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ABSTRACT 
 

Creation and Use of Software for Analysis of  
Kinetic Proteomic Experiments 

Bradley C. Naylor 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 

 Proteins are constantly synthesized and destroyed to ensure sufficient functioning 
proteins to meet cellular needs, a process called protein turnover.  Synthesis and degradation are 
carefully balanced over time to ensure that average protein concentrations do not change 
drastically.  The status quo of the cell, or protein homeostasis, is required for the health of the 
organism.  If protein homeostasis breaks down, serious diseases, such as Alzheimer’s, can result 
when proteins aggregate instead of being degraded properly.  Because protein turnover is the 
means to maintain protein homeostasis while keeping sufficient functioning proteins, measuring 
protein turnover is critical to understanding biological processes and disease states.  Measuring 
protein turnover rates on a broad scale is possible using a method called kinetic proteomics, and 
the improvement of kinetic proteomics is where I have focused the work for this dissertation.   

 In this dissertation, I will review the history and general strategies for performing kinetic 
proteomics.  I will then demonstrate that I have published an open source, user-friendly program 
for other scientists to use to perform kinetic proteomics data analysis, as well as publishing a 
novel discovery of key ribosomal subunits being replaced within the lifetime of the ribosome, 
which was discovered through use of kinetic proteomics.  Finally, I will discuss work that is 
ongoing to improve my software tool for use in human subjects, and work being done to 
combine kinetic proteomics with other global analysis methods to make novel biological 
discoveries. 
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1. Introduction 

 All biological systems are dynamic.  As cells alter gene expression in response to stimuli, 

amounts of proteins and signaling molecules change, and old proteins undergo replacement with 

new copies to ensure the cell has sufficient working proteins to perform necessary functions.  

Loss of the dynamic controls may occur due to deregulation of synthesis or degradation 5,6, and 

is thought to be the cause of biological aging as well as diseases such as Alzheimer’s disease, 

which is characterized by a lack of protein removal10. 

Large (–omics) scale studies following multiple analytes (1000’s) are well suited for 

studying complex systems like a cell.  –Omics studies attempt to see all of a certain type of a bio-

molecule in a cell, tissue, or organism.  Of particular interest is proteomics, because proteins are 

responsible for carrying out most cellular reactions and responses.  Altered conditions within the 

cell are largely the result of a change in protein expression and behavior.  These changing 

conditions may result from different disease states, environmental conditions, dietary inputs, and 

so on. 

Proteomic methods for determining the presence of proteins in samples or measuring 

differences in protein quantity between samples are relatively mature and advanced 

technologies11-1310.  In contrast, kinetic proteomics, which measures how quickly proteins are 

turned over, that is destroyed and replaced by new copies, is a more recent method.  The 

underlying premise is that experimental perturbations to the proteome should also change the 
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turnover rates of proteins, and these kinetic changes may be far more visible than changes in 

protein presence or quantity.  Kinetic proteomics is also useful in cases where protein quantity 

and expression are not changing, but the turnover rate is, such as in liver cirrhosis12,14.   

In this dissertation, I will begin by further discussing the significance and practical 

applications of kinetic proteomics.  I will then discuss the history of kinetic proteomics in order 

to describe its foundations and further demonstrate its utility.  Next, I will elaborate on the 

different ways that kinetic proteomics can be done, in order to illustrate why our lab uses some 

kinetic proteomics techniques and not others.  Finally, I will outline the contributions I have 

made to the field of kinetic proteomics, namely the creation and use of software tools to analyze 

kinetic proteomic data. 

1.1 Practical Uses of Kinetic Proteomics 

 The first question to be asked of any method is “what is the benefit of this method?”  

Kinetic Proteomics has several advantages over current proteomics methods.  The first is that it 

is orthogonal to current tests.  Because of this it can be combined with various other assays, 

including other mass spectrometry methods, and still provide unique information.  The 

combination of multiple large data sets from many measurement types is an idea that is 

becoming more popular in proteomics.  The combinations give a more holistic picture of any 

biological condition, so causes and effects can be better understood14.  The most obvious method 

to combine with kinetic proteomics is quantitative proteomics17, since the only way for the pool 

size of protein to change is for the ratio of synthesis to degradation (protein turnover rate) to 

change.  The addition of RNA-Seq to quantify RNA amounts and compare them against the 

turnover rate of their protein product has also been used to investigate gene expression19.  These 
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types of studies provide better understanding of disease and treatment effects, which can benefit 

clinical scientists and physicians. 

 Proteomics relies on mass spectrometry which is very practical in the clinic, where few 

samples should be required, and as much data as possible gleaned as rapidly as possible.  The 

metabolic incorporation of isotopes used for kinetic proteomics methods labels many bio-

molecules that can be analyzed by mass spectrometry2,20.  A few targeted lipid and protein 

turnover rates from blood or limited biopsies can reveal information about diseases2,2019, exercise 

and cardiac health21, and labeled DNA can be used to measure cancer progression20.  Models of 

heart disease22, aging23-25, metabolism23-25, skin disease10,26, and drug testing10,26 have all been 

investigated using kinetic measurements of various bio-molecules.  Some studies of proteins 

have been translated to clinical settings already10,26. 

 A more recent, but related, idea is the virtual biopsy28.  A patient is provided with a heavy 

isotope tracer to initiate metabolic labeling, and then blood is collected at predetermined time 

points.  Since blood proteins are produced in a variety of tissues, the turnover rates of proteins in 

the circulatory system can be used to extract information about the organs that produced the 

proteins without the need for a direct biopsy.  This method can be used to measure proteins 

directly involved in disease, such as collagen in diseases with liver cirrhosis30,31, or to analyze 

protein production in specific tissues to assess overall tissue health21,32-36. 

 Kinetic proteomics is useful for both clinical and basic research applications, providing 

unique information unavailable by other methods.  However, the field of kinetic proteomics did 

not begin this way, and does have limitations.  I will present a review of the history of this 

method to demonstrate its applications, its limitations, and how its limitations have been 

overcome. 
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1.2 Historical Development of Kinetic proteomics 

1.2.1 The Foundation of Dynamic Measurements of Bio-Molecules 

 The foundation for what would become kinetic proteomics began in the 1930s when Dr. 

Rudolf Shoenheimer used stable isotopes to determine that lipids21,32-36 and proteins21,32-36 are 

replaced by cells over time.  He also demonstrated that two different stable isotopes, 15N and 2H, 

could be incorporated into new bio-molecules of an experimental animal.  Exact turnover rates 

could not be determined because the mass spectrometry technology was not up to the task: the 

quantity of an isotope could only be determined in a measurement of the pure element.  Complex 

mixtures of molecules, such as amino acids and proteins, were beyond the reach of the 

technology. 

 In the 1980’s more progress was made by Dr. Spencer Commerford, who found that both 

DNA and proteins incorporate 3H when it was provided to laboratory animals in drinking water.  

While the radioactivity of the 3H complicates its use in humans, it enabled the amount of isotope 

incorporated into different amino acids in proteins to be determined by the radioactivity they 

exhibited.  As expected, the essential amino acids exhibited little radioactivity and the non-

essential amino acids exhibited more.   

1.2.2 Development of Kinetic Proteomics: From Small Molecules to Full-scale Proteomics 

 In the 1990s mass spectrometers had improved to the point where analyzing stable 

isotopes in intact biomolecules was possible.  Stable isotope labeling allows many bio-molecules 

to have a detectable label without the hazards and instability of radioactive isotopes.  Work 

began with small bio-molecules, such as lipids and nucleotides.  Labeled small bio-molecules 

can be used to determine biological conditions, DNA labeling rates are a metric of cell 

proliferation rates for example41,42, but the ability to perform protein analysis was still 
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undeveloped.  It took several years to apply these techniques to proteins, but in the early 2000s 

researchers began to use stable isotopic metabolic labels in proteins.  By isolating a specific 

protein43,44 or many proteins (with the goal of getting an average rate for all proteins)  23,33,45  , 

then digesting them to amino acids and measuring the incorporation of label into one or more 

amino acids. 

 Proteins were more difficult to analyze by mass spectrometry because mass 

spectrometers can only analyze molecules in the gas phase.  All of the molecules described 

above required chemical modification to be able to enter the gas phase.  Unlike DNA, proteins 

exist in many forms with many different properties.  Therefore, important information about 

cellular operations can be gained by monitoring individual protein species, but the average 

turnover rate less informative.  Therefore, a new technology was needed to allow peptides to 

enter the gas phase intact, so proteins could be identified without excessive purification.  The 

new technologies to allow peptides and proteins to enter the gas phase was actually developed in 

the 1980’s 46-49.  Matrix Assisted Laser Desorption\Ionization (MALDI) allows the ionization of 

peptides within a matrix of organic acid, while Electro-Spray Ionization (ESI) allows the 

ionization of all peptides in a constant stream of liquid.  Both of these methods allow the 

peptides to enter the gas phase and be analyzed by mass spectrometry.  It took several years to 

apply these techniques to kinetic measurements, because while the peptides could be seen in the 

mass spectrometer, they could not be identified making analysis of individually separated 

proteins of known identity a better choice. 

 By the late 1990s and 2000s the technology and analysis software had advanced 

sufficiently so peptides in a mass spectrometer could be identified and matched to a database of 

proteins present in a given organism.  With the ability to identify peptides, mass spectrometry 
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could be used to measure the incorporation of stable isotopes into intact peptides.  These 

experiments used either synthetically labeled amino acids or 2H, which labeled amino acid used 

for making proteins in the amounts detailed by Commerford46-49, in the organism’s diet.  The 

labeled amino acids were incorporated into proteins.  Once heavy label was incorporated, the 

proteins could be separated by two-dimensional (2-D) electrophoresis, and then analyzed using 

MALDI or ESI.  While a few labs started targeting specific proteins using these new methods51, 

dynamic measurements were still limited.  Initially measuring peptide incorporation was only 

moderately more convenient than digesting the separated proteins to amino acids.  An important 

step facilitating kinetic proteomics was made by Doherty et al. in the mid 2000s24,53,54.  Instead 

of simplifying the analysis to one protein target, Doherty used similar experimental methods to 

analyze all observed proteins.  The ability to measure isotope incorporation in many proteins at 

once paved the way for modern kinetic proteomics to measure thousands of protein turnover 

rates in a single experiment.  Interestingly, while many of the earlier studies had relied on 

theoretical models24,53,54, Doherty used an empirical method.  In her experiment, labeled valine 

was provided to chickens, and the incorporation of the valine into proteins was measured.  

Peptides containing two or three valines were used to determine how much labeled valine was 

available, while peptides with a single valine were used to construct kinetic curves and calculate 

rates.  This strategy worked well and set the stage for more improvements to kinetic proteomics 

in the early 2010s. 

 The first major advancement in the 2010s was the use of 2H for measuring many proteins 

at a time.  The initial work was done by the Previs lab, who first used deuterium for large scale 

kinetic proteomics24,53,54.  Hellerstein followed with a more theoretical model for analyzing the 

dynamic proteomic data and using kinetic proteomics in humans55,56.  Finally, Ping followed 
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within a few years adopting the Previs method initially, but eventually developing an improved 

mathematical model of deuterium incorporation in humans57.  Because of this progress, any 

investigator using kinetic proteomics is faced with a variety of choices about labeling techniques, 

calculation methods, and analysis tools.  I will analyze these below and provide justification for 

the approaches I have chosen in my research. 

1.3 Modern Kinetic proteomics 

1.3.1 Method for Label Administration 

 How to administer isotopic labels to experimental subjects is critical for kinetic 

proteomics: the isotopic labeling strategy determines analysis methods that can be used, which 

amino acids are labeled, which other bio-molecules are labeled, where on the bio-molecules the 

label is incorporated, and the software tools available to the researcher.  There are two major 

heavy isotope labeling strategies used in kinetic proteomics.  The first is metabolic labeling, in 

which the subject is fed raw material with an added isotopic label.  This labeling is commonly 

done with 2H2O, because it is non-toxic (even in humans59), easy to use, and will label all bio-

molecules in the body that are synthesized with hydrogen50,60.  Other commonly used materials 

are nitrogen(15N)-containing salts50,6027 and H2
18O 52,61.  The cell then uses the labeled molecules 

to create monomers, such as amino acids, incorporating the provided isotopic label into the 

desired polymer, such as protein.   

The second strategy, Stable Isotope Labeling of Amino acids in Mammals (SILAM), is 

based on providing the labeled amino acids and skipping some of the metabolic steps52,61.  While 

SILAM was originally intended for measuring quantities of protein, the adaptation of the method 

for kinetic proteomics is relatively simple.  In this method, a heavy-labeled essential amino acid 
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is provided to the subject; usually this is leucine23,62, although other amino acids23 or even all 

amino acids64 are possible choices.  The labeled amino acid(s) are incorporated into new 

proteins.  Advantages and disadvantages of these two methods are described in Table 1-1. 

Table 1-1: Comparison of Advantages and Disadvantages of Metabolic Labeling and SILAM Style 
Labeling   

Metabolic Labeling SILAM Style Labeling 

Advantages Disadvantages Pros Cons 

Easy to use in 
humans23,58,65 

Label incorporation 
can shift based on 
metabolic 
conditions23,58,65 

Very useful in cell 
culture66 

Large amounts of 
extra amino acids in 
the diet can disrupt 
metabolism27,59,67,68 

Most peptide 
populations contain a 
labeled amino 
acid27,59,67,6866 

Software is currently 
more limited than the  
SILAM method59 

Software tools widely 
available that will 
perform calculation 
with minimal in-
house work55,65,69 

Only peptide 
fragments that 
contain the labeled 
amino acid(s) are 
useful for turnover 
calculations59,61 

2H enrichment in 
body water is easily 
determined59,6158 

Difficult to rapidly 
achieve stable isotope 
enrichments in 
humans16,59,61 

 

Mass spectra of 
labeled and unlabeled 
species are easily 
distinguishable65 

 

Enrichment of amino 
acid pool is difficult 
to determine without 
intravenous infusion 
or control of the 
entire diet55,7065 

All molecules 
biosynthesized using 
the heavy element are 
labeled68,71 

2H can cause vertigo 
in larger doses68,7161   

Calculation is 
conceptually easy to 
understand 

 

Stable isotope 
enrichment causes 
rapid saturation of 
every cell with 
labeled amino 
acids23,52,56,65  

  Dietary amino acids 
require variable 
amounts of time to 
enter the amino acid 
precursor pool, 
complicating 
calculations23,52,56,65 
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 In the table above, there are two points that deserve expansion.  The first is the software 

requirement.  Many commercial or freeware proteomics tools, such as PEAKs and Skyline, have 

been developed for the common quantitative techniques SILAM and its cell culture analogue 

SILAC.  These methods generally rely on mixing samples both with and without a heavy 

isotope, and then comparing the signal abundance ratios of the distinctly separated mass spectra.  

In kinetic proteomics the analysis is similar: samples are analyzed, and the ratio of heavy to light 

(new to old) molecules can be compared over a time course.  Since SILAM analysis software 

performs this comparison readily, mass spectrometry groups already have access to software to 

do this form of analysis, and simply have to the combine the results from all experimental time-

points to determine a kinetic curve.  Metabolic 2H labeling uses a lower amount isotopic 

enrichment than SILAM style labeling, for reasons of both cost and safety73,74.  As a result, the 

change in molecular weight is not as large as that which SILAM/SILAC software expects.  In 

fact, peptides labeled by low enrichment 2H can be misidentified by the software as contaminants 

due to unnaturally distributed isotope patterns. 

 Despite the computational difficulty, metabolic labeling with 2H has a key advantage.  

The labeled amino acids used in the SILAM method need to make it through the gut and various 

other metabolic processes. They must be transported to each cell before they are attached to 

tRNAs and incorporated into a protein.  This creates differences in availability for different 

organs and different locations in each organ.  Measuring the progress of amino acid availability 

is also difficult because the amount of labeled amino acids in the blood is not necessarily 

indicative of the labeled amino acids in the cell52,58,75.  The resulting incorporation speed is no 

longer negligible, and the turnover rates must now be modeled as two pools: one of amino acids 

in the diet, and the other attached to the tRNA molecules52,58,7558.  The necessity of this two-pool 
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model complicates kinetic calculations significantly.  The distribution of 2H to each cell from 

drinking water or injection is much faster. The 2H equilibrates rapidly and uniformly through the 

organism through hydrogen exchange.  While there is a delay resulting from synthesis of the 

amino acids and loading the tRNA13,38,73, it is more uniform and generally negligible except in 

very fast experiments13,38,73.   

 Therefore, for my work we chose metabolic 2H2O labeling.  Calculation with this method 

was simplified by the lack of a significant incorporation time compared to the length of the 

experiment13,38,73.  Software for analysis of this type of data is less well known than software for 

SILAM experiments, so we created our own specialized software tools, which would in turn aid 

other researchers.   

1.3.2 Measuring Label Incorporation or Decay 

 After a label for the kinetic proteomics experiment has been chosen, the researcher must 

determine if the label should be measured as it is being incorporated or as it is being removed.  

Label decay methods are analogous to classic pulse-chase experiments13,14,76.  The label is 

applied until all the proteins of interest have incorporated enough of the label that the labeled 

population is easily observed as distinct from the unlabeled population.  The labeling source, 

either labeled food or water, is removed and the amount of label in proteins is measured at 

various times.  The amount of label present at the various times are fit to an experimental decay 

curve as the labeled population decreases, and a turnover rate calculated.   

 An alternative approach is to model label incorporation, and starts the experimental 

subjects with no extra heavy isotopes24,45,53.  The isotopic label is applied at the start of the 

experiment and measurement of incorporation into the bio-molecules of interest begins 
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immediately.  The data points from various time-points are fit to an exponential rise-to-plateau 

equation for calculation of a rate constant.   

 The advantage of using decay modeling is that the amount of signal early in the 

experiment is much higher.  Since the data is fit to an exponential model in both methods the 

early measurements, where the plateau has not been reached, are more important in determining 

the fit line.  Decay has more signal at these points, and thus has better signal to noise on the most 

critical points.  However, we chose the incorporation method of labeling for my experiments and 

software development.  This focus on label incorporation measurements was largely due to 

practicality; it is easily applicable to a proteome scale experiments where turnover rates vary by 

more than four orders of magnitude, while attempting to pre-label while ensuring significant 

labeling of proteins across a wide range of kinetic ranges is time-consuming and expensive35,36.  

Knowing the absolute endpoints possible for isotopic enrichment of every protein regardless of 

rate simplifies the modeling and allows analytical validation of the experimental isotope 

enrichment.  The incorporation labeling method also provides confidence when observing 

potentially important biological deviations35,36 from a theoretical model. 

1.3.3 Theoretical vs Empirical Models  

 Once the metabolic labeling experiment has been performed and the isotope data 

extracted from the mass spectral files, the data must be analyzed.  Both theoretical and empirical 

methods have been used to turn peptide isotopic data from a 2H incorporation experiment into a 

functional kinetic curve from which a turnover rate can be determined. 

  The empirical method is conceptually straightforward.  During the experiment, a steady 

amount of heavy isotope label is applied, and the change in the isotope pattern of target 

molecules at several time points is measured23,24 (Figure 1-1).  At each time-point the neutromer 
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peaks within the isotope pattern are weighted (normalized peak abundance multiplied by the 

number of extra neutrons in the peak) and summed together.  The weighted sum of an isotope 

pattern with no heavy label added is subtracted from the weighted sums at all time-points.  The 

data from all time points are fit to a first order rate curve to determine the turnover rate constant 

(Figure 1-1).  This method requires that the experiment extend to sufficient times to describe 

each saturation curve. 

The theoretical method, although more computationally intensive, removes this 

requirement for very long labeling times.  The concept was first formalized in an approach called 

Mass Isotopomer Distribution Analysis (MIDA)45.  MIDA is based on the principle that an 

isotopically diverse population of any molecule is detected by a mass spectrometer. For example, 

Figure 1A represents the natural distribution observed for a single peptide GAFGKPQGTVAR.  

Because isotopes of carbon, hydrogen, oxygen and other elements within the peptide were 

present at the time of synthesis, they were incorporated at a percentage representative of the 

availability.  The relative intensities of the different m/z values in the molecular population are 

the result of the different isotope availabilities.  MIDA assumes no bias exists for, or against, 

heavy isotopes during the creation of bio-molecules.  These principles allow the use of 

combinatorial statistics to determine the theoretical isotope pattern without experimental 

measurement of the isotopic pattern before or at the endpoint of increased heavy label 

availability (Figure 1-1 D-E).  After introducing the 2H, mass spectra of the peptide can be 

collected to determine the amount of labeled protein at the time the data was collected.  Although 

a single measurement allows fitting a first order rate curve (Figure 1-1 F) and determination of a 

turnover rate constant, combining the data from multiple time points improves signal to noise 

and fitting confidence.   
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A B C 

E F D 

Figure 1-1 Theoretical vs Empirical Analysis Method: The difference between Empirical (B, C) and 
Theoretical (D, E, F) calculations using the peptide GAFGKPQGTVAR measured at charge state 2 as 
an example.  The isotopic envelope of the peptide as detected by the mass spectrometer is shown in panel 
A (no extra heavy isotopes are present).  The m/z values on the x-axis represent the mass to charge 
ratios for the sequence with different numbers of extra neutrons (0-3 extra going from left to right).  In 
the empirical method, a weighted sum of the intensities of the peaks (intensity multiplied by the number 
of extra neutrons) is calculated from the black bars representing experimental endpoint measurements 
(Panel B).  The weighted sums of the baseline intensity (blue lines) are then subtracted from the 
measured weighted sum (Panel B).  In Panel C the weighted sums are plotted at multiple times (red dots) 
and a curve fit to the points (black line) which can be used to determine the turnover rate.  In the more 
complex theoretical approach, the maximum possible change of each peak in panel A at different 
enrichments is calculated by combinatorial statistics (Panel D); M(number) indicates the change in the 
peak with (number) extra neutrons.  The experimental amount of enrichment is selected (red dots).  In 
Panel E, actual measurements at a time point (black bars) are compared with the intensities at baseline 
(blue lines) and the predicted change at maximum label incorporation (red lines).  The difference 
between the experimental change (blue to black) divided by maximum theoretical change (blue to red) 
for each peak can be expressed as a percent. In Panel F measurements at several times are plotted in 
red.  The black line is fit to the data, and the turnover rate determined from the equation of the curve.   



14 
 

Table 1-2: Comparison of Advantages and Disadvantages of Theoretical vs. Empirical calculation 
models 

Theoretical Empirical 

Advantages Disadvantages Advantages Disadvantages 

Easy to adjust to 
non-constant label; 
necessary for human 
labeling24,4545 

Need to know the 
number of sites 
available for stable 
2H incorporation for 
every amino acid 

Knowledge of 
monomer enrichment 
not required77 

Requires very strict 
data filtering51 

Can detect cases 
where labeling is 
incomplete35,5151  

Susceptible to 
instrument bias 

Conceptually easier 
to understand. 

Cannot detect 
instances where the 
entire pool of 
proteins does not 
turnover23,24,50 

Can use each peptide 
isotope pattern to 
calculate 
measurement 
error23,24,5023 

 If using the same 
instrument for all 
measurements, 
resistant to 
instrument bias 

 

The theoretical 
changes in isotopic 
incorporation can be 
used to calculate 
enrichment23,24,50 

   

 

For my work, we chose the theoretical method.  It was attractive due to the ability to deal 

with a changing amount of label in the subject, and enabled filtering based on theoretical 

differences.  The flexibility to deal with a changing amount of label deserves elaboration.  If the 

amount of heavy isotope in the experimental subject changes over time, as is often the case when 
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working with humans68, the heavy isotope incorporation will not be uniform over the time course 

of the experiment.  As a result, the spectral changes due to the maximum isotope incorporation 

(red lines, Figure 1-1 E) at any point will not be stable.  Not only will it vary by the amount of 

heavy isotope the experimental subject has consumed thus far, but it will be different for every 

protein depending on the turnover rate of that protein: the longer it takes for a protein to be 

replaced (turned over), the wider the variety in amounts of deuterium present in the amino acids 

of that protein’s population.  This makes applying a uniform correcting factor to all proteins 

unfeasible.  Instead, any correction needs to be applied on a protein-by-protein basis80.  The 

protein-by-protein correction requires mathematical modeling which cannot be applied to the 

empirical method, where it is necessary to assume a constant maximum label availability.  The 

application of theoretical modeling requires software to perform individual calculations for each 

peptide on a proteomic scale, which is commonly 60,000 peptides at 8 time points.  We will 

discuss these tools in the next section. 

1.3.4 Software 

 Specialized software is utilized in every step of mass spectrometry based proteomics 

experiments.  The amount of data generated in any experiment is simply too large and complex 

to fully analyze by hand.  For example, SearchGUI50 is a program that determines the identity of 

peptides from mass spectrometry data by accessing up to 10 different identification algorithms, 

each from a different research group.  Several data analysis and visualization tools exist such as 

Skyline45 and PeptideShaker82 to provide statistics for identified spectra.  In order to enable 

different programs to analyze the same data, a file format converter such as MSConvert24 is 

required.   
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The open availability of trusted software tools such as these saves programmers from 

having to create software that replicates the work of others.   Earlier programs can perform the 

basic tasks of proteomic analysis, allowing users to convert files to an appropriate file type, and 

provides them the choice of which search engine and analysis tool they prefer to use to perform 

peptide identifications.  The programmer is then free to focus on creating entirely new software 

tools, which is beneficial for kinetic proteomics because the calculation process can be quite 

involved. 

 Several groups have already provided software to facilitate the calculations needed for 

the complex calculations in kinetic proteomics.  Topograph1, for example, is a program based on 

the SILAM style calculations used in the Doherty experiments2.  A different program developed 

by the Sandygov lab uses metabolic labeling with 2H based on the empirical calculations detailed 

in Figure 1-1 panels B-C-3,4.  Both of these calculation types are valid, but they do not 

incorporate theoretical analysis of 2H labeling.  This leaves a rather large gap in software options 

because, as explained above, theoretical calculations are the best way to perform dynamic 

proteomic experiments in humans.  In our software3,4, I have sought to fill this gap as well as 

improve on what these other packages provide to allow researchers greater flexibility in their 

experimental methods. 

