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ABSTRACT 

Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution  
Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and 

Ordered and Disordered Vacancies Thermodynamics 

Marko Popovic 
Department of Chemistry and Biochemistry, BYU 

Doctor of Philosophy 

Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 
discusses some important theoretical and practical aspects of entropy: what is entropy, is it 
subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents 
applications of entropy to evolution. Chapter 3 shows how cellulosic biofuel production can be 
improved. Chapter 4 shows how lattice vacancies influence the thermodynamic properties of 
materials. 

To determine the nature of thermodynamic entropy, Chapters 1 and 2 describe the roots, 
the conceptual history of entropy, as well as its path of development and application. From the 
viewpoint of physics, thermal entropy is a measure of useless energy stored in a system resulting 
from thermal motion of particles. Thermal entropy is a non-negative objective property. The 
negentropy concept, while mathematically correct, is physically misleading. This dissertation 
hypothesizes that concepts from thermodynamics and statistical mechanics can be used to define 
statistical measurements, similar to thermodynamic entropy, to summarize the convergence of 
processes driven by random inputs subject to deterministic constraints. A primary example 
discussed here is evolution in biological systems. As discussed in this dissertation, the first and 
second laws of thermodynamics do not translate directly into parallel laws for the biome. But, the 
fundamental principles on which thermodynamic entropy is based are also true for information. 
Based on these principles, it is shown that adaptation and evolution are stochastically deterministic.  

Chapter 3 discusses the hydrolysis of cellulose to glucose, which is a key reaction in 
renewable energy from biomass and in mineralization of soil organic matter to CO2. Conditional 
thermodynamic parameters, ΔhydG’, ΔhydH’, and ΔhydS’, and equilibrium glucose concentrations 
are reported for the reaction C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of 
temperature from 0 to 100⁰C. Activity coefficients of aqueous glucose solution were determined 
as a function of temperature. The results suggest that producing cellulosic biofuels at higher 
temperatures will result in higher conversion.  

Chapter 4 presents the data and a theory relating the linear term in the low temperature heat 
capacity to lattice vacancy concentration. The theory gives a quantitative result for disordered 
vacancies, but overestimates the contribution from ordered vacancies because ordering leads to a 
decreased influence of vacancies on heat capacity.  

Keywords: negentropy, Shannon entropy, information, order, disorder, Gibbs free energy, 
cellulose hydrolysis, lattice vacancies, heat capacity, samarium and neodymium doped ceria 
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1 ENTROPY WONDERLAND: A REVIEW OF THE ENTROPY CONCEPT 

1.1 Abstract  

The entropy concept was introduced in the mid-nineteenth century by Clausius and has been 

continually enriched, developed and interpreted by researchers in many scientific disciplines. The 

use of entropy in a wide range of fields has led to inconsistencies in its application and 

interpretation, as summarized by von Neuman “No one knows what entropy really is. (Tribus and 

McIrving, Scientific American, 1971, vol. 225, pp. 179-188)” To resolve this problem, 

thermodynamics and other scientific disciplines face several crucial questions concerning the 

entropy concept: (1) What is the physical meaning of entropy? (2) Is entropy a subjective or an 

objective property? (3) How to apply entropy to living organisms? To answer these questions, this 

chapter describes the roots, the conceptual history, as well as the path of development and 

application in various scientific disciplines, including classical thermodynamics, statistical 

mechanics and life sciences. This and the next three chapters discuss applications of the entropy 

concept to evolution, cellulose hydrolysis, and thermodynamics of lattice defects. 

Keywords: Thermal entropy; Residual entropy; Shannon entropy; Total entropy; Negentropy; 

Equilibrium thermodynamics; Nonequilibrium thermodynamics; Statistical mechanics; Life 

sciences. 

“I intentionally chose the word Entropy as similar as possible to the word Energy.” 

 Rudolf Clausius [1] 

“The law that entropy always increases holds, I think, the supreme position among the laws of 

nature…” Sir Arthur Eddington [2] 
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“Classical thermodynamics is the only physical theory of universal content which I am convinced 

will never be overthrown, within the framework of applicability of its basic concepts”  

Albert Einstein [3] 

1.2 Introduction – What is entropy? 

The entropy concept is frequently used in many scientific disciplines, including equilibrium 

and non-equilibrium thermodynamics [4, 5], statistical mechanics [6-9], cosmology [10], life 

sciences [11-15], chemistry and biochemistry [4, 16], geosciences [17], linguistics [18], social 

sciences [19, 20] and information theory [21]. The use of entropy in a diverse range of disciplines 

has led to inconsistent application and interpretation of entropy [22-25], summarized in von 

Neumann’s words: “Whoever uses the term ‘entropy’ in a discussion always wins since no one 

knows what entropy really is, so in a debate one always has the advantage” [24]. The situation has 

even been described as “unbelievable confusion” [22].  

The confusion stems from a lack of consensus among scientists on key aspects of entropy, 

including its physical meaning, philosophical nature and application to living organisms. The 

physical meaning of entropy is debated and has been interpreted as information missing to 

completely specify motion of particles [23, 26], as a measure of dispersal of energy [27], and as 

energy that cannot be converted into work [1, 28, 29] (see section 1.3). An important philosophical 

question about entropy is whether it is subjective [23, 30, 31] or objective [32-35], i.e., does it 

depend on or exist independently of an observer (see section 1.4). Finally, application of entropy 

to living organisms is analyzed, including the concept of negentropy, low entropy of living 

structures, and change in entropy of living organisms during their lifespans [36, 37] (see section 

1.5).  
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1.2.1 Entropy in Chemical Thermodynamics 

A thermodynamic system is the material content of a macroscopic volume in space (the rest of 

the universe being the surroundings). Systems are categorized as isolated (constant mass, constant 

energy), closed (constant mass, exchanges energy with the surroundings), or open (exchanges both 

mass and energy with the surroundings) [4]. A thermodynamic system is in a state defined by state 

variables, such as the amount of matter, volume, temperature, entropy, enthalpy, energy and 

pressure. Of particular importance is the state of thermodynamic equilibrium of a system where 

there is no net flow of energy or matter between parts of the system.  

The change in a thermodynamic state defines a thermodynamic process [4]. Thermodynamic 

processes are categorized into reversible and irreversible. In a reversible process, the system is 

infinitesimally out of (approximately in) equilibrium during the entire process [4]. The process can 

be reversed by an infinitesimal change in some property of the system or the surroundings. [4, 38]. 

In an irreversible process the system is not at equilibrium during the process. 

Entropy was introduced in the nineteenth century in an attempt to explain the inefficiency of 

steam engines. In 1803, Lazarus Carnot wrote that any natural process has an inherent tendency to 

dissipate energy in unproductive ways [39]. In 1824, His son, Sadi Carnot, introduced the concept 

of producing work from heat flow, with a limiting maximum efficiency [40]. Definition of the 

thermodynamic system and a corresponding thermodynamic cycle was key to developing 

thermodynamics. The Carnot cycle was the first ever thermodynamic generalization of an engine 

(Figure 1-1) and led to great improvement in steam engine efficiency.  

Thermodynamic cycles are indispensable in engineering because they allow analysis of the 

relationships among energy, heat, work and entropy. To help improve existing and invent new 
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engines, other thermodynamic cycles analogous to the Carnot cycle were developed. An example 

is the Otto cycle, which describes the working of gasoline engines used in cars (Figure 1-2). An 

analysis of the Otto cycle from the system perspective is shown in Figure 1-3. 

 

Figure 1-1:The Carnot cycle consist of four steps: isothermal expansion, adiabatic expansion, 
isothermal compression and adiabatic compression. The system undergoing the process is closed 
and contains only steam.  

Clausius [1, 28, 29] realized that the Carnots had found an early statement of the Second Law 

of Thermodynamics, also known as the entropy law [20], and was the first to explicitly suggest the 

basic idea of entropy and the second law of thermodynamics [1]. Entropy was introduced with the 

following summary statements of the first and second laws of thermodynamics “The energy of the 
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universe is constant; the entropy of the universe tends to a maximum.” [1]. Clausius defined change 

in thermodynamic entropy dS through heat exchanged in a reversible process Qrev and temperature 

at which the process happened T. 

𝑑𝑆 ൌ ௗொೝ೐ೡ

்
 (1) 

Equation (1) holds for a closed thermodynamic system performing a reversible process. Thus, TdS 

is the minimum amount of energy lost to the surroundings as heat in a reversible process. 

Irreversible processes are less efficient, so they dissipate even more energy as heat.   

 

Figure 1-2: The Otto cycle describes a gasoline automobile engine. (a) A T-s diagram shows the 
minimum heat that must be lost in the process through the surface enclosed by the process. (b) A 
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p-V diagram showing the maximum work that can be extracted by a reversible engine. (c) A p-V 
diagram showing the actual work extracted in a real engine. (d) A scheme showing the four stages 
in the Otto cycle: combustion and power, exhaust, intake and compression. (figure taken with 
permission from reference [37]). 

 

Figure 1-3: The Otto cycle describing a gasoline automobile engine. The system undergoing the 
Otto cycle is a mixture of hydrocarbons, oxygen and nitrogen, from intake to combustion, and 
CO2, water and nitrogen, from combustion to exhaust. 

In a reversible process, thermodynamic entropy of the universe is a conserved property (i.e., is 

constant) [4, 5, 37]. Entropy of the universe increases in an irreversible process [4, 5, 37]. Since 
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all spontaneous processes are irreversible, the entropy of the universe can only increase in time [8, 

40].  

From a macroscopic perspective, i.e. in classical thermodynamics, entropy is interpreted as 

a state function, that is, a property depending only on the current state of the system. The fact that 

entropy is generated in irreversible processes does not contradict entropy being a state function, 

because entropy can also be generated in the surroundings.  

If the system consists of only a single material, adding heat in an isobaric process changes the 

entropy of the material. Entropy of a material is thus related to the heat capacity of the material at 

constant pressure. Thermodynamic entropy S at a temperature τ can be calculated as a function of 

heat capacity at constant pressure Cp. 

𝑆 ൌ 𝑆଴ ൅ ׬
ௗொೝ೐ೡሺ்ሻ

்

ఛ
்ୀ଴ ൌ 𝑆଴ ൅ ׬

஼೛

்

ఛ
்ୀ଴ 𝑑𝑇

 

(2) 

(T is temperature as the integrating variable). S0 is the zero-point or residual entropy of the material 

at absolute zero. Note that the thermodynamic entropy equation contains two conceptually 

different types of entropy:  

a) Thermal entropy, STherm = ∫ (Cp / T) dT, due to thermally induced motion of particles.  

b) Residual entropy, S0 due to random arrangement of particles in a crystal lattice. S0 is not a 

consequence of thermal motion. The Third Law of Thermodynamics defines a reference 

state for entropy as a perfect crystal at zero Kelvin with S0 (perfect crystal) = 0, which 

allows determination of “absolute” entropy values, relative to the perfect crystal reference 

state. Since nothing can have a lower entropy than a perfect crystal, thermal entropy STherm 

and residual entropy S0 are thus defined as non-negative properties (STherm ≥ 0; S0 ≥ 0). 
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Collecting heat capacity data from near absolute zero to the temperature of interest is 

sometimes impossible, for example in materials that decompose during cooling. A typical example 

are entropies of solutes in solution. At low temperatures the solution freezes and separates. In such 

cases entropy cannot be determined directly by low temperature calorimetry using equation (1). 

Alternatively, entropy changes can be measured indirectly from measured Gibbs energy changes, 

ΔG, and enthalpy changes, ΔH, using the Gibbs equation: 

∆𝐺° ൌ ∆𝐻° െ 𝑇∆𝑆° (3) 

The standard Gibbs energy change, ΔG°, is a state function related to the equilibrium constant of 

a reaction at a constant temperature and pressure Kp [4], by  

 ∆𝐺° ൌ െ𝑅𝑇 ln 𝐾௣ (4) 

Therefore, evaluation of K provides a value for ΔG°. The standard reaction enthalpy change, ΔH°, 

can be determined by reaction calorimetry or from the temperature dependence of K. Equation (3) 

can then be used to calculate the standard reaction entropy change, ΔS°. If S° for all of the reactants 

and products of the reaction except one can be determined from equation (2), then S° for the 

remaining material can be calculated from 

∆𝑆° ൌ 𝑆°௣௥௢ௗ௨௖௧௦ െ 𝑆°௥௘௔௖௧௔௡௧௦ (5) 

Section 3.6 discusses a practical application of the Gibbs equation to find entropy using the Gibbs 

equation. S° of aqueous glucose is determined from the solubility 

glucose(cr) ⇄ glucose(aq,sat) 𝐾′ ൌ ሺ𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒ሻ (6) 
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ΔH° for this reaction was obtained from a van’t Hoff plot of lnK versus 1/T. Combining ΔG° and 

ΔH° (equation 3) results in ΔS°=57.6589 J mol-1K-1 at 25°C, and S°(glucose, aq, 25°C)=266.9 J 

mol-1K-1. 

An analogous quantity to Gibbs energy, the Helmholtz energy, A, is a state function related to 

the equilibrium state at constant temperature and volume, KV [4], by 

∆𝐴° ൌ െ𝑅𝑇 ln 𝐾௏ (7) 

The standard Helmholtz energy change, ΔA°, can be expressed as a function of internal energy, U, 

temperature, T, and entropy as 

∆𝐴° ൌ ∆𝑈° െ 𝑇∆𝑆° (8) 

For example, ΔA° can be determined from the voltage of a sealed (i.e. constant volume) battery 

using the equation (7), by finding the equilibrium constant from the equation 

∆𝐴° ൌ െ𝜐𝐹𝐸° (9) 

where ν is the number of electrons involved in the redox reaction, F is Faraday’s constant and E° 

is the standard electromotive force of the battery. ΔH° can be obtained from calorimetric 

measurements or from the temperature dependence of E°. Combining ΔA° and ΔH°, equation (8), 

then gives ΔS° from which S° can be calculated.  

1.2.2 Entropy in Statistical Mechanics 

Statistical mechanics describes the behavior of thermodynamic systems starting from the 

behavior of their constituent particles [41]. To describe the motion of a particle, it is necessary to 

know six parameters – the position and velocity components along the x, y and z axes. The number 
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of independent parameters needed to completely describe a physical system is the number of 

degrees of freedom of that system. Thus, the number of degrees of freedom of a particle is 6. Since 

6⨯1023 particles make one mole of a gas, the number of degrees of freedom for one mole of a 

monoatomic ideal gas is 36⨯1023. Obviously, dealing with each particle individually is impossible 

in practice and statistical methods are used to simplify the problem through the concept of 

microstates.  

The microstate of a system, in classical statistical mechanics, is the state of the system defined 

by the positions and velocities of the particles. Since the particles move and collide, the positions 

and velocities change in time. Thus, the microstates change in time, even though the gas is at 

macroscopic equilibrium, a state in which there is no flow of matter within the system or change 

in parameters such as temperature and pressure. Since microstates change in time without changing 

the macroscopic state of the system, many microstates constitute one macrostate, the state which 

can be described through a small number of thermodynamic parameters, e.g. internal energy and 

entropy.  

The microstate of a system can, according to Boltzmann [41], be described by a single point 

in a hyperspace that has an axis to represent the velocity of each particle simultaneously along 

each of their axes. If we consider only non-polar particles, e.g. He atoms, the positions of particles 

are irrelevant here and are omitted for simplicity. Thus, only 3 degrees of freedom will be 

considered, corresponding to velocity. For example, a state consisting of the velocity of a single 

particle requires only 3 axes (vx, vy, vz), while a system consisting of the velocities of a mole of 

particles of ideal gas requires a hyperspace with 18⨯1023 axes. Every point, considered by itself 

in such a hyperspace, defines the velocity of each particle, simultaneously. Each point in this 

hyperspace then represents a microstate. A microstate is a collection of particles with different 
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velocities. All microstates with the same total energy value in this hyperspace belong to the same 

macrostate. The number of such points (or microstates) with the same total energy is denoted W. 

W thus represents the number of accessible microstates at a fixed total energy level. Not all 

microstates may be occupied during a fixed time window, but all are possible. A system can be in 

only one microstate at a time.  

Boltzmann [41] then postulated that there is a function η of only the number of accessible 

ways, W, of permuting the velocities of particles, without changing the total energy of the system.  

To satisfy extensivity properties, Boltzmann defined η as 

𝜂 ൌ ln 𝑊 (10) 

Equation (10) defines η in a very simple way. From the properties of an ideal gas, Boltzmann [41] 

found the η-function corresponds to entropy, S, i.e. S = R lnW. Boltzmann originally used the 

universal gas constant R, but when the value of the Boltzmann constant kB was determined as R/NA, 

the equation took the modern form. Thus, entropy is now defined in statistical mechanics as 

𝑆 ൌ 𝑘஻ ln 𝑊 (11) 

However, W, the number of accessible microstates for a fixed total energy, is difficult to determine. 

But, S can be estimated with Sterling’s approximation, using a probability distribution, pi, 

describing the probability of a particle being in a particular energy state εi. In this approximation 

𝜂 ൎ െ𝑁 ∑ 𝑝௜௜ ln 𝑝௜ (12) 

where N is the number of particles, and in practice, S is approximated as  

𝑆 ൎ െ𝑘஻𝑁 ∑ 𝑝௜௜ ln 𝑝௜ (13) 
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Realizing that it is impossible to actually track microstates in a system, Boltzmann [41] used 

statistics to find the probability distribution of the particle velocities. Boltzmann [41] proved there 

is only one distribution of velocities that maximizes entropy. The distribution, constrained by fixed 

total energy, is the Maxwell-Boltzmann distribution [41]. The continuous Maxwell-Boltzmann 

distribution has been modernized after the discovery of Heisenberg’s uncertainty principle and 

turned into the quantum Boltzmann distribution 

𝑝௜ ൌ ௘షഄ೔ ೖಳ೅⁄

∑ ௘షഄ೔ ೖಳ೅⁄
೔

  (14) 

where pi is the probability of a specific particle having energy εi, T is temperature and kB is the 

Boltzmann constant [4, 6-8, 41, 42].  It is important to note that the development of Boltzmann’s 

theory based on microstates eventually boils down to calculating the probabilities of the individual 

particle energies. Gibbs [42] generalized Boltzmann’s results. However, Gibbs’ logic is more 

difficult to follow than Boltzmann’s, while not introducing any further conclusions in this analysis.  

The Boltzmann equation shows that entropy is proportional to the logarithm of the number of 

microstates available to a system at a fixed total energy. In particular, Boltzmann reduced the 

second law to a stochastic collision function, or a law of probability following from the random 

mechanical collisions of particles. Particles, for Boltzmann [41], were gas molecules colliding like 

billiard balls in a box. Such a system will almost always be found either moving towards or being 

in the macrostate with the greatest number of accessible microstates, such as a gas in a box at 

equilibrium. On the other hand, a state with molecules moving "at the same speed and in the same 

direction", Boltzmann concluded, is "the most improbable case conceivable...an infinitely 

improbable configuration of energy" [43]. Since coordinated motion is perceived as orderly, based 

on Boltzmann’s work, entropy came to be viewed as a measure of disorder [36]. This point of view 
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has strict limitations, most importantly not being applicable to living systems, as will be discussed 

in detail in chapter 2. 

1.2.3 Residual Entropy 

Microstates of a gas in a box are defined as ways in which energies and positions of particles 

can be permuted with the total energy of the system remaining the same. In solids, particles can 

have multiple microstates available through particle arrangement. Residual entropy (S0) was 

introduced in the first half of the 20th century by William Giauque and is a property of imperfect 

crystals, appearing as a consequence of arrangement of non-symmetric molecules or defects in a 

crystal lattice (Figure 1-4) [27, 44-48]. Residual entropy is the difference in entropy between an 

imperfect crystal and a perfect crystal, i.e. a crystal in the lowest energy state with no degeneracies. 

Residual entropy is a consequence of particle arrangement in a crystal lattice and does not result 

from any form of molecular motion, including the “zero-point energy” of vibration or rotation [8].  

The presence of multiple microstates in a material at absolute zero leads to residual entropy, 

and the number of microstates is simply the number of possible arrangements. Residual entropy 

(3–12 J mol-1 K-1) is present in imperfect crystals composed of non-symmetric particles, for 

example, CO, N2O, FClO3, and H2O [44, 49].  

 

Figure 1-4: (a)  An imperfect crystal of CO: each CO molecule in the crystal lattice can point 
either up or down. Therefore, there is randomness in molecular orientation leading to residual 

a) b) 
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entropy. (b) A perfect crystal of CO where all molecules in the lattice are oriented in the same 
direction. There is no randomness and residual entropy is zero. 

Residual entropy is experimentally determined using calorimetry to measure the difference in 

heat capacity between an imperfect and a perfect crystal, converting it to entropy through equation 

(2). An example is the measurement of residual entropy of glycerol by Gibson and Giauque [50], 

who measured the heat capacity difference between perfect and imperfect crystals. In the case of 

CO only an imperfect crystal is available [46], so the entropy of the perfect crystal was calculated 

from a statistical mechanical calculation of entropy based on spectroscopic measurements on 

gaseous CO [46]. The entropy change from the available imperfect crystal was determined by 

calorimetric measurements of heat capacity and enthalpies of phase changes from absolute zero to 

the temperature of the gas [46]. The difference between the entropy calculated from the measured 

heat capacity, see equation 2, and the entropy of CO gas calculated from the spectroscopic 

measurements gives the residual entropy as 4.602 J mol-1 K-1 [46]. The residual entropy of 

imperfect crystalline CO calculated using equation (10) is 5.76 J mol-1 K-1, slightly higher than the 

experimentally determined 4.602 J mol-1 K-1 [46]. 

