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ABSTRACT 

Development and Use of Lipidomics and Proteomics Methods to Identify 
and Measure Pro-Survival Metabolic Pathways in Cancer 

Monique Merilyn Paré Speirs 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 

Throughout society’s continual war against cancer, we have attempted pharmacological 
intervention only to find that tumors develop modes of resistance. It is well known that genetics 
play an integral role in cancer. Technological advances have greatly improved our ability to 
study cancer biochemistry beyond the genome by measuring changes in the expression and 
activity of RNA, proteins, and lipids in experimental models and human patients. As our 
techniques and technology to perform cancer research progresses, it is becoming more evident 
that cancer cells develop stress tolerance mechanisms at multiple levels within the central 
dogma, including altering mRNA expression, enzyme concentrations, and functional activity of 
cellular proteins and lipids.  

In the first chapter, I review previous discoveries demonstrating the importance of 
metabolic reprogramming in cancer cells and how shifts in metabolic pathways contribute to 
cancer progression and therapeutic challenges. I discuss how mass spectrometry is a 
multifunctional research tool that can be used to identify global shifts in gene expression, 
identify oncogenic roles of specific metabolites and corresponding metabolic pathways, conduct 
enzyme activity assays, and understand the effects of drugs on cell signaling and metabolic flux 
through specific pathways. While metabolic reprogramming is a complex and multifaceted 
concept, the following chapters focus on two specific stress tolerance pathways of lipid and 
protein metabolism we have shown to significantly promote cancer cell evolution, proliferation, 
and drug resistance in models of human pancreatic and colon cancer. I describe novel mass 
spectrometry-based lipidomics and proteomics methods we developed to measure and determine 
the biological impact of these pathways in each model. I discuss the contributions we have made 
toward increasing general knowledge of metabolic reprogramming networks in cancer and how 
they may be targeted in more specific and effective manners to sensitize cancers to therapeutic 
drugs.  

Specifically, the second chapter entails our study of a pro-survival lipid metabolic 
pathway driven by the sphingolipid modifying enzyme sphingosine kinase in a panel of 
differentially reprogrammed pancreatic cancer subclones. The third chapter describes our novel 
kinetic proteomics approach to identify how the cellular degradation system autophagy is used to 
selectively remodel the proteome of colon tumor cells in a xenograft mouse model of colon 
cancer. Lastly, I discuss how these and other projects completed during my graduate work lay a 
foundation for ongoing research to further our fundamental understanding of cancer metabolism 
and treatment development. 

Keywords: foundational cancer research; metabolic reprogramming; clonal evolution; 
sphingolipid signaling; selective autophagy; mass spectrometry; kinetic proteomics 
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1. Introduction to metabolic reprogramming and omics methods for cancer research  

 

Metabolic reprogramming in cancer cells results from and enhances tolerance to intrinsic 

and environmental stress 

Cellular metabolism is defined as the process of catabolizing nutrients and building new 

components in order to maintain life. Cellular metabolism is made up of a complex network of 

enzyme mediated chemical reactions driven by intrinsic and environmental signals. Metabolic 

pathways are highly regulated at multiple checkpoints throughout the lifetime of a cell in order to 

maintain sufficient levels of energy and molecular material in healthy cells and either correct or 

dispose of potentially damaging cells 1. Shifts in the acquisition and metabolism of proteins, 

lipids, carbohydrates, and nucleic acids lead to changes in cellular phenotypes and behavior. 

Tumor cells commonly exhibit shifts metabolic pathways involved in bioenergetics, anabolism, 

and redox homeostasis 2. Corresponding regulatory systems are often used to achieve these 

metabolic modifications, allowing malignant cells to circumvent quality control checkpoints, 

divide, and proliferate uncontrollably 1.  

Regulatory and signaling molecules are commonly mutated in cancer cells due to both 

stochastic and conserved genetic aberrations such as single nucleotide polymorphisms (SNPs), 

translocations, amplifications and deletions 3. A number of non-genetic factors, such as 

epigenetic modifications to the DNA, interactions with neighboring tumor or benign cells, 

progressive stages of the tumor, cytotoxic stress, and nutrient availability have also been shown 

to influence cancer cell metabolism and behavior 2,4. In addition to the basic energy and 

biosynthetic needs of resting cells to maintain homeostasis, rapid proliferation imparts significant 

intracellular stress by dramatically increasing metabolic demands 5-7. Because each cell division 
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entails the doubling of cellular contents, cancer cells require continuous sources of carbohydrate, 

amino acid and fatty acid substrates to produce new DNA, RNA, proteins, and lipids 7,8. Cancer 

cells increase nutrient consumption and metabolic flux to promote de novo biosynthesis in order 

to enhance supply of metabolic intermediates 1. Elevated levels of biosynthesis and metabolism 

must be fueled by overactive ATP production which in turn leads to other significant sources of 

intracellular stress, including mitochondrial overuse and damage as well as high levels of 

cytosolic reactive oxygen species (ROS) 9.  

Cell stress levels are further heightened by pressures from the tumor microenvironment. 

Unlike normal cells, tumor cells are enclosed within a harsh, nutrient-poor microenvironment 

and must readily adapt to such conditions in order to survive. Due to reduced blood supply and 

increased metabolic activity of neighboring cells, tumor cells are subjected to hypoxia, depleted 

nutrient availability, and increased environmental ROS 8,10. In normal cells, oxidative and other 

cytotoxic stresses trigger pro-apoptotic signaling pathways 7,9. On the other hand, intrinsic and 

environmental stress promote pro-survival signaling cascades in cancer cells, allowing them to 

completely evade natural growth arrest signals 7,9. Cancer cells modify gene expression, 

signaling cascades, and multiple metabolic pathways to strategically acquire and utilize limited 

nutrients from the environment and even their own cellular material, enabling them to both 

maintain homeostasis and build new biomass for cell division.  

While regulatory tumor suppressor genes such as p53 are inactive in over 50% of patients 

due to loss of function mutations 11, cancer cells overexpress growth and transcription factors 

and/or their corresponding receptors such as transforming growth factor-β (TGFβ), c-MYC, 

insulin like growth factor (IGF), SREBP-1, and hypoxia inducible factor (HIF-1) 1,12. Growth 

and proinflammatory transcription factors have been shown to upregulate pro-growth signaling 
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cascades and machinery such as MAPK, the PI3K/Akt/mTOR axis, and Ras GTPases, which in 

turn activate metabolic pathways most essential for survival during nutrient stress, enabling 

cancer cells to bypass normal metabolic checkpoints for proliferation and apoptosis 7. 

 

Dynamic reprogramming of interconnected glucose, nucleic acid, lipid, and protein 

metabolic pathways enhances cancer cell viability and growth in unfavorable conditions 

Since the “Warburg Effect” was discovered nearly a century ago 13, the complexity of 

metabolic reprogramming and its effects on cancer cell evolution and behavior is increasingly 

evident. Warburg proposed that cancer cells upregulate uptake of glucose and flux through 

anaerobic glycolysis due to dysfunctional mitochondria 13. His discovery prompted an increased 

interest in cancer metabolism and inspired research endeavors beyond the level of the genome. 

Since then, various characteristics of pro-cancer metabolism have been identified. Prior to earlier 

beliefs, recent research indicates that increased glucose metabolism via glycolysis is not 

necessarily a fixed metabolic feature of cancer cells 14. When oxygen levels are limiting, HIF-1 

upregulates anaerobic glycolysis through PI3K/Akt signaling to boost ATP levels in highly 

proliferative cells 12. Since the pentose phosphate pathway branches from glycolysis, increased 

glycolytic flux also promotes production of ribose for DNA synthesis and NADPH required for 

scavenging ROS to maintain a reductive cellular environment 15. However, intermittent and 

staggered switching between anaerobic and mitochondrial oxidative phosphorylation in 

populations of slower cycling as well as highly proliferative cells throughout the tumor promotes 

overall tumor progression and metastasis 14. Indeed, high levels of aerobic oxidative 

phosphorylation and other mitochondrial metabolic processes such as the TCA cycle are required 

for tumor growth 2. 
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AKT stimulates de novo fatty acid synthesis and overexpression of Fatty Acid Synthase 

enzymes to support new membrane production during rapid cell division 16,17. Alternatively, 

when energy and acetyl-CoA levels are low, cancer cells have been shown to upregulate fatty-

acid oxidation; elevated levels of β-oxidation provide ATP as well as acetyl-CoA to accelerate 

citrate oxidation, a significant energy source for proliferating cells 18. Enzyme mediated shifts in 

the metabolism and concentrations of bioactive sphingolipids promotes proliferative signaling 

cascades that mediate stress tolerance and proliferation 19. 

Another common feature of cancer cells is increased metabolism of amino acids such as 

glutamine (glutaminolysis). Myc transcription factors promote expression of glutamine 

transporter proteins and glutaminase, leading to increased glutamine uptake and glutaminolysis 

12. Elevated glutaminolysis has been shown to promote pro-survival signaling and provides a 

nitrogen source for synthesizing new amino acids, proteins, and nucleic acids necessary for cell 

division 20,21. Meanwhile, elevated levels of HIF-1 promote glycine metabolism, an amino acid 

which serves a precursor for de novo purine synthesis 1. While extracellular soluble protein 

abundant in plasma and interstitial fluid is generally not utilized as a source of amino acids for 

cellular biosynthesis, Ras-transformed cells internalize extracellular proteins through large, 

heterogeneous vesicles called macropinosomes from which they recover free amino acids for 

new protein synthesis via lysosomal protein degradation 22. Cancer cells commonly upregulate 

cytosolic protein recycling via autophagy or “self-eating”; increased mTOR mediated autophagy 

flux promotes cell viability in nutrient poor conditions, perhaps by degrading excess proteins and 

organelles, thereby providing free amino acids for macromolecular synthesis 23,24. All in all, 

metabolic pathways are selectively coordinated in response to a variety of stress stimuli, enabling 

cancer cells to maintain survival and growth in an ever-changing microenvironment.  
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Metabolic reprogramming contributes to therapeutic challenges and provides 

opportunities for drug target discovery and treatment development 

Metabolic plasticity leads to complex clinical challenges such as inter- and intratumor 

heterogeneity and multidrug resistant phenotypes 25-27. Tumors are made up of a diverse range of 

cell types, including both cancerous cells and stromal cells like neurons, vascular endothelial 

cells, fibroblasts, and adipocytes 28. Even so, cellular heterogeneity is palpably present in pure 

tumor cell populations derived from a common tissue type (intertumor heterogeneity) and even 

in cancer cells derived from the exact same tumor (intratumor subclonal heterogeneity) 28. 

Indeed, no two tumors have been shown to exhibit matching genetic or metabolic aberration 

profiles 27,28.  

Peter Nowell was the first to formally recognize cancer as an evolutionary physiological 

process 29. His theory has repeatedly been validated by the identification of intratumor subclonal 

heterogeneity and evolutionary selection in many human cancers including pancreatic and 

colorectal 25,27,28,30,31. The hierarchical model of cancer stem-like cells (CSCs) is often used to 

explain tumor heterogeneity 32. CSCs display stem-cell like phenotypes such as plasticity in the 

transition between resting (G0 phase) and proliferative (S phase) states, thereby providing both 

transient amplifying cells and differentiated non-CSCs used to establish the basis of the tumor 

28,32. Recent research indicates that metabolic reprogramming is vital for CSCs to retain self-

renewal potential and adapt to stressful stimuli including chemotherapy 28.  

Chemotherapy currently remains the first line of defense for most tumor types 1. 

Conventional chemotherapeutic drugs such as alkylating agents and nucleoside analogs act by 

interfering with DNA integrity and/or synthesis in all cells they come into contact with, thereby 

inhibiting the cell cycle and proliferation 1. Treatment failures commonly result due to 
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acquired/adaptive drug resistance 1,28, which is currently among the greatest challenges in cancer 

treatment 14 and contributes to high patient mortality rates 1. Radiation and chemotherapeutics 

themselves act as potent sources of cytotoxic stress and can therefore heighten defense 

mechanisms or trigger alternative metabolic stress tolerance mechanisms in cancer cells 26,33,34. 

This greatly limits the clinical value of current therapeutic approaches and the ability to predict 

treatment outcomes 27. The fact that previously and newly established cells throughout the 

architecture of the tumor differentially adapt their metabolism in response to genotoxic stress 

introduces major challenges for precision cancer medicine 27,28. Indeed, metabolic heterogeneity 

underlies the failure to achieve a global therapeutic effect on the tumor using conventional 

chemotherapeutic approaches 28. 

Chemotherapy induced genotoxic stress promotes the adaptive CSC phenotype and 

reprogramming of specific metabolic pathways in both cancer and surrounding cells 1. Shifts in 

mitochondrial, protein, and lipid metabolism throughout the tumor have been shown to boost 

energy levels and promote metabolic mechanisms of chemoresistance 1,28. Increased expression 

of genes that regulate mitochondrial function, autophagy mediated protein degradation, lysosome 

degradation, and mitochondrial respiration have been reported as important features of pro-

survival metabolism in chemoresistant CSCs 28,35. In addition, hierarchal metabolic heterogeneity 

throughout the tumor enables metabolic symbiosis between neighboring cells, further enhancing 

adaptation to cytotoxic changes in the microenvironment during chemotherapy 28. For example, 

epithelial cancer cells have been shown to induce a “reverse” Warburg effect in surrounding 

fibroblasts, causing them to adopt a “pseudo-hypoxic” state and generate abundant levels of 

lactate 36. This allows neighboring cancer cells to remain fully oxygenated and continue to 
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produce high levels of ATP and metabolic intermediates by feeding off the mitochondrial fuel 

lactate produced by surrounding fibroblasts 36.  

CSCs in colon and pancreatic tumors displaying increased levels of de novo fatty acid and 

cholesterol synthesis as well as increased uptake of exogenous lipids and lipoproteins are highly 

resistant to chemotherapy 5. Ovarian cancer cells under genotoxic stress have been shown to 

readily take up free fatty acids released by neighboring adipocytes to use as an abundant 

source of ATP, promoting bioenergetics and chemoresistance 5. Increased production of 

bioactive lipid metabolites such as sphingosine-1-phosphate (S1P) enhances resistance to 

cytotoxic drugs and radiation while suppression of S1P signaling sensitizes various cancer cell 

models to apoptosis 19. These types of metabolic adaptations to chemotherapy make it very 

difficult to predict treatment outcomes and achieve long-lasting effects in aggressive tumors 1,27.  

Another disadvantage of conventional treatments is that chemotherapeutics are systemically 

toxic, lack specificity for cancer tissue, and are accordingly associated with debilitating side 

effects 1. Current research efforts are geared toward developing more potent and tumor-specific 

treatment regimes in order to enhance cytotoxic effects in the tumor while minimizing 

chemotherapy dosages and off target effects. For example, combinatorial treatments whereby 

multiple drugs with different molecular targets are being used more commonly in attempt to 

reduce clonal selection and enhance global effects of the treatment across heterogeneous tumors 

1. Anti-cancer drug combinations include both conventional chemotherapeutics as well as newly 

identified, more targeted drugs that suppress growth factors, cell surface receptors, and enzymes 

involved in pro-survival signaling 37,38. Because metabolic reprogramming is such a critical 

response to cytotoxic stress in cancer, cancer metabolism has emerged as a promising drug target 

in recent years 1.  Altered metabolic pathways may suggest novel therapeutic targets for 
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combination drugs to enhance treatment specificity and destabilize metabolic mechanisms of 

chemoresistance 1.  

 

Mass spectrometry can be used to identify metabolic pathways and drug targets in cancer 

The transition from a normal to a cancer cell is not caused by a single event. The reason 

cancer research and treatment is so challenging is because numerous cellular pathways made up 

of thousands of genes and metabolites are systematically altered to achieve a cancerous 

phenotype. DNA sequencing technology has facilitated the identification of genetic mutations 

that contribute to pathways underlying cancer pathogenesis and genetic evolution 39. However, 

DNA sequencing provides limited information about changes in gene expression caused by 

epigenetic and metabolic reprogramming events, which can play equally important roles in 

cancer pathogenesis and drug resistance 1,4,5,26,28,40. Therefore, a holistic or systems biology 

approach that can measure multiple pathways of gene expression at a time is necessary to 

increase understanding of key pathways amid the unique biochemical context of a given cancer 

cell population 1,40,41. 

 Analytical techniques such as RNA-Sequencing and mass spectrometry (MS) can be used to 

simultaneously quantify thousands of different molecules in a single biological sample 1. Such 

techniques are recognized as a field of systems biology known as high-throughput omics 

technologies 41. Omics experiments made up of a combination of “wet” and “dry” lab 

experiments 1 can be used to identify and measure up to thousands of mRNA molecules 

(transcriptomics), proteins (proteomics), and lipids (lipidomics) throughout the cell. The wet lab 

experiments carried out for my research followed a consistent strategy: 1) apply treatments to 

experimental groups, 2) extract and purify cellular molecules of interest, e.g. RNA, proteins, or 
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lipids, and 3) acquire high-throughput data by running samples on an analytical instrument such 

as a gene sequencing system or a mass spectrometer using an acquisition method appropriate for 

the desired results.  

Wet lab protocols are followed by dry experiments, which involve multiple data analysis 

steps that typically make up the bulk of the work, though can be made more efficient with the 

assistance of computational and mathematical tools. Omics data analysis for my research was 

made up of three phases: 1) use computational tool to convert high throughput data into 

interpretable terms, e.g. assign protein or lipid identities to raw mass spectral signals by 

comparing raw data to proteomics/lipidomics databases, 2) establish statistical filters, perform a 

quality control check, and remove data that do not meet statistical criteria, 3) normalize data to 

total signal or internal standards, 4) perform literature search to generate hypotheses and identify 

potential pathways of significance, 5) use bioinformatics tools to categorize molecules into 

functional groups or pathways, 6) implement statistical tests to compare pathways and 

compounds of interest between different experimental groups 7) interpret results and infer 

biological significance of altered pathways and/or biochemical effects of treatments (Figure 1-

1). 
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Figure 1-1 General workflow used to conduct omics experiments throughout my graduate 
research.  

Moreover, mass spectrometry facilitates proteomics and lipidomics experiments by 

measuring the mass, charge, and intensities of a diverse range of analytes extracted from cell and 

tissue samples, providing data that can be used to identify and measure the relative 

concentrations of proteins produced by genes and a diverse range of lipid species produced and 

expressed in a given cancer model 1,41. Quantitative proteomics and lipidomics data can thus be 

used generate vast protein/lipid concentration profiles or “signatures” of experimental groups, 

providing information about global differences in macromolecular expression and metabolism 

between healthy and cancerous cells types or groups treated with a drug versus controls 1. As 

mentioned above, global data can be further analyzed using bioinformatics techniques to identify 

specific metabolic and signaling pathways that may be modified depending on cell type or 

treatment 42,43.  

Proteomics and lipidomics methods can also be performed in a targeted manner to identify 

and measure specific metabolites of interest as well as determine whether they are present or 



11 
 

absent in a particular sample or have increased or decreased in concentration in response to a 

certain stimulus such as chemotherapy or enzyme inhibition. In this way, proteomics and 

lipidomics techniques can be used as a tool to conduct enzyme and drug activity assays and 

determine the effects of such stresses on specific compounds and metabolic reactions or 

pathways. Specific changes can then be compared to global shifts in the lipidome or proteome to 

infer the targeted and general biological effects of a drug on an organism. In recent years, MS 

technologies have become increasingly sensitive and recently provided a means to measure in 

vitro and in vivo metabolic flux in cell culture and animal models treated with dietary heavy 

isotopes such as 13C amino acids or heavy water (D2O) that serve as metabolic tracers as they are 

incorporated into proteins via protein synthesis 44-49. Mass spectrometry is then used to measure 

rate of isotope incorporation into each protein over time, which serves as a metric of protein 

turnover 44. This method is referred to as kinetic proteomics and when combined with 

quantitative data provides information about how the synthesis and degradation rates of specific 

proteins and cellular structures are modified by a certain treatment. 

 Despite being at an early stage relative to other biochemistry techniques, quantitative and 

kinetic omics studies have already provided insight into disease related metabolic mechanisms, 

paving the way for drug target discovery 1,48-52. Novel applications of systems biology facilitated 

by continually improving analytical instruments can be used to generate robust transcriptomic, 

proteomic and lipidomic data that provide key insight into previously discovered and novel 

metabolic and drug resistance mechanisms in cancer 1. The use of mass spectrometry in studying 

cancer evolution and metabolism is expected to significantly improve our understanding and 

ability to treat patients with aggressive, heterogeneous, and drug resistant tumors 1,27.  
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My contributions toward improving omics applications and understanding mechanisms of 

pro-survival metabolism in cancer 

My graduate work merges the two emerging fields of cancer metabolism and systems 

biology. My studies integrated large scale ‘omics’ technologies as well as traditional 

biochemistry techniques to study manifestations of cellular metabolic reprogramming in models 

of pancreatic and colon cancer.  Some of this work is finalized and compiled in Chapters 2-3, 

respectively entitled “Sphingosine kinase 1 signaling is maintained as a core proponent of a 

cancerous phenotype in spite of metabolic pressure and epigenetic drift” and “Autophagy targets 

mitochondria specifically in tumors, but not the liver of HCT116 xenograft mice”.   As shown in 

these chapters, the overall focus of my graduate work has been to investigate how modified 

metabolic pathways contribute to the aggressive and drug resistant natures of cancer. Both 

studies suggest ways to sensitize metabolically dynamic cancer cells to drug treatment and 

improve specificity of cytotoxic treatments toward malignant cells, providing promising ways to 

destabilize pro-survival metabolism in tumor tissue while minimizing off target effects in 

surrounding healthy cells. Each study highlighted an emerging concept of cutting-edge cancer 

metabolism research, including sphingolipid signaling and autophagy. 

Previous research has shown that nongenetic switching between phenotypes and stress 

induced “stemness” are fundamental characteristics of cancer cells that severely reduces the 

predictability of treatment outcomes, enhances tumor heterogeneity, and promotes drug 

resistance pathways in pancreatic adenocarcinoma (PDAC) 25,27,53. The aims of my first project 

(Chapter 2) were to identify pro-survival metabolic and signaling pathways of significance 

among differentially reprogrammed subclones of PDAC from a common genetic origin. Four 

isolated cancer subcultures were exposed to the basal or new dietary conditions to encourage 



13 
 

differential reprogramming of metabolic and/or stress signaling pathways. We used multiple 

techniques including RNA-Seq, STR and SNP analyses, quantitative proteomics, lipidomics, and 

cell behavior assays to compare the genomic and phenotypic profiles of the PDAC subclones to 

one another and relative to a healthy immortalized control cell line.  

One of the major challenges of this study was to develop a method that consistently and 

accurately measured the concentrations of two lipid targets of interest, C16 Ceramide 

(d18:1/16:0) and S1P (d18:1) along with the remainder of the lipidome. We were interested in 

these two lipids above others due to their apparent roles in cell-fate signaling in various models 

of cancer 19,54-57. Ceramides are often considered pro-death signals due to multiple potential 

functions in inducing apoptosis and senescence in many different experimental systems 58,59. On 

the other hand, S1P promotes optimal cell growth in response to growth factors and contributes 

to various processes including angiogenesis, stress response, suppression of apoptosis, and cell 

motility that altogether promote cancer cell survival and proliferation 19.  

One of the benefits and challenges of mass spectrometry is its ability to identify specific 

lipid structures in complex mixtures such as whole cell lysates. The ability to distinguish one 

lipid type from another is very important and has introduced significant challenges for research 

because lipids with high structural similarity that appear similar on a mass spectrum can play 

very different roles in vivo. For example, hundreds of different ceramide species are expressed in 

a given cell; ceramide production and biological activities are heavily determined by the length 

of their fatty acid chain 59. Long-chain ceramides (C14:0-C20:0) for instance, tend to be linked 

with apoptotic processes whereas some very-long-chain ceramides (C22:0-C26:0) have been 

shown to play pro-proliferative roles 59. Advances in MS technology are promoting studies to 

determine exactly how the functions of specific bioactive ceramides with different chain lengths 
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differ in the cell. Thus far, most studies agree that intracellular accumulation of C16 Ceramide 

(C16 Cer) promotes apoptosis 57,59-62.  

As another important example, some research suggests sphingosine (d18:1) may serve as 

a key physiological regulator by inhibiting protein kinase C and inducing cell-cycle arrest 63. A 

simple addition of a phosphate group to sphingosine by the enzyme Sphingosine Kinase 1 (SK1) 

leads to S1P formation, which as previously mentioned is firmly established as an anti-apoptotic 

signal that promotes cancer survival and growth 19,56,63-70. Although the challenge of 

distinguishing between the structures and functions of architecturally similar sphingolipids 

remains quite pertinent, liquid chromatography (LC) coupled to tandem mass spectrometry 

(MS/MS) has evolved to become the method of choice for identifying and quantifying 

sphingolipid metabolites in biological samples due to its high sensitivity and specificity 71. 

Certain lipids including our targets of interest C16 Cer and S1P were difficult to detect 

and quantify due to biological factors such as low abundance relative to other lipid species in 

complex samples, as well as experimental complications such as pressure issues, sample 

carryover, poor chromatography, uninterpretable fragmentation patterns, data analysis 

inefficiency, low signal/noise levels, insufficient instrument sensitivity, and inability to mobilize 

lipid targets via electrospray ionization (ESI). After troubleshooting each one of these issues 

using multiple chromatography columns, buffer combinations, elution gradients, sample 

preparation techniques, acquisition methods, ESI source parameters, and mass spectrometers on 

campus and at the University of Utah Metabolomics and Proteomics Core Facility 72 and with 

much guidance from Dr. John C. Price at BYU and Dr. John Alan Maschek at the U of U, I came 

up with reverse phase (RP) LC-MS/MS lipidomics and targeted techniques to quantify the global 

lipidome along with consistent and accurate measurements of both sphingolipid targets using 
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deuterated internal standards (C16 Cer-d7 and S1P-d7). In addition, I used the S1P/C16 Cer 

targeted RP-LC-MS/MS techniques to carry out a novel method of measuring SK1 metabolic 

activity by comparing between the concentrations of S1P and C16 Cer in each cell group treated 

with a selective inhibitor of SK1 relative to vehicle controls. 

The lipidomics RP-LC-MS/MS method, sample preparation protocol, and data analysis 

workflows I established during this study are now being used as the standard method of choice 

for analyzing lipid samples in the BYU Mass Spectrometry Core Facility under the direction of 

Dr. Daniel Mortensen. These techniques are helping students in the Price lab and throughout the 

Chemistry and Life Science Departments study lipid biochemistry in aging and disease models. 

While kinetic proteomics studies have been performed by multiple research groups 44-47,49,50,52,73, 

increased instrument sensitivity and improved data analysis tools underway in our lab are 

making kinetic lipidomics a possibility. Students in the Price lab are currently using my 

quantitative lipidomics methods along with our metabolic-labeling tools 44 as a basis to measure 

lipid turnover in cells and tissue models of cancer and Alzheimer’s.  

While the wet lab experiments and LC-MS method development steps required 

significant amounts of careful work at the lab bench and in various MS facilities, the bulk of my 

time was spent on data analysis. For example, I went through each MS-1 and MS/MS spectra of 

our targeted LC-MS data by hand to verify the quality of the chromatography and fragmentation 

patterns of each lipid target relative to their corresponding internal standards. Another major 

challenge of the pancreatic cancer study was integrating the data from our multiple omics 

analyses and cell based assays to determine the physiological significance of the molecular 

differences observed between groups. Remarkably, global and targeted data from each assay 
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pointed toward SK1 as an important driver of cancerous behaviors in the PDAC subclones, 

including rapid proliferation and defense against mitochondria mediated apoptosis.  

The genomic aberration, transcriptomic, proteomic, and lipidomic profiles of all of the 

cancer groups were significantly perturbed relative to the healthy control, indicating that PDAC 

cells alter gene sequence and expression at multiple levels to promote the cancer phenotype. 

Although the cancer subclones were confirmed as isogenic, they exhibited significant differences 

in sensitivity to anti-cancer drugs. This seems to be due to a shift in signaling S1P/C16 Cer 

metabolism conserved across all four phenotypically disturbed cancer subclones. The 

concentration of pro-survival S1P relative to its pro-apoptotic metabolic precursor C16 Cer was 

elevated to different extents in each subclone relative to the healthy control. Moreover, each 

subclone exhibited variations in expression and MAPK1 mediated phospho-activation levels of 

SK1. Selective SK1 inhibition was sufficient to normalize growth rates relative to the slower 

growing healthy control and sensitized all four cancer subclones to drug-induced apoptosis. The 

results of this study indicate that omics techniques can not only be used to identify oncogenic 

roles of specific lipids and corresponding metabolic pathways and regulatory proteins, but also 

serves as a tool to conduct enzyme activity assays. My work expounds on previous research by 

increasing understanding of how bioactive sphingolipids are regulated epigenetically to enhance 

stress resistance and proliferation of heterogeneous PDAC subclones and how SK1 may be used 

as a cancer cell-specific drug target to improve treatment efficacy in metabolically adaptive 

cancers. 

 The purpose of my second project (Chapter 3) was to develop and utilize a kinetic 

proteomics method to increase understanding of how autophagy is used to promote metabolism 

and viability in cell and animal models of cancer. Autophagy is the process by which portions of 
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the cytosol are encapsulated within membrane-bound vesicles called autophagosomes and 

delivered to lysosomes for destruction 74. Cancer cells exhibit increased autophagy-driven 

turnover of the cellular proteome and this increase is linked to stress tolerance and 

chemoresistance 74-76. Chloroquine (CQ) is a nonselective autophagy inhibitor that functions by 

suppressing lysosomal activity which stalls degradation of autophagosomes 77,78. CQ is a 

potential anti-cancer agent because it reduces cancer cell proliferation and sensitizes cancer 

models to chemotherapy 77,78. However, surrounding healthy tissues that depend on autophagy 

and lysosomal activity for natural mechanisms of protein homeostasis may be sensitive to CQ 

and damaged by combined chemotherapy 78. The beneficial contribution of autophagy to cancer 

and the cytosolic substrates of consequence are unknown 23. In normal cells, autophagy is a 

nonselective bulk degradation system used to tolerate nutrient starvation 74. A growing body of 

work suggests that autophagy also selectively clears specific proteins75,79,80[75, 79, 80][75, 79, 

80][75, 79, 80][75, 79, 80][75, 79, 80][75, 79, 80][75, 79, 80][75, 79, 80](Johansen and Lamark 

2011, Mathew, Khor et al. 2014, Mathew and White 2015) in response to certain stress stimuli 74-

76,79,81,82. Identifying whether autophagy is selective for specific proteins and organelles is crucial 

to understand how autophagy provides a metabolic advantage in cancer and may be used as a 

more selective drug target 23. 

Targeting pathways of cancer cell autophagy rather than nonspecific autophagy may 

facilitate more selective tumor inhibition, yet remains to be explored, in part due to the challenge 

of measuring this highly dynamic process in vivo 83. I used a novel application of mass 

spectrometry-based metabolic flux experiments to investigate substrate selection in the tumor. 

Specifically, I employed kinetic proteomics techniques to measure changes in the concentrations 

and turnover rates of hundreds of different protein types in tumor and healthy tissues derived 



18 
 

from a xenograft mouse model treated with CQ. Each group was also exposed to a low 

percentage of dietary D2O, which allowed us to monitor the incorporation of heavy isotopes into 

proteins over time via LC-MS and calculate changes in protein turnover rates resulting from 

autophagy inhibition.  

Multiple sample preparation techniques and analytical instruments were used to 

maximize the breadth and accuracy of our kinetic and quantitative data. In the process, I 

developed protocols new to our lab using methods introduced by recent scientific literature as a 

basis to isolate cytosolic and mitochondria enriched fractions using density-gradient 

centrifugation on a sucrose cushion 84 and implement an MS sample preparation technique using 

a stable isotope dimethyl label for each protein in the sample, which ultimately provides more 

accurate quantitative proteomics data compared to standard label-free methods 85. The MS 

preparation protocol I created using dimethyl labeling has been used for other proteomics 

research projects in my lab and as a part of the CHEM 584/586 teaching curriculum. I also 

carried out immunofluorescence experiments to detect changes in the concentrations of 

autophagy markers caused by drug-induced shifts in autophagy flux in both tumor and healthy 

tissues. As in my first study, the data analysis portion of this project entailed the bulk of the 

work. I performed an extensive ontology analysis by matching protein identifications from the 

kinetic and quantitative data sets with multiple databases to accurately categorize autophagy 

substrates based on function and subcellular location. Lastly, I performed statistical tests to 

compare turnover rates and concentrations of the global proteome as well as specific autophagy 

substrates in CQ treated tissues versus corresponding vehicle controls. 

These assays showed that pharmacological autophagy inhibition significantly reduced 

CRC cell growth and sensitized cells to chemotherapy. Short-term CQ treatment also reduced 
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tumor and healthy liver cell proliferation in the xenograft mice and increased the concentrations 

and turnover rates of drug metabolism enzymes. These results indicate that autophagy enhances 

cancer cell viability and growth and that CQ mediated inhibition of autophagy has cytotoxic 

effects on both cancer and healthy surrounding tissues. CQ treatment significantly reduced 

global protein turnover and concentrations in the tumor. The turnover rates of mitochondrial 

proteins were significantly more sensitive to autophagy inhibition relative to other autophagic 

substrates and the only substrate that significantly increased in concentration relative to the 

global proteome. This suggests that autophagy plays an important role in controlling the turnover 

of mitochondrial proteins relative to the global proteome and other autophagic substrates in CRC 

tumor cells, a phenomenon known as mitophagy 81.  

In the liver, CQ slightly reduced global protein turnover and significantly increased 

global protein concentrations. Unlike the tumor, the decrease in average turnover rate of 

mitochondrial proteins was much like the global proteome and other autophagic substrates in the 

liver. Ribosomal proteins displayed the greatest decrease in turnover relative to other autophagy 

substrates and increased in concentration, suggesting that the ribosome may be selectively 

targeted by autophagy under basal conditions in the liver as opposed to the mitochondria in the 

tumor. In addition, the fold increase in mitochondrial protein concentrations was significantly 

lower relative to the global lipidome after CQ treatment, suggesting that both synthesis and 

degradation of the mitochondria in the liver were suppressed by the cytotoxic effects of CQ. This 

study represents a novel application of kinetic proteomics techniques to measure the effects of 

pharmacological suppression of autophagy flux on the global proteome and specific substrates 

selectively degraded by the autophagy pathway. At the same time, this study contributes to 
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cancer metabolism research by increasing understanding of how autophagy is used to remodel 

the proteome in cancer cells relative to healthy tissues.  