 There is a previous software package that can perform calculations for theoretical 

labeling with 2H, even in humans, called ProTurn5,6.  However, ProTurn is not openly available 

and is limited by only examining one portion of an isotope pattern, while DeuteRater uses the 

abundance of multiple isotopic peaks and the spacing between them to quantify the accuracy of 

its measurements.  This is detailed in the “DeuteRater: a Tool for Quantifying Peptide Isotope 

Precision and Kinetic Proteomics” Chapter.  While the initial release of DeuteRater cannot 
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perform calculations on human subjects, I am working to incorporate the use of changing isotope 

enrichment profiles.  Improvements to DeuteRater for human work are detailed in the chapter 

“Creation of Software Tools and Methods for Measurement of Kinetic Proteomics in Humans”.  

In addition, DeuteRater is freely available for all to use and modify, while ProTurn requires 

specific permission of its creators to access.   Further, DeuteRater provides options for labeling 

different biological systems with different isotopic labels.  My work provides an open source 

improvement that accesses more of the information available in the isotope labeling experiments. 

1.4 Conclusion and My Contribution 

 Although initially viewed as a niche application, kinetic proteomics has developed into a 

practical proteomics method.  As methods of kinetic proteomics have improved, the approach 

has become a feasible way to answer many biological questions.  The technique yields unique 

biological information, either through analysis of protein turnover rates on their own, or by 

combination with other –omics techniques.  Experiments can also be performed using a wide 

variety of isotopic labels and calculation methods in diverse biological systems.   

 However, one of the major limitations to performing kinetic proteomics experiments is 

the current lack of user-friendly openly available software tools to perform the calculations.  The 

focus of my work has been to provide such software.  DeuteRater also improves on the kinetic 

proteomics software currently available to researchers, and will help other scientists add kinetic 

proteomics capability to their labs.  This dissertation details the software development for kinetic 

proteomics experiments involving small animals in the “DeuteRater: a Tool for Quantifying 

Peptide Isotope Precision and Kinetic Proteomics” chapter and humans in the “Creation of 

Software Tools and Methods for Measurement of Kinetic Proteomics in Humans” chapter.  The 
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utility of the software and kinetic proteomics on its own is demonstrated in “Mechanisms of in 

vivo Ribosome Maintenance Change in Response to Nutrient Signals” and in conjunction with 

other –omics techniques in “Short-Term Calorie Restriction Elicits Nutrient-Specific Post-

Transcriptional Regulation of Proteostasis”. 
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2. DeuteRater: a Tool for Quantifying Peptide Isotope Precision and Kinetic Proteomics 

2.1 Chapter Summary 

This chapter is the accepted manuscript introducing our DeuteRater kinetic proteomics 

analysis program, which was published in early 2017.  The manuscript has been edited for 

formatting, minor error corrections, and to reflect the fact that the article has been published.  

This paper was published in Issue 10 of Bioinformatics doi:10.1093/bioinformatics/btx009. 

2.1.1 Authors in Order of Contribution 

 Bradley C. Naylor, Michael T. Porter, Elise Wilson, Adam Herring, Spencer Lofthouse, 

Austin Hannemann, Stephen R. Piccolo, Alan L. Rockwood and John C. Price 

2.1.2 Contributions of Major Authors 

I performed most of the programming and was the person primarily responsible for the 

care of the experimental animals analyzed in this paper.  The most significant contribution by 

another author was made by second author Michael Porter who wrote the extractor module, 

tested it, and prepared the samples for analysis. 

2.2 Abstract 

2.2.1 Motivation  

Using mass spectrometry to measure the concentration and turnover of the individual 

proteins in a proteome enables the calculation of individual synthesis and degradation rates for 
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each protein. Software to analyze concentration is readily available, but software to analyze 

turnover is lacking.  Data analysis workflows typically do not access the full breadth of information 

about instrument precision and accuracy that is present in each peptide isotopic envelope 

measurement.  This method utilizes both isotope distribution and changes in neutromer spacing, 

which benefits the analysis of both concentration and turnover. 

2.2.2 Results 

We have developed a data analysis tool, DeuteRater, to measure protein turnover from 

metabolic D2O labeling.  DeuteRater uses theoretical predictions for label-dependent change in 

isotope abundance and inter-peak (neutromer) spacing within the isotope envelope to calculate 

protein turnover rate.  We have also used these metrics to evaluate the accuracy and precision of 

peptide measurements, and thereby determined the optimal data acquisition parameters of different 

instruments, as well as the effect of data processing steps.  We show that these combined 

measurements can be used to remove noise and increase confidence in the protein turnover 

measurement for each protein.     

2.2.3 Availability  

Source code and ReadMe for Python 2 and 3 versions of DeuteRater are available at 

https://github.com/JC-Price/DeuteRater.  Data is at https://chorusproject.org/pages/index.html 

project number 1147.  Software has only been tested on Windows machines. Supplemental 

materials are available at Bioinformatics online. 

2.3 Introduction  

Cells are dynamic, with synthesis and degradation of the cellular machinery occurring 

constantly throughout the life of each cell. Protein homeostasis (proteostasis) is achieved by a 

https://github.com/JC-Price/DeuteRater
https://chorusproject.org/pages/index.html


27 
 

careful balance of synthesis and degradation rates resulting in stable concentrations.  Measuring 

protein concentrations over time does not characterize the changes in synthesis and degradation 

that occur as the cell works to maintain proteostasis.  Measurement of protein turnover is 

required to capture this information. 

Mass spectrometry can measure both protein concentration and turnover in the same 

sample5,6.  Methods for measuring in vivo protein concentrations (quantitation) are well-

developed7,8. Metabolic labeling with stable isotopes and mass spectrometry has been used for 

many years to monitor in vivo dynamics1,3,4,9-12.  Only recently has it become possible to monitor 

individual in vivo protein turnover rates within complex samples.  This can be done by either 

providing labeled amino acids1,4,10,12 or through in situ labeling of nonessential amino acids.  

Both approaches result in permanently labeled proteins, so turnover and concentration can be 

measured simultaneously within complex mixtures using mass spectrometry.  Metabolic labeling 

with deuterated water (D2O) has several experimental advantages (Supplemental Table 2-S1), 

but the calculations represent a challenge for proteome scale analysis.  To facilitate this analysis, 

we have developed DeuteRater, a user-friendly tool to quantify data accuracy and precision using 

previously established combinatorial statistics16. 

In order to discuss our data analysis, we will use the vocabulary proposed by Smith and 

coworkers18. Each heavy neutromer (M1, M2, etc.) within the pattern has a highly predictable 

relative intensity (Ix) and distance (Sx) from the monoisotopic neutromer (M0, Figure 2-1).  The 

ratio of naturally occurring heavy isotopes create a predictable distribution of heavy neutromers.  

Interestingly, the exact mass of the neutromer is slightly different depending on which element 

holds the extra neutron.  The observed mass of a neutron changes, because some mass is 

converted to energy to supply the necessary strong nuclear force.  Larger nuclei require more 
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force so the carbon neutromer is lighter than the deuterium.  This creates a series of 

isoneutromers within each neutromer (fine structure peaks with different heavy elements, 13C, D, 

etc., Figure 2-1 A inset).  The combination of Ix and Sx has been used to differentiate between 

distinct elemental combinations, allowing discrimination between classes of molecules based on 
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Figure 2-1 Deuterium labeling causes predictable shifts in the isotope pattern:  Each molecule’s 
isotope pattern has a series of neutromers (M0, M1, etc.) defined by the number of heavy isotopes.    
The position (m/z) and height of the neutromer is defined by the major isotope, 13C (black line inset to 
A). Metabolic deuterium labeling changes the major isotope to deuterium (red line inset to A) leading 
to a measureable change in both neutromer intensity (ΔIx) and spacing (ΔSx) for each heavy neutromer 
peak (red spectrum B).  The theoretical changes can be predicted at any molar percent excess (MPE) of 
added deuterium (C and D). Data and simulation for peptide LSQTFPNADFAEITK, charge state +2. 
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ambient isotopic ratios10.  During metabolic deuterium labeling, we shift the major contributing 

isoneutromer within each neutromer of the isotopic envelope from 13C to D (Figure 2-1 A inset).  

The change in Ix (ΔIx) and Sx (ΔSx) are unique depending on the number of deuterium’s present, 

and can be predicted based on the peptide sequence and the deuterium enrichment (Figure 2-1 C 

and D).  Therefore, during a metabolic labeling experiment, each peptide’s mass spectral pattern 

will have multiple distinct and predictable, deuterium-dependent changes for each charge state.   

The ratio of time dependent experimental change for each Ix and Sx to the theoretical 

maximum reports the fraction of new peptide for each detected ion in each sample.  Since the 

fraction new ratio should be identical for each ΔIx and ΔSx in a given peptide, any deviation must 

come from instrumental or analysis related error. This means that each mass spectrum of a 

molecule has 2n-1 semi-independent metrics of turnover (n = number of neutromers observed for 

that molecule), which can be combined to analyze instrumental noise and software mistakes as 

well as provide turnover rates of proteins.  We show here that the both ΔIx and ΔSx are 

experimentally useful for measurement of turnover, and that ΔSx is more sensitive to noise. 

2.4 Methods 

2.4.1 Sample Preparation and Data Collection 

For the current experiment, blood samples were collected at different time points after 

introduction of the metabolic label (0.4, 1, 2, 4, 8, 16, and 32 days after D2O introduction), and 

analyzed by mass spectrometry.  Details of animal care, sample preparation, and mass 

spectrometry are in the Supplemental Methods along with a graphical representation (Figure 2-

S1) 
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2.4.2 Peptide database assembly   

The open source analysis tools PeptideShaker2 and Search GUI1 were used for analysis of 

MS/MS fragmentation data as detailed in the Supplemental Methods.  Peptide shaker does not 

utilize the FDR notation but scores every observed peptide. Peptides with a score greater than 1 

based on multiple search algorithms were used for further analysis. The MS/MS fragmentation 

data from the unlabeled sample acquisitions were used to assemble a peptide mass and retention 

time database for identification of isotopic envelopes in metabolically labeled samples using 

DeuteRater (Figure 2-2).  The DeuteRater workflow is outlined in the results (Results 

“DeuteRater Workflow”). 

2.4.3 Accuracy and Precision 

In unlabeled samples, we assess accuracy relative to the unlabeled theoretical spectrum.  

Normalizing deviation from theory in these unlabeled samples, to the theoretical ΔSx, ΔIx at the 

same molar percent excess (MPE) deuterium of the labeled samples, allows us to quantify the 

deviation on an experimentally meaningful scale15.  Accuracy is calculated using deviation from 

theory for the unlabeled peptide (Figures 2-S3, 2-S4, 2-S5 A-C) normalized to the experimental 

MPE.  In this study, accuracy is only reported for unlabeled samples.   

Precision—how well each of the measurements (Figure 2-1 B, ΔSx, ΔIx) agree with each 

other—can be measured in both unlabeled and labeled samples.  We quantify precision by 

calculating the standard deviation between the fraction new peptide reported by each of the ΔIx 

and ΔSx measurements available for the individual peptide charge state.  The precision is a 

measurement of the standard deviation between the neutromers in any isotopic distribution 

(Figure 2-S5 D-E).  This is determined using the fraction new calculated at experimental MPE 

(defined by the user in Results, “DeuteRater Workflow”, “Labeling Table”) and is equally valid 
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for labeled and unlabeled samples.  All data represent direct sequence-specific comparisons  

except Figure 2-S3.   

2.4.4 Comparison of Rates  

We compared the results of this analysis against two published studies (Price et al 2010 

and Lam et al 2014) which measured turnover of blood plasma proteins in a similar mouse 

model.  The Price data was collected using dietary labeled amino acids while the Lam et al data 

A

B

Figure 2-2 DeuteRater Workflow: DeuteRater analysis requires MS1 data where the retention time 
and sequences of peptides have already been established.  Four sequential modules (Panel A) are 
presented in the graphical user interface (Panel B) of DeuteRater to conduct the analysis.  
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was measured using D2O similar to this study.  Analyses comparing rates between studies only 

considered proteins with rates between 0 and 1 day-1 (Figures 2-4, and 2-S6), because the time 

points in this experiment do not adequately constrain rates faster than 1 day-1.  In addition, 

accession numbers in the published studies often differed due to homology between proteins in 

the proteomic databases.  To correct this, peptide sequences were matched between current and 

published data and the accession numbers from the current SwissProt database.  The Price data14 

was refit with a median of relevant lag (t0) and protein with a rate fitting coefficient of variance 

(CV) of less than 0.2 were used for comparison.  For the Lam et al data proteins were limited to 

those below one median absolute deviation for the rate (as defined by the authors4,7,12,19).  This 

selected the highest confidence data from each study in order to ensure noise from different 

instruments did not obscure the correlations.  For Figure 2-4, to prevent obvious outliers from 

influencing our regression analysis we used a Passing-Bablok non-parametric regression (PSI-

Plot statistical package).  Because we used non-parametric statistics, we report the Spearman 

non-parametric correlation co-efficient (JMP 12 statistical package). 

2.5 Results 

2.5.1 DeuteRater Workflow 

The DeuteRater workflow has four modules (Figure 2-2); a comprehensive instruction 

manual (ReadMe) and a table of applicable filters (Table 2-S2) are provided as supplemental 

information. 

2.5.1.1 Isotope Extraction Module 

The database of peptide mass and retention time (Methods “Peptide database assembly”) 

was used to guide extraction of MS1 data (Figure 2-2).  To identify peptide isotopic 
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envelopes4,7,12,19 within the MS1 spectra, the m/z values (±30 ppm) for M0-M4 of each charge 

state (1+ to 5+) for each observed peptide were calculated. DeuteRater then searched for these 

m/z values within a retention time window (±1.5 minutes) bracketing the time the peptide was 

fragmented and identified in the MSMS spectrum.  The elution chromatogram for each isotope 

pattern was identified by comparing an m/z and abundance vector for each scan against the 

neighboring scans.  We utilized the vector based comparison because it was robust and flexible, 

allowing simultaneous comparison of changes in m/z and intensity for all neutromers.  When the 

vector angle changed less than log10 (1.2), the scan was assumed to belong to the peptide 

chromatogram.  This vector angle criterion agreed well with our visual evaluations of the 

chromatogram boundaries for selected peptides. 

All scans within the chromatogram were used to calculate a summed intensity and 

median neutromer m/z value.  For each neutromer all m/z values are analyzed and the outliers 

removed by a Median Absolute Deviation test.  The median m/z, and summed intensity of each 

neutromer in each peptide charge state were then annotated to that entry of a new peptide 

database.  Ions with an incomplete neutromer series (complete series is four if the neutral mass is 

less than 2400 atomic mass units, or 5 if greater than that limit) were removed from the database 

prior to the data processing workflow.  Theoretically, an incomplete neutromer series would also 

yield useful data, but the confidence in correctly assigning the peptide identity for the isotopic 

envelope is lower and the subsequent precision analysis would not be comparable.  Therefore, 

these peptides were removed. 

2.5.1.2 Labeling Table 

The user enters sample specific labeling time and experimentally determined isotope 

enrichments. 
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2.5.1.3 Isotope Distribution Calculator 

DeuteRater calculates the theoretical deuterium dependent change in the isotope 

distribution for each peptide using the EMass algorithm.  To accomplish this, the elemental 

composition of each peptide is calculated, and the number of stable deuterium sites (X) is 

calculated based on the amino acid sequence.  The number of isotopic labeling sites in each 

amino acid has been shown to be stable in mice and humans.  Although DeuteRater allows the 

user to define the number of labels, the presets are an average of the literature values specific for 

mammalian tissue or cell culture. 

The EMass algorithm can be used in two ways.  The first method calculates ΔIx and ΔSx 

for each peptide at the user defined deuterium enrichment.  This method is relatively fast, but 

requires recalculation if deuterium enrichment values need to be changed.  Alternatively, 

DeuteRater can calculate the change in the isotopic envelope at multiple increments between 0 

and a user defined limit.   The trends in ΔIx, and ΔSx for each neutromer within the pattern are fit 

via least squares regression (Figure 2-1 C and D).  Regression coefficients for each peptide, 

along with R2 and error values for the fits, are then appended to the mass and retention time 

database to allow predictions of ΔIx, and ΔSx at any deuterium molar percent excess (MPE) up to 

a user defined maximum.  This provides flexibility to quickly test the effect of different 

deuterium enrichments on data precision, at the cost of longer initial calculation time.  

To calculate ΔIx, the individual Ix of both the theoretical and experimental isotope 

patterns are normalized to the sum signal intensity of the neutromers (I0 to I3) in the pattern as 

previously described4,20.  The M4 neutromer, with its corresponding ΔIx and ΔSx is only included 

for peptides larger than 2400 Daltons.  The normalization of Ix ensures that the theoretical 

calculations and experimental measurements are comparable.  The Sx is normalized internally 
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against the measured monoisotopic peak (M0, Figure 2-1 B).  The experimental ΔIx and ΔSx are 

calculated versus the unlabeled theoretical baseline.  Similarly, maximum theoretical deuterium 

dependent changes (ΔIx
max, ΔSx

max) are calculated by subtracting the theoretical unlabeled 

spectra from the theoretical spectra at the experimental deuterium enrichment (Figure 2-1 C and 

D, dotted line).  The experimental changes are then divided by the theoretical maximum change 

at the experimentally determined deuterium enrichment (ΔIx/ΔIx
max, ΔSx/ΔSx

max) to calculate the 

time dependent ratio of change (fraction new).  In an ideal spectrum, the fraction new peptide 

calculated for each ΔIx and ΔSx will be the same: deviation from this ratio between the various 

ΔIx and ΔSx measurements is a metric of the noise for that individual peptide charge state.  The 

reported fraction new peptide can be calculated from ΔIx or ΔSx separately or combined into one 

metric.  Because there are at least 7 measurements available for each peptide charge state (9 for 

m/z above 2400), we can apply a median absolute standard deviation correction to combined 

calculations to remove outliers and increase the precision.  In this analysis, we observed that the 

ΔSx measurements often deviated more from the median and were more sensitive to noise. 

2.5.1.4 Rate Calculation Module  

The user designates whether rates are calculated from ΔSx, ΔIx or combined data.  This 

choice should be based on the accuracy and precision observed with an instrument (see Methods, 

“Comparison of Rates”).  For example, we found that ΔIx was usually best for QToF data, 

whereas combining ΔSx, and ΔIx provided improved precision with Orbitrap data.  If the standard 

deviation of the body of measurements for each peptide were below the user defined value (0.1), 

the fraction new and the sample time point included in the turnover rate (k) calculation.  The 

peptide fraction new measurements are fit versus time using the relationship fraction new=a-ae(-

kt), where t is time as previously described21-23.  Each charge state for each peptide can 
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considered a separate point in the fit, or all the data points can be rolled up to a median value 

(Table S2).  For the data presented in this paper, the asymptote value “a” in the equation was 

fixed at one.  Currently, the turnover rate calculation assumes a single biological pool of 

unchanging concentration using each of the peptides as a replicate measure to calculate the rate 

constant.  Protein turnover was only calculated when data at three or more (a user defined filter) 

time points passed the quality filters.   

2.5.2 Accuracy of the isotope distribution varies with instrument data acquisition parameters  

This study used three different instruments with multiple m/z resolutions, resulting in 

nine data sets.  The number of peptide sequences identified and the identity of the sequences 

were significantly different between all nine data sets (Figure 2-S2).  All detected peptides were 

compared for accuracy and precision (Figure 2-S3).  Among the instrument configurations 

tested, we found that the Agilent 6530 QToF 10,000 m/z resolution (10k1 or 10k2) was generally 

the most accurate for ΔIx measurements, but had the least accurate ΔSx measurements.  Relative 

to the QToF, the Orbitrap Fusion 60,000 m/z resolution (60kf) produced less accurate and 

precise ΔIx measurements, but the accuracy of the ΔSx measurements was much higher. This 

result was expected because the QToF has been shown to be more accurate for neutromer 

intensities1 but the higher mass resolution of the Orbitrap should provide more accurate ΔSx data. 

For sequence-specific comparisons, the QToF at 10k and the Fusion at 60k were the best 

for ΔI (Figure 2-S5).    Although the QToF collected high quality data on more total peptides 

(Figure 2-S3), comparison of matched peptide sequences between the QToF 10k and the Fusion 

60k, revealed that accuracy (Figure 2-S5 A-C) and precision (Figure 2-S5 D-F) were comparable 

for the ΔI.   Although the Fusion at 120k had the most accurate ΔS measurements, the loss of 
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accuracy in ΔI outweighed that gain.  We observed that the lower resolution acquisition 

parameters were better for accuracy and precision in both the XL and the fusion.     

2.5.3 ΔSx is more sensitive to noise than ΔIx  

We observed that higher m/z resolutions do not necessarily increase ΔSx accuracy.  For 

example, the 120k Fusion data had the highest ΔSx accuracy and precision among the tested 

instruments and parameters (Figure 2-S3).   Although we collected data at 240k and 480k 

resolution, the increased m/z resolution reduced both the ΔSx and ΔIx accuracy and precision.  

This may be due to the slow scan rate for the high resolution experiments.  Fewer total 

measurements for each peptide chromatogram would increase noise and reduce the confidence 

for the peptide.  Noisier peptide measurements are filtered out of the data set prior to further 

processing, resulting in fewer usable peptide measurements for the kinetics calculations (Results, 

“Precision Metrics can Identify Outliers to Improve Kinetic Calculations”).    Longer 

chromatographic times could potentially offset this effect.  Although the ΔSx is more susceptible 

to noise than ΔIx, we observed increased accuracy and precision for combined (ΔIx, ΔSx) from 

the 60k data (Figure 2-S3 C, F). 

2.5.4 Precision Metrics can Identify Outliers to Improve Kinetic Calculations  

When we compared the peptides associated with individual proteins, we observed that the 

low precision peptides were often outliers when compared to the entire body of data (Figure 2-3).  

In Figure 2-3 A, there are a series of points near the x-axis (open circles) which seem to form a 

separate curve.    Increasing the stringency of the precision filter in Figures 2-3 B-C removes the 

points.  Closer inspection showed that these points were all assigned to the same peptide, 

suggesting a possible mistaken sequence.  However, extreme precision requirements will also 

reduce the number of measurements (Figure 2-3 D-F).  This parameter is modifiable in 
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DeuteRater, and for all subsequent analyses in this paper, the precision filter was set to require a 

deviation less than 0.1.   

Turnover rates can be calculated using ΔI, ΔS, or the combination.  Typically, ΔS derived 

rates were lower confidence, but when multiple high precision peptides were used ΔI, ΔS, and 

the combination provided highly consistent values (Figure 2-S6).  Interestingly, although the 

QToF 10k data had the lowest precision for ΔS overall, we found that when multiple high 

precision peptides were used, the resulting turnover rates for these data were almost identical 

(Figure 2-S6, closest to 1 on the y axis).   

Figure 2-3 Neutromer precision provides information for outlier removal: Extracted peptide isotope 
patterns are subjected to a user controlled precision filter prior to calculating the turnover rate.  
Requiring increased precision (smaller deviation) preferentially removes results that are outside of the 
expected range of rates.  By increasing the required precision, we remove more outliers.  However 
some proteins, like P13020, may lose enough points that the kinetic curve is no longer well 
constrained.  Therefore the precision filter was set at 0.1 deviation for all analyses presented here. 
Circles represent individual peptide charge state measurements; open circles in A are all assigned to 
the same peptide suggesting that it was an incorrectly identified sequence. 
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2.5.5 Kinetic rates are highly reproducible between studies  

We tested technical variability in the turnover measurement by running two identical 

sample sets on the QToF at 10k and analyzing the data (Figure 2-4 A and 2-S3, 10k1 versus 

10k2).  Of the 53 proteins with high quality identifications, the stringent filtering criteria 

described above resulted in 27 proteins observed in both studies (Figure 2-4 A).  This confirmed 

that DeuteRater analysis is consistent.  We then compared our rates to published data from an 

independent deuterium labeling study of similar design by Lam et al.12 (Figure 2-4 B).  There 

were 25 proteins observed in both studies with high quality fits, evaluated as described in the 

methods (Methods “Comparison of Rates”).  Passing-Bablok regression analysis reported that 

there was a strong linear correlation up to ~0.5 Day-1, suggesting that the biological sampling 

rate differences between the studies allowed more variability in the rate calculation for fast 

turnover proteins.   Comparison against a published dietary heavy-labeled amino acid study24 

also showed a strong linear correlation for the rates (Figure 2-4C).  The rates as measured in the 

Price et al. study tended to be slower as the turnover increased; this could represent a real 

biological difference of slower trafficking of the labeled amino acids relative to deuterated water.    

A. B. C.

Figure 2-4 Protein turnover rates are highly reproducible between studies:  Comparison of technical 
replicates highlights the small technical variability between analyses (A).  Comparison of turnover rates 
in this study against similar deuterium labeling experiment by Lam et al. 1-4 (B) and dietary heavy amino 
acids labeling by Price et al.5,6 show strong linear trends (C).  Spearman correlation coefficients are 
.9777 for (A), .8962 for (B), and .8500 for (C).  The unity lines represent absolute agreement between 
studies.  All data calculated using ΔI. 
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2.6 Discussion 

Measuring turnover of individual proteins in vivo is a critical first step towards 

understanding how the cell modulates protein synthesis and/or degradation to maintain protein 

homeostasis (proteostasis).  Metabolic D2O labeling is an experimentally simple and inexpensive 

method for monitoring protein turnover (See Table 2-S1 for advantages and disadvantages).  