Residual entropy can also be calculated from theory by determining the number of microstates 

available to a material at absolute zero. According to Kozliak [44], the simplest way to find residual 

entropy is by applying the Boltzmann–Planck equation:  

𝑆଴ ൌ 𝑘஻ ln
ௐమ,ೝೌ೙೏೚೘

ௐభ,೛೐ೝ೑೐೎೟
 (15) 

W2 and W1 are the numbers of microstates of the imperfect and perfect crystal state, respectively 

[44]. The perfect crystal state has only one microstate, so W1 = 1. The number of microstates in 

the imperfect crystal is related to the number of distinct orientations a molecule can have, m, and 
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the number of molecules that form the crystal, N, by the relation W2= m N. This way to find W2 is 

equivalent to tossing a coin or an m-sided die N times, thus the name “coin tossing model.”  

1.3 What is the physical meaning of entropy?  

The physical meaning of thermodynamic entropy can be seen from the Helmholtz energy 

equation 

𝐴 ൌ 𝑈 െ 𝑇𝑆 (16) 

where A is Helmholtz energy, U is internal energy, T is temperature and S is thermodynamic 

entropy [4]. The Helmholtz equation (11) can be rearranged into the following form 

1 ൌ ஺

௎
൅ ்ௌ

௎
 (17) 

As explained above, Helmholtz energy is equal to the maximum amount of expansion work that 

can be extracted from a system wmax [4]. Equation (17) can be rewritten as 

1 ൌ ௪೘ೌೣ

௎
൅ ்ௌ

௎
 (18) 

The first term wmax/U (or A/U) represents the maximum fraction of the internal energy of a system 

that can be extracted as work. The second term TS/U represents the fraction of the internal energy 

of a system that is “trapped” as thermal energy and cannot be extracted as work. So, equation (18) 

becomes 

𝑥௪ ൅ 𝑥ொ ൌ 1 (19) 

where xw = wmax / U and xQ = TꞏS / U, and S is in that case 

𝑆 ൌ ௎

்
𝑥ொ (20) 
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Therefore, the term TS/U represents the minimum fraction of internal energy that cannot be 

converted into work. In that sense, entropy is a measure of the part of internal energy that cannot 

be converted into work, or in practical terms is useless energy. Thermodynamic entropy is a 

measure of the part of the total energy content in the form of chaotic motion (translation, rotation, 

vibration…) of the particles in a system. Since energy is dispersed among many forms of motion, 

the dispersion definition coincides with the useless energy definition.  

1.4 Is entropy a subjective or an objective property 

The philosophical nature of entropy is an open question, the problem being a lack of consensus 

whether entropy is a subjective or an objective property. Subjective is defined as “characteristic 

of or belonging to reality as perceived rather than as independent of mind” [51]. On the other 

hand, objective is defined as “of, relating to, or being an object, phenomenon, or condition in the 

realm of sensible experience independent of individual thought and perceptible by all observers: 

having reality independent of the mind” [52]. A significant part of the scientific community 

considers entropy as a subjective property [23, 30-32]. Others insist that entropy is an objective 

property [32-35]. So, von Neumann was right – no one knows what entropy really is (subjective 

or objective, energy or something else, arrangement of particles or realization of microstates, 

negentropy, many kinds of entropy…).  

Entropy in general can be represented by the equation S = c lnW, where c is a constant and W 

is the number of microstates available to a system, refer to chapter 2. In thermodynamics, W is the 

way in which velocities and positions of particles can be permuted without changing the energy of 

the system and c is the Boltzmann constant. However, entropy in general is a measure of the 

number of microstates available to a system.  In this sense, entropy is a summary statistic of any 
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system of interest. However, the kind of entropy that is applicable to a certain problem depends on 

how the microstates are defined. Thus, there are many kinds of entropy applicable to many 

problems.  

The following von Neumann-Shannon anecdote expresses the frustration over two different 

quantities being given the same name, i.e. Boltzmann entropy and Shannon information entropy. 

Shannon and his wife had a new baby. Von Neumann suggested they name their son after the son 

of Clausius, “entropy”. Shannon decides to do so, to find out, in the years to follow, that people 

continually confuse his son with Clausius’ son and also misuse and abuse the name [23]. 

The chemical thermodynamic definition of entropy states that: “Qualitatively, entropy is 

simply a measure of how much the energy of atoms and molecules becomes more spread out in a 

process” [27]. This definition is in line with Clausius’ original intention to relate Entropy and 

Energy. From the work of Clausius, entropy is a measure of energy in a system that cannot be 

converted into work.  

In 1948, Shannon introduced another member of the entropy manifold – Shannon entropy, Š.  

Š ൌ െ𝐾 ∑ 𝑝௝ ln 𝑝௝௝  (21) 

where K is a constant and pk is probability of message j. The similarity of equations (13) and (21) 

is the basis for one interpretation of entropy, i.e. entropy as information missing to completely 

specify the microstates of a system [23, 26, 53]. In section 1.2, it was noted that statistics has been 

used to decrease the number of variables that describe a system from the order of 1023 to a few key 

thermodynamic parameters, such as U and S. Entropy has been interpreted as information lost in 

this process. Therefore, Choe [54] applied entropy to finance and economics because “The 

mathematical definition of Shannon entropy has the same form as entropy used in 
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thermodynamics, and they share the same conceptual root in the sense that both measure the 

amount of randomness” [54].  This view of entropy as missing information is thus based on the 

similarity of the entropy equations in thermodynamics and information theory. Jaynes interpreted 

thermodynamic entropy as information missing to completely specify a thermodynamic system at 

the molecular level [26].  Since we are the ones who do not have the information, Jaynes’ insight 

also suggests that entropy is subjective [26]. Denbigh [30] stated: “there remains at the present 

time a strongly entrenched view to the effect that entropy is a subjective concept precisely because 

it is taken as a measure of missing information”.   

Singh and Fiorentino [32] introduced four interpretations of the entropy concept. Their view 

is that there are several kinds of entropy applicable to different scientific disciplines. They clearly 

separated thermodynamic entropy as objective and information entropy as subjective. However, 

their philosophical view belongs to pragmatism, which holds that thought is an instrument for 

prediction and problem solving, rejecting the idea that thought needs to represent reality [55]. First, 

“entropy as a measure of system property assumed to be an objective parameter” [32]. Second, 

“entropy assumed as a probability for measure of information probability” [32].  Third, “entropy 

assumed as a statistic of a probability distribution for measure of information or uncertainty” 

[32].  Fourth, “entropy as a Bayesian log-likelihood functions for measure of information” [32]. 

The second, third and fourth are assumed to be subjective parameters [32]. However, Clausius 

[1], and after him Boltzmann [41] clearly stated: “the entropy of the universe tends to a maximum” 

[1]. This happens regardless of the observer. The tendency of the universe to maximize entropy 

was present long before intelligent life originated. Stars would explode in supernovae (and increase 

the entropy of the universe) independently of our ability to measure the phenomenon. Entropy 

change in chemical reactions occurs with or without observers. Thus, for Clausius and Boltzmann, 
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entropy is an objective parameter. Heat represents energy and is thus an objective parameter, and 

temperature represents a measure of molecular chaotic motion and thus is also an objective 

parameter. Energy is an objective property. Because these quantities define thermodynamic 

entropy, it is also an objective property.  

Bunge was explicit: “thermodynamic probability… is an objective property of the system… 

used to calculate another system property namely its entropy” [34]. Further, Carnap wrote: 

“Entropy in thermodynamics is asserted to have the same general character as temperature, 

pressure, heat, etc., all of which serve for the quantitative characterization of some objective 

property of a state of a physical system” [35]. To claim that thermodynamic entropy is subjective 

is anthropocentric. Bohm and Peat wrote “Entropy now has a clear meaning that is independent 

of subjective knowledge or judgement about details of the fluctuation” [33], and explicitly “entropy 

is an objective property” [33].  

Thus, the thermodynamic entropy should be considered as an objective parameter. At absolute 

zero temperature, molecules of CO or H2O fail to align in a crystal lattice creating an imperfect 

crystal containing some residual entropy without an observer. Thus, the residual entropy should 

also be considered as an objective parameter. The experimental determination of glycerol entropy 

also shows that residual entropy (S0) is an objective parameter, since two crystals take different 

amounts of heat for an equal change in their temperatures [50] and any observer will measure the 

same difference in heat. 

On the other hand, information entropy depends on the reader. For example, a newspaper has 

a different amount of information to someone who speaks the language than someone who doesn’t. 

An example is the verb “sacrer” in French, which can have two meanings: to bless or to curse. The 
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correct meaning is interpreted by the reader from context. Information entropy is thus reader 

dependent and is a subjective property.  

1.5 How to apply entropy to living organisms?  

The way entropy has been applied to living organisms is confused because the thermodynamics 

of the processes catalyzed by organisms has been confounded with the thermodynamics of the 

structure of organisms. Since entropy is a state function, the entropy of the structure of living 

organisms can be determined, just as for any other inanimate mixture, through the methods 

described in section 1.2.1. The entropy of the structure does not depend on the rates of processes 

that create the structure. Because some processes in living organisms are indirectly coupled, the 

thermodynamics of the processes are rate dependent and should be analyzed with nonequilibrium 

thermodynamics.  

The application of thermodynamics and entropy to living organisms dates back to Boltzmann: 

“The general struggle for existence of animate beings is not a struggle for raw materials, but 

a struggle for entropy, which becomes available through the transition of energy from the hot 

sun to the cold earth” [43]. Boltzmann reasoning was extended by Schrödinger: “(An organism) 

feeds upon negative entropy, attracting, as it were, a stream of negative entropy upon itself, to 

compensate the entropy increase it produces by living and thus to maintain itself on a stationary 

and fairly low entropy level” [36].  

Schrödinger introduced negentropy as entropy taken with a negative sign [36], a concept still 

in use today [56-59]. Schrodinger justified negentropy by equating the number of microstates with 

disorder in the Boltzmann equation. Disorder D and order O in living organisms were considered 
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by Schrödinger [36] to be reciprocals D = 1/O. Setting D equal to W, Schrödinger rearranged the 

Boltzmann equation into 

െ𝑆 ൌ 𝑘஻ lnሺ1 𝐷⁄ ሻ ൌ 𝑘஻ lnሺ𝑂ሻ (22) 

Schrödinger argued that, since O=1/D, negentropy -S is a measure of order. Thus, Schrödinger 

[36] postulated a local decrease of entropy in living organisms, explained by the organization of 

biological structures. The equation for negentropy results from a mathematically correct 

manipulation of the Boltzmann equation, however negentropy is based on a false premise [60]. 

The root of the negentropy concept is the assumption that living organisms have a low entropy 

compared with inanimate matter of the same composition [36]. However, several recent studies 

question the validity of this assumption [11-15]. Hansen concluded that the entropy per unit mass 

of an organism “doesn’t have to decrease” when biological molecules are synthesized from non-

living matter [61, 62].  

Thermodynamic entropy is just one component of the entropy manifold required to describe 

the biochemistry of living organisms. Thermodynamic entropy cannot explain information-related 

processes in organisms. Such processes require a different definition of microstates and are the 

subject of chapter 2. As late as 2006, Balmer [37] argued that: “one characteristic that seems to 

make a living system unique is its peculiar affinity for self-organization.” However, the zebra’s 

stripes, the parrot’s color pattern, the shapes of leaves, the arrangement of macromolecules in cells, 

and the sequence of amino-acids in proteins are not results that can be explained by 

thermodynamics, but are consequences of the information coded in the organism’s DNA that is 

controlled and expressed through the associated computational readout.   
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1.6 Conclusions 

Entropy in physical sciences is a measure of the part of internal energy that cannot be 
converted into work, or in practical terms represents useless energy. Applications of entropy 
to other fields requires the appropriate definition of entropy. 

Thermal entropy and residual entropy are objective parameters. 

The negentropy concept represents a mathematically correct manipulation of the Boltzmann 
equation, but is based on false assumptions.   

1.7 Nomenclature 

A – Helmholtz energy (J) 

Cp – Heat capacity at constant pressure (J K-1) 

D – Disorder 

E – Electromotive force (V) 

F – Faraday’s constant (C mol-1) 

G – Gibbs energy (J) 

H – Enthalpy (J) 

K  – Shannon equation constant  

kB – Boltzmann constant (J K-1) 

Kp – Equilibrium constant at constant pressure 

KV – Equilibrium constant at constant volume 

K’ – Conditional equilibrium constant 

m – Number of distinct orientations a molecule can have in a crystal 

N – Number of particles 

pi – the probability of a particle being in a particular energy state i 

pj – probability of message j 
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Qrev – Heat exchange in a reversible process (J) 

R – Universal gas constant (J mol-1K-1) 

S – Thermodynamic entropy (J K-1) 

S0 – Residual entropy (J K-1) 

Š – Shannon entropy (bits) 

T – Temperature (K) 

U – Internal energy (J) 

W – Number of accessible ways of permuting the velocities of particles, without changing 

the total energy of the system. 

wmax – Maximum amount of expansion work that can be extracted from a system (J) 

xQ – Fraction of internal energy unavailable to do work 

xw – Fraction of internal energy available to do work 

εi – Energy of energy state i (J) 

η – Boltzmann’s H-function 

ν – Number of electrons involved in a redox reaction (mol) 

° – Standard property 
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2 LAWS OF EVOLUTION PARALLEL THE LAWS OF THERMODYNAMICS 

2.1 Abstract 

We hypothesize that concepts from thermodynamics and statistical mechanics can be used to 

define summary statistics, similar to thermodynamic entropy, to summarize the convergence of 

processes driven by random inputs subject to deterministic constraints.  A primary example used 

here is evolution in biological systems. Evolution is initiated by random events that change the 

local environment, but acceptance and survival of an organism is dependent on the limits imposed 

by physical laws. This results in convergent evolution of forms of organisms because only those 

changes are retained that meet the universal physical requirements.  The remarkable success of 

thermodynamic entropy in chemical systems has elevated entropy to a foundational principle of 

science, exceeding its initial empirical roots in thermodynamic modeling.  However, heat, the 

currency of thermodynamics, does not translate directly into information, the currency of life. 

Consequently, the first and second laws of thermodynamics do not translate directly into parallel 

laws for the biome.  But, as discussed herein, the fundamental principles on which thermodynamic 

entropy is based are also true for information. Based on these principles, we show that adaptation 

and evolution are stochastically deterministic, i.e. having a specific deterministic direction arising 

from many random events. Over time, natural selection, resulting from random events governed 

by deterministic constraints, minimizes the difference in the information describing the local 

environment and the biological system.  An ability to collect information about the environment 

and respond appropriately is an inherent property of animate matter. Therefore, an information 

theory that includes both information processing and storage and is formulated on the same 

foundation as the immensely powerful concepts used in statistical mechanics provides statistics, 

similar to thermodynamic entropy, that summarize distribution functions for environmental 
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properties and organism performance. This work thus establishes the foundational principles of a 

quantitative theory that encompasses both behavioral and biological evolution and may be 

extended to other fields such as economics, market dynamics and health systems. 

Key words: information, disorder, order, entropy, statistical mechanics 

2.2 Introduction 

Since the early 20th century, biologists have accepted that living organisms are constrained by 

the same laws of Newtonian mechanics and thermodynamics as non-living systems. [1] However, 

quantitative application of the second law of thermodynamics and entropy to biological organisms 

and systems have proven to be particularly problematic because “… no one knows what entropy 

really is …” [2]. Indeed, in a recent article, Ben Naim [3] indicates that neither entropy nor the 

second law can be effectively applied to living systems. To examine Ben Naim’s conclusions, and 

to lay a conceptual framework for developing an information based theory for biological systems, 

this review begins with the historical foundations of entropy and the second law of 

thermodynamics. The conclusions reached in this development indicate there is a viable concept 

of information entropy and an equivalent to the “first and second laws” of thermodynamics for 

bio-systems.  

This work concludes there are two laws governing evolution that parallel the first and second 

laws of thermodynamics. First law: Given appropriate conditions, life will originate and evolve. 

[4] Second law: Natural selection always drives organism performance or fitness toward an 

optimum state dependent on the local environment. Although random mutations, statistical 

aberrations and empirical adaptations driving biological evolution are stochastic in nature, the 

probabilities generating these "random events" are deterministic and completely specified by the 
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constraints of the system in which evolution is occurring. These proposed laws are based on 

concepts similar to those of statistical mechanics, but the perceived or observed “order” in 

biostructures and DNA sequences consists of distinguishable objects and requires a different 

definition of the microstates (see note 1) than the definition used as the basis of the Boltzmann 

equation that forms the foundation of chemical thermodynamics. 

2.3 The Macroscopic Definition of Entropy 

Thermodynamic entropy and the second law are rooted in efforts to explain the inefficiency of 

steam engines used by industry and transportation in the early 19th century. The work of Lazarus 

Carnot [5] and his son, Sadi Carnot [6], showed that any natural process has an inherent tendency 

to dissipate energy in unproductive ways. Rudolf Clausius [7] coined the term “entropy” to 

represent the portion of heat energy that cannot be converted into work. Thermodynamic entropy 

was thus first defined operationally in terms of heat exchanged between a system and the 

surroundings, relative to the amount of work done by or on the system. This strange property called 

entropy unified observations of work, heat, and energy and led Clausius [7] to propose the first 

and second laws of thermodynamics; “The energy of the universe is constant; the entropy of the 

universe tends to a maximum”. In accord with Clausius’ statement of the second law, the entropy 

of a system may decrease so long as the entropy increase of the surroundings is greater. The work 

of the Carnots, Clausius and Kelvin, together with earlier work on the properties of gases, also led 

to the realization of an absolute temperature scale, i.e. a scale with a defined zero that cannot be 

negatively exceeded. 

Based on the reversible Carnot cycle, Clausius defined entropy, S, as 

𝑑𝑆ெ௔௖௥௢ ൌ 𝛿𝑄௥௘௩௘௥௦௜௕௟௘ 𝑇⁄  (1) 
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δQ is the quantity of heat added to the system and T is the absolute temperature. Extension of this 

definition to irreversible processes requires writing equation 1 with the more familiar greater-than-

or-equal sign which describes a characteristic of entropy for irreversible processes rather than 

being a definition of entropy. (See supplement 1.) Equation 1 shows that entropy has the same 

units as heat capacity, and the thermodynamic entropy of a material is defined by the temperature 

rise associated with a finite and known heat input including any thermally-induced phase 

transitions in the material (See note 2). Entropy is thus also described by equation 2. (See 

supplement 2 for a derivation of equation 2 from equation 1, and see note 2 concerning notation.) 

𝑆ெ௔௖௥௢ሺ𝑇ሻ ൌ 𝑆ெ௔௖௥௢ሺ0ሻ ൅ ׬
஼೛

்
𝑑𝑇

்
଴  or 𝑆ெ௔௖௥௢ሺ𝑇ሻ െ 𝑆ெ௔௖௥௢ሺ0ሻ ൌ ׬

஼೛

்
𝑑𝑇

்
଴  (2) 

Cp is heat capacity at constant pressure, T is absolute temperature, and SMacro(T) is the entropy at 

temperature T.   SMacro(T) – SMacro(0) is the change in entropy resulting from changing the 

temperature from 0 to T.  

Initially it was proposed that SMacro(0) = 0, i.e. the third law of thermodynamics.  The statistical 

mechanical development of entropy (presented below) shows that SMacro(0) = 0 for an ideal or 

“perfectly ordered” material.  However, recognizing that most materials cannot be obtained in a 

perfect state, Giauque [8] introduced SMacro(0) into equation 2 about a century after Clausius. 

SMacro(0) can be measured by calorimetric methods only in special cases where both perfect and 

imperfect phases of the material exist near absolute zero temperature. [9] Otherwise, SMacro(0) must 

be calculated by the methods of statistical mechanics.  
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2.4 The Microscopic Definition of Entropy 

While the concept of entropy in Clausius’ thermodynamics does not require a particulate 

composition of matter, statistical mechanics defines entropy in terms of the statistical properties 

of the energies of the particles constituting the system. The system is assumed to consist of N 

particles, e.g., atoms or molecules, each in one of a set of discrete (quantized) energy states. The 

total energy is equal to the sum of the energies of each of the N particles. The analysis assumes 

that this total energy is a known value related to the absolute temperature. 

As in the macroscopic model, entropy represents how the system stores energy in a manner 

that cannot be used to produce work. By conceptualizing the system of N particles as a gas in a 

container with particles behaving like rigid balls moving in three dimensions, a paradigm for 

entropy at the microscopic level was constructed, originally by Ludwig Boltzmann. [10] 

Heuristically, if all the balls were moving in the same direction, their collective momentum could 

be completely converted into work, but if the direction is totally random, the momentum cannot 

be converted into work. Thus, the balls absorb energy by moving faster, but the random nature of 

this movement prevents harnessing all of this energy for work. Hence an increased velocity of the 

N particles in random directions would be accompanied by an increase in entropy. 

Boltzmann developed a distribution function for the number of indistinguishable particles in 

each quantized energy state. (Boltzmann represented the energy for each particle as momentum. 

However, the argument can be extended to any quantized energy state as long as the independence 

assumptions implicit in Boltzmann's development hold. In this paper we use quantized energy 

states rather than the momentum.) Boltzmann defined entropy with the distribution of the N 

particles among the quantized energy states. Explicitly, as energy is added, the number of particles 
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in higher energy states increases. The change in entropy is represented by the change in the 

distribution of energy packets among the N particles. For example, heat added to the system adds 

energy packets to the particles, expanding the number of accessible energy states. 