Autophagy is a promising yet risky drug target due to its roles in proteome quality control 

and maintenance in both healthy and cancerous tissues in experimental models as well as 

humans. My study suggests that targeting mitophagy rather than nonspecific autophagy may 

facilitate more selective tumor inhibition and reduce side effects in surrounding cells. Moreover, 

the D2O based metabolic labeling technique I used to measure autophagy flux in this study can 

potentially be implemented in human subjects. D2O is a safe and cost-effective metabolic label 

that can be used to measure protein turnover in human tissue specimens such as plasma much 

like in experimental models 47. Immense progress is being made by my lab and in other groups to 

further develop data analysis methods that will facilitate kinetic proteomics studies in human 

subjects. Integration of omics technology and cancer medicine is becoming increasingly 

prevalent through the development of mass spectrometers intended for use in clinical settings 86. 

I demonstrated a novel and relatively efficient analytical technique that has immense potential 

for applications in human cancer patients. D2O-based kinetic proteomics may serve as a sensitive 

and efficient way to monitor drug induced changes in the flux and functions of specific 

metabolic pathways, potentially leading to personalized clinical information to improve the 

precision of diagnostic and treatment strategies 86. 
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2. Sphingosine kinase 1 signaling is maintained as a core proponent of a cancerous 

phenotype in spite of metabolic pressure and epigenetic drift 

 

Chapter Summary 

This chapter is the extended manuscript of our multi-omics study of a panel of 

metabolically reprogrammed human pancreatic cancer cells. It was submitted to Oncotarget 

in September 2018 and was accepted for publication in November 2018. 
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ABSTRACT 

Motivation 

Rapid proliferation and microenvironmental stresses promote random and selective shifts 

in cell signaling cascades. Subpopulations derived from a single cancer cell can exhibit distinct 

phenotypes while conserving vital pro-survival pathways. We aimed to identify significant 
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drivers of cell-fate in pancreatic adenocarcinoma (PDAC) by subculturing in standard or new 

growth conditions to encourage differential metabolic reprogramming.  

 

Results 

The genetic and phenotypic expression profiles of each subclone were analyzed relative 

to a healthy control cell line (hTert-HPNE). The subclones exhibited distinct variations in gene 

expression and lipid metabolism. We observed, relative to hTert-HPNE, PSN-1 subclones 

uniformly maintained modified sphingolipid signaling and specifically retained elevated 

sphingosine-1-phosphate (S1P) to C16 ceramide (C16 Cer) ratios.  Each clone utilized a different 

perturbation to this pathway, but maintained this perturbed signaling to preserve the cancerous 

phenotypes of rapid proliferation and defense against mitochondria-mediated apoptosis. 

Although the subclones were unique in their sensitivity, inhibition of the kinase that makes S1P 

(sphingosine kinase, SK1) significantly reduced the ratio of S1P/C16 Cer, slowed proliferation, 

and enhanced sensitivity to apoptotic signals. This reliance on S1P signaling identifies this 

pathway and SK1 specifically as a potential drug-sensitizing target that may be used to normalize 

S1P/C16 Cer metabolism consistently across uniquely reprogrammed PDAC clones. 

 

Data Availability 

All supplemental databases from this study are available on the Price Lab research 

network drive and will also be included online upon publication of the manuscript. Raw data are 

stored on the Price lab Synology data repository. 
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INTRODUCTION  

Cancer development is a highly dynamic biochemical process driven by both neutral 

evolution and natural selection 30. Due to the combined influences of stochastic and selective 

factors like genetic instability and metabolic stress, a single originating cancer cell can give rise 

to heterogeneous clonal populations with distinct genetic and/or phenotypic profiles 87. Inter- and 

intra-tumor heterogeneity introduces major clinical challenges by enhancing drug resistance and 

limiting the predictability of cancer prognosis 8,10,27. Alternatively, multiple subclones may 

exhibit parallel evolution, whereby specific adaptations or pro-cancer pathways are selectively 

maintained amid other complex changes displayed throughout tumor progression 31. These 

conserved pro-cancer pathways provide a degree of evolutionary predictability 27, potentially 

serving as ubiquitous drug targets among heterogeneous cancer subclones 33,88. Predicting which 

pathways are retained so that subclones will consistently respond to treatments versus those that 

are modifiable remains limited in most tumor types 27.  

Pancreatic ductal adenocarcinoma (PDAC) is an unusually aggressive form of cancer 

displaying frequent, severe levels of inter- and intra-tumor heterogeneity driven by successive 

genetic and epigenetic modifications in early and metastatic stages 25. Chemotherapy is effective 

in some patients, but most tumors develop resistance mechanisms and efforts to improve 

standard chemotherapeutic procedures have failed clinical trials 89. An increased foundational 

understanding of the conserved pathways during PDAC cell evolution at the genomic, 

transcriptomic, and metabolic levels will pave the way for novel therapeutic opportunities 25. 

One potentially conserved pathway is the balance between pro-survival versus pro-

apoptotic signaling metabolites within and directly surrounding the cancer cell. These signals 

largely determine whether a cell is sensitive or resistant to anti-cancer drugs and has the potential 
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of giving rise to drug resistant clonal populations 90. Investigating changes in the expression and 

metabolism of signaling lipids and the resulting effects on cell behavior is an important area of 

cancer research 91. A growing body of work reveals that deregulation of lipid metabolism (both 

structural and signaling lipids) may be one of the most definitive metabolic hallmarks of cancer, 

presenting powerful targets for therapeutic intervention 5,17,42,91-96. The energy storage, structural, 

and cell signaling functions of lipids are fundamental components of proliferation, 

differentiation, autophagy, angiogenesis, and apoptotic processes 91,94,97,98. In response to 

metabolic stress, the structural, bio-energetic and signaling roles of lipids can be coopted to 

support cancerous phenotypes (Figure 2-1). For example, rapidly proliferating cancer cells 

activate glycerophospholipid anabolism to provide structural building blocks for new plasma 

membrane to support rapid cell division 99. Nutrient deprivation in the tumor microenvironment 

triggers oxidation of fatty acid stores to replenish ATP levels, promoting metabolism throughout 

various stages of tumor growth and progression 98. Deregulation of lipid metabolic and signaling 

networks is an absolute requirement for cancer cells to thrive and proliferate 91, yet little is 

known about the details of such pathways and how they can be controlled in metabolically 

dynamic PDAC cells. 
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Figure 2-1 General localization of lipids and cancer-promoting roles in the cell. At the top and 
bottom of this figure each lipid category/family is given a corresponding number (1–8) and brief 
description concerning their general involvement in supporting cancerous phenotypes. The major 
subcellular components have been labeled and the lipid families known to be found at each 
subcellular component have been listed through their corresponding numbers. The location and 
function of individual lipid species may change as the cell responds and adapts to stress. 
 

Cancer-promoting changes in lipid utilization and signaling are often traced back to the 

enzymes that metabolize them 16,17,94,100-102. Altered expression and/or regulation of lipid 

modifying enzymes can drive pro-cancer lipid metabolism and signaling. In many tumor types, 

mRNA and protein expression of Fatty Acid Synthase (FASN) are activated to fuel demands for 

de novo lipid synthesis in support of new membrane formation and energy production 16,103. 

FASN and other lipid-modifying enzymes are involved in complex molecular networks 

including both signaling and non-effector metabolites with multiple points of interplay between 
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complimentary and competing signals. Though many substrates within these networks are 

structurally similar, even small modifications to a given lipid can impose vastly different 

physiological effects 92. For example, although cholesterol variants like cortisol and aldosterone 

differ only by the position of an oxygen atom and a proton, the first promotes gluconeogenesis 

and anti-inflammatory processes, while the latter triggers sodium reabsorption and increased 

blood pressure 104. Small changes in the expression or activity of a key lipid-modifying enzyme 

can lead to imbalances in inter- and extracellular lipid species leading to drastic metabolic 

disorders like cancer 105. 

Recent literature indicates that dysregulated signaling through bioactive sphingolipids 

shifts the balance between pro-growth versus pro-death pathways in cancer cells 5,55,91,106. Two 

interconvertible sphingolipid signals, ceramide and sphingosine-1-phosphate (S1P) play 

opposing roles in cancer cell fate 5,19,107-109 (Figure 2-2). Ceramide is metabolized to form S1P in 

two enzymatic steps: deacylation followed by ATP-dependent phosphorylation by Sphingosine 

Kinase. At basal levels, ceramide is continuously recycled from S1P by the reverse of these two 

reactions. The ceramide salvage pathway can also be signal-mediated to alter endogenous 

ceramide concentrations relative to S1P to promote stress tolerance 19. Current research indicates 

that C16 Ceramide (Cer(d18:1/16:0)) (Figure 2-2) is a potent pro-apoptotic signal, stimulating 

anti-proliferative responses like cell cycle arrest, tumor suppression, and cell senescence59-61,110. 

Alternatively, S1P acts as a pro-survival signal by promoting stress tolerance, cell motility, 

angiogenesis, and optimal cell proliferation rates induced by growth factors 91,111. Although 

endogenous S1P is generally less abundant than ceramide, it is highly mobile and suppresses 

ceramide-induced apoptotic phenotypes including intra-nucleosomal DNA fragmentation and 

altered cell morphology 64. These findings by Cuvillier et al. led to the birth of the term 



28 
 

“sphingolipid rheostat” which is used to describe the interplay between competing ceramide and 

S1P signals and the resulting effects on cell fate 19,64.  

While several enzymes are involved in the synthesis, degradation, and turnover of C16 

Cer and S1P (Figure 2-2), recent literature suggests that Sphingosine Kinase 1 (SK1) plays a 

central role in regulating the sphingolipid rheostat in many forms of cancer 112-120. 

Overexpression and/or upregulation of SK1 have been reported in a wide range of tumor types, 

including breast, colon, lung, ovarian, kidney, and rectal tumors 119. Elevated SK1 activity is 

linked to tumor angiogenesis and progression as well as resistance to radiation and chemotherapy 

119. Therefore, SK1 may serve as a powerful drug target to re-regulate the sphingolipid rheostat 

and restore a healthy balance between pro- and anti-apoptotic signals in drug resistant cancers. 
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Figure 2-2 Structures and metabolism of pro-apoptotic C16 Cer and pro-survival S1P. 
Ceramides result from the breakdown of more complex sphingolipids like sphingomyelins and 
glycosphingolipids or is biosynthesized de novo from serine and palmitoyl-CoA (C16 Cer shown 
in red box). Ceramidase catalyzes the de-acylation of Ceramide to form sphingosine. Sphingosine 
Kinase phosphorylates sphingosine in an ATP-dependent manner to generate S1P (shown in blue 
box). S1P is removed from the sphingolipid metabolism pathway when it is degraded by S1P Lyase, 
yielding precursors for phospholipid synthesis (hexadecenol and phosphoethanolamine). 
Ceramide can be recycled via S1P phosphatase-catalyzed dephosphorylation of S1P to reform 
sphingosine, which is acylated by Ceramide Synthase (CerS) to reform ceramide. The chain length 
of the resulting ceramide depends on the type of CerS that acts on sphingosine, e.g. CerS5 
produces C16 Cer from sphingosine. C16 Cer promotes cell cycle arrest and apoptosis while S1P 
stimulates pro-survival and pro-proliferative signaling cascades.  

 

Here, we sought to explore cancer cell evolution and identify conserved pathways among 

differentially evolved clonal populations that underlie the aggressive and drug-resistant nature of 

PDAC. We developed a panel of phenotypically heterogeneous human PDAC cell populations 

from the same genetic origin (PSN-1) 121 to investigate how stochastic factors and micro-
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environmental pressures promote common and differential evolutionary paths in pancreatic 

cancer (Figure 2-3). The original PSN-1 stock was split into four isolated subcultures: psn1-A 

(pA), psn1-B (pB), psn1-C (pC), and psn1-D (pD). The pA and pC groups were passaged in the 

baseline growth conditions while pB and pD cells were subcultured in different formulations of 

complete growth medium for one month (Supplemental Table 1). The pA and pC groups were 

used to represent a form of “neutral evolution” since they were influenced purely by inherent 

stresses, such as rapid division rates which have been shown to promote spontaneous genetic and 

phenotypic instability 87. In addition to “neutral” evolutionary stress, the pB and pC cells were 

subjected to microenvironmental cues from their diets, thereby representing subclones influenced 

both by stochastic internal and environmentally induced external pressures (Figure 2-3). 

We compared genetic and metabolic profiles of the four PSN-1 subclones to one another 

and relative to a healthy (non-oncogenic) immortalized control cell line, hTert-HPNE (hTert) 

using Short Tandem Repeat (STR) profiling, Single-nucleotide Polymorphism (SNP) 

genotyping, RNA-Sequencing (RNA-Seq), quantitative proteomics, and lipidomics mass 

spectrometry (MS) techniques 122 (Figure 2-3). Although our genomics data suggested the four 

PSN-1 subclones were virtually isogenic, they exhibited consistent variations in phenotype, 

suggesting that each cancer group followed a unique evolutionary path driven by non-genetic 

variations in molecular expression and/or regulation. At the same time, all four subclones 

maintained similar cancer-like phenotypes relative to hTert, such as irregular cell shapes and 

morphology, rapid proliferation rates, altered enzyme expression and activity levels, as well 

resistance to apoptotic signaling. This suggests that the most important pro-cancer pathways 

were selectively conserved across all four cancer groups.  
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Despite numerous differentially expressed genes and metabolic modifications between 

the cancer subclones, each of our assays identified SK1 mediated S1P/C16 Cer metabolism as a 

key element regulating the shift between cancerous and healthy phenotypes in heterogeneous 

clonal populations. We propose that the selective pressure to maintain rapid growth and 

apoptotic resistance promotes this shift in SK1-mediated S1P/C16 Cer metabolism because it is 

an important component of metabolic reprogramming in human pancreatic cancer cells. This 

“cancerous” sphingolipid rheostat is promoted through synergistic modification of transcription, 

translation, and enzyme activation, yet may be corrected in any subclonal variant through 

selective regulation of SK1. 

 

 

 
Figure 2-3 Schematic of experimental workflow used to generate isolated pancreatic cancer 
subclones from a common genetic origin and identify pro-survival pathways.  
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RESULTS 

PDAC subclones and healthy controls displayed variations in cell size and morphology 

The transformation from a normal to cancer cell involves characteristic changes in 

morphology, such as irregular cell shapes, shifts in cell size, and darker nuclei 123. Unlike the 

cancer subclones, hTert cells were extremely elongated with little to no rounded centers or 

terminal ends (Figure 2-4A-E). The hT cells were lighter in appearance with much less visible 

nuclei compared to the cancer groups (Figure 2-4A-E). The four cancer subclones also were 

significantly smaller than the hTert cells (P<0.01) (Figure 2-4F). This suggests that the 

transition from a normal to malignant ductal pancreatic cell involves major shifts in cell size and 

morphology.  

Within the cancer groups, each subclone displayed specific morphological characteristics. 

The pA subclones exhibited both punctate and spheroid cell shapes composed of very rounded 

centers with short, pursed edges (Figure 2-4A). The pB cells were generally thinner, less 

defined, and more elongated with rigid, sharp corners and darker nuclei than the other cancer 

groups (Figure 2-4B). The pC cells portrayed plumper, concave spindle shapes with both 

smooth and sharp edges (Figure 2-4C). The pD group included very punctate as well as fusiform 

cell shapes with well-defined, smooth edges (Figure 2-4D). On average, pD cells were larger 

than the other cancer subclones, although this difference was only significant between the pA 

and pD groups (P=0.005) (Figure 2-4F). Morphological phenotypes are intimately linked with 

shifts in cell stress, transcription, enzyme activity, and metabolism, thus serving as structural 

manifestations of interplay between environmental and intracellular cues 124. We thus anticipated 

that these apparent phenotypic differences may be coupled with biochemical variations between 

cancerous and healthy cells as well as between individual PSN-1 subclones. 
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Figure 2-4 Pancreatic cancer subclones and healthy control cells displayed variations in cell 
size and morphology. (A-E) Representative light microscope images of each cell group, including 
(A) psn1-A, (B) psn1-B, (C) psn1-C, (D) psn1-D, and (E) hTert cells. (F) Box plot of cell sizes 
measured by image analysis of healthy control (hT) and pancreatic cancer subculture groups. 
Data are represented as the cell area (µm2) of 40 biological replicates per cell type. The Dunnett’s 
Test was used to compare cancer groups to the healthy control, where * indicates P<01. The 
Tukey-Kramer Test was used to determine significant differences between the cancer subcultures; 
the pair found to be significantly different is highlighted in the right-hand corner of the plot, where 
† indicates P=0.0052.  
 

DNA fingerprints were identical in distinct PDAC clonal populations 

STRs are short, tandemly repeated DNA sequences (~2-6bp) scattered somewhat evenly 

throughout the human genome 125. Because STRs display high degrees of polymorphism 

between individuals, they are used to produce a unique numerical pattern made up of 8 STR 

markers (along with amelogenin for sex determination) known as the “DNA fingerprint” 

(Supplemental Table 2A-B) 126.  A cell line is considered authentic when there is a ≥80% match 

between the sample cell line and the reference STR profile 126 provided by the American Type 
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Culture Collection (ATCC). As a reference, there was a 100% match between our hTert cells and 

the ATCC hTert-HPNE reference profile (Supplemental Table 2A).  

We compared the STR profiles of cells from each PSN-1 subculture group (pA, pB, pC, 

pD) collected at the end of the study (time~6 months) to cells from the original PSN-1 stock 

(time=0) (Figure 2-3). The original PSN-1 stock displayed a 92% match with the ATCC PSN-1 

reference profile (Supplemental Table 2B), indicating that our originating PSN-1 line (Figure 

2-3) was an authentic representation of the PSN-1 human cell line 121. Each of the four PSN-1 

subclones (pA, pB, pC, and pD) also displayed matches (92%) with the PSN-1 reference profile. 

Indeed, amelogenin and the eight core STR loci were unchanged in all four subculture groups 

relative to our original PSN-1 stock (Supplemental Table 2B). This indicates that any 

evolutionary changes that may have occurred throughout the study did not affect the DNA 

fingerprint nor the ability to trace each PSN-1 subclonal population back to the original tissue 

donor.  

 

PDAC subclones exhibited distinct nscSNP profiles relative to healthy control cells, but 

were virtually isogenic relative to one another 

Single nucleotide polymorphisms (SNPs) resulting from selectively maintained point 

mutations are the most common type of genetic variation throughout the human genome 127. 

Non-synonymous SNPs in coding regions (nscSNPs) and regulatory regions of the genome tend 

to have the greatest effects on phenotype 128 and may provide a foundation for cancer 

development and tumor heterogeneity 127 129 130.  

DNA sequencing data derived from RNA-Seq analysis was used to identify and compare 

the levels of nscSNPs throughout the genomes of each cell type (hT, pA, pB, pC, pD). There 
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were numerous different non-synonymous coding SNPs detected in each sample from both hTert 

and cancer subclones relative to the reference genome (640,451 total nscSNPs detected in 13,657 

total genes across 16 samples) (Supplemental Database A). Interestingly, the median nscSNP 

density was highest in the slower growing hT cells (0.059%), followed by pC (0.049%), pA 

(0.044%), pB (0.043%), and pD cells (0.039%) (Supplemental Database A). This indicates that 

the genomes of both cancer and healthy ductal pancreatic cell cultures were sensitive to nscSNP-

driven genetic variation at slightly different degrees. 

We used heat map clustering to visualize broad differences between gene specific 

nscSNP densities in each sample (Figure 2-5A). All four hT biological replicates clustered 

together (left) and did not intermix or cluster with nscSNP profiles from any cancer sample 

(right) (Figure 2-5A). On the other hand, nscSNP profiles of biological replicates from the four 

cancer groups were quite intermixed and clustered together throughout the right-hand portion of 

the heat map (Figure 2-5A). Overall, there were no clear differences distinguishing the genome-

wide nscSNP profiles of the four PSN-1 subclones (Figure 2-5A).  

We used a PCA of the SNP data in binary form (presence or absence of a nscSNP) to 

investigate genome-wide differences in these coding region SNPs between each group (Figure 

2-5B). There was a clear separation between the nscSNP profiles of all four hTert replicates 

relative to the cancer samples, suggesting that there were a large number of differences in 

nscSNP densities per gene between the healthy and cancer groups (Figure 2-5B). On the other 

hand, all of the biological replicates derived from the four different PSN-1 clones (3 from each 

group) formed another fairly isolated cluster on the PCA plot (Figure 2-5B). This further 

indicates that the genome-wide nscSNPs densities between the different cancer groups did not 

drastically change throughout the subculturing experiment. The overlapping points of the 
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subclone replicates (Figure 2-5A) suggest that there were no significant differences in global 

nscSNP compositions between individual PSN-1 subclones. 

 

 

 

 

Figure 2-5 Genome-wide nscSNP Analysis PSN-1 subclones and healthy control cells. (A) 
Hierarchal clustering and heat map of non-synonymous coding SNPs detected via RNA-Seq of 
healthy control cells (hT) and PSN-1 subclones (pA, pB, pC, pD) (n=640,451 nscSNPs). 
Measurements were collected in biological triplicate or quadruplicate, (all 16 shown for 
comparison); the group name and replicate number are shown for each sample. Rows were 
centered; no scaling was applied to rows; both rows and columns were clustered using Hierarchal 
Euclidean distance metric with complete linkage. Each row represents a different gene (n=13,657 
genes). The scale from low (yellow) to high (red) represents the relative level of nscSNPs 
normalized to the gene length (kb) that were detected in the respective sample. (B) PCA of nscSNPs 
measured via RNA-Seq of healthy control cells (hT) and PSN-1 subclones (pA, pB, pC, pD) 
(n=640,451 nscSNPs). Measurements were collected in biological triplicate or quadruplicate, 
resulting in a total of 16 samples. SVD was used to calculate principal components; X and Y axis 
show principal component 1 and principal component 2, which explain 29.3% and 9.7% of the 
total variance, respectively. The orange circles represent hT samples, green squares represent pA 
samples, bright green diamonds represent pB samples, blue triangles represent pC samples, and 
fuchsia upside-down triangles represent pD samples. The pink open circle is shown to differentiate 
samples from the healthy control group (hT) from those of the cancer subculture groups (pA, pB, 
pC, pD) which are clustered within the purple circle. One biological replicate from the pC group 
and one from pD group are not visible due to overlap with points from biological replicates of the 
same group. 
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Isogenic PDAC subclones displayed global variations in mRNA expression relative to one 

another and to healthy control cells 

We compared the relative mRNA concentrations to identify genes that were differentially 

expressed across cell types using the DESeq2 Bioconductor package and statistical criteria 131. 

There were 19,946 common genes quantified in all of the groups that met the statistical criteria 

for quantitative mRNA analysis (See Materials and Methods) 131. Among this list, there were a 

large number of significantly differentially expressed genes (66.4%; adjusted P<0.1) across the 

five cell groups (hT, pA, pB, pC, pD) (Supplemental Database B). Among the four PSN-1 

subclones (excluding hT), there were about half as many significantly differentially expressed 

genes (31.3%; adjusted P<0.1) (Supplemental Database C). These results indicate that there 

were major differences in global mRNA expression levels between the healthy and cancer 

groups as well as between individual PSN-1 subgroups. In addition, these data provided our first 

line of evidence that although the different PSN-1 subcultures (pA, pB, pC, pD) were genetically 

isogenic, they were differentially modified at the level of transcription. 

Hierarchal heat map clustering and PCA were used to explore general differences in the 

global mRNA expression profiles (n=19,946) of each group (Figure 2-6A1-2). Both the heat 

map (Figure 2-6A1) and PCA (Figure 2-6A2) displayed a very clear division between mRNA 

profiles of the cancer groups (pA, pB, pC, pD) relative to the healthy control (hT). There were 

also fewer significant differences in mRNA expression levels between the different PSN-1 

subclones (Supplemental Database C), demonstrating that the cancer groups dysregulated 

transcription in slightly different ways over the course of the subculturing experiment. Based on 

the PCA plot (Figure 2-6A2), the clones most similar in terms of mRNA expression were those 

whose diets were unchanged (pA and pC). In contrast, cancer groups subcultured in new growth 
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mediums (pB and pD) displayed greater degrees of variance relative to the pA and pC groups. 

The group subjected to the more extreme dietary change (pD) (Figure 2-3) displayed the greatest 

variation in global mRNA levels relative to the other three cancer subclones (pA, pB, pC) 

(Figure 2-6A2). This suggests that PSN-1 subclones readily altered mRNA expression levels in 

response to intrinsic sources of random fluctuations due to rapid cell division (as in the cases of 

pA and pC), and additionally in response to modified nutrient availability, as exemplified by the 

pD cells.  

 

Isogenic reprogrammed PDAC subclones displayed global shifts in protein expression 

relative to one another and to healthy control cells 

To determine whether these global shifts in transcription affected the proteome, we 

performed a comparative quantitative proteomics analysis of each cell group. There were 1,378 

unique proteins identified across all the cell groups that met our statistical criteria for quantitative 

analysis and protein expression profiling (See Materials and Methods) (Supplemental Database 

D). We used hierarchal heat map clustering and a PCA to compare the protein expression 

profiles of each cell type (Figure 2-6B1-2). Similar to the RNA-Seq analysis (Figure 2-6A1-

A2), the heat map and PCA of our proteomics data revealed a very clear separation between the 

global protein expression profiles of the four cancer groups relative to the healthy control 

(Figure 2-6B1-2). Within the fairly tight cluster of points representing cancerous protein profiles 

on the PCA plot, the pC cells were distant from the other three subclones (Figure 2-6B2). This 

suggests that protein metabolism was most altered in pC cells as a result of internal (non-

environmental) pressures over the course of the subculturing experiment.   
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Figure 2-6 RNA, protein, and lipid expression profiling suggest global shifts in transcription 
and metabolism between pancreatic cancer subclones and relative to the healthy control. (A1-
A2) Results of RNA-Seq assay of global mRNA extracted from pancreatic cancer subclones and 
healthy control cell lysates. (A1) Heat map and hierarchal clustering of cancer subclone and hT 
transcriptomes. Rows were centered; no scaling was applied to rows; both rows and columns were 
clustered using Hierarchal Euclidean distance metric with complete linkage. Each row represents 
a unique gene (n=19,946 genes). The color scale from -2 (blue) to 2 (orange) represents the mean 
normalized mRNA concentration of 3-4 biological replicates per group (3 per cancer group and 
4 hT) calculated for each gene as Log2(normalized mRNA Counts of gene). (A2) PCA of cancer 
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subclone transcriptomes and healthy control. No scaling was applied to rows; SVD with 
imputation was used to calculate principal components; X and Y axis show principal component 
1 and principal component 2 that explain 82.1% and 10.2% of the total variance, respectively. 
(B1-B2) Results of global quantitative proteomics analysis of proteins extracted from whole cell 
lysates of pancreatic cancer subclones and hT cultures. (B1) Heat map and hierarchal clustering 
of cancer subclone and healthy control global proteomes. Rows were centered; no scaling was 
applied to rows; both rows and columns were clustered using Hierarchal Euclidean distance 
metric with complete linkage. Each row represents a unique protein identification (n=1,378 
proteins). The color scale from -4 (blue) to 4 (orange) represents the mean normalized protein 
concentration of 3-4 biological replicates per group (4 per cancer group and 3 hT) calculated for 
each protein as Log2(AUCProtein/AUCTotal). (B2) PCA of cancer subclone and healthy control cell 
proteomes. No scaling was applied to rows; SVD with imputation was used to calculate principal 
components; X and Y axis show that principal component 1 and principal component 2 explain 
66.8% and 18.3% of the total variance, respectively. (C1-C3) Results of quantitative lipidomics 
analysis measured by LC-MS of lipids extracted from pancreatic cancer subclones and hT cell 
lysates. (C1) Heat map and hierarchal clustering of cancer subclone and healthy control 
intracellular lipidomes. Rows were centered; no scaling was applied to rows. Both rows and 
columns were clustered using Hierarchal Euclidean distance metric with complete linkage. Each 
row represents a unique lipid annotation (n=500 species). The color scale from -3 (blue) to 3 
(orange) represents the mean normalized lipid concentration of three biological replicates per 
group calculated for each lipid as Log2(AUCLipid/AUCTotal). (C2) Categorized intracellular 
lipidome compositions of species measured via quantitative intracellular LC-MS analysis. Data 
are expressed as the mean (Avg) normalized concentration (AUCAvgLipids/AUCTotal) of total lipids 
measured in each category +/-SEM measured in three biological replicates per cell type. (C3) 
PCA of cancer subclone and healthy control intracellular lipidomes. No scaling was applied to 
rows; SVD with imputation was used to calculate principal components; X and Y axis show 
principal component 1 and principal component 2 that explain 41.4% and 24.7% of the total 
variance, respectively. (D1-D3) Results of quantitative extracellular lipidomics analysis measured 
by LC-MS of lipids extracted from the complete growth medium used in cell cultures during 
intracellular lipidomics experiment (RPMI 1640 + 10% FBS). The negative control or “Blank” 
(blnk) represents the lipidome of fresh complete cell medium that was never exposed to cell 
cultures. (D1) Hierarchal clustering and heat map of cancer subclone and healthy control 
extracellular lipidomes. Rows were centered; no scaling was applied to rows. Both rows and 
columns were clustered using Hierarchal Euclidean distance metric with complete linkage. Each 
row represents a unique lipid annotation (n=112 lipids). The color scale from -2 (blue) to 2 
(orange) represents the mean normalized lipid concentration of 3 biological replicates per group 
calculated for each lipid as Log2(AUC of lipid/Sum AUC of total lipids quantified in sample). 
Rows were centered; unit variance scaling was applied to rows. Both rows and columns were 
clustered using correlation distance and average linkage. (D2) Categorized intracellular lipidome 
compositions of species measured via quantitative extracellular LC-MS analysis. Data are 
expressed as the mean (Avg) normalized concentration (AUCAvgLipids/AUCTotal) of total lipids 
measured in each category +/-SEM measured in three biological replicates per cell type. (D3) 
PCA of cancer subclones and healthy control extracellular lipidomes compared to blank. No 
scaling was applied to rows; SVD with imputation was used to calculate principal components. X 
and Y axis show principal component 1 and principal component 2 that explain 64.4% and 16.1% 
of the total variance, respectively.  
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We performed a protein ontology analysis using David Bioinformatics Functional 

Annotation Tools 42 to determine whether certain types of functional proteins were differentially 

expressed between groups and may have driven the global phenotypic shifts between healthy and 

cancer cells. Among numerous significantly differentially expressed proteins in the hTert cells 

relative to the cancerous groups (corrected P value <0.05), ~39% were upregulated (fold change 

>1) and 61% were downregulated (fold change <1) (Supplemental Database E). We were not 

surprised to find that the top three significantly enriched ontologies (Benjamini score for 

enrichment <0.05) among proteins that were significantly upregulated in hT relative to the cancer 

groups were involved in actin filament binding, focal adhesion, and the cytoskeleton. A decrease 

in actin proteins and other cytoskeletal components may have accompanied the structural 

framework of the smaller, more punctate cancer cells relative to the longer, more elongated hTert 

cells (Figure 2-4). Among the list of significantly downregulated proteins in hTert relative to the 

cancer groups, the top three significantly enriched ontologies (Benjamini score for enrichment 

<0.05) were mRNA processing, mRNA splicing, and the spliceosome as a whole. This suggests 

that the cancer cells transcribe and process mRNA differently than hTert, which may have 

contributed to the severe global shift in the mRNA expression profiles of the cancer subgroups 

relative to hTert (Figure 2-6A2). 

There was also some evidence for differential expression of specific protein ontologies 

between individual cancer subclones (Supplemental Database F-I). Neither the pA or pD had 

significant changes in recognized ontologies. The pB cells were upregulated in nucleotide 

binding, ATP-binding, and ATP-dependent RNA helicase activity. This suggests a difference in 

the way pB cells bind and use ATP, especially in regards to RNA processing and may have 

contributed to variations in the global mRNA profile of pB relative to other subclones (Figure 2-
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6A1-2). The pC cells were upregulated in amino acid transport and metabolism, the extracellular 

exosome, and metal-binding proteins. Altered expression of amino acid metabolism networks 

may have affected protein metabolism and contributed to the wide separation between the pC 

proteome relative to the other cancer subclones depicted in the PCA plot (Figure 2-6B2). 

Among the downregulated proteins in pC, the most enriched functional groups were translation, 

the ribosome, and structural components of the ribosome. These results coupled with the 

evidence that proteins involved in amino acid metabolism were upregulated, suggest that 

compared to the other cancer groups the pC subclone significantly altered protein synthesis and 

metabolism systems relative to the proteome.  

Overall, the protein ontology analysis showed that each PSN-1 subclone modified protein 

expression levels in unique ways to support cellular metabolism and morphology. However, we 

did not find any clear evidence of significant cell-fate signaling mechanisms that were conserved 

across the cancer subclones relative to the hTert. Because lipid metabolism and signaling play 

important roles in cancer cell fate (Figure 2-1) we next explored methods to measure and 

compare intracellular lipid concentrations in the healthy versus PDAC tissue models.   

 

Isogenic reprogrammed PDAC clones displayed global shifts in lipid expression networks 

including altered metabolism of bioactive sphingolipids S1P and C16 Cer 

We developed lipidomic profiles of each cell group in multiple stages to investigate 

cancer-promoting adaptations in lipid metabolism pathways. In our initial shotgun lipidomics 

assay, a total of 980 unique lipids that met our statistical criteria (See Materials and Methods) 

were identified among all five cell types (Supplemental Database J). All eight lipid categories 

were represented in this list, including saccharolipids (0.4%), sterols (5.1%), polyketides (5.4%), 
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prenols (7.2%), sphingolipids (10.0%), fatty acids (19.2%), glycerolipids (21.8%), and 

glycerophospholipids (30.9%). Relative concentrations of the detected lipids were used to 

develop preliminary lipid expression profiles for each cell type (Figure 2-7). 

