come from changes in the temporal response of nonresonant signal components. 

The temporal behavior of nonresonant SFG signal can also be affected by the presence of 

resonant SFG signal components. The interaction of the resonant and nonresonant signal can 

cause nonresonant signal components to persist longer than they otherwise would. Dr. Alexander

Curtis predicted this behavior and Dr. Angela Calchera performed the experimental 

conformation and expanded on Dr. Curtis’s theoretical work.23 The experimental approach was 

based on my idea to detect nonresonant signal components by filtering P-polarized light out of 

the SFG signal. 

Experiments were conducted using polymer thin films on a silicon wafer substrate. Resonant 

SFG produced by the interaction of S-polarized visible and P-polarized IR excitation beams on

an azimuthally symmetric surface, such as a polymer thin film, are forbidden to be P-polarized. 

Nonresonant SFG produced at the polymer-substrate interface, however, does not have the same 
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symmetry constraints and can be either S- or P-polarized. Thus if a spectrum is changed by 

removing P-polarized components, nonresonant contributions were present. 

Figure 3.8 shows SFG spectra from a polystyrene thin film on a Si wafer substrate with an 

unknown Miller index.23 These spectra were taken using the broadband SFG system described in 

Chapter 2, with a visible pulse delay time that fully suppressed nonresonant SFG signal from a 

polycrystalline gold mirror. The spectrum shown in black had P-polarized components filtered 

out of the signal, whereas the red spectrum did not. Nonresonant signal components are clearly 

still present, despite a visible time delay that fully suppressed NR-SFG signal from gold. This 

means that even if nonresonant SFG signal originally exhibits the assumed phase and temporal 

behavior, interactions with resonant SFG signal can extend the lifetime of the nonresonant 

signal, making time and phase-sensitive nonresonant suppression techniques questionable.

The spectra in Figure 3.9 add further weight to the conclusions drawn from Figure 3.8. These 

spectra were taken from a thin film of PMMA overlaying a polystyrene thin film on a stainless 

steel substrate. As with the spectra in Figure 3.8, the visible pulse delay time for the spectra in 

Figure 3.9 was set so that the nonresonant signal from gold was fully suppressed. In Figure 3.9,

however the filter was set to remove S-polarized signal, only allowing P-polarized nonresonant 

signal components to be detected. Panel a shows the raw spectra, while panel b shows the 

normalized spectra for comparison. 

The observed peaks in the filtered spectrum can come from one of two sources. The first 

explanation for the remaining signal in the filtered spectrum is that the filtering was incomplete 

and some S-polarized resonant signal was detected by the CCD. If the detected spectrum had 

only resonant signal components, however, the relative peak heights should not have changed. 
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Figure 3.8. VSFG spectra from a polystyrene thin film on a polished silicon wafer. The black spectrum 
had P polarized signal removed, the red spectrum did not. Both spectra were taken at the same visible 
pulse delay time which fully suppressed NR-SFG signal from gold.
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Figure 3.9. VSFG spectra of a PMMA thin film overlaying a polystyrene thin film on a stainless steel 
substrate. (a) The blue spectrum was not filtered and may contain both S and P polarized components. 
The red spectrum was filtered to remove S polarized components.  (b) Shows the normalized spectra to 
highlight the remaining P polarized VSFG signal. 
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The fact that the relative peak heights did change with filtering strongly suggests that some 

nonresonant signal contributions were present. 

Another possible explanation for the remaining signal in the filtered spectrum is that the 

S-polarized resonant SFG signal was filtered out and the detected signal is P-polarized 

nonresonant SFG. If this is the case, the appearance of a resonant-like spectrum in the 

nonresonant signal can be explained by interactions between the resonant and nonresonant 

contributions which extended the temporal lifetime of the nonresonant signal, but only at 

wavelengths where resonant signal contributions existed. Crucially, both explanations lead to the 

conclusion that nonresonant SFG signal contributions can persist longer than generally accepted 

theory says they can.

3.3.2: The Effects of Electron Mobility on NR-SFG Signal Intensity

The nonresonant SFG response can be thought of, and mathematically modeled, as coming 

from currents created at the surface of a material by interactions with the electric fields of the 

excitation beams.24 Within this model, one would expect that an increase in electron mobility 

would lead currents to be established more easily on a material surface, and thus generate a

larger nonresonant SFG response. For example, an N-doped silicon wafer, with added electrons, 

would be expected to exhibit a stronger nonresonant response than a P-doped silicon wafer,

which has less electron density. Figure 3.10 shows NR-SFG signal from both N- and P-doped 

Si(111) wafers. The wafers were scanned as received from University Wafer (catalog numbers 

2439 and 2331) with the factory cut flat edge parallel to the plane of incidence of the SFG 

beams. The predicted behavior is observed, with the N-doped Si wafer producing roughly four 

times as much NR-SFG signal as the P-doped analog. 
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Figure 3.10. NR-SFG spectra from an N doped (blue) silicon (111) wafer and a P doped (red) silicon 
(111) wafer. Wafers were scanned with the factory cut flat edge parallel to the plane of incidence. 

0

500

1000

1500

2000

2300 2500 2700 2900 3100 3300 3500

Co
un

ts
 

Wavenumbers 

N doped Si 111

P doped Si 111



89 
 

A smaller, but possibly related NR-SFG response can be observed in Figure 3.11 a where 

Eagle XG Glass has been scanned with the IR excitation beam envelop tuned to avoid any 

resonant interactions. The red spectrum comes from a sample that has been treated with HCl, as 

outlined in reference, 25 and the blue spectrum is from a sample that was not treated after receipt 

from the factory. The HCl treatment is expected to leach some of the existing calcium ions out of 

the glass and replace them with hydronium ions.25,26 The increase in the number of valence 

electrons at the surface of the glass may allow the electron cloud to be more easily deformed,

accounting for the small increase in NR-SFG response seen in the treated sample. 

Interestingly the difference between treated and untreated glass samples becomes much more 

pronounced two weeks after exposure to the lab atmosphere. This effect is shown in panel b of

Figure 3.11. Methyl stretches were detected from these samples, and hydrocarbons are known to 

generate NR-SFG signal,27,28 so hydrocarbon surface contamination is probably responsible for 

the increase in NR-SFG signal with age. The fact that the untreated sample did not show the 

significant increase in nonresonant signal intensity with age exhibited by the HCl treated sample 

suggests that the hydrocarbons are interacting very differently with the two surfaces. 

3.4: Conclusion

Small material changes such as the nature of a silicon wafer dopant, or the azimuthal 

orientation of the wafer, can cause significant differences in the nonresonant SFG response. 

These differences can manifest as differences in the strength of the nonresonant response, or as 

differences in the temporal behavior of nonresonant signal contributions. The presence of a 

resonant SFG response can also alter the temporal behavior of nonresonant SFG signal 

components.
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Figure 3.11. VSFG spectra of Eagle XG glass. (a) Untreated (blue) and HCl treated (red) glass samples 
scanned immediately after removal from a sealed container. (b) VSFG spectra of the same glass samples 
after two weeks of exposure to the laboratory atmosphere.
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Variability in the temporal behavior of nonresonant SFG signal offers intriguing 

opportunities and important cautions. Developing an understanding of how material 

characteristics influence the temporal behavior of NR-SFG signal could lead to fascinating 

insights and new experimental methods. For example, relatively simple and inexpensive 

instruments may be able to conduct time resolved experiments by incorporating materials that 

have a well understood NR-SFG temporal behavior. On the cautionary side, however, 

nonresonant SFG temporal behavior can be more complex than is often assumed. Failure to 

account for the complexities of the NR-SFG temporal response may lead practitioners to 

erroneously assume their data is free of nonresonant contributions when it is not.
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Chapter 4: Nondestructive Testing With Nonlinear Optical 

Spectroscopy

4.1: Introduction

Failures in the oil field that occur while drilling or pumping can cost hundreds of thousands 

of dollars. Entire batches of manufactured products are thrown away because one sample in the 

batch failed a destructive test. Aircraft, bridges, rail systems, and ships suffer material failures 

regularly, which can lead to consequences as small as a PR problem over lost cabin pressure, or 

as large as the loss of hundreds of lives and millions of dollars of equipment. Mechanical failures

like these are a routine part of every industry. Nondestructive testing (NDT) methods, which can 

detect damage without harming the sample, have been developed to help predict and avoid these

costly mechanical failures. Nondestructive testing was a billion dollar a year industry in 2013 

and is projected to grow to nearly seven billion dollars a year by 2020.1,2

Five of the most common NDT methods are: radiography, magnetic particle inspection, dye 

penetrant testing, ultrasonic testing, and eddy current testing.3,4 Table 4.1 includes a brief 

overview of each method, including some of their limitations. One limitation shared by all of 

these methods is the inability to detect damage that has occurred without the formation of cracks. 

This is a major shortcoming because significant material damage can occur without the 

formation of cracks through processes such as aluminum sensitization, plastic deformation, and 

hydrogen embrittlement. Damage to composite materials and 3D printed metals is also difficult 

to detect with standard NDT technologies. We have found that second harmonic generation 

(SHG) is sensitive to plastic deformation in metals and sensitization in aluminum. There is also 
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Table 4.1. Brief description of common NDT methods and some of their limitations.

Method How it works Limitations

Radiography

X-rays, or other high energy 

radiation is used to image parts 

much like medical x-ray methods. 

Does not detect surface 

defects well.

Can be a health hazard.

Requires expensive 

equipment and facilities, 

and skilled technicians.

Magnetic Particle 

Inspection

Magnetic flux is generated in the 

tested item, which causes iron 

filings or other small magnetic 

materials to gather at surface 

defects

Only detects surface defects.

Restricted to ferromagnetic 

materials. 

Can miss defects.

Dye Penetrant 

Testing

A part is coated in a penetrant dye 

that is drawn into cracks by 

capillary action. Excess dye is 

removed ,and penetrant dye is then

drawn back out of cracks with 

chalk. The part is then visually 

inspected.

Only detects surface defects.

Surface must be clean and 

dry.

Cannot detect through 

coatings or oxidation.

Less sensitive.

Ultrasonic Testing

Much like medical ultrasound and 

military sonar, ultrasonic NDT 

methods detect sound waves that 

reflect off of defects in a part. 

No permanent record, 

depends entirely on operator 

skill.

Requires skilled technician.

Requires surface contact.

Surface must be clean and 
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smooth.

Doesn’t work with very thin 

materials.

Eddy Current 

Testing

An electric current is induced in a 

metal part and the resulting 

magnetic field is detected. Defects 

change the flow of the induced 

current and are identified by 

changes in the detected magnetic 

field.

Sensitive to many 

parameters.

Only detects defects at or 

near the surface.

Requires skilled technician. 
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reason to believe that SHG will be sensitive to hydrogen embrittlement, damage in composite 

materials, and manufacturing defects in 3D printed metals.

4.1.1 Brief Overview of SHG 

Optical SHG occurs when two photons of the same energy are combined in a material and 

then released as a single photon which has twice the energy of an excitation photon. This process

was first experimentally observed by Brown et al. in 1965,5 and has been used as an 

experimental tool for decades. SHG signal intensity has been shown to be sensitive to many 

different changes in the molecular and physical nature of a material. Some of these observations,

and a review of sum frequency generation (SHG is a special form of sum frequency generation)

are discussed in Chapter 1 of this text. SHG can be resonantly enhanced; however all of the work 

discussed in this chapter was done with nonresonant SHG.  

Figure 4.1 a shows a diagram of a simple SHG system with the three key components: a high 

peak power excitation source, a detector (often a PMT as shown here), and a way to separate the 

signal light from the remaining excitation beam. Figure 4.1 b is a diagram of the current SHG

instrument. In this instrument additional filtering of the green excitation light is accomplished 

with the use of a solar blind PMT and two dichroic mirrors which pass the remaining 532 nm 

excitation beam and reflect the 266 nm SHG signal. Separating the signal and excitation beams 

can also be done spatially with a counter-propagating beam geometry, or a prism in the 

collection line. In Figure 4.1 b the excitation beam has been focused onto the sample to increase 

the intensity at the point of interest on the sample.
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Figure 4.1. (a) Diagram of a simple SHG system. (b) Diagram of the current SHG system. In this system 

the UV signal is separated from the green excitation light with two dichroic mirrors, and several edge-

pass filters. 
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4.2: SHG Detection of Mechanical Deformation in Metals

4.2.1 Overview of Tensile Testing

In order to understand how a material will behave in service it is often necessary to 

understand how the material responds to tensile, compression, and multiaxial forces.6 Tensile

forces can be thought of as forces acting to pull the sample apart. For example, the rope in a tug 

of war experiences tensile forces. This chapter discusses stainless steel and aerospace grade 

aluminum samples that were subjected to tensile forces using a single arm, Instron 3345 material 

testing machine. 

During the test, the amount of force exerted on the sample is tracked as a function of how far 

the material gauge has been extended. To compare properties across sample types and shapes,

the load and extension can be converted into engineering stress and strain. Engineering stress is

defined as the load divided by the cross-sectional area of the sample. Engineering strain is 

defined as the extension divided by the initial length of the sample gauge.6 Because samples 

narrow and extend as they are deformed under tensile load, the cross-sectional area and gauge 

length of the sample change throughout deformation. This means that engineering stress and 

strain are actually an approximation based on the initial conditions of the sample. 