The results are summarized in equations 3 and 4, where the symbol pi is used to represent the 

probability that a single particle (randomly selected from the N particles) will be in quantized 

energy state i. The energy level of quantized energy state i is denoted as εi. The expected number 

of particles in quantized energy state i is Npi. Using this notation, the expected value of the total 

internal energy, U, of a system is given as 

𝑈 ൌ ∑ 𝑝௜𝜀௜௜  (3) 

where the summation in equation 3 is over all energy states. [11-13] (See note 4.) 

The entropy of the system is thus defined by the simultaneous energy states of all of the 

indistinguishable particles at each instant in time. To represent this concept, Boltzmann [14] 

defined a “microstate” as the individual quantized energy state of all of the N particles collectively 

at a point in time. This concept of microstates is the foundation for development of the microscopic 

model of entropy [14]. Boltzmann used the word “complexion” rather than “microstate”, and his 

definition of a complexion and explanation of the use of these in his development are extremely 

vague, so we offer a modern definition here.  If the quantized energy level of each of the N particles 

is represented as a vector, with the energy level of the “first" particle as the first entry in the vector, 

the energy level of the “second” particle as the second entry in the vector, and so forth, the resulting 

vector represents the microstate of the system. Boltzmann defines entropy in the microscopic 

model as being a function of the number of distinguishable microstates, denoted W, at a specific 
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temperature, volume and pressure. Assuming the microscopic entropy is a function of W only and 

that entropy is an extensive property, it can be shown that Smicro(T) is of the form (see [15]): 

𝑆௠௜௖௥௢ሺ𝑇ሻ ൌ 𝑘஻ lnሺ𝑊ሻ (4) 

(Boltzmann originally used the ideal gas constant, R, in equation 4, but this was replaced with kB 

when it was realized that kB = R/Avogadro’s number. The value of kB is thus determined 

experimentally.) An outline of the further development of statistical mechanics is contained in 

supplement 3, and more extensive details are in the referenced literature (e.g. see [10, 11-13, 16]. 

The assumption that entropy is proportional to ln(W) is the basis for the third law of 

thermodynamics, often stated as “the entropy of a perfect crystal at absolute zero is exactly equal 

to zero” based on reasoning that a perfect crystal at absolute zero only has one microstate, and 

therefore W = 1, and ln(W) = 0 [8, 17]. The Boltzmann-Planck equation 

Δ𝑆௠௜௖௥௢ሺ𝑇ሻ ൌ 𝑘஻ ln ൬
ௐ

ௐೝ೐೑
൰ (5) 

includes a term, Wref , to allow for reference states other than a “perfect crystal”. Wref is the number 

of accessible, distinguishable microstates in the reference system. 

Equating equations (2) and (4), i.e. equating SMacro(T) + SMacro(0) to Smicro(T), indicates a 

potential equality between entropy in Clausius thermodynamics and entropy in statistical 

mechanics, namely 

𝑆௠௜௖௥௢ሺ𝑇ሻ ൌ 𝑘஻ lnሺ𝑊்ሻ ൌ 𝑆ெ௔௖௥௢ሺ0ሻ ൅ ׬
஼೛

்
𝑑𝑇

்
଴  (6) 
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Abundant experimental evidence [18] validates this equality and it is currently universally 

accepted. Thus, in answer to von Neumann’s claim that “no one knows what entropy really is” [2], 

thermodynamic entropy is a measure of the number of accessible microstates in a system. 

The number of accessible microstates at a given temperature, W(T), increases with temperature 

because the total internal energy of the system increases and more microstates become accessible, 

and thus S(T) increases with temperature. Cp/T increases with temperature because, as indicated 

by equation 6, heat capacity divided by temperature is directly proportional to the logarithm of the 

number of accessible microstates. ΔSMacro of any phase transitions is always positive because the 

number of accessible microstates increases during thermally induced phase transitions, e.g., W of 

the solid is less than W of the liquid, which is less than W of the gas. At absolute zero temperature, 

∫Cp/TdT = 0, and therefore 

𝑆௠௜௖௥௢ሺ0ሻ ൌ 𝑘஻ lnሺ𝑊଴ሻ ൌ 𝑆ெ௔௖௥௢ሺ0ሻ (7) 

One issue that is easy to overlook is how the number of microstates, W, is determined. In the case 

of indistinguishable particles, the microstates can be grouped into subsets with equivalent numbers 

of particles in each quantized energy state.  To clarify this, we define a “configuration” as a vector 

characterizing a microstate by tabulating the number of entries in the microstate vector in each 

energy state. The first entry in the configuration vector is the number of particles in the lowest 

energy state. The second entry is the number of particles in the next lowest energy state, and so 

forth. Many microstates will have different particles in different energy states, but the same 

number of particles in each energy state and thus the same configuration. Therefore, every 

microstate within a configuration has the same number of particles in each energy state and hence 

the same total energy. For any value of total energy, only a subset of the configurations have that 
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particular total energy, and only a subset of the possible microstates can be accessed. Each of the 

accessible microstates has the same total energy and is assumed to be equally likely.  

As the number of particles, N, becomes large, only one configuration dominates. [11, 12, 16] In 

other words, for any fixed total energy, almost all of the distinguishable microstates belong to the 

same configuration. Consequently, for a large number of atoms, one need consider only one 

configuration [11], referred to here as the “dominant configuration.” For any set of quantized 

energy states, this dominant configuration is determined uniquely by the total energy of the system. 

The number of accessible microstates in this predominant configuration is commonly used as an 

approximate expression for entropy, i.e. as the value of W in equation 4 [11]. In this approximation, 

the number of distinguishable microstates in the predominant configuration is given by 

𝑊 ൌ ே!

∏ ሺ௡೔!ሻ೔
 (8) 

where ni is the number of particles in the ith quantized energy state for the predominant 

configuration. Using Stirling's approximation, ln N! = N ln N – N, and assuming indistinguishable 

particles, then, for W given in equation 8, ln(W) is approximated by -∑pilnpi. Thus, entropy, 

Smicro(T) in equation 4, is approximated by (See supplement 2) 

𝑆௠௜௖௥௢ሺ𝑇ሻ ൎ െ𝑘஻ ∑ 𝑝௜ lnሺ𝑝௜ሻ௜  (9) 

Entropy, as defined by Boltzmann’s equation 4, is approximated by equation 9 under the 

assumption that only the number of microstates in the predominant configuration need to be 

counted. In other words, equation 9 is not the definition of entropy but rather a computational 

approximation when all the microstates are equally likely and there are a large number of 

microstates. Equation 9 is often quoted as Gibbs' definition of entropy [12], though it is only a 
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good approximation to equation 4 under an assumption of a dominant configuration arising from 

the microstates formed by the collection of indistinguishable particles. In a variety of other 

applications, in biology for example, the assumption of indistinguishable molecules and the 

assumption that sequential order is immaterial, as implied by equation (8) do not hold.  

Consequently, the predominant configuration, yielding equation (9) as a good approximation of 

entropy, may not exist. 

This “definition” of entropy given in equation (9) provides the derivation of the Boltzmann 

distribution for probabilities, pi, of each quantized energy state, equation 10 [11-13, 15]. Explicitly, 

𝑝௜ ൌ ௘షഄ೔ ೖಳ೅⁄

∑ ௘షഄ೔ ೖಳ೅⁄
೔

 (10) 

Regardless of the microstate that the system is in, it will tend to one of the microstates in the 

dominant configuration. Adding or removing energy from the system changes the dominant 

configuration to which the system will go.  Thus, a change in entropy caused by a change in total 

energy is simply a description of the characteristic differences in the two dominant configurations: 

the initial one and the final one.  This is the essence of the second law of thermodynamics, namely, 

that the change in entropy is measuring the change in the dominant configuration specified by the 

change in total energy. 

2.5 Shannon’s Information Entropy 

Information theory was initially developed for the purpose of maximizing transmission of 

messages over phone lines. Claude Shannon [19] formulated a definition of information entropy, 

Š, by specifying a finite set of M possible messages with message i having a probability pS,i of 

occurring. In defining Š, Shannon used three assumptions: (See note 5 for nomenclature used here.)  
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1. Š is a continuous function of pS,i. 

2. All messages are equally likely (pS,i = 1/M) and Š is a monotonic increasing function of M. 

3. Š is a weighted sum of the individual values of Š. 

These conditions are satisfied only by [19] 

Š ൌ െ𝐾ௌ ∑ 𝑝ௌ,௜ ln൫𝑝ௌ,௜൯௜  (11) 

where the sum is over all messages, i=1 to M. Shannon subsequently used equation 11 as a 

definition of information entropy. The fact that equation 11 is for any type of message and based 

only on the probability of each of the messages makes application of this definition very flexible. 

For example, if each message is equally likely, then pS,i = 1/M for all i. In this case, Š reduces to 

Š ൌ 𝐾ௌ lnሺ𝑀ሻ (12) 

and KS = 1.  

This is where most applications of Shannon’s entropy stop, but we extend this further to 

highlight the important similarities and differences between Boltzmann’s thermodynamic entropy 

and Shannon’s information entropy. Suppose a message is made of n characters in a sequence and 

each character can be one of m distinguishable symbols. Then, if we assume the order of the 

symbols is important, the number of distinguishable messages that can be represented is M = mn. 

If each permutation of the m symbols is equally likely and the likelihood of an outcome of any 

symbol in any character location in the sequence is independent of any other outcome, then the 

probability, pS,i, of the ith message is  

𝑝ௌ,௜ ൌ ଵ

ெ
ൌ 𝑚ି௡ (13) 
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Substituting equation (13) into equation (11) gives 

Š ൌ 𝐾ௌ lnሺ𝑚௡ሻ ൌ 𝐾ௌ𝑛 lnሺ𝑚ሻ (14) 

The messages represented as a sequence of symbols are similar to the thermodynamic microstates 

with the exception that the order of the symbols is important here, contrary to the case in 

thermodynamics. Recognizing a message as a microstate, equation 14 expresses Shannon's 

definition of entropy as the logarithm of the number of microstates. Although the formulation of 

Shannon entropy is completely different than the statistical mechanics definition of 

thermodynamic entropy, the end result is the same except for the multiplicative scale given by the 

constant. The underlying foundation that entropy is the logarithm of the number of distinguishable 

microstates is exactly the same; in consequence, the two formulas for entropy are similar, but 

unrelated in meaning. This supports Ben Naim's statement [3] that there is no “second law” in 

biology stemming from thermodynamics that applies to the life sciences beyond the 

thermodynamics of the chemistry, even though the formulas are similar. On the other hand, both 

definitions are based on the number of accessible microstates that a system (viewing a message as 

a specific microstate) can be in. In this sense, equation 12 is identical in form to Boltzmann’s 

equation 4. If the n-tuple, x, is considered to be a microstate, equation 12 is exactly the same, in 

principle, as the definition of thermodynamic entropy given in equation 4. That is, both equations 

are based on the number of microstates, suggesting a close connection between the concepts used 

in their derivation.  

However, the similarity of equations 12 and 4 requires further examination. Many different 

kinds of systems allow the above three assumptions, including equivalent assumptions made by 

Boltzmann, but these equations were arrived at for very different purposes. The parameter W is the 
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number of distinguishable microstates accessible for N indistinguishable particles considered 

collectively. And for a message of n positions where all symbols are equally likely to appear in 

any position, then mn is the number of microstates for a message. Hence equation 4 and equation 

12 define entropy in exactly the same manner; as the number of distinguishable microstates 

possible before any realization of the process. In applying equation 12 to the problem of 

transmission capacity, Shannon was only interested in the number of distinguishable messages, 

not their content, and therefore equation 11, where pi is the probability of a message, could be used 

to evaluate M in equation 12. However, note the definitions of a microstate and KS are entirely 

different from the definitions of a microstate and kB in evaluating W in Boltzmann’s equation.  

Equation 12 resembles Boltzmann’s equation 4, but the reasons for choosing the function in 

equation 11 to represent information, i.e., a logarithmic function is mathematically tractable and 

linearizes variables that increase exponentially [19], are completely different from the postulates 

about microstates made in using equation 9 to evaluate W in the Boltzmann equation. The 

probabilities, pS,i, in equation 11 are not described by the Boltzmann distribution. Further, the KS 

in equations 11 and 12 is not equivalent to the Boltzmann constant, kB, relating energy to 

temperature. The meaning of equation 12 is therefore entirely different from the meaning of 

equation 4 defining thermodynamic entropy in statistical mechanics. As a consequence, Boltzmann 

and Shannon entropies represent completely different quantities that are not additive in any sense.  

In summary, the sequence of individual particles in a message string has no effect on heat capacity 

or other thermodynamic functions summarizing the objective properties of particles. In 

thermodynamics and statistical mechanics, the particles are indistinguishable, their order is 

immaterial, and the energy states defining a microstate are irrelevant to information. A non-zero 

Smicro(0) or SMacro(0) is caused by random disarray in the molecules in a material, and thus can be 
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chosen to define the reference state of the material. But, because these are a consequence of random 

events, they are not equivalent to information. Shannon or information entropy, Š, is a subjective 

quantity dependent on the sequence of events, letters, or molecules and does not contribute to the 

thermodynamic entropy at absolute zero temperature. However, both definitions of entropy are 

based on the logarithm of the number of accessible microstates, suggesting a tight relationship 

between the concepts being modeled. 

2.6 Order, disorder and entropy 

The assumption that biological structures are distinguished from inanimate matter by having 

an extraordinarily low thermodynamic entropy was powerfully promoted by Erwin Schrödinger’s 

[20] book What is Life. This assumption was universally accepted and unquestioned until Hansen 

et al. [4] invalidated it by showing that a large body of data indicates the entropies of a random 

collection of molecules and biological structures are the same. This conjecture is also supported 

by direct experimental measurements showing that SMacro(T) – SMacro(0) has the same value for 

biological structures as for inanimate material of the same composition [4]. The work of Battley 

[21] showing the thermodynamic entropies of organic materials, living or dead, are directly 

proportional to the weighted sum of the entropies of the elements again shows thermodynamic 

entropy depends on composition and not on the structural “order” of an organism. The assumption 

that living structures have a low thermodynamic entropy is further invalidated by an experimental 

finding that M. thermoautotrophicum grows despite producing a positive entropy in the system. 

[22] Thus, in contradiction to the claims of several authors, e.g., Schrödinger, [20]; Morowitz, 

[23]; Brillouin, [24]; Balmer, [25], the organized molecular arrangement in cells and organisms 

does not decrease the thermodynamic entropy of the organism. The presence of a very large 
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number of rotational and vibrational microstates overwhelms any possible entropy decrease from 

the perceived or observed “order” of molecules in cells. 

Schrödinger’s mistake was in equating “order or organization” with low entropy. 

Schrödinger’s derivation of negentropy begins by incorrectly assuming thermodynamic entropy, 

S, is related to disorder, D, by the Boltzmann equation 

𝑆 ൌ 𝑘஻ lnሺ𝐷ሻ (15) 

Schrödinger then reasoned that disorder, D, is reciprocal to order, O, and therefore, D=1/O. 

Substituting into the Boltzmann equation,  

െ𝑆 ൌ െ𝑘஻ ln ቀଵ

஽
ቁ ൌ 𝑘஻ lnሺ𝑂ሻ (16) 

and therefore negentropy, -S, is a measure of order. Equations 15 and 16 are a misuse of the 

Boltzmann equation based on falsely assuming that “order” and “disorder” are reciprocals and that 

“order” equates with number of microstates. As explained earlier in this paper, these assumptions 

are inconsistent with the definitions of microstates in both information and thermodynamics. 

In statistical mechanics, a “perfectly ordered” system is a system that has only one accessible 

microstate, and a system that is “highly ordered” has only a small number of accessible, 

distinguishable microstates. However, “ordered” and “disordered” terminology is an inaccurate 

description of microstates when applied in other contexts. In general, the “order” or “disorder” of 

an arrangement is not related to the number of thermodynamic microstates, i.e., perceived “order” 

is not related to thermodynamic entropy and “organized” would better describe matter in biological 

structures. Since there are a large number of rotational and vibrational microstates of equal energy 

in a DNA molecule or in a cell that are independent of sequence or organization, thermodynamic 
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entropy does not distinguish between animate and inanimate matter. However, because sequence 

matters in information entropy, Š, does distinguish between potentially animate matter and 

inanimate matter and Š is thus a distinguishing characteristic of animate matter. If we assume only 

one sequence of DNA codes for a viable organism and only one organization of cellular 

components allows a living organism, Š = 0 is a requirement for animate matter under these 

assumptions.  

Because of the similarity of equation 12 to Boltzmann’s equation 4, Brillouin [24, 26] 

incorrectly equated information defined by equation 12 to Schrödinger’s [20] negentropy, i.e., 

Brillouin assumed information decreases the thermodynamic entropy of a system. Following 

Brillouin, Morowitz [23, 27] extended the same logic to living cells and concluded the information 

content of a living cell is  

𝐼 ൌ logଶሺ𝑁ሻ (17) 

where N is the number of possible configurations of the atoms forming a viable cell [23]. Further, 

Morowitz concluded there is only one configuration of atoms out of a large number, N, of possible 

configurations that allows the cell to be alive, then correctly concluded the Shannon or information 

entropy is zero, but incorrectly equated this entropy with SMacro(0). 

Because of the work of Brillouin and Morowitz, the false concept that the information content 

of living cells decreases their thermodynamic entropy became generally accepted, especially since 

it offered an explanation for Schrödinger’s incorrect assumption of a low entropy of biological 

structures. This confusion was further increased by Jaynes [28] use of Shannon’s approach to 

derive statistical mechanics in an alternative way. However, equivalence of equations 4 and 12 

requires that all postulates and assumptions be the same for both applications, i.e. statistical 
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mechanics and information. Shannon’s three postulates are fulfilled in both systems, however, 

application of equation 12 to DNA information requires different assumptions. In DNA, sequence 

matters, messages are not equally likely, and sequence randomness would destroy the information, 

but not change the thermodynamic entropy. Therefore, although equations 4 and 12 are both 

appropriate for calculating the “entropy” of DNA, the specification and enumeration of microstates 

depends on the question being asked. Furthermore, neither of the definitions of microstates used 

by Shannon or Boltzmann may be appropriate for answering a particular question. 

Both Brillouin [26] and Morowitz [27] incorrectly viewed thermodynamic entropy as a 

measure of the lack of information about the microstates of a system, a view that appeared to be 

supported by Landauer’s principle [29]. From an analogy between erasure of data and 

thermalization of a set of spins, Landauer calculated that erasing N bits of information must 

generate kN ln(2) of thermodynamic entropy which represents the smallest amount of energy that 

must be used to erase a bit from an information storage medium. But, since it does not depend on 

the sequence of bits being erased, the thermodynamic entropy is unrelated to the information 

content, i.e. erasing a random sequence costs the same energy as erasing an ordered sequence of 

the same length. 

2.7 Evolution and Adaptation of Living Organisms 

A new model for living organisms that includes sequence-coded information is necessary. [30] 

The “organism as a machine” model from the last century is incomplete. Organisms collect 

information about their immediate environment and use that information to determine their 

response. [31] An organism is thus analogous to a robot with sensors and an onboard computer 

that processes data from sensors and guides the response of the robot, e.g. an adaptive, self-driving 
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car. This capability obviously increases in proceeding from simple single cell organisms to higher 

organisms with nervous systems and brains. DNA is analogous to the read only memory (ROM) 

in a computer, providing the template to boot up and use the inputs to survive.  As with ROM, to 

provide system stability, rewriting information for survival is more complex than altering random 

access files.  However, DNA code can be altered by methylation and restructuring chromatin. [32] 

“Genomes are in constant flux: They are prone to deletions, duplications, and insertions; 

recombination and rearrangement; and invasion and disruption by selfish genetic elements such as 

transposable elements. These many changes are subject to the vagaries of natural selection, 

resulting in a genome organization not based on principles of efficiency or economy of space, but 

instead contingent on the evolutionary history of the organism.” [33]. 

Information processing is thus central to the origin and evolution of life and to adaptation to 

the environment. A model for evolution and adaptation must allow for natural selection to process 

information as well as operate in response to thermodynamic, environmental and natural 

constraints.  Convolution of the performance curve of an organism as a function of all 

environmental constraints (see note 6) with the probability function describing the environmental 

constraints, both abiotic and biotic, thus gives direction to adaptive evolution. As a consequence, 

we propose the apparently random events that constitute natural selection behave in a deterministic 

way.  This determinism in the temporal and spatial parameters and constraints of the probability 

distribution of selective events is the consequence of the physical constraints imposed by the 

environment.  

Although relatively simple in concept, defining distribution functions of the constraints and 

organism performance in a given environment is too complex to be realistic. However, the 

concepts used in statistical mechanics and information theory suggest the existence of a governing 
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statistic that summarizes the activities of biological systems in the same manner that 

thermodynamic entropy summarizes chemical processes. Thus, we hypothesize that klnW is a 

generic expression summarizing the probability constraints of any system in which the microstates 

can be defined and enumerated. Comparison of klnW for the environment with klnW for organism 

performance by enumerating the accessible microstates in each system measures fitness in the 

same way thermodynamic entropy predicts the position of equilibrium for a physical system, and 

thus expresses a second law of evolution. New terminology is needed to simply express these 

concepts and laws. Therefore, we propose to call the summary statistic for the environment the 

envotropy  and the summary statistic of a population of a species, the demotropy. These terms 

clearly distinguish these summary statistics from the thermodynamic entropy which has frequently 

been misused and confused with other statistics. In these terms, the second law of evolution 

becomes, “the demotropy evolves toward the envotropy”.  