 

 

Figure 2-7 Shotgun lipidomics suggests global shifts in lipid metabolism including conserved 
differences in pro-survival S1P and pro-apoptotic C16 Cer levels among pancreatic cancer 
subclones relative to healthy control cells. (A1-A2) Results of shotgun lipidomics analysis of 
pancreatic cancer subclone and healthy control cell lysates measured by direct-infusion ESI-MS. 
(A1) Hierarchal clustering and heat map of cancer subclones and healthy control lipidomes 
measured by direct-infusion ESI-MS. Rows were centered; no scaling was applied to rows. Both 
rows and columns were clustered using Hierarchal Euclidean distance metric with complete 
linkage. Each row represents a unique lipid annotation (n=982 species). The color scale from -2 
(blue) to 2 (orange) represents the normalized lipid concentration of one sample per group 
calculated for each lipid as Log2(AUCLipid/AUCTotal). (A2) PCA of cancer subclones and healthy 
control lipidomes measured by direct-infusion LC-MS. No scaling was applied to rows; SVD with 
imputation was used to calculate principal components; X and Y axis show principal component 
1 and principal component 2 that explain 37.9% and 26.3% of the total variance, respectively. (B-
C) Box plots depicting relative concentrations of (B) C16 Cer and (C) S1P that were detected in 
two biological replicates of samples from each of the pancreatic cancer group and the healthy 
control cell line via direct-infusion ESI-MS. (B-C) Data are depicted as the normalized 
concentration of each lipid (AUCLipid/AUCTotal). The Dunnett’s test was used to determine 
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significant differences between the cancer groups relative to the healthy control cell line, where * 
indicates p<0.05. 

 

Hierarchal heat map clustering (Figure 2-7A1) and PCA (Figure 2-7A2) illustrated a 

clear distinction between the cancer groups relative to hTert. This suggests that lipid 

concentrations and lipid metabolic networks were severely altered in relatively similar manners 

across the PDAC subclones compared to the healthy control. At the same time, both the heat map 

(Figure 2-7A1) and PCA (Figure 2-7A2) suggested that there were apparent differences in 

global lipid levels between the cancer groups, indicating that each cancer group altered lipid 

expression and/or metabolism at slightly different degrees relative to one another during the 

subculturing experiment.  

The quantitative lipidomics analysis revealed connected differences between two 

interconvertible sphingolipid metabolites (Figure 2-2), C16 Cer (Figure 2-7B) and S1P (Figure 

2-7C), in all four subcancer clones relative to hTert. The C16 Cer levels were depleted in all four 

cancer groups relative to hTert; this decrease was significant in pB, pC, and pD cells (P<0.05) 

(Figure 2-7B). On the other hand, S1P levels were elevated in all the cancer groups relative to 

hTert and this increase was statistically significant in pA cells (p<0.05) (Figure 2-7C). These 

results provided some evidence that S1P production from C16 Cer (C16 Cer sphingosine 

S1P) was suppressed in hTert cells whereas C16 Cer metabolism to S1P was upregulated to 

some degree in each cancer subclone (Figure 2-2). Despite numerous variations in expression 

throughout the lipidome between the different PSN-1 clones (Figure 2-7A1-A2), these data 

suggested that altered C16 Cer and S1P levels were distinctive cancerous phenotypes conserved 

across all four isolated PDAC clones. Although C16 Cer and S1P levels were shifted by fairly 

different degrees in each subclone (Figure 2-7B-C), PSN-1 cells may depend on some form of 
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sphingolipid metabolite imbalance to regulate pro-survival pathways throughout different stages 

of cell progression or evolution. Our next goal was to verify these results and confirm whether 

this imbalance in the S1P/C16 Cer axis was indeed maintained as a pro-cancer mechanism 

among the PSN-1 subclones.  

 

Sphingolipid focused LC-MS confirmed that both global lipid expression and S1P/C16 Cer 

metabolism were modified in PDAC subclones relative to the healthy control  

Although we consistently detected C16 Cer among hundreds of other lipid species, our 

initial lipidomics method was limited in its ability to consistently and accurately identify S1P 

species. Adapting the S1P focused approach developed by Bode and Gräler (B&G) 71, we 

measured S1P and C16 Cer along with the global lipidome of the PSN-1 clones relative to hT 

cells (Supplemental Database D). The LC-MS improved the confidence level of each lipid 

annotation using RT and alignment fragmentation relative to deuterated internal standards 

(Figures 2-8-10).  

 

Figure 2-8 Representative elution profiles of C16 Cer, S1P, and corresponding deuterated 
internal standards. (A) Representative elution profile of C16 Cer extracted from pancreatic 
cancer cell lysate spiked with C16 Cer-d7amide as the internal standard (inset is C16 Cer-d7 
shown on a larger scale for clarity). The chromatogram shows ions for C16 Cer and C16 Cer-d7 



46 
 

both eluting at 26.2 minutes. The representative chromatogram was measured by LC-MS (QTOF) 
in lipid extract from pA cell lysate spiked with 50 pmol of C16 Cer-d7. The normalized C16 Cer 
concentration was calculated using the following equation: (50pmolC16Cer-d7) / (AUCC16Cer-d7) = (x 
pmolC16Cer) / (AUCC16Cer), where x = the normalized concentrations of C16 Cer. In cases where 
the signal:noise of the C17 Cer internal standard (not shown) was greater than C16 Cer-d7, C16 
Cer was quantified by normalizing to C17 Cer instead of d7-C16 Cer. (B) Representative elution 
profile of S1P extracted from pancreatic cell lysate spiked with S1P-d7 as the internal standard. 
The chromatogram shows ions for S1P-d7 and S1P both eluting at 4.82 minutes. The 
representative chromatogram was measured by LC-MS (QqQ) in lipid extract from psn1-D (pD) 
cell lysate spiked with 100 pmol of S1P-d7. The area under the curve (AUC) for each compound 
was used to solve for S1P concentration: (100pmolD7S1P) / (AUCD7S1P) = (x pmolS1P) / (AUCS1P), 
where x = the normalized concentration of S1P.  
 

 

Figure 2-9 Representative MS/MS fragmentation spectra of C16 Cer and corresponding 
internal standard C16 Cer-d7 measured by LC-MS of pancreatic cell lipids. Representative 
MS/MS spectrum of C16 Cer Parent (precursor) ion 538.53 m/z, which represents 
[C34H67NO3+H]+, the protonated form of C16 Cer (M + H)+ (note: the proton can be added to 
multiple sites on the molecule as it is subjected to electrospray ionization, only one possibility is 
shown). Fragment 1 (F1) 520.5 m/z is [C34H65NO2 + H]+ which represents the parent ion with one 
water loss (M + H - H2O)+, Fragment 2 (F2) 502.5 m/z is [C34H63NO + H]+ which represents the 
parent ion with two water losses (M + H - 2H2O)+, Fragment 3A (F3A) 282.28 m/z is [C18H35NO 
+ H]+ which represents the parent ion that has lost one water molecule and the C16:0 fatty acyl 
chain (M + H - H2O - fatty acyl), and Fragment 3B (F3B) 264.27 m/z is [C18H33N + H]+ which 
represents the parent ion that has lost 2 water molecules and the acyl chain (M + H - 2H2O - fatty 
acyl). (B) Representative MS/MS spectrum of C16 Cer-d7 Parent ion 545.56 is [D7C34H60NO3 + 
H]+ which represents the protonated form of C16 Cer-d7 (M + H)+; Fragment 1 (F1) 527.56 m/z 
is [D7C34H58NO2 + H]+ which represents the parent ion with one water loss (M + H - H2O)+, 
Fragment 2 (F2) 509.54 m/z is [D7C34H56NO + H]+ which represents the parent ion with two water 
losses (M + H - 2H2O)+, Fragment 3A (F3A): 289.32 m/z is [D7C18H28NO + H]+ which represents 
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the parent ion that has lost one water molecule and the C16:0 fatty acyl chain (M + H - H2O, - 
fatty acyl), and Fragment 3B (F3B) 271.3 m/z is [D7C18H26N + H]+ which represents the parent 
ion that has lost 2 water molecules and the fatty acyl chain (M + H - 2H2O, - fatty acyl). The parent 
and each fragment of C16 Cer-d7 are 7 m/z units higher than the parent and corresponding 
fragments of C16 Cer, due to the presence of 7 deuterium atoms in place of 7 hydrogens on the 
16:0 acyl tail of C16 Cer-d7. Because C16 Cer-d7 was spiked into each cell lysate prior to lipid 
extraction, the D7 fragmentation spectra allowed us to more accurately identify the naturally 
occurring C16 Cer in each cell sample. The representative spectra shown in (A-B) were collected 
from psn1-A (pA) cell lysate spiked with 50pmol of C16 Cer-d7 (MS/MS Collision Energy=8). The 
top number in each peak label is the m/z and the bottom number is the abundance normalized to 
highest peak in the spectra (F1). The grayed out portions of the chemical structures represent 
groups that have been removed from the parent ion in each fragment and the cleavage symbols 
suggest where bond breakage may have occurred in succession to form the indicated fragments. 
 

 

Figure 2-10 Representative MS/MS fragmentation spectra of S1P and corresponding internal 
standard S1P-d7 measured by LC-MS of pancreatic cell lipids. (A) Representative MS/MS 
spectrum of S1P Parent (precursor) ion 380.26 m/z, which represents [C18H38NO5P + H]+, the 
protonated form of S1P (M + H)+ (note: the proton can be added to multiple sites on the molecule 
as it is ionized in the mass spectrometer, one possibility is shown); Fragment 1 (F1) is 362.25 m/z 
is [C18H36NO4P + H]+ which represents the parent ion with a water loss (M + H - H2O)+ and 
Fragment 2 (F2) 264.27 m/z is [C18H34N] + H]+ which represents the parent ion that has lost a 
water molecule and the phosphate group (M + H - H2O, - phosphate)+. (B) Representative MS/MS 
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spectrum of S1P-d7 Parent ion: 387.2 m/z, which is [D7C18H31NO5P + H]+, the protonated form 
of S1P-d7 (M + H)+, Fragment 1 (F1) 369.29 m/z is [D7C18H29NO4P] + H]+ which represents the 
parent ion with a water loss (M + H - H2O)+ and Fragment 2 (F2): 271.31 m/z is [D7C18H27N + 
H]+ which represents the parent ion that has lost a water molecule and the phosphate group (M + 
H - H2O, - phosphate)+. Note that the parent and each fragment of S1P-d7 are 7 m/z units higher 
than the parent and corresponding fragments of S1P, due to the presence of the 7 deuterium atoms 
in place of 7 hydrogens on the acyl tail of S1P-d7. Because S1P-d7 was spiked into each cell lysate 
prior to lipid extraction, the D7 fragmentation spectra allowed us to more accurately identify the 
naturally occurring S1P in each cell-derived sample. The representative spectra were collected 
from psn1-A (pA) cell lysate spiked with 100pmol of S1P-d7 (MS/MS Collision Energy=8). The 
top number in each peak label is the respective m/z and bottom number is the abundance 
normalized to the highest peak in the spectra (F2). M0 and M1 isotopic peaks for the two most 
abundant in the spectra are also labeled (Parent and F2). The grayed out portions of the chemical 
structures represent groups that have been removed from the parent ion in each fragment and the 
cleavage symbols suggest where bond breakage successively occurred to form the indicated 
fragments. 

 

A total of 500 lipids identified across all samples (n=30) were used for quantitative 

lipidomic profiling after meeting our statistical criteria (see Materials and Methods) (Figure 2-

6C1-3; Supplemental Database K). A wide range of lipid species were represented in this list 

including glycerophospholipids (32.0%), sphingolipids (30.4%), sterols (13.6%), fatty acids 

(12.8%), polyketides (7.2%), glycerolipids (3.2%), and prenols (0.8%) at various levels of 

expression across the different cell types (Figure 2-6C1). The heat map (Figure 2-6C2) and a 

PCA (Figure 2-6C3) of this analysis revealed trends similar to the shotgun lipidomics assay 

(Figure 2-7A) despite the major changes in sample preparation, LC method, and MS instrument 

type that were used to produce the two sets of data.  

There were significant degrees of variance between the cancer subgroups, suggesting that 

each PSN-1 clone rerouted lipid metabolic pathways in different manners during the subculturing 

experiment. For example, as observed in the mRNA profiling analysis (Figure 2-6A1-A2), the 

group subjected to the most extreme diet change (pD) displayed the greatest degree of variance 

in lipid expression relative to the other three cancer groups on the PCA plot (Figure 2-6C3). The 
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concentrations of 16% of the quantified lipids were significantly different (corrected P<0.05) in 

the pD cells relative to the other cancer groups (Supplemental Database K). It is interesting to 

note that pD cells were maintained in double the concentration of Fetal Bovine Serum (FBS; 

20%) as the other groups (10%) (Figure 2-3) which is the main source of dietary lipids in cell 

culture containing high levels of cholesterol and oleic acid 132.  Among lipids that were 

significantly differentially expressed in the pD cells (P<0.05), 70% were reduced on average 

relative to the other cancer groups (fold change <1). This may suggest that the pD cells became 

dependent on the more abundant supply of dietary lipids so much so that when they were 

returned to the base diet for the lipidomics experiment, intracellular lipid concentrations readily 

dropped compared to the other subclones that were fully accustomed to 10% dietary FBS. 

Overall, our global lipidomics data suggests that PSN-1 cells alter global lipid metabolism in 

response to changes in microenvironmental resources. 

Similar to what was observed in the untargeted lipidomics analysis (Figure 2-11A), our 

targeted LC-MS analysis revealed an increased S1P/C16 Cer ratio in each of the subclones 

(Figure 2-12, blue circles). This occurred because basal S1P concentrations were elevated in the 

cancer groups relative to the healthy control and this increase was significant in pA, pC, and pD 

cells (P<0.05) (Figure 2-13A, blue circles). In addition, C16 Cer concentrations were 

significantly depleted in pB, pC and pD cells relative to the healthy control (P<0.05) (Figure 2-

13B; blue circles).  
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Figure 2-11 Data derived from lipidomics and RNA-Seq assays suggest a conserved shift in 
signaling sphingolipid metabolism in pancreatic cancer subclones relative to the healthy control 
driven in part by SK1. (A) Box plot of the normalized concentration of S1P over C16 Cer measured 
by shotgun lipidomics assay in each cancer subclone and hT whole cell lysates. Both sphingolipids 
were observed within the mass accuracy cutoff in 2 biological duplicates per group and the data 
are represented as the log transformed ratio of the normalized (norm.) concentrations of each 
lipid: Ln[(AUCS1P/AUCTotal)/(AUCC16Cer/AUCTotal)]. (B) Enzymes directly involved in C16 
Cer/S1P metabolism identified by RNA-Seq of cancer subclones (pA, pB, pC, pD) and hT cell 
lysates. Enzyme names that are bolded displayed nonsynonymous coding SNP(s) in one or more 
of the cell types. (C) Densities of nscSNPs detected in one or more samples from each group. Data 
are represented as the number of nscSNPs normalized to the corresponding mRNA transcript 
length in kb. Error bars represent the SEM of 3-4 biological replicates per group. (D) Hierarchal 
clustering and heat map of mRNA levels of the enzymes that participate in the S1P/C16 Cer 
metabolism pathway shown in panel (B) measured by RNA-Seq of cancer clones (pA-D) and hT 
cell lysates. Rows were centered; no scaling was applied to rows; both rows and columns were 
clustered using Hierarchal Euclidean distance metric with complete linkage. The color scale from 
-1 (blue) to 1 (orange) represents the mean normalized mRNA concentration of 3-4 biological 
replicates per group on a Log2 scale. (E) PCA of mRNA levels of the enzymes involved in S1P/C16 
Cer metabolism shown in panel (B) that were detected by RNA-Seq of cancer clones and hT cell 
lysates. No scaling was applied to data; SVD with imputation was used to calculate principal 
components; X and Y axis show principal component 1 and principal component 2 that explain 
44% and 37.9% of the total variance, respectively. The question mark represents the major 
question that arose from this analysis: which enzyme(s) were important drivers of PC2, separating 
the healthy control from the cancer groups? (F-G) Box plots of normalized (F) SPPase2 and (G) 
SK1 mRNA levels measured by RNA-Seq of cancer subclones and hT cells. Data are represented 
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as the Log2 transformed normalized mRNA counts measured in biological triplicate or quadruplet. 
(A, F-G) The * indicates P<0.05 with the Dunnett’s Test used to compare measurements from all 
cancer groups to the healthy control. Tukey-Kramer Tests were used to determine significant 
differences between cancer subcultures; pairs that were significantly different are highlighted in 
the comma-separated list on the right-hand corners of each plot, where ‡ indicates P<0.05. 
 

 

Figure 2-12 SK1 enzyme activity assay reveals SK1 as a key driver of the conserved S1P:C16 
Cer imbalance in pancreatic cancer subcultures, which may be corrected by SKI-II treatment. 
Box plots of S1P relative to C16 Cer concentrations measured by LC-MS of lipids extracted from 
pancreatic cancer subclones and hT cell lysates treated with the vehicle (1x PBS) (blue circles) 
versus SKI-II (13μM; red circles) for 12 hours. Both lipids were normalized to corresponding 
deuterated internal standards (S1P to 100 pmol of spiked S1P(d18:1-d7) and C16 Cer to 50 pmol 
of spiked Cer(d18:1-d7/16:0)). Data are represented as the ratio of the normalized S1P 
concentration (where pmolS1P/AUCS1P=pmolS1P-d7/AUCS1P-d7) relative to the normalized C16 Cer 
concentration (where pmolC16Cer/AUCC16Cer=pmolC16Cer-d7/AUCC16Cer-d7). The dotted gray line is 
the mean S1P/C16 Cer ratio of the hT Vehicle Control group, shown as a reference to represent a 
normal sphingolipid rheostat or the “healthy” balance between S1P and C16 Cer in non-
cancerous human ductal pancreatic cells. The * indicates P=0.002 and ** indicates P<0.0001 
with the Dunnett’s Test used to compare the Vehicle Control groups of the cancer subclones to the 
healthy (hT) Vehicle Control group. The † indicates P<0.05 with Student’s t-tests comparing each 
Vehicle Control group to the corresponding SKI-II-treated group of the same cell type. The Tukey-
Kramer test was used to compare all of the cancer groups to one another other; pairs of groups 
whose baseline (Vehicle Control) ratios of S1P/C16 Cer were significantly different from each 
other prior to SKI-II treatment are comma-separated in the highlighted list below the plot, where  
‡ ‡ ‡ indicates P≤0.0002, ‡ ‡ indicates P<0.01, and ‡ indicates P<0.05.  
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Figure 2-13 S1P and C16 Cer levels were altered in pancreatic cancer subclones relative to the 
healthy control but may be corrected in part by SKI-II treatment. (A,C) Box plots of S1P 
concentrations measured by LC-MS of lipids extracts from (A) whole cell lysates and (C) complete 
cell medium from corresponding cell culture dishes after treatment with the Vehicle (1x PBS) (blue 
circles) or SKI-II (13µM) (red circles) for 12 hours. Note that the “Blank” in (C) represents purely 
FBS-derived S1P levels measured in fresh complete cell medium (RPMI 1640 + 10% FBS) that 
was never exposed to cell cultures. (A,C) Data were collected in biological triplicate and 
represented as the AUC of S1P normalized to the S1P-d7 internal standard. (B) Box plot of C16 
Cer concentrations measured by LC-MS of the same samples depicted in (A). Data are represented 
as the AUC of C16 Cer normalized to the C16 Cer-d7 or C17 Cer internal standard. (A-C) The 
Dunnett’s Test was used to compare the lipid levels measured in the cancer groups to the healthy 
control under the same treatment (Vehicle or SKI-II) where * indicates P<0.05. Student’s t-tests 
were used to compare the SKI-II treated group of each cell type to the respective Vehicle Control 
group, wherein † indicates P<0.05. 
 

Baseline C16 Cer levels were slightly, but significantly (P<0.05) higher in the pA cells 

compared to hTert; however, pA samples exhibited the highest basal S1P concentrations of the 
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entire experiment, which may have helped balance signaling effects of the elevated C16 Cer 

levels in these cells relative to hT (Figure 2-13A-B, blue circles). Baseline S1P expression in the 

pB cells was not significantly higher than hTert; however, basal C16 Cer expression was lowest 

in the pB cells compared to all the other groups, which may have helped balance the less 

elevated S1P levels (Figure 2-13A-B, blue circles). The pC and pD cells displayed the highest 

average basal S1P levels and significantly low basal C16 Cer levels, suggesting that these groups 

altered S1P/C16 Cer metabolism from both ends to favor S1P production and suppress C16 Cer 

levels (Figure 2-13A-B, blue circles). Overall, our LC-MS method confirmed that the cancer 

subgroups were phenotypically distinct from one another at the level of the global lipidome. In 

addition, all four PSN-1 strains modified intracellular S1P and/or C16 Cer metabolite levels to 

some extent relative to the healthy control. 

 

Extracellular lipid profiles of PDAC subclones mirrored the intracellular lipid profiles   

If intracellular S1P is elevated, extracellular S1P levels may also be elevated 133. The FBS 

in our media has high concentrations of many lipid species including S1P 68, therefore we 

compared the lipids extracted from growth medium samples that were exposed to cell cultures 

versus the fresh media as negative controls. The negative controls (blanks) were prepared by 

performing modified B&D extractions on fresh complete cell medium (RPMI-1640 with L-

glutamine and high glucose, 10% FBS, 1x PBS) that was incubated in empty culture dishes (no 

cells) under the same conditions (37˚C, 5% CO2) for the same amount of time as the cell-

exposed medium samples (12 hours). There were 113 different lipid species in the resulting list 

of annotations that met our statistical criteria (see Materials and Methods) (Supplemental 

Database L) and used for a global extracellular lipid profiling (Figure 2-6D1-D3). A variety of 
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lipids types were represented at different levels across the five cell types including prenols (4%), 

glycerolipids (6%), sphingolipids (6%), polyketides (7%), fatty acids (10%), sterols (11%), and 

glycerophospholipids (56%). 

We used hierarchal heat map clustering and a PCA to make general comparisons between 

the extracellular lipid profiles of each group relative to the blank (Figure 2-6D2-D3). The heat 

map (Figure 2-6D2) and PCA (Figure 2-6D3) depicted three distinct clusters or subgroups 

within the dataset made up of the lipid profile(s) of (1) blanks, (2) hT cells, (3) pA, pB, and pC 

cells, and (3) pD cells. Above all, the heat map and PCA illustrated a considerable degree of 

variance between the lipid profile of the blank relative to samples exposed to cell cultures (hT, 

pA, pB, pC, pD) (Figure 2-6D2-D3). We also observed that the inter- and extracellular 

lipidomes of all the cell groups were correlated. Similar to the intercellular lipid profiles (Figure 

2-6C1, C3), the pA, pB, and pC groups were more similar to each other while pD displayed the 

greatest degree of variance relative to the other subclones (Figure 2-6C3). This suggests that 

changes in dietary lipid levels (Figure 2-3) can induce adaptive lipid metabolic reprogramming 

that greatly affect both inter- and extracellular lipidomes, as exemplified by the pD cells (Figure 

2-6D3).  

Most importantly, this analysis provided a means to measure and compare extracellular 

S1P levels between cell types. Extracellular S1P levels from hT, pA, and pB cell cultures were 

slightly higher on average, but not significantly different than the S1P measured in the blank 

(Figure 2-13C, blue circles). On the other hand, pC and pD cells displayed significantly higher 

extracellular S1P concentrations compared to the blank (P<0.05) (Figure 2-13C, blue circles). 

These results suggest that S1P produced within pC and pD cells was exported at higher levels 

relative to the other groups, which has been shown to promote pro-survival S1P signaling in an 
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autocrine and/paracrine fashion 67. These results provided further evidence that each PSN-1 

subclone altered lipid utilization networks in unique ways to support pro-survival S1P signaling 

from within and/or outside of the cell.  

 

Pathway specific Lipidomics and RNA-Seq analyses suggest a parallel shift in S1P/C16 Cer 

metabolism in PDAC subclones driven by Sphingosine Kinase 1 

We identified several enzymes directly involved in perturbing the S1P/C16 Cer lipid ratio 

by RNA-Seq, including Acid Ceramidase (ACdase), Neutral Ceramidase (N-Cdase), Ceramide 

Synthase 5 (Cers5), S1P Phosphatases 1 and 2 (SPPases 1 and 2), S1P Lyase 1 (S1PL1), and 

Sphingosine Kinases 1 and 2 (Figure 2-11B). Among these enzymes, there were one or more 

nonsynonymous coding SNPs detected in ACdase, N-Cdase, CerS5, SK1, SK2, and S1PL1 

(Supplemental Database M). The median nscSNP densities of these five enzymes in each cell 

type (hT:0.043%, pA: 0.059%, pB:0.048%, pC: 0.068%, pD:0.068%) were similar to the median 

nscSNP densities of their corresponding genomes (hT: 0.059%, pA: 0.049%, pB:0.044%, pC: 

0.043%, pD:0.039%). All four cancer groups displayed much higher SNP densities in ACdase 

(0.11%-0.15%), relative to ACdase enzymes in hTert (0.04%) (Figure 2-11C). In silico 

evaluations (see Materials and Methods) suggested two of these SNPs (CT, GT) in the 

cancer cells may have been damaging while the other three were considered benign (AG, 

TC, CT) (Supplemental Database M). However, there seemed to be no major effect on 

ACdase expression in the cancer groups relative to hTert, since ACdase mRNA levels were not 

significantly different from hT in any of the cancer groups (Figure 2-14A). 
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Figure 2-14 Comparison of mRNA expression of enzymes directly involved in S1P/C16 Cer 
metabolic pathway. (A-F) Box plots of normalized mRNA levels of sphingolipid-modifying 
enzymes measured by RNA-Seq of pancreatic cancer subcultures (pA, pB, pC, pD) and healthy 
control cells (hT), including (A) Acid Ceramidase, (B) S1P phosphatase 1, (C) S1P Lyase 1, (D) 
Ceramide Synthase 5, (E) Neutral Ceramidase, and (F) Sphingosine Kinase 2. (A-F) 
Measurements were collected in biological triplicate and expressed on a Log2 scale. The 
Dunnett’s test was used to determine differences between mRNA levels in the cancer groups 
relative to the healthy control; the *** indicates P≤01, ** indicates P<0.001, and * indicates 
P<0.05. Tukey-Kramer Tests were used to determine significant differences between cancer 
subcultures; pairs that were significantly different are highlighted in the comma-separated list on 
the right-hand corner of (F), where ‡ indicates P<0.05. 

 

One potentially significant polymorphism seen in this analysis was an LP 

polymorphism repeatedly detected in position 237 of SK1 isoform 2 (SK1-2) 134 in pA cells 

(Supplemental Database M). Residue 273 in SK1-2 is the equivalent of 187L in SK1-1, which 

is involved in an alpha helix in the C4 region of the C-terminal domain next to the sphingosine 

binding pocket 119. The 273LP polymorphism detected in the pA cells was predicted to be 

damaging. This prediction is appropriate since switching from a more flexible leucine to an 

inflexible proline would break the helix, potentially affecting binding or substrate affinity to the 
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proximal sphingosine binding site. While the SNP analysis provided some evidence that pA was 

biochemically reprogrammed in slightly different ways with respect to the pathway of interest, it 

did not provide any significant evidence of genetic forces driving the major shift S1P/C16 

observed across the four cancer groups relative to hTert.  

We looked further into our RNA-Seq data to determine whether SK1 or any of the other 

sphingolipid metabolic enzymes were transcribed differently in the cancer groups relative to the 

healthy control. The normalized mRNA levels of the 8 sphingosine metabolic enzymes were 

compared on a heat map (Figure 2-7D) and PCA plot (Figure 2-7E). According to the heat map, 

SPPase2 and SK1 mRNA levels appeared to be most altered relative to the other 6 enzymes 

(Figure 2-7D). Interestingly, these two enzymes catalyze opposite reactions in the C16 Cer/S1P 

metabolic pathway; SPPase2 dephosphorylates S1P to form sphingosine whereas SK1 

phosphorylates sphingosine to form S1P (Figure 2-7B). We hence predicted that Step 2 (Figure 

2-7B), wherein sphingosine was either phosphorylated or dephosphorylated, was a critical point 

of control in the S1P/C16 Cer metabolic pathway with respect to driving differences between the 

healthy and cancer cells. We used the Dunnett’s test to determine significant differences in 

mRNA levels of each enzyme between cancer and hT cells (Figures 2-7F-G, Figure 2-14). 

There were no clear trends in SPPase2 mRNA levels among the cancer groups or significant 

differences relative to the healthy control (Figure 2-7F). On the other hand, SK1 mRNA levels 

were depleted in all four cancer groups relative to hTert and this difference was significant 

(P<0.05) in all but the pB cells (Figure 2-7G). This suggested that SK1 may be regulated 

differently in the PSN-1 clones relative to healthy and perhaps be linked with the shift from 

healthy to cancerous sphingolipid metabolism. 
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 The PCA of [mRNA] depicted clear separations between the healthy and cancer cells as 

well as between cancer subclones whose diets were changed (pB, pD) versus unchanged (pA, 

pC) (Figure 2-7E). We hypothesized that SK1 plays an important role in differentiating the 

“healthy” phenotypes exhibited by hTert from the cancer groups by playing a key role relative to 

other sphingolipid modifying enzymes in regulating S1P/C16 Cer metabolism. We also 

anticipated that each cancer group may achieve a modified S1P/C16 Cer axis to promote clonal 

survival in different ways, especially since there were variations in sphingolipid enzyme 

expression between cancer groups subjected to different metabolic pressures (Figure 2-7; Figure 

2-14).  

 

SK1 activity is modulated by different combinations of concentration and MAPK1-

mediated phospho-activation in pancreatic cancer subclones  

Because SK1 was not detected in our global proteomics analysis, we used Western blotting to 

measure SK1 protein expression levels in each cell group (Figure 2-15A). SK1 concentrations 

varied greatly among the cancer groups, supporting our hypothesis that the different PSN-1 

subclones may have used SK1 to dysregulate S1P/C16 Cer metabolism. Unlike SK1 mRNA, the 

average SK1 protein concentration was higher in all the cancer groups relative to hTert; this 

difference was significant in the pA (P<0.0001), pB (P<0.0001), and pC (P<0.05) cells (Figure 

2-15A). These results suggest that SK1 protein expression was increased to some degree to 

promote S1P synthesis in each PDAC subclone compared to the healthy control.  
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Figure 2-15 SK1 expression and/or ERK2-mediated phosphorylation was increased in 
pancreatic cancer subclones relative to healthy control cells. (A-B) Representative Western blots 
and relative concentrations of (A) total SK1 and (B) phosphor-activated SK1 enzymes (p-SK1) in 
cancer subclones and hT cells lysates. Western blots were performed in biological quadruplet and 
actin was used for loading controls. Quantitation of each replicate is represented as (A) 
Ln(SK1/Actin) and (B) Ln(p-SK1/Actin) in the box plots below the respective representative 
Western blots. (A-B) The *** indicates P<0.0001, ** indicates P<0.001, and * indicates P<0.05 
with the Dunnett’s Test used to compare all cancer groups to the healthy control (hT). Tukey-
Kramer Tests were used to determine significant differences between cancer groups; pairs that 
were significantly different are highlighted in the comma-separated lists on the right-hand corner 
of (A), where ‡ ‡ indicates P<0.005 and ‡ indicates P<0.05. (C) Box plot of normalized mRNA 
levels of MAPK1/ERK2 in cancer subcultures and hT cells measured by RNA-Seq. Measurements 
were collected in biological triplicate and represented on a Log2 scale. (D) Box plot of normalized 
MAPK1 protein concentrations measured by quantitative proteomics of cancer subcultures and 
hT whole cell lysates. Data are represented as the mean normalized MAPK1/ERK2 protein 
concentration (AUCMAPK1/AUCTotal) of 3-4 biological replicates per group. (C-D) The Dunnett’s 
Test was used to compare the cancer groups to the healthy control (hT), wherein ** indicates 
P≤0.0003 and * indicates P<0.05. Tukey-Kramer Tests were used to determine which cancer 
groups differed from each other; pairs that were significantly different are highlighted in the 
comma-separated lists on the top right-hand corner of each plot, where ‡ ‡ indicates P<0.01 and 
‡ indicates P<0.05. 
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The results of our SK1 Western blots led us to question why SK1 protein expression 

(Figure 2-15A) seemed to be in the opposite direction of SK1 mRNA expression (Figure 2-7G) 

in the cancer groups relative to hTert. Indeed, we saw that SK1 mRNA levels were depleted 

while SK1 protein levels were increased. This may indicate that SK1 translation was post-

transcriptionally elevated. In contrast to SK1, both mRNA and protein levels of Beta-actin 

(Figure 2-16A1-A2) and Gamma-actin (Figure 2-16B1-B2) in the four cancer groups were 

depleted relative to hTert. This suggests that, unlike SK1, cytoplasmic actin proteins were 

transcriptionally regulated in the PDAC cells. We also checked another cancer-promoting lipid 

modifying enzyme, fatty acid synthase (FASN), for which we had both RNA-Seq and protein 

quantitation data from our proteomics analysis. Both FASN mRNA and protein levels have been 

shown to be overexpressed in most human cancers including PDAC, making FASN an important 

biomarker of the disease 135. Consistent with other research 16,103,135 both the mRNA and protein 

expression levels of FASN were significantly increased in the PDAC cells relative to the healthy 

control (P<0.01) (Figure 2-17A-B). Based on these results we proposed that SK1 protein 

expression, as opposed to other differentially expressed species in the cancer groups like actin 

and FASN, was post-transcriptionally increased in the PDAC subclones relative to hTert cells.  
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Figure 2-16 Cytoplasmic actin mRNA and protein levels were reduced in pancreatic cancer 
subclones relative to the healthy control. (A1, B1) Box plots of mRNA expression levels of (A1) 
Cytoplasmic Actin 1 (Beta-actin) and (B1) Cytoplasmic Actin 2 (Gamma-actin) measured in 
biological triplicate in pancreatic cancer subclones (pA, pB, pC, pD) and healthy control cells. 
Data are represented as the normalized mRNA counts on a Log2 scale. (A2, B2) Box plots of 
normalized protein concentrations of (A2) Cytoplasmic Actin 1 (Beta-actin) and (B2) Cytoplasmic 
Actin 2 (Gamma-actin) measured in biological triplicate (hT) or quadruplet (pA-pD). (A2, B2) 
Data are represented as the mean normalized protein concentration in each sample measured in 
biological triplicate. The Dunnett’s Test was used to compare the cancer cell groups to the healthy 
control; the * indicates p<01. Based on the Tukey-Kramer Test, there were no significant 
differences between mRNA or protein levels of actin measured in the cancer groups. 
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Figure 2-17 Fatty Acid Synthase mRNA and protein levels were increased in pancreatic cancer 
subclones relative to the healthy control. (A-B) Box plots of (A) mRNA and (B) protein levels of 
Fatty Acid Synthase (FASN) measured in pancreatic cancer cell groups and the healthy control. 
(A) Data are represented as the normalized mRNA counts measured in biological triplicate in 
each cell type. (B) Data are represented as the normalized protein concentration measured in 
biological triplicate. (A-B) The Dunnett’s Test was used to compare the cancer cell groups to the 
healthy control, where ** indicates P<0.01 and * indicates p≤0.002. Tukey-Kramer Tests were 
used to determine significant differences between the cancer groups; the pair found to be 
significantly different is highlighted in the right-hand corner of (A), where † indicates P<0.05. 

