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ABSTRACT 

Ribosome Component Turnover Kinetics Describes a Two-Pool Kinetic 
Model in Dietary Restriction That Suggests RPL10 is  

Exchanged During Ribosome Lifespan 

Andrew David Mathis 
Department of Chemistry and Biochemistry, BYU 

Master of Science 

The eukaryotic ribosome is a large molecular machine consisting of ~80 ribosomal 
proteins and 4 rRNAs.  The 40S and 60S ribosomal subunits are assembled in the nucleolus by 
~200 helper proteins then shipped into the cytoplasm or to the endoplasmic reticulum where 
protein translation takes place.  Eventually ribosomes are removed from the cytoplasm and 
recycled through ribophagy, however, very is little is known about ribosomal protein exchange 
after assembly but before ribophagy.  Using kinetic turnover measurements of ribosomal proteins 
and rRNA in vivo we determined ribosomal protein replacement rates are diverse suggesting 
ribosomal components may be replaced without destruction of the entire ribosome.  
Measurements from ad libitum fed and dietary restricted mice provide strong evidence that 
RPL10 exchanges rates are dramatically different between AL and DR while synthesis and 
degradation do ont change. RPL10 turnover can be described using a two-pool kinetic model, 
which may be applied to many ribosomal proteins. 

Keywords: ribosome, ribophagy, turnover, kinetics, proteomics, mass spectrometry, dietary 
restriction 
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Chapter 1: Introduction 

1.1 Homeostasis in Biological Systems 

Biological homeostasis is required to maintain life.  Biological systems are at true 

homeostasis when biomolecule concentrations are constant.  This does not mean the cell is static, 

rather concentrations are constant because biomolecules are being created and destroyed at the 

same rate.  This rate is often called a turnover or replacement rate.  When stimulus pushes 

biological systems from homeostasis, biomolecule concentrations change.  These changes can be 

caused at three basic levels: 1) Biomolecule synthesis has changed.  2) Biomolecule structure has 

changed non-covalently.  3) Biomolecule degradation has changed.  In the short term this 

imbalance is positive allowing many necessary biological processes to occur including damaged 

biomolecule replacement, hormone signaling and energy production.1  However, if a homeostasis 

is not reestablished the organism will eventually die.  Further, many disease states result in a new 

homeostasis, which is at least temporarily survivable but can cause a significant loss of fitness. 

Currently, most molecular, cellular and biochemical studies measure changes in 

homeostasis based on biomolecule function, location, and concentration.  Though these 

measurements are very informative and have led to significant biological discovery, we propose 

current research efforts can be greatly complimented by global turnover analysis, which allows 

discovery analysis of biomolecule replacement rates.  Herein we describe the unique insights 

gained from combining structural, quantitative, and turnover measurements to explore ribosome 

homeostasis. 
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1.2 Making Turnover Measurements 
 

Turnover analysis measures the rate at which old biomolecules are replaced by new 

biomolecules using a tracer and a detector.  At the most basic level a turnover analysis experiment 

has three requirements: 1. A system with detectable biomolecule turnover. 2. A tracer to label 

newly synthesized biomolecules 3. A method to detect biomolecules of interest.  Requirement 1 is 

any living biological system and even some synthetic systems, so long as turnover is at a 

measureable rate.  Requirement 2 is often an unnatural concentration of a radioactive or stable 

isotope, but may also be a chemically derivatized biomolecule.  Isotope choice is dependent on the 

biological system and desired outcomes.  Requirement 3 is any method that can identify the 

biomolecule of interest, as long as it is compatible with isotope detection.  

Isotopes are popular tracers in turnover studies because they behave almost identically in 

biological systems.1,2  The big exception being radioisotopes that have similar chemical properties, 

but emit radiation.  Further, natural isotope abundances are very predictable, so a shift in natural 

isotope abundance is fairly easy to discern.  Lastly, isotopes can be easily delivered by 

incorporation into precursor molecules like amino acids or water then administered to cell cultures 

or animals. 

Traditionally, the most common turnover analysis uses 35S methionine3 enriched culture 

media to track protein turnover rates over a time course using a radiation detector and 

immunoprecipitation.  In a similar vein 3H or 14C analysis can be used to track nucleobases and 

metabolites in addition to proteins if an identification method exists for the target molecule.2,4,5  

Turnover analysis using radiolabels is very sensitive and therefore can detect small amounts of 

change allowing for shorter experiments compared to using stable isotope labeling. Radioisotope 

methods, especially 35S methionine experiments, are well established and can be performed with 
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fairly little technical training compared to stable isotope methods.  However, radio isotope 

techniques have three major limitations: 1. Radio isotope approaches are not easily used on an 

“omic” scale because an independent experiment must be used to identify target molecules.  2. 