This concept of deterministic stochasticity has been stated as “The manifestations of life, its 

expressions, its forms, are so diverse that they must contain a large element of the accidental. And 

yet the nature of life is so uniform that it must be constrained by many necessities.” [34] An 

evolutionary event that initiates a new capability and leads to macroevolution, such as light 

sensing, must be stochastic, i.e. by chance, but once such an event occurs, the ultimate outcome is 

deterministic, e.g. fully functioning eyes will eventually come to exist but the structure of the eye 

is contingent on the evolutionary history. In the same sense, the biological outcome from a 

geological or climatic event that creates a new environmental niche is deterministically stochastic. 

The deterministic nature of evolution is delightfully clear from the figure on page 20 of Losos’ 

article [35] (Figure 2-1) showing convergent evolution of Australian marsupials and placental 

counterparts. Although random mutations, statistical aberrations and empirical adaptations driving 
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biological evolution are stochastic in nature, the probabilities generating these "random events" 

are deterministic, completely specified by the constraints of the system in which evolution is 

occurring. In other words, the evolutionary path of organisms within a system is deterministic, not 

stochastic, with the determinism being consistent within the constraints of the system. Therefore, 

if the constraints existent on earth exist elsewhere in the universe, random evolutionary processes 

will result in ecosystems, organisms and system dynamics that are similar to those on earth. 

 

Figure 2-1: Convergent evolution of Australian marsupials and placental counterparts. 
(Reproduced by permission from [35])  
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A “second law” presupposes and requires the existence of a first law which we propose as: 

“Given appropriate conditions, life will originate and evolve.” If the right conditions persist for a 

sufficient length of time, life will originate and eventually evolve into complex organisms. For 

now, “the appropriate conditions” means carbon based life that requires liquid water, a source of 

energy, etc.; the same as current life on earth. Under these conditions, the origin and evolution of 

living organisms has been shown to be thermodynamically spontaneous [4], and what is 

thermodynamically possible is inevitable, even for events with a very small probability.  

The laws of evolution parallel the laws of thermodynamics, but are very different in 

application. The first law of thermodynamics is a conservation law while the first law of life in 

essence establishes that life based on compounds of C, H, O and N can exist only under a limiting 

set of thermodynamic conditions. The second law of thermodynamics establishes a direction and 

a fixed destination, i.e. maximum thermodynamic entropy, for physical systems as defined by 

pressure, volume and temperature. The second law of life similarly establishes a direction and 

destination, i.e. the envotropy, but the destination is a range of values, is variable, not fixed and 

likely has many demotropic values that satisfy a viable condition. The envotropy is subject to 

gradual change and also to sudden stochastic events that lead to extinction of species whose 

demontropic value falls entirely outside the range of the envotropy. 

2.8 Summary 

In 1867, Clausius [7] introduced entropy, S, as a thermodynamic property defined operationally 

by Qrev/T to describe heat energy that cannot be converted into work. In 1875, Boltzmann [10, 

14] introduced the concept of entropy as a measure of the number of accessible microstates 

described by the formula S = kBln(W). This tour de force explained Clausius’ laws of 
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thermodynamics in terms of the statistical properties of the energies of atoms and molecules. 

However, Boltzmann further recognized that for a large system of indistinguishable particles, the 

system can be approximated by a single, most-probable configuration which can be used to 

simplify the entropy equation to S = -kBpilnpi. It is important to recognize that the equation, S = 

-kBpilnpi, is an approximation to the more general Boltzmann equation, S = kBln(W), and is only 

valid under the assumptions of (a) a single most-probable configuration, (b) a large number of 

particles, and (c) indistinguishable particles. 

 In 1948, Shannon [19] introduced information entropy (Š) as a statistical model for 

communication. The form of Shannon’s equation is identical to the Boltzmann equation, but the 

meaning is completely different. Information systems cannot have a single most-probable 

configuration because the symbols must be distinguishable and the sequence of symbols is the 

message.  

Schrödinger’s [20] incorrect assumption that the structures of living organisms have an 

unusually low entropy led some to incorrectly assume that S and Š are equivalent. However, the 

information in DNA is contained in the sequence of the bases, A, T, G and C, and does not have 

any effect on the value of S(0) determined by statistical mechanics or the value of S(T) determined 

from heat capacity measurements. Determination of S(0) does not involve any decoding of 

sequence. Therefore, we conclude that Š is a subjective quantity fundamentally different from the 

objective thermodynamic entropy, S(0). Application of information theory to DNA to evaluate Š 

requires definition of a reference state, but what would the reference state be for calculation of the 

information entropy of a DNA sequence? A perfect DNA sequence is the sequence that codes for 

an optimally functioning organism, but that sequence varies greatly both within and among 

species. 
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Thermodynamic entropy, S, and information entropy, Š, are different quantities that cannot be 

combined. However, it appears that a second law can be constructed for information entropies by 

use of the same principles used for thermodynamic entropy. For example, in the case of 

thermodynamic entropy the second law predicts the direction of change in a dominant 

configuration of a large number of indistinguishable particles when the constraints on the system 

are changed, e.g., by addition of energy. In the case of information entropy, there is not necessarily 

a dominant configuration, however, microstates can be defined taking into account that the 

symbols are distinguishable and sequence matters. Thus, we posit that a second law for information 

can be constructed in a manner similar to thermodynamic entropy as a change in the distribution 

of microstates required to change the message in response to a change in the constraints. S = 

Kln(W) is thus the fundamental equation governing the calculation of entropy for many systems 

beyond the well-established application in chemistry and physics. The calculation of entropy for 

any system can therefore be generalized to counting the number of accessible microstates. In terms 

of DNA and organisms, adaptation and evolution can be viewed as a change in the distribution of 

the information microstates that optimizes fitness in response to constraints imposed by 

environmental changes. 

Based on the general principle of enumerating microstates, we posit a paradigm wherein 

adaptation and evolution are stochastically deterministic, i.e. having a specific direction arising 

from many random events. Natural selection over time, resulting from random events governed by 

deterministic constraints, minimizes the difference in the information describing the local 

environment and the biological system. Therefore, this paradigm lays the foundation for an 

information theory formulated on the immensely powerful statistical concept of enumerating 

microstates that provides summary statistics similar to thermodynamic entropy. To avoid 
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confusion of thermodynamic entropy with various other “entropies”, we propose the summary 

statistics for the environment and for the population demographics be called the “envotropy” and 

the “demotropy”, respectively, and that a similar nomenclature be developed for the summary 

statistics of other systems. This work thus proposes a foundation for a quantitative theory for 

summary statistics of information systems including biological systems, economics, markets, and 

health systems. 

2.9 Notes 

1. In statistical mechanics, a microstate is a specific microscopic configuration of a 

thermodynamic system that the system may occupy with a certain probability in the course 

of its thermal fluctuations. 

(https://en.wikipedia.org/wiki/Microstate_(statistical_mechanics) accessed 5 Nov. 2017) 

2. Since for most first order phase changes the temperature is constant and the transition 

occurs at constant pressure, the entropy change for the transition, ΔSphase transitions, is 

calculated as Qphase transition/T for each phase transition where Q is the heat absorbed in the 

phase transition and T is the fixed temperature of the phase transition. In this paper, the 

ΔSphase transitions term is omitted for simplicity and included with second order and other ill-

defined transitions that are included in the integral of Cp/T. 

3. The integration in equation 2 goes from 0 K to a temperature τ at which the entropy S is 

determined, while T is the integration variable. However, in most texts T is used to denote 

both the integration variable and the limit of integration, the convention used here. 

Although entropy is always measured as the difference from a defined reference state, in 

the context of equation 2 the symbol S is traditionally written omitting the Δ used with 
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other thermodynamic quantities, e.g. ΔH and ΔG. The subscripts, Macro and micro, are 

used to distinguish between thermodynamic entropy that is measured by calorimetry and 

entropy that is calculated by statistical mechanics. Note that values of SMacro(T) do not 

include SMacro(0), but values of Smicro(T) include the entropy at absolute zero temperature. 

4. U should technically be indicated by [U], but is here denoted simply as U since, by the law 

of large numbers, the difference between U and [U] is insignificant for the systems of 

interest here. 

5. The symbol, Š, is used in this paper instead of the H used in Shannon’s original work. 

6. A performance curve is a plot of the rate of any activity of an organism, such as 

reproductive rate, versus one or more parameters describing the environment, such as 

temperature. The performance curve of an organism is defined here as the rate of successful 

reproduction plotted as a function of all environmental constraints. 

 

2.10 Supplement 1: The Second Law of Classical Thermodynamics 

This supplement gives a short overview of the second law in classical thermodynamics, 

explaining fundamental properties (e.g. heat, work…) and deriving the fundamental equations of 

thermodynamics. Much of this is taken from the text by Ott and Boerio-Goates [9]. 

2.10.1 Clausius Inequality Derivation 

The Carnot engine is a hypothetical heat engine that is of fundamental significance in 

formulating the second law of thermodynamics and entropy. The Carnot engine operates using a 
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reversible cycle that consists of alternating reversible isothermal and adiabatic expansions and 

compressions (Figure 2-2). The cycle has four steps that return the system to its initial condition: 

1. An isothermal expansion 

2. An adiabatic expansion 

3. An isothermal compression 

4. An adiabatic compression 

 

Figure 2-2: The Carnot cycle. 

A thermodynamic temperature of the reservoirs is defined to be proportional to heat exchanged 

by the reservoirs with the system 

𝑇ଶ ൌ 𝑘 ∙ 𝑞ଶ (S.1.1) 

And 
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𝑇ଵ ൌ െ𝑘 ∙ 𝑞ଵ (S.1.2) 

where k is a proportionality constant, T1 and T2 are the thermodynamic temperatures of the first 

and second reservoirs, respectively; while q1 and q2 are amount of heat exchanged with the first 

and second reservoirs, respectively. The minus sign in equation (S.1.2) must be included because 

thermodynamic temperature is always positive, while q1<0. Equations (S.1.1) and (S.1.2) can be 

manipulated into 

ଵ

௞
ൌ ௤మ

మ்
 (S.1.3) 

ଵ

௞
ൌ െ ௤భ

భ்
 (S.1.4) 

By subtracting equation (S.1.4) from (S.1.3)  

ଵ

௞
െ ଵ

௞
ൌ ௤మ

మ்
െ ቀെ ௤భ

భ்
ቁ  (S.1.5) 

௤భ

భ்
൅ ௤మ

మ்
ൌ ∑ ௤ೝ೐ೡ

்
ൌ 0   (S.1.6) 

where qrev is heat exchanged in a reversible process. Equation (S.1.6) shows that q1 and q2 are not 

state functions, but qrev/T is a state function, since the sum of qrev/T terms in the cycle add to zero. 

This important observation led to the formulation of the entropy function.  

If we have any kind of cycle in general, we can approximate it as a sum of many Carnot cycles 

(Figure 2-3).  
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Figure 2-3: Approximation of a real cyclic process with Carnot cycles.  

In that case, since equation (S.1.6) holds for each of the Carnot cycles, for the overall cycle we 

have 

∑ ௤ೝ೐ೡ

்
ൌ 0 (S.1.7) 

The more Carnot cycles included, the better the approximation to the overall cycle. To precisely 

approximate the overall cycle, an infinite number of infinitesimal Carnot cycles are used by 

replacing the sum in equation (S.1.7) with a circular integral 

∮
௤ೝ೐ೡ

்
ൌ 0

 
 (S.1.8) 

Equation (S.1.8) shows the integral around a closed path of qrev/T is zero, thus showing that qrev/T 

is a state function. This state function is named entropy, and given the symbol, S. Therefore, 

𝑑𝑆 ൌ ఋ௤ೝ೐ೡ

்
 (S.1.9) 
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where d is used before S to denote an exact differential – a state function, while δ is used before 

qrev to denote that it is an inexact differential – it is not a state function. While qrev is not a state 

function, division by T it gives the state function, S.  

The consideration above was for reversible processes only (i.e. qrev). Generalizing equation 

(S.1.9) for all processes, including irreversible processes, begins with the first law of 

thermodynamics. In a reversible process, the work is always minimal. If the system does work, we 

will be able to extract the largest work from it. Since w is negative for a system doing work, its 

most negative value will be reached when the process is reversible. If a work is done on the system, 

the smallest amount of work will need to be done if the process is reversible. So, since by 

convention, work done on the system is positive, it will have the lowest possible positive value. 

Thus, in a reversible process work is always minimal: wrev=wmin.  

Since U is a state function it doesn’t matter whether a process that changes it is reversible or 

irreversible, as long as the system goes between two defined states, the change in U will be the 

same, regardless of the path taken. Therefore, in a reversible process if U is constant and w is 

minimal, and since q and w are reciprocal, q will be maximal: qrev=qmax. If q is maximal in a 

reversible process, in an irreversible process it will be lower, thus: qirrev < qrev, where qirrev is the 

heat received by a system in an irreversible process. This combined with equation (S.1.9) implies 

that 

𝑑𝑆 ൐ ఋ௤೔ೝೝ೐ೡ

்  
(S.1.10) 

By combining equations (S.1.9) and (S.1.10) we obtain the general case 

𝑑𝑆 ൒ ఋ௤

்
 (S.1.11) 
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which is the Clausius inequality. There are also other derivations, such as the Caratheodory 

Principle, that arrive at the same conclusion. 

2.11 Supplement 2: Clausius’ Entropy 

In this supplement equation (2) from the main body of the paper is derived from equation (1). The 

entire derivation is based on macroscopic classical thermodynamics. Good sources of further 

information on the subject are textbooks, such as Atkins and de Paula [36, 37], Dugdale [13], Ott 

and Boerio-Goates [9], or Chang [38]. 

The Clausius equation (equation 1) is 

𝑑𝑆ெ௔௖௥௢ ൌ 𝛿𝑄௥௘௩௘௥௦௜௕௟௘ 𝑇⁄  (S.2.1) 

Heat capacity at constant pressure, Cp, is defined as 

𝐶௣ ൌ 𝛿𝑄௣ 𝑑𝑇⁄  (S.2.2) 

 Qp is heat exchanged at constant pressure between a system and its surroundings [9, 36-38]. 

Assuming the process is reversible, δQp can be set equal to δQreversible and equation (S.2.2) 

rearranged into 

𝛿𝑄௥௘௩௘௥௦௜௕௟௘ ൌ 𝐶௣𝑑𝑇 (S.2.3) 

Substituting (S.2.3) into (S.2.1), 

𝑑𝑆 ൌ
஼೛

்
𝑑𝑇 (S.2.4) 

Integrating equation (S.2.4) from absolute zero to a temperature T evaluates the entropy 
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׬ 𝑑𝑆
்

଴ ൌ ׬
஼೛

்
𝑑𝑇

்
଴  (S.2.5) 

Note that the integration in equation (S.2.5) goes from 0 K to a temperature τ at which the entropy 

S is determined, while T is the integration variable. However, in most texts T is used to denote both 

the integration variable and the limit of integration, the convention used here. After the integration 

of the left-hand side, equation (S.2.5) gives 

𝑆|𝑇
0

ൌ ׬
஼೛

்
𝑑𝑇

்
଴  (S.2.6) 

𝑆் െ 𝑆଴ ൌ ׬
஼೛

்
𝑑𝑇

்
଴  (S.2.7) 

ST is the entropy at temperature T and S0 is the entropy at zero kelvin. Rearranging equation (S.2.7), 

𝑆் ൌ 𝑆଴ ൅ ׬
஼೛

்
𝑑𝑇

்
଴  (S.2.8) 

Equation (S.2.8a) allows calculation of the entropy of a substance at any temperature, T, using S0 

and determination of Cp as a function of temperature [9, 36-38]. Equation (S.2.8) is equation (3) 

from the main body of the paper.  

Note that, if the substance exhibits phase transitions, heat is added, but does not change the 

temperature [9, 36-38]. Therefore, a phase transition entropy term, ΔSphase transitions, must be 

included in equation (S.2.8a), 

𝑆் ൌ 𝑆଴ ൅ ∆𝑆௣௛௔௦௘ ௧௥௔௡௦௜௧௜௢௡௦ ൅ ׬
஼೛

்
𝑑𝑇

்
଴  (S.2.9) 
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The value of ΔSphase transitions is evaluated by noting that, at the phase transition temperature, any 

heat exchanged between the system and surroundings is reversible because the two phases in the 

system are in equilibrium [9, 36-38]. The change in entropy during a phase transition, ∆trsS, is  

∆௧௥௦𝑆 ൌ ∆೟ೝೞு

೟்ೝೞ
 (S.2.10) 

∆trsH is the enthalpy change of the phase transition, Ttrs is the temperature at which the phase 

transition occurs [9, 36-38]. If the substance exhibits multiple phase transitions, the total phase 

transition entropy ∆Sphase transitions is just the sum of the entropy changes of the individual phase 

transitions,  

∆𝑆௣௛௔௦௘ ௧௥௔௡௦௜௧௜௢௡௦ ൌ ∑ ∆௧௥௦𝑆 (S.2.11) 

Second order and other ill-defined transitions are included in the integral of Cp/T. However, in this 

paper, the ΔSphase transitions term is omitted for simplicity and included with second order and other 

ill-defined transitions that are included in the integral of Cp/T. Therefore, equation (S.2.8) will be 

used in all following discussions. 

2.12 Supplement 3: Statistical Entropy Equations 

In this supplement, equation (9) from the main body of the paper is derived from equation (4). 

The discussion is based on the framework of statistical mechanics. Good sources of further 

information of the subject are Dugdale [13], Nash [15], and Sandler [12]. 

Relating equations (4) and (9) really means showing that: 

ln 𝑊 ൌ െ𝑁 ∑ 𝑝௜ ln 𝑝௜
௤
௜ୀଵ  (S.3.1) 
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Where pi is the probability an atom is in quantized energy state i and q is the number of quantized 

energy states. For a specific configuration, denoted C, we know that the number of atoms in 

quantized state i is fixed for all i. Denote these counts as ni, i = 1, 2,…,q. Then for this 

configuration, the number of microstates, WC, is given by 

𝑊஼ ൌ ே!

∏ ሺ௡೔!ሻ೔
  (S.3.2) 

Recall Stirling’s approximation 

lnሺ𝑁!ሻ ൌ 𝑁 lnሺ𝑁ሻ െ 𝑁 (S.3.3) 

Taking logarithms of both sides of equation S.3.2 we get 

ln 𝑊஼ ൌ 𝑁 lnሺ𝑁ሻ െ 𝑁 െ ∑ ሾ𝑛௜ lnሺ𝑛௜ሻ െ 𝑛௜ሿ௤
௜ୀଵ  (S.3.4) 

Recall, Σni = N. Consequently S.3.4 can be simplified to 

ln 𝑊஼ ൌ 𝑁 lnሺ𝑁ሻ െ 𝑁 െ ∑ ሾ𝑛௜ lnሺ𝑛௜ሻ െ 𝑛௜ሿ௤
௜ୀଵ   

ൌ െ ∑ 𝑛௜ሾlnሺ𝑛௜ሻ െ lnሺ𝑁ሻሿ௤
௜ୀଵ   

ൌ െ ∑ 𝑛௜ ln ௡೔

ே
௤
௜ୀଵ  (S.3.5) 

ൌ െ𝑁 ∑ ௡೔

ே
ln ௡೔

ே
௤
௜ୀଵ   

ൌ െ𝑁 ∑ 𝑝௜ ln 𝑝௜
௤
௜ୀଵ   

Where pi = ni / N is the proportion of molecules in quantized energy state i in configuration C.  

The above derivation gives the number of microstates in the specific configuration, C. 

However, as is well known, for indistinguishable particles, for large N, there is only one 

configuration that dominates (see Nash [15]) for large n. Therefore, lnW can be approximated by  
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ln 𝑊 ൎ ln 𝑊஼బ
  

ൌ െ𝑁 ∑ 𝑝଴,௜ ln 𝑝଴,௜
௤
௜ୀଵ  (S.3.6) 

where C0 is the dominant configuration and p0,i = ni / N is the proportion in quantized energy state 

i, for that configuration.  

For any set of atoms and total energy, there is a dominant configuration. Changing the energy 

or the number of atoms changes the dominant configuration. The system moving to the dominant 

configuration is the second law. Note that Gibbs arrived at the same expression for entropy without 

relying on energy levels and the existence particles. The common assumption in each approach is 

the necessity of a large number of indistinguishable particles that result in a single dominant 

configuration. 
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3 THERMODYNAMICS OF HYDROLYSIS OF CELLULOSE TO GLUCOSE 

FROM 0 TO 100⁰C: CELLULOSIC BIOFUEL APPLICATIONS AND 

CLIMATE CHANGE IMPLICATIONS 

3.1 Abstract  

Hydrolysis of cellulose to glucose is a key reaction in renewable energy from biomass and in 

mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG’, 

ΔhydH’, and ΔhydS’, and equilibrium glucose concentrations are reported for the reaction 

C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of temperature from 0 to 100⁰C. Activity 

coefficients of aqueous glucose solution were determined as a function of temperature. The 

reaction free energy ΔhydG’ becomes more negative as temperature increases, suggesting that 

producing cellulosic biofuels at higher temperatures will result in higher conversion. Also, 

cellulose is a major source of carbon in soil and is degraded by soil microorganisms into CO2 and 

H2O. Therefore, global warming will make this reaction more rapid, leading to more CO2 and 

accelerated global warming by a positive feedback. 

Key Words: Renewable energy; Biomass; Soil organic matter; Lignocellulose; Global warming; 

Glucose activity coefficient.  

3.2 Introduction 

Most of the carbon fixed by terrestrial plants is used to synthesize lignocellulose. As one of 

the largest reservoirs of organic compounds on the planet, lignocellulose has the potential to 

replace a significant amount of petroleum as a feedstock for production of chemicals and liquid 

fuels. Because lignocellulose is a major part of soil organic matter, oxidation of lignocellulose to 
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CO2 is a major contributor of atmospheric CO2, but the temperature dependence of the rate of this 

reaction is very uncertain.  