Although the data analysis is based on well understood combinatorial statistics25, the time 

dependent calculations are different for each peptide.  This creates an imposing data analysis 

challenge for a proteomics data set and has impeded widespread use of the technique.  Other 

investigators have developed open source software for individual steps of the analysis1,2.  Our 

software platform, DeuteRater, simplifies the entire data analysis workflow with a user-friendly 

GUI to enable proteome wide measurements of turnover.   Importantly, DeuteRater is able to 

utilize all of the ΔSx and ΔIx distribution information available in the isotope pattern (Figure 2-

1). This results in 2n-1 (n=number of neutromer peaks, Figure 2-1 B) measurements of turnover 

for each spectrum.  Having multiple measurements allows precision to be quantified for each 

peptide charge state.  This creates a continuous determination of the measurement accuracy and 

precision for each step of the experiment and analysis.  We show here that both ΔSx and ΔIx can 

provide in vivo kinetic information and quantify noise in the mass spectrometer, as a robust 

metric to increase consistency. 

As a simple example of the utility of these precision metrics, we compared the effects of 

the Vendor-specific versus General centroiding algorithm the ProteoWizard1,2 application used to 

prepare data for DeuteRater analysis.  We observed that for a single data file more isotope 

patterns were extracted from data centroided with the General algorithm, but that there was 

decreased isotope envelope accuracy.  We found that even for matched peptides, both ΔIx and 
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ΔSx were less accurate in General centroiding than Vendor centroiding (Figure 2-S4). Therefore, 

in subsequent data analysis steps, the Vendor-specific centroiding algorithm was used. 

Using the peptide accuracy and precision metrics, we can also apply rational criteria to 

the evaluation and optimization of instrument acquisition parameters.  In our study, we tested 

three different instrument models and 8 different m/z resolutions (Figure 2-S3).  We found that 

data accuracy was best when monitoring the relative neutromer intensity distribution (ΔIx) on the 

QToF and the Orbitrap Fusion at low m/z resolution (60k, Figure 2-S5).  The neutromer spacing 

(ΔSx) was most accurate on the Orbitrap Fusion at 120k m/z resolution, but interestingly did not 

improve with increasing mass resolution.  We attribute this to the longer scan time for each duty 

cycle and therefore fewer scans to average over the chromatographic elution.  This suggests that 

ΔSx is more sensitive to noise than ΔIx, consistent with the much smaller theoretical range for 

ΔSx relative to the range for ΔIx (Figure 2-1).  DeuteRater allows the user to decide whether to 

choose whether ΔSx, ΔIx, or the combination is used to calculate rates.  This choice should be 

made based on the performance of the instrument.  Although the matched peptide analysis 

showed that the combination data was better for both the QToF and Orbitrap data (Figure 2-S5), 

generally ΔSx was poor for the QToF data set (Figure 2-S3).  Therefore, we use the ΔIx kinetics 

for QToF data and combined for Orbitrap.  Even for experiments that do not use metabolic 

labeling, analysis of unlabeled peptide accuracy and precision is simple and fast in DeuteRater 

and represents a good method for monitoring instrument performance and data quality (Figure 2-

S2). 

We measured turnover rates for 90 proteins in blood serum, which is essentially the state 

of the art for the number of proteins observed in whole blood plasma with these short (25 

minute) LCMS gradients1-4.  Multiple sample preparation and data acquisition steps could be 
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modified to increase the breadth of proteome coverage.  Although the number of proteins was 

sufficient for this study, DeuteRater is currently being used to analyze proteome-scale data sets 

consisting of thousands of proteins.   

In the QToF data, which we are using as our standard of comparison, 56 of the observed 

proteins had turnover rates with a covariance of less than 0.2.  The rates ranged from 0.02 per 

day, to faster than we could reliably measure with the tissue sampling intervals.  Comparison of 

the rates between analyses in this study and with published values1-4 showed that the turnover 

rates are highly consistent.   For example, the reported rates for Hemoglobin Alpha (P01942) 

varied less than 20 percent between the studies.  This suggests that the measurement of turnover 

kinetics is highly reproducible and that the streamlined DeuteRater analysis provides high quality 

results.    
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3. Mechanisms of in vivo Ribosome Maintenance Change in Response to Nutrient Signals 

3.1 Chapter Summary 

 As with the “DeuteRater: a Tool for Quantifying Peptide Isotope Precision and Kinetic 

Proteomics” Chapter, this is the accepted manuscript of a published paper.  As with the 

“DeuteRater: a Tool for Quantifying Peptide Isotope Precision and Kinetic Proteomics” chapter, 

the manuscript has been edited for formatting and clarity.  This paper was published in issue 16 

of Molecular and Cellular Proteomics doi:10.1074/mcp.M116.063255. 

3.1.1 Authors in Order of Contribution 

Andrew D. Mathis±, Bradley C. Naylor±, Richard H. Carson, Eric Evans, Justin Harwell, 

Jared Knecht, Eric Hexem, Fredrick F. Peelor III, Benjamin F. Miller, Karyn L. Hamilton, Mark 

K. Transtrum, Benjamin T. Bikman, John C. Price 

±  These authors contributed equally to this work. 

3.1.2 Contributions of Major Authors 

My co-first author Andrew Mathis and I led the team responsible for animal care.  I 

performed the analysis of “Total Pool” ribosome data, and the final round of analysis on all 

proteomic data.  My co-first author Andrew Mathis led the “Assembled Pool” ribosome data and 

follow up experiments such as the qPCR.  We were both involved in initial rounds of data 

analysis. 
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3.2 Abstract   

Control of protein homeostasis is fundamental to the health and longevity of all 

organisms.  Because the rate of protein synthesis by ribosomes is a central control point in this 

process, regulation and maintenance of ribosome function could have amplified importance in 

the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of 

protein homeostasis, aging and disease,   whereas improved protein homeostasis, implying 

optimal ribosomal function, is associated with disease resistance and increased lifespan5,6,8,9. To 

maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are 

targeted for autophagic degradation.  It is not known if complete degradation is the only 

mechanism for eukaryotic ribosome maintenance or if they might also be repaired by 

replacement of defective components.  We used stable-isotope feeding and protein mass-

spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal 

proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole 

ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-

proteins and those with more direct roles in peptide-bond formation are replaced multiple times 

during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic 

pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. 

Dietary signals impact the rates of both new ribosome assembly and component exchange. 

Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link 

in the frequently observed associations among diminished rates of protein synthesis, increased 

autophagy, and greater longevity.  
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3.3 Introduction 

Cells achieve protein homeostasis (proteostasis) by carefully balancing the synthesis and 

folding of each protein against the protein degradation and cellular proliferation rates.  

Controlled shifts in proteostasis occur during cell differentiation, and in response to stimuli10-13, 

while uncontrolled changes promote neurodegenerative disease, cancer1,5,17-19, and aging.  This 

suggests that each cell coordinately regulates the ribosome, proteasome, and other key structures 

of protein metabolism to achieve proteostasis.  However, the regulatory mechanisms for 

coordination, and how the proteome is remodeled to achieve a new proteostasis, are poorly 

understood.   

Diets restricting calories or amino acids (DR) protect against aging and the diseases of 

aging, in model organisms5,6,19.  Low calorie diets have been shown to reduce rates of protein 

synthesis and degradation for much of the observed proteome2.  Recent reports suggest that high 

protein synthesis demand is associated with reduced ribosomal accuracy23 and efficiency24.    

This suggests that maintaining ribosome quality is an intricate task that requires constant cellular 

effort.   

Translation rate is a metric of ribosome quality25.  Ribosomes that stall during protein 

production are immediately tested by the Ribosome Quality Control (RQC) complex26.  The 

RQC specifically tests the large subunit for activity27, and presumably sequesters inactive 

ribosomes.  Degradation of unnecessary or damaged ribosomes often occurs through directed 

autophagy (ribophagy)28.  Ribophagy is presumably one of the primary roles for autophagy, 

indeed the earliest descriptions of autophagic vesicles show ribosomes in the interior29.  An 

important open question though is: Can dysfunctional ribosomes be repaired, or is ribophagy the 

only option? 
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Exchange of damaged ribosomal components could allow the cell to repair faulty 

ribosomes instead of degrading the entire structure.  The formation of new ribosomes is extremely 

costly and has been estimated to account for 15% of the protein synthesis budget5,6,9,19.  In yeast 

protein synthesis accounts for at least 90% of the energy usage5,6,9,19.  Damaged ribosomes in E. 

coli have been shown to regain activity after exchange of ribosomal proteins (r-proteins) for 

undamaged copies.  Although it has never been demonstrated in eukaryotes, exchange of damaged 

protein components could reduce the total energy expenditure to maintain active ribosomes.   

 

Figure 3-1 Experimental Overview: Workflow for heavy isotope labeling, analyte isolation, and 
measurement of turnover rates (A).  Kinetic model for utilizing turnover measurements to describe ribosome 
maintenance and turnover (B).  Under these experimental conditions, opposing rates are equal maintaining 
homeostasis. 

Here we show that exchange of r-proteins is occurring in vivo.  Using metabolic labeling 

(Figure 3-1 A) and a kinetic model, we calculate exchange rates between assembled and free 
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pools (Figure 3-1 B).  Further, we show that r-protein exchange and ribophagy rates change with 

dietary signals.   We compare mice fed an ad libitum (AL) versus a restricted diet (dietary 

restriction, DR), and observe that kinetically there are three groups of proteins in the assembled 

ribosome.  One group is never exchanged and is degraded via ribophagy with the rRNA.  The 

second group is exchanged multiple times with cytosolic copies and has members with either fast 

or slow cytosolic turnover.  A third group of proteins alternates between the first two groups.  

We find that both ribophagy and r-protein exchange are modulated by dietary signaling.  Our 

observations offer insight into the connection between reduced protein synthesis, and increased 

autophagy6 with increased health and longevity. 

3.4 Methods 

3.4.1 Mouse handling 

Mice were housed, diet restricted, and metabolically labeled according to protocols 

approved by the Brigham Young University Institutional Animal Care and Use Committee 

(IACUC).  Ten-week-old male C57BL/6 mice were obtained from Charles River Laboratories.  

For the duration of the experiment, mice were housed in a specific-pathogen-free (SPF) facility 

with 12-hour light/dark cycles.  All mice were fed an ad libitum (AL) diet for 1 week with 3–4 

mice per cage.  AL consumption amounts were monitored during the first week.  After one week 

mice were separated and assigned to a dietary restricted (DR, n=20) or ad libitum (AL, n=19) fed 

diet on Harlan 8604 chow. The DR cohort then received a metered 65% daily ration for the rest 

of the study.  The low-calorie diet used in this study restricted every component of the diet 

equally, which classically is termed dietary restriction (DR).  Mouse weights were recorded each 

week.  After 10 weeks of treatment, mice received an intraperitoneal sterile D2O saline injection 

(35µL/g body weight) to immediately bring body water to 5% D2O as previously described 35.  
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Drinking water was supplemented to 8% molar percent excess (MPE) D2O to maintain 5% body 

water throughout the experiment.  Mice (n=17) were sacrificed in duplicate (n=2) at time points 

0 days (no D2O injection), 0.4 days, 1 day, 2 days, 4 days, 8 days, 16 days, and triplicate at 32 

days.  Mice were immediately dissected, blood was extracted by cardiac puncture for % D2O 

analysis, and organs were either used fresh for mitochondrial respiration measurements or flash 

frozen on blocks of solid CO2.  Tissues were stored at -80 °C.   

3.4.2 Mitochondrial respiration 

Fresh liver tissue was quickly removed from exsanguinated mice and immediately placed 

in ice-cold mitochondrial respiration buffer 05 (MiR:  0.5 mM EGTA, 10 mM KH2PO4, 3 mM 

MgCl2-6 H2O, 60 mM K-lactobionate, 20 mM HEPES, 110 mM Sucrose, 1 mg/ml fatty acid free 

BSA, pH 7.1) and trimmed of connective tissue. Tissue was gently separated and homogenized 

under a surgical scope (Olympus, ST) to particles of around 1 mg. Homogenate was then 

transferred to a tube with chilled MiR05 and 50 µg/ml saponin and rocked at 4˚C for 30 min, 

then washed in MiR05 at 4˚C for at least 15 min before use.  High-resolution O2 consumption 

was determined at 37˚C using the Oroboros O2K Oxygraph. Before addition of sample into 

respiration chambers, a baseline respiration rate was determined. After addition of sample, the 

chambers were hyperoxygenated to ~350 nmol/ml. Following this, respiration was determined as 

indicated.  Lastly, residual oxygen consumption was measured by adding antimycin A (2.5 µM) 

to block complex III action, effectively stopping any electron flow and providing a baseline 

respiration rate. 

3.4.3 Isolating assembled ribosomes 

Separation of free ribosomal proteins and assembled ribosomes was performed using a 

sucrose gradient as follows.  Frozen liver, 62–215mg, from time points 0, 1 day, 4 days, 8 days, 



52 
 

and 16 days was homogenized in polysome buffer (20mM Tris/HCl, 150 mM NaCl, 5 mM 

MgCl2, 1 mM Dithiothreitol, 1:100 dilution protease inhibitor cocktail (Sigma), and 1% Triton 

X-100) using a bead homogenizer:  30 seconds, 4 m/s, repeated 1–3 times depending on need.  

Lysate was placed into a new Eppendorf tube and clarified by centrifugation at 20,000g for 20 

minutes at 4 °C.  After clarification, sample was decanted then ~300 µL was passed through a 

2.2mL sucrose cushion (1M sucrose, 20mM Tris/HCl, 150 mM NaCl, 5 mM MgCl2, and 1 mM 

Dithiothreitol) for 12 hours at ~200,000g (40,600rpm) 4 °C using a Ti-55 rotor on the Optima L-

100XP Ultracentrifuge (Beckman Coulter).  After centrifugation, sucrose was decanted and the 

ribosome pellet was suspended in 6M Guanidine/HCl, 100mM Tris/HCl pH 8.5. 

3.4.4 Polysome analysis 

The polysome analysis was patterned on the method of Zhao et al36. Sucrose density 

gradients were prepared using 5 layers of buffered sucrose (50 mM Tris, 50 mM Ammonium 

Acetate, 12 mM MgCl2, pH 7.0, and either 7%, 21%, 33%, 47% or 60% sucrose). 1 mL of each 

mixture was placed in a centrifuge tube from high density (60%) at the bottom to low density 

(7%) at the top.  This step gradient was stored at 4° C overnight to allow formation of a 

continuous gradient.  The next morning flash frozen liver tissue was homogenized in lysis buffer 

(15 mM MgCl2, 200 mM KCl, 1 % Triton x-100, 100 ug/mL cycloheximide, 2 mM DTT, .1% 

diethyl pyrocarbonate, pH 7.4) at 6 m/s for 60 s in a MP-Biomedicals FastPrep®-24.  The 

homogenate was centrifuged to clarify (14,000 g, 5 min, 4° C).  Approximately 1.2 mg of total 

protein loaded onto each gradient. The sample was then separated within the sucrose gradient 

using high speed centrifugation (99526 g, 4 hrs, 4° C) in a Beckman Coulter Optima™ L-100 

XP.  Polysomes analyzed using an Isco UA-6 Absorbance Detector at 254 nm.  Six mice from 

AL and six from DR were run in duplicate for assessment of polysome profiles. 
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3.4.5 Mass spectrometry sample preparation 

New DNA was measured as the isotope incorporation into the ribose moiety of the 

nucleoside bases, as previously described6,37.  New rRNA was also measured as the isotope 

incorporation into the ribose moiety of the nucleoside bases, by adapting the GC-MS method to 

follow the heavier ribose instead of the deoxy-ribose.  DNA was isolated from tissue homogenates 

using the DNEasy kit (Qiagen).  RNA was extracted from the assembled ribosomes using the 

Purlink RNA minikit (Life Technologies). rRNA was isolated by homogenizing liver tissue in 

20mM Tris pH=7.2, 0.2M sucrose, 2mM MgCl2, 150 mM KCl, 1mM dithiothretol with protease 

inhibitor cocktail (Sigma), Cycloheximide (Sigma).  This homogenate was clarified by brief 

centrifugation (10 minutes at 14,000 G). Clarified homogenate was spun at 100,000xG through a 

1M sucrose cushion in the same buffer for 16 hours.   The supernatant was discarded and the pellet 

containing assembled ribosomes were resuspended using 100 µL 6M guanidine HCL pH=8.   

Isolated RNA/DNA was hydrolyzed overnight at 37 °C with nuclease S1 and potato acid 

phosphatase.  Hydrolysates were reacted with pentafluorobenzyl hydroxylamine and acetic acid 

and then acetylated with acetic anhydride and 1-methylimidazole.  Dichloromethane extracts were 

dried, resuspended in ethyl acetate, to be analyzed by GC-MS.   

Assembled pool protein samples were prepared for protein mass spectrometry using 

modified filter-aided sample preparation6,37.  Briefly, protein was denatured in 6 M 

Guanidine/HCl 100 mM Tris/HCl (pH 8.5), cysteines were reduced using dithiothreitol and 

alkylated using iodoacetamide.  Samples were placed on 500 µL 30kD filters and washed 2–3 

times on the filters using 6 M Guanidine/HCl 100mM Tris/HCl pH 8.5.  The guanidine solution 

was removed by two to three 25 mM ammonium bicarbonate washes.  Proteins were 

resuspended in 25 mM ammonium bicarbonate and digested overnight using Pierce MS-Grade 



54 
 

Trypsin in a 1:50 (w:w) ratio or minimum 0.1 µg or 0.5 µg of trypsin per sample.  Trypsin digest 

was quenched using phenylmethane-sulfonylfluoride (PMSF) or centrifuging through above 

mentioned filters to remove trypsin.  Samples were spun through filters, placed in mass spec 

vials, speed vacuumed to dry, and then suspended at ~1 µg/µL in 3% acetonitrile 0.1% formic 

acid. 

Total pool samples were prepared from whole liver lysates protocols similar to ribosomal 

samples.  Liver was homogenized in a 100 mM ammonium bicarbonate solution with the 

protease inhibitor cocktail (Sigma) aiming for a final concentration of approximately 10 mg/ml 

protein concentration.  Approximately 500 µg of protein was lysed in 6M Guanidine/HCl 

100mM Tris/HCl and subject to similar filter-aided preparations and trypsin digestion as 

described above.  After digestion, samples were spun through filters, speed vacuumed to dry, and 

resuspended in 10 mM LC-MS grade ammonium formate pH 9.5.  Samples were fractionated 

using high pH C18 high performance liquid chromatography (HPLC), which is orthogonal to low 

pH C18 chromatography38.  Fractionation was performed using the 1260 HPLC Infinity 

(Agilent) and the Gemini 50 x 2.00 mm C18 column with 3 µm beads and 110 angstrom pore 

size.  Peptides were eluted using a 10 mM ammonium formate pH 9.5 H2O/acetonitrile gradient 

from 3% B to 60% B over 40 minutes flowing at 1 mL/min.  Gradient A is 97% H2O, 3% 

acetonitrile, 10mM ammonium formate pH 9.5.  Gradient B is 10% H2O, 90% acetonitrile, 

10mM ammonium formate pH 9.5.  1 mL fractions were collected.  1 mL fractions were pooled 

into 8 fractions by pooling every 8th fraction.  For instance, fractions 1, 9, 17, and 25 would be 

pooled into one fraction.  Pooled fractions were speed vacuumed to dryness then suspended in 

200 µL of 80% acetonitrile (to extract peptides but leave some salts) and decanted into a mass 
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spectrometry vial.  Samples were again speed vacuumed to dry and then suspended in 40 µL of 

3% acetonitrile 0.1% formic acid for LC-MS analysis. 

3.4.6 LC-MS proteomics acquisition 

As described previously, protein identification and kinetic acquisition were performed on 

the Agilent 6530 Q-ToF mass spectrometer coupled to capillary and nanoflow Agilent 1260 

HPLC using the chipcube nano-spray source6,37.  Peptides were eluted from the Agilent C18 

Polaris chip at 300 nL/min using an H2O-Acetonitrile gradient acidified to pH 4 by use of Pierce 

LC-MS grade formic acid.  Buffer A was 3% acetonitrile, 0.1% formic acid.  Buffer B was 97% 

acetonitrile, 0.1% formic acid.  The elution gradient is as follows: 0 minutes, 100% A; 0.1 

minutes, 95% A; 27 minutes, 40% A; followed by high percentage B column washing and low 

percentage B equilibration.  The Agilent 6530 Q-ToF mass spectrometer was run in 2 Ghz high 

dynamic range mode.  Protein identification runs were performed in MS/MS mode using 

collision induced dissociation with nitrogen gas.  MS1 and MS2 data were collected at a 

maximum rate of 4 spectra/second with CID fragmentation on the top 10 most abundant 

precursors.  Dynamic exclusion was set to 0.2 minutes.  Kinetic acquisitions were performed in 

MS-only mode and collected at 1 spectra/second.  MS only mode increases signal intensity, 

improves signal-to-noise, and gives more scan points per elution chromatogram greatly 

enhancing isotopomer analysis accuracy.  Raw data is available for download at the Chorus 

Project (ID# 1148). 

3.4.7 Peptide identification 

Peptide identifications were made using SpectrumMill B.06 then overlaid onto kinetic 

acquisitions.  SpectrumMill searches were performed against the Uniprot Mouse database (12-

2015, with 16,802/51,418 entries searched) with MS1 tolerance ±20ppm and a MS2 tolerance 
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±50 ppm, cabomidomethylation (C) as a static modification, and pyroglutamic acid (n-term) and 

oxidation (M) as dynamic modifications. 

Searches were performed using trypsin as a digestion enzyme allowing 2 missed 

cleavages at lysine or arginine. A second search with no specific enzyme was performed against 

a restricted library of identified proteins.  Following general recommendations from Agilent, 

peptides with a score greater than 7 and greater than 60% scored peptide intensity were used for 

further analysis.  False discovery rate was calculated by the built-in algorithms of the Spectrum 

Mill software, and was set at 1% for peptides and proteins.  Identified peptides were exported 

and used to calculate mass isotopomer distributions and extract peptide isotope patterns from 

MS-only acquisitions (supplemental information). 

3.4.8 Mass isotopomer and kinetic analysis 

MS-only isotopomer data was extracted based on peptide identification from MS/MS 

acquisition using m/z (± 12 ppm) and retention time alignment (± 0.8 minutes).  Data extraction 

and analysis was conducted using our DeuteRater39 software tool based on previous publications 

40.  Briefly, isotope peaks M0–M4 were normalized against the sum of the signal intensity, then 

compared to theoretical calculations based on percentage D2O enrichment to determine fraction 

deuterium enriched (new) peptide (as previously described37,39).  Theoretical calculations were 

determined using the EMass algorithm and based on the number of possible deuterium 

incorporation sites per amino acid.  The theoretical changes in abundance of each isotope peak 

M0–M4 were compared against experimental changes at each time point in order to determine a 

time dependent percentage of newly synthesized peptide reported for each isotope peak. Thus, 

for each peptide there are up to 5 (M0-M3 for peptides below and M0-M4 for peptides above 

m/z=2400) semi-independent measurements of the peptide turnover, as previously described6.  
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We used the standard deviation between these measurements as a metric of the measurement 

precision for that peptide.  If peptide precision was low (i.e. standard deviation exceeded 0.1) the 

data point was removed from downstream analysis (Figure 3-S2).  Additional filters were also 

applied to remove peptides with total relevant intensity below 20,000 counts and a retention time 

deviation greater than 0.5 minutes. 

The median percent new was calculated at each point and outliers (defined as greater than 

1.4X the median absolute standard deviation) were removed from the calculation of the protein 

percent new. All peptide measurements for an individual time point that passed these filters were 

weighted equally in the calculation of the fraction new protein at that time point.  As described 

previously, the combined fraction new measurements were fit using a non-linear least squares 

regression based on first-order kinetic rate equations34.  The proteins with high precision data at 

3 or more time points were fit according to first-order rate kinetics.  We required 3 or more 

labeled time points in order to increase the confidence of the rate constant (Figure 3-S2).    For 

the regression fit, time point zero is set to 0% new, and is given a standard deviation of 0.05 

based on the accuracy during long term performance of this instrument.  The standard deviation 

and confidence interval from these fits were used to compare protein and rRNA in subsequent 

analysis.  Coefficients of variance (standard deviation of the fit over the turnover rate) above 0.2 

are considered high confidence fits.  

3.4.9 rRNA turnover analysis 

After running in scan mode, peaks were identified at m/z 212 and 433.  From these it was 

determined that the 212 had better peak shape, accurately predicted natural abundance in an 

unlabeled sample, and was therefore used for subsequent analyses.  Based on accurate mass and 

isotope distribution we identified the fragment.  Mass isotopomer calculations were performed 
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on the fragment using EMass software based on 3 incorporated deuteriums.  The monoisotopic 

M+1, and M+2 were used was used for % new RNA analysis and errors. Two mice were 

measured in triplicate at each time point.  Rates and confidence intervals are solely based on 

standard deviations from least squared fits to first-order rate kinetics.  Data was fit using a 

single-phase association curve in GraphPad Prism.  Rates and confidence intervals are solely 

based on standard deviations from least squared fits to first-order rate kinetics.  Data was fit 

using a single-phase association curve in GraphPad Prism. 

3.4.10 Quantitative polymerase chain reaction 

Quantitative polymerase chain reaction (qPCR) was performed using SYBR green on an 

Applied Biosystems 7500 instrument.  Reverse transcription was performed with the iScript 

cDNA synthesis kit (Bio Rad) and SYBR green master mix (Bio-Rad).  Primers: 18s rRNA 

forward(CTTAGAGGGACAAGTGGCG) reverse(ACGCTGAGCCAGTCAGTGTA); 16s 

Mitochondrial rRNA forward(CGAGGGTCCAACTGTCTCTT) reverse(GGTCACCCCAACC 

GAAATTT); vRNA forward(GCTGAGCGGTTACTTTGACA) reverse(GTCTCGAACCAA 

ACACTCATG); TATA forward(ACAGCCTTCCACCTTATGCT) reverse (GATTGCTGTA 

CTGAGGCTGC).  qPCR instrument parameters were as follows:  Stage 1 (1 cycle) 50 °C for 2 

minutes; Stage 2 (1 cycle) 95 °C for 15 seconds; Stage 3 (30–45 cycles depending on need), 95 

°C for 15 seconds, 59 °C for 1 minute.  Melt curves to determine product purity and efficiency 

calculations were performed on all primer sets (supplemental data).  qPCR primer efficiency was 

calculated using Real-time PCR Miner 4.142,43.  Relative concentrations were calculated using 

method by Pfaffl, which corrects for differences in primer efficiency42,43.  
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3.4.11 Calculation of exchange rate: 

Using the kinetic model (Figure 3-1B), the rate of change for each protein in each pool 

can be described mathematically as: 

Free Pool:   
𝑑𝑑�𝑃𝑃𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑘𝑘𝑎𝑎𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 = 0       (3-1) 

Where Pi is an individual protein concentration, ksynth is the synthesis rate, kdeg is the degradation 

rate, kadd is the rate of proteins adding to the assembled ribosome, while kremove is the rate of 

proteins leaving the assembled ribosome and reentering the free pool. 