 

To compare activation levels of SK1 enzyme in the five cell groups, we used a phospho-

SK1 (Ser225) polyclonal antibody to detect endogenous SK1 phosphorylation (Figure 2-15B). All 

cancer groups displayed a significant increase in the amount of phosphorylated SK1 relative to 

hTert (P<0.001) (Figure 2-15B). The pA and pB cells exhibited the highest SK1 levels as well as 

increased SK1 phospho-activation relative to hTert; the pC cells displayed a smaller but significant 

increase in SK1 expression and phosphorylation compared to hTert; in contrast, total SK1 

expression was not significantly increased but the median p-SK1 concentration was highest in the 

pD cells relative to hTert (Figure 2-15A-B). This suggests the perturbed S1P/C16 Cer ratio 

observed across PDAC subclones (Figure 2-11A) was achieved in unique ways by modulating 

SK1 concentration and activation in each subclone. Overall, the results of our Western blots 
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indicate that overactive SK1 may be required to maintain sphingolipid metabolic reprogramming 

and/or signaling in PDAC cells. 

The high p-SK1 levels we observed in the cancer groups may be due to increased 

expression of the SK1 activating kinase, MAPK1/ERK2 (Figure 2-15C-D). ERK1/2 are key 

components of the pro-proliferative Ras/MAPK signaling pathway that is hyperactivated in 

many human cancers 136. Both MAPK1 and MAPK2 (ERK1/2) activate SK1 via phosphorylation 

at Ser225 133. Although very similar in structure, ERK2 has much higher activating efficiency for 

human SK1 than ERK1 133. ERK2 was detected in all five cell groups in our RNA-Seq and 

proteomics analyses. These assays suggest that like SK1, ERK2 protein expression was post-

transcriptionally increased in the cancer groups relative to hTert (Figure 2-15C-D). ERK2 

mRNA expression was significantly reduced in all four cancer groups at different degrees 

relative to hTert (P<0.001) (Figure 2-15C). However, ERK2 protein expression was elevated in 

all the cancer groups relative to hTert and this increase was significant in pA (P<0.001), pB 

(P<0.05), and pC (P<0.05) cells (Figure 2-15D).  

Increased p-SK1 levels (Figure 2-15B) may be attributed in part to this increase in the 

expression of its high-affinity activating kinase (ERK2) in the cancer cells relative to hTert 

(Figure 2-15D). Because protein synthesis is energetically costly, cancer cells under 

microenvironmental or metabolic stress can limit translation to a specific subset of mRNA’s that 

code proteins best suited to support survival and disease progression 136. Based on these results, 

we believe that SK1 and ERK2 were among this subset of preferred mRNA molecules to 

promote S1P synthesis, S1P mediated pro-survival signaling, and other cancerous phenotypes in 

the PDAC cell groups. 
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SK1 inhibition effectively normalized S1P/C16 Cer levels in distinct PDAC subclones  

We developed a sphingolipid targeted LC-MS based assay to quantify the specific 

enzyme activity of SK1 and the effects of SK1 inhibition on S1P/C16 Cer metabolism. We used 

this assay to assess the effect of Sphingosine Kinase Inhibitor 2 (SKI-II, 4-[[4-(4-Chlorophenyl)-

2-thiazolyl]amino]phenol) a non-lipid compound displaying selective, non-ATP competitive 

inhibition of human SK1 137. Average S1P concentrations were higher in the vehicle controls of 

all the cancer groups relative to hTert and this difference was significant in pA (P<0.05), pC 

(P<0.05), and pD (P<0.05) cells (Figure 2-13A).  

SKI-II treatment reduced average intracellular S1P levels in all four cancer groups 

relative to their corresponding vehicle controls (Figure 2-13A) and normalized intracellular S1P 

levels in all the cancer groups relative to the healthy control (Figure 2-13A). On the other hand, 

SKI-II had virtually no effect on intracellular S1P concentrations in hTert cells (Figure 2-13A). 

This suggests that SK1-mediated S1P production was initially higher in the cancer groups, but 

SKI-II effectively suppressed hyperactive levels of SK1 mediated S1P synthesis. This change in 

SK1 activity also reduced average extracellular S1P levels in all of the cancer groups, though 

this decrease was only significant in pA cells (P<0.05) (Figure 2-13C). Moreover, SKI-II 

treatment normalized extracellular S1P levels in the two cancer groups whose baseline 

extracellular S1P concentrations were significantly higher than the blank (P<0.05), i.e. pC and 

pD cells (Figure 2-13C). Alternatively, SKI-II treatment led to an increase in intracellular C16 

Cer levels in all of the cancer cell samples relative to the corresponding vehicle controls, though 

this difference was only statistically significant in pA cells (P<0.05) (Figure 2-9B). This 

suggests that the decrease in SK1 driven S1P production from ceramide precursors allowed C16 

Cer concentrations to increase in cells treated with SKI-II.  
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The ratio of endogenous S1P/C16 Cer is considered a key metric of the sphingolipid 

rheostat, thereby serving as a critical biosensor for predicting cell fate and drug sensitivity due to 

competing cell signaling 19,65,66,115,138. On average, the ratio of S1P to C16 Cer was higher in all 

the cancer vehicle control groups relative to hTert; this increase was significant in pB 

(P<0.00001), pC (P<0.005), and pD (P<0.00001) cells (Figure 2-12). This indicates that the 

sphingolipid rheostat was perturbed in all of the cancer subclones, favoring S1P relative to C16 

Cer. Note that this perturbation was displayed in significantly different degrees between different 

subclones (Figure 2-12). Baseline S1P/C16 Cer in the pB and pD vehicle control groups were 

significantly higher than pA and pC vehicle controls (P<0.01) (Figure 2-12). This further 

supports that each PSN-1 subclone adapted different ways to maintain an imbalance in 

sphingolipid metabolism to promote pro-survival S1P levels relative to pro-apoptotic C16 Cer.  

Despite the wide variations in basal C16 Cer and S1P levels, SKI-II significantly reduced 

the S1P/C16 Cer ratio in all of the cancer groups relative to their respective vehicle controls 

(P<0.05) (Figure 2-12). Importantly, SKI-II treatment effectively normalized the average 

S1P/C16 Cer ratio in groups whose basal S1P/C16 Cer ratios were significantly higher than the 

healthy control (pB, pC, pD) (Figure 2-12). Overall, these results indicate that SK1 plays a 

significant role in regulating the perturbed sphingolipid rheostat in differentially evolved PDAC 

cells but may be corrected by SKI-II treatment. Next, we sought to determine whether this 

increase in S1P/C16 Cer in the PDAC clones contributed to cancerous phenotypes including 

rapid proliferation rates and resistance to apoptosis inducing drugs. 
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Selective inhibition of SK1 reduced PDAC cell proliferation in a dose-dependent manner 

We performed a live-cell confluence assay to generate growth curves of each cell type 

and measure the effects of SK1 activity on PDAC cell proliferation (Figure 2-18A-C; Figure 2-

19A-E). Cells were treated with a low (4.3µM), medium (13µM) or high (39µM) dose of SKI-II 

and compared to corresponding vehicle (1x PBS) controls (Figure 2-18A-C; Figure 2-19A-E). 

The vehicle control groups of all four PSN-1 subclones displayed rapid average basal growth 

rates, ~1.5 times faster than the healthy control (Figure 2-18C). The pB cells exhibited the 

highest average basal growth rate (1.12% confluence per hour), followed by pA (1.08% 

confluence per hour), pC (1.05% confluence per hour), pD (1.04% confluence per hour), and 

finally hTert (0.72% confluence per hour). SKI-II mediated inhibition of SK1 significantly 

reduced proliferation rates of all four cancer groups (P<0.05) in a dose-dependent manner 

(Figure 2-18C). SKI-II also reduced the average hTert cell growth rate in a dose-dependent 

manner though this was only statistically significant at the highest dose of SKI-II (39µM) 

(Figure 2-18B-C). 
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Figure 2-18 SK1 inhibition significantly slowed pancreatic cancer cell proliferation relative to 
the healthy control and each cancer subclones displayed a distinct level of dose-dependent SKI-
II sensitivity. Representative cell growth curves of (A) pA and (B) hT cells treated with Vehicle 
(1x PBS, blue dots) and the following concentrations of SKI-II: 4.3μM (red circles), 13μM (red 
triangles), and 39μM (red squares). (A-B) Data are represented as the mean phase object 
confluence +/- SEM of four biological replicates per group over time in hours. The gray lines are 
the linear trend lines of a portion of the linear-like growth period shown to illustrate how the 
proliferation rates for each cell group/condition were calculated. (C) Comparison of proliferation 
rates and sensitivity to increasing concentrations of SKI-II in pA (black dots), pB (gray triangles), 
pC (purple diamonds), pD (green squares), and hT (pink circles) cells. Growth rates were 
determined by calculating the slope of the linear-like growth phase of each group, where x=time 
(hours) and y=percent phase object confluence (% P.O.C.). Data are represented as the mean 
proliferation rate +/- SEM of four biological replicates per group plotted against the SKI-II 
concentration in µM. (A-C) Student’s t-tests were used to compare the proliferation rates of 
individual cell types treated with each concentration of SKI-II to the respective Vehicle Control 
group of the same cell type, where *** indicates P<0.00001, ** indicates P<0.005, and * indicates 
P<0.05.  
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Figure 2-19 Results of growth experiments of pancreatic cancer subclones and healthy control 
cells treated with increasing concentrations of SKI-II. (A1, B1, C1, D1, E1) Representative 
confluence images of (A1) hT, (B1) pA, (C1), pB, (D1) pC, and (E1) pD cells after 72 hours of 
treatment with the Vehicle (1x PBS) (top left), 4.3 µM SKI-II (top right), 13 µM SKI-II (bottom 
left), and 39 µM SKI-II (bottom right). (A-E) Representative growth curves of (A2) hT, (B2) pA, 
(C2), pB, (D2) pC, and (E2) pD cells during treatment with the Vehicle (blue points), 4.3 µM SKI-
II (red circles), 13 µM SKI-II (red triangles), and 39 µM SKI-II (red squares). (A2, B2, C2, D2, 
E2) Data are represented as the mean phase object confluence +/- SEM of four biological 
replicates over time (hours). (A3, B3, C3, D3, E3) Dose-dependent effects of SKI-II on the growth 
rates of (A3) hT, (B3) pA, (C3), pB, (D3) pC, and (E3) pD cells. Growth rates were determined 
by calculating the slope of the linear-like growth phase of each cell type, where x = time (hours) 
and y = percent phase object confluence. Data are represented as the mean proliferation rate +/- 
SEM of four biological replicates per group plotted against the SKI-II concentration used to treat 
each sample (µM).  
 

Each cancer subclone displayed different levels of sensitivity to SKI-II treatment (Figure 

2-18C). The pC cells seemed to be less sensitive to SKI-II; pC cells displayed the lowest average 

change in growth rate in response to the medium (13µM) and high (39µM) SKI-II doses 

compared to the other three cancer groups (Figure 2-18C). On the other hand, the pA cells were 

significantly more sensitive to SKI-II treatment relative to the other cancer subclones. Although 

the average proliferation rates of all four cancer groups dropped in response to the lowest dose of 

SKI-II (4.3µM), this drop was only statistically significant in the pA cells (P<0.05) (Figure 2-

18A, C). In addition, the pA cells exhibited the greatest drop in proliferation in response to the 

high SKI-II dose (39µM) (P<0.00001) relative to the other cell types (Figure 2-18C). This 

increased sensitivity may be due to the lower basal S1P/C16 Cer ratio displayed in the pA cells 

relative to the other cancer groups (Figure 2-12); a less extreme level of basal pro-proliferative 

S1P relative to C16 Cer may have made it so a lower concentration of SK1 inhibitor was 

sufficient to restore the healthy “hTert-like” balance in the sphingolipid rheostat in the pA cells 

compared to the other cancer groups whose S1P/C16 Cer ratios were significantly higher 
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(P<0.05) (Figure 2-12). This suggests that the cancer subclones adapted different levels of 

dependence on SK1 mediated S1P synthesis to support proliferation rates.    

Treating with SKI-II was sufficient to either normalize or significantly lower the growth 

rates of all four PSN-1 clones relative to hT (Figure 2-18C). Indeed, just 4.3µM SKI-II was 

sufficient to normalize pA cell proliferation (0.52 +/- 0.1% confluence per hour) to the rate of the 

hT vehicle control (0.72 +/- 0.01% confluence per hour) (Figure 2-18C). The medium SKI-II 

dose (13µM) was sufficient to significantly lower pB cell proliferation (0.38 +/- 0.2% confluence 

per hour) and pD cell proliferation (0.11 +/- 0.06% confluence per hour) relative to rate of the hT 

vehicle control (0.72 +/- 0.01% confluence per hour) (Figure 2-18C). Even for the pC cells 

which seemed to be the most resistant to SKI-II treatment, the medium SKI-II dose (13µM) was 

sufficient to nearly normalize pC cell growth (0.78 +/- 0.05% confluence per hour) relative to the 

growth rate of hT cells treated with the low (4.3µM) SKI-II dose (0.71 +/- 0.02% confluence per 

hour) (Figure 2-18C). Finally, the average proliferation rates of all four cancer groups treated 

with the high SKI-II dose (39µM) (pA: -0.03, pB: 0.30, pC: 0.34, pD: 0.13% confluence per 

hour) were considerably lower than hT cells treated with the same dose (0.48% confluence per 

hour) (Figure 2-18C). These results suggest that each cancer subclone was dependent to some 

extent on SK1 activity to support their rapid basal proliferation rates. Overall, our cell 

proliferation assay revealed that SK1 may be used as a drug target to reduce proliferation rates of 

differentially evolved PDAC clonal populations.  
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PDAC subclones displayed different levels of drug resistance but selective SK1 inhibition 

sensitized all subclones to mitochondria mediated apoptotic signals  

We performed a flow cytometric cell death assay with Propidium Iodide (PI) staining on 

PDAC and hT cells treated with SKI-II, BH3I-1, or BH3I-1 combined with SKI-II (Figures 2-

20; Figure 2-21). BH3I-1 is a BH3 domain-only peptide activator of mitochondria-mediated 

apoptosis 139,140. We hypothesized that the SKI-II driven increase in C16 Cer levels and decrease 

in S1P/C16 Cer (Figure 2-12) would enhance sensitivity to BH3I-1 induced mitochondria-

mediated apoptosis in the PSN-1 clones. As a positive control, we compared against cells treated 

with a non-mitochondria mediated pro-apoptotic drug, the nucleoside mimetic Gemcitabine 

(Gem). Unlike BH3I-1, Gem promotes apoptosis by inducing DNA damage 141. Gem was 

selected as the control against BH3I-1 not only because it acts by a different mechanism but also 

because it is currently the most common chemotherapeutic used to treat PDAC but has strikingly 

low success rates 141.  

We determined the half-maximal effective concentrations (EC50) of compounds in the 

control (Gem) and mitochondria mediated apoptosis (BH3I-1) inducer alone and in combination 

with SKI-II by performing multiple cell death assays on PDAC subclones and hT cells (Figure 

2-20A-B). The EC50 of each subclone was distinct from the others for both combinatorial 

treatments (Figure 2-20A-B).  The pA and pB cells required a higher dose of Gem (9μM) 

combined with a lower dose of SKI-II (1-3μM) compared to pC (5μM Gem + 6μM SKI-II) and 

pD cells (5μM Gem + 4μM SKI-II) (Figure 2-20A). This suggests that the pA and pB clones 

were more resistant to DNA damage-induced apoptosis compared to pD and pC clones and more 

sensitive to SK1 inhibition in the context of this treatment. Gem treatment was ineffective in the 
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hTert cells. This is likely due to the fact that hTert-HPNE is a slower growing cell line (Figure 

18C) and Gem specifically targets fast-growing cells 142.  

 

 

Figure 2-20 Pancreatic cancer subclones displayed different drug sensitivities yet SKI-II 
effectively sensitized each subclone to mitochondria-mediated apoptotic signals. (A) 
Concentrations of control apoptosis-inducing treatment (SKI-II + Gemcitabine) that were 
required to achieve the EC50 of each cell group (with the exception of the slower growing hT cells 
where treatment was ineffective). Data are represented as the mean EC50 concentration of 3 
biological replicates per group and error bars are drug tolerance (+/-) in µM. (B) Concentrations 
of targeted mitochondria-mediated apoptosis inducing treatment (SKI-II + BH3I-1) that were 
required to achieve the EC50 of each cell group. Data are represented as the mean EC50 
concentration of 3 biological replicates per group and error bars are drug tolerance (+/-) in µM. 
(C) Comparison of the efficacy of SKI-II in enhancing cell death in response to mitochondria-
mediated apoptotic signals across cancer subclones and healthy control. Data are represented as 
the percent increase in cell death of each group treated with SKI-II + BH3I-1 versus BH3I-1 alone 
(3 biological replicates per cell group/treatment). The Dunnett’s test was used to compare between 
the percent increase in cell death of the cancer subclones to the healthy control (hT), wherein *** 
indicates P=0.0004, ** indicates P<0.008, and * indicates P<0.05. The Tukey-Kramer test was 
used to determine whether the percent increase in cell death of any of the cancer subcultures was 
different than any of the other cancer groups; the only pair found to be significantly different is 
highlighted in the bottom right-hand corner of the plot, where ‡ indicates P=0.011. 
 

On the other hand, the BH3I-1 served as an effective apoptosis inducer in the hTert cells. 

The hT cells required the highest dose of SKI-II (13μM) combined with the lowest dose of 

BH3I-1 (1μM) to achieve the EC50 (Figure 2-20B). Overall, much lower concentrations of SKI-

II (1-8μM) coupled with higher doses of BH3I-1 (3-8μM) were required to achieve the EC50 in 

the PDAC strains relative to the hTert cells (Figure 2-20B). One interpretation of this could be 
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that the PDAC clones were more resistant to mitochondria-mediated apoptosis, but more 

sensitive to SK1 inhibition compared to healthy cells during the combinatorial treatment. The pA 

and pB cells seemed to be the most resistant to BH3I-1, with an EC50 ranging from 7-8μM, and 

required the least amount of SKI-II (1-2μM) in the combinatorial treatment compared to pC 

(4μM BH3I-1 + 8μM SKI-II) and pD cells (3μM BH3I-1 + 6μM SKI-II) (Figure 2-20B). This 

may mean that pA cells were more resistant to mitochondria-mediated apoptosis compared to pC 

and pD cells but more sensitive to SK1 inhibition in the context of this combinatorial treatment. 

The pD cells required the least amount of BH3I-1 to achieve the EC50, suggesting that pD cells 

were more sensitive to apoptosis in the presence of SKI-II relative to the other cancer clones.  

Using the doses determined for each cell line in our EC50 assay, we performed another set 

of cell-death experiments to test whether SK1 inhibition specifically enhanced sensitivity to 

BH3I-1 induced apoptosis. SKI-II induced a non-significant, but reproducible increase up to 10% 

in cell death across all of the cell groups in response to Gem treatment (Figure 2-21A-E). This 

may have been due to a counterproductive relationship between the mechanisms of action for 

Gem and SKI-II, since Gem targets fast growing cells and SK1 inhibition slows PDAC cell 

growth rates (Figure 2-18C).  

The percent of cell death in response to BH3I-1 alone was much lower compared to the 

response to the non-combinatorial Gem treatment in all the cancer groups compared to hTert 

(Figure 2-21A-E). However, sensitivity to BH3I-1 was significantly increased in each cancer 

subclone treated with SKI-II relative to those treated with BH3I-1 alone (P≤0.001) (Figure 2-

21B-E; Figure 2-20C). The BH3 domain is a direct inducer of apoptosis via activation of pro-

death Bcl-2 family members and does not rely on DNA damage checkpoint activation to kill the 

cell 140. Therefore, the significant increases in cell death of the PDAC groups treated with BH3I1 
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+ SKI-II was likely driven by an increase in intracellular signaling of pro-apoptotic C16 Cer 

relative to S1P (Figure 2-12). Meanwhile, there was no significant change in cell death of hT 

cells treated with BH3I-1 versus hT cells treated with the [BH3I-1 + SKI-II] combination 

treatment (Figure 2-20C; Figure 2-21A). Indeed, the percent increase in cell death measured in 

all four cancer groups treated with the [BH3I-1 + SKI-II] combination versus BH3I-1 alone was 

significantly higher compared to the healthy control (P<0.05) (Figure 2-20C).  

There also were slight differences in the percent increases in cell death between each 

cancer subclone treated with [BH3I-1 + SKI-II] versus BH3I-1 alone (Figure 2-20C). Based on 

our Western blots and SK1 activity assay, this is likely due to variations in SK1 expression 

(Figure 2-15A) and activity (Figure 2-12) between the different PSN-1 subclones and provides 

further evidence that each subclone adapted different methods to defend themselves against 

apoptotic signaling via SK1. Despite such modifications in SK1 expression and regulation 

between the cancer groups, our cell death assay indicates that SKI-II treatment effectively 

sensitized all of the cancer groups to mitochondria mediated apoptotic signals (Figure 2-21B-F). 

SK1 may serve as a powerful therapeutic drug target to ubiquitously enhance mitochondria 

mediated apoptosis in differentially reprogrammed PDAC subclones.  
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Figure 2-21 SK1 inhibition significantly sensitized pancreatic cancer subclones to 
mitochondria-mediated apoptotic signals. (A-F) Results of Cell Death Assay of cancer subclones 
(pA, pB, pC, and pD) and hT cells treated with the following drug combinations: (1) SKI-II only, 
(2) control apoptosis inducer Gemcitabine (Gem) only, (3) SKI-II combined with Gem, (4) 
mitochondria-mediated apoptosis inducer BH3I-1, and (5) SKI-II combined with BH3I-1 for 12 
hours at the following concentrations based on the combinatorial EC50 of each group: (A) hTert: 
(1) 13 μM SKI-II, (2) 10 μM Gem, (3) 13 μM  SKI-II + 10 μM Gem, (4) 1 μM BH3I-1, and (5) 13 
μM SKI-II + 1 μM  BH3I-1; (B) psn1-A: (1) 1 μM SKI-II, (2) 9 μM Gem, (3) 1 μM  SKI-II + 9 μM 
Gem, (4) 7 μM BH3I-1, and (5) 1 μM SKI-II + 7 μM  BH3I-1; (C) psn1-B: (1) 2 μM SKI-II, (2) 9 
μM Gem, (3) 3 μM  SKI-II + 9 μM Gem, (4) 8 μM BH3I-1, and (5) 2 μM SKI-II + 8 μM  BH3I-1; 
(D) psn1-C: (1) 8 μM SKI-II, (2) 5 μM Gem, (3) 6 μM  SKI-II + 5 μM Gem, (4) 4 μM BH3I-1, and 
(5) 8 μM SKI-II + 4 μM  BH3I-1; (E) psn1-D: (1) 6 μM SKI-II, (2) 5 μM Gem, (3) 4 μM  SKI-II + 
5 μM Gem, (4) 3 μM BH3I-1, and (5) 6 μM SKI-II + 3 μM  BH3I-1. (A-E) After the 12-hour 
treatment, dead cells were stained with propidium iodide and quantified by flow cytometry. 
Samples were measured in biological triplicate and depicted as percent cell death normalized to 
vehicle controls. Student’s t-tests were used to compare between cell death responses of groups 
treated with an apoptosis inducer alone (Gem or BH3I-1) versus those treated with an apoptosis 
inducer combined with SKI-II, wherein † indicates P<0.0001 and † P≤0.001.  
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DISCUSSION 

To promote stress tolerance, isogenic clones derived from the same originating cancer 

cell can adopt distinct phenotypic profiles leading to inter- and intra-tumor heterogeneity, disease 

progression, and drug resistance 6,27,143. Identifying pro-cancer pathways that are selectively 

preserved throughout stochastic and environmentally induced biochemical reprogramming is 

necessary to improve treatment outcomes in aggressive and therapeutically unresponsive cancers 

like PDAC 27,144. This study was designed to measure global and specific shifts in gene 

expression and metabolism that contribute to stress tolerance mechanisms in four PDAC 

subclones from a common ancestry (PSN-1) (Figure 2-3).  

The four “adaptations” of PSN-1 were compared to each other and to a ‘healthy’ control 

at the levels of DNA (STR and SNP Analyses), mRNA (RNA-Seq), protein (quantitative 

proteomics and Western blot analyses), and lipid (quantitative lipidomics) expression. 

Differences in cell behavior resulting from biochemical reprogramming were assessed using cell 

size/morphology, enzyme activity, cell proliferation, and drug sensitivity assays. The results of 

each assay are summarized in a divergence tree depicting commonalities and differentiations in 

the global genotypic and phenotypic profiles between individual cell groups (Figure 2-22A). 

Although there were no significant changes in DNA sequence between PSN-1 subclones, they 

exhibited multiple levels of phenotypic variation, including shifts in mRNA, protein, and lipid 

expression as well as sensitivity to anti-cancer drugs relative to one another. In addition, the 

mRNA, protein, and lipid data identified a pro-cancer sphingolipid metabolism pathway 

mediated predominantly by the enzyme Sphingosine Kinase 1 (Figure 2-22B). SK1 modified 

S1P/C16 Cer metabolism was conserved in different manners across the four differentially 

reprogrammed cancer subclones. Most importantly, SK1 served as an equally effective 
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therapeutic target of SKI-II in each isolated subclone by suppressing proliferation and enhancing 

mitochondria mediated apoptosis with no damaging effects on healthy control cells.  

 

Figure 2-22 Divergence tree of genotypic and phenotypic analyses of isolated pancreatic cancer 
subcultures (pA, pB, pC, pD) and healthy control cells (hT) revealing nongenetic heterogeneity 
and a conserved, pro-cancer sphingolipid metabolic pathway mediated by SK1. (A) The 
experimental groups used to investigate pro-cancer adaptations in this study are shown in the gray 
box (top). This is followed by each parameter used to broadly compare genotypes and phenotypes 
of each cell group, as well as to determine at which level of expression common pro-cancer 
adaptations were present. The orange boxes, labeled “Genes”, represent assays performed to 
investigate genetic differences between each group. The yellow box, denoted “RNA”, represents 
our RNA-Seq analysis used to compare mRNA expression levels between groups. The green boxes, 
labeled “Metabolism”, represent assays to investigate metabolic features of each cell group, 
including protein and lipid (intra/extracellular) expression levels. The purple boxes, labeled “Cell 
Behavior”, represent assays performed to measure major physical cancerous 
phenotypes/responses resulting from biochemical influences. (B) Boxes in this panel represent 
specific measurements of compounds that emerged from each global/omics assay related to the 
SK1-driven shift in S1P/C16 Cer metabolism observed to some degree in each cancer subclone. 
Relative to the healthy control, these biochemical influences promote SK1 activity in the cancer 
subclones in different manners in order to regulate cancerous behaviors, including proliferation 
and response to pro-mitochondria mediated apoptotic signals. (A-B) The distance between cell 
groups denoted by the black linker lines between each white box represent how closely the groups 
in each box were related with respect to the indicated assay. The color legend is shown to 
summarize general observations made in each assay, where appropriate; the boxes with groups 
showing high levels of expression, rate, sensitivity, response, or activity relative to the other cells 



78 
 

are colored bright red; those cells showing very low levels of the respective assay metric relative 
to the other groups are colored light blue, while groups that were somewhere in between are 
colored with shades of red or blue toward the middle of the redblue color spectrum.  
 

Multiple lipid extraction and mass spectrometry techniques confirmed that all four 

subclones displayed an increase in the ratio of intracellular S1P relative to C16 Cer, but at 

different levels (Figure 2-11A, Figure 2-12). This result was intriguing not only because C16 

Cer and S1P are interconvertible metabolites (Figure 2-2), but also because they have been 

shown to exhibit competing bioactive capacities in cancer 19. Together, C16 Cer and S1P make 

up a critical rheostat between pro-survival versus pro-apoptotic signaling pathways in the 

differentially modified PDAC subclones (Figure 2-23) 19. An increase in the level of pro-

survival S1P molecules relative to pro-apoptotic C16 Cer has been shown to promote cancerous 

phenotypes like proliferation, stress tolerance, and resistance to ceramide-mediated apoptosis by 

activating intracellular targets including TRAF2, an essential E3 ubiquitin ligase in the pro-

proliferative TNF- α/NF-κB signaling pathway 19. In addition, S1P can accumulate in the nucleus 

and has been shown to bind and inhibit histone deacetylases 1 and 2 (HDAC1-2), resulting in 

increased histone acetylation and gene suppression 56. Prohibitin 2 (PHB2), a conserved protein 

responsible for mitochondrial membrane assembly and integrity, is also known to bind S1P; this 

interaction may indirectly support mitochondrial respiration and pro-survival metabolism 56. We 

considered the increased S1P/C16 Cer ratios in the cancer groups representative of a cancer-

promoting a shift in the sphingolipid rheostat (Figure 2-12). We hypothesized that this shift in 

S1P/C16 Cer metabolism was used as a crucial stress tolerance mechanism of PSN-1 that was 

selectively conserved at various degrees in each isolated subclone (Figure 2-12).  

The mRNA expression data suggested that differences in cancer subclone behavior were 

driven by changes in S1P formation by Sphingosine Kinase (Figure 2-11D). SK1 catalyzes the 
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final step of S1P synthesis from ceramide precursors (Figure 2-2) and has been shown to play an 

important oncogenic role 120. Surprisingly, the mRNA expression levels of SK1 were reduced in 

all four cancer groups (Figure 2-11G). We used Western blots to measure relative levels of total 

SK1 (Figure 2-15A) as well as active p-SK1 enzymes phosphorylated at Serine-225 (Figure 2-

15B). SK1 protein concentrations reproducibly varied between the four subclones and were 

significantly different between certain pairs, including pA/pD (P<0.005), pB/pD (P<0.005), and 

pB/pC (P<0.05) groups (Figure 2-15A). All four cancer groups displayed higher levels of SK1 

protein relative to the healthy control, though this difference was only statistically significant in 

pA (P<0.0001), pB (P<0.0001), and pC (P<0.05) cells (Figure 2-15A). These data suggest that 

SK1 protein expression was post-transcriptionally increased to promote S1P synthesis in the 

cancer groups relative to hT cells. SK1 mRNA levels may have been reduced (Figure 2-11G) 

due to continual translation/overuse to maintain high SK1 protein levels in the cancer cells 

relative to hTert. Elevated SK1 protein levels may trigger a cell sensing system or negative 

feedback loop to suppress unnecessary SK1 mRNA production which could have also 

contributed to the reduced SK1 mRNA levels in the cancer groups compared to hTert (Figure 2-

11G). 

 Inactive SK1 is generally found in the cytosol away from its lipid substrates 133. After 

activation through MAPK1/ERK2 mediated phosphorylation at Ser-225, SK1 relocates to the 

plasma membrane where it localizes onto functional lipid-raft subdomains for its catalytic 

activity 133. Activating levels of SK1 (p-SK1) were significantly higher in all the cancer groups 

relative to the healthy control (P<0.001) (Figure 2-15B). Correspondingly, MAPK1/ERK2 

protein expression was also higher in all of the cancer groups relative to hTert; this difference 

was significant in pA (P<0.001), pB (P<0.05), and pC (P<0.05) cells (Figure 2-15D). We 
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propose that each cancer subclone achieved lower pro-apoptotic C16 Cer and higher pro-

inflammatory S1P signaling (Figure 2-12; Figure 2-13) through a combination of greater SK1 

protein expression and/or increased SK1 activity levels (Figure 2-15A-B).  