Lignocellulose consists of approximately equal parts lignin, cellulose and hemicellulose. 

Lignin is a two-dimensional polyphenol, cellulose is a largely crystalline polymer of glucose with 

a coiled structure, and hemicellulose consists of relatively short polysaccharides of various sugars 

with no long range structural order. Hemicellulose is relatively easily separated and solubilized by 

hydrolysis with acid or base catalysis under mild conditions and is readily metabolized to CO2 by 

soil organisms. The difficulty of depolymerizing and solubilizing the lignin and cellulose in 

lignocellulose is a major roadblock to use of biomass as a chemical feedstock and may limit the 

rate of oxidation to CO2 in soil. The hydrolysis reactions of lignin and cellulose may be significant 

in turnover of soil organic matter with potential positive feedback exacerbating global warming, 

but it is unknown whether these reactions occur to a significant extent at normal soil temperatures. 

The potential use of lignocellulose as a feedstock for chemical and fuel production also depends 

on the thermodynamics of the depolymerizing hydrolysis reactions.  

Several exozymes that catalyze hydrolysis of lignocellulose are known [1], but whether or not 

these could be used in an economically viable process depends on the extent of reaction that can 

be obtained. Therefore, it is important to quantify the thermodynamics of hydrolysis of 

lignocellulose. This study quantifies the thermodynamics of the cellulose component of 

lignocellulose to aqueous glucose as a function of temperature from 0 to 100⁰C. 

3.3  Thermodynamic data 

Goldberg et al. [2] reports ΔcrH°, ΔcrS°, ΔcrG°, and ΔcrCp°  for the hydrolysis of four cellulose 

allomorphs (amorphous cellulose, cellulose I, cellulose II and cellulose III) to crystalline 
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anhydrous α-D-glucose at 25°C (Table 3-1) and heat capacities for the allomorphs from 2 to 300 

K. The calculation assumes the molar entropy of cellulose per monomer unit is equal to the entropy 

change of heating cellulose from absolute zero to room temperature, residual entropy was 

neglected, since it could not be determined. Boerio-Goates [3] reports heat capacity data for 

crystalline anhydrous α-D-glucose from 10 to 340 K. Osborne et al. [4] reports heat capacity data 

on liquid water from 273 to 373 K. 

Table 3-1: Heat capacity coefficients for equation (9), and ΔcrH°ref, ΔcrS°ref and ΔcrCp° values for 
equations 5 and 6. (From reference 2.) 

 

Amorphous cellulose Cellulose I Cellulose II Cellulose III 

ΔcrHref° (kJ/mol) -(6.4 ± 2.7) 8.2 ± 3.7 13.6 ± 3.3 9.9 ± 4.1 

ΔcrSref° (J/mol K) -(28.6 ± 3.3) -(24 ± 11) -(5 ± 16) -(0.6 ± 19) 

ΔcrCp° (J/mol K) -(47.3 ± 3.0) -(37 ± 11) -(22 ± 15) -(18 ± 17) 

q0 (J mol-1 K-1) 93.3460 -76.5740 -117.0000 -126.7400 

q1 (J mol-1 K-2) -1.0488 0.4127 0.8477 0.9178 

q2 (J mol-1 K-3) 0.0026 -0.0009 -0.0018 -0.0018 

q3 (J mol-1 K-4)  -2∙10-6 0 0 0 

 

Many references report glucose solubility in water [5-9], but due to difficulties of making 

measurements on saturated glucose solutions, the results differ significantly. Some reports [7, 8] 
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give solubility as mass of glucose per liter of solution, but reliable solution density data to convert 

these to temperature independent, and thus thermodynamically useful molal units, are not 

available. Because reliable density data over the range of temperatures analyzed in this study are 

not available, only references that give solubility in mass fractions were used. Examination of 

experimental procedures indicates the data published by Young [6] are the most reliable and cover 

sufficient temperature range for this study, Table 3-3.  

Vapor pressure measurements of aqueous glucose solutions was reported by Taylor and 

Rowlinson [10]. These data were used to calculate activity coefficients of aqueous glucose.  

3.4 Reactions 

The reaction of interest is cellulose hydrolysis in water to produce an aqueous solution of 

glucose,  

(C6H10O5)u∙(H2O)1∙(H2O)v (s) + (u-v-1)H2O(l) ⇄ uC6H12O6 (aq, hyd)  (1) 

(C6H10O5)u∙(H2O)1∙(H2O)v (s) is cellulose, u is the average number of monosaccharide units in the 

polymer, v is the average number of waters of hydration [2], C6H12O6(aq, hyd) is glucose in the 

cellulose hydrolysis equilibrium solution. No direct thermodynamic measurements have been 

made on this reaction, and therefore, the reaction was divided into two reactions for which 

thermodynamic data are available. One reaction is hydrolysis of cellulose to crystalline glucose, 

(C6H10O5)u∙(H2O)1∙(H2O)v (s) + (u-v-1)H2O(l) ⇄ uC6H12O6 (cr)  (2) 

where C6H12O6(cr) is anhydrous α-D-glucose. Even though α-D-glucose monohydrate 

C6H12O6∙H2O is the most thermodynamically stable form up to 50°C, reaction (2) was used in the 

entire temperature region where thermodynamic values were estimated. The product of reaction 
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(1) is anhydrous α-D-glucose and the reactant in reaction (3) is anhydrous α-D-glucose. Therefore, 

even though it is not the most thermodynamically stable form below 50°C, anhydrous α-D-glucose 

is used to complete the Hess’ law cycle in Scheme 1. The other reaction is dissolution of crystalline 

glucose to make the final aqueous solution. 

C6H12O6 (cr) ⇄ C6H12O6 (aq, sat) (3) 

where C6H12O6 (aq, sat) is glucose in a saturated aqueous solution. Completing the cycle also 

requires correction for the thermodynamics of dilution of glucose since the equilibrium 

concentrations differ, i.e. saturated and in equilibrium with cellulose. 

C6H12O6 (aq, sat) ⇄ C6H12O6 (aq, hyd)  (4) 

Scheme 1 shows how the thermodynamic data for reactions 2, 3 and 4 are combined to determine 

the thermodynamics of reaction 1. 

Scheme 1. Separating the cellulose hydrolysis to aqueous glucose reaction into components. 

(C6H10O5)u∙(H2O)1∙(H2O)v (s) + (u-v-1)H2O(l) ⇄ uC6H12O6 (cr)    ΔcrX⁰ 

C6H12O6 (cr) ⇄ C6H12O6 (aq, sat)         ΔsolX’ 

C6H12O6 (aq, sat) ⇄ C6H12O6 (aq, hyd)        ΔdilX⁰ 

(C6H10O5)u∙(H2O)1∙(H2O)v(s) + (u-v-1)H2O(l) ⇄ uC6H12O6(aq, hyd)   ΔhydX’ = ΔcrX⁰ + ΔsolX’ + ΔdilX⁰ 

 

3.5 Cellulose hydrolysis to solid glucose 

The thermodynamics of reaction (2) can be extrapolated from 25 to 100⁰C by assuming ΔcrCp° 

does not change with temperature and using the value of ΔcrCp° (Table 3-1) from Goldberg et al. 

[2] as a constant in integrating dH=∫CpdT and dS=∫(Cp/T)dT , i.e., 
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∆௖௥𝐻° ൌ ∆௖௥𝐻°௥௘௙ ൅ ∆௖௥𝐶௣°൫𝑇 െ 𝑇௥௘௙൯ (5) 

∆௖௥𝑆° ൌ ∆௖௥𝑆°௥௘௙ ൅ ∆௖௥𝐶௣° ln൫𝑇 𝑇௥௘௙⁄ ൯ (6) 

ΔcrH°ref and ΔcrS°ref are the standard reaction enthalpy and entropy at the reference temperature 

25°C, taken from Goldberg et al. [2] (Table 3-1). 

The standard Gibbs energy change of reaction (2), ΔcrG°, was then calculated with the equation 

∆௖௥𝐺° ൌ ∆௖௥𝐻° ൅ 𝑇∆௖௥𝑆° (7) 

To test whether assuming constant ΔcrCp° leads to a significant error in the final results, the 

heat capacity data for cellulose [2] and anhydrous α-D-glucose [3] were fit to  

𝐶௣ሺ𝑇ሻ ൌ 𝑝ଵ𝐷ሺΘ஽ሻ ൅ 𝑝ଶ𝐷ሺΘாሻ ൅ 𝑝ଷ𝑇 ൅ 𝑝ସ𝑇ଶ (8) 

and extrapolated to 100°C. Cp(T) is the heat capacity as a function of temperature, D(ΘD) is the 

Debye function, ΘD is the Debye temperature, E(ΘE) is the Einstein function, ΘE is the Einstein 

temperature, T is Kelvin temperature, and p1, p2, p3 and p4 are coefficients that satisfy p1+ p2+ p3+ 

p4=1. The fitted parameters are given in Table 3-2. The data were then corrected for cellulose water 

content and crystallinity and averaged as described by Goldberg et al. [2] The extrapolated Cp data 

were then used to find ΔcrCp°, which was then used to extrapolate the ΔcrG⁰, ΔcrH⁰, and ΔcrS⁰ of 

reaction (2) up to 100°C. Because the results did not differ significantly from the approximation 

of constant ΔcrCp°, equations (5) and (6) are used in all subsequent calculations.  

Table 3-2: Adjustible parameters for cellulose and α-D-glucose heat capacity equation (8).  

  p1 ΘD (K) p2 ΘE (K) p3 p4 %RMS 
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Cel. Am. 24h 0.0241 285.10 0.0505 921.95 2.716∙10⁻⁶ 0 1.577999 

Cel. Am. 30h 0.0245 287.40 0.0520 938.33 2.709∙10⁻⁶ 0 1.732902 

Cel. Am. 36h 0.0213 272.21 0.0310 854.85 5.297∙10⁻⁶ 0 1.183929 

Cel. Iβ 0.0202 265.84 0.0224 797.81 6.082∙10⁻⁶ 0 0.924771 

Cel. II 25⁰C 0.0186 258.12 0.0154 735.23 7.757∙10⁻⁶ 0 0.90598 

Cel. II 70⁰C 0.0194 263.13 0.0222 788.12 6.099∙10⁻⁶ 0 1.036268 

Cel. II 145⁰C 0.0198 266.77 0.0251 821.86 5.667∙10⁻⁶ 0 1.138173 

Cel. III -33⁰C 0.0194 263.64 0.0225 785.44 5.955∙10⁻⁶ 0 1.068027 

Cel. III 25⁰C 0.0185 256.85 0.0160 720.36 7.321∙10⁻⁶ 0 0.839996 

Cel. III 130⁰C 0.0200 267.58 0.0255 817.55 5.782∙10⁻⁶ 0 1.122759 

α-D-glucose 0.8582 328.92 2.5036 1795.93 0 0.6486 0.158449 
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Using the extrapolated heat capacities of cellulose and anhydrous α-D-glucose and the water 

heat capacity determined by Osborne et al. [4], the heat capacity change, ΔcrCp°, for reaction (2) 

was determined for each of the cellulose allomorphs and fit to a third order polynomial in T where 

T is temperature in Kelvins. 

Δ௖௥𝐶௣ሺ𝑇ሻ ൌ 𝑞଴ ൅ 𝑞ଵ𝑇 ൅ 𝑞ଶ𝑇ଶ ൅ 𝑞ଷ𝑇ଷ (9) 

The values of q0, q1, q2, and q3 are given in Table 3-1. 

ΔcrCp (T) for reaction (2) was extrapolated to 100°C and substituted into the equations 

dH=∫CpdT and dS=∫(Cp/T)dT, which were then integrated from 25°C to 100°C. 

∆௖௥𝐻° ൌ ∆௖௥𝐻°௥௘௙ ൅ ଵ

ସ
𝑞ଷ൫𝑇ସ െ 𝑇௥௘௙

ସ ൯ ൅ ଵ

ଷ
𝑞ଶ൫𝑇ଷ െ 𝑇௥௘௙

ଷ ൯ ൅ ଵ

ଶ
𝑞ଵ൫𝑇ଶ െ 𝑇௥௘௙

ଶ ൯ ൅ 𝑞଴൫𝑇 െ 𝑇௥௘௙൯(10) 

∆௖௥𝑆° ൌ ∆௖௥𝑆°௥௘௙ ൅ ଵ

ଷ
𝑞ଷ൫𝑇ଷ െ 𝑇௥௘௙

ଷ ൯ ൅ ଵ

ଶ
𝑞ଶ൫𝑇ଶ െ 𝑇௥௘௙

ଶ ൯ ൅ 𝑞ଵ൫𝑇 െ 𝑇௥௘௙൯ ൅ 𝑞଴ ln ൬
்

்ೝ೐೑
൰ (11) 

Substituting equations (10) and (11) into (7), and comparing ΔcrG° values found from ΔcrCp° 

described by equation (8) and found from constant ΔcrCp°, indicates the approximation in the latter 

method causes an average error of 0.16% and a maximum error of 1.12% compared with equation 

(8), thus justifying the use of equations (5) and (6) in subsequent derivations.  

3.6 Glucose solubility 

The thermodynamic parameters for reaction (3), solution of crystalline glucose into water, are 

based on the solubility of anhydrous α-D-glucose in water, Table 3-3. For practical purposes, 

concentrations are more convenient than activities, so conditional thermodynamic parameters of 
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dissolution of glucose in water based on molality were determined. The conditional equilibrium 

constant for reaction (3) is  

𝐾′௦௢௟ ൌ 𝑏௦௢௟
௘௤  (12) 

where beq
sol is the equilibrium solubility of glucose expressed in molal units. The conditional 

equilibrium constants of reaction (3) are given in Table 3-4. (Note that a prime symbol refers to a 

saturated glucose solution as a specified condition.) 

Table 3-3: Solubility of α-D-glucose in water. Molality is denoted b and mass fraction is denoted 
w. Conversion between b and w is done with the equation b = w / [180.16 (1-w)], where 180.16 is 
the molar mass of glucose. 

θ (°C) w (wt%)   T (K) b (mol/kg H2O) 

-12.06 49.81 261.09 5.509 

-10.00 50.49 

 

263.15 5.660 

0.00 53.80 

 

273.15 6.464 

10.00 57.19 

 

283.15 7.414 

20.00 60.65 

 

293.15 8.554 

30.00 64.18 

 

303.15 9.945 

40.00 67.78 

 

313.15 11.679 

50.00 71.46 

 

323.15 13.900 

54.71 73.22   327.86 15.177 
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The conditional enthalpy of dissolution of glucose in water, ΔsolH’, is determined with the van’t 

Hoff relation  

െ ∆ೞ೚೗ுᇲ

ோ
ൌ ௗ ௟௡ ௄ᇲ

ೞ೚೗

ௗሺଵ ்⁄ ሻ
 (13) 

The van’t Hoff plot is shown in Figure 3-1 with data from Table 3-4 fitted to a second order 

polynomial in T-1. 

ln 𝐾′௦௢௟ ൌ 𝑚𝑇ିଶ ൅ 𝑛𝑇ିଵ ൅ 𝑘 (14) 

m, n and k are constants given in Table 3-5. The first derivative of the polynomial gives the enthalpy 

change for dissolution as 

Δ௦௢௟𝐻ᇱ ൌ െ𝑅ሺ2𝑚𝑇ିଵ ൅ 𝑛ሻ (15) 

Values of ΔsolH’ are given in Table 3-6. 

 

Figure 3-1: Van‘t Hoff plot for dissolution of crystalline α-D-glucose in water, C6H12O6(cr) ⇄ 
C6H12O6(aq). The line going through the points is a second order polynomial fit. 
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Table 3-4: Conditional equilibrium constants (K’sol) and conditional Gibbs energy changes (ΔsolG’), 
calculated from solubilities, for dissolution of anhydrous α-D-glucose in water. 

T (K) K'sol 

ΔsolG' 

(kJ/mol) 

261.09 5.5094 -3.7042 

263.15 5.6598 -3.7924 

273.15 6.4639 -4.2381 

283.15 7.4142 -4.7162 

293.15 8.5539 -5.2313 

303.15 9.9448 -5.7895 

313.15 11.6790 -6.3989 

323.15 13.9000 -7.0710 

327.86 15.1767 -7.4136 

 

The conditional Gibbs energy change for dissolution of glucose in water, ΔsolG’, is related to 

the conditional equilibrium constant by  

Δ௦௢௟𝐺ᇱ ൌ െ𝑅𝑇 ln 𝐾′௦௢௟  (16) 

The values of ΔsolG’ given in Table 3-4 were then fitted to the function, 

Δ௦௢௟𝐺ᇱ ൌ Δ𝐻ூ െ Δ𝑎 𝑇 lnሺ𝑇ሻ െ ଵ

ଶ
Δ𝑏 𝑇ଶ െ  ଵ

ଶ
Δ𝑐 𝑇ିଵ ൅ 𝐼 𝑇  (17)  
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ΔsolG’ is in J/mol, T is in K, and ΔHI, Δa, Δb, Δc and I are constants given in Table 3-5. Function 

(17) was chosen because it is the most physically meaningful function for fitting free energy 

changes as a function of temperature [11]. Equation 17 was used to extrapolate ΔsolG’ up to 100°C. 

The results are given in Table 3-6.  

Table 3-5: Fitting parameters of equations (14), (17) and the Margules equation (23). 

m (J/mol K2) 675212 

n (J/mol K) -5927.9 

k (J/mol) 14.511 

ΔHI (J/mol) 1.121324 

Δa (J/mol K) 0 

Δb (J/mol K2) 0.251533 

Δc (J K/mol) 0.99969 

I (J/mol K) 18.83267 

α2,0  -6.4626 

α2,1 4.4641 

α3,0 9.9271 

α3,1 -9.9685 
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The conditional entropy of dissolution of glucose in water, ΔsolS’, was calculated in two ways; 

from the Gibbs equation,  

Δ௦௢௟𝑆ᇱ ൌ ሺΔ௦௢௟𝐻ᇱ െ Δ௦௢௟𝐺ᇱሻ 𝑇⁄   (18) 

and by the first derivative of the Gibbs equation with respect to T 

∆௦௢௟𝑆ᇱ ൌ െ ௗ∆ೞ೚೗ீᇲ

ௗ்
  (19) 

The values of ΔsolS’ calculated by the two methods are shown in Figure 3-2. The results of the 

two methods differ on average by 5.66%. The cause of the deviation is probably the loss of 

significant figures during differentiation in the second method (eq. 19). Therefore, since equation 

(18) does not include differentiation, entropy changes calculated from equation 18 were selected 

and presented in Table 3-6.  

 

Figure 3-2: Comparison of ΔsolS’ found by method 1 -the Gibbs equation (equation 18), and 2 - 
first derivative of the Gibbs energy (equation 19). 
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11.63 kJ/mol, agrees with the value in a review by Goldberg and Tewari [16], 10.85 kJ/mol. The 
small difference is probably due to the fact that values reported here are conditional and 
concentration dependent, while Ref. 16 reports the value at infinite dilution. 

T (K) ΔsolH' (kJ/mol) ΔsolS' (J/mol K) ΔsolG' (kJ/mol) 

273.15 8.1803 45.4652 -4.2383 

278.15 8.9192 48.2123 -4.4908 

283.15 9.6320 50.7924 -4.7496 

288.15 10.3201 53.2189 -5.0147 

293.15 10.9847 55.5040 -5.2861 

298.15 11.6270 57.6589 -5.5637 

303.15 12.2481 59.6934 -5.8477 

308.15 12.8490 61.6170 -6.1379 

313.15 13.4308 63.4379 -6.4345 

318.15 13.9943 65.1639 -6.7373 

323.15 14.5403 66.8020 -7.0464 

328.15 15.0697 68.3586 -7.3618 

333.15 15.5832 69.8396 -7.6835 

338.15 16.0816 71.2505 -8.0114 
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343.15 16.5654 72.5964 -8.3457 

348.15 17.0353 73.8817 -8.6863 

353.15 17.4919 75.1107 -9.0331 

358.15 17.9357 76.2874 -9.3862 

363.15 18.3674 77.4153 -9.7456 

368.15 18.7873 78.4979 -10.1113 

373.15 19.1959 79.5381 -10.4833 

 

3.7 Glucose dilution 

The free energy change of reaction (4) ΔdilG, the dilution of aqueous glucose solution from 

saturated to the concentration in the cellulose hydrolysis mixture, is given as the change in free 

energy of mixing between the cellulose equilibrium ΔmixGeq and saturated ΔmixGsat mixtures 

Δௗ௜௟𝐺 ൌ Δ௠௜௫𝐺௘௤ െ Δ௠௜௫𝐺௦௔௧   (20) 

The free energy of mixing is a function of composition and temperature and is given by the 

equation 

Δ௠௜௫𝐺௘௤ ൌ 𝑛𝑅𝑇ሺ𝑥௪ ln 𝑥௪ ൅ 𝑥ீ௟௖ ln 𝑥ீ௟௖ ൅ 𝑥௪ ln 𝛾௪ ൅ 𝑥ீ௟௖ ln 𝛾ீ௟௖ሻ (21) 
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xw and xGlc are the mole fractions of water and glucose, respectively; n is the total number of moles 

in the solution, while γw and γGlc are the activity coefficients of water and glucose, respectively 

[12].  

The activity coefficients were found from vapor pressure measurements done by Taylor and 

Rowlinson [10], using Raoult’s law 

𝛾௪ ൌ ௣

ሺଵି௫ಸ೗೎ሻ௣∗ (22) 

where p is the vapor pressure of the glucose solution of concentration xGlc, and p* is the vapor 

pressure of pure water at the same temperature [12, 13]. 