True stress and strain provide a more precise measurement than engineering stress and strain.

True stress is defined as the load at a given point in time divided by the instantaneous cross-

sectional area of the sample at that time.  True strain is defined as the extension at a given point 

in time divided by the instantaneous gauge length of the sample at that time. True stress and stain 

can be difficult to measure accurately and are not reported as often as engineering stress and 
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strain. If the type of stress or strain measured is not specified it can generally be assumed to be 

engineering.

Many of the samples discussed in this chapter have a beveled waist rather than a gauge,

which makes strain difficult to quantify. For this reason, tensile deformation data will be left in 

the raw load and extension form rather than the more common stress and strain. This does not

present a problem in comparing samples, as they were precision machined to be the same, and 

thus should experience the same stress and strain at any given load and extension. 

Material deformation can be either elastic or plastic in nature. Elastic deformation occurs 

when a material is stretched then relaxes back into the previous state when the load is released.

Plastic deformation, on the other hand, permanently changes the material so that after the load is 

removed it does not completely return to the original state.6

Loading may cause elastic deformation in the majority of a material, while causing plastic 

deformation in a small region. This can be caused by the shape of the sample or the presence of 

defects, both of which can increase local stress. Repeated plastic deformation in these high stress 

areas leads to material fatigue and failure. Defects at surfaces can be particularly important, 

which is why the surface roughness often affects the fatigue properties of a material.7

Important material properties can be determined by examining a graph of the stress vs strain,

or load vs. extension. An example of a load vs. extension graph for one of our 2024 Al samples 

is shown in Figure 4.2. The load in Newtons is graphed on the y axis, and the extension in mm is 

graphed on the x axis. The graph is linear initially and then begins to curve at roughly 1000 N. 

The linear region, inside the orange shading, is where the material is being elastically deformed. 

At around 1000 N the sample begins to be plastically deformed. The point where the type of 
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Figure 4.2. Representative load vs extension curve for a 2024 aluminum sample. 
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deformation transitions from elastic to plastic is called the yield point. The slope of the straight 

line in the elastic deformation region can be used to calculate the modulus of elasticity, also 

called Young’s modulus, which is a measure of the stiffness of a material. A steeper slope, and 

larger modulus of elasticity, corresponds to a stiffer material. The point where the load drops off 

sharply is the material breaking point, and the highest load value on the load vs extension curve 

is at the ultimate stress, or in this case ultimate load, point. 

4.2.2 Stainless Steel

Our use of SHG for nondestructive testing began with SFG and the plastic deformation of

stainless steel. It was well known that metals tended to generate a strong nonresonant SFG 

signal, and that metal grains were physically changed when a polycrystalline metal experienced 

plastic deformation. Putting the two together, it was decided to investigate if the changes caused 

by plastic deformation would change the intensity of nonresonant SFG signal produced from a

stainless steel surface. For this project the precision machining lab at BYU made stainless steel

dogbones, as seen in Figure 4.3. These stainless steel samples were placed in an Instron 3345

single arm material testing machine and pulled to a tensile load of 2000 N, well into the plastic 

deformation region.

SFG scans were taken of the sample before and after loading. These scans were then 

averaged at each point on the x axis to create a composite response, which is shown in Figure 

4.4. The blue trace is from the unpulled sample, and the red trace is from the stainless steel 

sample after it had been plastically deformed. The shape of the blue trace comes from the 

intensity profile of the IR excitation beam and does not contain chemical information about the 

sample. As can be seen from Figure 4.4, the intensity of the nonresonant SFG signal does contain 
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Figure 4.3. Technical drawing for stainless steel samples
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Figure 4.4. Nonresonant SFG response from a stainless steel sample before (blue), and after (red) the 

sample was plastically deformed with an Instron material testing machine. Each data point of this graph is 

the average of the corresponding value from spectra taken at three different spots on the sample.
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information about the sample. In particular, the detected SFG signal produced by the stainless 

steel clearly decreased after the sample had been mechanically deformed. 

Drs. Eric Homer and David Fullwood, faculty members in the Department of Mechanical 

Engineering at Brigham Young University, were consulted in an effort to better understand the 

material behavior that caused the observed change in nonresonant SFG signal intensity. They 

proposed that changes in the density of lattice dislocations at the surface of the steel, caused by 

the mechanical deformation, were most likely responsible for the change in SFG signal intensity.

Give that lattice dislocations, defects, and strain (discussed in section 1.3.6) are known to 

influence the strength of nonresonant SFG/SHG signal, this seems likely. We are currently 

working with Dr. Fullwood’s research group to experimentally investigate this explanation by 

comparing SHG and electron backscatter difraction.

4.2.3: 2024 Aluminum

After learning that the ability to nondestructively detect plastic deformation in metals may be 

of use to the aerospace industry, we shifted our focus away from stainless steel and onto 2024 

aluminum, which is commonly used in aircraft. We also switched from nonresonant SFG to 

nonresonant SHG, which is much cheaper to produce, and should have a similar response to 

material changes. In addition to being less expensive, SHG testing can also be done through 

optical fibers, which would allow a probe to test the inside of pipes and turbines as well as other 

hard-to-reach areas. 

Our first SHG work was conducted using a modified version of the SHG instrument built by 

Anthony Peterson as part of his Masters research project. This instrument was powered by the 

532 nm output option from a Continuum Infinity YAG. In transitioning from stainless steel to 
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2024 aluminum, we also made the sample shape shorter, so that they would fit more easily in the 

SHG instrument, and adopted a beveled middle section, so that the part of the sample most 

affected by loading could be easily identified and scanned. A technical drawing for these 

samples is shown in Figure 4.5.

A significant problem initially was the inability to get detectable SHG signal without burning 

the aluminum samples. Burning the sample like this changed the SHG signal level over time, as

is shown in Figure 4.6. Undergraduate researchers Dustin Broderick and Alex Farnsworth 

overcame this challenge by translating the sample mount during data acquisition, so that each 

pulse from the laser hit a new and unburned spot on the sample. Figure 4.7 a shows what one of 

these samples looked like after mechanical deformation and SHG interrogation. The marks at the 

end of the sample were made by the Instron clamps during mechanical deformation; the lines 

down the middle were made by the laser as part of the SHG scanning process. A close up of one 

of these lines is shown in Figure 4.7 b, where the burn marks from individual laser pulses can be 

seen.

The SHG data came as a time vs intensity trace and was processed for easier analysis by a 

program written by Dustin Broderick. The program set the data baseline to zero and then 

performed a simple integration by summing the intensity level of all the data points. After 

finding the integrated signal intensity at each sample spot, the program averaged all of the spots 

and outputted an average signal intensity for the scanned sample. Figure 4.7 c is an example of 

the data they were able to acquire using this method. The data at points 1 and 2 on the x axis 

correlate to two different sides of the same sample, the data at points 3 and 4 on the x axis are 

two sides of a second sample. This suggested that mechanical deformation in aluminum could be 

detected with nonlinear spectroscopy. Interestingly, however, only one side of each sample saw 
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Figure 4.5. Technical drawing for the 2024 aluminum samples. 
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Figure 4.6. SHG signal intensity for 300 successive shots in the same sample spot. Reported data is the 

average of data taken from three different sample spots.  
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Figure 4.7. (a) Representative 2024 aluminum sample that has been burned by the Infinity laser during 

scanning. (b) Close of the burned spots on the sample shown in (a). (c) SHG signal intensity from 2024 

aluminum samples before (blue) and after (red) mechanical deformation. The data at points one and two 

on the x axis are from two different sides of the same sample. The data at points three and four are from 

different sides of a second sample. 
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the signal level go down after deformation, like the stainless steel had. On the other side of both 

samples, the signal intensity went up. Although the error bars for the signal increases after 

deformation were too large for this to be a conclusive result, it strongly suggested that this was 

worth looking into more.

Translating the sample during scanning moved the project forward, but it had a few 

shortcomings. First, burning a sample while scanning isn’t a nondestructive test. Second, in order 

to get enough data points the sample had to be scanned outside of the narrow waist section,

where the mechanical deformation was expected to be most significant. The next step then was 

to take data without burning the sample so that analysis could be done nondestructively and in 

the region most affected by the mechanical deformation.

The primary obstacle to this goal was the beam profile from the YAG, which had several hot 

spots. An excitation beam intensity that was high enough to generate good SHG signal levels 

was also high enough for the hot spots in the beam to burn the sample. This problem was 

overcome with the excitation beam modification shown in Figure 4.8. Rather than removing the 

hot spots from the beam, the beam was expanded, and an iris was used to block everything but 

one hot spot. After the iris, the remaining excitation beam was focused onto the sample. Because 

we were now only dealing with one hot spot, the excitation beam intensity could be tuned to a 

level that allowed good SHG signal to be generated by the remaining beam, without any other 

beam components interacting with, and burning, the sample. 

This modification allowed the data shown in Figure 4.9 to be taken without burning the 

samples. Unlike the data shown in Figure 4.7, these samples were only scanned on one side. The 

side with the best reflective surface, as determined by visual inspection, was chosen for SHG 
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Figure 4.8. Diagram of the method used to shape the excitation beam so that SHG data could be taken 

without burning the sample. 
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Figure 4.9. Load vs. extension curve for 2024 aluminum samples overlain with SHG data. The load vs 

extension curve is shown in red, with the extension on the x axis, and the load at that extension shown on 

the left y axis. The SHG data is shown with the blue squares with the maximum distance the sample 

scanned was pulled to on the x axis, and the change in the intensity of the SHG signal it produced before 

and after deformation shown on the y axis at the right. 
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scans. For easier analysis, the SHG data in Figure 4.9 is plotted along with a representative load 

vs. extension plot (discussed in section 4.2.1) from a 2024 aluminum sample. The extension to 

which the sample was pulled is plotted on the x axis with the corresponding load on the left y 

axis. For the SHG data, the x axis is the maximum extension to which the scanned sample was 

pulled, and the right y axis is the change in the SHG signal level caused by the sample 

deformation.

The data in Figure 4.9 argue strongly for the potential of SHG as a nondestructive testing 

technology. Plans were made to repeat and expand upon this work, however, the excitation beam 

power became so unstable that it was difficult to compare SHG data taken before and after the 

sample was mechanically deformed. A grant was received to purchase a Minilite II YAG laser 

from Continuum as a new excitation source, and work is currently underway to reproduce and 

expand on the results discussed in this section. 

4.3: SHG Detection of Aluminum Sensitization

4.3.1: Overview of Aluminum Sensitization

Aluminum, like most metals, is composed of many small, randomly oriented crystals stuck 

together. The small crystal pieces are called grains, and the area in between crystals is called the 

grain boundary. With time and heat, Mg atoms in some Al alloys move through the crystal 

structure and accumulate at the grain boundaries. The high concentration of Mg at the boundaries 

causes a new structure, called -phase aluminum, to form at the interface between the grains. 

The more -phase Al that has formed, the more sensitized the material has become.
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Sensitization can occur in the aluminum used to make superstructures in modern warships,8

where it can weaken the material and lead to damage like that shown in Figure 4.10. Repairing 

the damage caused by sensitization costs the U.S. Navy over $66 million dollars a year.9 This

damage is usually repaired by cutting out the affected area and welding in new material.10 Not

only is this expensive, but the heat from the cutting and welding process can accelerate the 

sensitization and failure of the surrounding aluminum.  

The formation of -phase aluminum in grain boundaries is shown in Figure 4.11. These 

images were obtained using optical metallography by Kramer et al. 10 Figure 4.11 panel a shows

a naval grade aluminum sample before it has been heated to encourage the formation of beta 

phase aluminum. Panel b shows the same sample after it has been heated for 24 hours at 150 C.

After heat treatment, the intergranular -phase aluminum can be seen as dark lines in the sample.

The formation of -phase aluminum makes the material more susceptible to intergranular 

corrosion, which can significantly weaken the metal.10,11 A common method for measuring the 

amount of -phase aluminum in a sample is to remove a portion and soak it in nitric acid. The 

amount of sensitization is quantified by the amount of mass lost after the nitric acid treatment. 

It is possible to reverse aluminum sensitization, and return the affected material to its original 

characteristics. In 2011 a portable system was developed that would allow structures to be 

repaired in place.10 Despite this technology, sensitization is still a costly problem for the Navy, in 

part because the sensitized areas can’t be identified without destructive testing or visible signs of

damage. To overcome this problem, several attempts have been made to develop a 

nondestructive technology that the navy could use to detect sensitization,12 but so far nothing 

commercially feasible has been developed.
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Figure 4.10. Examples of damage caused by aluminum sensitization. From reference 10.
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Figure 4.11. 5456 aluminum before (a), and after (b) sanitization. The sample was kept at 150 C for 24 h 

to develop the -phase aluminum seen in the grain boundaries of (b). From reference 10. 
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4.3.2: SHG Detection of Aluminum Sensitization

A collaboration with Dr. Ronald Holtz at the Naval Research laboratory was established to 

investigate the sensitivity of SHG to aluminum sensitization. Dr. Holz initially provided us with 

three naval grade aluminum samples that we scanned with the Infinity powered SHG instrument. 