To investigate this hypothesis, we tested how modified SK1 enzyme activity would 

change S1P/C16 ratios and cell behavior. We measured the concentrations of S1P and C16 Cer 

by targeted LC-MS in each cell group treated with a selective SK1 inhibitor (SKI-II), versus 

corresponding vehicle controls. The ratio of S1P relative to C16 Cer was higher at different 

degrees in all of cancer vehicle control groups relative to the hT vehicle control; this increase 

was significant in pB (P<0.0001), pC (P=0.002), and pD (P<0.0001) cells (Figure 2-12). This 

suggests that S1P production was elevated to some degree in the cancer groups. There was strong 

evidence for a potentially damaging nscSNP in SK1 of pA (Supplemental Database M), which 

may have affected SK1 activity and in turn lowered the basal S1P/C16 Cer ratio in pA cells. The 

273LP polymorphism in the helix near the sphingosine binding site of SK1 may have affected 

the Kd, leading to a reduction in the S1P/C16 Cer ratio in pA cells relative to the other cancer 

groups. Nonetheless, the highly variable S1P/C16 Cer levels observed in the other subclones did 

not seem to have a genetic origin (Figure 2-12; Figure 2-13). On average, extracellular S1P 

levels were also higher in the cancer groups compared to the blank, though this difference was 

only significant in pC and pD groups (Figure 2-13C). This suggest that S1P may be exported 

from pC and pD cells, which has been shown to promote autocrine/paracrine proliferative 

signaling 67. Overall, these initial implications from our SK1 activity assay data confirmed that 

the sphingolipid rheostat was perturbed to some extent in each of cancer subclone and S1P may 

be used to activate both intra- and extracellular pro-proliferative targets. SKI-II mediated 

inhibition of SK1 significantly reduced the S1P/C16 Cer ratio in all four cancer groups (P<0.05) 
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and normalizing S1P/C16 Cer levels relative to the healthy control. This indicates that SK1 is an 

important driver of the S1P/C16 Cer imbalance and other cancerous phenotypes in metabolically 

dynamic PDAC subclones.  

Variations in S1P/C16 Cer levels (Figure 2-12) resulting from an SK1 mediated drive for 

increased proliferation may be linked to changes in cell size, shape, and production of membrane 

lipids to accommodate rapid growth rates of the cancer subclones (Figure 2-18C; Figure 2-6C1; 

Figure 2-4). While the cancer groups grew at nearly equivalent rapid rates ranging from 1.04 to 

1.12% confluence per hour (Figure 2-18C), there were modest but consistent variations in the 

general morphology and average sizes of individual subclones (Figure 2-4A-D). For example, 

pB cells tended to be thinner with sharper corners and darker nuclei compared to the other 

groups (Figure 2-4B). Meanwhile, the pD cells were slightly larger on average relative to the 

other subclones, although this difference was only significant between the pA and pD cells 

(P=0.005) (Figure 2-5D). These morphological differences may be considered structural 

manifestations of the variations in mRNA and protein expression levels (Figure 2-6A-B), lipid 

metabolism (Figure 2-6C-D), and SK1 activity (Figure 2-12, Figure 2-15B) induced by 

different internal and environmental stimuli that occurred during the subculturing experiment. 

For example, the slight increase in pD cell size may be linked to the shift in intra- and 

extracellular lipidomic profiles in the pD cells relative to the other cancer groups (Figure 2-6C-

D). The 2-fold increase in dietary serum lipids (Figure 2-3) may have allowed pD cells to 

produce more lipids to accommodate larger plasma membranes. Indeed, the pD cells exhibited 

the highest average concentration of cellular glycerolipids relative to the other cancer groups 

(Figure 6C1) which can be used to support new membrane growth (Figure 2-1). 
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The general reduction in PDAC cell size may also be correlated with the reduced 

cytoplasmic actin mRNA and protein expression levels (Figure 2-16A-B). The relative mRNA 

(Figure 2-23A2) and protein (Figure 2-23B2) concentrations of Beta-actin and Gamma-actin 

were depleted in all the cancer groups relative to the healthy control (P<0.01). Considerably 

higher actin mRNA and protein levels are likely required in hT cells to support their significantly 

larger cytoplasmic areas relative to the cancer groups. In addition, the pD cells were generally 

the largest of the four cancer groups (Figure 2-4F) and also exhibited the highest average actin 

concentrations relative to the other cancer groups (Figure 2-16A2, B2). These data suggest that 

shifts in mRNA, protein, and lipid expression resulting from intrinsic and microenvironmental 

influences are intimately linked with hallmark cancer phenotypes like cell size and shape 

abnormalities. Increased SK1 mediated S1P signaling may provide a pro-survival signaling 

environment to support such behaviors in metabolically unstable PDAC subclones. 

To explore this concept further, we measured the effects of SK1 on PDAC cell growth 

rates. SKI-II mediated SK1 inhibition significantly reduced the growth rates of each cancer 

group in a unique dose-dependent manner relative to the healthy control (Figure 2-18; Figure 2-

19A-E). These results suggest that SK1 activity was required to maintain rapid growth rates of 

all four PSN-1 subclones. In addition, these data suggest that SK1 may be used as a therapeutic 

target to regulate overwhelming levels of PDAC cell proliferation.  

Up until this point, we focused mainly on the pro-proliferative effects of SK1 driven S1P 

synthesis in our panel of heterogeneous PDAC cells. We next shifted our focus toward its 

competing metabolic precursor, C16 Cer. We wondered whether SK1 inhibition was sufficient to 

enhance C16 Cer mediated pro-apoptotic signaling and drug sensitivity in the PDAC clones.  

Along with structural functions in cell membranes, ceramides serve as vital second messengers 
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in response to stressful stimuli subjected to cancer cells, e.g. oxidative stress, anti-cancer drugs, 

cytokines (e.g. TNFα, IL-1β), pro-apoptotic cell surface receptors (e.g. FasR), and ionizing 

radiation 145. In fact, endogenous ceramide synthesis is an essential component of apoptotic 

signaling in both TNFα- and FasR (CD95)- treated conditions 146. On the other hand, reducing 

ceramide levels through targeted inhibition of the ceramide-producing sphingomyelinase 

(SMase) blocks apoptosis 147-149.  

How could a membrane-bound sphingolipid mediate programmed cell death? One 

common mechanism by which ceramides communicate extracellular stress signals to the cell is 

by forming ordered, ceramide-enriched microdomains or lipid rafts. These domains serve as 

signaling platforms by drawing receptors and other bioactive compounds to a central location on 

the plasma membrane 54. Rafts on the outer layer can induce changes in the inner layer of the 

membrane, thereby transducing extracellular stress signals to pro-apoptotic effector molecules in 

the cytosol 19,54. In response to apoptotic stimuli, ceramides located in the outer mitochondrial 

membrane can form ordered channels or pores, causing protein leakage from the intermembrane 

space and cytochrome c release, an initial step in the mitochondria-mediated apoptotic pathway 

110. Through such mechanisms, membrane-bound ceramides have been shown to perform key 

functions in anti-proliferative responses to stress, e.g. senescence modulation, cell growth 

inhibition, ER stress response, extrinsic and intrinsic pathways of apoptosis, and autophagy 150-

154. 

Ceramide species have specifically been shown to regulate pro-apoptotic Bcl-2 family 

proteins and/or splice variants through multiple mechanisms 150,155. Such regulatory systems are 

often linked to ceramide-induced activation of serine/threonine protein phosphatases, such as 

PP1 or PP2A 19. For example, ceramide-driven activation of PP1 leads to increased pro-apoptotic 
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splice variants of Bcl-x family members as well as caspase 9 proteins 156. Following ceramide-

mediated activation, PP2A dephosphorylates several key targets involved in anti-proliferative 

signaling events, e.g. dephosphorylation of Bax, which activates its potent pro-apoptotic 

functions 54. On the other hand, ceramide has inhibitory effects on the pro-survival Akt pathway 

through its interaction with protein kinase Cζ 157. Without the second-messenger properties of 

ceramide, the ability of the cell to undergo programmed cell death becomes severely impaired or 

in some cases disabled entirely 112,158. Thus, active levels of ceramide are necessary to maintain 

healthy cell populations by minimizing the accumulation of damaged and oncogenic cells. There 

is an increased interest and need for research in ceramide metabolism due to its apparent roles in 

age-related diseases including cancer 145. Although the pathophysiological effects of ceramides 

in general have been reviewed thoroughly, the biological functions and techniques to measure 

specific ceramide species are less implicit 145, yet increasingly important for uncovering potential 

therapeutic applications 59. 

Based on current literature, we hypothesized that the increase in intracellular C16 Cer 

levels (Figure 2-13B) induced by SKI-II may enhance PDAC cell sensitivity to mitochondria 

mediated apoptosis while suppressing S1P driven anti-apoptotic signaling. We performed a 

series of cell death assays to compare drug sensitives between the different cell types and 

evaluate whether SK1 inhibition affected therapeutic responses to BH3I-1, a peptide activator of 

mitochondria mediated apoptosis relative to a standard chemotherapeutic, Gemcitabine (Figure 

2-20; Figure 2-21). Our cell death assays suggested that the SK1 mediated shift in the S1P/C16 

Cer ratio provides some defense against mitochondria-mediated apoptosis in the cancer groups. 

Much lower concentrations of SKI-II (1-8μM) coupled with higher doses of BH3I-1 (3-8μM) 

were required to achieve the EC50 in the PDAC lines relative to that in hTert cells (Figure 2-
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20B). One interpretation of this could be that the PDAC cells were more resistant to 

mitochondria-mediated apoptosis but more sensitive to SK1 inhibition compared to healthy cells 

during the combinatorial treatment. The pA and pB cells seemed to be the most resistant to 

BH3I-1, with an EC50 ranging from 7-8μM, and required the least amount of SKI-II (1-2μM) in 

the combinatorial treatment compared to pC (4μM BH3I-1 + 8μM SKI-II) and pD cells (3μM 

BH3I-1 + 6μM SKI-II) (Figure 2-20B). This may mean that pA and pB cells were more resistant 

to mitochondria-mediated apoptosis compared to pC and pD cells but more sensitive to SK1 

inhibition in the context of this combinatorial treatment. The pD cells required the least amount 

of BH3I-1 to achieve its EC50, suggesting they were more sensitive to apoptosis in the presence 

of SKI-II relative to other PDAC subclones (Figure 2-20B). Another way to interpret our EC50 

results is to consider the individual concentrations of the two treatment components as less 

important compared to the total [SKI-II μM + BH3I-1μM]. This may be the more definitive 

determinant of the EC50 since the two compounds are administered simultaneously and work 

toward the same general effect: an increase in apoptotic signaling. In this case, hTert required the 

highest combined sum total of SKI-II/BH3I-1 concentrations (14μM), followed by pC (12μM), 

pA (10μM), pD (9μM), and pA (8μM) to achieve their individual EC50 levels (Figure 2-20B).  

In the presence of SKI-II, there was a very modest increase in cell death resulting from 

Gem treatment (Figure 2-21). In order for a nucleoside analogue like Gemcitabine to have 

maximal effect, cells should be proliferating rapidly 159.  Since SKI-II treatment extorted a potent 

anti-proliferative effect on the cancer groups (Figure 2-18C; Figure 2-19B-E) it may have had a 

counterproductive effect since slower cell growth may have reduced the efficacy of the 

Gemcitabine. On the other hand, BH3I-1 was a significantly more effective companion to SKI-II 

than Gem. SKI-II significantly enhanced the percent cell death of each cancer subclone exposed 
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to BH3I-1 (P<0.05) (Figure 2-20; Figure 2-21B-E). This result may be explained by the role of 

C16 Cer in increasing the ratio of pro-apoptotic to anti-apoptotic Bcl-2 family proteins at the 

mitochondria 112,158. Our data suggest that increased C16 Cer levels resulting from SKI-II 

treatment (Figure 2-13B) enhanced BH3 mimetic-induced mitochondrial outer membrane 

permeabilization and apoptosis in each PDAC subclone.   

Pancreatic cancer has historically been difficult to treat compared to other cancers 160,161. 

Traditional chemotherapeutics have only offered limited success due to the resistant nature of 

PDAC and the unique treatment-refractory environments established by individual tumors 162,163. 

Although Gemcitabine is the most common chemotherapeutic used to treat pancreatic cancer, the 

tumor response rate is just 12% 141. Resistance to Gem presents major clinical challenges and 

new strategies to enhance PDAC drug sensitivity are in high demand 141. In addition, inter- and 

intra-tumor heterogeneity resulting from differential cellular evolution reduces the predictability 

of individual treatment outcomes between isogenic experimental models and individual patients 

25.  

We showed that SK1 served as the “master switch” of the perturbed sphingolipid rheostat 

in metabolically reprogrammed PDAC cells and may be used as a ubiquitous drug target among 

isogenic PDAC subclones. Consistent with previous research 133, the model established in this 

study states that MAPK1/ERK2 initiates a pro-survival positive feedback loop by 

phosphorylating and activating SK1, thereby promoting S1P synthesis and suppressing relative 

levels of C16 Cer; S1P in turn stimulates intra- and extracellular pro-inflammatory targets such 

as MAPK1/ERK, leading to increased pancreatic cancer cell proliferation and drug resistance 

(Figure 2-23, left panel). SKI-II mediated SK1 inhibition increases pro-apoptotic C16 Cer levels 

relative to S1P, interrupting the S1P pro-inflammatory feedback loop, reducing proliferation, and 
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minimizing anti-apoptotic defense systems (Figure 2-23, right panel). Concomitant suppression 

of S1P and enhancement of intracellular C16 Cer levels by inhibition of SK1 activity may serve 

as a powerful strategy to restore a healthy balance between pro- and anti-apoptotic signaling in 

metabolically dynamic pancreatic cancers.  

 

 

 

 

 

 

 

 

Figure 2-23 Schematic model of pro-survival S1P signaling in pancreatic cancer cells (left) 
followed by a shift in the sphingolipid rheostat toward C16 Cer-driven pro-apoptotic signaling 
induced by SKI-II treatment (right).  

 

MATERIALS AND METHODS 

Experimental Design 

The originating PSN-1 cell line and hTert cell line were obtained from Dr. David Bearss 

at Tolero Pharmaceuticals and were not tested for mycoplasma contamination after arrival.  We 

developed a panel of differentially reprogrammed human ductal pancreatic cancer cells 

originating from the same genetic origin (PSN-1) 121 (Figure 2-3). The original PSN-1 cells were 

authenticated using the ATCC human cell line short tandem repeat (STR) profiling analysis 126 

(Supplemental Table 2B). These original cells were subcultured into four different randomly 

assigned groups: psn1-A (pA), psn1-B (pB), psn1-C (pC) and psn1-D (pD).  



88 
 

The first set of groups, pA and pC, were used to investigate stochastic, time-dependent 

factors influencing cancer evolution and were cultured separately in the baseline growth 

conditions in RPMI-1640 cell medium (Thermo Fisher cat # 11875093) with L-glutamine, high 

glucose, 10% Fetal Bovine Serum (FBS), and penicillin/streptomycin (PS) (1x) at 37oC and 5% 

CO2. The other groups, pB and pD, were cultured in new combinations of randomly assigned 

growth conditions during the same month to encourage environment-induced adaptions and 

metabolic reprogramming. The pB cells were maintained in DMEM cell medium with 10% FBS 

and 1x PS at 37oC and 5% CO2. The pD cells underwent the greatest dietary change as they were 

cultured in IMDM cell culture medium with double the concentration of FBS (20%) and 1x PS at 

37oC and 5% CO2. All three cell mediums used in this portion of the study (RPMI-1640, 

DMEM, IMDM) contained the same concentration of D-Glucose (25 mM). RPMI is generally 

the most different of the three in terms of contents and concentrations while DMEM and IMDM 

are more similar formulations (Supplemental Table 1). The formulations differ the most in 

amino acid (Supplemental Table 1A) and vitamin content (Supplemental Table 1B). RPMI 

contains the greatest variety of amino acids; however, their concentrations tend to be lower than 

those in DMEM and IMDM.  RPMI also contains the greatest variety of vitamins 

(Supplemental Table 1B) and is the only one of the three mediums to include Glutathione, an 

antioxidant that promotes cell growth and viability 164.  After the month-long evolutionary period 

of culturing the cancer groups in these different cell culture mediums, frozen stocks of each 

group were prepared and stored in liquid nitrogen.  

The growth conditions of each group were unified to the original growth medium (RPMI-

1640 with L-glutamine and high glucose, 10% FBS, 1x PS) to obtain consistency of 

experimental conditions across all groups during the in vitro assays that followed. To minimize 
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further cancer evolution/adaptive changes in each cell group from occurring throughout the study 

after the 1-month evolutionary period (Figure 2-3), cells from each group were passaged no 

more than 10 times before returning to an original frozen stock of the respective group. 

 

Cell Size/Morphology Analysis  

Light microscope imaging was used to compare cell shapes and sizes. ImageJ image 

analysis software was used to measure the cell areas of 40 different randomly selected cells in 

each group. 

 

STR Profiling 

Cell samples from each group were collected and STR profiles were generated using the 

ATCC Human Cell Line Authentication Service. Eight STR markers (plus amelogenin for 

gender determination) were amplified from cellular DNA via Polymerase Chain Reaction (PCR) 

and converted to the respective alleles by comparing to allelic ladders 126 (Supplemental Table 

2). These alleles were then converted to corresponding numeric values which were used to 

generate an STR profiles of each group 126. The STR Profiles of each group were then compared 

to the corresponding reference profiles to determine the degree of relatedness to the original 

tissue 126. 

 

RNA-Seq Analysis  

The mRNA extracts were prepared from cell cultures of each group using the Direct-

zol™ RNA MiniPrep Plus Kit. Samples were stored at -80°C for 1 week-1 month. Three to four 

samples from each group with RQN values ≥8.0 and were selected for sequencing at the DNA 
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Sequencing Center (DNASC) at Brigham Young University. There was a Poly-A enrichment 

prior to the library construction and libraries were sequenced using the HiSeq 250 Cycle Paired-

End (125 cycles from each end) sequencing method. 

Resulting sequencing data was downloaded and quality analyzed using the fastqc 

package 165. All samples passed the major sequencing quality parameters. Reads were then 

aligned to the human genome (GRCh38) and assigned to features using an R script based on the 

Rsubread package 166.  

 

SNP Analysis/SNP Profiling and Data Analysis 

Variant analysis of the RNA-seq data was conducted using custom R scripts based on the 

VariantTools Bioconductor package. Variants were first called individually for each sample and 

then results for all samples collated into a single table with presence or absence of a variant at 

every genomic position with a variant in at least one sample. PCA analysis comparing samples 

was then conducted using logisticPCA, which is designed for binary datasets 167. 

Nonsynonymous mutations were identified using the VariantAnnotation package 168 and their 

effects predicted using Polyphen2 169. 

 

RNA Expression Profiling and Data Analysis 

The DESeq2 R/Bioconductor package was used to filter and normalize raw RNA-Seq 

data as well as to identify differentially expressed genes between groups 131. The hierarchal heat 

map of the normalized RNA-Seq data was created using DESeq2 and the PCA plot was made 

using ClustVis 170.  
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Protein Expression Profiling and Data Analysis 

Proteomics samples were prepared from whole cell lysates collected from cell cultures of 

each group using an on-filter trypsin digest procedure. Cells were first grown to 70-80% 

confluence on 15cm tissue culture dishes. The cell medium was aspirated and cells were washed 

with 1x PBS. Cells were trypsinzed and pelleted by centrifugation for 5 minutes at 1200rpm. The 

pellet was gently washed with 1x PBS. Pelleted cells were lysed and protein was denatured in 

6 M guanidine/HCl 100 mM Tris/HCl (pH 8.5) on a tissue homogenizer for 30 sec. Total protein 

was quantified using a bicinchoninic acid (BCA) assay. 50 μg of protein from the sample was 

transferred to a 30 kD spin filter and washed 2–3 times with 6 M guanidine/HCl 100 

mM Tris/HCl (pH 8.5). Disulfide bonds were reduced using dithiothreitol and alkylated using 

iodoacetamide. The filter was washed twice with 25 mM ammonium bicarbonate. Proteins were 

re-suspended in 25 mM ammonium bicarbonate (pH~8) and digested overnight using Pierce MS-

Grade Trypsin. The trypsin digest was quenched and peptides were spun through 30kDa filters 

via centrifugation. Samples were dried in a vacuum evaporator and re-suspended in 50 μL of 3% 

acetonitrile, 0.1% formic acid. Proteomics data was collected from each sample on a Lumos 

Orbitrap (Thermo) mass spectrometer. To reduce the influence of time-dependent fluctuation or 

cross contamination from run to run, the sample analysis schedule was randomized using a 

random number generator.  

PEAKS Studio software was used for de novo sequencing to identify proteins in our raw 

MS data as well as to quantify, filter (quality-control) and normalize our label-free quantitation 

data for each protein 171. Peptides were identified from MS/MS spectra by searching against the 

Swiss-Prot human database. Protein annotations with at least 2 unique peptides and a false 

discovery rate less than 1% were included in the comparative quantitative analysis. We used t-
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tests corrected for multiple comparisons using the Benjamini-Hochberg method to determine 

significant differences in protein concentrations between groups. The hierarchal heat map of the 

normalized protein concentrations was created using DESeq2 131 and the PCA plot was made 

using ClustVis 170. We used t-tests to determine significant differences between protein 

concentrations in each group; p-values were corrected for multiple comparisons using the 

Benjamini-Hochberg procedure. Protein concentrations were considered significantly 

differentially expressed if both the p-value and corrected p-value were <0.05. The concentrations 

of differentially expressed proteins were compared between groups by calculating the fold 

change in concentration (mean concentration of each individual group relative to the mean 

concentration in the other groups). If the fold change was >1 the protein was considered 

upregulated and if the fold change was <1 the protein was considered downregulated.  

DAVID Bioinformatics Functional Annotation Tools were used identify enriched 

functional-related gene groups in each list of significantly differentially expressed proteins 42. 

The top three gene ontologies with the highest enrichment scores were considered relevant but 

only considered significantly enriched if the Benjamini score for enrichment calculated by the 

functional analysis tool was <0.05 42. 

 

Shotgun Lipidomics Assay Development and Data Analysis 

Lipids with mass difference from LMSD <50ppm were used in quantitative analysis 

Several extraction methods were evaluated to determine which method would best sample each 

of the major lipid classes and introduce the least amount of bias into our mass spectrometry 

analysis. All methods had differential extraction efficiency with differences in the observed lipid 

categories and classes. One complication with mass spectrometry techniques is that it requires a 
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charged molecule to make measurements. Many lipids do not have an intrinsic charge, but 

addition of ammonium acetate in the extraction protocol increased the coverage of lipids from all 

categories in both positive and negative ion modes. Based on the initial lipid classifications we 

determined that a modification to Bligh and Dyer extraction with addition of isopropanol and an 

ammonium acetate adduct 172 resulted in the most reproducible, broad coverage of the major 

lipid categories. Total unique lipid identifications that met our criteria were compared for each of 

the extraction methods. We repeatedly identified the largest number of lipid species using the 

modified Bligh and Dyer technique 172. The sample preparation procedure used in this shotgun 

lipidomics assay is explained in the following paragraph.  

Cell pellets were re-suspended in 1.5 mL cell lysis buffer (0.1M Tris-HCl @ pH 7.6) and 

homogenized by circular cut tissue homogenizer (Omni) and vortex (30 seconds at 850 RPM). 

The homogenate was then transferred to glass vial (4.5 dram) where a two-phase extraction was 

completed to remove the lipid constituents 172. Sample collection and homogenization steps were 

performed under cold collection environments and under nitrogen to reduce oxidation. The final 

extraction mixture contained the 1.5 mL aqueous homogenate and then an additional 3 mL of 

chloroform/methanol/isopropanol (3:1:1.25, v/v/v). A larger extraction batch with the Bligh and 

Dyer was extracted over 24 hours with shaking gave the closest match to a spiked standard. The 

organic lipid containing layer was then concentrated under reduced pressure at room 

temperature. The concentrated lipid extract was divided into two separate samples for 

comparison of adduct effects. The half sample analyzed without adduct was diluted with organic 

phase solution chloroform/methanol/isopropanol (3:1:1.25, v/v/v) with 0.1% formic acid 

(Thermo) at a 9-fold dilution by volume (9:1, solution: organic layer extraction) to a total volume 

of 250 μL immediately prior to data collection. The half sample analyzed with adduct was 
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diluted with the same organic phase solution with 0.1% formic acid and ammonium acetate (1.5 

mM) to promote ionization of some of the neutral lipid species. The sample (with and without 

adduct) was run in both positive and negative instrument modes to increase specificity and 

variety of lipids through intra-source selection of differentially ionizable species.  

     To reduce the influence of time-dependent fluctuation or cross contamination from run to run, 

the sample analysis schedule was randomized using a random number generator. In this way if 

the wash cycle between sample runs did not remove all the contaminants from the capillary line, 

the contaminated peak should not appear more than once in the technical replicates and is 

thereby removed by the data analysis filters. Sample (250 µL) was infused at 10 µL/min onto a 

Thermo LTQ-Orbitrap XL mass spectrometer using an IonMax ESI soft-ionization direct inject 

technique. During the infusion a high resolution (≥100,000) MS1 survey scan cycled through 

m/z “windows” (75-250 m/z, 250-400 m/z, 400-600 m/z, 600-800 m/z, and 800-1800 m/z). The 

top 5 most intense ions from each scan were selected for fragmentation, after an ion had been 

selected for fragmentation twice it was excluded from further MS/MS selection.  

          The typical data acquisition measured approximately 2000 different ions. Initial lipid 

identifications were assigned for each ion based on the parent mass of ion in the primary survey 

scan. To increase accuracy, the m/z of each ion was corrected according to the standard curve of 

the internal standards.  The instrumental noise was determined as the baseline detection level 

across all spectra.  Only those peaks that are estimated to be at least twice the level of the 

instrumental noise are included. The data files were analyzed using in-house developed module 

for the MSPIRE proteomics package 173 which compared the masses and fragmentation patterns 

against expected masses and fragments for the lipids within the LIPID MAPS database 174. Ions 

which differed from the theoretical mass provided by the database by more than 50 ppm were 
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removed from the data set. For quantitation comparisons across groups, MS intensity data for 

each lipid was normalized to the sum of all the species quantified in each sample. The 

normalized summed spectral intensity for each sample was considered a single quantitative data 

point each lipid. 

 

Intra/extracellular Lipidomics LC-MS Analysis  

We established a sphingolipid focused extraction technique and reverse-phase (RP) LC-

MS method based on the procedure developed by Bode et al. 71. Cell cultures were plated onto 

15-cm cell culture dishes in complete RPMI 1640 Cell Medium and incubated at 37°C, 5% CO2. 

Once cells reached 65-75% confluence, the cell medium was aspirated and cells were washed 

twice with 1xPBS. Medium was replaced with fresh, pre-warmed (37°C) complete RPMI 1640 

containing 13µM of SKI-II inhibitor or an equivalent volume of 1x PBS for vehicle controls. 

Cell cultures were incubated for 12 hours at 37°C, 5% CO2. After the incubation period, the 

medium was aspirated from the cells and transferred to a glass pear-shaped flask. Total lipids 

were extracted from the flask using the modified B&D technique 172, vacuum dried, dissolved in 

100 µL of 4:1 (v/v) MeOH/CHCl3 and sealed under argon in glass MS vials. Meanwhile, cells on 

the plate were washed with 1x PBS two times, trypsinized, and pelleted via centrifugation at 

1200 rpm for 5 min. The supernatant was decanted and the sphingolipid modified lipid extraction 

technique based on the B&G method 71 was performed on wet ice, in glass centrifuge tubes 

under argon gas to minimize lipid oxidation (procedure detailed below).  

Cells were lysed via vortex in 1 mL of NaCl for 20 seconds. 1 mL of MeOH and 200µL 

of 6 M HCl were added. The lysate was vortexed for 10 seconds. The organic phase lipid 

extraction was performed by adding 2 mL of CHCl3 to the sample which were vortexed for 2 
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minutes and then centrifuged for 3 minutes at 1900 g. The lower organic phase was transferred to 

a glass test tube. The phase extraction steps were repeated on the remaining aqueous layer in the 

sample and the resulting organic phase was combined with the first. CHCl3 was evaporated from 

the sample in a vacuum concentrator. The vacuum-dried lipids were dissolved in 100 µL of 4:1 

(v/v) MeOH/CHCl3 and sealed under argon in glass MS vials.  

 Samples were analyzed via RP-LC-MS on a stepwise gradient using a Luna Omega 

1.6uM Polar C18 100Å LC Column, 150*2.1mm (Phenomenex Part # 00F-4748-AN). The 

mobile phases were 1% Formic Acid (Buffer A) and 100% Methanol (Buffer B) run on the 

following gradient at 100µL/min: 10%100% Buffer B (0-5 minutes), 100% Buffer B (5-25 

minutes), 100%10% Buffer B (25-27 minutes) with a stop time of 45 minutes. Liquid 

chromatography was followed by positive ESI on a Dual Jetstream ESI source, MS/MS 

fragmentation using variable collision energy based on ion mass, and mass detection using an 

Agilent quadrupole-time-of-flight (QTOF) mass spectrometer. To reduce the influence of time-

dependent fluctuation or cross contamination from run to run, the sample analysis schedule was 

randomized using a random number generator. To reduce sample carryover on the column, a 

blank containing 4:1 (v/v) MeOH/CHCl3 was run in between each sample. The injection needle 

was also washed twice with 48% acetonitrile/48% H2O/1% formic acid/1% cyclohexane 

followed by 99% isopropyl alcohol/1% cyclohexane to reduce sample carryover on the needle 

between each run.  

We set up a workflow in the Agilent MassHunter Qualitative Analysis workstation to 

annotate signals in our raw MS data using the Metlin Lipids MS Database 175. To verify these 

annotations, we measured the retention time (RT) alignment of each lipid by calculating the 

coefficient of variation (CV) of the respective RT across all the samples run on this method (6 
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per cell group = 30 samples total). We used the 500 lipids with the lowest CV of RT (<25%) in 

our global quantitative lipidomics analysis. Only 112 total lipids among the lipids identified in 

the cell medium samples met these criteria (CV of RT ≤25%) and were used for global 

extracellular lipid profiling. 

 

Western Blot Analysis 

Cell pellets were lysed with ice-cold RIPA lysis buffer supplemented with protease 

inhibitor (Thermo scientific #A32965) and Phosphatase inhibitor (Thermo scientific #A32957). 

Protein concentrations of the clarified lysates were determined with the DC Protein Assay 

(BioRad). 50ug of total protein from each sample were resolved on 10% SDS-PAGE. Gels were 

then transferred to nitrocellulose membrane and were immunoblotted for proteins of interest 

(SK1 and p-SK1). Actin was used for loading controls. The following antibodies were used: 

Actin (C-2) (Santa Cruz Biotechnology sc-8432), Anti-SPHK1 antibody (Abcam ab71700), and 

SPHK1-Phospho-Ser225 Antibody (Proteintech 19561-1-AP). Proteins of interest were 

visualized and quantified by the Li-Cor Odyssey Classic or CLx imaging system and the Image 

Studio software package.  

 

Targeted S1P/C16 Cer Quantitative Analysis and SK1 Activity Assay 

Cell cultures were plated onto 15-cm cell culture dishes in complete RPMI 1640 Cell 

Medium and incubated at 37°C, 5% CO2. Once cells reached 65-75% confluence, the cell 

medium was aspirated and cells were washed twice with 1xPBS. Medium was replaced with 

fresh, pre-warmed (37°C) complete RPMI 1640 medium containing 13µM of SKI-II inhibitor or 

an equivalent volume of 1x PBS for vehicle controls. All cells were treated with an equal dose of 
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the inhibitor to maintain sample uniformity, which was the highest concentration of SKI-II used 

in our EC50 estimation assay (See Results). We considered this dose representative of the 

concentration of SKI-II required to sensitize cells to a drug-induced effect on cell viability in a 

population of healthy pancreatic cells. Cell cultures treated with SKI-II and vehicle controls were 

incubated for 12 hours at 37°C, 5% CO2. After the incubation period, total lipids were extracted 

from the cells and cell medium followed by RP-LC-MS analysis using positive electrospray 

ionization using the methods described above (see Intra/extracellular Lipidomics LC-MS 

Analysis). To increase the detection and accuracy of our S1P and C16 Cer measurements, we 

spiked deuterated and/or odd-chain internal standards into each sample immediately following 

the cell lysis step and switched to a targeted version of our RP-LC-MS method designed to 

specifically select protonated S1P and C16 Cer ions for MS/MS fragmentation. Diluted stock 

solutions of the internal standards were made by diluting in MeOH and the following volumes 

were spiked into each sample prior to lipid extractions: 20µL of 2.5µM C16 Cer-d7 diluted in 

MeOH, 20µL of 2.5µM C17 Cer diluted in MeOH, and 20µL of 5µM S1P. 

Our sphingolipid optimized sample preparation and LC-MS method significantly 

improved the singal:noise ratio of C16 Cer ions in all of our samples, greatly increasing the 

confidence of our annotation and quantitation of this particular target. Yet, we were concerned 

that the QTOF lacked sensitivity required to detect low S1P levels because it was not observed 

all our cell samples. In addition, the upper pressure limit on the pumps leading to our QTOF 

instrument limited our ability to run at pressures high enough to potentially increase the S1P 

signal:noise ratio. To further improve the consistency and accuracy of our S1P detection and 

quantitation, we reran our samples using an S1P targeted method with higher pressure pumps 

and a more sensitive triple-quadrupole (qQq) mass spectrometer at the Metabolomics Core 
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Facility at the University of Utah 72. This method significantly improved the chromatography, 

signal intensity, fragment verification, and overall consistency of our S1P measurements in all 

our samples (Figure 2-8B; 10A-B).  

The identities of our two sphingolipid targets, C16 Cer and S1P, were confirmed by 

retention time alignment (Figure 2-8A-B) and MS/MS fragment verification (Figures2- 9-10) 

with the corresponding internal standards. Quantitation of S1P and C16 Cer was performed by 

normalizing to the AUC of the corresponding internal standards initially spiked into the cell 

lysates (50 pmol of C16 Cer-d7, 50 pmol of C17 Cer, and 100 pmol of S1P-d7). The following 

equation was used for C16 Cer quantitation: (50pmol) / (AUCC16Cer-d7 or C17 Cer) = (x pmol) / 

(AUCD7C16Cer), where x=[C16 Cer] (Figure 8A). Note that C16 Cer was normalized to whichever 

internal standard had higher a signal:noise ratio in the MS run (C16 Cer-d7 or C17 Cer). The 

following equation was used for S1P quantitation: (100pmol) / (AUCD7S1P) = (x pmol) / 

(AUCS1P), where x=[S1P] (Figure 2-8B).    