Since the experimental data did not cover the entire range of concentrations and temperatures, 

it was fitted to the Margules equation and then extrapolated. The Margules equation gives the 

activity coefficient of the solvent as a function of the solute concentration and temperature [12, 13, 

15]. It was found that the best fit of the data, with the least number of parameters is given by a 

two-suffix Margules equation 

ln 𝛾௪ ൌ 𝛼ଶ𝑥ீ௟௖
ଶ ൅ 𝛼ଷ𝑥ீ௟௖

ଷ  (23a) 

α2 and α3 are temperature-dependent coefficients 

𝛼ଶ ൌ
ఈమ,బ

ఏ
൅ 𝛼ଶ,ଵ (23b) 

𝛼ଷ ൌ
ఈయ,బ

ఏ
൅ 𝛼ଷ,ଵ (23c) 

where θ = T / 298.15 K, while α2,0; α2,1; α3,0; and α3,1 are the fitting parameters, given in Table 3-5. 

The fitting was done using least-squares regression. The sum of the squares of the residuals was 
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minimized using the GRG-Nonlinear method in Excel Solver, as described by Chapra and Canale 

[14]. The absolute average deviation of the fit was 11.7%. 

The activity coefficient of glucose can be found using the Gibbs-Duhem equation [12, 13] and 

is a function of temperature and the mole fraction of water.  

ln 𝛾ீ௟௖ ൌ 𝛽ଶ𝑥௪
ଶ ൅ 𝛽ଷ𝑥௪

ଷ  (24a) 

β2 and β3 are temperature-dependent coefficients, that are related to α2 and α3: 

𝛽ଶ ൌ 𝛼ଶ ൅ ଷ

ଶ
𝛼ଷ (24b) 

𝛽ଷ ൌ െ𝛼ଷ (24c) 

A review of the theory behind the Margules equation is given by Sandler [15], while Starzak and 

Mathlouthi [13] give a detailed explanation of how it is applied in practice.  

Using equations (20), (21), (23) and (24), ΔdilG can be determined, knowing the initial and 

final concentration of the solution xGlc,sat and xGlc,hyd, respectively. The initial concentration xGlc,sat 

is the solubility of glucose in water, which was found using an equation given by Young [6].  

𝑤ீ௟௖,௦௔௧ ൌ 53.8 ൅ 0.335 𝑡 ൅ 3.65 ∙ 10ିସ 𝑡ଶ (25) 

where wGlc,sat is the solubility of glucose in water in mass fraction percents and t is temperature in 

degrees Celsius. The mole fraction of glucose was calculated using the equation  

xGlc,sat = (wGlc / MGlc) / {(wGlc / MGlc) + [(1 - wGlc) / Mw]}, where MGlc and Mw are molar masses of 

glucose and water, respectively. However, there is a problem with the final concentration xGlc,hyd: 

according to equations (20) and (21), ΔdilG depends on the composition of the hydrolysis mixture, 

that is it depends on the equilibrium glucose mole fraction xGlc,hyd, related to beq
hyd by the equation 
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xGlc,hyd = 1 / {1 + [1 / (Mw beq
hyd)]}. On the other hand, according to equations (35) and (36), beq

hyd 

depends on ΔdilG. So, we have a circular problem, finding beq
hyd requires ΔdilG, while to find ΔdilG 

we need beq
hyd. The problem was solved iteratively. Starting from a guess value of ΔdilG, ΔdilG and 

beq
hyd were iteratively calculated until convergence was reached. The calculation was done by 

giving an initial ΔdilG, then calculating beq
hyd and from it a new ΔdilG, until the old and the new 

values of ΔdilG became nearly identical, using GRG-Nonlinear method in Excel Solver. The ΔdilG 

values determined in this way are given in Table 3-7. 

Enthalpy ΔdilH and entropy ΔdilS change of reaction (4) were calculated by fitting a polynomial 

to ΔdilG as a function of temperature. The first derivative was used to determine the entropy 

change: ΔdilS = - d(ΔdilG) / dT. While the enthalpy change was calculated from the Gibbs equation: 

ΔdilH = ΔdilG + T ΔdilS. The values of ΔdilH and ΔdilS are given in Table 3-7. Like with ΔdilG, each 

cellulose allomorph has its own value, because the equilibrium glucose concentrations differ and 

thus the dilution thermodynamic parameters are different as well.  

3.8 Cellulose hydrolysis to aqueous glucose 

The conditional Gibbs energy change for hydrolysis of cellulose to aqueous glucose (reaction 

1), ΔhydG’, is found by adding the Gibbs energy changes for reactions (2), (3) and (4):  

∆௛௬ௗ𝐺ᇱ ൌ ∆௖௥𝐺° ൅ ∆௦௢௟𝐺ᇱ ൅ ∆ௗ௜௟𝐺 (26) 

The values of ΔhydH’, ΔhydS’ and ΔhydG’ are given in Table 3-8. After substituting equation (17) for 

ΔsolG’ and equations (5), (6), and (7) for ΔcrG° and grouping the terms by the power of T, the final 

result for ΔhydG’ is 
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∆௛௬ௗ𝐺ᇱ ൌ െ ଵ

ଶ
∆𝑏𝑇ଶ ൅ ൛∆௖௥𝐶௣°ൣ1 ൅ ln൫𝑇௥௘௙൯൧ ൅ 𝐼 െ ∆௖௥𝑆°௥௘௙ൟ 𝑇 െ ଵ

ଶ
∆𝑐𝑇ିଵ െ ൫∆௖௥𝐶௣° ൅

∆𝑎൯ 𝑇 lnሺ𝑇ሻ ൅ ൫∆௖௥𝐻°௥௘௙ ൅ ∆𝐻ூ െ ∆௖௥𝐶௣° 𝑇௥௘௙൯ ൅ ∆ௗ௜௟𝐺     (27) 

Note that in equations (27), (30) and (31) ΔcrH⁰ref is in J/mol. Similarly, the conditional enthalpy, 

ΔhydH’, and conditional entropy for hydrolysis of cellulose into aqueous glucose, ΔhydS’, are 

defined as 

∆௛௬ௗ𝐻ᇱ ൌ ∆௖௥𝐻° ൅ ∆௦௢௟𝐻ᇱ ൅ ∆ௗ௜௟𝐻 (28) 

∆௛௬ௗ𝑆ᇱ ൌ ∆௖௥𝑆° ൅ ∆௦௢௟𝑆ᇱ ൅ ∆ௗ௜௟𝑆 (29) 

The dependence of ΔhydH’ on T is found by substituting equations (5) and (15) into (28). Similarly, 

the dependence of ΔhydS’ on T is found by substituting equations (6), (15), (17) and (19) into (29). 
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Table 3-7: Thermodynamic parameters of reaction (4), C6H12O6 (aq,sat) ⇄ C6H12O6 (aq,hyd). 

T (K) 

 
Amorphous Cellulose 

 
Celluose 1 

 
Celluose 2 

 
Celluose 3 

 

ΔdilH 

(kJ/mol) 

ΔdilS 

(J/mol K) 

ΔdilG 

(kJ/mol) 

 

ΔdilH 

(kJ/mol) 

ΔdilS 

(J/mol K) 

ΔdilG 

(kJ/mol) 

 

ΔdilH 

(kJ/mol) 

ΔdilS 

(J/mol K) 

ΔdilG 

(kJ/mol) 

 

ΔdilH 

(kJ/mol) 

ΔdilS 

(J/mol K) 

ΔdilG 

(kJ/mol) 

273.15 

 

-5.3523 -16.7881 -0.7948 

 

-11.7590 -15.1964 -7.6332 

 

-9.4208 -6.2956 -7.7307 

 

-6.3187 -3.9854 -5.2564 

278.15 

 

-5.1303 -15.3996 -0.8516 

 

-11.4586 -13.5853 -7.68043 

 

-8.9911 -4.5407 -7.7331 

 

-5.8602 -2.2101 -5.2474 

283.15 -5.0015 -14.4102 -0.9118 -11.2516 -12.3857 -7.73035 -8.6533 -3.2000 -7.7376 -5.4934 -0.8494 -5.2403 

288.15 

 

-4.9739 -13.8198 -0.9757 

 

-11.1462 -11.5974 -7.78317 

 

-8.4159 -2.2735 -7.7443 

 

-5.2268 0.0966 -5.2352 

293.15 

 

-5.0553 -13.6284 -1.0436 

 

-11.1505 -11.2205 -7.83935 

 

-8.2870 -1.7613 -7.7536 

 

-5.0685 0.6280 -5.2325 

298.15 

 

-5.2539 -13.8360 -1.1159 

 

-11.2729 -11.255 -7.89918 

 

-8.2750 -1.6633 -7.7660 

 

-5.0269 0.7449 -5.2328 

303.15 

 

-5.5775 -14.4427 -1.1931 

 

-11.5216 -11.7009 -7.96315 

 

-8.3881 -1.9795 -7.7817 

 

-5.1103 0.4471 -5.2364 

308.15 

 

-6.0342 -15.4484 -1.2756 

 

-11.9048 -12.5581 -8.03182 

 

-8.6346 -2.7100 -7.8016 

 

-5.3270 -0.2654 -5.2440 

313.15 

 

-6.6319 -16.8531 -1.3643 

 

-12.4306 -13.8268 -8.10581 

 

-9.0229 -3.8547 -7.8262 

 

-5.6852 -1.3924 -5.2561 
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318.15 

 

-7.3786 -18.6569 -1.4597 

 

-13.1074 -15.5068 -8.18598 

 

-9.5612 -5.4137 -7.8563 

 

-6.1933 -2.9340 -5.2738 

323.15 

 

-8.2824 -20.8597 -1.5629 

 

-13.9434 -17.5983 -8.27322 

 

-10.2577 -7.3869 -7.8929 

 

-6.8595 -4.8903 -5.2978 

328.15 

 

-9.3511 -23.4615 -1.6751 

 

-14.9468 -20.1011 -8.36877 

 

-11.1208 -9.7744 -7.9372 

 

-7.6922 -7.2612 -5.3295 

333.15 

 

-10.5928 -26.4624 -1.7976 

 

-16.1258 -23.0153 -8.4741 

 

-12.1588 -12.5761 -7.9907 

 

-8.6996 -10.0467 -5.3704 

338.15 

 

-12.0154 -29.8623 -1.9324 

 

-17.4886 -26.3409 -8.59109 

 

-13.3799 -15.7920 -8.0554 

 

-9.8900 -13.2468 -5.4223 

343.15 -13.6270 -33.6612 -2.0818 -19.0436 -30.0779 -8.72215 -14.7924 -19.4222 -8.1335 -11.2717 -16.8615 -5.4877 

348.15 

 

-15.4354 -37.8591 -2.2488 

 

-20.7988 -34.2263 -8.87049 

 

-16.4046 -23.4666 -8.2284 

 

-12.8531 -20.8908 -5.5698 

353.15 

 

-17.4488 -42.4561 -2.4376 

 

-22.7626 -38.7861 -9.0403 

 

-18.2248 -27.9252 -8.3443 

 

-14.6423 -25.3348 -5.6730 

358.15 

 

-19.6750 -47.4521 -2.6538 

 

-24.9431 -43.7573 -9.23749 

 

-20.2613 -32.7981 -8.4871 

 

-16.6477 -30.1933 -5.8028 

363.15 

 

-22.1220 -52.8471 -2.9054 

 

-27.3487 -49.1398 -9.47036 

 

-22.5224 -38.0853 -8.6650 

 

-18.8776 -35.4665 -5.9678 

368.15 

 

-24.7979 -58.6412 -3.2040 

 

-29.9874 -54.9338 -9.75108 

 

-25.0162 -43.7866 -8.8904 

 

-21.3403 -41.1543 -6.1797 

373.15   -27.7106 -64.8343 -3.5674   -32.8676 -61.1391 -10.0985   -27.7513 -49.9022 -9.1819   -24.0440 -47.2567 -6.4571 
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Table 3-8: Conditional thermodynamic parameters for hydrolysis of cellulose into aqueous glucose – reaction (1),  
(C6H10O5)u∙(H2O)1∙(H2O)v (s) + (u-v-1)H2O(l) ⇄ uC6H12O6 (aq, hyd). 

T (K) 

 
Amorphous Cellulose 

 
Celluose 1 

 
Celluose 2 

 
Celluose 3 

 

ΔhydH' 

(kJ/mol) 

ΔhydS' 

(J/mol) 

ΔhydG' 

(kJ/mol) 

 

ΔhydH' 

(kJ/mol) 

ΔhydS' 

(J/mol) 

ΔhydG' 

(kJ/mol) 

 

ΔhydH' 

(kJ/mol) 

ΔhydS' 

(J/mol) 

ΔhydG' 

(kJ/mol) 

 

ΔhydH' 

(kJ/mol) 

ΔhydS' 

(J/mol) 

ΔhydG' 

(kJ/mol) 

273.15 

 

-2.3888 4.2304 -3.5725 

 

5.5471 9.5201 2.9215 

 

12.9102 36.1073 3.0180 

 

12.2123 42.4672 0.5861 

278.15 -1.6644 7.5080 -3.7574 6.4013 13.2071 2.7272 13.9689 40.2102 2.7793 13.3197 46.6630 0.3384 

283.15 

 

-1.0593 10.2348 -3.9478 

 

7.1361 16.3277 2.5272 

 

14.9094 43.7391 2.5343 

 

14.3093 50.2831 0.0843 

288.15 

 

-0.5801 12.4238 -4.1440 

 

7.7446 18.8948 2.3212 

 

15.7249 46.7070 2.2827 

 

15.1740 53.3406 -0.1767 

293.15 

 

-0.2335 14.0867 -4.3464 

 

8.2198 20.9204 2.1089 

 

16.4083 49.1259 2.0241 

 

15.9068 55.8476 -0.4448 

298.15 

 

-0.0263 15.2339 -4.5555 

 

8.5546 22.4150 1.8897 

 

16.9526 51.0067 1.7581 

 

16.5006 57.8148 -0.7206 

303.15 

 

0.0347 15.8752 -4.7718 

 

8.7421 23.3884 1.6632 

 

17.3506 52.3592 1.4842 

 

16.9483 59.2523 -1.0045 

308.15 

 

-0.0575 16.0194 -4.9958 

 

8.7749 23.8494 1.4288 

 

17.5950 53.1924 1.2017 

 

17.2426 60.1690 -1.2972 
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313.15 

 

-0.3100 15.6743 -5.2283 

 

8.6458 23.8062 1.1858 

 

17.6785 53.5146 0.9100 

 

17.3761 60.5733 -1.5993 

318.15 

 

-0.7298 14.8473 -5.4702 

 

8.3474 23.2661 0.9332 

 

17.5937 53.3331 0.6082 

 

17.3415 60.4725 -1.9117 

323.15 

 

-1.3240 13.5451 -5.7225 

 

7.8725 22.2359 0.6702 

 

17.3332 52.6550 0.2954 

 

17.1313 59.8737 -2.2354 

328.15 

 

-2.0998 11.7737 -5.9863 

 

7.2135 20.7216 0.3955 

 

16.8894 51.4864 -0.0297 

 

16.7380 58.7832 -2.5717 

333.15 

 

-3.0645 9.5387 -6.2631 

 

6.3630 18.7290 0.1075 

 

16.2550 49.8332 -0.3686 

 

16.1542 57.2066 -2.9220 

338.15 -4.2254 6.8452 -6.5550 5.3134 16.2632 -0.1956 15.4222 47.7006 -0.7233 15.3721 55.1494 -3.2884 

343.15 

 

-5.5896 3.6979 -6.8642 

 

4.0573 13.3291 -0.5164 

 

14.3835 45.0934 -1.0962 

 

14.3841 52.6164 -3.6732 

348.15 

 

-7.1647 0.1012 -7.1939 

 

2.5869 9.9309 -0.8581 

 

13.1311 42.0162 -1.4905 

 

13.1827 49.6121 -4.0797 

353.15 

 

-8.9579 -3.9411 -7.5483 

 

0.8948 6.0726 -1.2248 

 

11.6575 38.4730 -1.9105 

 

11.7600 46.1406 -4.5122 

358.15 

 

-10.9768 -8.4253 -7.9331 

 

-1.0269 1.7581 -1.6226 

 

9.9549 34.4676 -2.3621 

 

10.1085 42.2058 -4.9764 

363.15 

 

-13.2287 -13.3481 -8.3562 

 

-3.1859 -3.0094 -2.0598 

 

8.0154 30.0035 -2.8537 

 

8.2202 37.8111 -5.4807 

368.15 

 

-15.7212 -18.7063 -8.8293 

 

-5.5897 -8.2266 -2.5486 

 

5.8314 25.0839 -3.3974 

 

6.0874 32.9598 -6.0371 
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373.15   -18.4617 -24.4971 -9.3704   -8.2463 -13.8908 -3.1079   3.3951 19.7119 -4.0121   3.7023 27.6549 -6.6641 
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∆௛௬ௗ𝐻ᇱ ൌ ∆௖௥𝐶௣° 𝑇 െ 2𝑅𝑚𝑇ିଵ ൅ ൫∆௖௥𝐻°௥௘௙ െ 𝑅𝑛 െ ∆௖௥𝐶௣° 𝑇௥௘௙ ൅ ∆ௗ௜௟𝐻൯  (30) 

∆௛௬ௗ𝑆ᇱ ൌ ଵ

ଶ
∆𝑏𝑇 െ ሺ𝑅𝑛 ൅ ∆𝐻ூሻ𝑇ିଵ ൅ ቀଵ

ଶ
∆𝑐 െ 2𝑅𝑚ቁ 𝑇ିଶ ൅ ൫∆௖௥𝐶௣° ൅ ∆𝑎൯ lnሺ𝑇ሻ ൅

ൣ∆௖௥𝑆°௥௘௙ െ 𝐼 െ ∆௖௥𝐶௣° ln൫𝑇௥௘௙൯ ൅ ∆ௗ௜௟𝑆൧       (31) 

Inserting the values of the constants into equations (26), (30), and (31) gives expressions for the 

dependence of ΔhydG’, ΔhydH’ in J/mol and ΔhydS’ in J/mol K as functions of T in Kelvins, 

The equilibrium concentration of glucose in reaction (1), beq
hyd is calculated from ΔhydG’ by  

∆௛௬ௗ𝐺ᇱ ൌ െ𝑅𝑇 ln 𝐾′௛௬ௗ (35) 

𝐾′௛௬ௗ ൌ 𝑏௛௬ௗ
௘௤  (36) 

The values of beq
hyd for the four cellulose allomorphs are given in Table 3-9. A comparison of bhyd 

values found with the constant ΔcrCp° approximation and with ΔcrCp° as a function of temperature, 

shows the approximation leads to an average error less than ≈0.15 %, the highest error observed 

was less than 2.65%. 

Table 3-9: Equilibrium glucose concentrations from hydrolysis of cellulose to aqueous glucose. 
Estimated uncertainties are given in the footnotes*. 

T (K) 

beq
hyd (mol/kg) 

Amorphous Cellulose Celluose 1 Celluose 2 Celluose 3 

273.15 4.8216 0.2762 0.2648 0.7725 

278.15 5.0774 0.3075 0.3006 0.8639 
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283.15 5.3494 0.3418 0.3408 0.9648 

288.15 5.6395 0.3795 0.3856 1.0765 

293.15 5.9497 0.4209 0.4358 1.2002 

298.15 6.2825 0.4666 0.4920 1.3374 

303.15 6.6410 0.5169 0.5550 1.4897 

308.15 7.0286 0.5725 0.6256 1.6592 

313.15 7.4497 0.6342 0.7050 1.8483 

318.15 7.9095 0.7027 0.7946 2.0601 

323.15 8.4144 0.7792 0.8959 2.2980 

328.15 8.9727 0.8650 1.0109 2.5667 

333.15 9.5948 0.9619 1.1424 2.8719 

338.15 10.2944 1.0721 1.2934 3.2209 

343.15 11.0896 1.1984 1.4685 3.6238 

348.15 12.0055 1.3451 1.6735 4.0937 

353.15 13.0773 1.5177 1.9169 4.6497 

358.15 14.3564 1.7245 2.2106 5.3188 

363.15 15.9212 1.9783 2.5732 6.1428 
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*The uncertainties δb are in the form beq
hyd ± δb and are given as a function of temperature by the 

following equations.  

Amorphous cellulose: δb = 1.279∙10-5 T 3 - 1.146∙10-2 T 2 + 3.454 T - 345.8.  

Cellulose I: δb = 4.697∙10-6 T 3 - 4.197∙10-3 T 2 + 1.261 T - 126.6.  

Cellulose II: δb = 8.456∙10-6 T 3 - 7.553∙10-3 T 2 + 2.265 T - 227.0.  

Cellulose III: δb = 2.302∙10-5 T 3 - 2.056∙10-2 T 2 + 6.170 T - 618.7 

 

Mass fraction conversions of cellulose into glucose were calculated from the beq
hyd values. For 

the hydrolysis reaction per monomer, 

C6H10O5 ∙ xH2O(s) + (1-x) H2O(l) ⇄ C6H12O6(aq)      (37) 

C6H10O5 is the monomer in cellulose, C6H12O6(aq) is glucose in aqueous solution, and x is the 

number of hydration water molecules per glucose monomer. From Goldberg et al. [2], x = 0.7. 

The mass fraction conversion, η, is expressed as the fraction of cellulose carbon converted into 

glucose: η = nglc / ncel,0, where nglc is the number of moles of glucose obtained from hydrolysis and 

ncel,0 is number of moles of glucose monomers initially present in the reactor in the form of 

cellulose. Equation 38 was used to calculate η. 