The percent new protein is unknown because the radio-label gives no metric of total protein 

concentration, and the detection method does not interface quantitatively with the radiolabel.  3. 

Current radio isotope experiments are generally limited to cell culture because of safety issues in 

higher level organisms. 

Stable isotope labeling methods can be performed on an “omic” scale and in higher 

organisms including humans.6  For protein turnover experiments, heavy-labeled synthetic amino 

acids or D2O is generally used.  Heavy labeled amino acids are incorporated into protein directly. 

D2O is incorporated into amino acids through natural biosynthetic pathways in vivo and these 

metabolically labeled amino acids are incorporated into new proteins.  Both methods cause 

unnatural but predictable shifts in peptide isotope patterns that can be quantified using mass 

spectrometry.7  The ratio of new protein is established by comparing the unlabeled protein (old) 

and the labeled protein (new).  In this way new protein can be put into the context of total protein 

and the turnover rate can be directly measured.  Further, the mass spectrometer can provide 

identification information ameliorating the need for a different identification assay and allowing 

for untargeted discovery.  Lastly, stable isotopes are widely accepted for use in higher organisms 

including humans and have been used in clinical applications allowing turnover measurements to 

be made in more realistic cellular states.8  However, moving from basic cell culture to higher 

compounds the challenge of measuring heavy to light isotope ratios in the precursor pool.1 
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1.3 Solving the Precursor Pool Problem 
 

The precursor pool enrichment must be known to accurately determine turnover rate.  For 

example, let’s say one administers D6-leucine to human patients in order to determine the effects 

of a new drug on proteasome turnover.  D6-leucine will enter the amino acid precursor pool for 

protein production, specifically the charged tRNA pool.  However, this pool will not be 100% 6D-

leucine because endogenous unlabeled leucine does not disappear when 6D-leucine is 

administered.  So, the likelihood of incorporating D6-leucine into a new protein is based on the 

ratio of D6-leucine to endogenous unlabeled leucine.  Therefore, if the tRNA leucine precursor 

pool is 35% 6D-leucine, 100% protein turnover will look like 35% 6D-leucine incorporation, so a 

17% increase in D6-leucine content is 50% new protein.  However, if the precursor pool was really 

50% D6-leucine instead of 35% D6-leucine, a 17% increase in D6-leucine would correspond to 

37% new protein.   It is this problem, namely the inability to accurately measure the precursor pool 

that severely hindered discovery turnover measurements for many years.  However, recent advents 

have provided reliable methods to measure the amino acid precursor pool.9, 10   One of these 

methods developed by Price et al. relies upon the reproducible incorporation of water into amino 

acids. 

Using D2O as an isotope tracer allows the precursor pool to be measured accurately and 

indirectly in bodily fluids.9  Briefly, water is involved in the synthesis of most biomolecules, so 

deuterium from D2O is naturally incorporated into biomolecules.  When deuterium incorporation 

from water is known, biosynthesis for a given molecule the precursor pool can be accurately 

described.  Further, D2O is quickly and uniformly distributed throughout the organism, so bodily 

fluid D2O enrichment is equivalent in most tissues, whereas, direct administration of heavy labeled 

amino acids does not provide equal precursor pool enrichment throughout the organism.11  Equal 
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D2O distribution throughout an organism allows precursor pool enrichment to be measured from 

easily accessible bodily fluids like blood or urine.  For these reasons D2O-based turnover 

experiments are becoming more popular when studying metabolic changes in higher organisms.  

Additionally, studies in higher level organisms with slower division rates significantly reduce 

problems discerning between protein dilution by cell division and protein turnover outside of 

replication. 

Protein production caused by cell replication can mask protein turnover measurements.  

Every time a cell divides all biomolecules must be duplicated to provide materials for the new cell.  

Therefore, when working in rapidly dividing cells one must account for doubling rates to measure 

true protein turnover because noise from the replication signal quickly overcomes protein turnover 

unassociated with replication.  Additionally, long experiments in dividing cell culture are more 

challenging because changes in growth conditions (high confluence, nutrient depletion, entering 

or exiting log growth phase) change cellular homeostasis and protein concentration cannot be 

assumed constant on average.  In this case, concentration must be determined in order to truly 

understand synthesis rate.  Concentration data also add significant biological insight to turnover 

analysis when comparing cellular changes. 