 

Cell Proliferation Assay 

 Cells from each group were plated evenly on a 24-well tissue culture dishes and 

incubated overnight at 37°C, 5% CO2. Each dose of SKI-II inhibitor (Santa Cruz Biotechnology 

cas 312636-16-1) was prepared by serial dilution in complete RPMI 1640 Cell Medium (Thermo 

Fisher cat # 11875093). The SKI-II treated volumes of cell medium were sterilized on 0.2µm 

filters and heated to 37°C. Wells containing adhered cells in the tissue culture dishes were 

aspirated and washed twice with 1x PBS. 1 mL of SKI-II treated medium was added to each 

well. Real-time phase object confluence was monitored over time using an Incucyte ZOOM® 

Live-Cell Analysis System at 37°C, 5% CO2 and quantitative data were analyzed using the 
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Incucyte ZOOM® data analysis software to generate cell growth curves. Proliferation rates were 

determined by calculating the mean slope of the linear-like growth phases of 3-4 biological 

replicates per group. 

 

Flow cytometry cell death assays 

Cell death assays were completed by plating cells in T-75 flasks (~10,000 cells/cm2) in 

log-phase growth and allowing a minimum of 6 hours for growth and adhesion before drug 

treatment. Growth media was replaced with fresh media prior to injection of drugs into culture 

flasks or plates. Cells were then treated for 12-24 hours with drugs. At the end of drug treatment, 

dead cells were removed and collected in a new plate. Cells were washed with 1x PBS and this 

was collected and combined into the new plate. Living adhered cells were removed from growth 

plates using 0.05% pH balanced trypsin at 37oC and then transferred to the new plate. Under dark 

conditions on ice a 1 mg/100 mL solution of propidium iodide (PI) was mixed with light shaking 

into the cell mixture and allowed 15 minutes to stain. PI is a DNA-binding fluorescent dye used 

to distinguish between live cells with intact membranes versus dead cells whose membranes are 

permeable to the dye 176. Cell counts were then collected on a red/blue acoustically focused 

Applied Biosciences Attune flow cytometer at a scan rate of 200 µL/min using BL2-PI blue laser 

and BL1 blue laser. Data was analyzed with the Attune software. 

 

Quantitation and statistical tests 

If not otherwise specified, figure development as well as data quantitation and statistical 

tests were conducted in Excel (dot plots, bar graphs, t-tests, Benjamini-Hochberg procedure) and 

JMP (box plots, t-tests, Dunnett’s tests, Tukey-Kramer tests).  
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SUPPLEMENTAL TABLES 

Supplemental Table 2-1 Comparison of components in cell growth mediums used to feed 
pancreatic cancer groups (pA, pB, pC, pD) during subculturing experiment. Concentrations of 
(A) amino acids, (B) vitamins and (C) salts and other components in RPMI 1640, DMEM and 
IMDM cell culture mediums in the concentrations between each component in the three different 
formulations. (A-C) Cells in the table shaded red indicate differences between formulations while 
those shaded green indicate the concentrations of the component in the respective row are the 
same among the formulations. 

 
 
  

   A m i n o  a c i d  ( m M )  RPMI  
(pA, pC) DMEM (pB) IMDM (pD) 

Glycine 0.133 0.400 0.400 
L-Alanine 0 0 0.281 

L-Arginine hydrochloride 0 0.398 0.398 
L-Arginine 1.149 0 0 

L-Asparagine (freebase) 0 0 0.189 
L-Asparagine 0.379 0 0 

L-Aspartic Acid 0.150 0 0.226 
L-Cystine 2HCl 0.208 0.201 0.292 
L-Glutamic Acid 0.136 0 0.510 

L-Glutamine 2.055 4.000 4.000 
L-Histidine hydrochloride-H2O 0 0.200 0.200 

L-Histidine 0.097 0 0 
L-Hydroxyproline 0.153 0 0 

L-Isoleucine 0.382 0.802 0.802 
L-Leucine 0.382 0.802 0.802 

L-Lysine hydrochloride 0.219 0.798 0.798 
L-Methionine 0.101 0.201 0.201 

L-Phenylalanine 0.091 0.400 0.400 
L-Proline 0.174 0 0.348 
L-Serine 0.286 0.400 0.400 

L-Threonine 0.168 0.798 0.798 
L-Tryptophan 0.025 0.078 0.078 

L-Tyrosine disodium salt dihydrate 0.111 0.398 0 
L-Tyrosine disodium salt  0 0 0.462 

L-Valine 0.171 0.803 0.803 

A 
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Vitamin (mM) RPMI 

( A  C) 

DMEM (pB) IMDM (pD) 

Biotin 8.20 × 10-4 0 5.33 × 10-5 
Choline Chloride 0.021 0.029 0.029 

D-Calcium pantothenate 0.001 0.008 0.008 
Folic Acid 0.002 0.009 0.009 

Niacinamide 0.008 0.033 0.033 
Para-Aminobenzoic Acid 0.007 0 0 
Pyridoxine hydrochloride 0.005 0.019 0.020 

Riboflavin 5.32 × 10-4 0.001 0.001 
Thiamine hydrochloride 0.003 0.012 0.012 

Vitamin B12 3.69 × 10-6 0 9.59 × 10-6 
i-Inositol 0.194 0.040 0.040 

 

     Salt/ Miscellaneous (mM) RPMI  

( A  C) 

DMEM (pB) IMDM (pD) 

Calcium Chloride 0 1.802 1.486 
Calcium nitrate 0.424 0 0 
Ferric Nitrate 0 2.48 × 10-4 0 

Magnesium Sulfate 0.407 0.814 0.814 
Potassium Chloride 5.333 5.333 4.400 
Potassium Nitrate 0 0 7.52 × 10-4 

Sodium Bicarbonate 17.857 44.048 36.000 
Sodium Chloride 103.448 110.345 77.672 

Sodium Phosphate monobasic 0 0.906 0.906 
Sodium Phosphate dibasic anhydrous 5.634 0 0 

Sodium Selenite 0 0 9.83 × 10-5 
D-Glucose (Dextrose) 25.000 25.000 25.000 
Glutathione (reduced) 0.003 0 0 

HEPES 10.013 0 25.034 
Phenol Red 0.013 0.040 0.040 

Sodium Pyruvate 1.000 0 1.000 
 
  

B 

C 
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Supplemental Table 2-2 STR Profile Reports of healthy control and pancreatic cancer cells 
before and after subculturing experiment. (A) Results of STR profiling of healthy immortalized 
control cell line (hTert) relative to the ATCC reference database profile for hTert-HPNE. (B) 
Results of STR profiling of originating cell line at time=0 (PSN-1) as well as the four different 
isolated subculture groups (psn1-A, psn1-B, psn1-C, psn1-D) from the originating PSN-1 cell line 
after subculturing experiment, genotypic and phenotypic profiling (time~6 months) relative to the 
ATCC reference database profile of PSN-1. 

A 
Test Results 

Healthy Control cells ATCC Reference 

Locus 
Query Profile: 

hTert 
Database Profile: 

hTert-HPNE 

TH01 8 9 8 9 

D5S818 11  11  
D13S317 12 13 12 13 

D7S820 9 10 9 10 
D16S539 12 13 12 13 
CSF1PO 12  12  

Amelogenin X Y X Y 
vWA 17  17  
TPOX 8 11 8 11 

Total # of alleles in 
database profile 15 

  
# of shared alleles b/t query sample 

& database profile 15 
  

% match between sample & 
hTert-HPNE database profile 100% 
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B 

 

Test 
Results 

Originating 
cells  

Test Results 
Subculture 

A 

Test Results 
Subculture 

B 

Test Results 
Subculture 

C 

Test Results 
Subculture 

D 

ATCC 
Reference 

Locus 

Query 
Profile: 
PSN-1 

Query 
Profile: 
psn1-A 

Query 
Profile: 
psn1-B 

Query 
Profile: 
psn1-C 

Query 
Profile: 
psn1-D 

Database 
Profile: PSN-

1 
TH01 6  6  6  6  6  6  

D5S818 11 13 11 13 11 13 11 13 11 13 11 13 
D13S317 10  10  10  10  10  10  
D7S820 10  10  10  10  10  10  
D16S539 11  11  11  11  11  10 11 
CSF1PO 12  12  12  12  12  12  

Amelogenin X  X  X  X  X  X  
vWA 17  17  17  17  17  17  
TPOX 8 11 8 11 8 11 8 11 8 11 8 11 

Total # of alleles 
in database profile 11 11 11 11 11 

  
# of shared alleles 
b/t query sample 

& 
database  profile 

12 12 12 12 12 

  
% match 

between sample 
& PSN-1 

database profile 

92% 92% 92% 92% 92% 

  
 

ABBREVIATIONS  

hTert-HPNE: (hTert or hT); psn1-A or pA: PSN-1 subclone group A; psn1-B or pB: PSN-1 

subclone group B; psn1-C or pC: PSN-1 subclone group C; psn1-D or pD: PSN-1 subclone 

group D; SK1: Sphingosine Kinase 1; C16 Cer: Ceramide(d18:1/16:0); C16 Cer-d7: 

Ceramide(d18:1-d7/16:0); C17 Cer: Ceramide(d18:1/17:0); S1P: Sphingosine-1-phosphate 

(d18:1); S1P-D7: Sphingosine-1-phosphate (d18-d7:1); SKI-II: Sphingosine Kinase Inhibitor 2; 

Gem: Gemcitabine. 
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3. Autophagy targets mitochondria specifically in tumors, but not the liver of HCT116 

xenograft mice 

 

Chapter Summary 

This chapter is the final manuscript demonstrating our novel kinetic proteomics based in vivo 

autophagy assay in an animal model of colorectal cancer. It was submitted to Molecular & 

Cellular Proteomics in October 2018 and is currently under review for publication. 
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Director). I subsequently performed all mouse tissue handling, developed protocols for sample 

preparation and prepared all mouse tissue samples for mass spectrometry (LC-MS and GC-MS), 

performed all steps of the percentage blood D2O analysis, performed all steps of the 

immunofluorescence assays, analyzed and interpreted all data, produced all the figures, and 

wrote the manuscript under the direction of John C. Price. Fredrick Peelor III, Karyn Hamilton, 

Benjamin Miller conducted the GC-MS analysis of DNA samples used for the in vivo cell 

proliferation measurement. Bradley C. Naylor greatly assisted in data analysis of in vivo kinetic 

and quantitative proteomics as well as the deuterium enrichment data. 

 

ABSTRACT 

Motivation 

 The activation of the catabolic pathway autophagy is strongly connected to cancer stress 

tolerance and chemoresistance. Pharmacological inhibition of autophagy is a potential strategy to 

sensitize tumors to traditional chemotherapeutics. Current clinical trials are attempting to control 

autophagy flux using lysosomal inhibitors such as chloroquine (CQ) with limited knowledge of 

the side effects of these drugs on protein homeostasis and metabolism in healthy surrounding 

tissues. If autophagy is used differently in cancer relative to healthy tissue, then oncogenic 

functions and specific autophagy substrates creates opportunity for specific chemosensitizing 

therapies. We used D2O-based metabolic labeling and mass spectrometry combined with 

standard quantitative proteomics techniques to measure CQ-dependent changes in autophagy 

substrate turnover and concentration in a xenograft mouse model of colon cancer. 
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Results 

We found that autophagy substrates differ in the tumor versus liver tissue. Our results 

suggest that autophagy is used to selectively degrade mitochondria (mitophagy) in tumor cells, 

perhaps to promote mitochondrial function and biogenesis. On the other hand, autophagy is used 

broadly as a bulk degradation system in the liver to promote global proteostasis. These 

experiments support a model of modified mitochondrial metabolism, enforced in part by rapid 

autophagic degradation, as a pro-survival mechanism in cancer. We also observed off-target 

effects in the liver consistent with a toxicity response to treatment. This suggests that inhibition 

of substrate-specific autophagy degradation pathways may be an effective anti-cancer treatment 

that will be well tolerated by healthy tissues. 

 

Data Availability 

Supplemental databases are stored on the Price lab research drive. All raw data are 

available within the Chorus repository (Chorusproject.org, project #1534: 

Autophagy_Xenograft_2018). 

 

ABBREVIATIONS 

CRC: colorectal cancer; HCT116: Human Colon Tumor 116 cell line; D2O: deuterated water; 

p62: Sequestosome-1/p62, LC3: microtubule associated light chain 3; TR: protein turnover rate; 

FC: fold change; AUC: area under the curve; TIC: total ion count; INST: internal standard; CQ: 

chloroquine diphosphate; Ox/Oxali: oxaliplatin. 
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INTRODUCTION 

Cancer recurrence and chemoresistance are a frequent problem, and in some cancers can 

limit the 5-year survival rate to as low as 8% 177. Metabolic adaptations that increase stress 

resistance are important to promote the transition to, and maintenance of, the cancerous 

phenotype while enhancing chemoresistance 24. Cell metabolism and cell-fate can be modified 

by shifting specific protein synthesis and degradation systems 178. As a result, the lifetimes or 

turnover rates of structures throughout the cellular proteome may change as cells become 

cancerous or drug resistant. The turnover of transiently expressed or shorter-lived proteins is 

generally controlled by the ubiquitin-proteasome system (UPS) 179. Longer-lived proteins and 

organelles accumulate damage over time and must also be turned over periodically to minimize 

toxic effects of damaged structures on the cell 179. Macroautophagy (hereafter referred to as 

autophagy) is an evolutionarily conserved catabolic process that can degrade whole protein 

complexes, organelles, and aggregated proteins. This recycles the resulting monomeric 

components, which can be used as metabolic intermediates to support cell survival and fitness 

74,76,178. 

Autophagy begins with the formation of a double membrane bound vesicle, called an 

autophagosome (Figure 1), which sequesters the soon-to-be degraded cytosolic targets 76. 

Lysosomes subsequently fuse with autophagosomes (forming autophagolysosomes) to degrade 

the encapsulated cargo, thereby providing carbon and nitrogen sources for energy metabolism or 

macromolecular biosynthesis and cofactors for redox balance 76,180,181. Basal autophagy occurs at 

low levels in healthy cells, has been shown to prevent chronic tissue damage over time, and 

contributes to multiple physiological processes such as differentiation, programmed cell death, as 

well as innate and adaptive immunity 76. Long-term differences in autophagy flux impact the 
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concentrations and biosynthesis rates of complexes, organelles, and their constituent proteins 

throughout the cell 178.  

Metabolic stresses characteristic of the tumor microenvironment (hypoxia, nutrient 

deprivation, and ROS) are known to upregulate autophagy 76,182,183. Accumulating evidence 

suggests that increased utilization of autophagy promotes a diverse array of survival responses 

including chemoresistance 24,75,80,178,180,182,184-187. Autophagy contributes to cellular metabolism 

and homeostasis at multiple levels by promoting protein and organelle quality control, clearing 

toxic structures from the cytosol, altering intracellular concentrations of a variety of functional 

proteins, and boosting biosynthesis and energy metabolism 178. These beneficial functions are 

presumably why many types of cancer cells display an “autophagy addiction” 188, but the exact 

mechanisms of autophagy-driven cell survival in cancer and chemoresistance are just emerging 

76,80. 

Autophagy is frequently described as a nonselective degradation system whereby 

autophagosomes randomly surround large portions of the cytosol to rapidly produce biofuels 

when nutrient levels are lacking 189. Constitutive activation of autophagy in this manner would 

be bioenergetically inefficient, because it would increase demand for protein synthesis in 

proliferating cancer cells that are already suffering extreme basal levels of metabolic stress 

6,28,143. Recent research suggests instead that autophagy is highly regulated and may respond to 

intrinsic and environmental stresses by targeting specific proteins or organelles such as 

ribosomes 49,190, mitochondria 81,191, endoplasmic reticulum 192, proinflammatory signaling 

proteins 75, portions of the nucleus 193, or the proteasome 52. Autophagosomal targeting of 

specific cytosolic substrates, a process known as “selective autophagy” 75,79,194 could confer a 

significant metabolic advantage in proliferating cancer cells by consuming excess or deleterious 
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proteins and reusing the resulting amino acids to serve as bioenergetic precursors or building 

blocks for cellular structures in higher demand 191. 

The specificity of autophagosome cargo selection in cancer versus healthy tissues, and 

whether autophagy targets certain pathways to regulate global cancer cell metabolism and 

function, are poorly understood 195. Selective autophagy may be accomplished in part by 

autophagy adapter proteins such as Sequestosome-1/p62, which recognizes polyubiquitinated 

structures and forms a bridge between the targeted cargo and the establishing autophagosome 

134,196. Chaperones such as heat shock proteins have also been shown to shuttle specific 

substrates to autophagosomes for degradation, a process known as chaperone mediated 

autophagy 197. Identifying autophagic targets in healthy versus tumor tissues is crucial to 

understand how autophagy provides a metabolic advantage in xenograft 23. Targeting selective 

systems of autophagy rather than global autophagy may facilitate more selective tumor 

inhibition. However, this remains to be comprehensively explored in tumor and healthy 

surrounding tissues, in part due to the challenge of measuring the highly dynamic processes and 

biological effects of autophagy in vivo 83,198,199. 

Traditionally, proteins associated with the autophagosome, including microtubule 

associated light chain 3 (LC3) and p62, have been used as autophagosomal markers and the 

standard for conventional autophagy detection assays, such as Western blot and 

immunohistochemistry 83. While such techniques can be used to quantitate general levels of 

autophagosome accumulation at a given time point, they do not necessarily differentiate between 

the dynamic effects of increased autophagy initiation or decreased autophagosome degradation. 

Changes in protein degradation rates and autophagy flux have been explored using “pulse-chase” 

experiments to measure protein half-lives using radioactively labeled amino acids that are 
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incorporated and subsequently removed from specific protein targets, such as p62 over time 

200,201. Recent advances in mass spectrometry have led to the birth of in vivo kinetic proteomics 

techniques that can be used to measure treatment induced effects on global and pathway-specific 

metabolic flux 46,47,49,202-206. 

To investigate in vivo regulation of autophagy in a cancer mouse model, we performed 

time-resolved metabolic labeling using low levels of dietary heavy water (D2O) and mass 

spectrometry, a cost-effective technique that is easily adapted in humans 47 (Figure 3-1). 

Nonspecific autophagy inhibitors like chloroquine diphosphate (CQ), a lysosomotropic agent 

that suppresses lysosomal enzyme activity, autophagolysosome formation, and autophagosome 

cargo degradation, have been shown to sensitize resistant cancer lines and animal models to 

chemotherapy at tolerable doses 182,186. Ongoing clinical trials are currently testing CQ or its 

derivative hydroxy-CQ combined with conventional chemotherapeutics 207. However, such drugs 

are considered “double edge swords” when it comes to cancer treatment, since surrounding 

healthy tissues that depend on basal autophagy to maintain protein quality and cellular 

metabolism may be sensitive to CQ and damaged by the combined chemotherapy 78. We tested 

the effects of CQ mediated autophagy inhibition on protein concentrations and turnover in both 

cancerous and healthy tissues of human tumor derived xenograft mice (Figure 3-1).  

Our results suggest that autophagy contributed to maintaining basal concentrations of the 

majority of the proteome in both xenograft and normal mouse tissues. Autophagy may play 

distinct functional roles in remodeling the proteomes of tumor versus healthy cells, since our 

results indicate that autophagy mediated protein degradation was selective toward different 

substrates in the xenograft compared to the liver. In the tumor, mitochondrial protein turnover 

and concentrations were significantly more sensitive to CQ-induced autophagy inhibition. In the 
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liver, many functional protein categories were sensitive to CQ treatment. Our results suggest that 

selective autophagy driven turnover of mitochondria (mitophagy) may serve as a tumor-specific 

drug target with reduced off-target effects in healthy surrounding tissues.  

 

 

Figure 3-1 In vivo autophagy flux measurement workflow. HCT116 xenograft mice were treated 
with an autophagy inhibitor (CQ) or the vehicle (H2O) and deuterated water (D2O) was added to 
the diet of mice to be used for kinetic measurements (12 biological replicates per treatment group). 
The heavy isotopes were absorbed into tissues and subsequently incorporated into cellular DNA 
and proteins over time via DNA and protein synthesis. Blood, tumor, and liver tissues were 
collected at different time points to monitor blood D2O percentage and incorporation of the heavy 
label into cellular DNA and proteins over time, which serves as a measure of DNA and protein 
turnover, or the fraction of new DNA/protein produced per unit of time (hours). We used duplex 
peptide stable isotope dimethyl labeling for quantitative proteomics measurements of tumor tissue 
samples and an L-Lysine (97% 13C6) SILAM (stable isotope labeling in mammals) mouse liver 
tissue standard for quantitative proteomics of liver tissue samples collected at the final time point 
of the metabolic labeling experiment (96 hours). LC-MS was used to measure the relative 
intensities of each peptide and levels of isotope incorporation into nucleotides and peptides over 
time, which were used to calculate relative protein concentrations and molecular turnover rates 
(fraction of new protein or DNA replaced per hour) in each drug treated group relative to vehicle 
controls using PEAKS and in-house developed software tools. DNA turnover was used as a metric 
of in vivo cell proliferation over the course of the metabolic labeling experiment. Protein turnover 
and concentration measurements were used to infer changes in protein synthesis and degradation 
rates induced by the drug. A bioinformatics analysis was performed to investigate concentration 
and turnover changes of specific autophagy substrates relative to the global proteome in each 
tissue type. 
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EXPERIMENTAL PROCEDURES 

Experimental Design and Statistical Rationale 

Cell culturing experiments: Human colorectal tumor derived cells (HCT116 cells 208) 

were plated evenly on 12-well tissue culture dishes and incubated overnight in 2 mL of complete 

tissue culture medium made up of 1x Dulbecco’s Modified Eagle Medium (DMEM, Gibco 

#11965-092) containing 10% Fetal Bovine Serum (FBS) per well at 37°C and 5% CO2. Stock 

solutions of drug treatments and vehicle control conditions (drug treatments: 5µM CQ, 0.625µM 

oxaliplatin, or [5µM CQ + 0.625µM oxaliplatin]; vehicles: 1x PBS/DMSO) were diluted in 

complete tissue culture medium (DMEM + 10% FBS), thoroughly mixed on a vortex for 60 

seconds, sterilized on 0.2µm filters, and heated to 37°C. Cell medium in wells containing 

adhered cells were aspirated and washed twice with 1x PBS. Two mL of drug or vehicle-treated 

complete cell medium or serum-free DMEM were added to each well. Real-time phase object 

confluence was monitored over time using an Incucyte ZOOM® Live-Cell Analysis System at 

37°C and 5% CO2. Quantitative cell proliferation data were analyzed using the Incucyte ZOOM® 

data analysis software to generate cell growth curves. Proliferation rates were determined by 

calculating the mean slope of the linear-like growth phases of four biological replicates per group 

subsequent to the addition of each treatment.  

Relative concentrations of p62 in CQ treated and vehicle control cells were measured in 

biological triplicate using label-free quantitative proteomics (Table S1). The cell medium was 

aspirated from each well, cells were washed twice with 1x PBS and removed from the tissue 

culture dish by trypsinization. Cells were pelleted via centrifugation at 1200 rpm for 5 minutes. 

The supernatant was decanted and pellets were flash frozen in dry ice. Cell pellets were stored at 
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-80℃. Frozen cell pellets were lysed and prepared for mass spectrometry (see Sample 

preparation for quantitative and kinetic proteomics analyses). 

HCT116 xenograft mouse experiment: Live mouse handling and dissections were 

performed in a pathogen-free facility with 12-hour light/dark cycles at the Huntsman Cancer 

Institute (University of Utah). All protocols were approved by the University of Utah 

Institutional Animal Care and Use Committee. Twenty-five 6-week-old male NOD/SCID mice 

(NOD/MrkBomTac-Prkdcscid) were implanted with HCT116 cells (3x106 in 35uL matrigel) in 

each flank. After tumors reached sufficient size, one control (no deuterium) HCT116 xenograft 

mouse was sacrificed and blood was extracted via cardiac puncture for deuterium enrichment 

analysis. Tumor and liver tissues were removed, flash frozen, and stored at −80 °C.  

The remaining HCT116 xenograft mice were divided randomly into the drug and vehicle 

control groups and received an intraperitoneal (IP) injection of saline (vehicle group) or 60mg 

per kg of body weight of chloroquine (drug group). One hour later, all mice received a second IP 

of D2O saline (35ul/g body wt.) to equilibrate physiological deuterium levels and were provided 

8% w/w D2O-enriched drinking water for the remainder of the experiment. Vehicle and CQ were 

delivered via IP for 4 consecutive days (60mg/kg daily). Four mice from each group were 

consecutively euthanized 24, 48, and 96 hours after D2O administration. Immediately after each 

euthanization, blood was extracted via cardiac puncture for deuterium enrichment analysis, and 

tumor and liver tissues were removed, flash frozen, and stored at −80 °C.  

There were up to four biological replicates for each time point. A minimum of three, (one 

at each time point) were required for protein quantitation and kinetic analysis. Median 

concentration and the best fit turnover rates were calculated with confidence intervals around 

each value. If the 95% confidence interval normalized to the turnover rate was greater than or 
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equal to 0.5, the protein was discarded. Protein turnover rates were compared between the 

treatment and vehicle control group based on the following criteria: turnover was considered 

“decreased” if the fold change in turnover (drug/vehicle) was <0.9; turnover was considered 

“increased” if the fold changed in turnover was greater than or equal to 1.1; turnover was 

considered “unchanged” if the confidence intervals overlapped significantly or fold change was 

between 0.9 and 1.1 in CQ treated mice relative to vehicle controls. 

The average protein concentrations of 3-4 biological replicates in the treatment and 

vehicle control groups were compared based on the following criteria: concentration was 

considered “unchanged” if the absolute value of the difference between averages for drug treated 

and control mice was less than the standard deviation of biological replicates; protein 

concentration was considered “decreased” if the fold change in the average concentration was 

less than 1 and the absolute value of the average difference between concentrations in CQ and 

vehicle control mice was greater than the standard deviation between biological replicates; 

protein concentration was considered “increased” if the fold change in average concentration was 

greater than 1 and the absolute value of the average difference between concentrations in CQ and 

vehicle control mice was greater than the standard deviation between biological replicates. 

Pairwise comparisons of protein concentration and turnover within ontological categories 

of the proteomics data were made using paired t-tests. Tests involving multiple comparisons 

relative to a control group (such as individual protein ontologies relative to the global proteome) 

were carried out using the Dunnett’s test. Grouped comparisons were made using Students t-

tests. Statistical tests were performed in Excel (2016) and JMP statistics package (version 13). 
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Measurement of deuterium enrichment  

Blood collected at each time point was cooled to 4 °C and serum was separated from cells 

via centrifugation (800xG for 10 minutes). Aliquots of serum were diluted 1:300 in the same 

unenriched water used to create the standard curve. Body water D2O enrichments were 

determined by direct measurement of deuterium molar percentage excess (MPE) in diluted blood 

serum. Isotopic enrichments were measured in duplicate for all time points (Table S2). MPE was 

measured against a D2O standard curve using a cavity ring-down water isotope analyzer (Los 

Gatos Research [LGR], Los Gatos, CA, USA) according to the published method 209. 

 

In vivo cell proliferation assay  

New DNA was measured as the incorporation of deuterium into the deoxyribose (dR) 

moiety of the nucleoside bases extracted from tumor and liver tissues of mice following the 4-

day treatment period with the vehicle or CQ (3-4 biological replicates per group, Table S3), as 

previously described 49,210}211. Briefly, cells in approximately 100mg of frozen tissue were lysed 

on a bead beating tissue homogenizer in 1 mL of 25mM ammonium bicarbonate (pH~8). The 

nucleus was separated from cytosolic proteins via nuclear extraction 212. DNA in the resulting 

nuclear pellet was purified using the Qiagen Miniprep Kit 213. Isolated DNA was hydrolyzed into 

5´ mononucleotides overnight at 37°C with nuclease S1 and potato acid phosphatase 214. 

Hydrolysates were reacted with pentafluorobenzyl hydroxylamine and acetic acid and then 

acetylated with acetic anhydride and 1-methylimidazole. Dichloromethane extracts were dried 

and resuspended in ethyl acetate.  

The pentafluorobenzyl triacetyl derivative of purine dR were analyzed by GC/MS 

(Agilent 7890B/5877A) by negative chemical ionization. Briefly, 1 uL of sample was injected 
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into heated injection port (280°C). Helium was used as carrier gas at a flow rate of 1mL/min 

through an Agilent DB-17 column (30m x 250 um x .25um). The oven had an initial temperature 

of 140˚C for 1 minute, then ramped at 40˚C per minute to 270 ˚C where it held for 1 minute and 

then ramped to 40˚C per minute to 280˚C and held for 2 minutes. Methane was used as the 

reactant gas and selective ion monitoring for the 435 (m+0) and 436 (m+1) ions. 

 

Sample preparation for quantitative and kinetic proteomics analyses 

Frozen HCT116 cell pellets or approximately 100mg of frozen tumor or liver tissue from 

each xenograft mouse were prepared for LC-MS analysis. Cells in frozen pellets and tissues were 

thawed at room temperature and lysed in 1 mL of 25mM ammonium bicarbonate (pH~8) 

containing 10 µL of protease inhibitor mixture (Sigma) on a bead beating tissue homogenizer for 

30 (cells) or 60 (tissues) seconds at 6 m/s. Total protein concentrations were quantified using a 

bicinchoninic acid assay (Thermo). Fifty micrograms of total protein in each sample were 

purified and prepared for LC-MS analysis using a modified filter-aided sample preparation 

protocol 215. As described previously 49, protein was denatured in 6 M guanidine/HCl 100 

mM Tris/HCl (pH 8.5). Cysteines were reduced using dithiothreitol and alkylated using 

iodoacetamide. Samples were placed on 500 μl 30 kD filters and washed two times on the filters 

using 6 M guanidine/HCl 100 mM Tris/HCl, pH 8.5. The guanidine solution was removed by 

two 25 mM ammonium bicarbonate (pH~8) washes. Proteins were resuspended in 25 

mM ammonium bicarbonate (pH~8) and digested overnight at 37˚C using Pierce MS-Grade 

Trypsin in a 1:50 (w:w) ratio per sample. Trypsin digests were quenched using phenylmethane-

sulfonylfluoride and centrifuged through the above-mentioned filters to remove the trypsin. 

Samples were spun through filters, placed in mass spec vials, speed vacuumed to dry, and re-
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suspended at ∼1 μg/μl in 3% acetonitrile 0.1% formic acid. No quantitative standard was added 

to cell culture samples and the relative concentrations of p62 were measured via label-free 

quantitative proteomics by normalizing the area under the curve (AUC) of p62 ions to the total 

ion count (TIC) in each sample. 

Tumor tissue samples collected at the last time point of the in vivo autophagy assay (96 

hours) were prepared for quantitative proteomics measurements using duplex peptide stable 

isotope dimethyl labeling 85. N-termini and side chains of lysine and arginine residues of 

peptides derived from control (time=0 or non-deuterated) samples using the protocol described 

above were dimethylated with deutero-formaldehyde (CD2O) to serve as quantitative internal 

standards while drug and vehicle treated samples were dimethylated with formaldehyde (CH2O) 

using the method reported by Boersema et al. 85. Equal amounts of internal standard peptide 

were mixed with each drug and vehicle treated sample. The ratio of CH2O labeled sample to 

CD2O labeled standard was used as a measure of the relative concentration of each protein in 

tumor tissue samples.  

Liver tissue samples collected at the last time point (96 hours) of the in vivo autophagy 

assay were prepared for quantitative proteomics measurements by mixing predigested protein 

samples with equal amounts of Mouse Express L-Lysine Mouse Express (97% 13C6) Mouse 

Liver Tissue SILAM (Stable isotope labeling in mammals) internal standard (Cambridge Isotope 

Laboratories, Inc. # MT-LYSC6-ML-PK). The ratio of sample relative to 13C6 labeled standard 

was used as a measure of the relative concentration of each protein in the liver.  
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LC-MS data acquisition  

Mass spectrometry data were collected using an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) coupled to an EASY-nLC 1200 

liquid chromatography (LC) pump (Thermo Fisher Scientific, Waltham, MA, USA). A 

capillary RSLC column (EASY-spray column pepMap ® RSLC, C18, 2 μm, 100 Å, 75 μm × 15 

cm) was used for separation of peptides.  The mobile phase was comprised of buffer A (0.1% 

formic acid in optima water) and buffer B (optima water and 0.1% formic acid in 80% 

acetonitrile).  The peptides were eluted at 300 nL/min with the following gradients over 2 h: 3–

25% B for 80 min; 25–35% B for 20 min; 35–45% B for 8 min; 45–85% B for 2 min and 85% 

for 8 min. Data were acquired using the top speed method (3 s cycle). A full scan MS at 

resolution of 120,000 at 200 m/z mass was acquired in the Orbitrap with a target value of 4e5 

and a maximum injection time of 60 ms. Peptides with charge states of 2-4 were selected from 

the top abundant peaks by the quadrupole for high energy collisional dissociation (HCD with 

normalized energy 29) MS/MS, and the fragment ions were detected in the linear ion trap with 

target AGC value of 1e4 and a maximum injection time of 250 ms. The dynamic exclusion time 

was set at 40 s. Precursor ions with ambiguous charge states were not fragmented. 

Kinetics data acquisitions were performed in MS-only mode and collected at 60,000 m/z 

resolution. These settings increase signal intensity, improve signal-to-noise, and give more scan 

points per elution chromatogram, greatly enhancing kinetic analysis accuracy 202. Raw data are 

available for download at the Chorus Project (1534: Autophagy_Xenograft_2018). 
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Peptide identification 

PEAKS Studio software (version 8.5) was used for de novo sequencing database 

searching to identify proteins in our raw MS data as well as to quantify, filter (quality-control), 

and normalize our quantitation data for each protein 171. Peptides were identified from MS/MS 

spectra by searching against the Swiss-Prot human (downloaded January 2018 or May 2018, for 

tumor and cell culture samples, respectively) and Swiss-Prot mouse databases (for liver samples 

only, downloaded January 2018) with a reverse sequence decoy database concatenated (Table 

S9). Variables for the search were as follows: enzyme was set as trypsin with one missed 

cleavage site. Carbamidomethylation of cysteine was set as a fixed modification while N-

terminal acetylation and methionine oxidation were set as variable modifications. A false 

positive rate of 0.01 was required for peptides and proteins. Minimum length of peptide was set 

to 7 amino acids. At least 2 peptides were required for protein identification. The precursor mass 

error of 20 ppm was set for the precursor mass, and the mass error was set as 0.3 Da for the 

MSMS. Label-free quantitation was enabled with MS1 tolerance ±20ppm and a MS2 tolerance 

±50 ppm, carbamidomethylation of cysteine was set as a fixed modification, while N-terminal 

acetylation and methionine oxidation were set as variable modifications. Protein annotations with 

a false discovery rate less than 1% were included in comparative quantitative analyses and used 

to generate protein identification files for the quantitative and kinetic analyses.  