𝜂 ൌ 𝑀௥,௖௘௟
 ௕೓೤೏

೐೜  ఘೢ

ଵାሺଵି௫ሻ௕೓೤೏
೐೜ ெೝ,ೢ

௏ೢ ,బ

௠೎,బ
 (38) 

Mr,cel is the molar mass of a cellulose monomer including the water of hydration, 174.909 from 

Goldberg et al. [2], ρw is the density of pure water, Mr,w is the molar mass of water, Vw.0 is the 

368.15 17.8973 2.2994 3.0343 7.1879 

373.15 20.4998 2.7231 3.6445 8.5683 
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initial volume of pure water into which the cellulose was inserted and mc,0 is the initial mass of 

cellulose inserted into the reactor. The denominator accounts for the water of hydration used in the 

reaction, and beq
hyd ρw Vw.0 is the number of moles of glucose in the solution after hydrolysis. 

Equation (38) shows that η depends on the Vw.0, since if the final glucose solution is diluted below 

beq
hyd all cellulose will dissolve. Mass fraction conversion values are given in Figure 3-3.  

3.9 Discussion 

Because the energy cost of obtaining glucose from all forms of cellulose decreases with 

increasing temperature, global warming may lead to faster mineralization of soil lignocellulose, 

thus providing a positive feedback increasing the rate of global warming.  

Figure 3-3 shows that surprisingly large concentrations of glucose can be obtained from 

hydrolysis of amorphous cellulose and cellulose III. Enzymatic equilibration of amorphous 

cellulose in water would produce approximately 4.8 molal glucose at room temperature and 20.5 

molal glucose in boiling water. Cellulose III equilibrates to approximately 0.7 molal glucose at 

room temperature and 8.5 molal in boiling water. These two forms of cellulose are thus amenable 

to use in commercial processes for production of bioethanol or other fuels and chemicals that can 

be derived from glucose. Although lower concentrations of glucose are produced at equilibrium, 

cellulose I and II may also be viable feedstocks for commercial use after treatment, such as ball-

milling to reduce the number of hydrogen bonds.  The stability of celluloses I, II, and III is due to 

a high degree of hydrogen bonding. Ball-milling of these forms of cellulose results in amorphous 

cellulose which is more easily converted into glucose. 
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Figure 3-3: Mass fraction conversion of cellulose into glucose calculated from equation 38, if 1 g 
of cellulose is mixed with 1 ml of water as the initial reaction mixture. The long-dashed line 
represents amorphous cellulose (− − −), the dot-line is cellulose I (− ∙ − ∙ −), the short-dashed line 
is cellulose II (- - -) and the full line is cellulose III.  
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4.1 Abstract:  

Vacancy concentration in an insulating material, nvac, has been theoretically related to a linear term 

in the low temperature heat capacity, γ= c ꞏ nvac, however this relation has never been tested in the 

context of large concentrations of ordered or partially ordered vacancies, such as in oxides showing 

ionic conductivity.  To find the influence of vacancy ordering on heat capacity, a Quantum Design 

PPMS calorimeter was used to determine the heat capacity from 1.8 to 300 K of two samples of 

samarium-neodymium co-doped ceria (Ce1-xNdx/2Smx/2O2-x/2 with x = 0.026 and 0.077), where 

vacancy concentration and ordering are controlled by sample stoichiometry. The low temperature 

heat capacities were fitted to a series of theoretical functions, which were then used to calculate 

the vacancy concentrations from the measured heat capacities. Comparison of calculated vacancy 
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concentrations with sample stoichiometries showed the linear term is quantitative for nearly 

randomly distributed vacancies at low dopant concentration (x = 0.026), but the prediction is low 

by an order of magnitude when vacancies are clustered and partially ordered. (x = 0.077). Vacancy 

ordering was thus found to decrease the vacancy contribution from that calculated with the linear 

term in heat capacity. The studied compounds also exhibit a heat capacity upturn from 2 to 4 K, 

due to an energy splitting of nuclear magnetic states. In the sample with x = 0.077, there is a sharp 

heat capacity drop-off below 2 K, arising from ineffective heat transfer between the nuclei and 

lattice. The absolute entropy of the materials was calculated from 0 to 300 K. The standard entropy 

(including residual entropy) at 298.15 K is 66.220 J mol-1 K-1 for x = 0.026 and 70.109 J mol-1 K-

1 for x = 0.077.   The residual entropy of the samples was calculated to be 3.073 J mol-1 K-1 for x 

= 0.026 and 5.054 JK-1mol-1 for x = 0.077. The Gibbs free energies of formation at 298.15 K are 

-1097.38 kJ mol-1 for x = 0.026 and -1082.82 kJ mol-1 for x = 0.077 (residual entropy included into 

the calculation).  

Keywords: Solid electrolytes; Oxygen vacancies Calorimetry; Linear heat capacity term; 

Schottky anomaly. 

4.2 Introduction 

Hardness, diffusion and ionic conductivity are some of the properties of materials influenced 

by vacancies, defects where there is a missing atom in a crystal structure.1 Vacancies are present 

in every crystalline material at room temperature to some degree but not present in ideal materials 

cooled to equilibrium at absolute zero.1 Lattice vacancies can be formed during crystallization by 

vibration of atoms, local rearrangement of atoms, plastic deformation and ionic bombardments.  
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Vacancies form spontaneously because their presence increases the entropy of a material or can 

be formed by kinetic effects such as rapid crystallization.1 Lattice vacancies can also be caused by 

impurities, e.g., replacement of a monovalent ion by a divalent ion, which requires a monovalent 

ion vacancy for the crystal to remain electrically neutral.1 Vacancies can be ordered or disordered 

in a lattice, but in the vast majority of crystals vacancies are disordered. 

Lattice vacancies in solid oxide ion conductors play a vital role in fuel cell technology. In solid 

oxide fuel cells, a fuel such as hydrogen is oxidized into protons and electrons at the anode, whilst 

at the cathode, an oxidizing agent such as oxygen is reduced to oxide, and the protons and oxides 

combine to form water.2 Depending on the electrolyte, either protons or oxide ions are transported 

through an ion conducting but electronically insulating electrolyte, while electrons travel around 

an external circuit delivering electric power.2 Compared with conventional power generation 

methods, solid oxide fuel cells offer advantages of high efficiency and low emissions.2 

Because solid oxide fuel cells require ionically conductive materials, they typically operate at 

high temperatures.3,4 Solid electrolytes in which ionic charges are conducted by oxygen vacancies 

are suitable for this role.4 Yttria-stabilized zirconia is currently considered to be the most reliable 

candidate electrolyte for solid oxide fuel cells,4 but yttria-stabilized zirconia requires operating 

temperatures near 1000 C to achieve the necessary conductivity.4 At these high temperatures, 

interface reactions decrease the efficiency of the fuel cell, thus finding alternative materials is 

desirable.4 Ceria-based materials are a widely investigated group of candidates as an alternate 

electrolyte for solid oxide fuel cells.3  

Lanthanide dopants added to a CeO2 lattice create oxygen vacancies by the reaction  
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𝐿𝑛ଶ𝑂ଷ
஼௘ைమ
ሱ⎯ሮ 2 𝐿𝑛′஼௘ ൅ 3𝑂ை

௫ ൅  𝑉ை
●● (1). 

where Ln represents a lanthanide series dopant and V●●O
 is an oxygen vacancy (Kroger-Vink 

notation).5 One mole of vacancies forms for each mole of Ln2O3 added to a mole of CeO2. 

Neodymia-samaria co-doped ceria (SNDC) with the formula Ce1-xNdx/2Smx/2O2-x/2 where 0 < x < 

0.3, are unique because vacancy ordering is controlled by the dopant concentration where an 

increasing dopant concentration causes vacancies to become increasingly ordered.5 Vacancy 

ordering has no sharp onset with increasing dopant concentration but gradually becomes more 

dominant as the vacancy concentration increases.5 Enthalpies of formation of SNDC from the 

binary oxides at room temperature, ΔHf,ox(25 °C), have been determined by Byukkilic et al., using 

high temperature oxide melt solution calorimetry.5 This paper extends that work, including 

entropy, heat capacity, and the effect of oxygen vacancies on the linear term in the  low temperature 

heat capacity. 

In addition to lattice, electronic, and magnetic contributions, the low temperature heat capacity 

of solids can be affected by contributions from Schottky anomalies which can originate from 

nuclear and/or electronic energy levels. Systems with a limited number of accessible energy levels 

at low temperature exhibit a Schottky anomaly, which is manifested as a peak in the heat capacity 

instead of the gradually increasing heat capacity exhibited by systems with many closely spaced 

energy levels.6,7,8 The contribution of a two-level system to the heat capacity CV,Sch is  

𝐶௏,ௌ௖௛ ൌ 𝑅 ቀ∆ఌ

்
ቁ

ଶ ௚బ

௚భ

ୣ୶୮ሺ∆ఌ ௞்⁄ ሻ

ሾଵାሺ௚బ ௚భ⁄ ሻ ୣ୶୮ሺ∆ఌ ௞்⁄ ሻሿమ (2) 
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where R is the universal gas constant and g0 and g1 are the degeneracies of the ground and upper 

energy levels, respectively.7  

According to Schliesser and Woodfield,8 localized Schottky effects can also be caused by 

lattice vacancies, leading to a linear term, γT, in the low temperature heat capacity. According to 

this model, many small Schottky anomalies are produced by deformation of the local structure  

around vacancies.8 Since vacancies can appear in different positions in a crystal lattice, there is a 

distribution of Schottky anomalies of different energies, resulting in a pseudo-linear heat capacity 

contribution.8 The coefficient of the linear term, γ, and the vacancy concentration, neff, are related 

by 

𝛾 ൌ 𝑐 ∙ 𝑛௘௙௙ (3) 

where c is a constant.8 The value of c depends on the statistical model used to describe the 

distribution of the vacancies.8  

In this study, the heat capacities of two SNDC samples were determined from 2 to 300 K with 

a Physical Properties Measurement System (PPMS), manufactured by Quantum Design. The two 

samples were 5-SNDC (Ce0.948Nd0.0260Sm0.0260O1.9740) and 15-SNDC (Ce0.847Nd0.077Sm0.077O1.924) 

with vacancy concentrations of 0.0260, and 0.077, respectively. The SNDC samples were chosen 

because stoichiometry can be used to control their vacancy concentrations. They also exhibit 

increasing vacancy ordering, as the vacancy concentration increases.  
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4.3 Experimental Methods 

4.3.1 Sample Synthesis and Characterization 

The samarium-neodymium co-doped ceria solid solutions were synthesized by a co-

precipitation method.5 The general equation of this class of compounds is Ce1-xNdx/2Smx/2O2-x/2.5 

Chemical analyses by wavelength dispersive spectroscopy (WDS) showed that for 5-SNDC, x = 

0.052 ± 0.001, and for 15-SNDC, x = 0.153 ± 0.004.5 According to equation (1), the stoichiometry 

shows that the vacancy concentration of 5-SNDC is 0.0260 ± 0.0005, while for 15-SNDC it is 

0.077 ± 0.002. The molar mass of 5-SNDC is 172.07 g mol-1, and for 15-SNDC, 171.99 g mol-1, 

as calculated from the sample compositions. Powder X-ray diffraction data indicate that both 

samples have a cubic fluorite structure with space group Fm3m and no peaks from secondary 

phases were observed.5 TGA measurements showed that Ce is only in the +4 oxidation state and 

the oxygen stoichiometry is governed by trivalent dopant content. The compositions of both 

samples can thus be described by the general equation LnxCe1-xO2-0.5x.5 For more details on sample 

synthesis and characterization, see ref. 5. 

4.3.2 Heat Capacity Measurements 

Heat capacity measurements were performed with a Quantum Design Physical Property 

Measurement System (PPMS) in zero magnetic field with logarithmic spacing over the 

temperature range from 2 to 100 K with 10 K temperature intervals from 100 to 300 K. The 

accuracy of the heat capacity measurements on a high-purity copper pellet was ± 2% from 2 to 

20 K and ± 0.6% from 20 to 300 K.9 The powdered SNDC samples were measured with a new 

technique developed in our laboratory for both conducting and non-conducting powdered samples 
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that achieves an accuracy of ± 2% below 10 K and ± 1% from 10 to 300 K. The details of sample 

preparation and heat capacity experimental procedure is given in a publication by Shi et al..10 In 

general, sample mounting consists of mixing the sample with weighed copper strips in a weighed 

copper cup (0.025 mm thickness copper foil with a purity of 0.99999 mass fraction), which is then 

compressed with a stainless steel die into a 2.8 mm diameter by 3.5 mm high pellet. A typical heat 

capacity measurement involves two measurements, (1) measuring the heat capacity of the PPMS 

platform with ≈1 mg Apiezon N which is used to adhere the sample to the platform (CP,1), and (2) 

measuring the heat capacity of the platform, Apiezon N and pellet consisting of the sample, copper 

strips, and the copper cup (CP,2). The heat capacity of the sample, copper strips and copper cup is 

CP,3 = (CP,2 - CP,1), and the heat capacity of the sample is obtained by subtracting the heat capacity 

of the copper strips and cup from CP,3. The heat capacity of the copper was found from the mass 

(23.66 mg of copper for 5-SNDC and 26.58 mg for 15-SNDC) and specific heat capacity of 

copper.11,12 The heat capacities of a 33.6 mg 5-SNDC sample and a 73.2 mg 15-SNDC sample 

were measured with this method from 2 to 300 K.  

4.4 Results 

The heat capacities of 5-SNDC and 15-SNDC are given in Figure 4-1 and in Table 4-1 and Table 

4-2, respectively. Note that an upturn with decreasing temperature is present in the heat capacity 

in the vicinity of 2 to 4 K in both samples but is less noticeable in 5-SNDC. This upturn is likely 

caused by a nuclear Schottky anomaly due to the paramagnetic moment of Nd nuclei. 
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Figure 4-1: Heat capacity of neodymia-samaria co-doped ceria (5-SNDC (▲), 
Ce0.948Nd0.0260Sm0.0260O1.9740, and 15-SNDC (●), Ce0.847Nd0.077Sm0.077O1.924) as functions of 
temperature. The points represent experimental data, and the lines are the fits with functions as 
described in the text. 

 Table 4-1: 5-SNDC (Ce0.948Nd0.0260Sm0.0260O1.9740) experimental heat capacity. 

T (K) Cp (J mol-1 K-1)   T (K) Cp (J mol-1 K-1)   T (K) Cp (J mol-1 K-1)   T (K) Cp (J mol-1 K-1) 

1.84 0.0125  5.03 0.0253  13.38 0.2174  84.56 20.3964 

1.92 0.0123  5.25 0.0272  13.97 0.2454  92.41 23.0807 

2.01 0.0122  5.48 0.0291  14.57 0.2761  100.97 25.7906 

2.10 0.0126  5.72 0.0305  15.24 0.3136  101.01 25.8112 

2.21 0.0126  5.97 0.0335  15.73 0.3422  111.59 29.0483 

2.31 0.0129  6.23 0.0357  17.18 0.4450  122.20 32.2787 
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2.43 0.0127  6.51 0.0448  18.78 0.5847  132.82 35.1303 

2.54 0.0127  6.78 0.0415  20.51 0.7667  143.40 38.0077 

2.66 0.0132  7.08 0.0459  22.44 1.0283  154.05 40.7112 

2.78 0.0133  7.39 0.0511  24.49 1.3277  164.62 43.0594 

2.89 0.0135  7.72 0.0550  26.76 1.7489  175.28 45.3087 

3.01 0.0148  8.06 0.0622  29.24 2.2489  185.89 47.5891 

3.14 0.0146  8.42 0.0663  31.94 2.9042  196.47 49.4882 

3.27 0.0155  8.78 0.0746  34.88 3.7123  207.10 51.4166 

3.43 0.0157  9.16 0.0842  38.10 4.6359  217.70 52.9363 

3.56 0.0161  9.56 0.0913  41.63 5.7156  228.31 54.5974 

3.72 0.0184  9.97 0.1030  45.49 6.9740  238.89 55.9400 

3.89 0.0176  10.40 0.1128  49.70 8.3002  249.50 57.2703 

4.05 0.0193 10.80 0.1243 54.30 9.8813 260.10 58.5237 

4.24 0.0194 11.26 0.1368 59.33 11.5886 270.62 59.5752 

4.42 0.0211  11.75 0.1524  64.83 13.4741  281.20 60.7151 

4.61 0.0232  12.27 0.1715  70.82 15.5483  291.87 61.6385 

4.81 0.0243   12.81 0.1930   77.39 17.8403   302.48 62.5215 

 

Table 4-2: 15-SNDC (Ce0.847Nd0.077Sm0.077O1.924) experimental heat capacity. 

T (K) Cp (J mol-1 K-1)  T (K) Cp (J mol-1 K-1)  T (K) Cp (J mol-1 K-1)  T (K) Cp (J mol-1 K-1) 

1.86 0.0008  6.33 0.0478  11.98 0.2383  156.31 41.9476 

1.97 0.0205  6.48 0.0498  13.32 0.3154  161.39 43.0593 

2.11 0.0394  6.63 0.0555  14.81 0.4202  166.43 44.1565 

2.27 0.0402  6.78 0.0563  16.47 0.5618  171.42 45.2312 

2.42 0.0365  6.93 0.0596  18.31 0.7566  176.50 46.3102 
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2.57 0.0340  7.08 0.0634  20.35 1.0196  181.48 47.4018 

2.72 0.0320  7.23 0.0648  22.63 1.3779  186.56 48.3246 

2.87 0.0307  7.38 0.0670  25.16 1.8547  191.59 49.1814 

3.02 0.0295  7.53 0.0727  27.97 2.4729  196.62 50.0096 

3.17 0.0283  7.68 0.0760  31.09 3.2645  201.66 50.9235 

3.32 0.0277  7.83 0.0797  34.57 4.2459  206.69 51.7008 

3.47 0.0271  7.98 0.0819  38.43 5.4287  211.72 52.4714 

3.62 0.0272  8.14 0.0880  42.73 6.8264  216.74 53.1074 

3.77 0.0266  8.29 0.0924  47.51 8.4163  221.78 53.8712 

3.92 0.0270  8.44 0.0958  52.82 10.2540  226.80 54.6024 

4.07 0.0265  8.59 0.0999  58.73 12.3374  231.76 55.2125 

4.22 0.0272  8.74 0.1064  65.29 14.6330  236.85 55.8540 

4.38 0.0278 8.89 0.1066 72.58 17.1743 241.81 56.4623 

4.52 0.0283 9.04 0.1097 80.73 20.0834 246.91 57.1263 

4.68 0.0300  9.19 0.1169  89.76 23.2118  251.93 57.7211 

4.82 0.0313  9.34 0.1223  99.80 26.4408  256.88 58.2898 

4.97 0.0339  9.49 0.1287  111.01 29.8805  261.98 58.7472 

5.12 0.0330  9.64 0.1362  116.05 31.3992  266.93 59.1996 

5.27 0.0350  9.80 0.1420  121.08 32.9039  272.03 59.7352 

5.42 0.0368  9.94 0.1478  126.13 34.2980  277.05 60.2545 

5.58 0.0388  10.10 0.1519  131.16 35.6546  281.99 60.7549 

5.73 0.0400  10.25 0.1590  136.16 36.9670  287.08 61.2342 

5.87 0.0420  10.41 0.1654  141.20 38.2541  292.11 61.5595 

6.02 0.0433  10.57 0.1719  146.28 39.5879  297.04 61.9033 

6.18 0.0480   10.78 0.1801   151.32 40.8429   302.15 62.4187 



 
 

109 
 

 

 

Fitting the heat capacity data was accomplished by separating the data into low (1.8-15 K), 

medium (15-70 K) and high temperature regions (70-302 K). Below 15 K the heat capacity was 

represented by 

𝐶௣,௠ ൌ 𝐴𝑇ିଶ ൅ 𝛾𝑇 ൅ 𝐵ଷ𝑇ଷ ൅ 𝐵ହ𝑇ହ ൅ 𝐵଻𝑇଻ (4) 

where B3, B5, B7, A, and γ are constants obtained from fitting the data. The fitted values of A, γ, B3, 

B5 and B7 are given in Table 4-3. The B3T3, B5T5 and B7T7 terms represent vibrations of the crystal 

lattice,6,7,13,14 the AT -2 term represents the upturn in the low temperature heat capacity arising from 

spin ordering of Nd nuclei,7 and the linear term γT is due to oxygen vacancies in these insulating 

materials.15 The medium temperature region was fit to 10th order polynomials, equation 5, which 

do not have a theoretical basis but are used to provide a smooth overlap between the low and high 

temperature functions.16 

𝐶௣,௠ ൌ ∑ 𝑎௜𝑇௜ଵ଴
௜ୀ଴  (5) 

Table 4-3: Fitting parameters. The low temperature region (1.8 - 15 K) was fitted to equation 4, the 
medium temperature region (15 - 70 K) to equation 5, and the high temperature region (70 - 302 
K) to equation 6. 