These data were taken using the sample translation method developed by Dustin Broderick and 

Alex Farnsworth. Data analysis was done using the program Dustin wrote for that purpose. Both

the translational method and program are discussed in Section 4.2.3. The results of these scans 

are shown in Figure 4.12. The sample labeled “Sensitized” had been heat treated to increase the 

amount of intergranular -phase aluminum, the sample labeled “Annealed” had been treated in a 

solution to remove -phase aluminum, and the sample labeled “As Received” was untreated by 

Dr. Holtz.

These results were very encouraging, and when we developed the ability to scan samples 

without burning Dr Holtz sent us another set of samples. None of these samples had been treated 

to remove -phase aluminum; instead three samples had been heated for different amounts of 

time, with the amount of -phase aluminum increasing as the duration of heating increased. The 

sample treated for 12 days is sensitized to the point where it would be expected to fail in a 

warship; the sample heated for 6 days is not. As with the last set, one sample was kept as a 

control, and left untreated. The SHG data from these samples is shown in Figure 4.13, where the 

x axis shows the number of days the sample was treated, and the y axis shows the SHG signal 

strength, as processed by the analysis program. Although the error bars are larger on this data set, 

there is a clear difference in the SHG signal strength from the sample heated for 6 days, which is 

still structurally sound, and the sample heated for 12 days which is likely to fail. 
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Figure 4.12. SHG signal intensity from naval grade aluminum samples that have been treated to remove 

-phase aluminum (Annealed), increase -phase aluminum (Sensitized), and left untreated (As 

Received).

SSSS Sensitized                                    As Recived                                  Annealed 



119 
 

Figure 4.13. SHG intensity from naval grade aluminum samples. Samples with more days of heat 

treatment have higher levels of sensitization. The sample treated for twelve days has been sensitized to 

point that it would be expected to fail on a ship. The preceding sample, with six days of heat treatment has 

not been sensitized enough to fail on a ship. 
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Based on the strength of this work, we received funding and two new sets of sensitized 

aluminum samples from the Carderock Division of the Office of Naval Research (ONR). The 

first set of 4 samples, labeled HVH, had a recrystallized microstructure. The second set of 4 

samples, labeled HVG, were from the same lot but had not been recrystallized. The HVH 

samples were cut from sections of material that had been measured by ONR to have a mass loss

of 1.9, 28.0, 44.2, and 50.3 mg/cm2. The HVG had come from material that the ONR measured

to have a mass loss of 4.2, 24.5, 38.1 and 40.6 mg/cm2. The HVH sample stock with a 1.9

mg/cm2 mass loss and the HVG sample with a 4.2 mg/cm2 mass loss both came from untreated, 

as-received material.

These samples were scanned with the SHG instrument powered by the Minilite II YAG laser. 

A new analysis program, which allowed for more flexibility in data analysis, was created by the 

undergraduate researcher Scott Smith. Using this analysis program, it was found that the SHG 

signal intensity often changed over time, even if the sample was not visibly burned. Because of 

this, and to account for potential variation from spot to spot on a single sample, data were 

collected from five different locations on each sample. To change the sample spot that was

scanned, the sample was moved 2.5mm vertically with an electronically controlled stage. 

Selected data from these samples are shown in Figure 4.14 where graph a is from the HVH 

samples, and graph b is from the HVG samples. Each data point is an average of the SHG 

intensity from the first laser shot at each of the five sample points scanned. The SHG data from 

these samples look similar to each other, but quite different from that obtained from the samples 

prepared by Dr. Holtz. It is especially notable that the SHG signal level goes down with 

increasing sensitization until going up at the most sensitized sample. 
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Figure 4.14. (a) SHG response from HVH naval grade aluminum samples and (b) HVG naval grade 

aluminum samples. The x axis shows the level of sensitization, as measured by mass loss. The y axis is 

the average of one laser shot from five different locations on each sample, and is reported in arbitrary 

units. 
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Work done by Pedersen et al.13 and shown in Figure 4.15 offers a potential explanation for 

why the samples from ONR behaved differently than the samples from Dr. Holtz. Pederson et 

al.13 scanned an extruded aluminum sample at multiple azimuthal angles before and after 

annealing it. Graph a in Figure 4.15 is from before the sample was annealed, and graph b is after 

annealing. The SHG intensity from the sample went down at almost every tested angle after the 

sample had been annealed. One of the explanations given for the reduction of SHG signal 

intensity after annealing was a reduction in the number of dislocations at the sample surface. It is 

possible that the amount of dislocations at the surface of the ONR samples was reduced during 

heat treatment. This would have reduced the overall SHG signal intensity and masked an 

increase in SHG signal intensity caused by sensitization. For future work, I would strongly 

suggest using the sensitization methods of Dr. Holtz, and/or investigating how differences in the 

sensitization process can affect the SHG signal. Differences in the sample surface finish, surface 

contaminants, and sample orientation may also have played a role in the unexpected signal 

decrease. However, the fact that both sample sets exhibit the same trend suggests that the heat 

treatment method is most likely the cause of the unexpected, initial signal drop. 

4.4: Suggested Next Steps

This section is composed of materials and processes that appear to have a high demand for 

better nondestructive testing methods and technologies. The bulk of these subjects have come to 

my attention through conferences and personal interactions and as such are not easy for me to 

reference with literature.
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Figure 4.15. Intensity of P-polarized SHG from an extruded aluminum sample at different azimuthal 

orientations. (a) is before and (b) is after annealing. From reference 13.
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4.4.1: Suggested Materials and Processes for SHG Based NDT Detection

4.4.1.1: Hydrogen Embrittlement 

Hydrogen embrittlement affects almost all metals and alloys and often leads to sudden 

material failure.14,15 The rising importance of hydrogen as a fuel source, and the increased use of 

high strength lightweight alloys, are making the prevention and detection of hydrogen 

embrittlement increasingly important.15,16 The nondestructive testing methods for hydrogen 

embrittlement that I have found are based on high energy systems such as XRD and gamma 

radiation emision.17 These methods tend to be expensive, both in terms of equipment and the fact 

that companies are legally required to pay technicians a hazard bonus when working with high 

energy radiation in the field. Hydrogen related damage can come in several forms; however, they 

all involve a chemical or phase change in the material.14 Our work with aluminum sensitization 

suggests that SHG may be a good candidate to solve this problem.

4.4.1.2: Plastic Deformation in Structural Steels

Years ago, Dr. Patterson and I met with a professor from BYU’s Department of Civil 

Engineering. He expressed an interest in SHG based NDT, primarily as a way to evaluate 

buildings and bridges after a major event such as an earthquake. The impact of this project may 

not be huge, but it is very closely related to the aerospace grade aluminum project and should be 

relatively easy to do. Especially since early work with stainless steel suggests that SHG detection 

of plastic deformation is not limited to aluminum. 
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4.4.1.3: Fatigue in 2024 Aluminum

Most NDT technologies are designed to detect a crack, which generally means they are 

designed to detect fatigue. Despite a range of methods, including some like laser shearography 

that claim to be able to detect sub-micron sized surface defects, better fatigue detection still 

seems to generate quite a bit of interest and research money. Given that SHG is known to 

respond to lattice strain and defects (see section 1.3.4 and 1.3.5) which precede the formation of 

the cracks most methods are looking for, our method should provide unrivaled early detection of 

metal fatigue.  

4.4.1.4: Impact Damage and Delamination in Composites

Because of their outstanding strength to weight ratio, composite materials are an important 

structural material, with common applications including aircraft and wind mills. One of the 

weaknesses of composite materials is that they are particularly susceptible to impact damage, 

which is often found below the surface and is difficult to detect.18,19 Several forms of material 

damage may occur in composite materials as a result of an impact, including delamination and 

cracking in the matrix.18,19 When delamination or matrix cracking occurs, new matrix/gas 

interfaces are created. These interfaces may generate nonresonant SHG signal, allowing our 

system to detect the damage. The interfaces formed by impact may not be perfectly parallel to 

the material surface, and signal generated at these can be expected to follow a reflection and 

transmission path that is somewhat different from that of the excitation beam. Imaging sub-

surface may also be challenging, although at least some of the damage should be near the 

surface. 



126 
 

Ultrasound and thermal flow are methods for nondestructively testing composite materials. 

Both can detect cracks in the material, but have resolution issues that SHG may be able to 

overcome. Delamination of matrix planes, as well as delamination between the matrix and fibers, 

is also difficult to detect with ultrasound and thermal flow. Additionally, ultrasound can’t be 

used with thin parts, and temperature sensitive parts cannot be tested with thermal flow methods. 

4.4.1.5: Irradiated Materials

A significant problem in using and storing radioactive materials is the damage caused to the 

containers and equipment used. I have contacted Dr. James Smith, who works with irradiated 

materials at Idaho National Laboratory, and he has expressed interest in working with us to test 

the use of SHG to detect radiation damage. We aren’t equipped to handle irradiated materials, so 

we would need to send someone to INL to work on this project.

4.4.1.6: 3D Printed Metals

The field of metamaterials, developed with 3D printing technology, is poised to explode. A 

particularly exciting growth area is the development of 3D printed metals. These are often 

formed by spatially overlapping two laser beams in a metal powder. Printed metal parts can have 

a much higher strength to weight ratio than traditional metals and alloys. Because they use less 

material printed metal, parts can also be more cost effective. For example Boeing is expecting to 

reduce the cost of building new 787 Dreamliner aircraft by incorporating 3D printed titanium 

parts.20 Defects in the material formed during the printing process significantly reduce the 

strength and reliability of 3D printed metals. It may be possible to follow one of the laser beams 

used to form a 3D metal part with an SHG interrogation beam, providing real time analysis of the 
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part as it is formed. Not only would this certify the part as sound, but it may also be possible to 

detect and remediate defects before the rest of the part is formed.

4.4.2: Potential Instrument Modifications

An apertureless scanning near-field optical microscope (ASNOM) offers insight into how an 

SHG based NDT system could be enhanced. An ASNOM, schematic shown in Figure 4.16, takes 

advantage of the SHG signal enhancement derived from a nearby electrical charge to get much 

better resolution than a standard SHG microscope.21 The ASNOM achieves this high degree of 

resolution by using a small probe, often a silver coated fiber, to create an electrical charge near 

the subject’s surface. The strong localized electric field enhances the SHG signal for the affected 

area and can allow for a resolution of ten nanometers or less. 

The signal enhancing properties of a nearby charge may also be useful in nondestructive 

testing with SHG. In addition to enhancing the signal level, disruptions such as cracks in the 

material may dampen the current in the material responding to the charge, and would thus be 

expected to reduce the charge enhancement. This may allow SHG to also function as a very 

sensitive eddy flow instrument, allowing its results to be directly correlated with existing 

nondestructive testing techniques.

If an SHG instrument is designed for a specific metal, then using an excitation 

wavelength that couples into a surface plasmon should provide a large increase in signal 

intensity. Since the ability of SHG signal to couple with plasmons is thought to be influenced by 

surface defects, using an excitation wavelength that couples into a plasmon may also increase the 

SHG sensitivity to physical changes in a material. Comparing changes in plasmon enhanced 

SHG to changes in unenhanced SHG, and/or charge enhanced SHG, may also help determine if 
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Figure 4.16. Schematic of an apertureless SHG microscope which uses an electrically charged probe to 

enhance sensitivity. From reference 21.



129 

those changes are related to chemical or physical material changes. See section 1.3.5 for more 

information about surface plasmon SHG enhancement.

4. : Conclusion

Because it saves lives and a great deal of money nondestructive testing is a vital and fast 

growing industry. Although a great deal of progress has been made in the development of

nondestructive technologies, many important forms of material damage cannot be detected with 

commercially available equipment. There is also a great deal of interest in developing methods 

for earlier and more reliable detection of fatigue.

SHG has shown the potential to fill these needs. Because SHG is sensitive to changes in the

metal lattice, it can detect plastic deformation in a metal, which causes changes in the metal 

lattice and cannot be detected with current NDT technology. Fatigue related failure also starts

with material changes at the lattice level, and the ability of SHG to sense these changes may

allow it to detect fatigue well before cracks form and the damage becomes visible to current 

NDT methods.  

The inability to detect hydrogen embrittlement in metals and insensitivity to damage in

composites are two of the biggest shortcomings of current NDT technologies. SHG has shown 

sensitivity to chemical changes such as the formation of rust on iron22 and sensitization in naval 

grade aluminum. These sensitivities suggest that SHG is a very strong candidate for the detection

of hydrogen embrittlement. VSFG work done with polymers and adhesives suggest that SHG 

may also be sensitive to damage in composite materials.

In addition to sensitivity for many forms of damage that are undetectable to current NDT,

SHG evaluation can be done remotely, through coatings like paint,22 and in hard-to-reach places
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via fiber optics. The potential portability and relative affordability of SHG based NDT is also

attractive, as is the fact that SHG based NDT will not give a false negative. If SHG says a

material surface is unchanged, the material surface is unchanged.

A downside to SHG based NDT is the potential for false positives. Because SHG is sensitive 

to many different forms of material change, it may respond to a benign alteration. Careful

calibration of the SHG response to the changes a particular material can undergo will help

technicians determine what material changes are most likely to have caused a change in the SHG

response. It is likely that unenhanced, surface plasmon enhanced, and charge enhanced SHG 

signal will respond differently to some types of material changes. Comparing these responses 

may also help determine what material changes are responsible for a change in SHG signal 

intensity.
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Chapter 5: Nonresonant-Independent VSFG Analysis of 

Cold-Drawn High Density Polyethylene

5.1: Chapter Introduction

With roughly 300 million tons of plastic produced in a year1, polymers are a major part of 

our lives. Polymers also play a significant role in composite materials and adhesives, both of 

which are growing in importance. Because of their immense impact and potential, polymers have 

been studied for decades. The molecular level behavior of polymer surfaces, however, is a 

noticeable hole in our current understanding. Since many properties, such as adhesion and

adsorption, are influenced by the material surface this is a significant deficit. 