1.4 Quantitative and Kinetic Measurements Synergize 
 

Kinetic proteomics can be combined with quantitative proteomics to define within 

proteome absolute synthesis rates (WPAS), which provide units/time values for biomolecule flux.  

Kinetic proteomics measure the rate at which a biomolecule is replaced with time-1 units.  

Concentration measurements are generally based upon units of intensity (relative concentration) 

or grams (absolute concentration).  Therefore, the product of turnover rate and concentration is 

units/time, or WPAS in the case of proteins.  WPAS measurements allow a metric of synthesis and  
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Figure 1:  Turnover and Concentration Measurements Synergize   

Biomolecule turnover is measured in fraction/day.  Concentration is measured units.  When combined within-
proteome absolute synthesis (WPAS) can be determined.  Together these measurements look beyond simple 
concentration and turnover by putting concentration in the context of turnover and allows quantitative analysis of 
total synthesis and total degradation rates.  Condition 1 and condition 2 both have the same protein concentration, 
but the turnover measurement shows a decrease in turnover rate in condition 2.  The product of concentration and 
turnover measurements provides a within proteome absolute synthesis rate. 

degradation to be valued within concentration measurement.  For instance, let us consider the two 

cellular states in Figure 1.  In each state we are measuring protein concentration and protein 

turnover.  We can see that protein x concentration does not change, but turnover does.  Change in 

turnover shows state 1 replaces more protein x per unit time than state 2, or protein x flux is greater 

in state 1.  Because the system is at homeostasis, this combined information describes an 

environment where both protein synthesis and protein degradation have increased despite stable 

concentration.  This new information drives hypothesis generation.  For instance, the protein 

folding pathway may be damaged or hindered requiring more protein production to maintain the 
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proper protein working concentration.  Recent studies have employed the mass spectrometry 

technologies of D2O-based protein turnover and concentration measurement to open new research 

avenues in the fields of cardiac function and aging in higher organisms.9, 12, 13  These studies answer 

questions few if any other methods can conquer. 

1.5 Recent D2O-based Turnover Studies 

Recent publications have shown the utility of D2O labeling to investigate protein turnover 

in murine models and humans.  Price et al. and Wang et al. have both shown protein turnover can 

be measure in human serum using D2O labeling methods.14, 15  These methods present a new way 

of understanding metabolic changes and biomarkers in diseased patients.  Kim et al., Kasumov et 

al., and Lam et al. have applied D2O turnover experiments to murine cardiac systems to study 

mitochondrial turnover and early stage heart failure.13,12,16  Cardiac turnover studies have identified 

localization specific changes in cardiac mitochondrial turnover and new insights into proteostasis, 

metabolism, mitochondrial dynamics and calcium signaling in early stage isoproterenol-induced 

heart failure.  Price et. al used D2O labeling to identify key hepatic metabolism changes associated 

with longevity in calorie restricted (CR) mice.9 Specifically, this study identified bulk protein 

turnover is significantly slowed in calorie restriction, suggesting increased catabolism rates are not 

associated with long term CR-induced longevity as previously hypothesized.  Rather, calorie 

restriction may be associated with a higher degree of protein quality control and global regulation 

of protein synthesis. 

Recent developments in turnover proteomics have opened a new door into biomedical 

exploration in both model systems and clinical settings.  These measurements allow biomolecule 

turnover rates to be measured in vivo using stable isotope tracers, which cause few undesirable 

perturbations.  Further, advents in precursor pool measurement have provided rapid tests to 
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contextualize stable isotope ratios into definitive biomolecule turnover rates.  Turnover techniques 

have been effectively employed in the both cardiac failure and calorie restricted mice.  Based on 

these studies we chose to kinetically interrogate ribosome protein quality control and global 

regulation of protein synthesis in CR.  The ribosome regulates protein translation and is a large 

complex with complex proteostasis. 

1.6 The Ribosome 
 

The ribosome is an extremely costly, large ribonucleoprotein complex requiring hundreds 

of proteins to synthesize.  Ribosome synthesis is controlled by the nutrient-sensing mTORC1 

(mammalian target of rapamycin complex 1).17 In nutrient replete conditions, mTORC1 

contributes to ribosome biogenesis by initiating ribosomal protein and ribosomal ribonucleic acid 

(rRNA) transcription.  47S pre-rRNA is transcribed in the nucleolus and processed into 28S, 18S, 

and 5.8S rRNA.   5S rRNA is produced separately and ribosomal proteins are imported into the 

nucleolus after translation.  Together the 40S and 60S subunits consist of 4 rRNA’s, and ~80 

ribosomal proteins and require about 200 helper proteins to be assembled and exported from the 

nucleus. 