Low temperature region   Medium temperature region 

Parameters 15-SNDC 5-SNDC  Parameters 15-SNDC 5-SNDC 

A (J K mol-1) 1.81E-01 1.92E-02 
 

a0 (J K-1 mol-1) -6.49E-02 9.37E-02 

γ (J K-2 mol-

1) 
1.86E-03 3.61E-03 

 
a1 (J K-2 mol-1) 6.31E-02 -4.24E-02 

B3 (J K-4 mol-

1) 
1.27E-04 4.35E-05 

 
a2 (J K-3 mol-1) -1.97E-02 8.79E-03 
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B5 (J K-6 mol-

1) 
3.66E-08 3.55E-07 

 
a3 (J K-4 mol-1) 3.30E-03 -7.86E-04 

B7 (J K-8 mol-

1) 
-3.16E-10 -1.26E-09 

 
a4 (J K-5 mol-1) -2.89E-04 4.38E-05 

%RMS 1.62 2.91 
 

a5 (J K-6 mol-1) 1.57E-05 -1.11E-06 

Trange (K) 0 to 12.82 0 to 10.40 
 

a6 (J K-7 mol-1) -5.25E-07 1.32E-08 

    
a7 (J K-8 mol-1) 1.08E-08 -4.58E-11 

High temperature region  a8 (J K-9 mol-1) -1.34E-10 -5.10E-13 

Parameters 15-SNDC 5-SNDC 
 

a9 (J K-10 mol-

1) 
9.21E-13 5.47E-15 

m 1.2400 1.3233 
 

a10 (J K-11 mol-

1) 
-2.67E-15 -1.52E-17 

θD (K) 302.4986 327.5724 %RMS 1.27 2.13 

n 1.3968 1.3957 
 

Trange (K) 12.82 to 37.65 
10.4 to 
51.95 

ΘE (K) 574.5200 608.6273 
    

p 0.0232 0.0210 
    

%RMS 0.3929 0.7455 
    

 

The polynomial coefficient values, ai, are also given in Table 4-3. Heat capacities in the high 

temperature region were fit to a combination of Debye and Einstein functions, which represent the 

contribution of lattice vibrations at higher temperatures. 
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𝐶௣,௠ ൌ 𝑚 ∙ 𝐷ሺΘ஽ 𝑇⁄ ሻ ൅ 𝑛 ∙ 𝐸ሺΘா 𝑇⁄ ሻ ൅ 𝑝 ∙ 𝑇 (6) 

where D(ΘD/T) is the Debye function and E(ΘE,1/T) is the Einstein function and the adjustable 

parameters are m, n, p, ΘD and ΘE. The linear pT term is the correction to convert the Debye and 

Einstein functions, which describe heat capacity at constant volume CV to heat capacity at constant 

pressure.17 The fitted values of the parameters in equation 6 are also given in Table 4-3. The fits 

are shown and compared to experimental data in Figure 4-1, and the deviations of the fits from 

experimental data are shown in Figure 4-2. The fits were used to determine standard 

thermodynamics functions of 5-SNDC and 15-SNDC, which are given in Table 4-4 and Table 4-5, 

respectively.  
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Figure 4-2: Deviations of measured heat capacities from fitted functions. The circles (●) represent 
15-SNDC and the triangles (▲) represent 5-SNDC experimental data. Cexp is the experimental 
heat capacity, while Ccalc is heat capacity calculated from fitting the data to functions as described 
in the text.  

Table 4-4: Standard thermodynamics functions of 5-SNDC. Δ0
TSm° is the standard molar entropy 

at temperature T assuming S0 = 0. Δ0
THm° is the standard molar enthalpy change on heating from 

absolute zero to T, Φm° = Δ0
TS - Δ0

TH/T. 

T (K) Cp,m (J mol-1 K-1) Δ0
TSm° (J mol-1 K-1) Δ0

THm° (kJ mol-1) Φm° (J mol-1 K-1) 

2.00 0.0124 0.0070 7.08E-06 0.0035 

5.00 0.0255 0.0196 5.20E-05 0.0092 

10.00 0.1009 0.0553 3.31E-04 0.0222 

20.00 0.7114 0.2649 3.68E-03 0.0806 

30.00 2.4364 0.8375 0.0184 0.2247 

40.00 5.2125 1.9000 0.0560 0.5004 

50.00 8.4506 3.4074 0.1241 0.9246 

60.00 11.8771 5.2450 0.2254 1.4875 

70.00 15.3866 7.3401 0.3618 2.1713 

80.00 18.8217 9.6199 0.5329 2.9583 

90.00 22.1656 12.0307 0.7379 3.8314 

100.00 25.4128 14.5351 0.9759 4.7759 

110.00 28.5519 17.1053 1.2458 5.7795 

120.00 31.5660 19.7198 1.5465 6.8320 

130.00 34.4384 22.3609 1.8767 7.9249 

140.00 37.1563 25.0135 2.2348 9.0507 

150.00 39.7121 27.6651 2.6193 10.2033 

160.00 42.1037 30.3053 3.0285 11.3773 

170.00 44.3334 32.9255 3.4608 12.5679 



 
 

113 
 

 

180.00 46.4067 35.5190 3.9146 13.7710 

190.00 48.3317 38.0803 4.3884 14.9832 

200.00 50.1176 40.6053 4.8808 16.2013 

210.00 51.7743 43.0912 5.3904 17.4228 

220.00 53.3118 45.5357 5.9159 18.6452 

230.00 54.7402 47.9374 6.4562 19.8668 

240.00 56.0686 50.2955 7.0104 21.0857 

250.00 57.3060 52.6097 7.5773 22.3005 

260.00 58.4606 54.8800 8.1562 23.5100 

270.00 59.5399 57.1068 8.7463 24.7132 

280.00 60.5508 59.2906 9.3468 25.9093 

290.00 61.4995 61.4321 9.9571 27.0974 

298.15 62.2307 63.1468 10.4613 28.0594 

300.00 62.3918 63.5323 10.5766 28.2770 

 

Table 4-5: Standard thermodynamics functions of 15-SNDC. Δ0
TSm° is the standard molar entropy 

at temperature T assuming S0 = 0, Δ0
THm° is the standard molar enthalpy change on heating from 

absolute zero to T, Φm° = Δ0
TS - Δ0

TH/T. 

T (K) Cp,m (J mol-1 K-1) Δ0
TSm° (J mol-1 K-1) Δ0

THm° (kJ mol-1) Φm° (J mol-1 K-1) 

2.0000 0.0501 0.0041 4.23E-06 0.0019 

5.0000 0.0325 0.0146 4.32E-05 0.0060 

10.0000 0.1480 0.0612 4.13E-04 0.0200 

20.0000 0.9683 0.3603 5.18E-03 0.1014 

30.0000 2.9833 1.0921 0.0239 0.2954 

40.0000 5.8499 2.3336 0.0677 0.6400 

50.0000 9.2897 4.0027 0.1432 1.1390 
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60.0000 12.8667 6.0125 0.2540 1.7798 

70.0000 16.3885 8.2616 0.4003 2.5428 

80.0000 19.8172 10.6748 0.5814 3.4071 

90.0000 23.1551 13.2025 0.7964 4.3541 

100.0000 26.3971 15.8109 1.0442 5.3688 

110.0000 29.5259 18.4745 1.3239 6.4389 

120.0000 32.5197 21.1730 1.6343 7.5541 

130.0000 35.3593 23.8892 1.9738 8.7061 

140.0000 38.0318 26.6085 2.3409 9.8877 

150.0000 40.5315 29.3186 2.7339 11.0929 

160.0000 42.8585 32.0097 3.1510 12.3162 

170.0000 45.0177 34.6736 3.5905 13.5531 

180.0000 47.0173 37.3040 4.0508 14.7997 

190.0000 48.8672 39.8963 4.5303 16.0526 

200.0000 50.5784 42.4470 5.0277 17.3087 

210.0000 52.1621 44.9535 5.5415 18.5656 

220.0000 53.6292 47.4144 6.0705 19.8212 

230.0000 54.9904 49.8287 6.6137 21.0735 

240.0000 56.2553 52.1961 7.1700 22.3212 

250.0000 57.4332 54.5168 7.7385 23.5627 

260.0000 58.5323 56.7910 8.3184 24.7971 

270.0000 59.5602 59.0195 8.9089 26.0235 

280.0000 60.5238 61.2032 9.5094 27.2411 

290.0000 61.4291 63.3430 10.1192 28.4492 

298.1500 62.1277 65.0552 10.6227 29.4265 
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300.0000 62.2817 65.4400 10.7378 29.6474 

 

SNDC compounds have a residual entropy, due to disorder in arrangement of both cations and 

anions in the lattice. Each cation lattice position can be occupied by a Ce, Sm or Nd nucleus. 

Also, each anion position can be occupied by an oxygen atom or a vacancy. Therefore, the 

residual entropy, S0, of SNDC consists of two contributions: cationic, S0,cat, and anionic, S0,an. 

The residual entropy of SNDC compounds with a general formula Ce1-xNdx/2Smx/2O2-x/2 was 

calculated with the approach described in refs. 18 and 19.  

𝑆଴ ൌ 𝑆଴,௖௔௧ ൅ 𝑆଴,௔௡ (7a) 

𝑆଴,௖௔௧ ൌ െ𝑁஺𝑘 ቂሺ1 െ 𝑥ሻ lnሺ1 െ 𝑥ሻ ൅ ௫
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ln ቀ௫
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ቁ ln ቀ1 െ ௫
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ቁ ൅ ௫

ସ
ln ቀ௫

ସ
ቁቃ (7c) 

where NA is Avogadro’s number, x is the coefficient from the chemical formula of SNDCs (dopant 

concentration), and S’0,an is the anion contribution to residual entropy assuming all vacancies are 

disordered. Equation (7) was derived using the Gibbs entropy equation: S = - k Σi pi ln pi, where pi 

is probability of microstate i. The factor of 2 in equation (7c) takes into account that there are in 

total two moles of anions per mole of SNDC. However, due to ordering, not all vacancies 

contribute equally to residual entropy. Thus, an effective vacancy concentration, neff, see Table 4-6, 

has to be taken into account in equation (7c). When this is done, equation (7c) becomes 
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 (7d) 

The factor of 2 from equation (7c) is transformed into 2 – [(x/2) - neff] in (7d) to take into account 

that the number of particles occupying anionic positions has, in effect, decreased due to vacancy 

ordering. Thus, combining equations (7a), (7b) and (7d) shows that the residual entropy of 5-

SNDC is 3.073 J mol-1 K-1, while for 15-SNDC it is 5.054 J mol-1 K-1. These values can be 

compared to those of spinels described in ref. 18, which have a residual entropy originating from 

similar disorder in two kinds of lattice positions. The slightly lower value reported here arises from 

lower dopant concentration x in the SNDC samples compared with the spinels studied in ref. 18, 

as well as the presence of vacancy ordering. The entropies of the two compounds are thus the sum 

of Δ0
TS reported in Table 4-4 and Table 4-5, and the residual entropies. For 5-SNDC the standard 

entropy at 298.15 K is 66.220 J mol-1 K-1 and for 15-SNDC it is 70.109 J mol-1 K-1. 

Using the standard entropies of 5-SNDC and 15-SNDC reported here, together with entropies 

and enthalpies of the precursor binary oxides,20 enthalpies of formation from ref. 5, and the 

standard free energies of formation of the 5-SNDC and 15-SNDC. The entropy of formation of 

from oxides at 298.15 K for 5-SNDC is 0.0657 J mol-1 K-1, while for 15-SNDC it is 0.4566 J mol-

1 K-1, if residual entropy is excluded. If residual extropy is included, the entropy of formation from 

oxides for 5-SNDC is 3.1389 J mol-1 K-1, while for 15-SNDC it is 5.5103 J mol-1 K-1. The standard 

free energy of formation from the elements at 298.15 K for 5-SNDC is -1097.38 kJ mol-1 and for 

15-SNDC it is -1082.82 kJ mol-1  (residual entropy included into the calculation). 
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4.5 Discussion 

Schliesser and Woodfield’s linear term model8 assumes a random distribution of vacancies, an 

assumption that can be tested by comparison of the vacancy concentrations calculated from sample 

stoichiometry (equation 1) and from the coefficient of the linear term in the fit to the heat capacity 

(equation 3). This comparison is given in Table 4-6. For 5-SNDC, the calculated and measured 

vacancy concentrations agree reasonably well (0.0239 vs. 0.0260). But the calculated vacancy 

concentration (0.012) for 15-SNDC, is much smaller than the actual vacancy concentration 

(0.077). This difference is most likely due to vacancy ordering in 15-SNDC, since vacancy 

ordering becomes more extensive as the dopant concentration increases.5 Equation (3) thus gives 

quantitative results for samples with random vacancies, but when the vacancies interact and are 

ordered, equation (3) underpredicts the concentration because the vacancies no longer have a 

random distribution. However, if the total vacancy concentration is known, as is the case here, the 

disordered vacancy concentration as measured by heat capacities can be used to calculate the actual 

concentration of ordered vacancies, which has not been possible previously. In this case for the 

15-SNDC sample, the ordered vacancy concentration would be 0.065. 

Table 4-6: Vacancy concentrations of 5-SNDC and 15-SNDC found from the linear term in the 
heat capacity fit, γ, compared with the values found from stoichiometry of the samples.  

  5-SNDC 15-SNDC 

γ (J mol-1 K-2) 0.00361 0.00186 

nstoichiometric 0.0260±0.0005 0.077±0.002 

neff 0.0239 0.0123 

error (%) -8 -84 
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Another interesting feature in the heat capacity occurs in the low temperature region between 

2 and 4 K as shown in the inset in Figure 4-1. The sizeable upturn with decreasing temperature in 

the 15-SNDC heat capacity is significantly smaller in 5-SNDC. The coefficient of the T -2 term, A 

in Table 4-3, quantifies this difference with A being an order of magnitude greater in 15-SNDC 

than in 5-SNDC. The T-2 term originates from nuclear magnetic contributions to the heat capacity, 

and the upturn is the high temperature tail of a nuclear Schottky anomaly arising from ordering of 

nuclear magnetic moments.7 The Nd nuclei in 5-SNDC are less numerous than in 15-SNDC, so 

the effect is less pronounced. (See refs. 21 and 22 for details.) The paramagnetic Nd nuclei are 

immersed in an electric field from the electrons surrounding the nucleus causing splitting of the 

nuclear energy levels. At higher temperatures, both higher and lower energy levels are equally 

populated, but as the temperature decreases, the Nd nuclei transition to the lower energy level. The 

transition leads to the Schottky anomaly in the heat capacity,7 the upper tail of which is seen as the 

upturn in the 15-SNDC heat capacity.  

The coefficient of the T-2 term, A, is related to the local magnetic field at Nd nuclei, Hhyp, 

through the equation 

𝐴 ൌ 𝑦 ேಲ௞

ଷ
ቀூାଵ

ூ
ቁ ቀ

ఓ಺ு೓೤೛

௞
ቁ

ଶ
 (7) 

 where y is the concentration of nuclei with non-zero spin, NA is Avogadro’s number, I is the 

nuclear spin, and μI is the nuclear magnetic moment.22,23 Both 143Nd and 145Nd have non-zero 

nuclear spins both with I = 7/2.23 143Nd has an abundance of 12.18% and μI = -1.208μN, while 145Nd 

has an abundance of 8.29% and μI = -0.744μN, where μN = 5.05∙10-27 J/T is the nuclear magneton. 

143Nd and 145Nd have the same nuclear spins and Hhyp, since they are surrounded by identical 
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electron clouds. However, they have different abundances and magnetic moments, resulting in 

different contributions to A. Thus, the observed value of A is a sum of the two contributions. 143Nd 

and 145Nd have y values of 12.18% (x/2) and 8.29% (x/2), respectively. Thus equation (7) becomes 

𝐴 ൌ ௫

ଶ

ேಲ

ଷ௞
ቀூାଵ

ூ
ቁ ቄ12.18% ൣ 𝜇ூሺ 𝑁𝑑ଵସଷ ሻ൧

ଶ
൅ 8.29% ൣ 𝜇ூሺ 𝑁𝑑ଵସହ ሻ൧

ଶ
ቅ 𝐻௛௬௣

ଶ  (8) 

From equation (8), for 5-SNDC Hhyp = 2683 T and for 15-SNDC Hhyp = 4756 T. The calculated 

Hhyp values are high when compared with fields surrounding Mn nuclei in La1-xSrxMnO3+δ.21 

However, similar local fields surrounding Nd nuclei have been reported. Villuendas et al.17 used 

low temperature calorimetry to study magnetic properties of Nd5Ge3 and reported fields of 2722 T 

and 2761 T surrounding Nd nuclei at two different positions in the crystal lattice. 

Typically, heat added to a solid sample first excites phonons which then equilibrate with other 

electronic and atomic modes of motion. However, at low temperatures, the number of accessible 

phonons becomes so small that there is often no longer an effective transfer of energy between 

phonons and nuclear levels. Such a situation appears in the 15-SNDC sample and can be seen as 

the abrupt heat capacity drop near 2 K. This phenomenon is detected indirectly by the calorimeter, 

the heat from equilibration of the nuclei is first transferred to phonons, and then transferred to the 

calorimeter. However, when the number of phonons is small, heat from the nuclei cannot reach 

the calorimeter. The heat becomes essentially “trapped” in the nuclei, is not measured by the 

calorimeter, and the measured heat capacity drops off sharply.  
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4.6 Summary 

The heat capacities of Ce0.948Nd0.0260Sm0.0260O1.9740, and Ce0.847Nd0.077Sm0.077O1.924 were 

determined from 1.8 to 300 K. Standard entropies from 0 to 300 K were calculated from the heat 

capacity data. Free energies of formation at 298.15 K were determined. Residual entropy was 

found to be for 5-SNDC 3.073 J mol-1 K-1 and for 15-SNDC 5.054 J mol-1 K-1. Vacancy ordering 

was found to decrease the influence of vacancies on heat capacity. For samples with disordered 

vacancies, a linear term gives a quantitative estimate of vacancy concentration. A nuclear Schottky 

effect due to ordering of the paramagnetic Nd nuclei was observed between 2 and 4 K in the 15-

SNDC sample, but not in the 5-SNDC sample. The 15-SNDC heat capacity exhibited a sharp drop-

off below 2 K, which is caused by uncoupling of the paramagnetic Nd nuclei from lattice phonons. 

Entropy of heating the samples was calculated from 0 to 300 K (Table 4-4 and Table 4-5). Residual 

entropy of the samples was calculated to be 3.073 J mol-1 K-1 for 5-SNDC and 5.054 J mol-1 K-1 

for 15-SNDC. The sum of the entropy of heating and residual entropy - standard entropy at 298.15 

K is 66.220 J mol-1 K-1 for 5-SNDC and 70.109 J mol-1 K-1 for 15-SNDC. The Gibbs free energies 

of formation at 298.15 K of the samples are -1097.38 kJ mol-1 for 5-SNDC and -1082.82 kJ mol-1 

for 15-SNDC.  
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5 CONCLUSIONS AND FUTURE RESEARCH 

The entropy concept is unavoidable in many scientific disciplines, resulting in inconsistencies 

in its application and interpretation. The analysis leads to the conclusion that:  

1. The original Clausius’ definition of entropy seems to be the most appropriate. Entropy is 

in physical sciences a measure of the part of internal energy that cannot be converted into 

work, or in practical terms it represents useless energy.  

2. Thermal entropy should be considered as an objective parameter. Residual entropy should 

also be considered as an objective parameter. 

3. Living organisms increase their entropy during life, due to processes of accumulation and 

entropy generation. The negentropy concept represents a mathematically correct 

manipulation of the Boltzmann equation, which however has no physical sense.  

Based on the general principle of enumerating microstates, the work posited a paradigm 

wherein adaptation and evolution are stochastically deterministic, i.e. having a specific direction 

arising from many random events. Natural selection over time, resulting from random events 

governed by deterministic constraints, minimizes the difference in the information describing the 

local environment and the biological system. Therefore, this paradigm lays the foundation for an 

information theory formulated on the immensely powerful statistical concept of enumerating 

microstates that provides summary statistics similar to thermodynamic entropy. To avoid 

confusion of thermodynamic entropy with various other “entropies”, it has been proposed the 

summary statistics for the environment and for the population demographics be called the 

“envotropy” and the “demotropy”, respectively, and that a similar nomenclature be developed for 
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the summary statistics of other systems. This work thus proposes a foundation for a quantitative 

theory for summary statistics of information systems including biological systems, economics, 

markets, and health systems. 

Hydrolysis of cellulose to glucose is a key reaction in renewable energy from biomass and in 

mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG’, 

ΔhydH’, and ΔhydS’, and equilibrium glucose concentrations are reported for the reaction 

C6H10O5(cellulose)+H2O(l)⇄ C6H12O6(aq) as functions of temperature from 0 to 100⁰C. Activity 

coefficients of aqueous glucose solution were determined as a function of temperature. The 

reaction free energy ΔhydG’ becomes more negative as temperature increases, suggesting that 

producing cellulosic biofuels at higher temperatures will result in higher conversion. Also, 

cellulose is a major source of carbon in soil and is degraded by soil microorganisms into CO2 and 

H2O. Therefore, global warming will make this reaction more rapid, leading to more CO2 and 

accelerated global warming by a positive feedback. 

Vacancy ordering was found to decrease the influence of vacancies on heat capacity. For 

samples with disordered vacancies, the model developed by Schliesser and Woodfield (chapter 4) 

gives a quantitative estimate of vacancy concentration from the linear term in the low temperature 

heat capacity. Vacancy ordering decreases the influence of vacancies on low temperature heat 

capacity, causing the model to give only an order of magnitude estimate of vacancy concentration.  

Starting from the assumption that age represents biological and thermodynamic state of an 

organism, and that aging as an integral part of life is a biological and thermodynamic process, the 

future goal for research is formulation of an equation of state of an idealized cell. If the currency 
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of change of state is entropy, then an equation of state should express entropy change that 

encompasses all contributions.  

Similarly, to thermodynamic state, an organism should also have an information state. During 

evolution, there is a change in information content (mutations of nucleic acids) and information 

state. Then the goal of the second direction of research is to quantitatively formulate changes in 

information state of an organism during evolution. This represents a step in quantification of theory 

of evolution.  
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