Assembled Pool:  𝑑𝑑[𝑃𝑃𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎]
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑 − 𝑘𝑘𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑑𝑑𝑠𝑠 + 𝑘𝑘𝑎𝑎𝑑𝑑𝑑𝑑 − 𝑘𝑘𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 = 0      (3-2) 

Where in addition to the terms above, kassemble is the apparent rate of formation and export of the 

intact active ribosome from the nucleolus to the cytosol. kribophagy is the rate of whole ribosome 

degradation; this includes both protein and rRNA. 

Ribosome pool:  𝑑𝑑[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑 − 𝑘𝑘𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑑𝑑𝑠𝑠 = 0        (3-3) 

Total protein pool: 𝑑𝑑[𝑃𝑃𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎]
𝑑𝑑𝑑𝑑

=
𝑎𝑎�𝑃𝑃𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�

𝑎𝑎𝑡𝑡 +
𝑎𝑎�𝑃𝑃𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎�

𝑎𝑎𝑡𝑡
2

= 0         (3-4) 

Exchange rate:   𝑑𝑑[𝑃𝑃𝑟𝑟]
𝑑𝑑𝑑𝑑

= �𝑑𝑑[𝑃𝑃𝑟𝑟 𝑎𝑎𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑]
𝑑𝑑𝑑𝑑

− 𝑑𝑑[𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]
𝑑𝑑𝑑𝑑

� = 𝑘𝑘𝑎𝑎𝑑𝑑𝑑𝑑 − 𝑘𝑘𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑= 0       (3-5) 

3.4.12 Experimental Design and Statistical Rational 

There were 2 biological replicates for each time point in each kinetic pool measurement 

(assembled/total) of each diet (AL vs DR).  Each kinetic rate was determined by up to 10 

biological replicates, so no technical replicates were included.   A minimum of three time points 

were required to fit a rate constant, because with three time points the rates are well constrained 

(Figure 3-S2).  As described above, peptide measurements were included if they met the 

retention time and precision filters. Statistical analysis and graphing was performed using 
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GraphPad Prism and the Numpy software package. GraphPad Prism was used to fit the DNA to a 

first order kinetic38 and rRNA to a second-order kinetic6 as previously described, and to calculate 

95% confidence intervals.  An in house Python tool termed DeuteRater45 was used to calculate 

the fraction new peptide, fit the protein turnover rates to a single pool model using first-order 

rate kinetics, and calculate 95% confidence intervals.  If rates were outside of the 95% 

confidence interval of rRNA or another protein they were considered significantly different. 

3.5 Results 

3.5.1 Short term dietary restriction (DR) elicits the canonical physiological changes associated 

with lifespan extension  

 Restricted mice (n= 18) lost weight relative to AL controls (n=18) for the first two weeks 

of the restricted diet, after which they gained weight at a rate similar to controls (Figure 3-2 A).  

In order to ensure that both the AL and the DR mice were at homeostasis, the dietary treatment 

was continued for 10 weeks prior to initiating the metabolic labeling experiment (Figure 3-1).  

Using previously described methods5, we found that the cell proliferation rate was reduced 25% 

Figure 3-2 Short-term DR elicits the classic physiological and biochemical adaptations associated with 
lifespan extension:  After an initial weight loss, DR mice continued to gain weight at a reduced rate (A). 
Liver cell proliferation was reduced (p<0.01) from 0.04% per day to 0.03% per day (B). DR reduces 
mitochondrial respiration, samples were treated with: GM: Glutamate (10 mM) + Malate (2 mM); + 
ADP (2.5 mM Adenosine diphosphate); +Succ: (Succinate 10 mM).  Respiratory control ratio (RCR; 
inset) was unchanged (C).   
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(p<0.05) in DR (Figure 3-2 B).  Consistent with previous reports, we observed liver tissue 

respiration capacity was decreased by DR5,6, for both complex 1 and complex 2 driven electron 

transport (Figure 3-2 C).  Respiratory efficiency, which is the ratio of the ADP dependent O2 

usage (+ADP) versus non-specific oxygen usage (Glutamate+Malate), was not changed (inset to 

Figure 3-2 C).   

3.5.2 Ribosome activity is reduced during DR   

Similar to published protocols5,6, we used a sucrose gradient to separate out the various 

ribosome states within the liver tissue of AL and DR animals (Figure 3-1).  Polysome analysis 

(Figure 3-3 A) was conducted twice on 6 animals from each diet group, and the normalized area 

under the curve of each ribosomal species was quantified.  The number of ribosomes actively 

transcribing mRNA (polysomes) was significantly lower (p<0.05) in DR tissue (Figure 3-3 B).  

Interestingly, the total number of ribosomes, as measured by qPCR, was not significantly 

changed by DR (Figure 3-S1).  These combined results suggest that during DR a lower 

percentage of available ribosomes are actively producing protein, similar to previous reports34.  

We also compared ribosome activity by measuring turnover (synthesis + degradation) 

rates for 1050 proteins observed in both AL and DR (Figure 3-3 C).  Consistent with previous 

Figure 3-3 Short-term DR reduces percentage of active ribosomes:  Representative data from polysome 
analysis in which a density gradient separates individual subunits from active ribosomes in both AL and 
DR tissue (A).  Quantitation of the populations suggests that DR increases the free 40S state by 
significantly decreasing the number of active polysomes (Poly 3 in panel B) Comparison of turnover 
rates for 1050 matched proteins showed a statistically non-significant general reduction of protein 
turnover rates in DR. (C)  
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investigations of changes in protein turnover during low calorie diets, we observed that during 

DR the median protein turnover rate was 5% slower (Figure 3-3 C).  This decrease is smaller 

than in previously reported studies42,43,46, and not statistically significant.  We are currently 

investigating how specific components of the diet may have modified regulation of global 

protein homeostasis during lower calorie intake.  Together these results suggest that the overall 

ribosome pool has slightly reduced activity with more ribosomes in the cell as dissociated 

subunits in DR tissue. 

3.5.3 Turnover rate of the rRNA backbone is slightly faster in DR tissue 

Assembled ribosomes were isolated from the liver tissue of 2 animals at each of the 8 

time points and separated into two samples for analysis of rRNA and r-protein turnover (Figure 

3-1 A).  New rRNA was measured as the isotope incorporation into the ribose moiety of the 

nucleoside bases, similar to the accepted method for measuring DNA synthesis.  The fraction 

new rRNA increased exponentially with time (Figure 3-4).  Previously, rRNA modeling has 

shown that in rapidly dividing cultures incorporation of a precursor pool improved model 

accuracy47.  We compared both the single pool and the precursor model for fitting the rRNA 

data.  Incorporating the precursor pool as described in the literature resulted in precursor pool 
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Figure 3-4  rRNA turnover measures eukaryotic ribophagy:  Deuterium incorporation into the ribose of 
the rRNA bases is not significantly slower in AL (10.1±1.2% Day-1) than the DR (11.1±1.7% Day-1).   
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sized of 13% and 6% for AL and DR tissue respectively.  We observed a non-significant increase 

in rRNA turnover in the DR tissue (11.1±1.7% Day-1) relative to AL tissue (10.1±1.2% Day-1).  

We checked whether mitochondrial ribosomes are a potential source of contaminating 

rRNA (Figure 3-S1).  Protein mass spectrometry of the isolated ribosomes confirmed that minor 

amounts of mitochondrial r-proteins were present.  Mitochondrial r-proteins share little or no 

homology with the eukaryotic ribosomes and therefore cannot confound the measurement of 

protein kinetics.  As measured by our assay, mitochondrial rRNA cannot be differentiated from 

eukaryotic rRNA.  Therefore, in order to determine the effect of mitochondrial rRNA on 

measured ribophagy rates, we isolated ribosomes both with and without non-ionic detergent.  

With detergent, we measured a relative 5-fold higher concentration of eukaryotic ribosomal 

rRNA.  Without detergent, the total ribosomal isolation was less efficient, but the amount of 

eukaryotic 18S to mitochondrial 16S rRNA as measured by qPCR increased 50 percent (Figure 

3-S1).  The large relative change in the mitochondrial content did not change our rates of rRNA 

turnover in these samples (Figure 3-S1), indicating that the absolute contamination from the 

mitochondrial ribosome rRNA is relatively minor, and does not bias our results for cellular 

rRNA and ribophagy rates.   

Simple stoichiometry of the rRNA within the cell supports the conclusion that 

mitochondrial contamination will not bias rRNA rates.  Based on studies in yeast, there are 

approximately 14 times more eukaryotic than mitochondrial ribosomes6,37,49.  The eukaryotic 

ribosome contains approximately 3 times the number of rRNA bases.  Therefore, the rRNA bases 

from eukaryotic ribosomes are about 42-fold more abundant than mitochondrial, which suggests 

that the rRNA turnover rate will dominated by the eukaryotic ribosomes.  Our sample 
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preparation also removed many of the mitochondria prior to ribosome isolation and should 

further bias the sample towards eukaryotic ribosomes. 

3.5.4 Dietary Restriction significantly changes the turnover rates of proteins in the assembled 

ribosome 

Similar to our previous studies, isotope incorporation into multiple tryptic peptides was 

measured for each protein in multiple samples along the time-course42.  We isolated assembled 

ribosomes for analysis of r-protein turnover (Figure 3-1 A). Turnover rates were significantly 

different between the individual r-proteins (Figure 3-6 A); we measured turnover rates for 71 of 

the 80 integral r-proteins with turnover rates ranging from 4-25% per day (Supplemental Table 

3-S1).  Interestingly, the median turnover rate for the entire group of r-proteins in the assembled 

ribosome is the same as the rRNA turnover rate (0.10 Day-1 in AL, 0.11 Day-1 in DR). 

Comparison of the individual protein turnover rates to the rRNA rate shows that many 

(approximately 80%) of the proteins turnover within two standard deviations of the rRNA rate 

(Figure 3-5 B, C, and D, grey symbols).  This suggests that the rRNA and these proteins may all 

be synthesized and degraded together as a unit, as occurs during ribophagy.  In addition, the 

large number of individual protein measurements makes the DR-dependent increase in ribophagy 

statistically significant (Figure 3-5 D, p<0.0005). 

DR also increased the observed range of rates within the assembled ribosome, but the 

rRNA turnover confidence interval (CI, defined as 2 standard deviations) was also wider so the 

percentage of non-exchanging proteins stayed around 80%.  The proteins at the 60S/40S 

interface (L10, L36A, L24, L34, and L19) were still among the fastest turnover proteins within 

the assembled ribosome, and were replaced faster than the rRNA CI (Figure 3-3 D).  Although 

there were several proteins slower than the rRNA CI in both AL and DR, these proteins were not 
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the same in both groups (Figure 3-5 D). Importantly, each of these protein turnover rates was 

calculated from multiple measurements of multiple peptides. 

3.5.5 Turnover for most r-proteins is not different between the Assembled and Total Pools 

We were not confident that we could keep assembled and free pools separate during 

tissue homogenization.  Therefore, we measured the total pool (free + assembled) and assembled 

pool turnover.  The turnover rate within the total cellular lysate represents the average of the free 

Figure 3-5 Turnover rates of r-protein are equivalent between pools, but not between dietary 
groups: Individual ribosomal proteins turnover at different rates within the assembled ribosome (A), 
but have the same rate in both assembled and total pools (B, C).  Approximately 80% of r-protein 
turnover rates (gray circles) are within the confidence interval of the rRNA (red).  R-Proteins with 
unusually fast or slow turnover (black circles) were observed in both AL (B) and DR (C) tissue.   
Comparison of assembled AL and DR (D) showed that some of the outlier proteins are the same in 
both conditions. 
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and assembled protein pools (Equation 3-4).  A deviation between assembled and total pool 

turnover rates could indicate that exchange is a rate limiting process.  Generally, we observed 

that there was no statistically significant change in turnover between assembled and total protein 

pools regardless of dietary intervention (Figure 3-3 A and B).  Individual proteins had altered 

turnover in either AL or DR mice, but not in both.  Experiments in E. coli suggest that greater 

than 95% of the r-proteins in the cell are bound in the ribosome structure51.  A mass averaged 

turnover measurement would suggest that the total pool rate should reflect the assembled pool 

similar in these measurements. 

3.5.6 Calculation of r-protein exchange rates 

 A kinetic model for ribosome biogenesis and maintenance was used to compare the 

turnover of the assembled and total r-proteins and to calculate the exchange between pools 

(Figure 3-1 B).  We measured the relative concentration of the rRNA by qPCR between 

experimental cohorts and did not see a significant change.  The unchanged rRNA concentration 

and the steady rate of weight increase (Figure 3-2) after the 10 weeks of dietary acclimation 

reinforces the conclusion that these proteins are at a condition of homeostasis.  Therefore, under 

these conditions, the total concentrations are constant and the opposing rates of synthesis and 

degradation are balanced (i.e. kadd is equal to kremove).   

Using the kinetic model, the rate of change for each protein in each pool can be described 

mathematically as shown in supplemental methods.  We have directly measured the turnover of 

the rRNA, which represents the turnover of the ribosome as a unit (Equation 3-3).  We also 

measured the protein turnover rate within the assembled ribosome (Equation 3-2, kassemble + kadd, 

note that kassemble = kribophagy and kadd = kremove due to homestasis) and the total pool (Equation 3-4, 

ksynth + kadd, noting that ksynth = kdeg and kadd = kremove).   We therefore calculate the exchange rate 
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(kadd and kremove) as the absolute value of the difference in turnover rates of the assembled pool 

and the rRNA (Equation 3-5: Figure 3-1 B).   

This calculation suggests that the greater the difference between r-protein and rRNA the 

faster the exchange rate.  We therefore define all proteins more than two standard deviations 

from the rRNA rate (outside the confidence interval or CI, black symbols, Figures 3-5 B, and C) 

as fast exchange with the cytosolic pool (Figure 3-6 A).  This separates the r-proteins into 

essentially three groups: 1-Static, 2-rapid exchange-fast turnover, as well as rapid exchange-slow 

turnover proteins, and 3-proteins that switch between groups 1 and 2.  Static proteins are 

integrated into the ribosome during initial assembly and are degraded with the assembled unit by 

ribophagy (Figure 3-5 A gray circles within the square, ~80% of the r-proteins are in this group).  

The fast exchange proteins (triangles in Figure 3-5 A) can be divided into two groups, fast 

exchange - fast turnover proteins (12%), and fast exchange - slow turnover proteins (8%).   

In DR tissue, there were slight differences in the identity of the individual r-proteins, but 

a similar percentage distribution of proteins.  Proteins L3, L10, L38, L24, and S27-like were still 

fast exchange.  This suggests that these proteins are rarely degraded by ribophagy and exchange 

is intrinsic to the operation of the ribosome.  Proteins L19 and L34 are still at the fast end of the 

range, but fail to exceed the confidence interval of the rRNA.  This suggests that L19 and L34 

are not exchanged as frequently during DR, but that ribophagy plays a larger role in defining 

their lifetime.     

Of the fourteen fast exchange proteins observed in the AL ribosome, twelve either were 

at the interface between subunits or have significant surface exposed to the cytosol.  Seven of 

these proteins were fast exchange in both DR and AL ribosomes. Rapid exchange proteins with 

fast turnover tend to be located at the interface between the 60S and 40S subunits, and are 



68 
 

involved with the structural motions of catalysis22.  For example, L24, L34, and L19 bridge the 

interface between the 60S and 40S ribosome (Figure 3-6).  They hold the subunits together and 

participate in the rotation between subunits during peptide bond synthesis2.  Other fast turnover 

proteins L10 and L36 also have an active role in the formation of new peptide bonds, and are 

close to the interface between the subunits (Figure 3-6 B).  Protein L38 is also part of this group, 

but its function is less well understood and may play a role in mRNA substrate selection29. 

Although there were a variety of rapid exchange proteins with slow turnover in either AL, or DR, 

only L3 was rapid exchange under both conditions.    

In AL ribosomes, L35a and slow turnover L7 were fast exchange but do not follow the 

structural trend of surface exposure.  In the ribosome crystal structure (PDB: 4UGO), they both 

seem to be buried underneath large rRNA loops and slow exchange proteins.  Interestingly, they 

Figure 3-6 In vivo exchange of r-proteins:  Most r-proteins exchange slowly (gray circles) and are 
within the expected range for ribophagy (yellow box in A).  Exchange rates for some r-proteins is outside 
of the expected ribophagy rate in one condition (gray circles outside in white field for AL or DR).  Some 
exchange rates are rapid enough that these proteins are rarely degraded by ribophagy and instead are 
degraded in the free pool (triangles). Some members of this group have slow cytosolic turnover (A, open 
triangles), others have fast cytosolic turnover (A, closed triangles).  (Panel B) Slow exchange proteins 
(tan) cover the majority of the ribosome structure.  Fast turnover/fast exchange r-proteins (closed 
triangles) are primarily at the interface between 60S (gray rRNA) and 40S (black rRNA) subunits (red 
proteins, model PDB: 4UG0).      
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are next to each other in the structure, suggesting that the rRNA may be displaced to allow 

exchange of these proteins simultaneously.   

3.6 Discussion 

The ribosome is a multi-megadalton complex of RNA and protein that synthesizes most 

proteins in the cell.  High demand for protein synthesis reduces ribosome efficiency4 and 

accuracy2,52.  In bacteria, damaged ribosomes can regain activity by replacement of damaged r-

proteins in the assembled structure with undamaged cytosolic copies2,52.  Exchange of r-proteins 

may also be important to the functional integrity of the ribosome in eukaryotes5,6, although this 

idea is controversial.  Metabolic labeling affords a means to evaluate this hypothesis by testing 

directly for the replacement (turnover) of ribosomal components in vivo. We used metabolic 

deuterium incorporation rates to compare turnover of ribosomal RNA (rRNA) and the individual 

r-proteins in the assembled ribosome in mice (Figure 3-1 A).  We also tested whether dietary 

restriction (DR), which has previously been shown to modulate rates of ribosome biogenesis, 

assembly, and activity in cells5,6 and mice42,43, can impact r-protein exchange rates.   

Components of the ribosome reside in two kinetically distinct pools (Figure 3-1 B), with 

different synthesis and degradation rates for the assembled complex and its individual 

constituents5,6. At homeostasis, the rates of opposing steps in the model (e.g., assembly and 

ribophagy) should be equal (Figure 3-1 B).  Physiological and biochemical metrics of the DR 

effect verified that the mice used in these experiments were at homeostasis (Figure 3-2) prior to 

metabolic labeling, similar to previous studies53,54. The model also assumes that free rRNA, 

without r-proteins, is degraded rapidly relative to the turnover of the assembled structure, as 

observed previously6,37,49.  Under this assumption, turnover of rRNA reflects only turnover of the 
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assembled ribosomes (Equation 3-3).  Turnover of r-proteins in the assembled pool would 

depend on the kinetics of both assembly and exchange (Equation 3-2, kassemble + kadd, note that 

kassemble = kribophagy and kadd = kremove due to homeostasis).  We therefore calculated the exchange 

rate (kadd and kremove) as the absolute value of the difference in turnover rates of individual r-

proteins (Pi) in the assembled pool and the rRNA (Equation 3-5: Figure 3-1 B).   

Assembled ribosomes isolated from the liver tissue of two animals at each of eight time 

points after introduction of the metabolic label were separated into two samples for analysis of 

rRNA and r-protein turnover (Figure 3-1 A).  The amount of new rRNA increased exponentially 

with time (Figure 3-4) and could be modeled by assumption of a single pool.  There was a 

statistically insignificant increase in rRNA turnover increased in the DR tissue [(11.1 ± 1.7) 

%•Day-1] relative to control with no dietary restriction (Ad libitum or AL) tissue [(10.1 ± 1.2) 

%•Day-1]. In DR, although fewer ribosomes were actively translating protein (Figure 3-3), the 

total number was not different between AL and DR tissue (via qPCR, Figure 3-S1 B).  The 

results imply that, on average, ribosomes were less active and had a slightly shorter lifetime (6 

Days) in tissues of DR animals than in those from the AL animals (7 Days).  The measurements 

of protein turnover within the assembled ribosome and the observed proteome support these 

results. 

Turnover rates of the individual ribosomal proteins (r-proteins) were resolved by 

monitoring incorporation of deuterium into multiple tryptic peptides for each protein along the 

labeling time-course (Figure 3-5A), as previously described55.  Within the set of 71 (out of 80 

total) integral r-proteins monitored, a range of 4-28% per day was observed (Supplemental Table 

3-S1). Most r-proteins turn over at rates that are similar to (within two standard deviations of) 

that of the rRNA (Figures 3-5 B, C, D grey symbols), implying that this large group of r-proteins 
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and the rRNA are replaced together as a unit (i.e., complete degradation of the complex). Indeed, 

the average rate for the r-proteins (10.2% in AL and 11.3% in DR) matched the ribophagy rate 

(10.1% in AL and 11.1% in DR) remarkably well. Comparison of resolved turnover rates of the 

individual r-protein components (Figure 3-5 D) makes it apparent that the small DR-dependent 

increase in rRNA turnover (Figure 3-4) is significant (p<0.0005). Overall, ~80% of r-proteins, 

had individual turnover rates which match the ribophagy rate (within 2 standard deviations of the 

rRNA). This agrees with earlier studies of average rRNA and r-protein turnover. 

The increased rate of ribophagy in DR tissues was surprising.  In agreement with 

previous studies we observed that DR slows cell proliferation (Figure 3-2B) and protein 

synthesis (Figure 3-3). Interestingly, the cellular half-life (169 days in AL) is 25 times greater 

that the ribosome half-life in AL. In DR, the ribosome turnover is accelerated relative to cell 

proliferations, becoming 37 times greater. The two-dimensional comparison suggests that the 

rate of ribophagy, specifically, doubles relative to the rate of other processes like mitochondria 

specific degradation or cell division. The up-regulation of ribophagy during DR, may explain the 

previous observation that increased autophagy and lower protein synthesis rates work together to 

improve cellular fitness and whole organism lifespan. 

Although the turnover rate of r-proteins averaged over the entire set reflects the 

ribophagy rate (as previously reported), a small but intriguing set of r-proteins have significantly 

different turnover rates (Figures 3-5 B, C, and D, black symbols).  Importantly, some of the 

proteins with unusually fast or slow turnover are the same in both AL and DR tissues (Figure 3-2 

D). The parallel behavior of these proteins in both dietary cohorts suggests that the difference in 

their turnover rates might be intrinsic and functionally relevant.  The difference in turnover may 

be due to the free pool r-protein turnover rate (Figure 3-1 B), which is independent of the 
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ribophagy rate.  The free pool turnover rate is difficult to measure directly, since it is very low 

concentration for each r-protein4,50, and homogenizing the tissue is likely to break assembled 

ribosomes, contaminating the free pool.  However, as shown in equation 3-5, the exchange rate 

of each protein can be calculated without direct measurement of the free pool.  The proteins that 

are exchanged rapidly out of the assembled structure would have turnover rates defined by the 

free pool.  Therefore, fast exchange between the assembled and free pool could explain outliers 

at both the fast and slow end of the turnover range (Figure 3-5). 

When we compared the calculated exchange rates (Figure 3-6 A) against the ribosome 

structure, we saw that the fast exchange and fast turnover r-proteins are predominately located at 

the interface between the 60S and 40S subunits (Figure 3-6 B).  This region is known to undergo 

significant movement during the catalytic activity of the ribosome4,50.  There are at least two 

possible hypotheses to explain why ribosomal maintenance would include fast exchange of these 

proteins.  First: proteins at this location may be more prone to damage and therefore exchange 

more rapidly. Second: damage of these proteins dramatically reduces formation of the 80S 

ribosome and ensures that there is a longer exchange period.  Three of these proteins (L19, L24 

and L34) are structurally important, acting like long fingers to secure the 40S to the 60S subunit 

(Figure 3-6).  The other members of this subgroup (L10, L36A, and L38) are also localized in the 

interface, either on the beak or directly across from it.  Breaking the 80S down to the 40S and 

60S could facilitate exchange of these proteins due to lost surface interactions and greater access 

to the cytosol. 

Cytosolic RPL36a and L10 are critical to formation of the P-site during assembly, and 

guide the structural rotation necessary to form each peptide bond6,18. Dysfunction of these and 

other fast exchange proteins is associated with disease6,18; therefore, exchange may represent an 
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important method to maintain ribosomal quality.  Greater exchange of these proteins in AL tissue 

relative to the ribophagy rate may indicate that damage to these specific proteins occurs prior to 

ribophagy. 

One interpretation of these results is that ribophagy and r-protein exchange are both used 

to maintain the active pool of ribosomes (Figure 3-7).  Simplistically, the high synthetic demand 

and longer lifespan for individual ribosomes observed in AL tissue might result in accumulation 

of damaged ribosomes, as only a few selected proteins can be repaired. Slower cell proliferation 

in DR suggests that, because there is less dilution into new cells, protein degradation is up 

regulated to match synthesis22.  Lower synthetic demand with an accompanying increase in 

ribophagy, would allow for more extensive turnover of the assembled ribosome pool.  Better 

maintenance of the ribosome might lead to higher quality nascent peptides and improved 

Figure 3-7 In vivo ribosome maintenance requires ribophagy and r-protein exchange:  Each day, 
approximately 10% of the ribosomal pool is replaced via assembly of new ribosomes and ribophagy. 
During the lifetime of the assembled ribosomal structure, ribosome protein exchange occurs primarily 
when the ribosome disassociates to its individual subunits. This exchange may be a fast, low cost, method 
to repair and modify ribosomes.  Cellular energetics and demand for protein synthesis may modulate the 
relative contribution of ribophagy, versus exchange in response to stalled or damaged ribosomes. 
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accuracy5,6,8,9 and efficiency relative to AL tissue.  This provides an attractive interpretation for 

the frequently observed connection between lower rates of protein synthesis, increased 

autophagy, and improved protein homeostasis and longevity.  