Vibrational spectroscopy can be a powerful tool in developing a molecular level 

understanding of a system or material. Surface specific vibrational information can be difficult to 

obtain, however. In fact, Dr. Yuen-Ron Shen, speaking about sum frequency spectroscopy (SFS),

states that “SFS applications to water and polymer surfaces, for example, have produced the only 

vibrational spectra available for such surfaces”.2 VSFG experiments with polymers however,

have generally been limited to thin films, leaving a wide range of materials and processes 

uninvestigated. The work in this chapter was conducted with extruded polymers, and represents 

an effort to expand the reach of VSFG spectroscopy to a wider range of polymer-based samples 

and behaviors.

The bulk of this chapter comes from the first revision of a paper submitted to 

Macromolecules as “Orientation of the Polymer Backbone and Methylene Groups at the Surface 
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of Mechanically Deformed HDPE”. The manuscript has been formatted to align with the style of 

this text, with figures and references from the submitted paper integrated into the rest of the 

chapter. Section 5.2.6 of this chapter does not appear in the submitted paper. Section 5.2.6.1 was 

considered too technically involved with the spectroscopy for the intended audience, and section 

5.2.6.2 does not yet have enough data to justify publication.  

5.2: Macromolecules Paper

Orientation of the Polymer Backbone and Methylene Groups at 

the Surface of Mechanically Deformed HDPE as Revealed by 

Nonlinear Vibrational Spectroscopy

Shawn C. Averett, Steven K. Stanley†, Joshua J. Hanson‡, Stacey J. Smith, James E. 

Patterson*

Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602

KEYWORDS. Mechanical deformation, vibrational sum-frequency generation (VSFG), 

stress-induced alignment, surface structure. 

ABSTRACT. High-density polyethylene (HDPE) has been extensively studied, both as a 

model for semicrystalline polymers and because of its own importance. During cold drawing, 

crystalline regions of HDPE are known to break up and align with the direction of force, 

however the effect of mechanical deformation on the molecular structure of the surface has not 

previously been explored. Vibrational sum-frequency generation (VSFG) spectroscopy was used 
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to investigate changes in the molecular-level structure of the surface after cold drawing. X-ray 

diffraction (XRD) was used to confirm that the observed surface behavior corresponds to the 

expected bulk response. Prior to tensile loading, there is significant isotropy in the surface 

structure and tilt of the methylene groups away from the surface normal. After deformation, 

hydrocarbon chains at the surface of visibly necked HDPE are aligned with the direction of 

loading, while the associated methylene groups are oriented with the local C2v symmetry axis 

roughly parallel to the surface normal. Small amounts of unaltered material are also found at the 

surface of necked HDPE, with the relative amount of unchanged material decreasing as the 

amount of deformation increases. Aspects of the nonresonant SFG response in the transition zone 

between necked and undeformed polymer may give additional insight into the deformation 

process.

5.2.1: Introduction

Because of their strength, relatively low cost, and wide range of physical properties, 

polymers have become integral to our daily lives. For example, the global demand for 

polyethylene (PE) alone is expected to reach nearly 100 million metric tons by 2018.3

Semicrystalline polymers in particular have found use in a wide range of applications, from food 

packaging to artificial joints. This is because differences in processing conditions and additives 

can lead to very different physical and mechanical properties of these materials. For example, 

plastic shopping bags and industrial water pipes are made from the same polymer, but clearly 

have different characteristics. The properties of these materials can also change with mechanical, 

thermal and other stresses, which can be an asset or a problem depending on how well the 

changes can be understood and predicted. For these reasons, semicrystalline polymers have been 
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studied for decades, with high-density polyethylene (HDPE) often used as a model system for 

this class of materials. Design of next-generation materials will require a better understanding of 

how semicrystalline polymers respond to processing conditions, as well as how they change in 

response to mechanical stress and other environmental conditions.  

Not only are the bulk properties of polymers affected by processing and environmental 

conditions, but the surface structure of a semicrystalline polymer also changes in response to 

these same conditions. The surface properties of a material control such phenomena as adhesion, 

adsorption, and reactivity. For example, it is the surface of a polymer component of a medical 

implant that will interact with the immune system of the patient. Thus it is critical that a 

molecular-level understanding of the surface, and how it responds to external stresses, be 

developed. Unfortunately, despite the considerable amount of work that has been done on HDPE, 

a detailed molecular understanding of how the surface of this material responds to mechanical 

deformation is still lacking. 

Development of this understanding requires the use of spectroscopic tools that can give 

detailed, molecular insight into the structure of the surface, independent of the bulk structure of

the material. In this study, we utilize vibrational sum-frequency generation (VSFG) 

spectroscopy, a surface sensitive technique, to interrogate the surface structure of HDPE before

and after mechanical deformation. This study demonstrates the usefulness of this nonlinear 

optical technique for probing the surface structure of industrially relevant polymers and how that 

structure may change in response to external stresses and environmental conditions.

5.2.2: HDPE Morphology

The morphology and behavior of polyethylene (PE) has been discussed extensively,4-12

therefore only a brief summary of the most relevant points is provided here. Polyethylene 



136

consists of long hydrocarbon chains that weakly interact with each other to form ordered regions 

in an otherwise randomly ordered material. Under the right conditions, sections of polymer 

chains align with each other to form plates called lamellae. A single polymer chain can fold back 

on itself repeatedly within a single lamella, or it can leave one lamella to become part of the 

amorphous region and then become part of another lamella. The ability to form lamellae is 

strongly influenced by branching in the polymer chains; the fewer branches that exist on the 

average PE chain, the easier it is for lamellae to form. High-density polyethylene (HDPE) chains 

are relatively unbranched, thus lamellae form quite easily in this material. Larger scale structures 

can also be formed as multiple lamellae interact with each other. For example, lamellae can stack 

on top of each other, and these stacks can then arrange in a three-dimensional structure known as 

a spherulite, In a spherulite the stacked lamellae radiate out from a central point, somewhat like 

the spines on a sea urchin. Gaps between the lamellae and their stacks are filled with amorphous 

polymer. 

It is because of these ordered regions in the midst of amorphous, unordered material, that 

HDPE is classed as a semicrystalline polymer. The degree of crystallinity in a HDPE sample 

affects its material properties, with an increase of crystallinity leading to an increase in tensile 

strength, a reduction in conductivity, and an increase in optical opacity. Changes in the degree of 

crystallinity can be brought about during the material processing or later in the lifetime of the 

sample due to prevailing or changing conditions and stresses. For example, cooling time and 

flow-induced shear stresses during processing have a significant impact on the degree of 

crystallinity. Heating to temperatures near the glass transition temperature as well as mechanical 

loading can also change the degree of crystallinity in a given sample. For components that are 

exposed to a variety of environmental conditions, but where material properties need to be stable, 
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it is therefore important to be able to monitor these characteristics throughout the life cycle of 

that component. Without such monitoring, it can be difficult to be certain that the material 

properties have not changed in ways that may compromise performance.

Under sufficient tensile loading, deformation of the polymer sample can cause the material to

neck, which is identified by a significant localized thinning of the material. Necking causes a

reduction in the overall tensile strength of the material; however, the hardness is increased.13

Changes in roughness and surface mechanical properties due to tensile loading have also been

investigated.14 These macroscopic material properties are caused by changes in the mesoscale

and molecular-level structure of the polymer. In the necking region, cavities are often formed 

that change the appearance of the polymer from semi-translucent to an opaque white.15 In

addition, lamellae are torn away from each other and broken into smaller pieces. Amorphous 

polymer chains are also pulled into alignment with the direction of stress, and the remaining 

lamellae fragments are strung along these aligned chains in structures known as shish-kebabs.16

In addition to changes in bulk properties, these structural changes will also manifest at the

surface of the material, and the use of surface sensitive spectroscopy, such as VSFG, can

improve our understanding of these dynamic processes in response to mechanical stress and

other perturbations.

5.2.3: Use of VSFG for Analysis of Surface Structure

VSFG has become a well-established technique for the structural analysis of surfaces of 

various kinds.17 A few aspects of VSFG and its application to polymer surfaces merit some 

attention here. Due to the selection rules of this nonlinear optical technique, VSFG signal can 

only be produced in regions of a material that lack inversion symmetry (within the dipole 

approximation). At first glance, the selection rules for VSFG are potentially satisfied at three



138

locations: within crystalline domains, at the free surface, and at the interfaces between crystalline 

and amorphous regions. Each of these possibilities will be considered in turn for their possible 

VSFG activity.

At first glance, the generally ordered nature of the polymer chains in a crystalline region 

could cause us to expect VSFG signal to be produced from crystalline regions throughout the 

sample, particularly from the necked region where stress-induced realignment has taken place.

The crystalline regions of HDPE, however, have unit cells in the orthorhombic Pnma space 

group.18 This space group is centrosymmetric, thus no VSFG signal can be generated from 

within crystalline regions of HDPE. 

Outside these crystalline regions, it must be noted that well-ordered, all-trans hydrocarbon 

chains possess local inversion symmetry of the methylene groups, as illustrated in Figure 5.1. So 

long as methylene group a is in a similar environment to methylene group b, inversion symmetry 

exists along the polymer chain and no VSFG signal will be produced. Such is the case in the bulk 

of both crystalline and amorphous regions. At the surface, however, the two types of methylene 

groups, a and b, are in different environments; group a is exposed to the air and group b is not. 

This difference of environment breaks the local inversion symmetry and allows signal to be 

produced at the surface of the material, even from well-ordered chains and crystalline regions.

In principle, VSFG signal could also be generated throughout the bulk at the interfaces of 

crystalline and amorphous regions. There are two reasons, however, why this is unlikely in our 

measurements. First, when such interfaces are present within bulk polyethylene, there is not a
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Figure 5.1. Representative section of an HDPE chain illustrating the inversion symmetry between 

adjacent carbon atoms a and b. This symmetry forbids VSFG signal from being produced in the bulk of a 

crystallite, or the ordered bulk of necked HDPE. This symmetry is broken at the surface, however.
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significant discontinuity of material properties, optical index of refraction, and dielectric 

properties, across these boundaries. When VSFG is used to probe buried interfaces, there is 

typically a significant difference in one or more of these properties across the interface, as seen 

with solid-liquid or polymer-glass boundaries. That is not the case here, which suggests that any 

signal generated from amorphous/crystalline interfaces within the bulk HDPE would be 

significantly weaker than the signal from the free surface. In addition, the reflection geometry of 

our spectrometer, makes it unlikely that the measured response would be dominated by such

signals, because the relevant buried interfaces would need to be oriented parallel to the free

surface in order for the signal to reach the detector. Given the relatively low probability of this

alignment, it seems unlikely that the measured VSFG signal would be dominated by signal from 

such buried interfaces. Given these considerations, the measured signal in our experiments does 

not come primarily from crystalline/amorphous interfaces throughout the bulk of the polymer, 

but rather predominately from the free surface of the HDPE sample.

Figure 5.2 shows a representative VSFG spectrum from an unperturbed HDPE sample. 

Clearly, there are two strong peaks in the spectrum. Before proceeding, the mode assignments of 

the methylene stretch modes in VSFG spectra merit some discussion. In detailed polarization 

studies by Lu, et al.19 on a series of neat liquid diols, it was found that the symmetric methylene 

stretch occurred around 2850–2870 cm–1 and the antisymmetric stretch occurred around 2900–

2910 cm–1. Fermi resonances between the symmetric stretch and the bend were observed 

between 2920 and 2950 cm–1. Based on these assignments, which are admittedly from a different 

physical system than our HDPE samples, an initial assignment would be to designate the 2863 

cm–1 peak as the symmetric methylene stretch and the 2933 cm–1 peak as a Fermi resonance. For 

reasons that will become clear in the Results and Discussion, however, these assignments do not 
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Figure 5.2. Representative VSFG spectrum of HDPE. The relative height of the symmetric stretch (2863 

cm
–1

) to the antisymmetric stretch (2933 cm
–1

) can be used to gain information about the orientation of 

the methylene groups relative to the surface normal.
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appear to be correct for our HDPE samples. As stated in Ref 19, the selection rules of the Fermi 

resonance and of the symmetric stretch must be the same, because both the symmetric stretch 

and the bend are of the same symmetry. In our observations, however, the higher frequency peak 

clearly behaves differently from the lower frequency peak as the sample is deformed and rotated 

with respect to the optical plane of incidence. This suggests that the two modes are of different 

symmetry types. We therefore assign the lower frequency peak as the symmetric methylene 

stretch and the higher frequency peak as the antisymmetric methylene stretch. These assignments 

are consistent with other VSFG studies of polyethylene.20

The relative intensity of the symmetric and antisymmetric signatures can be used to infer the 

average orientation of the methylene groups that are probed by VSFG.21 As illustrated in Figure 

5.3, the transition dipole moments of these two vibrational modes are orthogonal to each other. 