 

Quantitative proteomics data analysis 

Protein quantitation in the cell culture was done using label free quantitation (LFQ) in the 

PEAKS software package (Version 8.5). After the removal of contaminants, low scoring 

peptides and reverse matches, the LFQ values for the top three peptides were summed for each 
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protein (Table S1). The biological replicates were grouped into CQ-treated and vehicle control 

groups. Only proteins with at least three valid LFQ values in each group were used for 

quantification. For quantitation in the liver (Table S4) and tumor (Table S5) isotopically labeled 

internal standards were used (Liver: Lys-13C6 from Cambridge Isotope, Tumor: deutero-

demethylation 85) and the relative concentration of each protein was determined based on the 

AUC of each peptide relative to the heavy isotopic internal standard (light/heavy ratio). One 

advantage of the PEAKS quantitation is that multiple isotope (neutromer 216) peaks within the 

isotope pattern of each peptide are summed for each peptide and its internal standard. This 

removed any detectable bias due to deuterium incorporation shifting intensity to heavier 

neutromer species in the experimental samples (Supplemental Figure 3-1). Gene ontology 

terms and information about protein function, location, and pathway assignment was cross 

checked between Uniprot 134, PANTHER 217, Human Cell Atlas 218,219, and DAVID 

Bioinformatics 42. Statistical analyses and data plots were generated using Excel and JMP. 

  

Kinetic proteomics data analysis 

MS-only isotope distribution data was analyzed as previously described 202. Neutromer 

216 intensities and spacing values for each peptide were extracted from the RAW data files based 

on peptide identification from MSMS acquisition using m/z (± 12 ppm) and retention time 

alignment (± 0.8 minutes). Briefly, neutromer peaks M0–M4 were normalized against the sum of 

the signal intensity, then compared to theoretical calculations based on percentage D2O 

enrichment to determine fraction deuterium enriched (new) peptide 49,202.  Theoretical changes 

were calculated using the eMASS algorithm 220 and based on the number of possible deuterium 

incorporation sites per amino acid 202. The theoretical changes in abundance of each neutromer 
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peak M0–M4 were compared against experimental changes at each time point in order to 

determine a time dependent percentage of newly synthesized peptide reported for each isotope 

peak. Thus, for each peptide there were up to 9 semi-independent measurements of the peptide 

turnover (measuring M0-M4 results in 5 intensity and 4 spacing metrics), as previously described 

49,202. We used the standard deviation between these measurements as a metric of the 

measurement precision for that peptide. If peptide precision was low (i.e. standard deviation 

exceeded 0.1), the data point was removed from downstream analysis 49. Additional filters were 

also applied to remove peptides with total relevant intensity below 20,000 counts and a retention 

time deviation greater than 0.5 minutes. 

The median percent new peptide was calculated at each point and outliers (defined as 

greater than 1.4 the median absolute standard deviation) were removed from the calculation of 

the protein percent new. All peptide measurements for an individual time point that passed these 

filters were weighted equally in the calculation of the percent new protein at that time point. As 

described previously, the M0% new data from the above mentioned peptides were combined and 

fit using a non-linear least squares regression based on first-order rate kinetic equations 49,202 The 

proteins with high precision data for at least two peptides at 3 or more time points were fit 

according to first-order rate kinetics. We required 3 or more labeled time points in order to 

increase the confidence of the rate constant. For the regression fit, time point zero was set to 0% 

new and was given a standard deviation of 0.05 based on the accuracy during long term 

performance of the instrument. Protein turnover rates, confidence intervals, and number of 

unique peptides after filtering are reported for the liver (Table S6) and xenograft tumor tissue 

samples (Table S7). 
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Immunofluorescence analysis 

Immunohistochemical techniques were used to detect LC3-II positive autophagosomes, 

mitochondria, and nuclei in paraffin imbedded tumor and liver tissues of HCT116 xenograft 

mice following the 4-day treatment period (3 biological replicates per group). Tissues were fixed 

in formaldehyde solution (1mL of 37% formaldehyde, 9 mL of 1x PBS pH 7.4) at room 

temperature in sealed glass scintillation vials for 24 hours. The formaldehyde solution was 

removed and tissues were washed 3 times with 1x PBS (pH 7.4). Tissues were completely 

submerged and incubated in 15% sucrose at room temperature and washed 3 times with 1x PBS. 

The same steps were then repeated using 30% sucrose. Paraffin solution was prepared by mixing 

1 package of Knox Gelatin (7g 225 Bloom) and 15g of Sucrose in 100mL of 1x PBS (pH 7.4) at 

37°C. Fixed tissues were placed in 12-well tissue culture dishes and completely submerged in 

paraffin solution. The paraffin solidified overnight at 4˚C. Paraffin embedded samples were flash 

frozen in N(l) and stored at -20˚C. Tissue slices (20µM) were prepared from frozen tissues on a 

tissue cryostat at -20˚C and stored at -4˚C. Tissue sections were prepared for confocal imaging 

using LC3B (D11) XP® Rabbit mAb (Cell Signaling #3868), COX4I-1 (mitochondrial inner 

membrane) pAb (Novus Biologicals #NBP2-15975) using the Cell Signaling Technologies 

LC3B (D11) XP® Rabbit mAb #3868 immunohistochemistry protocol 221. Nuclei were stained 

using Prolong® Gold AntiFade Reagent with DAPI (Cell Signaling #8961). Tissues were imaged 

via confocal microscopy and analyzed using ImajeJ (2-5 images analyzed per mouse). 

 

Calculation of individual protein degradation rates 

The classically accepted kinetic mechanism for protein turnover in vivo (Figure 8A) 222 

shows that the relative concentration of each protein in the cell is controlled by a balance 
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between the individual synthesis, and the sum of the individual protein degradation and cellular 

proliferation rates. This assumes that protein synthesis is unaffected by individual protein 

concentrations and that protein folding is very fast relative to these rates. 

Equation 1:   𝑑𝑑[𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − �𝑘𝑘𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝐷𝐷𝑑𝑑𝑒𝑒𝐷𝐷𝑆𝑆[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + 𝑘𝑘𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶 𝐷𝐷𝑒𝑒𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷𝑆𝑆� 

Individual protein turnover rates, like those measured in this study, are the average of these rates 

222. 

Equation 2:           𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐ℎ+�𝑘𝑘𝐷𝐷𝑐𝑐𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝑐𝑐𝑠𝑠[𝑃𝑃𝐷𝐷𝐷𝐷𝑑𝑑𝑒𝑒𝑒𝑒𝑆𝑆]+𝑘𝑘𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑐𝑐𝑠𝑠�
2

 

If we assume steady state conditions, Equation 1=0. So we can combine Equation 1 and 2 to get 

Equation 3.  

 Equation 3:         𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 = 2∗�𝑘𝑘𝐷𝐷𝑐𝑐𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝑐𝑐𝑠𝑠[𝑃𝑃𝐷𝐷𝐷𝐷𝑑𝑑𝑒𝑒𝑒𝑒𝑆𝑆]+𝑘𝑘𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑐𝑐𝑠𝑠�
2

 

Which can be rearranged to: 

 Equation 4:                  𝑘𝑘𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝐷𝐷𝑑𝑑𝑒𝑒𝐷𝐷𝑆𝑆 = 𝑇𝑇𝑇𝑇𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷−𝑘𝑘𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝐷𝐷𝑐𝑐𝑠𝑠
[𝑃𝑃𝐷𝐷𝐷𝐷𝑑𝑑𝑒𝑒𝑒𝑒𝑆𝑆]

 

These assumptions are probably quite good for the mice in the vehicle control group, but 

may underestimate the degradation rate constants during CQ treatment. The unknown variable is 

the timeline to achieving a new CQ-dependent protein homeostasis. However, the timeline for 

tumor growth restricts the possible dosing and sampling period. Regardless of this uncertainty, it 

was a useful starting point for our data analysis by allowing us to solve for the individual protein 

degradation rate constants in vehicle and drug treated groups. So, we used our experimentally 

determined values for individual protein turnover, cell division rates, and concentration 

measurements for individual proteins to calculate their relative degradation rate constants using 

Equation 4 (Tables S6 and S7). 
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RESULTS AND DISCUSSION 

Autophagy inhibition reduced in vitro cell proliferation and sensitized CRC cells to 

chemotherapy 

We tested whether autophagy contributed to the rapid growth and chemoresistant nature 

of human colorectal cancer (CRC) cells by generating cell growth curves of HCT116 cells before 

and after treatment with CQ as an autophagy inhibitor (Figure 3-2A). CQ significantly reduced 

average HCT116 cell proliferation by 65.3% (P<0.05). In conjunction with the change in growth, 

the concentration of p62 was considerably elevated in HCT116 cells treated with CQ relative to 

vehicle control (P=0.05), suggesting that this decrease in cell proliferation occurred 

simultaneously with a general reduction in autophagy flux resulting from the inhibitor (Figure 3-

2B) 52.  

We also tested whether chemotherapy sensitivity was increased in these cells during CQ 

treatment. Oxaliplatin (Oxal), a common treatment for colorectal cancer, significantly reduced 

HCT116 cell proliferation relative to the vehicle control by 78.3% (P<0.0001) (Figure 3-2A). 

The proliferation rate of cells treated with oxaliplatin combined with CQ was significantly lower 

than HCT116 cells treated with oxaliplatin alone (49.0 % decrease, P=0.033). These results 

suggest that these cells are a good model for investigating how autophagy promotes cell 

proliferation and enhances stress resistance in cancer cells. 

 

Autophagy inhibition did not significantly reduce in vivo cell proliferation  

One of the benefits of using D2O as a metabolic tracer is that time-dependent deuterium 

incorporation can be used to mark many types of continually biosynthesized molecules in 

proliferating cells, including new proteins and new DNA. Evidently, rates of DNA synthesis 
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serve as metrics of cell proliferation 210. The rates of cell proliferation were significantly faster 

(P<0.0001) in tumor tissues of both CQ and vehicle control mice compared to the liver (Figure 

3-2C, Table S3). This indicates that relative to normal tissues of the mouse, HCT116 xenograft 

cells maintained the cancerous phenotype of rapid proliferation. There was a trend toward 

reduced average cell proliferation rates after four days of CQ treatment in both the tumor (12.6% 

decrease, P=0.3) and liver (11.9% decrease, P=0.5). This suggests that autophagy played a role 

in encouraging basal growth rates in both the tumor and healthy tissues, but the treatment period 

was not long enough to induce a significant effect on cell proliferation rates in either tissue. 

 

 

Figure 3-2 Autophagy inhibition slowed colon cancer cell proliferation and enhanced 
chemosensitivity. (A) Live cell imaging was used to generate growth curves of HCT116 cells 
treated with the autophagy inhibitor (5µM CQ) versus vehicle controls (1x PBS) or chemotherapy 
(0.625µM oxaliplatin, Oxal) alone or in combination with 5µM CQ. Data are represented as the 
mean phase object confluence (%) of four biological replicates +/- SEM over time (hours). The * 
indicates P<0.05 using t-tests to compare the proliferation rate of individual drug treated groups 
(CQ or Oxal) to the vehicle control group. The † indicates P=0.033 using t-tests to compare the 
proliferation rate of the [5µM CQ + 0.625µM Oxal] combination treatment group to cells treated 
with 0.625µM oxaliplatin alone. (B) Label-free quantitative proteomics was used to measure the 
relative concentrations of p62 in HCT116 cells treated with the autophagy inhibitor (5µM CQ) 
relative to vehicle controls (1x PBS). Data are represented as the natural log of the area under 
the curve (AUC) of p62 normalized to total signal (total ion count, TIC) in each sample measured 
in biological triplicate. The * indicates P=0.05 based on a t-test comparison of p62 concentrations 
between the drug treated and vehicle control group. The blue line represents the average p62 



128 
 

concentration of the vehicle control group, shown as a reference. (C) Comparison of cell 
proliferation rates (% new DNA) in liver and tumor tissues of vehicle controls versus CQ treated 
HCT116 xenograft mice. Data are represented as the incorporation of D2O into the deoxyribose 
(dR) moiety of the nucleoside bases following the 4-day treatment period. Data were collected in 
biological quadruplet or triplicate due to the premature death of one mouse in the CQ-treated 
group. The * indicates P<0.0001 using a t-test to compare between tissue types. 
 
In vivo protein concentrations changed in response to autophagy inhibition in the tumor 

and liver 

In the tumor, 515 proteins met our statistical criteria for quantification with duplex 

peptide stable isotope dimethyl labeling 85 and were used to represent the global proteome in the 

tumor (Figure 3-3A-B). There was an 11.3% decrease in the median protein concentration of 

CQ mice relative to vehicle controls and this difference was statistically significant (P<0.0001) 

according to pair-wise comparisons for each protein measured in the CQ group relative to the 

same protein in the vehicle control (Figure 3-3A-B). The concentrations of more than half 

(60.8%) of the tumor proteome were not significantly changed relative to vehicle controls (the 

average difference between CQ and control mice was less than the standard deviation of 

biological replicates) (Figure 3-3A-B). The median concentration was reduced in the CQ tumor 

because almost 30% of proteins were significantly decreased relative to the vehicle control (fold 

change in average concentration less than 1 and the absolute value of the average difference 

between concentrations in CQ and vehicle control mice was greater than the standard deviation 

between biological replicates, Figure 3-3A-B). 

In the liver, a total of 715 proteins met our statistical criteria for quantification against an 

L-Lysine mouse liver tissue SILAM (97% 13C6) protein internal standard and were used to 

represent the global liver proteome (Figure 3-3C-D). Like in the tumor, the concentrations of 

over half of the liver proteome (65.6%) were unchanged by CQ treatment (Figure 3-3C-D). The 

proteome level response to autophagy inhibition was very different in the liver. Nearly 30% of 
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liver protein concentrations were increased (fold change in average concentration greater than 1 

and the absolute value of the average difference between concentrations in CQ and vehicle 

control mice was greater than the standard deviation between biological replicates) relative to 

vehicle controls (Figure 3-3C-D). Indeed, there was an 18.6% increase in the median protein 

concentration in liver tissue of CQ treated mice and this difference was significant (P<0.0001) 

according to pairwise comparisons between each protein concentration in the CQ treated group 

to its match in the vehicle control (Figure 3-3C-D). 

 

 

Figure 3-3 Effects of CQ induced autophagy inhibition on global protein concentrations in the 
tumor and liver. (A, C) Comparison of relative protein concentrations (Conc.) in (A) tumor and 
(C) liver tissues of HCT116 xenograft mice treated CQ (y-axis) versus vehicle controls (x-axis) 
(n=515 tumor proteins common between groups and n=756 liver proteins common between 
groups). Each circle represents the relative concentration of a unique protein. The colors are 
indicative of the average concentration in the CQ group normalized to the vehicle control group 
measured in biological quadruplet; blue: protein concentration significantly decreased (the fold 
change in the average concentration was less than 1 and the absolute value of the average 
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difference between concentrations in CQ and vehicle control mice was greater than the standard 
deviation between biological replicates), gray: protein concentration did not significantly change 
(the absolute value of the difference between averages for drug treated and control mice was less 
than the standard deviation of biological replicates), and red: protein concentration significantly 
increased (the fold change in average concentration was greater than 1 and the absolute value of 
the average difference between concentrations in CQ and vehicle control mice was greater than 
the standard deviation between biological replicates) in the tumor or liver tissue of CQ treated 
mice relative to vehicle controls. Data were collected in biological quadruplet and are represented 
as the AUC of each protein relative to the AUC of the respective internal standard (INST) in each 
tissue. The dotted black line is the linear trend line of the entire data set (Tumor: linear trend line 
slope=0.49, R2=0.41; Liver: linear trend line slope=0.93, R2=0.51) shown to emphasize that 
protein concentrations generally decreased in the tumor and generally increased in the liver of 
CQ treated mice relative to vehicle controls (if the groups were identical, the fit line should have 
an approximate slope and R2 of 1 and fall along the dotted orange line (slope=1) shown as a 
reference). (C, D) The median protein concentration of the entire quantitative dataset in the (C) 
tumor and (D) liver as well as the percentages of proteins whose concentrations significantly 
decreased (blue), were unchanged (gray), or significantly increased (red) in HCT116 xenograft 
mice treated with CQ versus vehicle controls for each tissue type. (A-D) The * indicates P<0.0001 
using paired t-tests to compare each protein concentration in the vehicle control group to the 
corresponding concentration in the CQ treated group. (A-D) The * indicates P<0.0001 using 
paired t-tests to compare each protein concentration in the vehicle control to the corresponding 
concentration in the CQ treated group in each tissue type.  
 

In vivo protein turnover changed in response to autophagy inhibition in the tumor and 

liver 

The turnover rates of a total of 1,652 unique proteins met our statistical criteria and were 

used to represent the global proteome in our kinetic analysis of the tumor (Figure 3-4A-C). The 

turnover rates (TR) of 43.3% of proteins were unchanged (fold change was 0.9 < TR <1.1 or 

displayed overlapping confidence intervals), the turnover rates of 37.7% were decreased (fold 

change in TR < 0.9), and 19.0% were increased (fold change in TR  ≥ 1.1) in CQ treated mice 

relative to vehicle controls (Figure 3-4A-B). Overall, there was a 5% decrease in the median TR 

of the tumor proteome and pairwise comparisons between each protein in the CQ group relative 

to the vehicle control revealed that this global kinetic change was statistically significant (Figure 

3-4A-B, P<0.0001). This decrease was less than expected if turnover rates were driven primarily 

by a change in cell proliferation (~12% slower) (Figure 3-2C).   
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Previous work has shown that the half-lives of short and long-lived proteins may respond 

to autophagy inhibition in different ways 52. To explore this concept, we split the data set into 

long versus short-lived groups based on the half-life measured in vehicle control. We observed 

that the CQ induced reduction in turnover among proteins in the short-lived group was 

significantly more pronounced (P<0.0001) compared to those in the long half-life group (Figure 

3-4C). The greater effect on short-lived proteins is probably not just due to the short 

measurement period as 30% of the cells in the tumor were new within the measurement (Figure 

3-2C). Our results suggest that autophagy not only influences the turnover of long-lived 

structures, as traditionally described 179, but also plays an important role in regulating the 

turnover of shorter-lived proteins in this cancer model (Figure 3-4C). 

In the liver, 1,213 proteins met our statistical criteria and were used to represent the 

global proteome (Figure 3-4D-F). Similar to the tumor, a little over half of the observed 

proteome was affected by CQ mediated autophagy inhibition in the liver. The turnover rates of 

47.2% of proteins were unchanged (fold change in TR ≥ 0.9 <1.1), 27.5% were decreased (fold 

change in TR < 0.1), and 25.2% were increased (fold change in TR ≥ 1.1) in CQ treated mice 

relative to vehicle controls (Figure 3-4D-E). Also like in the tumor, shorter-lived proteins were 

significantly more sensitive to autophagy inhibition (p<0.0001) compared to longer-lived 

proteins (Figure 3-4F). Unlike in the tumor however, the median protein turnover rate in the 

liver was essentially unchanged (-1.85%, P=0.8) (Figure 3-4D-E).  
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Figure 3-4 Effects of CQ induced autophagy inhibition on global protein turnover in the tumor 
and liver. (A, D) Comparison of protein turnover rates (fraction of new protein per hour) in (A) 
tumor and (D) liver tissue of HCT116 xenograft mice treated CQ (y-axis) versus vehicle controls 
(x-axis) (n=1652 tumor proteins common between groups and n=1213 liver proteins common 
between groups). Each circle represents the turnover rate of a unique protein normalized to the 
vehicle control group; blue: protein turnover significantly decreased (fold change (FC) < 0.9), 
gray: protein turnover did not significantly change (FC ≥ 0.9 <1.1), and red: protein turnover 
significantly increased (FC ≥ 1.1) in the tumor or liver tissue of CQ treated xenograft mice relative 
to vehicle controls. The dotted black line is the linear trend line of the entire data set (Tumor: liner 
trend line slope=0.71, R2=0.58; Liver: liner trend line slope=0.92, R2=0.79) shown to emphasize 
that protein turnover generally decreased in the tumor and liver of CQ treated mice relative to 
vehicle controls (if the groups were identical, the fit line should have an approximate slope and R2 
of 1 and fall along the dotted orange line (slope=1) shown as a reference). (B, E) The median 
turnover rate of the entire kinetic dataset in the (B) tumor and (E) liver as well as the percentages 
of proteins whose turnover rates significantly decreased (blue), were unchanged (gray), or 
significantly increased (red) in HCT116 xenograft mice treated with CQ versus vehicle controls 
for each tissue type. (A-E (excluding C)) The * indicates if there was a significant difference in 
global protein turnover using paired t-tests to compare each protein turnover rate in the vehicle 
control relative to the corresponding rate in the CQ treated group of each tissue type (* is 
P<0.0001). (C,F) Comparison of turnover rates of relatively long and relatively short-lived 
proteins from kinetic analysis of the observed (C) tumor and (F) liver proteomes of HCT116 
xenograft mice. (C,F) The * indicates P <0.0001 using Student’s t-tests to compare the mean fold 
change in turnover rates of long versus short-lived proteins in each tissue. 
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Protein functional categories responded to CQ treatment differently in the tumor and liver 

We tested whether CQ treatment affected turnover (Figure 3-5) and concentration 

(Figure 3-6) of functionally associated protein groups in the tumor and liver of HCT116 

xenograft mice. CQ treatment had greater effects on the turnover (Figure 3-5A-B) and 

concentration (Figure 3-6A) of specific substrates relative to the global tumor proteome. 

Longer-lived components of tumor cell mitochondria exhibited the most reduced mean fold 

change relative to other autophagy substrates and a multiple comparison test evaluating fold 

change in turnover of each long-lived category relative to the long-lived global proteome gave a 

suggestive p value for this difference (P=0.072) (Figure 3-5A). Even so, there was a significant 

reduction in average turnover of short-lived mitochondrial proteins relative to the short-lived 

tumor proteome (P=0.033) (Figure 3-5B). Note that approximately 70% of the mitochondrial 

proteins for which we measured kinetic data ended up in the long-lived group while 30% were 

considered short-lived. Pairwise comparisons between all these mitochondrial proteins in CQ 

versus vehicle control tumors revealed that there was a statistically significant reduction in 

mitochondrial protein turnover in the tumor (P=0.017). No significant differences in turnover 

were observed in any other functional category relative to the long or short-lived proteome of the 

tumor (Figure 3-5A-B). No functional categories within the mitochondria were changed 

significantly more than others (Figure 3-8D). However, the TR of 58% of proteins displaying a 

significant decrease in turnover (fold change <0.1) were found in the inner mitochondrial 

membrane. This suggests that general dynamics of the entire mitochondria changed relative to 

the global tumor proteome including other autophagy substrates in response to CQ treatment 

(Figure 3-5A-B). Moreover, the mitochondria may be selectively turned over via autophagy in 

the tumor, a process known as mitophagy 81,191.  
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Interestingly, the only short-lived group exhibiting a lower mean fold change in turnover 

compared to the mitochondria was made up of proteins characteristic of endosomes and/or 

lysosomes (Figure 3-5B). This may indicate that CQ treatment led to a reduction in the turnover 

of lysosomes since they were not being used to perform the late stages of autophagy. In addition, 

the fact that the mean fold change of lysosomal proteins was closest to that of the mitochondria 

suggests that the mitochondria and lysosomes were turned over at similar rates under normal 

conditions in the tumor, perhaps because lysosomes were used to selectively degrade the 

mitochondria via mitophagy (Figure 3-5B). 

In the liver, the mean fold change in mitochondrial protein turnover was no different than 

the global proteome in the short and long-lived groups (Figure 3-5C-D). Long-lived chaperones 

were the only group displaying a significant difference in turnover relative to the global long-

lived proteome (Figure 3-5C). The average TR of chaperones was significantly increased 

relative to the global proteome (P=0.015). This connected with the non-significant increase in 

chaperone concentration (Figure 3-6B) suggests that synthesis increased for these proteins. We 

suspect this was related to the significant increase in global protein concentrations in the liver 

(Figure 3-3C-D). Increased synthesis and activity of chaperones may be used to maintain quality 

of the significantly increased protein concentrations in the liver during CQ treatment. Moreover, 

short-lived ribosomal proteins exhibited the most dramatic decrease in turnover relative to the 

short-lived proteome (P=0.05) (Figure 3-5D). Selective degradation of ribosomes (ribophagy) 

has long been considered one of the primary roles of autophagy in healthy tissues 223, and 

reduced protein synthesis would help balance a reduction in protein degradation capacity.  

We also compared the effects of CQ treatment on the concentrations of distinct 

autophagy substrates and related ontologies in the tumor and liver. Interestingly, there was 
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general trend towards reduced protein concentrations in the tumor (P<0.0001) (Figure 3-3A, 

Figure 3-6A). In spite of this, the concentrations of most mitochondrial proteins were elevated 

(fold change in average concentration was greater than 1) (Figure 3-6A). Due to this significant 

increase in mitochondrial protein concentration, the mitochondria was the only autophagy 

substrate that displayed a significant difference in mean fold change relative to the global 

proteome based on our test for multiple comparisons (P<0.0001) (Figure 3-6A).  

In the liver, the mitochondria displayed the lowest mean fold increase in concentration 

among all other substrates and this difference was significant relative to the global proteome 

(P=0.038) (Figure 3-6B). CQ has been shown to accumulate at high concentrations in rat liver, 

where it inhibits mitochondrial metabolism and significantly impairs availability and utilization 

of energy 224. The less dramatic increase in mitochondrial protein expression may thus be 

attributed to reduced mitochondrial biosynthesis as CQ accumulates and is metabolized in the 

liver 224,225. The mean fold increase in ribosomal protein concentrations was not significantly 

different than the global proteome. Indeed, there were no other autophagy substrates that had 

significantly increased in concentration relative to the global liver proteome (Figure 3-6B). This 

suggests that although autophagy may be used in part to selectively control the turnover of the 

ribosome in the liver (Figure 3-5C-D), the quantitative effects of autophagy inhibition were 

reflected quite evenly across the liver proteome (Figure 3-6B). As discussed previously, the only 

exception to this was the mitochondria, which was quantitively lower than the global proteome 

(opposite of our expectation based on autophagy inhibition, Figure 3-6B). We thus conclude that 

the less dramatic increase in mitochondrial protein concentrations in the liver was more likely 

due to a drug-induced reduction in mitochondrial protein synthesis, rather than loss of 

autophagy-mediated degradation. Overall, our results suggest that autophagy inhibition did not 
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selectively alter the turnover of any substrate in the liver enough to induce a change in 

concentration; however, both the turnover and concentrations of mitochondrial proteins were 

significantly altered relative to the global proteome in the tumor (Figure 3-5A-B, Figure 3-6A). 

 

 

Figure 3-5  Effects of CQ treatment on turnover of autophagy related proteins and substrates 
relative to the observed global proteome in the tumor and liver.  (A-D) Comparison of changes 
in turnover rates (fraction of new protein per hour) of protein ontology groups relative to the 
observed proteomes (made up of remaining proteins from corresponding kinetic datasets) of (A-
B) tumor tissue and (C-D) liver tissue of HCT116 xenograft mice treated with CQ versus vehicle 
controls. Data are represented as the fold change in protein turnover (fraction of new protein 
replaced per hour) in CQ treated mice relative to vehicle controls in order of decreasing fold 
change from left to right. (A, C) depicts proteins that were long-lived and (B, D) depicts proteins 
that were short-lived relative to the observed proteomes of the respective tissue types. (B) The * 
indicates P=0.033 using the Dunnett’s test to compare each protein ontology to the global 
proteome (Note that the Dunnett’s test provided a suggestive P-value of 0.072 for the mitochondria 
relative to the global proteome in the long-lived tumor protein analysis depicted in (A)). In (C) the 
* indicates P=0.015 and in (D) the * indicates P=0.05 using the Dunnett’s test to compare each 
protein ontology to the global proteome. (A-D) Each circle represents the turnover rate of a unique 
protein. The colors are indicative of the fold change in turnover in the CQ group normalized to 
the vehicle control group; blue: turnover significantly decreased (FC < 0.9), gray: turnover did 
not significantly change (FC ≥ 0.9 <1.1), and red: turnover significantly increased (FC ≥ 1.1) in 
the tumor or liver tissue of CQ treated mice relative to vehicle controls. 
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Figure 3-6 Effects of CQ treatment on concentrations of autophagy related proteins and 
substrates relative to the observed global proteome in the tumor and liver. Comparison of 
changes in concentrations (conc.) of protein ontology groups relative to the observed proteomes 
(made up of remaining proteins from corresponding quantitative datasets) of (A) tumor tissue and 
(B) liver tissue of HCT116 xenograft mice treated with CQ versus vehicle controls. (A-B) Data 
are represented as the mean fold change in protein concentration (AUC/INST) in CQ treated mice 
relative to vehicle controls in order of increasing mean fold change from left to right. Each circle 
represents a unique protein. The color of the circle is indicative of the fold change in concentration 
of that protein in the CQ group normalized to the vehicle control group; blue: concentration 
significantly decreased (the fold change in the average concentration was less than 1 and the 
absolute value of the average difference between concentrations in CQ and vehicle control mice 
was greater than the standard deviation between biological replicates), gray: concentration did 
not significantly change (the absolute value of the difference between averages for drug treated 
and control mice was less than the standard deviation of biological replicates), and red: 
concentration significantly increased (the fold change in average concentration was greater than 
1 and the absolute value of the average difference between concentrations in CQ and vehicle 
control mice was greater than the standard deviation between biological replicates) in the tumor 
or liver tissue of CQ treated mice relative to vehicle controls. In (A) the ** indicates P<0.0001 
and in (B) the * indicates P=0.0385 using the Dunnett’s test to compare each protein ontology to 
the global proteome. 
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Immunofluorescence supported mitochondrial targeting by autophagy in the xenograft  

LC3 is a common marker for autophagy because it is processed from an unlipidated 

(LC3-I) to a lipidated form (LC3-II) and localized to the autophagosomal membrane, where it is 

required for membrane expansion and the formation of the established autophagosome 52,226. 

During the late stages of autophagy, LC3-II is degraded along with encapsulated cargo upon 

fusion with the lysosome 83. We performed an immunofluorescence analysis to visualize LC3-II 

positive autophagosomes and mitochondria in the tumor. Our confocal images of xenograft 

tissue suggested that LC3-II positive autophagosomes colocalized with the mitochondria (Figure 

3-7A). This supports the results of our proteomics analysis by suggesting that the mitochondria 

were selectively targeted by autophagosomes in the tumor.  

Because CQ treatment inhibits lysosomes from fusing with autophagosomes, an 

accumulation of autophagosomes containing the LC3-II marker is considered evidence of 

reduced autophagy flux 83. The ratio of LC3-II positive autophagosomes relative to nuclei (used 

to represent the total number of cells) was significantly elevated (P<0.0001) in tumor and liver 

tissues of xenograft mice treated with CQ relative to vehicle controls (Figure 3-7B-C). This 

suggests that although the early stages of autophagy including autophagosomal formation and 

maturation continued to occur in both the tumor and liver, CQ treatment delayed the later stages 

of autophagy, including autophagosome-lysosome fusion and substrate degradation.  
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Figure 3-7 Accumulation of LC3-II autophagy markers in tumor and liver tissues of HCT116 
xenograft mice treated with CQ relative to vehicle controls. (A-B) Representative images of 
immunofluorescence analysis of LC3-II autophagosomal marker and mitochondria in 
cryoprotected mouse tissues. Red: COX4-I1 (mitochondria), Green: LC3-II (autophagosomes), 
Blue: DAPI (Nuclei). (A) Representative immunofluorescence images depicting overlap of 
fluorescently labeled mitochondria with LC3-II puncta in HCT116 xenograft mouse xenograft 
tumor tissue. Dotted lines around concentrated regions of red and green fluorescence are shown 
to illustrate the overlap of mitochondria and autophagosomal structures. (B) Representative 
images and (C) quantitation of immunofluorescence analysis of LC3-II accumulation in tumor and 
liver tissues of mice treated with CQ versus vehicle controls. Data are represented as the number 
of LC3-II positive puncta (green dots) relative to the number of cells or nuclei (blue) per image (3 
mice per group, 2-5 images analyzed per mouse). The * indicates P<0.0001 with a t-test 
comparison between CQ treated groups relative to the respective vehicle controls in each tissue 
type. 
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Drug metabolism enzymes increased in the liver during CQ treatment 

We were unable to collect a fourth biological replicate for the in vivo cell proliferation 

assay because one of the mice in the CQ group unexpectedly died thirty minutes before tissue 

harvesting. We suspect this was related to systemic treatment-induced toxicity. To investigate 

this hypothesis, we compared the concentrations and turnover rates of CQ related drug 

metabolism enzymes between the two treatment groups (Figure 3-8). CQ is metabolized through 

the N-dealkylation pathway in the liver by cytochrome P450 enzymes (CYP) in both humans and 

mice 225,227. Elevated expression of CYP proteins and related metabolic pathway components are 

indicative of cellular responses to treatment-induced cytoxicity 225,227.  