It has been observed that the ribosome quality control (RQC) complex is required to 

dissociate stalled 80S ribosomes2.  Our data suggests that ribosomes exchange components most 

rapidly when dissociated into subunits, potentially after the RQC has dissociated the complex.  

These results raise several interesting questions about mechanisms for maintenance.  Is there 

cross talk between RQC activity and ribosome component turnover?  What factors control 

ribosome component exchange?  We assume a passive model, but could the RQC coordinate 

active exchange?  Proteins L35a and L7 are fast exchange in AL tissue, but are buried within the 

rRNA.  These proteins may require outside assistance to facilitate exchange.  Finally, does r-

protein exchange improve the quality of nascent peptides?  Initial results suggest that reducing 

global protein synthesis may improve protein quality3.  Further investigation is needed to 

confirm whether ribosomal maintenance is a mechanistic link explaining how lower protein 

synthesis burdens are connected to improved protein homeostasis and lifespan.    

In conclusion, this work uses a generally applicable strategy for investigating cellular 

maintenance of the proteome, including multi-protein and ribonuclear structures.  Here we show 

that exchange of protein components and degradation of the entire ribosome are important 

maintenance strategies.  Our results suggest a mechanism wherein dissociation of 60S and 40S 

subunits promotes in vivo r-protein exchange.  We find that dietary signals can change both 

ribophagy and r-protein exchange rates.  Future work testing biological models which modulate 

the RQC activity and/or mTOR signaling will test whether this is mechanism is generally 
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applicable.  In addition, linking changes in longevity to the rates of protein synthesis and 

autophagy as we have done may help identify mechanisms of aging.  
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4. Creation of Software Tools and Methods for Measurement of Kinetic Proteomics in 

Humans 

4.1 Chapter Summary 

Unlike the previous two chapters, this work has not been published.  I have written this 

work in the form of a paper for consistency.  The Future Directions section at the end of the 

chapter indicates how the work is proceeding to bring the software and data to publication 

quality.  The basis of this work is modifications of the DeuteRater program required to analyze 

data from kinetic proteomic experiments using humans as subjects.   

4.1.1 Authors in Order of Contribution 

 Bradley C. Naylor, Marcus Hadfield, David Parkinson, Austin Ahlstrom, Austin 

Hannemann, Paul Hafen, John Dallon, Rob Hyldahl, and John C. Price. 

4.1.2 Contributions of Major Authors 

I led making the adjustments of DeuteRater, led the human experiment, and prepared and 

analyzed the samples by mass spectrometry.  Other authors assisted in the human experiment 

design, collecting samples from the subjects, wrote parts of the updated program, and providing 

insight into differential equations to model the data. 
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4.2 Abstract 

 Turnover for 1000’s individual proteins can be measured simultaneously using kinetic 

proteomics methods, which monitor metabolic incorporation of an isotopic label over time.  

Metabolic labeling using 2H2O has several experimental advantages for kinetic proteomics and 

has been used in a variety of organisms from cells to humans. We previously published a 

software tool, DeuteRater, that facilitates analysis of 2H2O-based kinetic proteomics 

experiments.  However, large animals such as humans often require experimental changes from 

metabolic labeling methods for small animals or cell culture.  Although DeuteRater offered 

several improvements upon available software tools, it could not utilize data from these large 

animal experiments.  Therefore, we have developed a new software tool called DeuteRater-H, 

which improves upon current calculation techniques for human kinetic proteomics and is an open 

source software tool to perform kinetic proteomic analysis on human subjects. 

4.3 Introduction 

 Living cells are dynamic systems.  They constantly create new proteins and destroy old 

proteins based on protein damage4,5, circadian rhythms6, changing environmental conditions7, 

and normal maintenance1,3,8-11.  The proteome scale study of protein turnover rates is called 

kinetic proteomics.  Kinetic proteomics measurements of normal conditions can reveal 

interesting maintenance programs, such as differential replacement rates of proteins in a large 

protein complex11.  Kinetic proteomic analysis of different biological conditions can yield 

information about how diseases affect cells, or even discover changes in protein turnover that 

can function as biomarkers12,13.  Due to the amount of information provided by the technique, 

there is a need to provide easy-to-use, open source software for kinetic proteomics in clinical 

settings2,3. 
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Figure 4-1: Experimental Workflow. Basic kinetic proteomics experimental workflow used in this study.  
Humans are provided with D2O, which is incorporated into amino acids and proteins.  Biological 
samples can then be taken, and proteins digested into peptides.  The peptides are analyzed by mass 
spectrometry and DeuteRater-H can then be used to turn the measured isotopic differences into a protein 
turnover rate.   

 Kinetic proteomics has several advantages that make it ideal for human studies.  

Important metabolic insights can be gained from proteins that are relatively abundant and easily 

accessible10,12,13, and the workflow is relatively simple (Figure 4-1).  A heavy isotope label, 

generally deuterium in the form of deuterated water (D2O), is provided to the subject.  The heavy 

label is incorporated into bio-synthesized molecules in the organism, such as non-essential amino 

acids.  The labeled amino acids are used to synthesize proteins, resulting in new proteins 

containing extra heavy isotopes.  The shift in signal intensity and mass spacing between the 

different isotopic populations of a peptide, called neutromers, is easily measurable by mass 

spectrometry and the percent protein replacement or turnover can be calculated1,3. 

 The basic idea of kinetic proteomics has been around since the early 1990s14,15 and 

deuterated water labeling has been used for proteomics since 201116.  However, while studies 

have been performed in humans, there are no open source software tools available to perform the 

analysis.  Although we1, and others16,17 have made software and algorithms to analyze kinetic 

proteomics data in experimental animals, the requirements for working with human subjects 
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complicate the analysis.  Most methods of heavy labeling other than D2O require complete 

dietary control8,18 or intra-venous infusion19, which are often impractical in humans.  However, 

rapidly changing D2O enrichments can cause vertigo20,21, therefore humans studies cannot follow 

the protocol of rapid enrichment used for animal studies.  Low deuterium enrichments (below 1 

molar percent excess) can be used to limit vertigo, but low isotopic enrichment reduces signal to 

noise, making turnover rates difficult to measure.  To avoid the deuterium-dependent vertigo 

while still obtaining acceptable signal, a steadily increasing enrichment is administered over 

several days (Figure 4-2 A-B).  This introduces a problem.  The deuterium enrichment is used to 

determine the maximum theoretical change in the neutromer peaks of each peptide.  Knowing 

the maximum theoretical change allows the experimental change to be expressed as a percentage 

(Figure 4-2 C).  If the enrichment is changing, the calculations become much more complex 

because the maximum theoretical change in the neutromer peaks shift with each additional 

protein replaced in the population (Figure 4-2 D).   

In order to handle this problem, it is necessary to use a differential equation to combine 

the equation for fitting the subject’s deuterium enrichment with the equation for the change in 

isotopic abundance or spacing from the unlabeled baseline (Figure 4-3).  Previously the 

equations were limited to a rise to plateau enrichment curve and only using the mono-isotopic 

peak for rate determination2,3.  Now we need to allow for the increased complexity in enrichment 

and isotopic measurement. 
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Figure 4-2 Differences in Analysis between Animal Models and Humans: In a small animal, 
such as a mouse, a Constant Enrichment model can be used with a greater percent of body 
water being replaced with deuterium (Panel A). A large intraperitoneal bolus injection is used 
to bring the animal instantly to the desired level of deuterium, where they are maintained for 
the duration of the experiment.   In humans, due to issues of vertigo from deuterium and the 
impracticality of large intraperitoneal injections in human subjects, the deuterium label is 
applied over time, creating an increasing enrichment, generally in the form of a rise to plateau 
kinetic (Panel B).  The enriched percent of body water is also lower in a human due to the 
larger amount of water in a human.  The calculation for Fraction new protein for a constant 
enrichment experiment is relatively simple (Panel C). The distance between the isotopic height 
at no labeling (blue line) to the isotopic height measured at a certain time (black lines) is 
compared to the distance between the isotopic height at no labeling and the isotopic height 
when all proteins are labeled (red lines).  Since all points are constant (red and purple points in 
panel A), this calculation is the same at all time points, save for the experimentally measured 
component.  If the enrichment is changing, the enrichment at an earlier time is less than the 
enrichment at a later time (purple and red dots on Panel B), the enrichment for proteins 
produced at those times is different (purple and red lines on panel D).  Thus, the black lines in 
panel D are a combination not just of unlabeled and labeled populations, but unlabeled and 
many different labeled populations.  Since only the average of all these populations is observed 
in the mass spectrometer, a method of deconvolution is necessary for the data to be interpreted.  
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Figure 4-3 Differential Equation Analysis.  This represents the basic principle of the analysis.  Dots are 
actual data, and the black lines are lines fit to the data, or theoretical models.  Panel A shows a 
theoretical model of abundance of M0 changes with increasing Deuterium available for the synthesis of 
this protein.  0 represents M0 with no extra deuterium.  Panel B shows how the amount of deuterium 
present in the body changes over time.  The equations of Panel A and Panel  B are combined in such a 
way that the resulting equation’s only unknown variable is the protein turnover rate.  The actual changes 
in M0 are fit to this equation in Panel C, and the turnover rate can be calculated from a variable in the fit 
line.  The equation is represented in Panel D.  The amount of body water enrichment is calculated from 
the time based on whatever function is used to fit the water in panel B (first equation).  This enrichment is 
then used to determine the maximal change in the neutromer peak (middle equation).  This can be m0 as 
in Panel A, though any neutromer abundance or spacing model will work.  The change in Signal 
(abundance or spacing) is then represented by the lowest equation, with the k in the equation represents 
the peptide turnover rate (bottom equation).  This can be solved as an ordinary differential equation in a 
least squares curve fit to solve for k. 

 In this study, we build upon DeuteRater1, our data analysis tool for performing kinetic 

proteomics on the simpler labeling scheme, and previous software that uses differential equations 

for human kinetic proteomics2 to create DeuteRater-H, an open source software tool to perform 

human kinetic proteomic calculations.  We show that even in these cases where isotopic 
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enrichment is changing neutromer intensity and spacing can be used together to monitor isotope 

incorporation and that by incorporating the information from these peptide specific 

measurements for each peptide we improve signal to noise in the calculation of protein turnover 

kinetics.  

4.4 Methods 

4.4.1 Metabolic Labeling and Sample Collection 

All experiments were performed under the approval of the Institutional Review Board of 

Brigham Young University.  Three males and three females above the age of 20 years were 

recruited.  Subjects were randomly assigned numbers from 1-6.  Subjects had no serious health 

conditions and were not taking regular medication known to cause biases in blood biochemistry, 

such as blood thinners.  The study lasted for 32 days, divided into 8 day pieces.  Each day 

subjects consumed 3 doses (morning, noon, and night) of 99.8% deuterated water.  The 

deuterated water volume was increased following this schedule: 22 mL per dose for the first 24 

doses (Day 1-8), 26 mL per dose for the next 24 doses (Days 9-16), 30 mL per dose for the next 

24 doses (Day 9-24), and 34 mL per dose for the final 24 doses (Day 25-32).  Saliva was 

collected daily to allow for measurement of the body water deuterium enrichment.  Every 8 days, 

subjects were provided with enough doses of deuterated water and saliva sampling swabs 

(salivettes) for 3 doses of deuterated water per day and one salivette per day.  Subjects kept a 

diary to record compliance.  Subjects were generally compliant with one or two missed doses 

occurring occasionally. 

At days 0, 8, 16, 24 and 32, approximately 20 mLs of blood were collected from each 

subject.  On days 16 and 32 one muscle biopsy from each of the subjects’ legs were collected.  
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Biopsies removed approximately 50 mg of tissue per leg.  Muscle biopsies were performed by 

Dr. Robert Hyldahl at Brigham Young University. 

4.4.2 Deviations from the Schedule 

Aside from minor non-compliance with a salivette, or deuterium dose, or variations in 

amount tissue collected, there were some significant changes to the protocol described above.  

Subject 5 started the experiment on schedule but the first blood draw occurred on the day after 

deuterium dosing started.  Subject 1 had a similar situation, though the first blood draw was 3 

days after deuterium was provided.  Both of those changes presented minimal issues.  More 

serious was that Subject 2 started a day after the other subjects, and had an infection at a biopsy 

site after the first muscle biopsy.  We immediately excluded Subject 2 from further participation 

after discovery of the infection. 

4.4.3 Measurement of Deuterium Enrichment 

Saliva was collected by the subjects and stored frozen until given to researchers.  Saliva 

was stored by researchers at -20°C until deuterium enrichment could be measured.  For 

processing, 100 µL aliquots, or less if there were less than 100 µL of saliva, were distilled 

overnight at 95° C to purify the water in the sample.  5 µL aliquots of saliva distillates were 

diluted 1:300 and deuterium molar percent excess (MPE) was measured.  MPE was measured in 

the samples against an accompanying standard curve using a cavity ring-down water isotope 

analyzer (Los Gatos Research [LGR], Los Gatos, CA, USA) according to the published 

method22.  Serum was also distilled using the same method (with 50 µL instead of 100) for some 

subjects.   
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4.4.4 Preparation of Biological Samples 

After collection, blood was stored on ice until it could be separated into its components.  

First, blood was centrifuged at 200 x g for 20 minutes at 4°C.  Serum was removed from red 

blood cells and the serum was further centrifuged at 2000 x g for 10 minutes at 4°C.  Serum was 

removed from buffy coat pellet.  The pellet was re-suspended in Phosphate Buffered Saline 

(PBS), moved to a storage vial and centrifuged again using the same centrifuge settings.  PBS 

was decanted.  Red blood cells, serum, and buffy coat were stored at -80°C until they could be 

processed further.  Muscle biopsies were immediately frozen in dry ice.  Samples were stored at -

0°C.   

4.4.5 Preparation for Mass Spectrometry Analysis 

Serum protein concentrations were measured using a bicinchoninic acid (BCA) protein 

assay (Thermo Fisher).  50 µg of each sample from each subject was placed on 30 kDa mass 

cutoff Amicon Ultracel centrifugal filters.  100 µL of guanidine (6 M, 100 mM Tris-HCl pH 8.5) 

was added to the sample and centrifuged at 14,000g for 15 minutes.  Another wash with 

guanidine (same volume and centrifuge settings) was performed.  Flow-through was discarded.  

100 µL of guanidine was added to the filter, and was brought to 10 mM dithiothreitol.  The filter 

was placed in a sand bath at 60 °C for 60 minutes.  After 5 minutes of cooling, the sample was 

brought to 20 mM iodoacetamide.  Samples were incubated in the dark for 60 minutes.  Samples 

were centrifuged at 14,000g for 15 minutes.  200 µL Ammonium Bicarbonate (ABC, 25 mM, pH 

8.5) was added to the filters, which were spun at 14,000g for 15 minutes.  After a second ABC 

wash (same volume and centrifuge settings), ABC was added to the filter until the volume was 

300 µL.  The collection vial was replaced with a clean vial.  1 µg Trypsin Pierce MS grade was 

added to each sample, which were incubated at 37°C overnight.  Samples were centrifuged at 
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14,000 g for 30 minutes.  100 µL of ABC were added to the filter, which was centrifuged again 

for 30 minutes at 14,000 g. Filters were discarded and the filtrate was dried using a SpeedVac 

(Sorval) vacuum centrifuge.  The dried samples were stored at 4°C until use.  

4.4.6 Mass Spectrometry Analysis  

All experimental subjects provided five blood samples, all of which were analyzed with a 

Fusion Lumos Tribrid (Orbitrap) mass spectrometer from ThermoFisher Scientific.  Samples 

were resuspended in 0.1% Formic Acid (Pierce LC-MS grade) in H2O (Optima grade Thermo 

Fischer).  Tryptic peptides were separated using a reverse phase C18 column (Acclaim 

PepMap™ 100) and a Thermo Easy-Spray source.  Mobile phase for the Liquid Chromatography 

was 0.1% Formic Acid in H2O (Buffer A) and 0.1% Formic Acid in 80% Acetonitrile (Optima 

grade Thermo Fischer) with 20% H2O (Buffer B) on an Easy-nLC 1200 HPLC system.  Samples 

were eluted using a gradient of 5% B to 22% B over 85 minutes, 22% to 32% B over 15 minutes, 

with a wash of 32% to 95% B over 10 minutes, which was held at 95% B for 10 minutes.  

Sample loading and equilibration were performed using the HPLC’s built in methods.  MS only 

runs were performed using 2400 V in the ion source 60000 Resolution with a scan range of 375-

1700 m/z, 30% RF Lens, Quadrupole Isolation, 8 *10^5 AGC Target and a maximum injection 

time of 50 ms.  MS/MS scans were performed using same settings as MS only scans with 3 

seconds allowed per MS/MS after each MS scan using the following filters: peptide 

monoisotopic peak determination, an intensity threshold of 5*10^3, only fragmenting charge 

states +2 to +6, a dynamic exclusion that excluded a peak after being chosen once within 60 

seconds, with an error tolerance of 10 ppm high and low, and isotopes excluded.  The 

fragmentation scan used an isolation window of 1.6 m/z, CID fragmentation with an energy of 

30%, detection in the linear ion trap in Rapid scan mode with a AGC target of 1*10^4, a 
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maximum injection time of 35 milliseconds and used the “Inject Ions for All Available 

Parallelizable Time” option. 

Data is available upon request. 

4.4.7 Identification of Peptides and Using DeuteRater-H 

 Peptides were identified from MS/MS spectra of early time point samples using the 

software platform PEAKS 823.  PEAKS settings were as follows: mass only correct precursor 

refinement, trypsin as the digestion enzyme, 3 missed cleavages and 1 non-specific cleavage 

allowed.  Carbamidomethylation was set as a fixed modification and pyro-glutamic acid from Q 

and Oxidation of M were allowed variable modifications with 3 variable modifications allowed 

per peptide.  Identification database was SwissProt validated database downloaded August 2017, 

restricted to Homo sapiens protein entries.  PEAKS PTM, which searches for PTMs not specified 

in the search, and SPIDER, which searches for point mutations, were also examined.  Data from 

the Orbitrap instrument was analyzed with settings specifying CID fragmentation, precursor data 

was collected in an Orbitrap with an allowed error tolerance of 4.0 ppms, and fragmentation data 

was collected in a linear ion trap with an allowed error of 0.2 Daltons.  QToF data was analyzed 

with settings specifying CID fragmentation, precursor data was collected in a ToF with an error 

tolerance of 10.0 ppms , and fragmentation data was collected in a ToF with an allowed error of 

0.05 daltons.   

 Those identifications under a 1% False Discovery Rate cutoff were exported and used to 

create a peptide accurate mass and retention time database for DeuteRater.  All post-translational 

modifications except carbamidomethylation, pyroglutamic acid from Q and oxidation of M were 

discarded.  High confidence peptide identifications that incorporated point mutations from 

SPIDER were kept.  Data was then analyzed by DeuteRater-H.  Details of DeuteRater-H 
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calculation are in the Results section under “Changes made to DeuteRater for Human 

Calculations”. 

4.4.8 Filtering Turnover Rate Results 

 All protein turnover rates were calculated by averaging the rates of peptide measurements 

(abundance and spacing of all neutromers) from peptides belonging to that protein that had rate 

fits with an R2 value greater than or equal to 0.9 and a coefficient of variance (standard deviation 

/ rate value) (cv) of 0.5 or less.  Several filters were applied to protein rates: to ensure that these 

average rates were within the reliable range defined by our sampling, all rates below 0 or above 2 

(fractional turnover per day) were removed, all protein rates coming from a single measurement 

were removed.  The cv filter was designed to ensure that when filtering by error, the 

measurement was not biased against faster rates whose 95% confidence intervals have higher 

numerical values even if the relative error is quite small. 

4.4.9 Comparison of Kinetic Rates to Kinetic Rates from Previous Studies 

 For comparison between subjects, all proteins present in all 6 subjects that made it 

through the filter described in “Filtering Turnover Rate Results” were transformed (log base 2) 

and subjected to a Tukey Kramer comparison of multiple means by the JMP 12 statistical 

software package. 

For comparison between our data and published data, we averaged all proteins that made 

it through the filter described in “Filtering Turnover Rate Results” were averaged across all 

experimental subjects.  Rates reported from the literature were averaged across all subjects in the 

study they appeared in and those rates not between 0 and 2 (fractional turnover per day) were 

removed.   
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4.5 Results 

4.5.1 Changes made to DeuteRater for Human Calculations 

Starting from the framework of DeuteRater1, we made two major changes.  First, we 

required the user to provide data on heavy isotope enrichment at various time-points for each 

experimental subject.  After collecting this data, we created a fit line for that data with an 

equation chosen by the user (rise to plateau by default).  Second, differential rate calculations 

(Figure 4-3) were performed on a peptide by peptide basis, unlike in DeuteRater.   Rates with an 

R2 of greater than 0.9 and a coefficient of variance (cv) (calculated as standard deviation / rate 

value) of less than 0.5 were kept (by default, filters can be altered), other rates were discarded.  

Rates for peptides belonging to the same protein were weighted by cv and averaged together to 

obtain a turnover rate for the protein.  Peptides and proteins were calculated independently for 

each experimental subject. 

4.5.2 Improved Flexibility of DeuteRater-H 

 In previous studies of human kinetic proteomics, a rise to plateau model has been used 

for the deuterium enrichment of experimental subjects2,3.  This was a reasonable way to start the 

method as it most closely models the small animal calculations, and it is experimentally easier, 

requiring the experimental subjects to consume the same volume of deuterium on the same 

schedule for the entire experiment.  Since DeuteRater-H uses a differential equation and should 

be able to use any shape of enrichment profile (Figure 4-3 D), we provided subjects with 

increasing amount of deuterium throughout the experiment as detailed under “Metabolic 

Labeling and Sample Collection” in the Methods section.  We did this to provide flexibility to 

the calculations, and to test whether the increasing amount of deuterium would allow 

measurements of fast turnover proteins at late time points to be useful in calculating the turnover 
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rate, as observed previously3.   The increasing deuterium amounts do not cause any noticeable 

negative results to the subjects or the data analysis. 

 Previous work also focused on the abundance change of the mono-isotopic peak2.  The 

mono-isotopic peak is often the best peak for kinetic calculations because its intensity change is 

usually relatively large and is easily predictable.  However, we established with DeuteRater1 that 

multiple changes in the isotope pattern, including the spacing between neutromers, can be used 

to improve the quality of the kinetic calculations.  In DeuteRater-H we have demonstrated that 

all measurements can also be utilized in a situation where isotopic enrichment is changing over 

time (Figure 4-4).  However, not all measurements are useful for every peptide.  Some metrics, 

especially spacing, have low signal to noise.  As a result, DeuteRater-H applies filters to the 

peptide rate calculated from each metric.  Only those calculated curves with an R2 greater than 

0.9, and a coefficient of variation less than 0.5 were rolled into protein rates.   

4.5.3 Comparison of Experimental Subjects to Each Other 

 Experimental subjects were compared to each other to ensure that analysis of healthy 

subjects yields similar results.  If the subjects were vastly different from each other, it could 

indicate a problem with the software performing the calculations.  A Tukey-Kramer multiple 

comparison test was used to compare all turnover rates from all proteins in the filtered data that 

were present in all 6 experimental subjects with at least two peptide calculations, either two or 

more peptides for a single protein or two or more abundance or spacing metrics passing the 

filters for a single peptide (Table 4-1).  Turnover rates underwent a Logarithmic transformation 

(base 2) prior to statistical testing to create a normal distribution.  Turnover rates represented in 

Table 4-1 are not transformed.  Logarithmic transformation of data and the Tukey-Kramer test, 

which compares all possible combinations of subjects, were performed using the JMP 12 
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statistical package.  The result showed four significant differences, between Subject 2 and 

Subject 1, Subject 2 and Subject 4, Subject 2 and Subject 5, and Subject 2 and Subject 6 with p-

values of .0390, .0452, .0473, and .0476 respectively.    

Figure 4-4 Improved Calculations using DeuteRater-H.  Panel A shows a deuterium enrichment curve 
for Subject 5 in this study.  Panel B shows the metrics used in fitting, the ΔI values indicating abundance 
changes, and the Δ M –M0 measurements indicating differences in spacing which were discussed in depth 
in Figure 4-3 and our previous work.  DeuteRater-H allows calculation of human turnover rates by 
combining multiple metrics including the traditional M0 peak (no heavy isotopes panel C), other isotopic 
peaks (D-E) and the spacing between peaks (F).  Panels C-F are for peptide ADLSGITGAR from subject 
5.  All time-points have two measurements at each time point (representing charge states +2 and +3) 
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All significant differences are between Subject 2 and other subjects.  Subject 2 had health 

problems due to a leg infection as a result of the muscle biopsy, and had a drop in enrichment 

around week 3 due to strenuous exercise.  Therefore, the significantly decreased rates in for 

Subject 2 may be due to exertion changing water consumption and reducing deuterium 

enrichment, or may be some biological effect from the exertion or infection.   

Table 4-1 Data from Proteins in All Six Experimental Subjects.  This table shows the accession numbers 
and turnover rates of proteins observed in all 6 subjects with more than one measurement (peptide, 
abundance measurement, or spacing measurement).  The turnover units are fractional turnover per day 
with error being 2 standard deviations to approximate a 95% confidence interval.  