This means that when the polarization of the IR probe beam couples well with the symmetric 

stretch, there is poor coupling to the antisymmetric stretch, and vice versa. The IR probe beam is 

P-polarized, thus the maximum coupling to the symmetric stretch will occur when the methylene 

groups are oriented vertically at the surface, i.e. the methylene C2v symmetry axis is parallel to 

the surface normal. This orientation of the methylene groups will also lead to a very weak 

antisymmetric stretch response. As the tilt angle increases, so does the intensity of the 

antisymmetric stretch, while the symmetric stretch signal decreases. These relations will form the 

basis of the orientation analysis presented later in this paper. More complete discussions of 

orientation analysis of VSFG spectra are available in the literature.21-23

In this paper, VSFG is used as the primary spectroscopic tool to gain information about how 

the orientation of methylene groups and polymer chains at the surface of HDPE samples is 

affected by mechanical deformation, specifically cold drawing at a low strain rate. X-ray 
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Figure 5.3. The transition moment of the methylene symmetric stretch is perpendicular to that of the 

antisymmetric stretch. This means that as one vibrational mode interacts more strongly with the polarized 

infrared excitation beam, the other mode interacts more weakly.
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diffraction (XRD) measurements are used to corroborate the bulk behavior of cold drawn HDPE 

with the VSFG results. Prior to deformation, there is considerable variation in the surface 

orientation of the methylene groups. Once necking occurs, however, the samples consistently 

exhibit an orientation where the polymer chains are aligned with the direction of the pull and the 

methylene groups are oriented normal to the surface. These results show the power of VSFG to 

identify structural changes in response to mechanical deformation, such as stress-induced 

realignment and the resultant reorientation of surface methylene groups, in a noninvasive and 

nondestructive fashion.

5.2.4: Methods

5.2.4.1: HDPE Sample Preparation 

High-density polyethylene (HDPE) samples were extruded using 12,000 MW pellets (Sigma 

Aldrich). To create the flat surface needed for our VSFG instrument, the samples were heated 

after extrusion for two hours at 140°C while pressed between glass plates. Standardized spacers 

were placed between the glass plates to maintain a consistent sample thickness of 0.8 mm. After 

this smoothing process, the samples were punched from the polymer slab using a custom built 

die. Figure 5.4 shows the shape of the punched samples. The hourglass shape, similar to what has 

been used in earlier studies,14 was used to ensure localization of the tensile stress at the waist of 

the sample. The HDPE samples were mechanically deformed using a single-arm mechanical 

testing apparatus (Instron, model 3345) at a constant strain rate of 0.003 mm/s. Once the desired 

maximum extension was reached, the samples were held at a constant extension overnight prior 

to probing with the VSFG system.
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Figure 5.4. a) Illustration of the parallel orientation of the sample. In this orientation the direction of 

tensile load is in the plane of incidence of the VSFG beams; the plane of incidence comes out of the page. 

b) Illustration of the perpendicular orientation of the sample. In this orientation the direction of load is 

perpendicular to the plane of incidence.  
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5.2.4.2: X-Ray Characterization 

HDPE samples, both pulled and unpulled, where characterized using a single crystal X-ray 

diffraction (XRD) instrument equipped with a MACH3 kappa goniometer coupled to a Bruker 

Apex II CCD detector and a Bruker-Nonius FR591 rotating anode X-ray source producing Cu 

K radiation ( = 1.54178 Å). A small portion of the HDPE sample was cut out and attached to a 

custom mount with double-sided tape. Transmission X-ray diffraction patterns were collected 

and viewed using the Bruker APEX3 analysis suite.

5.2.4.3: VSFG System

Our broadband VSFG system is based on an amplified ultrafast laser system (Integra C, 

Quantronix) and broadband infrared optical parametric amplifier (OPA) (TOPAS-C, Light 

Conversion via Quantronix). Full details of the system have been published previously.24 Briefly, 

a pair of Fabry-Perot étalons selected a narrow band visible wavelength of 786 nm, and the 

broadband IR output of the OPA was centered around 2900 cm–1. All VSFG spectra were 

acquired in the ssp polarization combination: s polarized SFG produced by s polarized visible 

and p polarized IR probe beams. 

A key modification for this work was the addition of a rotational sample mount that allows 

for 360° of rotation in the plane of the sample surface. Using this rotational mount, samples were 

scanned at two different orientations, with the direction of the pull oriented either parallel or 

perpendicular to the plane of incidence of the VSFG beams. The sample orientations are shown 

in Figure 5.4.
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5.2.5: Results and Discussion

5.2.5.1 Characterization of Unpulled Samples

Melted and smoothed HDPE samples were characterized with both XRD and VSFG prior to 

any mechanical deformation. Figure 5.5 shows an XRD pattern taken from an unpulled HDPE 

sample. Each bright ring corresponds to diffraction from one set of ordered planes in the 

material. The presence of rings instead of discrete points of diffraction indicates that the sample 

is polycrystalline, and that the crystalline domains are randomly oriented throughout the 

material, i.e. the bulk sample is mostly isotropic. This diffraction pattern is consistent with prior 

results from isotropic semicrystalline polymer,4 and indicates that there is no preferential 

direction to the ordering of the crystalline domains in the bulk of the polymer sample prior to 

deformation.

In contrast to the highly isotropic character of the bulk polymer indicated by the XRD data, 

VSFG spectra of unstressed samples show some variation with sample orientation. Figure 5.6

shows VSFG spectra from an unpulled HDPE sample at different orientations relative to the 

plane of incidence of the probe beams. (The orientations are depicted in Figure 5.4.) The 

spectrum from the perpendicular orientation is shown in blue, and the spectrum from the parallel 

orientation is in red. The difference in relative intensity of the two main peaks (symmetric and 

antisymmetric methylene stretches) indicates a variation in the average tilt angle of the 

methylene groups with sample orientation. This is an indication that the surface of the sample is 

not completely isotropic. The fact that intensity is measured for both the symmetric and 

antisymmetric C-H stretch modes indicates that there is some tilt of the methylene C2v axis from 

the surface normal. There was also some variation between samples, with some samples showing 
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Figure 5.5. Representative XRD pattern from an unpulled HDPE sample. The presence of rings indicates 

that the polymer crystallites in this sample are randomly oriented.
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Figure 5.6. VSFG spectra of the unpulled HDPE sample from Figure 5.5 at two different orientations 

relative to the plane of incidence. The difference in the relative peak heights between the two orientations 

means that, in contrast to the bulk crystallites, there is some anisotropy in the orientation of the methylene 

groups on the sample surface.
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a greater degree of azimuthal symmetry than others. These variations between samples may be a 

result of inconsistent shear stresses introduced during the smoothing process. 

5.2.5.2: Response of HDPE to Mechanical Deformation

Four samples were subjected to tensile loading and deformed to different degrees of 

extension: 3, 4, 6, and 8 mm. At 3 mm extension, the sample showed no visible signs of necking. 

The sample pulled to 4 mm extension had begun to develop the opaque white appearance at the 

waist of the hourglass shape that is associated with necking. Necking became more pronounced 

as the extension increased and was fully present in the sample that was extended to 6 mm. 

Pulling to 8 mm only extended the width of the necked region.

Figure 5.7 shows the XRD pattern from the necked region of the sample pulled to 8 mm 

extension. Unlike the isotropic patterns for the unpulled material (Figure 5.5), diffracted intensity 

is only observed along a single axis for the pulled material. This indicates that the crystalline 

regions of the sample have adopted a preferred orientation in which the ordered planes are 

parallel to the direction of the tensile load. This matches what has been seen before with stress-

induced alignment of semicrystalline polymers.4 Another noteworthy observation is that 

diffracted intensity from the two bright innermost rings overlaps, or in other words, these

diffraction peaks are broader than those in the unpulled XRD pattern. Peak broadening in XRD 

patterns is typically caused by a decrease in the size of the crystalline domains and/or an increase 

in microstrain in the lattice, thus this peak broadening could be a manifestation of the lamellae 

being broken into smaller and more strained pieces.

Figure 5.8 shows VSFG spectra for the four extended samples (pulled to 3, 4, 6, and 8 mm), 

all taken in the necked region, or the region where necking would take place, i.e. the waist of the 

hourglass shape. The representative unpulled spectra were from the same sample that was pulled 
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Figure 5.7. XRD pattern of the necked region of an HDPE sample pulled to 8mm. The anisotropic pattern 

indicates stress-induced ordering of the crystalline domains into a preferred orientation that is parallel to 

the direction of the tensile load.
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Figure 5.8. VSFG spectra in the parallel and perpendicular orientations for an unpulled HDPE sample 

and samples pulled to 3, 4, 6, and 8 mm. Necking was first observed in the sample pulled to 4 mm. 

Spectra are offset for clarity. Each spectrum is normalized to the highest signal level for that extension, 

regardless of sample orientation. Vertical lines indicate the frequency in cm
–1

of the symmetric methylene 

stretch before (dashed) and after (solid) necking has occurred.
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to 4 mm extension, and were acquired prior to the deformation. As can be seen in Figure 5.8, 

there are similar spectral features for each sample where whitening occurred (4 mm extension 

and beyond). These features include the disappearance of the antisymmetric stretch in both 

sample orientations, the disappearance of the symmetric stretch in the perpendicular orientation, 

and a redshift of the symmetric stretch in the parallel orientation relative to the unpulled sample. 

All these spectral changes give us insight into the changes in the average orientation of the 

methylene groups and the polymer backbone at the polymer free surface, as we now discuss.

5.2.5.3: Methylene Orientation in Necked HDPE 

The most significant clue to the orientation of the methylene groups at the surface of 

mechanically deformed HDPE is the disappearance of the antisymmetric stretch signal from the 

VSFG spectrum in the necked region. As discussed earlier, if this high frequency peak were due 

to a Fermi resonance between the symmetric stretch and bend, we would expect the two peaks to 

behave similarly because they would be of the same symmetry. The fact that they behave 

differently following deformation is the basis for our assignment of the high frequency peak as 

the antisymmetric stretch. To aid in our interpretation of the spectral changes, we define a 

coordinate system for the methylene group as shown in Figure 5.9, with the H-C-H structure 

located in the ac plane. The C2v symmetry axis and the transition dipole moment of the 

symmetric methylene stretch are both pointed along the c axis, and the transition dipole moment 

of the antisymmetric stretch is pointed along the a axis. The b axis is orthogonal to the plane 

defined by the H-C-H structure, and is therefore along the C-C-C backbone of the polymer.

The p polarized IR probe beam had a 60° angle of incidence. If the methylene groups are 

oriented such that the c axis points along the surface normal, then the IR probe beam will 
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Figure 5.9. Illustration of the position of a methylene group in the internal abc coordinate system and its 

relation to the polarization of the visible probe beam. a) When the visible polarization is along the 

molecular a axis, there is significant electron density with which to interact. b) There is less electron 

density available for interaction when the visible beam polarization is along the b axis.
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primarily overlap with the symmetric stretch, driving that motion resonantly. In this orientation, 

the IR probe beam will not couple as well to the antisymmetric stretch, as is seen in the measured 

spectra of the necked region. The average methylene orientation in the unpulled material is 

clearly more tilted than what we see in the necked region, as shown by the increased intensity of 

the antisymmetric methylene stretch for the unpulled sample. Thus, the mechanical deformation 

leads to a decrease in the tilt of the methylene groups with respect to the surface normal; the 

methylene groups are more upright after tensile loading.

Insights into the orientation of the polymer chains themselves can be gained by considering 

the interaction of the s polarized visible probe beam with the methylene groups. With this 

polarization, the visible electric field is oriented parallel to the surface and orthogonal to the 

plane of incidence. If the polymer chains are aligned with the direction of the pull, then with the 

sample positioned in the parallel orientation, the visible electric field is pointing along the 

molecular a axis. As seen in Figure 5.9a, this orientation provides a large cross section for 

interaction of the optical field with the electron density, increasing the VSFG signal. When the 

sample is in the perpendicular orientation, the visible electric field is pointed along the molecular 

b axis, where the cross section for interaction is much smaller, as shown in Figure 5.9b. This 

small interaction cross section will lead to very little upconversion, and therefore very weak 

VSFG signal. Thus, the disappearance of the symmetric stretch response from necked samples in 

the perpendicular orientation is consistent with an alignment of the polymer chains along the 

direction of the pull.

The redshift of the symmetric stretch peak in the VSFG spectrum of the necked samples is 

similar to what was seen by Zhang, et al.25 in their work with ultra high molecular weight 

polyethylene (UHMWPE) and low-density polyethylene (LDPE). They found that the symmetric 
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stretch in the VSFG spectrum was 11 cm–1 lower in frequency for LDPE than for UHMWPE. 

This difference was attributed to differences in the degree of crystallinity in the two types of 

polyethylene, with UHMWPE being much more crystalline than LDPE. The gauche 

conformations imposed by bends in the polymer chains at the lamella surfaces in the crystalline 

domains increase the frequency of the symmetric methylene stretch. Zhang et al.25 suggested that 

much of the VSFG signal from UHMWPE was produced by these gauche groups, resulting in a 

higher vibrational frequency in the VSFG spectrum for this material. The necking process is 

likely to lead to a reduction in the number of gauche methylene groups as the lamellae are 

broken up, leading to the observed red shift in the necked samples. The increased breadth of the 

diffraction intensity in the portion of the rings visible in the XRD pattern of the pulled sample is 

also consistent with the idea that the lamellae are being broken up.