A total of six CYP enzymes were detected in our quantitative proteomics analysis of the 

liver. Collectively, the concentrations of these CYP enzymes were significantly increased in 

mice treated with CQ relative to vehicle controls (P=0.046) and pairwise comparisons indicated 

that there were also significant differences in concertation between individual CYPs in CQ 

treated mice versus vehicle controls (P=0.0008). In addition, the turnover rates of all six CYPs 

were elevated during CQ treatment (Figure 3-8). This suggests that CQ treatment intended to 

suppress oncogenic metabolism in the tumor also induced a significant metabolic response that 

required increased synthesis and utilization of CYP enzymes in the liver. These off target 

responses suggest CQ may be more damaging than therapeutic, since short-term CQ treatment 

reduced cell proliferation in both the tumor and liver (Figure 3-2C), triggered expression of 

enzymes that function to reduce cytotoxicity in the liver (Figure 3-8), and may have induced 

premature death of one of our lab animals.  
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Figure 3-8 Effects of CQ treatment on drug metabolism in the liver. Turnover rates (bottom) and 
concentrations (top) of cytochrome P450 enzymes in liver tissue of vehicle controls and CQ treated 
mice. Concentration data (AUC/INST) are represented as the median protein concentration of 3-
4 biological replicates per group for each enzyme. Turnover data are represented as the fraction 
of new protein per hour. Student’s and paired t-tests were used to make group and pairwise 
comparisons between Vehicle and CQ treated mice; * indicates P<0.05 for both the student’s and 
paired t-tests. 
 
 
 
Degradation of mitochondria is sensitive to autophagy inhibition in xenograft tumors 

To test whether autophagy driven degradation could be the cause of the changed 

concentration and turnover in the tumor (Figure 3-5A-B, 3-6A), we calculated the degradation 

rate constants (Equation 4) for proteins where we had both turnover and concentration 

measurements (Table S6, S7). Analysis of these degradation rates (Figure 3-9B-C) suggests that 

the observed changes in protein concentration and turnover during CQ treatment are because 

autophagy is used to control cellular protein degradation quite differently in the liver versus the 

tumor.   
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Figure 3-9 Protein degradation rates in the tumor and liver of xenograft mice. (A) Protein 
concentration is maintained by the dynamic balance of synthesis against degradation and dilution 
into new cells. (B-C) Comparison of degradation rates normalized to cell division rates of proteins 
for which we observed either turnover and/or concentration was significantly changed in the (B) 
liver and (C) tumor of CQ-treated mice versus vehicle controls. (B-C) Each circle represents a 
unique protein. Data points are represented as the degradation rate corrected by the cell division 
rate (percent new DNA per hour) calculated using the formula: (Protein turnover rate (hours) - 
Cell division rate (hours))/Protein concentration). Blue circles represent measurements of 
proteins in vehicle control mice and red circles represent the same proteins whose measurements 
were collected in CQ treated mice. The blue line represents the mean degradation rate of the 
global proteome in the vehicle control group shown as a reference for each tissue type. Box plots 
are ordered by increasing mean degradation rate of the vehicle control group for each category 
from left to right. The * indicates P<0.05 and ** indicates P<0.0001 using paired t-tests to 
compare the degradation rate of each protein in the CQ group relative to the vehicle control. (D) 
Sub-mitochondrial localization of mitochondrial tumor proteins depicted in (C) (n=26 proteins 
generally found in the mitochondria of human cells).  
 

 

In the liver, inhibition of autophagy reduced individual protein degradation rates across 

the proteome (Global, Figure 3-9B, P<0.001) as well as in multiple canonical autophagy 

substrates at significant levels (P<0.05), including the ER 192, mitochondria 81,191,228-230, nuclear 

proteins 193, and ribosome 190. In the tumor, protein degradation rates were relatively unchanged 
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with exception to the mitochondria (Figure 3-9C). Mitochondrial proteins were the only group 

including the global proteome that displayed a significant reduction in degradation rate based on 

pairwise comparisons (P<0.0001). Every location in the mitochondria seemed to be affected 

similarly (Figure 3-9D).  This suggests that in the liver, autophagy plays a complex, 

multifaceted role across the proteome, probably by selecting multiple specific targets as well as 

untargeted maintenance of the proteome 194,231. On the other hand, targeted degradation of the 

mitochondria or mitophagy may be the primary role of autophagy in the CRC xenograft tumor. 

Neither degradation of the general tumor proteome nor any of the other canonical autophagy 

substrates were significantly perturbed by autophagy inhibition (Figure 3-9C). This suggests that 

in the tumor, dilution of other canonical substrates into new cells may be fast enough that 

proteasomal degradation is adequate to balance synthesis.  

 

CONCLUSION 

Under normal conditions, protein concentrations within a cell remain relatively constant 

due to a balance between protein synthesis and degradation or dilution into new cells (Figure 3-

9A). In cancer, the rapid proliferation of new cells causes a higher demand for protein synthesis 

6,232 that could minimize the contribution of protein degradation in balancing the equation 

(Figure 3-9A, Equation 1). Yet, it has been shown many times that the autophagy pathway, 

which rapidly degrades cellular proteins, is an important component of cancer biology 

76,80,182,183,233. In an effort to understand how autophagy function differs in cancer tissue, we 

measured individual concentrations (Table S4, S5) and individual turnover rates (Table S6, S7) 

for a large number of proteins, as well as the cell proliferation rate (Table S3) in liver and 

xenograft tumor tissues. We monitored the change in each of these values during treatment with 

chloroquine diphosphate, a traditional autophagy inhibitor 78,182,234. We found that the xenograft 
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seems to focus autophagy specifically on targeted degradation of the mitochondria while 

autophagy plays multi-functional roles supporting more general proteome maintenance in the 

liver.  

Our results support recent studies promoting inhibition of mitophagy as a 

chemosensitizing drug target. Silencing of the mitophagy regulator gene BNIP3L (BCL2 

interacting protein 3 like) was shown to significantly enhance sensitivity of xenograft stem cells 

to doxorubicin-induced DNA damage by unclear mechanisms 230. Mitochondrial division 

inhibitor-1 (mvidi-1), a cell-permeable quinazolinone which attenuates mitochondrial fission 

preceding mitophagy, prevents cell cycle progression in lung cancer 235. While mdivi-1 may 

serve as an important research tool and a leading compound for further optimization, due to its 

undesired effects such as prevention of mitochondrial outer membrane permeabilization, 

modified cell membrane potential, and relatively high IC50 in mammalian cells (IC50 » 50 µM), 

more potent and specific mitophagy inhibitors are in high demand 229,236. Further studies are 

necessary to fully understand how mitophagy is regulated and used to support pro-survival 

metabolism different tumor types 229,236.  

Loss of autophagy has been shown to reduce the ability of cancer cells to adapt to 

cytotoxic stress 182,183 and deregulation of autophagy has been shown to reduce key substrates of 

mitochondrial metabolism including free amino acids, consequently inhibiting mitochondrial 

respiratory activity 185,233. In tumor cells, increased autophagy mediated degradation of 

mitochondrial proteins through mitophagy may promote mitochondrial biogenesis, a 

phenomenon that has been shown to "fuel" tumor cell growth and migration 237. Rapid 

degradation of mitochondria may also be a method to protect cancer cells against mitochondria 

mediated apoptosis 228.  
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A therapeutic advantage of specifically inhibiting targeted degradation of mitochondria in 

the tumor is that it may reduce the toxicity of anti-autophagy treatments in other tissues. This 

study suggests that basal liver proteome maintenance via autophagy may cause major toxicity 

issues with systemic, nonselective anti-autophagy drugs. Although mitochondrial degradation is 

still a function of autophagy in the liver, our data suggest the slower proliferating tissues may be 

able to cope with the targeted inhibition more easily by reducing mitochondrial biogenesis, and 

increasing proteome wide folding capacity and synthesis. 

 

Future Directions 

Using in vivo monitoring of protein turnover and concentration, we can specifically test 

whether synthesis or degradation rates change in response to drug treatment in different tissue 

types (Figure 3-1). We show that inhibition of autophagy slows protein degradation rates and 

that mitochondria are one of the primary targets for autophagy in this tumor model (Figure 3-

10). This method is easily applicable to in vivo monitoring in humans and could be useful for 

investigating patient-specific tumor metabolism as well as treatment efficacy. 

 

 

Figure 3-10 Schematic model of autophagy substrate selection in the tumor versus liver tissue 
in colon cancer xenograft mouse. Our kinetic and quantitative data suggest that autophagy 
generally served as a bulk degradation system to improve global proteostasis by promoting quality 
control of organelles and complexes such as the ribosome in the liver (left). Our results further 
suggest that autophagy played a different functional role in xenograft tumor tissue (right), whereby 
the mitochondria were significantly targeted (indicated by the *) for autophagy-mediated 
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degradation relative to the global proteome to promote energy metabolism, stress tolerance, and 
rapid proliferation (left). Treating HCT116 xenograft mice with CQ altered autophagy-mediated 
proteome remodeling and cell proliferation in both the tumor and healthy liver tissue. 
 
 
 
 

 
Supplemental Figure 3-1 Comparison of quantitative and kinetic proteomics data in the tumor 
and liver. Scatterplot and linear trend line of protein concentration data (fold change in CQ 
relative to vehicle control) plotted against the protein turnover rate in the tumor (n=498 total 
proteins) (A-B) and the liver (n=626 total proteins) of (A,C) vehicle control and (B,D) CQ treated 
HCT116 xenograft mice. 
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4. Conclusions and future directions toward understanding metabolic mechanisms of 

cancer and chemoresistance 

 

Chapter Summary 

This chapter provides general conclusions from the published studies and results of studies I 

have initiated which have not yet fully developed. I summarize these unfinished studies here to 

ensure that they can be referenced after the conclusion of my graduate work and hopefully lay a 

foundation for future cancer research in the Price lab and beyond. 

 

CONCLUSIONS FROM PUBLISHED WORK 

Epigenetic or metabolic adaptations by cancer cells are significant contributors to 

cancer’s competitive advantages. Just eighteen years ago, experts believed that the primary 

source of cancer was genome instability and the complexity of cancer pathogenesis resulting 

from this genetic diversity could be reduced to just six underlying principles known as the 

“Hallmarks of Cancer” 238,239. First introduced by Douglas Hanahan and Robert A. Weinberg in 

2000, the original hallmarks of cancer include sustaining proliferative signaling, evading growth 

suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and 

activating invasion and metastasis 239. It was once anticipated that this complex set of principles 

in time could be further reduced to either fewer or simpler core concepts 238,239. However, recent 

discoveries facilitated by new technologies have revealed that carcinogenesis is even more 

complex than ever imagined, requiring the addition of “next generation Hallmarks of Cancer”, 

including evading immune destruction and metabolic reprogramming 238. 
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Improvements in mass spectrometry in recent years have been part of the improved 

understanding of cancer biology through contributions in proteomics, lipidomics, and 

metabolomics. These investigations have enhanced traditional genomics assays by increasing our 

understanding of nongenetic drivers of cancer metabolism 240. Despite rapid advances in these 

fields of study, significant technological challenges still hinder further progression in our 

understanding of specific metabolic pathways and intermediates involved in cancer evolution 

and drug resistance. 

Studying cell metabolism is challenging because many metabolites are derived from 

common precursors and exhibit similar chemical structures making it difficult to differentiate 

between them 232. This is further complicated by rapid rates of change and the challenge of 

consistently and accurately quantifying the expression levels of such metabolites in a complex 

mixture. Often, the most biologically influential metabolites are expressed at very low levels 

relative to other components in a cancer cell. For a mass spectrometrist, this often makes it very 

difficult to detect, nevertheless to accurately quantify such metabolites using traditional 

bioanalytical techniques. I have shown that minute changes in the expression and metabolism of 

bioactive lipids have significant biological effects in pancreatic cancer cells. Therefore, 

developing methods capable of monitoring small shifts in metabolite concentrations and 

pathways are imperative for fully understanding cancer pathogenesis and improving treatment 

efficacy. Throughout my research, I have learned that even the most sophisticated analytical 

instruments are useless if they cannot be utilized to identify and measure the compounds or 

biological processes of interest. Much innovation and countless hours of troubleshooting are 

often required to answer even the simplest biological questions. 
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When I began my work on the pancreatic cancer study (Chapter 2), we had one 

seemingly simple objective: to quantify just two lipids out of the thousands of metabolites 

expressed in the cell, S1P and C16 ceramide. S1P is a classic example of a metabolite that, 

although expressed at picomolar concentrations, has significant biological effects and is very 

difficult to detect in human pancreatic cells even with the assistance of high-resolution mass 

spectrometers. Although we could easily identify thousands of other lipids and proteins in these 

cells using various LC-MS methods and instruments, we simply could not find an effective way 

to monitor intracellular S1P levels. On the rare occasions when S1P ions were detected, the 

chromatography and fragmentation patterns were insufficient in providing confident 

identifications or concentration measurements.  

Ultimately we established an LC-MS method to accurately quantify S1P and C16 

ceramide, along with thousands of other lipids to compare against in our metabolically 

reprogrammed cancer lines. Through this method, we were also able to discover an important 

oncogenic pathway of pancreatic cancer with promising therapeutic effects. The knowledge we 

gained about the effects of this pathway on cell behavior and how it is differentially regulated to 

support pro-survival phenotypes in metabolically dynamic PDAC cells may lead to future 

treatment development and drug discoveries. In addition, the LC-MS based SK1 enzyme activity 

assay I developed may serve as a companion diagnostic to track disease progression and 

treatment efficacy. 

My doctoral research also addressed issues concerning cell culture-based studies that are 

significantly affecting researchers and funding organizations. Despite the important role of cell 

culture in foundational and clinical research, cancer cell lines can also lead to greater levels of 

confusion through the research community. Misidentified cell lines resulting from microbial or 
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cross contamination between cell lines and differences in growth medium compositions create 

problems at many levels of cancer research 241. Even when all preventative steps are accounted 

for, cultured cells are inevitably subject to change over time without any external contamination 

due to chromosomal duplications or rearrangements, mutations, and epigenetic changes that can 

greatly modify cellular phenotypes including responses to treatments 241. This is a key concern of 

the U.S. National Institutes of Health (NIH) because inconsistencies between experimental 

models make it difficult to replicate data and apply the results of basic research to clinical trials 

241. If a drug is proven successful in the wrong model or phenotypically altered cells exhibit 

variations in behavior, discoveries and progress toward the most effective treatments can be 

delayed 241. Evidently, more effort is needed to evaluate both genotypic and phenotypic 

variations between cell lines 241.  

My work in pancreatic cancer models (Chapter 2) addresses these concerns by showing 

global and specific biochemical changes at multiple levels that contribute to behavioral 

differences between PDAC subclones derived from a common originating line. While STR 

Profiling is traditionally the standard for distinguishing between human cell lines, recent research 

indicates that both genetic and nongenetic factors contribute to severe changes in cancer cell 

lines and tumors 4,25,26,30. For example, metabolic adaptations can be clonally selected to promote 

tumorigenesis and phenotypic diversity between cells from a common origin 232. Thus, assays 

beyond the level of the genome may serve as more accurate representations of cellular responses 

to drug treatments. I demonstrated a multifunctional workflow that can be used to monitor both 

genetic and phenotypic heterogeneity between cell lines, track evolutionary changes, and 

discover conserved pathways of significance. The pro-survival SK1 mediated sphingolipid 

pathway we identified served as an effective drug target in all the PDAC subclones despite 
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variations in global and pathway-specific gene expression and metabolism. This is an important 

finding not only because it suggests that SK1 is important driver of cancerous phenotypes among 

heterogeneous in vitro subclones, but also suggests that this pathway may contribute to solving 

research and clinical problems such as cancer stem cell evolution, diversions between cell culture 

systems, and inter/intra-tumor heterogeneity. 

Another major challenge of cancer metabolism research I focused on throughout my 

graduate work lies in the quantitative measurement of metabolic flux; i.e., monitoring the 

movement of atoms through metabolic pathways rather than simply measuring steady-state 

conditions. The fluxes of critical metabolic pathways such as the TCA cycle, glutaminolysis, and 

autophagy have been quantified in cultured cell lines using innovative applications of SILAC 

(Stable isotopic labeling with amino acids in cell culture), radioactive tracer amino acids, and 13C 

NMR spectroscopy 52,80,201,242. While such approaches have provided important insight into 

fundamental components of cancer metabolism, they are not necessarily representative of in vivo 

metabolic flux and do not provide a comprehensive understanding of how these fluxes change in 

the context of a living organism.  

The ability to measure global autophagy and identify selective forms of autophagy has 

been greatly challenging due to the highly dynamic nature of this process and limited technology 

83. Through my novel application of kinetic and quantitative proteomics techniques in HCT116 

xenograft mice, I demonstrated an entirely new method to measure autophagy flux in vivo that 

can potentially be used in humans (Chapter 3). I showed how autophagy is used to remodel the 

proteome of cancer and healthy tissues and identified a specific form of autophagy used to 

selectively control degradation rates of the mitochondria relative to other substrates in xenograft 

colon tumor tissue. While intrinsic and extrinsic stresses promote the accumulation of damaged 
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mitochondria in cancer cells, research has shown that much of the metabolic reprogramming 

required for tumor growth and clonal selection depends on utilizing mitochondria as functional 

bioenergetic systems 232. My research suggests that mitophagy may be used to support global 

energy metabolism by improving mitochondrial quality control in colon tumor cells. Thus, 

mitophagy may serve as a more tumor specific anti-autophagy drug target compared to 

conventional inhibitors like chloroquine, which have severe off target effects 78,224. Overall, my 

discoveries regarding the functional role of autophagy in CRC may provide insight for 

improving diagnostic tools and developing personalized treatment strategies. 

Recent reviews suggest that metabolic reprogramming is perhaps the most pivotal 

emerging hallmark of cancer 6,28,143,232,238. I have further showed that metabolic signatures and 

flux are not simply passive effects of genetic mutations but serve as active drivers of the classic 

hallmarks of cancer, including proliferative signaling, evading growth suppressors, and resisting 

cell death 239. Both small and large shifts in the regulation and flux of metabolic pathways such 

as the conversion of ceramide to S1P and selective autophagy promote cancerous phenotypes 

like rapid proliferation and drug resistance. These findings and my contributions toward 

expanding applications of bioanalytical techniques will pave the way for future discoveries to 

improve our understanding and treatment of cancer.   

 

FUTURE DIRECTIONS 

Amino acid metabolism is a potential chemosensitizing drug target in triple negative breast 

cancer cells 

My interest in cancer metabolism and the effects of the mitochondria on pro-survival 

pathways originated from my work involving a panel of chemoresistant triple negative breast 
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cancer (TNBC) cells. TNBC treatment options are limited due to the lack of a therapeutic 

hormone receptor target and high tendency for tumors to develop chemoresistance 234. Resistant 

cell lines were originally generated by exposing MDA231 and SUM159 TNBC cells that were 

initially sensitive to epirubicin (epi), a DNA-damage inducing chemotherapeutic, to varying 

concentrations of epi for approximately one year 234. My first observations were that the sensitive 

cells required splitting about twice as often as the resistant cells due their considerably faster 

growth rates (Figure 4-1). While epi treatment had no major effect on resistant SUM159 cell 

proliferation, even a low concentration of epi (1 µM) in the cell medium significantly slowed 

sensitive SUM159 cell growth (P<0.05) (Figure 4-1). We hypothesized that energy and 

metabolic intermediates initially used to fuel cell division in their “sensitive” state were 

redirected toward an adaptive stress response against epi-induced stress in their “resistant” state. 

 

 

Figure 4-1 Effects of chemotherapy on sensitive versus resistant TNBC cells. (A-B) 
Representative light microscope images of sensitive SUM159 TNBC cells treated with (A) 1µM 
epirubicin for 24 hours relative to the (B) vehicle control. (C) Comparison of cell proliferation 
rates of sensitive and resistant SUM159 cells treated with 1µM epirubicin for 24 hours relative to 
vehicle controls. Data are represented as the mean cell proliferation rate (change/increase in 
number of adhered cells counted per hour) of two biological replicates +/- SEM. The * indicates 
P<0.05 using t-tests to compare growth rates of epi-treated cells relative to vehicle controls. 
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We also observed considerable differences in mitochondrial morphology between 

sensitive and resistant TNBC cells treated with epirubicin (Figure 4-2). Resistant MDA231 and 

SUM159 and cells had small, punctate mitochondria and displayed no major changes in 

mitochondrial morphology after 24-hour exposure to chemotherapy. On the other hand, sensitive 

MDA231 and SUM159 cells initially exhibited long, tubular networks of mitochondria. After epi 

treatment, both sets of sensitive TNBC cells displayed shorter, more punctate mitochondria, 

much like their resistant counterparts (Figure 4-2). This suggests that mitochondrial biogenesis 

and activity was increased in sensitive TNBC cells relative to the resistant cells and that epi may 

induce mitochondrial fission and suppress mitochondrial metabolism. 

  

 

Figure 4-2 Effects of chemotherapy on mitochondrial morphology in sensitive and resistant 
TNBC cells. Representative immunofluorescence images of active mitochondria stained with 
MitoTracker Red and nuclei stained with DAPI (blue) in sensitive and resistant MDA231 (A-D) 
and SUM159 (E-H) cells treated with the vehicle (DMSO) or 1µM epirubicin for 24 hours. 
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We investigated this hypothesis by measuring respiratory oxygen flux, which serves as a 

metric of mitochondrial activity 243, in sensitive and resistant SUM159 cells under basal 

conditions and after exposure to epi (Figure 4-3). Substrate-uncoupler-inhibitor titration was 

used to measure oxygen consumption in each group immediately after 24 hour treatments 

relative to vehicle controls 49,243. Average levels of aerobic respiration were consistently reduced 

in resistant relative to sensitive SUM159 cells. This suggests that mitochondrial oxidative 

phosphorylation was suppressed in the resistant cells. Chemotherapy significantly reduced 

oxygen utilization in sensitive SUM159 cells (P<0.05) but had no measurable effect on aerobic 

respiration in resistant cells.  

 

 

Figure 4-3 Chemoresistance and chemotherapy reduced respiratory oxygen flux (mitochondrial 
activity) in TNBC cells. Mitochondrial oxygen consumption measured in (A) sensitive versus 
resistant SUM159 cells, (B) sensitive SUM159 cells treated with 1µM epi for 24 hours relative to 
vehicle controls, and (C) resistant SUM159 cells treated with 1µM epi for 24 hours relative to 
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vehicle controls using substrate-uncoupler-inhibitor titration. G/M: Mitochondrial Complex I-
linked substrates glutamate/malate; ADP: Adenosine diphosphate (ATP synthase substrate); S: 
Mitochondrial Complex II-linked substrate succinate; FCCP: Oxidative phosphorylation 
uncoupler. Data are represented as the mean respiratory oxygen flux in response to each substrate 
measured in biological triplicate +/- SDM. The * indicates P<0.05 using t-tests to compare 
between treatment and control groups. 
 

Because mitochondria contain their own genome (mtDNA), we believe they were major 

targets of DNA damage resulting from chemotherapy in the TNBC cells. Moreover, the resistant 

cells may have increased mitochondrial fission and reduced mitochondrial aerobic activity as an 

effect of epi-induced mtDNA damage, causing them to depend on other sources of energy to 

support metabolism, macromolecular biosynthesis, and stress tolerance. Perhaps due to the loss 

of the abundant sources of ATP and metabolic intermediates normally supplied the TCA cycle 

and oxidative phosphorylation in the mitochondria, the resistant cells could no longer divide and 

proliferate as rapidly as their chemosensitive counterparts that displayed fully functional 

mitochondria (Figure 4-1). 

We also identified a significant difference in amino acid utilization between sensitive and 

resistant TNBC cells that may be used to support survival and compensate for the loss of 

mitochondrial metabolism in the resistant cells. Sensitive and resistant SUM159 cells were 

treated with 5% dietary D2O and collected after approximately 1/3, ½ and 1 doubling period. 

Mass spectrometry was used to detect changes in protein mass as deuterium from the diet was 

incorporated into proteins over time (Figure 4-4). Although the sensitive cells were dividing 

rapidly throughout the course of the metabolic labeling experiment, they lacked deuterium 

incorporation into proteins. On the other hand, our data clearly showed that resistant SUM159 

cells incorporated the heavy isotopic label into proteins over time. This indicates that the 

sensitive cells did not produce any of their own nonessential amino acids, but instead relied 
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solely on amino acids provided in the growth medium to support cell viability and division. On 

the other hand, the resistant cells adapted the ability to generate their own nonessential amino 

acids via transamination (Figure 4-5). Cancer cells have been shown to rely heavily on amino 

acid metabolism to support survival and drug resistance 8,20,21,244,245. Because of the loss of 

mitochondrial function, the resistant TNBC cells may have increased utilization and metabolism 

of amino acids to support cell viability and growth. On the other hand, sensitive cells seemed to 

direct more energy and metabolic precursors toward mitochondrial biogenesis and activity to 

facilitate the overwhelming biosynthetic demands required to fuel their more rapid division rates 

(Figure 4-1). 

 

 

Figure 4-4 Amino acid metabolism was modified in chemoresistant TNBC cells. (A-B) 
Representative profiles of deuterium incorporation into protein over time in (B) resistant SUM159 
cells and lack of deuterium incorporation in (A) sensitive SUM159 cells treated with 5% dietary 
D2O. Each black dot represents a different tryptic peptide in the Annexin A2 calcium-regulated 
membrane-binding protein (P07355). Mass spectrometry was used to calculate the deuterium-
induced mass change in each peptide over time in the resistant cells, which was used to calculate 
the fraction of new protein or turnover rate. Sensitive cells lacked deuterium incorporation, 
indicating they do not synthesize nonessential amino acids. However, resistant cells adapted some 
transamination capacity to produce their own nonessential amino acids. 
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Figure 4-5 Kinetic model of amino acid and protein metabolism in sensitive versus resistant 
TNBC cells. 

 

Although D2O-based metabolic labeling of nonessential amino acids provided interesting 

insight into general metabolic pathway shifts between sensitive and resistant cell states, our 

results also indicated that we could not use this method to measure protein turnover in the 

sensitive TNBC cells. We attempted exposing sensitive SUM159 cells to other heavy isotopic 

labels to overcome this limitation, including 15N Arginine and D4 arginine SILAC standards as 

well as a mixture of heavy 15N algal amino acids. Our MS data revealed that sensitive SUM-159 

cells were fully capable of incorporating these heavy amino acids into protein, as illustrated by 

the clear shift in the isotopic distribution of masses over time in the γ-actin peptide (Figure 4-6). 
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While we were able to use the change in the isotope pattern to calculate the turnover rate of γ-

actin by hand, the generally low signal to noise ratio in the remainder of our data and lack of 

analysis tools to handle such complex MS data hindered our ability to perform a wide-scale 

kinetic proteomics analysis of these cells. For this reason, we shifted our focus to a different 

cancer cell line, HCT116, which enabled us to complete the wide-scale kinetic proteomics study 

described in Chapter 3. 

    

 
 
 

Figure 4-6 Protein turnover measurement in TNBC cells using 15N-based metabolic labeling. 
(A) Raw mass spectral data of γ -actin peptide after metabolic labeling of sensitive SUM-159 cells 
with a mixture of heavy (15N) algal amino acids. Over time,15N is incorporated into proteins and 
the isotopic distribution of masses increases. (B) The change in the isotope pattern was used to 
calculate the relative difference in isotopic intensity and fraction of new protein (turnover rate) of 
the γ -actin protein. 
 

   This work provides further evidence that metabolic pathways are readily altered to 

support stress tolerance in cancer and lays a foundation for future TNBC research. These data 

also further emphasize the importance of mitochondrial metabolism in fueling cancer cell 
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proliferation, as exemplified by the sensitive SUM159 cells. On the other hand, loss of 

mitochondrial function or biogenesis may have contributed to the lower proliferation rates of the 

resistant cells. Based on our results, nonessential amino acid metabolism via transamination may 

serve as a potential therapeutic drug target and enhance the effects of chemotherapy in resistant 

TNBC cells. 

 

Generation of chemoresistant colon cancer cell line 

Despite recent advances in surgical restriction and chemotherapy, 50% of colorectal 

cancer patients experience disease recurrence 246. An increased understanding of cellular 

mechanisms driving CRC recurrence and resistance to current chemotherapeutics is essential to 

improve clinical outcomes. We generated a chemoresistant CRC cell line to study potential 

metabolic mechanisms of treatment resistance in colon cancer. F-Fluorouracil and oxaliplatin are 

currently the standards of CRC chemotherapeutics 246. Oxaliplatin is a platinum-based compound 

that exerts its cytotoxic effect mostly through DNA damage. We generated an oxaliplatin-

resistant CRC cancer cell line derived from wild type HCT116 cells which we refer to as 

“ROXY-HCT116” cells. 

ROXY cells were generated by exposing HCT116 cells to oxaliplatin at clinically 

relevant doses and schedules 246. Cells were maintained in 10 mL of Dulbecco's modified Eagle 

medium (DMEM; 4.5 g/L d-glucose) supplemented with 10% FBS and 1% penicillin 

streptomycin in 10 cm tissue culture dishes at 37°C, 5% CO2. Once a week, cells were gently 

washed with 1x PBS and the cell medium was exchanged for 10 mL of fresh medium pre-

warmed to 37°C. The cell medium was consecutively treated with intermediate, high, or low 

doses of oxaliplatin followed by recovery periods during which surviving cells were harvested. 
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Cells were first exposed to the intermediate dose of oxaliplatin (0.625 µM) for one week. The 

surviving cells were then allotted a one-week recovery period in drug-free medium. This cycle 

was repeated fifteen times. The surviving cells were then split and exposed to the highest dose of 

oxaliplatin (1.25 µM) for one-week periods, each followed by a one-week recovery phase. This 

cycle was repeated over the course of two months. Finally, the resistant cells were maintained in 

the complete culture medium (DMEM + 10% FBS/1% penicillin streptomycin) containing a low 

dose oxaliplatin (0.125 µM) at 37°C, 5% CO2.   

To confirm that the ROXY-HCT116 cells had achieved chemoresistance status, we 

performed a cell proliferation assay of our newly generated line compared to the original wild 

type HCT116 line using live-cell imaging on an Incucyte system. Cells were split evenly onto 

12-well tissue culture dishes and allowed to adhere overnight at 37°C, 5% CO2 in the complete 

DMEM cell culture medium (10% FBS and 1% penicillin streptomycin). The cell medium was 

subsequently removed, cells were washed with 1x PBS, and the cell medium was exchanged for 

fresh complete medium pre-warmed to 37°C. Cell proliferation was monitored for 39 hours at 

37°C, 5% CO2 after which cells were again washed with 1x PBS and the cell medium was 

exchanged for fresh complete medium (DMEM + 10% FBS/1% penicillin streptomycin) 

containing the medium dose of oxaliplatin (0.625 µM) or the vehicle (DMSO) pre-warmed to 

37°C. Monitoring of cell proliferation immediately resumed until the vehicle control cells 

reached maximum confluence (Figure 4-7).  

Oxaliplatin treatment significantly reduced wild type HCT116 cell proliferation by nearly 

80% (P<0.05). On the other hand, oxaliplatin only reduced ROXY-HCT116 cell proliferation by 

an average of approximately 18%. Interestingly, the average growth rate of the control ROXY 

cells was even higher (~32%) than the control wild type cells. Unlike the resistant TNBC cells, 
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these resistant colon cancer cells not only adapted the capacity to withstand oxaliplatin-induced 

stress, but also seemed to develop an enhanced growth capacity. We suspected that the ROXY 

cells significantly altered gene expression and metabolism to overcome the cytotoxic effects of 

chemotherapy. 

To test this, we performed a quantitative proteomics analysis comparing ROXY to wild 

type HCT116 cells using duplex peptide stable dimethyl isotope labeling and mass spectrometry 

85. We identified a total of 964 proteins and quantified 660 proteins containing at least two 

unique peptides. Surprisingly, there were only five significantly differentially expressed genes 

between ROXY and wild type cells among these 660 and all five were upregulated in the wild 

type cells (Figure 4-8). There were no major functional relationships between any of these 

proteins based on our ontology analysis of these five proteins using DAVID Bioinformatics tools 

42. However, based on the functions of these proteins, each could be related to known oncogenic 

pathways that may have contributed to the resistance phenotype in ROXY cells.  

The serrate RNA effector molecule homolog is known to be involved cell cycle 

progression at the S phase, suggesting that ROXY cells altered regulation of the cell cycle 

relative to wild type 134. In addition, Glycine-tRNA ligase serves as universal pleiotropic 

signaling molecule needed for cell regulation pathways 134. Modified expression of these two 

regulatory proteins may have allowed ROXY cells to bypass cell cycle checkpoints and continue 

to divide rapidly during chemotherapy. Palladin is a cytoskeletal protein that plays a role in cell 

adhesion, control of cell morphology, and cell motility 134, indicating that the ROXY cells may 

have altered their general shape and structure to support the transition from the sensitive to the 

resistant state, a common feature of proliferating cells 124,247. Our data also suggests that peptide 

metabolism was modified in the ROXY cells because Aminopeptidase B is responsible for 
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selectively removing excess arginine and lysine from the N-termini of peptide substrates 134. Our 

current hypothesis is that the ROXY cells used these proteins (Figure 4-8) to upregulate and 

sustain stress resistance pathways over the course of their long-term exposure to the 

chemotherapy. The work we put towards generating this highly resistant colorectal cancer line 

will lay a foundation for future research by students in the Price Lab that will help further 

increase our understanding of chemoresistance mechanisms in colorectal cancer.  

 

 

 
Figure 4-7 Comparison of cell proliferation rates of Wild-Type versus oxaliplatin resistant cell 
line (ROXY-HCT116) treated with 0.625µM oxaliplatin. Data are represented as the mean phase 
object confluence (%) of four biological replicates +/-SEM. The * indicates P<0.05 using t-tests 
to compare the proliferation rate of oxaliplatin treated cells relative to the corresponding vehicle 
(DMSO) control. 
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Figure 4-8 Differentially expressed genes in chemoresistant versus wild type CRC cells. Protein 
profile heat map of significantly different protein concentrations in oxaliplatin resistant (ROXY-
HCT116) versus wild type HCT116 cells based on signal to noise ratio >20 (log2[light-heavy 
ratio/average]) measured by quantitative proteomics.  
 

 

Each of the studies I performed during my graduate research adds another piece to the 

increasingly intricate puzzle of cancer metabolism. Much more research is required to fully 

comprehend the underlying mechanisms of metabolic reprogramming and chemoresistance. I 

pray that my novel applications of proteomics and lipidomics technologies will aid other 

researchers and clinicians, enabling them to further our knowledge of this debilitating disease, 

increase survival rates, and improve quality-of-life of cancer patients and their loved ones.  
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