Protein 
Accession 
Number 

Protein Name S1 
Rate 

S2 
Rate 

S3 
Rate 

S4 
Rate 

S5 
Rate 

S6 
Rate 

P0DOY3 Immunoglobulin lambda 
constant 3 

0.04 ± 
0.002 

0.03 ± 
0.004 

0.03 ± 
0.027 

0.09 ± 
0.044 

0.04 ± 
0.065 

0.04 ± 
0.006 

P0DOX8 Immunoglobulin 
lambda-1 light chain 

0.05 ± 
0.043 

0.1 ± 
0.06 

0.03 ± 
0.019 

0.07 ± 
0.048 

0.02 ± 
0.004 

0.04 ± 
0.013 

A0A075B6P5 Immunoglobulin kappa 
variable 2-28 

0.13 ± 
0.107 

0.03 ± 
0.03 

0.03 ± 
0.008 

0.06 ± 
0.051 

0.01 ± 
0.005 

0.04 ± 
0.015 

P02746 Complement C1q 
subcomponent subunit B 

0.13 ± 
0.046 

0.15 ± 
0.085 

0.1 ± 
0.163 

0.23 ± 
0.193 

0.18 ± 
0.167 

0.2 ± 
0.017 

P35542 Serum amyloid A-4 
protein 

0.12 ± 
0.026 

0.11 ± 
0.189 

0.16 ± 
0.006 

0.07 ± 
0.223 

0.14 ± 
0.122 

0.16 ± 
0.023 

P01619 Immunoglobulin kappa 
variable 3-20 

0.08 ± 
0.095 

0.08 ± 
0.028 

0.04 ± 
0.142 

0.06 ± 
0.072 

0.02 ± 
0.03 

0.04 ± 
0.023 

P0DOX7 Immunoglobulin kappa 
light chain 

0.08 ± 
0.088 

0.03 ± 
0.047 

0.03 ± 
0.115 

0.04 ± 
0.041 

0.02 ± 
0.107 

0.04 ± 
0.027 

P01871 Immunoglobulin heavy 
constant mu 

0.15 ± 
0.113 

0.08 ± 
0.039 

0.05 ± 
0.048 

0.07 ± 
0.051 

0.06 ± 
0.072 

0.05 ± 
0.027 

A0A0C4DH31 Immunoglobulin heavy 
variable 1-18 

0.12 ± 
0.062 

0.03 ± 
0.021 

0.03 ± 
0.025 

0.08 ± 
0.044 

0.05 ± 
0.141 

0.03 ± 
0.036 

O14791 Apolipoprotein L1 0.13 ± 
0.021 

0.08 ± 
0.066 

0.1 ± 
0.071 

0.15 ± 
0.124 

0.14 ± 
0.136 

0.1 ± 
0.036 
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Protein 
Accession 
Number 

Protein Name S1 
Rate 

S2 
Rate 

S3 
Rate 

S4 
Rate 

S5 
Rate 

S6 
Rate 

P0DOX2 Immunoglobulin alpha-2 
heavy chain 

0.11 ± 
0.257 

0.07 ± 
0.046 

0.08 ± 
0.126 

0.09 ± 
0.068 

0.03 ± 
0.062 

0.05 ± 
0.039 

P00739 Haptoglobin-related 
protein 

0.14 ± 
0.031 

0.07 ± 
0.012 

0.08 ± 
0.014 

0.1 ± 
0.057 

0.1 ± 
0.029 

0.1 ± 
0.039 

P05090 Apolipoprotein D 0.1 ± 
0.043 

0.04 ± 
0.004 

0.09 ± 
0.078 

0.09 ± 
0.057 

0.11 ± 
0.155 

0.09 ± 
0.043 

P02768 Serum albumin 0.04 ± 
0.078 

0.03 ± 
0.026 

0.03 ± 
0.045 

0.07 ± 
0.049 

0.03 ± 
0.049 

0.03 ± 
0.048 

P01701 Immunoglobulin lambda 
variable 1-51 

0.03 ± 
0.002 

0.03 ± 
0.014 

0.04 ± 
0.019 

0.07 ± 
0.088 

0.03 ± 
0.002 

0.06 ± 
0.05 

P01023 Alpha-2-macroglobulin 0.07 ± 
0.05 

0.07 ± 
0.025 

0.05 ± 
0.084 

0.15 ± 
0.063 

0.06 ± 
0.067 

0.06 ± 
0.051 

P01876 Immunoglobulin heavy 
constant alpha 1 

0.06 ± 
0.062 

0.05 ± 
0.044 

0.08 ± 
0.154 

0.21 ± 
0.092 

0.08 ± 
0.086 

0.08 ± 
0.054 

P0DOX5 Immunoglobulin 
gamma-1 heavy chain 

0.1 ± 
0.073 

0.03 ± 
0.025 

0.03 ± 
0.08 

0.07 ± 
0.052 

0.02 ± 
0.045 

0.03 ± 
0.056 

P02790 Hemopexin 0.11 ± 
0.203 

0.08 ± 
0.034 

0.07 ± 
0.114 

0.21 ± 
0.117 

0.07 ± 
0.073 

0.07 ± 
0.062 

P02787 Serotransferrin 0.1 ± 
0.074 

0.09 ± 
0.088 

0.08 ± 
0.098 

0.13 ± 
0.101 

0.09 ± 
0.078 

0.07 ± 
0.073 

P08185 Corticosteroid-binding 
globulin 

0.1 ± 
0.052 

0.06 ± 
0.039 

0.08 ± 
0.096 

0.07 ± 
0.162 

0.15 ± 
0.102 

0.08 ± 
0.076 

P43652 Afamin 0.12 ± 
0.085 

0.07 ± 
0.115 

0.15 ± 
0.29 

0.11 ± 
0.146 

0.16 ± 
0.108 

0.15 ± 
0.084 

P00450 Ceruloplasmin 0.13 ± 
0.141 

0.07 ± 
0.108 

0.11 ± 
0.117 

0.11 ± 
0.166 

0.12 ± 
0.084 

0.12 ± 
0.086 

P02652 Apolipoprotein A-II 0.2 ± 
0.059 

0.12 ± 
0.16 

0.16 ± 
0.205 

0.22 ± 
0.239 

0.17 ± 
0.252 

0.14 ± 
0.09 

P27169 Serum 
paraoxonase/arylesterase 
1 

0.29 ± 
0.143 

0.1 ± 
0.061 

0.09 ± 
0.065 

0.19 ± 
0.161 

0.15 ± 
0.112 

0.1 ± 
0.099 
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Protein 
Accession 
Number 

Protein Name S1 
Rate 

S2 
Rate 

S3 
Rate 

S4 
Rate 

S5 
Rate 

S6 
Rate 

P02763 Alpha-1-acid 
glycoprotein 1 

0.31 ± 
0.25 

0.12 ± 
0.089 

0.13 ± 
0.165 

0.38 ± 
0.223 

0.14 ± 
0.125 

0.14 ± 
0.101 

P01009 Alpha-1-antitrypsin 0.11 ± 
0.148 

0.07 ± 
0.076 

0.13 ± 
0.162 

0.12 ± 
0.145 

0.15 ± 
0.13 

0.13 ± 
0.121 

P02766 Transthyretin 0.09 ± 
0.031 

0.2 ± 
0.273 

0.2 ± 
0.255 

0.18 ± 
0.331 

0.3 ± 
0.351 

0.27 ± 
0.122 

P02765 Alpha-2-HS-
glycoprotein 

0.09 ± 
0.134 

0.11 ± 
0.062 

0.14 ± 
0.135 

0.05 ± 
0.178 

0.17 ± 
0.163 

0.15 ± 
0.13 

P02647 Apolipoprotein A-I 0.14 ± 
0.071 

0.07 ± 
0.057 

0.13 ± 
0.102 

0.13 ± 
0.196 

0.17 ± 
0.112 

0.12 ± 
0.133 

P02760 Protein AMBP 0.12 ± 
0.239 

0.08 ± 
0.18 

0.15 ± 
0.198 

0.32 ± 
0.279 

0.17 ± 
0.285 

0.26 ± 
0.134 

P01011 Alpha-1-
antichymotrypsin 

0.18 ± 
0.185 

0.09 ± 
0.198 

0.16 ± 
0.281 

0.19 ± 
0.283 

0.16 ± 
0.165 

0.11 ± 
0.136 

P15169 Carboxypeptidase N 
catalytic chain 

0.2 ± 
0.145 

0.08 ± 
0.013 

0.11 ± 
0.077 

0.17 ± 
0.116 

0.14 ± 
0.111 

0.16 ± 
0.139 

P06396 Gelsolin 0.12 ± 
0.188 

0.19 ± 
0.138 

0.13 ± 
0.182 

0.15 ± 
0.259 

0.17 ± 
0.162 

0.14 ± 
0.147 

P00734 Prothrombin 0.23 ± 
0.216 

0.13 ± 
0.136 

0.18 ± 
0.199 

0.18 ± 
0.16 

0.24 ± 
0.159 

0.18 ± 
0.15 

P02679 Fibrinogen gamma 
chain 

0.17 ± 
0.237 

0.08 ± 
0.185 

0.13 ± 
0.134 

0.21 ± 
0.178 

0.16 ± 
0.148 

0.18 ± 
0.156 

P19827 Inter-alpha-trypsin 
inhibitor heavy chain H1 

0.16 ± 
0.169 

0.17 ± 
0.157 

0.2 ± 
0.237 

0.21 ± 
0.237 

0.22 ± 
0.193 

0.23 ± 
0.156 

P02675 Fibrinogen beta chain 0.15 ± 
0.182 

0.08 ± 
0.089 

1.34 ± 
0.218 

0.45 ± 
0.175 

0.18 ± 
0.175 

0.19 ± 
0.158 

P06727 Apolipoprotein A-IV 0.1 ± 
0.13 

0.16 ± 
0.25 

0.11 ± 
0.082 

0.1 ± 
0.13 

0.17 ± 
0.129 

0.12 ± 
0.169 

P04003 C4b-binding protein 
alpha chain 

0.13 ± 
0.286 

0.08 ± 
0.09 

0.13 ± 
0.135 

0.14 ± 
0.162 

0.19 ± 
0.14 

0.13 ± 
0.178 
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Protein 
Accession 
Number 

Protein Name S1 
Rate 

S2 
Rate 

S3 
Rate 

S4 
Rate 

S5 
Rate 

S6 
Rate 

P01042 Kininogen-1 0.17 ± 
0.248 

0.14 ± 
0.123 

0.18 ± 
0.181 

0.26 ± 
0.235 

0.21 ± 
0.2 

0.17 ± 
0.181 

P02748 Complement component 
C9 

0.11 ± 
0.141 

0.38 ± 
0.429 

0.15 ± 
0.14 

0.19 ± 
0.147 

0.3 ± 
0.296 

0.25 ± 
0.184 

P08603 Complement factor H 0.13 ± 
0.112 

0.08 ± 
0.079 

0.13 ± 
0.146 

0.3 ± 
0.142 

0.17 ± 
0.147 

0.14 ± 
0.185 

P10643 Complement component 
C7 

0.12 ± 
0.095 

0.09 ± 
0.038 

0.15 ± 
0.134 

0.15 ± 
0.092 

0.1 ± 
0.225 

0.14 ± 
0.187 

P04217 Alpha-1B-glycoprotein 0.25 ± 
0.246 

0.17 ± 
0.149 

0.16 ± 
0.161 

0.23 ± 
0.282 

0.23 ± 
0.176 

0.2 ± 
0.189 

P08697 Alpha-2-antiplasmin 0.21 ± 
0.351 

0.17 ± 
0.331 

0.22 ± 
0.432 

0.14 ± 
0.19 

0.27 ± 
0.368 

0.31 ± 
0.192 

P01024 Complement C3 0.15 ± 
0.257 

0.17 ± 
0.21 

0.2 ± 
0.247 

0.22 ± 
0.238 

0.23 ± 
0.193 

0.2 ± 
0.199 

P02774 Vitamin D-binding 
protein 

0.16 ± 
0.246 

0.38 ± 
0.246 

0.25 ± 
0.308 

0.05 ± 
0.277 

0.24 ± 
0.243 

0.24 ± 
0.222 

P36955 Pigment epithelium-
derived factor 

0.14 ± 
0.087 

0.14 ± 
0.06 

0.19 ± 
0.258 

0.09 ± 
0.153 

0.37 ± 
0.169 

0.22 ± 
0.235 

P01019 Angiotensinogen 0.08 ± 
0.154 

0.31 ± 
0.247 

0.21 ± 
0.523 

0.23 ± 
0.258 

0.27 ± 
0.207 

0.23 ± 
0.24 

Q14624 Inter-alpha-trypsin 
inhibitor heavy chain H4 

0.18 ± 
0.166 

0.33 ± 
0.238 

0.22 ± 
0.332 

0.2 ± 
0.205 

0.28 ± 
0.218 

0.22 ± 
0.258 

P01008 Antithrombin-III 0.33 ± 
0.288 

0.18 ± 
0.158 

0.21 ± 
0.301 

0.18 ± 
0.299 

0.27 ± 
0.273 

0.22 ± 
0.268 

P04196 Histidine-rich 
glycoprotein 

0.38 ± 
0.271 

0.3 ± 
0.234 

0.21 ± 
0.369 

0.22 ± 
0.262 

0.23 ± 
0.213 

0.35 ± 
0.282 

P02671 Fibrinogen alpha chain 0.16 ± 
0.245 

0.09 ± 
0.172 

0.17 ± 
0.217 

0.23 ± 
0.239 

0.21 ± 
0.212 

0.45 ± 
0.287 

P00747 Plasminogen 0.46 ± 
0.325 

0.38 ± 
0.214 

0.23 ± 
0.291 

0.13 ± 
0.265 

0.26 ± 
0.273 

0.24 ± 
0.289 
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Protein 
Accession 
Number 

Protein Name S1 
Rate 

S2 
Rate 

S3 
Rate 

S4 
Rate 

S5 
Rate 

S6 
Rate 

P01031 Complement C5 0.12 ± 
0.115 

0.08 ± 
0.031 

0.18 ± 
0.229 

0.08 ± 
0.176 

0.21 ± 
0.2 

0.23 ± 
0.297 

P05543 Thyroxine-binding 
globulin 

0.2 ± 
0.241 

0.06 ± 
0.043 

0.13 ± 
0.082 

0.23 ± 
0.136 

0.16 ± 
0.119 

0.14 ± 
0.297 

P06312 Immunoglobulin kappa 
variable 4-1 

0.6 ± 
0.347 

0.03 ± 
0.011 

0.16 ± 
0.49 

0.04 ± 
0.064 

0.03 ± 
0.008 

0.07 ± 
0.305 

P19823 Inter-alpha-trypsin 
inhibitor heavy chain H2 

0.12 ± 
0.23 

0.29 ± 
0.211 

0.21 ± 
0.236 

0.18 ± 
0.229 

0.26 ± 
0.21 

0.21 ± 
0.308 

P05155 Plasma protease C1 
inhibitor 

0.15 ± 
0.047 

0.07 ± 
0.011 

0.3 ± 
0.463 

0.1 ± 
0.035 

0.36 ± 
0.36 

0.27 ± 
0.327 

P00738 Haptoglobin 0.14 ± 
0.27 

0.07 ± 
0.244 

0.34 ± 
0.469 

0.14 ± 
0.162 

0.27 ± 
0.239 

0.31 ± 
0.334 

P02751 Fibronectin 0.19 ± 
0.086 

0.1 ± 
0.331 

0.28 ± 
0.352 

0.2 ± 
0.242 

0.23 ± 
0.292 

0.32 ± 
0.334 

P00751 Complement factor B 0.24 ± 
0.239 

0.06 ± 
0.296 

0.25 ± 
0.313 

0.16 ± 
0.218 

0.26 ± 
0.309 

0.27 ± 
0.335 

P04004 Vitronectin 0.37 ± 
0.264 

0.13 ± 
0.201 

0.27 ± 
0.297 

0.27 ± 
0.26 

0.32 ± 
0.295 

0.3 ± 
0.375 

P04114 Apolipoprotein B-100 0.08 ± 
0.285 

0.17 ± 
0.311 

0.22 ± 
0.286 

0.1 ± 
0.226 

0.24 ± 
0.321 

0.25 ± 
0.387 

P02749 Beta-2-glycoprotein 1 0.15 ± 
0.24 

0.08 ± 
0.22 

0.42 ± 
0.547 

0.23 ± 
0.288 

0.46 ± 
0.382 

0.39 ± 
0.393 

P07225 Vitamin K-dependent 
protein S 

0.12 ± 
0.047 

0.11 ± 
0.069 

0.14 ± 
0.135 

0.14 ± 
0.253 

0.14 ± 
0.149 

0.14 ± 
0.401 

P13671 Complement component 
C6 

0.46 ± 
0.061 

0.15 ± 
0.169 

0.2 ± 
0.509 

0.15 ± 
0.163 

0.28 ± 
0.275 

0.26 ± 
0.407 

P10909 Clusterin 0.38 ± 
0.229 

0.4 ± 
0.28 

0.24 ± 
0.301 

0.21 ± 
0.322 

0.39 ± 
0.617 

0.29 ± 
0.441 

P02649 Apolipoprotein E 0.19 ± 
0.279 

0.22 ± 
0.307 

0.39 ± 
0.506 

0.38 ± 
0.306 

0.57 ± 
0.508 

0.41 ± 
0.445 
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4.5.4 Comparison to Previous Work  

 The final test of new software is validation of turnover rates using previously published 

datasets.  Since all previous studies and the current study contained multiple non-genetically 

identical subjects, we averaged all calculated protein rates across all subjects for which it was 

observed in both our dataset, previous explicit differential calculations2 or SAAM II 

compartmental models3.  All data points used in this comparison are shown in Table 4-2.  We 

then compared all proteins calculated by the current study to the other studies (Figure 4-5).  

Agreement is sufficiently good to justify publication.   

Table 4-2 Data points used in Figure 4-5.  If a cell contains “N.O.” it was not observed in that study, 
and so not graphed.  Values are rates average rates between all samples ± std. dev.  A std. dev. of 0 
indicates a rate was only observed for one subject in that study, so no std. dev. could be calculated. 

Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P01834 Immunoglobulin kappa constant 0.05±0.015 0.03±0.015 0.02±0.001 

Figure 4-5 Comparison of DeuteRater-H to Previous Human Kinetic Proteomics Experiments.  This 
figure compares turnover rates of proteins observed in humans.  Points are turnover rates of the same 
protein in the different studies.  The solid black lines represent the unity line, where all points should be 
assuming no error.  The dotted black line and equations represent the best fit line of the comparison.  
Panel A shows a comparison to Lam et al upon which we based our differential calculations1-4, while 
panel B shows a comparison to a study that used SAAM II compartmental models5,6.  Panel C shows 
comparison of Price et al and Lam et al to determine the expected amount of error due to biological 
noise.  Fits are Passing-Bablok regressions to prevent problems due to outliers.  
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P01859 
Immunoglobulin heavy constant gamma 
2 0.05±0.020 0.04±0.006 0.02±0.005 

P0DOX5 Immunoglobulin gamma-1 heavy chain 0.06±0.018 N.O. 0.01±0.004 

P0DOY3 Immunoglobulin lambda constant 3 0.06±0.030 N.O. 0.02±0.001 

P0DOX7 Immunoglobulin kappa light chain 0.06±0.027 N.O. 0.03±0.006 

P0DOX8 Immunoglobulin lambda-1 light chain 0.06±0.022 N.O. 0.03±0.002 

P01861 
Immunoglobulin heavy constant gamma 
4 0.07±0 0.04±0.015 0.01±0.003 

P04433 Immunoglobulin kappa variable 3-11 0.07±0.008 0.02±0 0.02±0.007 

P02745 
Complement C1q subcomponent subunit 
A 0.07±0.026 0.13±0.030 0.18±0.025 

P02768 Serum albumin 0.07±0.021 0.03±0.019 0.03±0.030 

P01023 Alpha-2-macroglobulin 0.08±0.012 0.04±0.008 0.04±0.011 

P80748 Immunoglobulin lambda variable 3-21 0.08±0.005 0.00±0 0.02±0 

P01871 Immunoglobulin heavy constant mu 0.09±0.031 0.04±0.026 0.11±0.090 

A0A075B
6P5 Immunoglobulin kappa variable 2-28 0.09±0.033 N.O. 0.03±0.003 

P01619 Immunoglobulin kappa variable 3-20 0.09±0.023 N.O. 0.03±0 

P00739 Haptoglobin-related protein 0.10±0.014 2.84±2.610 0.32±0.046 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P02787 Serotransferrin 0.10±0.012 0.08±0.026 0.05±0.024 

P02747 
Complement C1q subcomponent subunit 
C 0.10±0.015 0.10±0.007 0.17±0.092 

P02790 Hemopexin 0.11±0.032 0.06±0.000 0.11±0.068 

P01876 Immunoglobulin heavy constant alpha 1 0.12±0.024 0.08±0.019 0.06±0.011 

P08185 Corticosteroid-binding globulin 0.12±0.047 0.08±0.003 0.22±0.179 

P01860 
Immunoglobulin heavy constant gamma 
3 0.13±0.016 0.08±0.023 0.01±0 

P00450 Ceruloplasmin 0.13±0.012 0.10±0.026 0.11±0.055 

P19652 Alpha-1-acid glycoprotein 2 0.14±0.014 0.17±0.027 0.14±0.056 

P02746 
Complement C1q subcomponent subunit 
B 0.14±0.049 0.09±0.019 0.18±0 

P02750 Leucine-rich alpha-2-glycoprotein 0.15±0.050 0.18±0.040 0.19±0.049 

O75636 Ficolin-3 0.15±0.038 0.15±0.035 0.18±0 

P00748 Coagulation factor XII 0.16±0.066 0.21±0.031 0.27±0.091 

P29622 Kallistatin 0.16±0.056 0.23±0.077 0.38±0.138 

P01009 Alpha-1-antitrypsin 0.17±0.019 0.09±0.019 0.12±0.054 

P08603 Complement factor H 0.18±0.028 0.14±0.036 0.16±0.056 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P49908 Selenoprotein P 0.19±0 0.81±0.429 0.58±0 

P02652 Apolipoprotein A-II 0.20±0.045 0.15±0.058 0.21±0.102 

P02679 Fibrinogen gamma chain 0.20±0.027 0.13±0.041 0.16±0.078 

P02765 Alpha-2-HS-glycoprotein 0.21±0.101 0.15±0.031 0.19±0.070 

P02675 Fibrinogen beta chain 0.21±0.022 0.09±0.030 0.14±0.058 

P05546 Heparin cofactor 2 0.21±0.088 0.26±0.048 0.23±0.055 

P06727 Apolipoprotein A-IV 0.22±0.081 0.31±0.072 0.64±0.315 

Q9NZP8 
Complement C1r subcomponent-like 
protein 0.22±0 0.32±0.062 0.73±0 

P01011 Alpha-1-antichymotrypsin 0.23±0.082 0.14±0.019 0.19±0.169 

Q96PD5 N-acetylmuramoyl-L-alanine amidase 0.23±0.039 0.20±0.046 0.20±0.035 

P02760 Protein AMBP 0.23±0.072 0.40±0.222 0.38±0.120 

P04217 Alpha-1B-glycoprotein 0.24±0.025 0.18±0.022 0.24±0.102 

P19827 
Inter-alpha-trypsin inhibitor heavy chain 
H1 0.24±0.034 0.19±0.022 0.37±0.224 

P00734 Prothrombin 0.25±0.058 0.22±0.034 0.24±0.098 

P00742 Coagulation factor X 0.25±0.158 0.29±0.035 0.46±0 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P02671 Fibrinogen alpha chain 0.26±0.033 0.16±0.028 0.17±0.074 

P07360 
Complement component C8 gamma 
chain 0.26±0.066 0.20±0.025 0.26±0 

P19823 
Inter-alpha-trypsin inhibitor heavy chain 
H2 0.26±0.032 0.20±0.046 0.29±0.109 

P01019 Angiotensinogen 0.26±0.113 0.26±0.061 0.32±0.148 

P01042 Kininogen-1 0.27±0.039 0.33±0.129 0.26±0.093 

P35858 
Insulin-like growth factor-binding 
protein complex acid labile subunit 0.27±0.146 0.24±0.031 0.54±0.246 

P06681 Complement C2 0.27±0.078 0.33±0.069 0.38±0 

P25311 Zinc-alpha-2-glycoprotein 0.27±0.105 0.25±0.082 0.37±0.087 

P05543 Thyroxine-binding globulin 0.28±0.152 0.10±0.022 0.24±0 

P01031 Complement C5 0.28±0.111 0.19±0.031 0.29±0.148 

P22792 Carboxypeptidase N subunit 2 0.28±0.245 0.20±0.049 0.28±0 

P02763 Alpha-1-acid glycoprotein 1 0.29±0.204 0.19±0.100 0.14±0.051 

P01024 Complement C3 0.30±0.083 0.17±0.027 0.27±0.099 

P02774 Vitamin D-binding protein 0.31±0.051 0.36±0.126 0.34±0.153 

P05156 Complement factor I 0.31±0.026 0.32±0.071 0.21±0 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P00751 Complement factor B 0.32±0.071 0.26±0.030 0.33±0.156 

P02766 Transthyretin 0.33±0.257 0.25±0.043 0.31±0.267 

P07358 Complement component C8 beta chain 0.33±0.175 0.23±0.028 0.25±0.149 

P02748 Complement component C9 0.33±0.250 0.25±0.017 0.30±0.088 

P06312 Immunoglobulin kappa variable 4-1 0.33±0.213 N.O. 0.02±0.008 

P0C0L5 Complement C4-B 0.33±0.070 0.30±0.060 0.32±0.123 

P08697 Alpha-2-antiplasmin 0.34±0.089 0.21±0.073 0.19±0.103 

P04196 Histidine-rich glycoprotein 0.35±0.128 0.26±0.055 0.37±0.049 

P00738 Haptoglobin 0.35±0.126 0.35±0.122 0.46±0.552 

P01008 Antithrombin-III 0.37±0.094 0.23±0.054 0.40±0.156 

Q14624 
Inter-alpha-trypsin inhibitor heavy chain 
H4 0.39±0.291 0.22±0.040 0.44±0.161 

P06396 Gelsolin 0.40±0.397 0.19±0.024 0.23±0.029 

P0C0L4 Complement C4-A 0.40±0.170 0.43±0.035 0.28±0.085 

P00747 Plasminogen 0.41±0.119 0.30±0.056 0.36±0.131 

P13671 Complement component C6 0.41±0.100 0.39±0.061 0.26±0.092 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P05155 Plasma protease C1 inhibitor 0.48±0.289 0.28±0.067 0.27±0.068 

P36955 Pigment epithelium-derived factor 0.50±0.562 0.21±0.033 0.47±0.015 

P04004 Vitronectin 0.51±0.261 0.47±0.120 0.73±0.162 

P27169 Serum paraoxonase/arylesterase 1 0.53±0.627 0.08±0.028 0.05±0 

P02751 Fibronectin 0.53±0.349 0.15±0.053 0.45±0.171 

P09871 Complement C1s subcomponent 0.54±0.376 0.74±0.258 0.39±0.142 

P02656 Apolipoprotein C-III 0.60±0.334 0.47±0.093 0.79±0.120 

P43652 Afamin 0.60±0.506 0.14±0.036 0.21±0.067 

P00736 Complement C1r subcomponent 0.63±0.747 0.71±0.244 0.69±0.248 

P02749 Beta-2-glycoprotein 1 0.64±0.325 0.54±0.125 0.56±0.221 

P02753 Retinol-binding protein 4 0.72±0.690 1.19±0.161 0.96±0 

P10909 Clusterin 0.73±0.762 0.48±0.089 0.90±0.475 

P02649 Apolipoprotein E 0.76±0.489 0.75±0.162 1.00±0.525 

P13645 Keratin  type I cytoskeletal 10 0.06±0 0.00±0.006 N.O. 