In addition to reducing the concentration of gauche groups, necking is known to induce the 

formation of shish-kebab structures. In these structures, the polymer backbones within the 

lamellae are aligned parallel to the direction of the mechanical load, which is also parallel to the 

surface plane. This means that the methylene C2v axis of the gauche groups in the bends of the 

lamellae are also oriented parallel to the surface plane. In this orientation, the gauche methylene 

groups are effectively invisible to VSFG.21 The VSFG signal of the necked samples is therefore 

dominated by the aligned methylene groups within the polymer backbone and lamellae, which

are primarily in the trans configuration and are oriented with the C2v axis parallel to the surface 

normal. The VSFG response is also consistent with the polymer backbone in pulled HDPE being

aligned with the direction of the mechanical load.
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5.2.5.4: Other Aspects of the Necking Process

Additional insights into the surface structure of necked HDPE, and into the necking process, 

can be gained by further investigation of the VSFG spectra. Figure 5.10 shows VSFG spectra in 

the perpendicular orientation of the sample that was pulled to 4 mm extension both before and 

after the application of the tensile load. The spectrum of the unpulled material is shown in red 

and scaled on the left vertical axis, while the spectrum of the pulled material is shown in blue 

and scaled on the right axis. The overall signal from the pulled material is very weak compared 

to that of the material before loading, but a strong antisymmetric stretch response is still present. 

This comparison shows that the signal that does remain after pulling is more similar to the 

unstressed material than to the necked material of samples pulled to greater lengths. (For 

comparison, see the 8 mm parallel spectrum in Figure 5.8.) This may suggest that small pockets 

of unstressed material remain at the surface during the early stages of the necking process.

Figure 5.11 compares the VSFG spectra from the perpendicular orientation of the necked 

regions of the samples pulled to 4 and 8 mm. (The 4 mm spectrum is the same as in Figure 5.10.) 

In the sample pulled to 8 mm extension, some VSFG signal can be seen, although it looks 

significantly different than the sample pulled to 4 mm extension. In particular, the spectrum in 

the 8 mm sample is much broader than in the other spectra shown to this point. Figure 5.12 

shows a VSFG spectrum acquired from the edge of the necked region of the sample pulled to 6 

mm extension with the sample placed in the perpendicular orientation. This VSFG spectrum also 

appears very different from those in Figures 5.6, 5.8 and 5.10, which were taken well into the 

necked region; the spectrum is very broad and there appear to be dip-like features present at 

about the same frequencies where peaks were seen previously. In fact, the spectrum from the 

8 mm
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Figure 5.10. VSFG spectra taken in the perpendicular orientation from a sample pulled to 4mm before 

and after the pull.
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Figure 5.11. VSFG spectra taken in the perpendicular orientation from the necked region of HDPE 

samples pulled to 4 mm and 8 mm.
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Figure 5.12. VSFG spectrum, with the sample in the perpendicular orientation, taken at the boundary 

between the necked and un-necked material of an HDPE sample that had been pulled to 6 mm.
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sample in Figure 11 bears more resemblance to the spectrum in Figure 5.12 than to the other 

spectra in Figures 5.6, 5.8 and 5.10.

To better understand the spectra in Figures 5.11 and 5.12, it is necessary to briefly review an 

important aspect of VSFG spectroscopy. The main features of interest in a VSFG spectrum are 

the resonant vibrational peaks. These are seen when the frequency of the IR probe beam is 

resonant with molecular vibrations. In broadband VSFG systems, such as we use, the OPA 

produces a pulse that covers a broad range of IR frequencies and simultaneously excites multiple 

vibrations, thus no scanning of the IR frequency is required. The second type of signal in a 

VSFG measurement is known as a nonresonant response. Resonant features can interfere with 

the nonresonant signal either constructively, appearing as peaks, or destructively, appearing as 

dips, on this nonresonant response.26 To a first approximation, this nonresonant signal does not 

depend on the IR frequency, therefore in scanning VSFG systems the nonresonant response 

simply affects the baseline signal. In broadband systems, however, where the IR spectrum of the 

OPA has a quasi-Gaussian profile, the nonresonant response will also have this same broad 

profile. The spectrum in Figure 5.12, and the spectrum in Figure 5.11 from the sample pulled to 

8 mm extension, both appear to have a significant nonresonant response, as seen by the broad 

profile. In Figure 5.12, the resonant features clearly appear as dips on this nonresonant pedestal. 

The spectrum in Figure 5.11 is qualitatively similar to that of Figure 5.12, although the signal is 

much weaker, making it hard to directly compare them.

The origin of the nonresonant SFG response in polymeric materials is not completely 

understood, although some ideas have been put forward. Nonresonant SFG signal is generally 

thought to arise from an electronic response, and is often very strong from metals and 

semiconductors. A strong nonresonant response has also been seen in aged and annealed 
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polystyrene films,24 and there it is thought to come from the high concentration of phenyl rings 

in the material, which have delocalized electrons. The structure of polyethylene, however, does 

not have an obvious source of readily polarizable electrons that could give rise to this type of 

response. One possible source is vinyl impurities where dehydrogenation has occurred and C=C 

bonds have formed.27 The highly stressed state of the polymer chains in the transition area may 

facilitate the exposure of previously existing vinyl impurities. 

Another possible origin of the nonresonant response is the presence of trapped electrons, 

which are expected to gather at low-density areas such as the surface or interfaces between 

crystalline and amorphous regions.28-31 It has been proposed that nonresonant SFG signal may 

come from “interfacial potentials, generated by interfacial charges”,32 which adds weight to this 

possibility. Additional studies, using techniques such as small angle X-ray scattering (SAXS) 

that are sensitive to these internal interfaces, are therefore recommended. Another possibility is 

suggested by the work of Yamaguchi, et al.33 They found that the liquid-air interface of hexane 

produced almost as much nonresonant signal as the liquid-air interface of benzene. They 

attributed this surprisingly large nonresonant response from hexane to electric quadrupole 

contributions, which are always allowed and are not restricted to a surface or interface.34 These

quadrupolar contributions may play a role in the stress-aligned HDPE chains, although it is not 

quite clear why this effect would be stronger in the transition region than it is in either the native, 

unstressed material or in the necked region.

When the sample from Figure 5.12 was scanned well inside the necked region, a much 

weaker nonresonant response was detected. Figure 5.13 shows VSFG spectra from this sample 

(pulled to 6 mm extension) from both the transition zone and in the center of the necked region; 

the sample was in the perpendicular orientation for both measurements, and the spectrum shown 
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Figure 5.13. VSFG spectra from the sample pulled to 6 mm taken in the perpendicular orientation. The 

red spectrum is the same as that shown in Figure 12, taken from the transition zone between necked and 

un-necked regions. The blue spectrum is from the fully necked region of the same sample. 



164

in red is the same from Figure 5.12. The broad nonresonant profile is clear in both spectra, 

however the overall signal is much weaker in the fully necked region than in the transition zone.

The sharp dip in intensity at ~2870 cm–1 from the fully necked region is likely due to the 

interference of a resonant signal from the symmetric stretch with the nonresonant response. 

(When there is interference between resonant and nonresonant signals, the positions of the 

resonant features often appears slightly shifted.) Note that, unlike the spectrum from the 

transition region, there is very little evidence of the antisymmetric stretch in the spectrum from 

the fully necked region. This matches what is seen in the resonant response from the parallel 

orientation: a strong symmetric stretch response with a very weak antisymmetric stretch. Thus, 

there appears to be more that we can learn about the deformation process by paying closer 

attention to the nonresonant SFG response.

5.2.6: Additional Considerations

5.2.6.1 Orientation Analysis With Matlab Modeling 

In addition to the analysis used in section 5.2.5.3, the orientation of methylene groups 

relative to the surface can also be determined by considering the Cartesian transform coefficients 

for a system with C2 symmetry published by Hirose et al.23 These coefficients transform the 

VSFG susceptibility tensor from the abc molecular reference frame, discussed in section 5.2.5.3,

to an external xyz referenced frame. The transforms are performed using the Euler angles ( )

to relate the molecular reference frame (a,b,c) to the lab frame (x,y,z). Here represents the 

angle between the c and z axis, represents a rotation around the z axis, and represents a 

rotation around the c axis.
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Because a methylene group has C2 symmetry, the yyz transform of the aca tensor element is 

the only tensor element needed to model the antisymmetric stretch, when the SSP polarization 

combination is used. This transform coefficient is given by Hirose et al.23 as:

(1)

In this formalism,

value of zero makes the relevant transform coefficient zero, leading to no antisymmetric stretch, 

as observed in necked HDPE samples. , the antisymmetric stretch tends to 

oscillate with changing

For the symmetric stretch, the aac and ccc tensor elements are the elements of interest. When 

the SSP polarization combination is used, the yyz, xxz, xyz, and yxz components of the aac and 

ccc tensor elements are the relevant transform coefficients. Hirose defines these transforms as:

aacyyz
(2)

aacxxz
(3)

aacxyz (4)
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aacyxz
(5)

cccyyz (6)

cccxxz (7)

cccxyz (8)

cccyxz (9)

Changing the azimuthal angle of the sample corresponds to rotating the methylene groups about 

the z axis. Because the methylene groups at the surface of the necked region of an HDPE sample 

all have a similar orientation, changing the azimuthal angle of the sample also effectively 

changes . The transforms in Equations 2-9 can be used to model the VSFG 

lue that gives the experimentally observed 

tilt angle.

Making the assumption that the polymer backbone prevents the methylene group from 

rotating about the c axis allows to be set to 0. equal to 0 means that 

there are now only three variables

intensity, which is proportional to the sum of the transform elements. Figure 5.14 shows a graph 

made , and the signal intensity modeled as the sum of the transform elements. 

Experimentally it was found that no symmetric stretch 

90 was produced. From the graph in Figure 5.14 it

can be seen that this experimentally observed behavior is best theoretically fit at values of 0
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Figure 5.14. Graphical representation of how the VSFG signal intensity, from a methylene group 
symmetric stretch, is expected to vary at different tilt ( ) and azimuthal ( ) angles. The mathematical 
model this graph is based on was constructed using VSFG tensor element transforms from reference 23.
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and 90 . Because a value of 0 also predicts the observed behavior of the antisymmetric 

stretch, the most likely tilt angle of the methylene groups in necked HDPE is 0 . This analysis 

was not performed on sample regions that had not necked because the response from these 

regions was not consistent from sample to sample, indicating that prior to necking each sample 

surface was unique, with no obvious patterns in the surface morphology. 

5.2.6.2 Effects of Strain Rate and Aging in the Necked Region

The work discussed in this chapter opens the door for a wide range of new research. Two of 

the most obvious questions are how the rate of strain during deformation affects the final 

conformation of the material surface after loading and what happens to the deformed surface 

over time. The rate of strain is known to affect how a polymer deforms.35-39 Preliminary 

evidence, however, suggests that the orientation of methylene groups and polymer chains at the 

surface of mechanically deformed HDPE is unaffected by the rate of strain. Figure 5.15 shows 

spectra from the necked regions of two different high density polyethylene (HDPE) samples. The 

sample in panel a was pulled to 20 mm of extension at a strain rate of 0.003 mm/s, which is the 

same rate as that used for samples in the submitted paper. The sample in panel b was pulled to 20 

mm of extension at a strain rate of 0.03 mm/s. There is little difference in the spectra from these

samples, which suggests that a different strain rate did not affect the molecular level, surface 

morphology. Replication of this data, and a wider range of strain rates, would be required to 

confirm that the molecular level surface morphology is truly independent of strain rate. Given 

that strain rate is known to affect polymer deformation, it would be wise to collect XRD data and 

SEM images of the samples before and after deformation to demonstrate that the polymer is 

behaving as expected. 
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Figure 5.15. VSFG spectra from the necked region of two different HDPE samples. The sample shown in 
panel (a) was pulled to 20mm of deformation at a rate of 0.003mm/s. The sample shown in panel (b) was 
pulled to the same length of deformation at a rate of 0.03mm/s. 

a. b.
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Aging in the necked region of HDPE samples is also of interest. Figure 5.16 shows VSFG 

spectra of the sample in panel b of Figure 5.15 in the perpendicular orientation. The blue 

spectrum was taken when the sample was 8 months old, and the red spectrum was taken when 

the sample was 9 months old. The reappearance of the symmetric stretch in the aged sample 

suggests that the chain alignment imposed by mechanical deformation has begun to relax at the 

polymer surface. It should be noted that although the symmetric stretch is again visible in the 

parallel orientation after 9 months of aging, the signal intensity is a fifth of the symmetric stretch 

when the sample is in the parallel orientation. This suggests that the majority of the detected 

polymer chains are still in the aligned position.