P20742 Pregnancy zone protein 0.08±0 0.01±0.01 N.O. 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P05090 Apolipoprotein D 0.11±0.047 0.04±0.002 N.O. 

O75882 Attractin 0.07±0.046 0.04±0.014 N.O. 

P04180 
Phosphatidylcholine-sterol 
acyltransferase 0.10±0.003 0.05±0 N.O. 

Q15582 
Transforming growth factor-beta-
induced protein ig-h3 0.10±0 0.05±0.002 N.O. 

Q15848 Adiponectin 0.07±0 0.05±0.012 N.O. 

P06276 Cholinesterase 0.17±0 0.05±0.010 N.O. 

P20851 C4b-binding protein beta chain 0.16±0.049 0.08±0 N.O. 

P14151 L-selectin 0.08±0 0.08±0.010 N.O. 

P22352 Glutathione peroxidase 3 0.10±0.028 0.08±0.034 N.O. 

O43866 CD5 antigen-like 0.11±0.029 0.09±0.052 N.O. 

P08519 Apolipoprotein(a) 0.33±0.200 0.09±0 N.O. 

P15169 Carboxypeptidase N catalytic chain 0.16±0.036 0.09±0.009 N.O. 

P05452 Tetranectin 0.10±0.006 0.10±0.016 N.O. 

P01591 Immunoglobulin J chain 0.15±0.126 0.11±0 N.O. 

Q16610 Extracellular matrix protein 1 0.16±0.049 0.12±0.032 N.O. 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P43251 Biotinidase 0.09±0 0.13±0.024 N.O. 

P02647 Apolipoprotein A-I 0.16±0.029 0.14±0.061 N.O. 

P04003 C4b-binding protein alpha chain 0.18±0.033 0.14±0.031 N.O. 

P23142 Fibulin-1 0.12±0.018 0.16±0.032 N.O. 

P03952 Plasma kallikrein 0.23±0.067 0.16±0.052 N.O. 

P35542 Serum amyloid A-4 protein 0.16±0.026 0.16±0.052 N.O. 

P07225 Vitamin K-dependent protein S 0.26±0.131 0.17±0.025 N.O. 

P10643 Complement component C7 0.20±0.087 0.19±0.029 N.O. 

Q04756 Hepatocyte growth factor activator 0.24±0.076 0.19±0.032 N.O. 

P05160 Coagulation factor XIII B chain 0.27±0.071 0.23±0.086 N.O. 

Q13790 Apolipoprotein F 0.16±0 0.23±0.037 N.O. 

Q96KN2 Beta-Ala-His dipeptidase 0.08±0 0.24±0.038 N.O. 

Q03591 Complement factor H-related protein 1 0.34±0.105 0.26±0 N.O. 

P48740 Mannan-binding lectin serine protease 1 0.28±0 0.27±0.065 N.O. 

P07357 Complement component C8 alpha chain 0.46±0.443 0.28±0.062 N.O. 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P04114 Apolipoprotein B-100 0.48±0.268 0.28±0.064 N.O. 

Q9UGM5 Fetuin-B 0.27±0.159 0.31±0.110 N.O. 

Q06033 
Inter-alpha-trypsin inhibitor heavy chain 
H3 0.36±0.130 0.32±0.053 N.O. 

P18428 Lipopolysaccharide-binding protein 0.33±0 0.33±0.107 N.O. 

Q96IY4 Carboxypeptidase B2 0.19±0 0.33±0.047 N.O. 

P17936 
Insulin-like growth factor-binding 
protein 3 0.10±0 0.34±0.100 N.O. 

P02743 Serum amyloid P-component 0.29±0.099 0.39±0.156 N.O. 

P55056 Apolipoprotein C-IV 0.16±0 0.39±0.053 N.O. 

Q08380 Galectin-3-binding protein 0.15±0.083 0.45±0.233 N.O. 

Q14520 Hyaluronan-binding protein 2 1.74±2.668 0.46±0.116 N.O. 

P02654 Apolipoprotein C-I 0.68±0.176 0.48±0.226 N.O. 

Q9UK55 Protein Z-dependent protease inhibitor 0.05±0 0.49±0.117 N.O. 

P02655 Apolipoprotein C-II 0.20±0 0.55±0.179 N.O. 

P00740 Coagulation factor IX 0.17±0.032 0.56±0.172 N.O. 

Q5D862 Filaggrin-2 0.08±0 0.64±0 N.O. 
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Protein 
Accession 
Number 

Protein Number DeuteRater-
H Rate 

Lam et al2 
Rate 

Price et al3 
Rate 

P36980 Complement factor H-related protein 2 0.64±0.682 1.08±1.025 N.O. 

O95445 Apolipoprotein M 0.41±0.330 1.33±0 N.O. 

O14791 Apolipoprotein L1 0.13±0.026 1.42±1.277 N.O. 
 

4.6 Discussion 

 We created DeuteRater-H, a version of DeuteRater adjusted for human kinetic 

proteomics.  The program calculates protein turnover rates on a proteome scale.  We have 

enabled the use of multiple equations for deuterium enrichment fits, and have enabled the 

calculation of protein turnover rates from multiple metrics in humans, as we have previously 

done for our DeuteRater software tool1.  The program is free to use, user-friendly and can 

calculate large numbers of protein turnover rates at a time.   

 However, there are still problems to address before DeuteRater-H is ready for release.  

The main problem is justifying then novel nature of DeuteRater-H as an improvement on 

previously published methods.  Work is ongoing to demonstrate that the use of multiple metrics 

are useful in kinetic calculations.  

4.7 Future Directions 

4.7.1 Computational Development 

 The main changes that need to be made to DeuteRater-H are more comparisons to 

confirm that multiple metrics are useful.  I will also create an executable file to make it easier for 
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other labs to use DeuteRater-H.   As soon as these steps are accomplished, DeuteRater-H will be 

ready for distribution.   

4.7.2 Biology 

 Once the DeuteRater-H program is complete and confirmed to function, the data from the 

experimental subjects must be analyzed in more detail.  Muscle, buffy coat and red blood cell 

samples from the experimental subjects must be analyzed to calculate protein turnover rates.  

Once we have a database of healthy protein turnover rates, we will design experiments with 

subjects who have diseases so turnover rates may be compared between healthy and sick 

conditions.  Such a comparison could provide a turnover rate based biomarker or an improved 

understanding of the disease state.  These diseases include mitochondrial dysfunction or age 

relating wasting of muscle tissue.   

An area of exploration is the difference observed between the male and female subjects.  

Previous studies have reported that males and females have significant differences in protein 

turnover rates10.  It will be an important test to see if we observe the same effect. 
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5. Short-Term Calorie Restriction Elicits Nutrient-Specific Post-Transcriptional 

Regulation of Proteostasis 

5.1 Chapter Summary 

 Like the previous chapter, this work has not been published, though some of the mice 

from these experiments were used for the papers presented in the chapters “DeuteRater: a Tool 

for Quantifying Peptide Isotope Precision and Kinetic Proteomics” and “Mechanisms of in vivo 

Ribosome Maintenance Change in Response to Nutrient Signals”.  The goal of this work was to 

combine kinetic proteomics with other methods to create a workflow that can solve biological 

questions. 

5.1.1 Authors in Order of Contribution 

Bradley C. Naylor*, Richard Carson*, Monique Speirs, Nathan Keyes, Ryne Peters, 

Brittany Johnson, Stephen Ames, Benjamin T. Bikman, Jonathan T. Hill, John C. Price 

* These authors contributed equally to this work 

5.1.2 Contributions of Major Authors 

For this work, I led the mouse work on the high protein diet, the kinetic proteomic 

analysis, and the quantitative proteomics analysis.  My co-first author, Richard Carson, led the 

mouse work on the low protein diet, the RNA-Seq work, and the combination of the datasets.  
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5.2 Abstract 

 Biological aging seems to be primarily driven by a loss of protein homeostasis 1,2.  For 

over 100 years it has been known that dietary signals can change the rate of aging3,4.  We, and 

others, therefore have concluded that the rate of protein homeostasis loss can be slowed by 

dietary interventions.   Several very insightful investigations into protein homeostasis have 

utilized luciferase or similar reporters as genetic reporters to identify important differences 

between long lived and short lived animals1,2.  Further insight into the regulation of protein 

homeostasis would benefit from measuring individual synthesis and degradation rates for each 

protein in the proteome systems wide measurement to identify how protein specific regulation of 

these processes contributes to the maintenance or loss of protein homeostasis.  

5.3 Introduction 

 Cells are not simple nor static.  They constantly change in response to their needs and 

various external stimuli.  Healthy cells monitor and modify these changes with exquisitely fine 

control.  Loss of control is the basis for many of the untreatable diseases plaguing society today.  

Control of protein quality and concentration in the cell is termed proteostasis.  Synthesis, folding, 

and degradation of each protein in the cell need to be controlled in order for protein homeostasis 

to be maintained.  Loss of proteostasis is the root cause of aging1,5-8, cancer9-11, and 

neurodegeneration12-15.    Loss of proteostasis is often observed by dramatically changing protein 

concentrations.  Concentration control occurs through the careful balance of synthesis and 

degradation.  In fact, the classic model for change in protein concentration includes the rates of 

synthesis and degradation (Equation 5-1). 

𝑑𝑑[𝑃𝑃𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠]
𝑑𝑑𝑑𝑑

= 𝑘𝑘 𝑃𝑃𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ𝑑𝑑𝑠𝑠𝑟𝑟𝑠𝑠

[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] −  𝑘𝑘 𝑃𝑃𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑟𝑟𝑟𝑟𝑠𝑠

[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] − 𝑘𝑘 𝐶𝐶𝑑𝑑𝑎𝑎𝑎𝑎
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠

[𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑚𝑚𝑃𝑃]      (5-1) 
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In terminally differentiated cells as found in the majority of human tissues we can assume 

the kdivision is essentially zero.  Which means that changes in concentration are due to the 

difference in synthesis rate versus the degradation rate.  Methods for measuring protein 

concentration in vivo are well developed16,17 using mass spectrometry relative and absolute 

concentrations can be measured for thousands of individual proteins in a biological sample.  

Measuring concentration changes over time though is not sufficient to be able to know what is 

happening with synthesis and degradation.  For example, concentration may go up in a condition 

but that increased concentration may be the result of an increase in protein synthesis or a 

decrease in degradation rates. 

The replacement (turnover) rates of each protein are also controlled by the individual 

synthesis and degradation rates.  We and others have recently developed methods to monitor 

protein turnover rates for thousands of individual proteins in vivo18-22.  Canonically, turnover can 

be described as the average of synthesis and degradation rates (Equation 5-2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑃𝑃𝑃𝑃 (𝐷𝐷𝐷𝐷𝐷𝐷−1) = (𝑘𝑘 𝑃𝑃𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠 
𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑ℎ𝑑𝑑𝑠𝑠𝑟𝑟𝑠𝑠

 ([𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]) + 𝑘𝑘 𝑃𝑃𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑟𝑟𝑟𝑟𝑠𝑠

 ([𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]))/2        (5-2) 

Although changes in turnover are indicative of changes in synthesis and degradation, it is 

not known which component (synthesis or degradation has changed).  For example, slowed 

turnover could result from synthesis, degradation, or both slowing.  The combination of change 

in turnover and change in concentration is needed to identify whether synthesis or degradation is 

primarily changed between control and experimental conditions for a given protein or group of 

proteins.     
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Figure 5-1 Experimental Workflow. Mice were fed experimental diets for 10 weeks and then labeled with 
D2O.  The mice were then sacrificed at various time-points throughout the following month.  Liver was 
taken and prepared for various analyses.  Some had the RNA extracted for RNA-Seq, while the rest was 
fractionated for Kinetic Proteomics or mixed with SILAC standard for Quantitative Proteomics 

 In order to analyze changes in proteostasis we used RNA-Seq, Quantitative Proteomics, 

and Kinetic Proteomics, which measure mRNA quantity, protein quantity and protein turnover 

rate respectively (Figure 5-1).   With protein concentrations and turnover rates determined we 

were able to determine how any measured protein was regulated (synthesis, degradation or both) 

while the mRNA showed into where the regulation occurred and why. 

 To analyze changes in proteostasis we chose dietary restriction (DR) as a model.  DR 

involves feeding an organism reduced amounts of food, and extends lifespan substantially3,4.  

Using DR as our test intervention offers two large advantages:  First, DR has been studied for 

decades, and has had multi-omics studies with quantitative and kinetic Proteomics performed 

previously5,20, which provides a baseline for comparisons.  Second, in those decades of study, 
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several disruptions to DR have been found.  Different genotypes and mutations can prevent DR 

from prolonging life 23,24.  Different dietary compositions and additives can disrupt DR 25,26.  We 

can analyze DR disruptions to determine if the disruption is affecting only specific pathways or 

affecting the proteome in a more general way.  By providing insight into what is disrupted, we 

may identify mechanisms of DR’s beneficial effects.  We chose to use diets with different 

protein levels for this study due to the ease of performing the disruption.  Previous work has 

shown that high protein content in a diet can disrupt beneficial DR effects such as insulin 

sensitivity26.  Low protein (LP) and High protein (HP) chows were used and each diet had an ad 

libitum (AL) and DR cohort.   

 We show that a high protein DR diet undoes the global decrease in protein turnover rates 

and protein quantitation observed in canonical DR.  We also show that this change is driven by 

post-transcriptional control of proteins.  Finally, we suggest a method of proteostatic control that 

may be at work in DR.  In the future, we will determine other biological pathways associated 

with this change, and perform follow up experiments to confirm our observations. 

5.4 Methods 

5.4.1 Animal Handling 

5.4.1.1 Mouse housing, genotype, and diet  

 Mouse diets, housing, and metabolic labeling were performed according to protocols 

approved by the Institutional Animal Care and Use Committee of Brigham Young University.  

Ten-week-old C57/Bl6 male mice were purchased from Charles River Laboratory.  They were 

stored in a pathogen free facility for the duration of the experiment.  Mice were fed an AL diet 

for one week after arrival to acclimate to the facility.  Mice were then randomly divided into AL 
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or DR groups.  Mice were housed separately to ensure equal access to food.  AL animals had 

constant access to food, while DR animals were fed daily a pellet of 3g ± .1g in size (65% of 

expected AL consumption).  The HP diet was Harlan 8604 chow; the LP diet was NIH31 chow. 

5.4.1.2 Metabolic Labeling 

At 10 weeks, the mice were given an intraperitoneal bolus injection of sterile D2O saline 

at 35 µL/g body weight.  This injection brought the mice up to 5% Molar Percent Excess (MPE) 

deuterium as previously described20.  Mice were then provided drinking water containing 8% 

MPE to maintain the 5% MPE in the animals’ body water. 

5.4.1.3 Euthanasia and Sample Collection 

Mice were anesthetized with CO2 and then euthanized by cardiac puncture.  Mice were 

then immediately dissected and all tissues except for blood were flash frozen on solid CO2 and 

then stored at -80°C.  Blood was stored on ice until it could be centrifuged at 800 x g for 10 

minutes at 4°C.  The centrifugation separated serum and red blood cells, which were stored in 

separate containers at -80°C. 

5.4.1.4 Mouse Weight Determination 

Mice were weighed weekly on a laboratory scale.  The scale was tared using a sterile 

plastic bucket.  The mouse was placed within the bucket and weighed.  After weighing, mice 

were placed back in their cages.  Weighing was performed weekly during one of the daily 

feedings of DR animals, in order to minimize distress to the animals. 

5.4.1.5 Mitochondrial Respiration 

Fresh liver tissue was quickly removed from exsanguinated mice and immediately placed 

in ice-cold mitochondrial respiration buffer 05 (MiR: 0.5 mM EGTA, 10 mM KH2PO4, 3 
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mM MgCl2-6 H2O, 60 mM K-lactobionate, 20 mM HEPES, 110 mM Sucrose, 1 mg/ml fatty acid 

free BSA, pH 7.1) and trimmed of connective tissue. Tissue was gently separated and 

homogenized under a surgical scope (Olympus, ST) to particles of around 1 mg. Homogenate 

was then transferred to a tube with chilled MiR05 and 50 μg/ml saponin and rocked at 4 °C for 

30 min, then washed in MiR05 at 4 °C for at least 15 min before use. High-resolution 

O2 consumption was determined at 37 °C using the Oroboros O2K Oxygraph. Before addition of 

sample into respiration chambers, a baseline oxygen consumption rate was determined. After 

addition of sample, the chambers were hyperoxygenated to ∼350 nmol/ml. Following this, 

respiration was determined as indicated. Lastly, residual oxygen consumption was measured by 

adding antimycin A (2.5 μM) to block complex III action, effectively stopping any electron flow 

and providing a baseline O2 consumption rate. 

5.4.1.6 Differences between Cohorts 

LP and HP cohorts were purchased and treated at different times due to logistical 

concerns.  The LP AL and LP DR cohorts had 9 mice each.  The HP AL cohort had 19 mice and 

the HP DR cohort had 20 mice.  Due to the difference in cohort size, sacrifice times were 

different.  Two LP animals from each diet were sacrificed at 1 day, 3 days, 9 days and 27 days 

after bolus D2O injection, with one animal from each group sacrificed without receiving a bolus 

injection or any other D2O labeling.  The HP mice had two animals sacrificed at 9 hours, 1 day, 2 

days, 4 days, 8 days, 16 days, and 32 days post injection, with the 4, 8 and 32 day time-points 

each having a third sacrifice and 2 mice per cohort sacrificed without deuterium injection.  The 

HP DR’s extra mouse was sacrificed with no bolus injection. 
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5.4.2 Kinetic Proteomic Analysis 

5.4.2.1 Measurement of MPE 

For animals in LP cohorts, serum was distilled to measure MPE as described in Chapter 

“Mechanisms of in vivo Ribosome Maintenance Change in Response to Nutrient Signals”.  For 

animals in HP cohorts the serum and 100 mg of liver homogenate (made using MP Biomedicals 

FastPrep-24 bead beater) were used.  These samples were distilled at 90°C overnight and the 

distillate collected.  In both LP and HP, the following steps were identical.  The distillate was 

diluted 1:300 in ddH2O, and MPE of deuterium was directly measured against a D2O standard 

curve using a cavity ring-down water isotope analyzer (Los Gatos Research [LGR], Los Gatos, 

CA, USA) according to the published method 27. 

5.4.2.2 Trypsin Digestion 

Liver tissue from each animal was placed in Ammonium Bicarbonate (ABC) solution (25 

mM, pH 8.5) along with protease inhibitor cocktail (Sigma) and was homogenized using a MP 

Biomedicals FastPrep-24 bead homogenizer at 6 m/s for 60 seconds.  Volumes were calculated 

to give approximately 10 mg/mL protein.  Protein concentration was measured using a 

bicinchoninic acid (BCA) protein assay (Thermo Fisher).  300-500 µg of protein were placed on 

30 kDa centrifugal filters (VWR).  100 µL of guanidine (6 M, 100 mM Tris-HCl pH 8.5) was 

added to each sample and centrifuged at 14,000g for 15 minutes.  Another wash with guanidine 

(same volume and centrifuge settings) was performed.  Flow-through was discarded.  100 µL of 

guanidine was added to the filters, and the solution was brought to 10 mM dithiothreitol.  The 

filters with sample were placed in a sand bath at 60 °C for 60 minutes.  After 5 minutes of 

cooling, the samples were brought to 20 mM iodacetamide.  The samples were then incubated in 

the dark for 60 minutes.  Afterwards, the samples were centrifuged at 14,000g for 15 minutes.  
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200 µL ABC was added to the filters, which were spun at 14,000g for 15 minutes.  After a 

second ABC wash (same volume and centrifuge settings), ABC was added to the filters to a final 

volume of 300 µL.  Collection vials were emptied and cleaned.  Pierce MS-Grade Trypsin was 

added to a 1:50 (w:w) in each sample, which were incubated at 37°C overnight.  The next 

morning, samples were centrifuged at 14,000 g for 30 minutes.  100 µL of ABC was added to the 

filters and they were centrifuged again for 30 minutes at 14,000 g. Filters were discarded and the 

filtrate was dried using a Speedvac (Sorval) vacuum centrifuge.  The dried samples were stored 

at 4°C until use.  

5.4.2.3 HPLC Fractionation 

Samples were re-suspended in 10 mM ammonium formate (LC-MS grade pH 9.5).  

Samples were fractionated using high pH C18 High Performance Liquid Chromatography 

(HPLC), which is orthogonal to low pH C18 chromatography used in “LC-MS Data Acquisition” 

allowing for improved protein coverage 28. Fractionation was performed using the 1260 HPLC 

Infinity (Agilent) and the Gemini 50 x 2.00 mm C18 column with 3µm beads and 110 angstrom 

pore size.  Peptides were eluted using a 10 mM ammonium formate (pH 9.5) H2O/acetonitrile 

gradient from 3% B to 60% B over 40 minutes flowing at 1 mL/min.  Buffer A was 97% H2O, 

3% acetonitrile, 10mM ammonium formate pH 9.5.  Buffer B was 10% H2O, 90% acetonitrile, 

10mM ammonium formate pH 9.5.  1 mL fractions were collected.  1 mL fractions were pooled 

into 8 fractions by pooling every 8th fraction.  For example, fractions 1, 9, 17, and 25 were 

pooled into one fraction.  Pooling was performed in this manner to spread out high abundance 

peptides to different fractions.  By spreading out peptides in this way, more coverage can be 

obtained within the dynamic range of the mass spectrometer.  It also ensured varied 

hydrophobicity of peptides within each sample allowing the chromatography for the LC-MS to 
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be most effective.  Pooled fractions were dried with a SpeedVac vacuum centrifuge (Sorval) then 

suspended in 200 µL of 80% acetonitrile and decanted into a mass spectrometry vial.  Samples 

were again dried with a SpeedVac vacuum centrifuge (Sorval) and suspended in 40 µL of 3% 

acetonitrile 0.1% formic acid (all LC-MS grade) for LC-MS analysis. 

5.4.2.4 LC-MS Data Acquisition 

As described previously, protein identification and kinetic acquisition were performed on 

an Agilent 6530 Q-ToF mass spectrometer coupled to a capillary nanoflow Agilent 1260 HPLC 

using the chipcube nano-spray source20,21.  Peptides were eluted from an Agilent C18 Polaris 

chip at 300 nL/min using an H2O-acetonitrile gradient acidified to pH 4 by Pierce LC-MS grade 

formic acid.  Buffer A was 3% acetonitrile, 0.1% formic acid.  Buffer B was 97% acetonitrile, 

0.1% formic acid.  The elution gradient was as follows: 0 minutes, 100% A; 0.1 minutes, 95% A; 

27 minutes, 40% A; followed by high percentage B column washing and low percentage B re-

equilibration.  The Agilent 6530 Q-ToF mass spectrometer was run in 2 Ghz high dynamic range 

mode.  Protein identification runs were performed in MS/MS mode using collision-induced 

dissociation with nitrogen gas.  MS and MS/MS data were collected at a maximum rate of 4 

spectra/second with CID fragmentation on the top 10 most abundant precursors.  Dynamic 

exclusion was set to 0.2 minutes.  Kinetic acquisitions were performed in MS only mode and 

collected at 1 spectra/second.  MS only mode increases signal intensity, improves signal-to-

noise, and gives more scan points per elution chromatogram, greatly enhancing isotopomer 

analysis accuracy.  Data were also collected on an Orbitrap Fusion-Lumos mass spectrometer.  

Samples were resuspended in 0.1% formic Acid (Pierce LC-MS grade) in H2O (Optima grade 

Thermo Fischer).  Samples were analyzed with a Thermo Lumos Tribrid (Orbitrap).  Tryptic 

peptides were separated using a reverse phase C18 column (Acclaim PepMap™ 100) and a 
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Thermo Easy-Spray source.  Mobile phase for the liquid chromatography was 0.1% formic acid 

in H2O (Buffer A) and 0.1% formic acid in 80% acetonitrile (Optima grade Thermo Fischer) 

with 20% H2O (Buffer B) on an Easy-nLC 1200 HPLC system.  Samples were eluted using a 

gradient of 5% B to 22% B over 85 minutes, 22% to 32% B over 15 minutes, with a wash of 

32% to 95% B over 10 minutes, which was held at 95% B for 10 minutes.  Sample loading and 

equilibration were performed using the HPLC’s built-in methods.  MS only runs were performed 

using 2400 V in the ion source, 60000 resolution with a scan range of 375-1700 m/z, 30% RF 

Lens, Quadrupole Isolation, 8 *10^5 AGC Target and a maximum injection time of 50 ms.  