5.2.7: Conclusions

Bulk samples of HDPE were investigated with both VSFG and XRD prior to and after cold 

drawing. Prior to the mechanical deformation, the samples exhibited XRD patterns consistent 

with a mostly isotropic semicrystalline material. The VSFG spectra from the surface of 

unstressed material showed variability in the surface orientation of the methylene groups and 

significant tilt from the surface normal of the methylene C2v axis. Mechanical deformation 

sufficient to cause necking of the polymer resulted in dramatic changes to both the XRD patterns 

and VSFG spectra. The XRD results indicate a stress-induced preference in the orientation of the 

crystalline regions of the polymer, and the VSFG results are consistent with the polymer chains 

being aligned with the pull direction. The VSFG results also show that surface methylene groups 

adopt an orientation where the local C2v symmetry axis of a methylene group is along the surface 

normal. For samples that did not completely neck, the VSFG spectra did not exhibit all these 

changes, suggesting that the polymer strands are in an intermediate configuration. Increases in 

the nonresonant SFG response in the transition region of necked samples were also observed, 
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Figure 5.16. VSFG spectra of the sample in panel (b) of Figure 6.15 in the perpendicular orientation. The 
blue and red spectra were taken 8 and 9 months after mechanical deformation.  
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which may provide further insight into the dynamics of reorganization in response to the 

mechanical deformation.

Much of the prior work on polymeric systems with VSFG has focused on thin films, and our 

work demonstrates the potential for VSFG to identify the molecular-level changes due to 

mechanical deformation of bulk polymer samples. We have identified important spectroscopic 

signatures, namely changes in relative intensity of key vibrational modes and the amount of 

nonresonant signal that can be correlated to mechanical deformation. We are working to further 

develop methods to use these techniques to identify signs of deformation and fatigue in other 

polymeric materials. These spectroscopic signatures will then enable us to determine aspects of 

the stress history of a given sample in a noninvasive, nondestructive fashion. Because polymers 

are widely used throughout modern society in applications ranging from food storage to artificial 

joints, the ability to identify signs of mechanical weakness in this fashion has great value.

We will also extend our efforts to better understand the molecular-level dynamics of how a 

polymeric material responds to mechanical deformation. One way we will do this is by using 

unpulled samples with different degrees of crystallinity. We are particularly interested in looking 

for the changes in the nonresonant response at the transition zone of the necked region and how 

that response changes with the degree of crystallinity. If this response is due to the presence of 

trapped charges at the boundary of amorphous and crystalline regions, then we should see a 

correlation between the degree of crystallinity and the nonresonant response. 

We will also expand our efforts to investigate the effects of strain rate, aging, and load 

cycling on the surface and bulk structure of polymeric materials. Preliminary data suggest that 

the amount of material in the necked region that does not adopt the aligned orientation may 

depend on strain rate, but this needs to be investigated more fully. Long-term (week to month) 
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relaxation effects will also be investigated. We also plan to probe polymeric samples while they 

are being held under tensile load, which will allow us to further investigate how this important 

class of materials responds to mechanical stress in real time.
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Chapter 6: Paused Research Projects 

6.1: Introduction

This chapter discusses research projects that have shown potential but are not far enough 

along to publish and are not currently being worked on. The hope is that this chapter might serve 

as a reference for researchers looking to renew these investigations.  

6.2: Scanning Samples While Under Load

The redesigned rotational sample mount, discussed in section 2.3.5, was developed to allow 

VSFG spectra to be taken from samples while they are under a controlled load provided by the

Instron 3345 material testing machine. The mount is designed to handle any sample that has a 

flat surface and is small enough to fit inside the mount. This flexibility presents a wide range of 

experimental possibilities. Investigating several HDPE behaviors that were observed during the 

work discussed in Chapter 5, and returning to Dr. James Patterson’s initial research focus of 

studying buried adhesive interfaces as they are under load, are among the most promising

avenues of investigation.

6.2.1: Adhesives

Chapter 6 of Dr. Angela Calchera’s dissertation discusses progress the lab group made in 

studying adhesives under load.1 Figure 6.1 is a diagram of a common sample configuration for 

that earlier work. The samples were generally constructed with a fused silica window that had a 

thin polymer film on the adhesive side. The polymer film was then glued to a metal post that was 

connected to the Instron via a cable. The VSFG excitation and signal beams passed through the 

fused silica window. A major obstacle in the original adhesives work was that the polymer thin 
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Figure 6.1. Diagram of the adhesives testing setup with the original sample mount. 
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film, to which the metal posts were glued, tended to delaminate from the fused silica. Even 

without the polymer thin film, the adhesive tended to fail before VSFG spectra could be 

obtained. This early failure was probably because the older experimental setup had the adhesive

placed on the end of a metal post that had an area of less than 0.5 cm2.

The problem of early breakage in adhesive samples may have been solved by the new sample 

mount. A diagram of a suggested adhesive sample for use with the new mount is shown in Figure 

6.2. This design removes the polymer thin film as a failure point and allows for roughly 4 cm2 of

adhesive surface contact. Both of these changes should significantly increase the amount of load 

an adhesive sample can take while being scanned.  

It should be noted that the old adhesive sample mount and new live pull mount are 

configured to perform two different types of material tests. The original mount, shown in Figure 

6.1, was constructed to perform a tensile test, where the adhesive is pulled in opposite directions 

by uniaxial forces. The current mount, shown in Figure 6.2, is designed to perform a lap shear 

test, where forces are applied to pull the sample apart along the plane of adhesion. Both are 

standard methods of testing adhesives. The lap sheer method was chosen for the new mount 

because this design also allows polymer and composite samples to be scanned while under load 

without reconfiguring the sample mount. 

6.2.2: Extruded Polymers

Taking VSFG spectra of HDPE samples, like those used in Chapter 5, while they are under 

load may help explain the large amount of nonresonant SFG signal produced at the edge of the 

necked region of the samples. This behavior is discussed in Chapter 5 of this text, and the 

relevant figure has been reproduced in Figure 6.3. Drs. Calchera and Curtis observed a similar 
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Figure 6.2. Diagram of the adhesive testing setup with the new sample mount. 
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Figure 6.3. Reproduction of Figure 5.12. VSFG spectrum, with the sample in the perpendicular 
orientation, taken at the boundary between the necked and un-necked material of an HDPE sample that 
had been pulled to 6 mm.
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increase in nonresonant signal from polymer thin films under load, which is shown in Figure 

6.4.1 One of the possible explanations for the large nonresonant signal from HDPE is that 

polymer chains at the boundary between necked and unnecked material are locked into a stressed 

position. This explanation would be supported if the nonresonant signal intensity increased as the 

HDPE samples were stressed, as Drs. Calchera and Curtis observed with their adhesive 

samplesw. Long term, this work may allow for nonresonant SHG to provide real time stress

analysis of polymers and composites. 

Sample relaxation under load is also an intriguing area of investigation. Our stressed HDPE 

samples were pulled to a set extension and then held at that point for several hours. Soon after 

the initial pull, the force needed to keep the samples at a given extension began to go down, and 

continued to do so for as long as the Instron tracked it. It would be very interesting to see if/how 

the HDPE sample surface changed during this process. VSFG signal tends to be much stronger 

from necked HDPE sample regions, so for better time resolution, I would suggest focusing on 

that portion of a sample.

Another interesting behavior of necked HDPE under load was observed by Wing-Fu. 2 They 

observed that “When the necking region was touched by fingers, there was an increase in the 

load experienced by the specimen. Such an increase in load disappeared once the fingers were 

removed, and the load experienced by the specimen returned to the original level…” Samples 

could be heated with a thermocouple or heat gun while being scanned and under load. This 

would allow for a more controlled, and in depth, investigation into how temperature affects the 

behavior of a polymer while it is under load.
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Figure 6.4. VSFG spectra of a PMMA thin film attached to a metal post with rubber cement. Each 
spectra was taken with a different amount of load on the adhesive bond. From reference 1. 
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6.3: Polycarbonate Lexan Thin Film Aging

6.3.1: Background 

In 2010, Curtis et al.3 published findings that challenged the conventional treatment of 

nonresonant sum-frequency generation (NR-SFG) signal. Prior to that publication, the 

nonresonant SFG component had been treated as a background. Curtis et al.3-5 demonstrated that 

the NR-SFG signal was sensitive to differences between materials, as well as changes in a 

material, and thus could not be treated largely as a consistent background.

SFG spectra of polystyrene thin films on different substrates, seen in Figure 6.5, were used to 

show differences in the NR-SFG response from different materials. Panel b shows normalized

spectra taken from a polystyrene thin film on silicon, sapphire, and fused silica substrates. The 

visible pulse delay time for these spectra was such that the NR-SFG signal was completely 

suppressed. With the NR-SFG signal suppressed, the resonant VSFG spectra for each of these 

sample types was the same. Spectra shown in Figure 6.5 a were taken from polystyrene thin 

films of different substrates with the time delay shortened to allow 10 percent of the nonresonant 

signal from a gold mirror to persist. These spectra are noticeably different which means that 

although the polystyrene surface was the same for each sample type, the nonresonant signals, and 

the detected spectra, were different. These differences could lead to the false conclusion that the 

polymer surfaces of the three samples were different, even though they were not.

Changes in the nonresonant response as a result of aging and annealing polystyrene thin film 

on a silicon wafer were even more problematic for VSFG systems that could not suppress NR-

SFG signal contributions. Normalized spectra, seen in Figure 6.6 b, show that average tilt angle 

of the interrogated phenyl groups was unchanged by either annealing or age. Spectra shown in 



185 
 

Figure 6.5. Normalized VSFG spectra of a polystyrene thin film on a silicon wafer, sapphire, and fused 
silica substrate with (a) 10% of the maximum nonresonant signal present, and (b) the nonresonant signal 
fully suppressed. From reference 3. 
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Figure 6.6. Normalized VSFG spectra of a polystyrene thin films on a silicon wafer with (a) 10% of the 
maximum nonresonant signal present, and (b) the nonresonant signal fully suppressed. From reference 3.
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figure 6.6 a are of the same samples taken with 10 percent of the nonresonant signal present. 

Unlike the purely resonant spectra, these showed significant differences, especially between 

fresh and treated samples. This means that changes in SFG spectra that contain nonresonant 

signal can come from either the intended and interpretable resonant response, or from the less 

well understood nonresonant response. This behavior makes precise analysis difficult, and 

conclusions drawn from these spectra are suspect.

Having shown that unsuppressed SFG spectra could be misleading for polymer thin films 

on different substrates and for treated materials, Curtis et al. went on to show that, even for fresh 

samples on identical substrates, the nonresonant response could not be treated as a background.4

Figure 6.7 a shows VSFG spectra, taken off resonance, of a bare silicon wafer and one coated 

with a polystyrene thin film. The increase in the nonresonant signal with the addition of the 

polystyrene thin film means that the nonresonant signal from the substrate cannot be assumed to 

be the same once a coating has been applied. Literature discussed in section 1.3.4 suggests that 

this caution applies to a wide range of systems. Figure 6.7 b showed that not only did the amount 

of nonresonant signal change with the addition of a polymer coat, but that the thickness of the

coating also affected the nonresonant signal. The final and most telling blow to the practice of 

treating the nonresonant signal as a background came from work shown in Figure 6.7 c, which

showed that absorption from a material, such as a thin film coating, shaped the corresponding 

nonresonant profile. In other words, the presence of a resonant signal shaped the corresponding 

nonresonant signal so that it was no longer the same as that measured off resonance. 

Curtis et al. theorized that the increase in the nonresonant signal from a silicon wafer with the 

addition of a polystyrene thin film may be caused by interactions between the substrate and 

polymer.4 This proposal is supported by some of my work, discussed in more detail in Chapter 3.
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Figure 6.7. (a) NR-SFG spectra of a silicon wafer with and without a polystyrene thin film. (b) NR-SFG 
spectra of different thicknesses of polystyrene on a silicon wafer. (c) NR-SFG spectra from gold with 
(red) and without (black) a polystyrene film placed in the IR beam path. From reference 4. 
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It was found that the polarization of the nonresonant signal produced by a Si(111) substrate 

changed from P to S with 60 periodicity as the wafer was rotated in the plane of the sample 

face. This same pattern was observed in the nonresonant signal produced from a Si(111) wafer 

coated with a polystyrene thin film, which suggests that the majority of the detected NR-SFG

signal was produced from the silicon substrate.6 The dielectric permittivity of polystyrene thin

films is known to decrease with age.7 This decreased ability to dampen electric fields may allow

the substrate, and the polymer’s electrons near the substrate, to interact more strongly with the 

excitation beams, producing a stronger nonresonant signal.       

6.3.2: Project Motivation

In an effort to better understand the material changes that were responsible for the

nonresonant signal behavior observed by Curtis et al.3,4 in aged and annealed polymer thin films;

we decided to study the nonresonant response from polycarbonate thin films as they aged. 

Polycarbonate was chosen for study because, like polystyrene, it has six member aromatic rings,

but unlike polystyrene, the aromatic rings in polycarbonate are part of the polymer backbone, 

which should make them much less mobile.

6.3. : Results and Discussion

The first difference observed between polystyrene and polycarbonate thin films was the

amount of nonresonant signal relative to resonant signal. This difference can be seen in Figure 

6.8. Both samples have a Si wafer substrate, and the spectra were taken with a time delay that

allowed 10% of the full nonresonant signal from gold to remain. The polystyrene film is

approximately 90 nm thick, while the polycarbonate film was estimated to be roughly 400 nm 

thick.
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Figure 6.8. VSFG spectra of fresh polystyrene (blue) and polycarbonate (red) with 10% of the maximum 
nonresonant signal present.  
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The differences in film thickness may account for a larger proportion of nonresonant signal 

from the polycarbonate sample, but panel b of Figure 6.7 suggests that increasing the depth of 

the polymer film may suppress the nonresonant signal strength rather than enhance it. Ruling out 

this possibility experimentally could be done fairly easily by scanning samples of both polymers 

with the same film thickness. 

The differences in the structure of the polymers may also explain the much higher percentage 

of nonresonant signal observed from fresh polycarbonate. The aromatic rings of polystyrene are 

attached to the polymer backbone through a carbon-carbon bond. At the free surface, this gives 

the phenyl groups a relatively large degree of freedom, and allows them to stand out from the 

polymer surface. The aromatic rings in polycarbonate, however, are part of the polymer 

backbone. This means that if the polymer chain is lying relatively flat on the polymer surface, the 

aromatic ring is likely to also be lying flat on the surface. Since functional groups lying in the 

surface plane cannot produce resonant SFG signal, a polycarbonate surface may produce much 

less resonant signal from the aromatic rings than a comparable polystyrene surface. Thus, the 

larger amount of nonresonant signal, relative to resonant signal, from polycarbonate may actually 

be caused be a weaker resonant signal, not a stronger nonresonant signal.  

The larger proportion of nonresonant signal from fresh polycarbonate thin films may also be 

because polycarbonate is more transparent to the excitation or signal beams, allowing more NR-

SFG to be generated, or transmitted from, the substrate surface. The different amount of 

nonresonant signal observed at different azimuthal angles, shown in Figure 6.9 suggest that the 

observed NR-SFG signal was either produced at the substrate, or by textured portions of the 

polycarbonate thin film.  
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Figure 6.9. VSFG spectra of a fresh polycarbonate Lexan thin film on a silicon wafer. Spectra were taken 
at azimuthal angles of 0 , 30 , and 60  with 10% of the maximum nonresonant signal present.   
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As discussed in section 5.2.5.4 of this test, the alignment of polymer chains is suspected as 

the source of a large nonresonant response at the boundary of the necked regions of mechanically 

deformed high density polyethylene (HDPE) samples, and in polystyrene/PMMA thin films 

under load. A similar chain alignment in the polycarbonate thin films, created during the spin 

coating process, may be responsible for the relatively large nonresonant response from fresh 

polycarbonate thin films, and for the observed differences in signal levels at different azimuthal 

angles. This is supported by the fact that the azimuthal angle has much less effect on the NR-

SFG signal level as the sample ages, as can be seen in Figure 6.10. 

The observed drop in the angular dependence of the nonresonant signal level was 

accompanied by an overall drop in nonresonant signal level at all measured angles. These

changes are shown in Figure 6.11, where panel a is the sample at an arbitrary initial position, 

panel b is the sample rotated 30 from the initial position, panel c is the sample rotated 60 from 

the initial position, and panel d shows a different sample which also had a drop in nonresonant 

signal level over time. All of these spectra were taken with the visible pulse delayed in time to 

the point where 10% of the maximum nonresonant signal was produced from gold. In addition to 

the overall drop in signal level, there is also a shift to the left in the nonresonant profile of each 

sample and azimuthal angle. Also of interest is the increase in nonresonant signal shown in panel 

d, which is followed by a significant decrease in nonresonant signal intensity.   

Given that polycarbonate thin films are known to retain some solvent over time8 and 

polystyrene thin films do not,9 it was possible that solvent retention was responsible for the 

observed difference in nonresonant response to aging from polycarbonate and polystyrene thin 

films. To test this, two polycarbonate thin film samples, labeled 11 and 12, were scanned soon 

after spin coating, and then placed under vacuum for two days. Samples 13 and 14 were created 



194 

Figure 6.10. VSFG spectra of the sample in Figure 6.9. after ageing six days. Spectra were taken at 
azimuthal angles of 0 , 30 , and 60  with 10% of the maximum nonresonant signal present.   
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Figure 6.11. VSFG spectra of a polycarbonate Lexan thin films on a silicon substrate. (a,b,c) are of from 
the same sample with spectra taken at azimuthal angles of (a) 0 , (b) 30 , and (c) 60 . The blue spectra 
were taken from the fresh sample while the red spectra were taken after six days of aging. (d) shows a 
different polycarbonate Lexan thin film on a silicon wafer aged two days (blue), four days (red), and nine 
days (green). All spectra were taken with 10% of the maximum nonresonant signal present.  
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at the same time, and from the same polycarbonate solution, as samples 11 and 12. Samples 13

and 14 were allowed to age in a covered petri dish. The results of this study are shown in Figure 

6.12, where spectra from samples 11 and 12 are shown in panels a and b respectively, and 

spectra from samples 13 and 14 are shown in panels c and d. To give a more accurate day to day

signal comparison, each spectrum has been normalized to the amount of nonresonant signal

produced by a gold mirror that day. Although the samples were each quite different, they all

followed the pattern seen in Figure 6.11 d, with the signal strength first going up then back down 

over time. The observed rise and fall of nonresonant signal intensity from polycarbonate Lexan 

thin films may be a result of either changes in nonresonant signal produced from the polymer, or 

from changes in the polymer which allow different amount of signal to be generated on the 

silicon substrate. Taking absorption readings of polycarbonate thin films as they age may help 

determine which of these possibilities is truly responsible.

6.3. : Suggested Next Steps

 This work makes clear that polycarbonate Lexan thin films undergo interesting changes as

they age. These changes do not appear to be related to solvent retention, and may be caused by 

changes in the optical absorption properties of the film over time. The observed behavior may 

also be caused by changes to the film’s own nonresonant response, or to the interaction between 

the film and the substrate.

Changes in the optical absorption behavior of a polycarbonate film should by the easiest 

possibility to investigate. This can be done by coating a transparent substrate, like fused silica, 

and tracking the absorption profile over time. Both sample preparation and taking the absorption 

profile are pretty simple, so this should make a good project for an inexperienced researcher.
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Figure 6.12. VSFG spectra of four differnet polycarbonate Lexan thin films on Si substrates taken from 
fresh (blue), seven days old (red), eight days old (green) and ten days old (purple). The samples in (a) and 
(b) were held under vacuum for two days.  All spectra were taken with 10% of the maximum nonresonant 
signal present.  
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Tracking the nonresonant response over time from polycarbonate thin films on different 

substrates would also yield interesting information. If NR-SFG changes were consistent between 

substrate types, then changes in the polymer are probably the cause. If the NR-SFG response 

behaves differently over time for samples with different substrates, then either optical absorption 

or polymer-substrate interactions are probably the cause. Absorption data taken over time would 

give information as to which of these causes was most likely.

6.4: Plasma Treatment

6.4.1: Polymer Sheets

At one time, the VSFG system was down for several months, so Joshua Hanson and I spent 

some time studying polymers with x-ray diffraction (XRD). One particularly interesting result of 

this work was the discovery that surface modification in a plasma cleaner can change the XRD 

pattern for semicrystalline polymers. This was exploratory work with polypropylene and 

polyethylene samples that were cut from scraps of commercial sheets, obtained from the 

chemistry central stockroom, who didn’t know where they got them from. 

XRD data were collected using a PANalytical X’Pert Pro diffractometer with a Cu X-ray 

source, a Ge-111 monochromator that provides Cu-K

X’Celerator detector. Samples were mounted using a custom mount developed by Dr. Stacey 

Smith, and scanned from 10 to 90 2theta.

The polypropylene sample was treated with plasma generated from atmospheric gasses for 

4s. XRD patterns taken before and after plasma treatment are shown in Figure 6.13. Treatment in 

the plasma cleaner appears to have removed some of the ordered planes detected by the XRD 

instrument. A polyethylene sample treated for 1s in the plasma cleaner did not lose ordered 
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Figure 6.13. XRD diffraction patterns from a polypropylene sample before (blue) and after (red) four 
seconds of treatment in a plasma cleaner. 
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planes altogether; however, as shown in Figure 6.14, the detected intensity for both of the largest 

responses was significantly diminished. Interestingly, the peaks had returned after 6 days, but a 

large amorphous halo also appeared. Retreatment with plasma had little to no effect on the aged 

polyethylene sample. 

6.4.2: Polymer Thin Films

Dr. Calchera observed interesting changes in the resonant response of polystyrene thin films 

after treatment in a plasma cleaner.10 I spent some time investigating how plasma treatment 

affected the nonresonant response from polymer thin films. The observed nonresonant behavior 

was quite confusing at the time. Figure 6.15 shows VSFG spectra from two polystyrene thin film

samples on polycrystalline stainless steel substrates. Both films were treated in the same part of 

the plasma cleaner for 1.23 s each. Both display the increase in resonant SFG signal that Dr. 

Calchera observed, but the nonresonant response from the sample in panel a went down, while 

the nonresonant response from the sample in panel b had a large increase in signal intensity. 

The data shown in Figure 6.16 may help explain this behavior. This was a polycarbonate thin 

film on a Si wafer substrate that was treated for 0.89 s. The nonresonant signal went down with 

the sample in one orientation, but up when the sample was rotated 90 . At this time we didn’t 

know that the azimuthal angle for Si(111) wafers affected nonresonant SFG signal, and didn’t 

distinguish between which cut of Si wafers were used for substrates. I suspect that the sample in 

Figure 6.16 may have been on a Si(111) wafer, which could account for the different responses

to plasma treatment at the two azimuthal angles. Although the nonresonant response from 

polycrystalline stainless steel plates, such as those used for substrates in Figure 6.15, does not 

vary with azimuthal angle, currents induced in the substrate by the cleaner’s RF field might be 

affected by the material texture, and thus be directionally dependent. With this in mind, looking 
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Figure 6.14. XRD diffraction patterns from a polyethylene sample before (blue) and after (red) one 
second of treatment in a plasma cleaner. The sample was then rescanned six days later before (green) and 
after (purple) being retreated in the plasma cleaner for one second. Note: small variations in peak 
locations and intensities may be due to inconsistencies in loading the samples.  
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Figure 6.15. VSFG spectra of two different polystyrene thin film samples on stainless steel substrates 
before (blue) and after (red) 1.23s of treatment in a plasma cleaner. All spectra were taken with 10% of 
the maximum nonresonant signal present.  
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Figure 6.16. VSFG spectra of a polycarbonate Lexan thin film on a silicon wafer substrate before (blue, 
red) and after (green, purple) 0.89s of treatment in a plasma cleaner. The red and purple spectra were 
taken with a 90 azimuthal angle difference from the blue and green spectra. All spectra were taken with 
10% of the maximum nonresonant signal present.



204 
 

into how polymer thin films respond to plasma cleaning, while noting the substrate type and 

orientation may be worthwhile. 

6.5: Conclusion

All of these projects have potential; however, I would like to highlight a few that seem 

particularly promising. Scanning samples while under load (section 6.2) has immense potential 

for a researcher that can make a substantial time commitment. So far as I am aware, this project 

is unique, and should generate a great deal of interest in materials communities. Also, once you 

have the system working for one type of material, scanning others should be relatively easy. This 

means that developing this one method should lead to several publications. 

For researchers looking for a 10-20 h/week project, I would recommend looking into how 

polycarbonate thin film absorption spectra change over time (section 6.3), and how plasma 

treatment changes the XRD patterns for bulk polymers (section 6.4.1). Both projects appear to be 

in areas where little work has been done and have the potential to generate publications. The 

polycarbonate aging project will need someone who can commit an hour or so a day, while the 

plasma project requires time blocks of 2-5 h.
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Appendices

A.1: Live-Pull Rotational Sample Mount Blueprints
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A.2 Matlab code for modeling in section 5.2.6.1

>> [x,z]= meshgrid(0:1:360, 0:1:360);

>> y=0

>> cccyxz = -((cosd(z)-cosd(3.*z))./8).*sind(2.*x);

>> ccc = cccxxz + cccyyz + cccxyz +cccyxz;

>> sym = ccc + aac;

>> surf(x,y,sym)

>> xlabel('Chi')

>> ylabel('Phi')

>> cccyyz = ((cosd(z)-cosd(3.*z))./8).*(1-cosd(2.*x));

>> cccxxz = ((cosd(z)-cosd(3.*z))./8).*(1+cosd(2.*x));

>> cccxyz = -((cosd(z)-cosd(3.*z))./8).*sind(2.*x);

>> cccyxz = -((cosd(z)-cosd(3.*z))./8).*sind(2.*x);

>> ccc = cccxxz + cccyyz + cccxyz +cccyxz;

>> aacyyz = cosd(z./2).*(1-cosd(2.*x).*cosd(2.*y))- ((cosd(z) - cosd(3.*z))./16).*(1-
cosd(2.*x)).*(1+cosd(2.*y))+ ((1+cosd(2.*z))./4).*sind(2.*x).*sind(2.*y);

>> aacxxz = cosd(z./2).*(1+cosd(2.*x).*cosd(2.*y))- ((cosd(z) -
cosd(3.*z))./16).*(1+cosd(2.*x)).*(1+cosd(2.*y))- ((1+cosd(2.*z))./4).*sind(2.*x).*sind(2.*y);

>> aacxyz = -cosd(z./2).*sind(2.*x).*cosd(2.*y)+((cosd(z)-cosd(3.*z))./16).*sind(2.*x).*(1+cosd(2.*y))-
((1+cosd(2.*z))./4).*cosd(2.*x).*cosd(2.*y);

>> aacyxz = aacxyz;

>> aac = aacyyz + aacxxz + aacyxz + aacxyz;

>> sym = ccc + aac;

>> surf(x,z,sym)