MS/MS scans were performed using the same settings as used for MS only scans with 3 seconds 

allowed per MS/MS after each MS scan.  The  following filters were used: peptide monoisotopic 

peak determination, an intensity threshold of 5*10^3, fragmentation limited to charge states +2 

to +6, with an error tolerance of 10 ppm high and low, and isotopes excluded.  Dynamic 

exclusion allowed fragmentation of any peak once every 60 seconds.  The fragmentation scan 

used an isolation window of 1.6 m/z, CID fragmentation with an energy of 30%, detection in the 

linear ion trap in Rapid Scan mode with a AGC target of 1*10^4, a maximum injection time of 

35 milliseconds and used the “Inject Ions for All Available Parallelizable Time” option. 

5.4.2.5 Protein Identification 

Peak lists obtained from MS/MS spectra were identified using Mascot version 2.2.04, 

OMSSA version 2.1.9, X!Tandem version X! Tandem Sledgehammer (2013.09.01.1), MS-GF+ 

version Beta (v10282), Comet version 2016.01 rev. 2 and MyriMatch version 2.2.140. The 

search was conducted using SearchGUI version 3.2.729. 

Protein identification was conducted against a concatenated target/decoy version of the 

Mus musculus complement of the UniProtKB (Created September 2016 , 16806 (target) 
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sequences). The decoy sequences were created by reversing the target sequences in SearchGUI. 

The identification settings were as follows: Trypsin, Specific, with a maximum of 2 missed 

cleavages 10.0 ppm as MS1 and 0.5 Da as MS2 tolerances; fixed modifications: 

Carbamidomethylation of C (+57.021464 Da),  variable modifications: Oxidation of M 

(+15.994915 Da), Pyrolidone from Q (--17.026549 Da), Acetylation of protein N-term 

(+42.010565 Da), Pyrolidone from E (--18.010565 Da), Pyrolidone from carbamidomethylated C 

(--17.026549 Da), fixed modifications during refinement procedure: Carbamidomethylation of C 

(+57.021464 Da).    

Peptides and proteins were inferred from the spectrum identification results using 

PeptideShaker version 1.15.130. Peptide Spectrum Matches (PSMs), peptides and proteins were 

validated at a 1.0% False Discovery Rate (FDR) estimated using the decoy hit distribution. All 

validation thresholds are listed in the Certificate of Analysis available in the supplementary 

information. Post-translational modification localizations were scored using the D-score and the 

phosphoRS score with a threshold of 95.0 as implemented in the compomics-utilities package.  A 

phosphoRS score above was considered as a confident localization.  

 After protein identification, identification files and the MS-only mass spectrometry data 

were analyzed with the DeuteRater software package 18.  DeuteRater provided the protein 

turnover rates used for later analyses. 

5.4.2.6 Homology Analysis 

Due to sample fractionation and biological variability, some peptide sequences were 

assigned to different homologous proteins in different experimental groups.  To address this, all 

identifications for every sequence within kinetic proteomics data sets were identified.  
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Homologous sequences had the accession numbers combined to indicate uncertainty in the 

identification.  DeuteRater analysis was then redone to create homology corrected rates. 

5.4.2.7 Filtering Data 

Kinetic data required filtration to remove data with extreme outliers or other issues.  The 

kinetic proteomics data comes from a curve fit of relevant data, so all curves with an R2 less than 

0.5, or with 95% confidence interval/ rate value less than 0.2 were removed from further 

analysis.  The confidence interval was divided by the turnover rate to normalize error to the 

measured value.   

5.4.3 Quantitative Analysis 

5.4.3.1 Homogenization, Trypsin Digest, and HPLC fractionation 

A mouse liver labeled according to a Stable Isotope Labeling by Amino Acids in 

Mammals (SILAM) (Lys 6C13, Cambridge Isotopes) was purchased and homogenized as 

described in the “Trypsin Digestion” section above.  We mixed 150 µg of protein from the 

SILAM homogenate with 150 µg protein from the sample homogenate.  We used 3 replicates 

from each dietary group.  Due to isotopic shifts caused by D2O labeling creating difficulties in 

peptide identification, only animals within one day of intraperitoneal injection, or those that 

received no injection, were used for this experiment.  The mixtures of SILAM and sample 

homogenates were prepared identically to those described within the “Kinetic Proteomic 

Analysis” section until mass spectrometry analysis. 

5.4.3.2 Mass Spectrometry Analysis 

Samples were re-suspended to 1 µg/µL in .1 % formic acid.  Samples were analyzed on a 

Thermo Lumos Tribrid instrument paired with a Thermo Easy-nLC 1200 HPLC.  Solvent A was 

.1% formic acid 100% water, Solvent B was .1% formic acid, 80% ACN 20% water.  All 
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solvents were LC-MS grade.  Gradient was as follows: 0-45 minutes was 5-45 % Buffer B, 45-50 

minutes 45-100 % Buffer B, 50-60 minutes 100 % Buffer B.  The MS scans were collected at 

60,000 Resolution, with 20 MS/MS scans between MS scans.  MS/MS fragmentation was done 

with a 1.6 m/z isolation window, CID fragmentation with 28% fragmentation energy.  Fragment 

ions were measured in the Linear Ion Trap with the “Normal” resolution setting. 

5.4.3.3 Data Analysis 

Data from the mass spectrometry analysis was analyzed using the MaxQuant software 

package31.  All data was analyzed at the same time, with each dietary group analyzed as a single 

experimental group.  Constant modifications were carbamidomethylation for cysteine. Variable 

modifications allowed were oxidation of methionine and acetylation of the N-terminus.  The 

identification database was the same as that used for the kinetic analysis.  Lys6 was added as a 

heavy label, all other settings were left at default.  Unlabeled divided by labeled signal intensities 

were determined and used to determine amounts of peptide in the sample relative to the SILAM 

standard.  The relative peptide abundances could then be compared between samples. 

5.4.4 RNA-Seq 

We used the Direct-zol RNA MiniPrep Plus kit from Zymo Research to extract RNA 

from liver tissue of all animals in this study.  Briefly, 10-20 mg of frozen liver tissue from each 

mouse was processed using a Trizol extraction and the resulting RNA frozen at -80°C.  Since we 

wished to identify changes in the transcriptome that resulted only from dietary differences, RNA 

from three different mice in the same dietary cohort (but sacrificed at different times) were 

pooled to form a single sample for RNA-Seq, thus masking any differences resulting from 

temporal variations.  There were three pools per dietary cohort, containing RNA from three mice 

each.  Sample volumes were adjusted to obtain a concentration of 4µg total RNA in 50 µL of 
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RNase-free water, and submitted to the BYU Sequencing Center.  The BYU Sequencing Center 

constructed cDNA libraries after a poly-A pull-down to enrich for mRNA, and then sequenced 

them using an Illumina HiSeq 2500 sequencing platform.  RNA-Seq bam files were analyzed in 

R using the DESeq2 package in Bioconductor 3.3 from Bioconductor.org32, downloaded October 

20, 2016. 

5.4.5 Multi-omics Data Analysis 

5.4.5.1 Differential Expression Determination 

Turnover rate data, quantitative MS data, and RNA-Seq data were first filtered in this 

fashion:  Protein/Gene IDs were matched between all dietary groups.  Any proteins/gene IDs that 

were not common to all four diets were excluded from further analysis.  95% confidence 

intervals were then calculated for each measurement based on data output from DeuteRater, 

MaxQuant, and DESeq2, for protein turnover data, quantitative data, and RNA-Seq data 

respectively.  Using R scripts, proteins/genes that were significantly different between diets were 

identified by analyzing overlap between mean values and confidence intervals: in order to be 

considered different between diets, the mean value of one diet had to lie outside of the 

confidence interval of the other compared diet, and vice-versa.  Any that failed this test were 

labeled as matching, and assigned a value of zero difference.  Permutation tests to guard against 

false discovery are in process.  For comparison between kinetic, quantitative, and RNA-Seq data, 

any protein that did not occur in all three sets was excluded from analysis.  For LP and HP diet 

comparisons, proteins were excluded if they were not observed in both dietary data sets.  

Graphical output of the data was performed using JMP12, Microsoft Excel, and RStudio (version 

0.99.903). 
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5.4.5.2 Gene Ontology Analysis 

Ontology groupings were determined using DAVID 33,34; proteins/genes were separated 

into three general categories: “up,” “equal,” and “down” according to whether the ratio of DR to 

AL was greater than one, equal to one, and less than one, respectively.  These categories were 

determined using the non-overlapping confidence interval test described in the “Differential 

Expression Determination” section.  Ensembl IDs from RNA-Seq data were translated to 

UniProt accession numbers prior to ontology analysis.  Gene ontology output from DAVID used 

background groups comprised of all categories combined together.  Ontology groups with 

Benjamini coefficients less than or equal to 0.05 were retained for analysis; all others were 

disregarded. 

5.4.5.3 RNA-Motif Analysis 

RNA motif analysis was performed using the HOMER motif analysis tool35 in order to 

detect translational preference due to RNA sequence motifs in the mRNA.  Output from 

HOMER was processed using in-house R scripts. 

5.5 Results 

5.5.1 High Protein Diet Elicits Canonical Phenotypes 

   Mice were weighed throughout the experiment to ensure the health of the animals, and 

to analyze differences in the diets (Figure 5-2 Panel A).  We also analyzed the effect of different 

diets on mitochondrial respiration immediately following euthanasia (Figure 5-2 Panel B-C).  

The results of both of these tests show that DR is different from AL in phenotypic ways, 

decreasing in both weight and mitochondrial oxygen consumption.  HP-DR evidences more 

severe weight loss relative to its control than LP-DR, even though the AL groups are very 

similar.  This indicates a disruption of some part of the DR phenotype caused by higher dietary 
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protein.  However, the effect of different amounts of protein in DR on a cellular level required 

more in-depth analysis to determine. 

Figure 5-2 Comparison of Weight and Mitochondrial Respiration. Panel A is a comparison of mouse 
weights over the course of the experiment.  Each animals’ weight was normalized to its weight at the 
start of the experiment.  Each point on the graph represents an average of the normalized data at that 
time-point.  The AL dietary groups are nearly identical.  In both DR groups, weight decreases 
immediately and eventually increases, but the relative decrease is far larger in HP-DR than LP-DR.  
Panel B represents the mitochondrial use of oxygen in various conditions.  Leak is the mitochondria 
at rest with oxygen, ATP is the addition of ADP and oxygen to show function of the Electron 
Transport Chain other than complex 2, and the Succinate effect shows complex 2 added to the rest of 
the Electron Transport Chain.  The AL seems to use more oxygen than DR in both diets.  HP-DR 
seems to use less oxygen compared to its AL than LP in all cases.  Panel C shows the relative 
efficiency of the ATP effect and the Succinate effect compared to mitochondrial leak.  The data 
suggests that the HP diets might have a slight increase in efficiency compared to LP, but the error is 
too high to be sure. 
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5.5.2 Protein make-up of diet affects DR globally  

 A key observation in previous studies of DR has been that DR slows average protein 

turnover rates and decreases the average protein quantity5,20.  Our study replicates these previous 

observations in our low protein groups (Figure 5-3 A and C).  In the high protein diet, DR does 

not have this effect, resulting in minimal change to global protein turnover rates between DR and 

its AL control (Figure 5-3, B and D).  This is important to the protein homeostasis hypothesis of 

DR.  This hypothesis states that the DR benefit to lifespan is the result of more time being spent 

on protein translation20.  The hypothesis is that the decreased demand on the protein translation 

machinery allows fewer mistakes and more time for the quality control machinery to work.  This 

change in turnover rate may be responsible for the phenotypic changes observed by other groups 

Figure 5-3 Rate and Turnover Comparison. Comparison of Protein turnover rates (A-B) and 
Quantitation (C-D).  If samples are identical, the fit line should have an approximate slope of 1, which 
is the case in High Protein Quantitation (Panel D, slope = .9845), and is a not far off in HP Turnover 
rates (Panel B, slope = .938).  For LP the slopes are far lower than in their HP counterparts(Turnover: 
Panel A slope =.7788, Panel C slope = .8699).  This indicates that the LP DR is far more different from 
its AL than the HP DR is from its AL. 
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26 but how the turnover rate and phenotypic changes influence each other has not yet been 

determined.  Our previous work20 and the literature36,37 have identified the strong connection 

between reduced mTOR signaling and the DR effect.  Conversely, it has been established that 

mTOR activity is directly connected to amino acid and in particular leucine concentration38,39.  

Therefore, the effect of the high protein diet may be, in part, to activation mTOR in spite of the 

reduced calorie diet.  This would have a direct impact on global synthesis and degradation rates. 

5.5.3 The Proteome is Controlled Post-Transcriptionally during DR 

 The RNA-Seq data showed remarkably little change regardless of dietary changes 

(Figure 5-4A).  This was particularly interesting considering there were statistically significant 

changes in quantitative and kinetic measurements both for individual proteins and globally in the 

LP diet (Figure 5-3 A and C).  This indicates that the observed changes to the proteome, and 

presumably the phenotypic benefits, of LP DR are regulated post-transcriptionally.   

Figure 5-4 Comparison of mRNA amounts. A comparison of DR mRNA (y-axis) counts to AL mRNA 
counts (x-axis) in both LP (Panel A) and HP (Panel B) diets.  A slope of 1 would indicate no change 
between the diets.  Since the slopes are very close to 1, it can be seen that there are no major differences 
within the diets in terms of mRNA amounts. 
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 In an effort to explain how this post transcriptional regulation occurs, we analyzed the 

RNA-Seq data for evidence that changes in protein concentration or kinetics are correlated with 

micro-RNA motifs, transcriptional activating factors, or other RNA motifs that are known to 

regulate mRNA longevity and translation.  These tests found no evidence of gene-specific 

control at this level.  This indicates that the post-transcriptional control is unlikely to be driven 

by RNA sequence based regulation.  Using the combination of turnover and concentration 

changes for each protein, we can identify the primary control mechanism for the mechanism of 

post-transcriptional regulation that is active during protein translation or degradation. 

 

Figure 5-5 Ontology Analysis of HP vs LP Diets. Venn diagram of the differences observed when LP and 
HP diets were compared.  Groupings were determined by the process described in “Gene Ontology 
Analysis” in the methods section.  Comparison is between DR and AL, so if an ontological group shows a 
red Up arrow under the RNA header, there is more mRNA from that group in DR than AL and vice versa.  
This figure demonstrates that there are clear differences between diets affecting important cellular 
pathways 



134 
 

5.5.4 Ontology Groupings 

 After the global protein trends were determined, we grouped proteins whose kinetics or 

concentrations responded in similar ways from the various diets and tested whether there was a 

statistically significant change in the concentration or kinetics for the proteins as a group.  

Significance of the change for the group was assessed by comparing to the background of all 

proteins observed.  The results of the ontology analysis are shown in Figure 5-5, with all results 

(up, down or unchanged) being a comparison of DR relative to AL.  Our ontology analysis 

demonstrated that some large functional categories respond similarly to DR regardless of dietary 

protein, such as mitochondria and the ribosome.  It should also be noted that the LP analysis 

showed more ontologies and more of those detected were changed compared to AL.  This fits 

with the global shifts in protein turnover rate and quantitation observed in LP diets but not in HP 

diets.   

5.5.5 Regulation can be Determined through Multi-Omics 

 By using our multi-omics approach, we have determined that changes in concentration 

and turnover of many proteins throughout the proteome during DR with added dietary protein are 

controlled post-transcriptionally.  Although mRNA concentrations were unchanged we observed 

that many proteins experienced a significant change in concentration.  The turnover rate decrease 

for the majority of observed proteins is consistent with previous literature20, and when compared 

against the change in concentration we can identify whether synthesis or degradation is primarily 

regulated under these conditions. 

In comparing LP to HP diets, we have determined that the HP disruption of LP DR 

extends to global proteome maintenance, expanding beyond the specific pathways previously 

observed26.  We have determined that the large decreases in protein turnover and quantity we and 
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others8,20 have observed in LP DR compared to its AL control are almost entirely lost during HP 

DR.   

5.5.6 Identification of Possible Regulatory Mechanism  

Our ontological analysis (Figure 5-5) indicated that one of the functional groups showing 

the greatest variation between HP and LP dietary restriction diets was translational 

machinery.  We hypothesized that a large-scale regulatory change in a protein functional group 

involved in translation could be responsible for the overall slowing of protein synthesis observed 

in LP dietary restriction.   The proteins involved in translational machinery were subdivided 

based on the general roles they fulfill during protein synthesis (e.g. ternary complex formation, 

ribosomal structure, tRNA charging), and analyzed for differences between HP and LP dietary 

restriction diets.  Of all of these subgroups, the most striking differences were found in the tRNA 

synthetases.  While the RNA-Seq data for these enzymes was unchanged, similar to the overall 

RNA-Seq trends, the concentration for many of the tRNA synthetases was significantly lower in 

LP-DR versus HP-DR diets (Figure 5-6).  When we compared the turnover rates, we observed 

that the majority of the synthetases were being turned over at a faster rate in LP diets, suggesting 

that these synthetases were undergoing higher degradation rates.  However, about one-third of 

the synthetases were being turned over at a slower rate in LP diets, indicating decreased 

synthesis.   

  It has been observed in previous studies that tight regulatory control over protein 

translation can be enacted through control of the amino acid-charged tRNA pool40-42.  Stimuli 

such as cellular stress43 and lack of nutrition44can cause significant changes in the amount and 

species of tRNA that are produced and charged with amino acids45.  By manipulating the amount 

of specific amino-acyl tRNAs, the cell could bias protein production to favor mRNA’s 
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containing specific codons, allowing the cell to quickly adjust to changing environmental 

conditions45,46.  However, although mechanisms in E. Coli and yeast40,41 have been studied, the 

methods the eukaryotic cells could use to cause such tRNA biases are not well understood.   

Our data suggest that liver cells may do this is by fine-tuned regulation of tRNA 

synthetase activity.  The quantity of a particular tRNA synthetase is expected to have a direct 

effect on the overall production rate of its amino-acyl tRNA; if the quantity of the charging 

enzyme goes down, we would expect the concentration of the corresponding amino-acyl tRNA 

to decrease as well.  This would have a wide-scale dampening effect on protein synthesis both 

through reduction of raw material provided to the ribosome, as well as through the Gcn2 

Figure 5-6 Analysis of tRNA Synthetases: When analyzing proteins involved in translation to find a post-
transcriptional control mechanism, we observed that concentrations of 18 out of 20 tRNA syntethases 
were significantly lower in LP-DR, but not HP-DR which could explain the slower general protein 
translation rate in LP.  The changes in turnover rates of the synthetases indicates differential regulation 
of the individual enzyme concentrations. 
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regulatory pathway, which responds to increasing amounts of uncharged cytosolic tRNA41 

(Figure 5-7). 

The change in tRNA synthetase regulation could be tied to changes in amino acid 

availability, which could logically cause decreased cytosolic concentration of tRNA synthetases 

through regulatory feedback mechanisms.  This could be tested by measuring free amino acid 

and tRNA concentrations in the tissue.  Also, direct measurement of the percentage of charged 

amino-acyl tRNA for all amino acids would test for a tRNA pool perturbation occurring as a 

result of differential dietary protein amounts.  The results of these experiments are expected to 

confirm whether alterations to the tRNA pool constitute a major cellular mechanism resulting in 

the phenotypic benefits observed with DR. 

5.6 Discussion 

 Using quantitative and kinetic proteomics, we have shown that we can simultaneously 

monitor regulation of synthesis and degradation of large numbers of individual proteins in vivo.  

This is particularly important in studying dietary restriction (DR) where RNA-Seq showed that 

the mRNA concentrations were remarkably unchanged by DR.  These results suggest that there 

is significant post-transcriptional regulation due to dietary changes for most of the proteome.  

This, along with data on weight and mitochondrial respiration, suggests a major change 

disruption of DR based on dietary protein level, as well as suggesting a possible mechanism for 

the disruption.  The HP DR animals may be attempting to maintain protein levels and turnover 

rates with less energy to do so.  Maintaining high protein turnover and concentration requires 

energy and raw materials.  Draining resources to try to maintain an AL proteome with DR 

resource levels could result in animals using more of their body weight as energy.  Furthermore, 

this changed energy response could also affect the mitochondria due to its role in metabolism.  
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Lending credence to this hypothesis, both the respiration data and ontology analysis suggest that 

mitochondria were remodeled as part of both DR phenotypes.  If the dietary protein creates strain 

on the mitochondria and the organism more generally, the changed energy requirements could 

undo the benefits of DR as observed by Solon-Biet, which includes reducing the lifespan back 

towards AL lifespan26,47.  Another hypothesis is that DR is beneficial because the lowered 

protein turnover permits greater quality control of the synthesized proteins 48.  If the dietary 

protein encourages increased protein turnover rates globally, the hypothesis predicts an AL-like 

phenotype should be observed.  Differentiating between these hypotheses, and identifying 

differences in signaling between the LP DR and HP DR diets requires further investigation. 

 A critical clue into the investigation of dietary signalling is the RNA-Seq data.  Neither 

DR treatment shows a significant change from AL, nor does protein level change the correlation 

between AL and DR.  This suggests that whatever DR or dietary protein are signaling to the cell, 

the signal is affecting the proteome after RNA is transcribed.  The logical control points would 

be the ribosome, which synthesizes all proteins, or the various protein degradation pathways.   

Our primary hypothesis currently is the global shift in homeostasis that occurs during DR 

is orchestrated in large part by control of the tRNA synthetase enzymes.  A reduction in the 

charging of tRNA would cause global shifts in protein synthesis by the ribosome (Figure 5-7).  

Interestingly, the relative charging percentage of tRNA is carefully monitored and is tied to the 

activity of the GCN2 kinase.  When uncharged tRNAs bind to GCN2 it acts immediately to 

repress translation by phosphorylation of eIF-2α at serine 51 within 15 min of amino acid 

deprivation49.  Therefore, the regulation of the tRNA synthetase enzymes may be a longer-term 

result of the initial GCN2 signaling.  Data suggests individual regulatory mechanisms for 

different tRNA synthetases, but we have not analyzed the individual mechanisms at this time.  In 
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the future, we will examine the amount of tRNA in the cells.  We will also attempt to observe 

quantity and phosphorylation state of various control proteins through more targeted mass 

spectrometry or immuno-affinity assays.   

 

5.7 Future Directions 

 Post-transcriptional control of the proteome in DR has been established, and dietary 

protein has been shown to undo the kinetic and quantitative changes traditionally associated with 

DR.  We have evidence that the tRNA synthetase enzymes are a potential pathway for control of 

Figure 5-7 Model of tRNA in DR.  Known model of tRNA synthetases control of protein translation.  
Our contribution to the model is the dietary control of the tRNA synthetases. 
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proteostasis due to dietary signaling.  We are in the process of measuring tRNA levels and 

charging to determine if differences in tRNA synthetase turnover and concentration are 

responsible, at least in part, for the proteostatic regulation in LP-DR that is undone by high 

dietary protein. 
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6. Conclusions 

 Kinetic proteomics is an emerging field with great potential.  Currently the need for 

specialized analysis tools hinders broad use of the technique.  I have led the development of tools 

that both advance the calculations and are user friendly.  By providing these tools, my team has 

helped researchers unfamiliar with kinetic proteomics enter the field without needing to invest 

months determining calculations and creating software tools, or needing to collaborate with one 

of the few labs created the necessary calculation software in house.  I have also led the group 

improving our DeuteRater tool to work on the more complicated calculations needed to perform 

kinetic proteomics in human subjects.  By improving on both our own and existing tools, we 

have the potential to extend human kinetic proteomics beyond one or two expert groups, and 

make the technique available to all scientists. 

 I have also contributed to our knowledge of biology by using kinetic proteomics.  

Working closely with other graduate students in the Price lab, I have been instrumental in 

proving ribosomal protein exchange in eukaryotes, and so a possible method of ribosomal 

maintenance.  Not only is ribosomal maintenance critical to normal functioning of the cell, but 

ribosomal maintenance may be responsible for dietary restriction’s (DR) beneficial effects on 

longevity observed in mice.  Finally, I worked closely other graduate students to determine 

global regulation of the proteome in normal DR and the disrupted state caused by adding dietary 

protein to DR.  While work is still necessary to confirm our findings, it is possible that this study 
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will shed needed light on the mechanism of DR in laboratory animals.  Hopefully, our findings 

can be translated into further discoveries in humans. 
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7. Future Directions 

 The main future directions for this work are preparing DeuteRater-H for distribution, and 

confirming the tRNA effect observed between High Protein and Low Protein DR.  These 

changes have been elaborated on in their respective chapters.   

Other future directions include analyzing the ribosome in other conditions.   A ribosomal 

disease or a different time in the lifespan of a mouse would provide insight into how different 

damage conditions affect ribosomal maintenance.  A similar effort could be performed with DR, 

examining how ribosomal maintenance changes in conditions that cause DR-like effects or are 

immune to DR, such as different dietary conditions or different genotypes.  Examining turnover 

in these models could determine if improved ribosomal maintenance is specific to DR, or is 

important to all metabolic lifespan extension mechanisms.  It would also be useful to determine 

ribosomal turnover in humans to see if the observations in mice translates to humans as well. 

Finally, in DeuteRater, a direction we have not explored is improving higher resolutions 

in the Orbitrap.  When using the highest resolution settings on the Orbitrap, both abundance and 

neutromer spacing decreased significantly in precision, accuracy, and number of proteins 

observed.  My hypothesis is that most of the problems at high resolution are caused by higher 

resolution scans requiring more time.  Instrument run time was identical for all instrument 

conditions, which likely resulted in fewer scans to average together in data analysis.  This lack of 

data points results in worse signal to noise compared to other resolutions with more scans per 

analysis run.  If that is the case, lengthening the time of the experimental gradient proportionally 



148 
 

to the scan time should correct the issue, and should theoretically drastically improve neutromer 

spacing metrics due to the increased resolution. 