After assembly 40S and 60S ribosomes are shipped from nucleus to the cytoplasm or 

cytosolic membrane of the endoplasmic reticulum and begin translating messenger ribonucleic 

acid (mRNA).  40S and 60S ribosomes remain separate until elongation initiation factors recruit 

mRNA’s from translation (see Figure 2).  Following mRNA recruitment, 60S and 40S ribosomes 

form an 80s complex clamped onto mRNA.  After 80s formation, transfer RNA (tRNA) charged 

with an amino acid enter the ribosome amino acyl (A) site.  tRNAs contain 3 base pair sequences 

that are complementary to coding mRNA sequences.  When a tRNA complimentary to the mRNA 

enters the A site, a peptide bond is made, linking the amino acid in the A site to an amino acid in  
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Figure 2:  Basic 80s Ribosome Function  

The 80s ribosome translates mRNA into protein.   The eukaryotic ribosome consists of 2 subunits, the 40S and 60S, 
~80 ribosomal proteins and 4 rRNA’s.  40S and 60S subunits together with mRNA form the 80s subunit.  The 80s 
subunit guides charged tRNAs to match mRNA sequences and deliver specific amino acids for protein assembly.  
After peptide bond formation the uncharged tRNA leaves the ribosome through the exit site. 

the neighboring peptidyl (P) site.  After peptide bond formation, the tRNA in the A site moves to 

the P site, and the covalent bond between the tRNA and the amino acid is broken.  The discharged 

tRNA then leaves the ribosome through the exit (E) site.  All mRNA precursor proteins must be 

translated through the ribosome to reach fruition, and the ribosome is conserved through all known 

species.  Considering the critical role the ribosome plays in protein production and the major cost 

associated with ribosome synthesis, it is not surprising quality control mechanisms to maintain the 

ribosome have evolved. 

Ribosome quality control has been categorized into two broad areas: 1. Total ribosome 

destruction through ribophagy 2. Rescue of stalled ribosomes through the ribosome quality control 

complex (RQC).18, 19  Similar to autophagy, ribophagy involves the total engulfment of the 60S 

ribosome by an autophagosome followed by subsequent steps leading to lysosomal destruction.  

60S ribosomes are protected from ribophagy by ubiquitination of RPL25.  When RPL25 is 
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deubiquitinated the 60S ribosome is destroyed.  The ribosome quality control complex removes 

the nascent chain from stalled ribosomes to help restore functionality.  Ribophagy and ribosome 

quality control mechanisms provide explanation into total 60S ribosome homeostasis and quality 

control; however, additional studies suggest individual ribosomal subunits may be replaced 

without destruction of the entire ribosome. 

Exchange of ribosomal components has been shown in prokaryotics, eukaryotics in vitro 

and in vivo in rapidly dividing E. coli.  Pulk et al. showed chemically modified E. coli ribosomes 

exchange damaged proteins with undamaged proteins and regain activity in vitro.20 Zinker et al. 

showed similar work in 80s yeast ribosomes after treatment with cycloheximide.21  Additional 

work by Chen et al. using 15N pulse-chase labeling, showed assembled ribosomes proteins turnover 

at different rates in rapidly dividing E. coli.22  These studies provide strong preliminary evidence 

for individual ribosomal protein exchange without destruction of the entire ribosome.  We aim to 

expand this work by investigating eukaryotic protein turnover in mouse liver.  Eukaryotic 

ribosome synthesis is distinctly nuclear, adding a layer of physical separation and regulation as 

compared to prokaryotic cells.  Additionally, slowly dividing tissues minimize protein dilution 

effects that occur in rapidly dividing cells. 

To this end, we investigated mouse liver ribosomal protein turnover rates in vivo using 

stable isotope labeling techniques.  To further understand the role protein quality control plays in 

ribosome homeostasis, we examined protein turnover under nutrient replete and 40% dietary 

restriction (DR).  Ribosomal composition is known to change under nutrient stress.23  Additionally, 

40% calorie restriction slows bulk protein turnover and acts in part through mTOR regulation of 

ribosomal biogenesis.9 24 
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1.7 Calorie Restriction and Dietary Restriction 
 

Calorie restriction (CR) is the most ubiquitous method for extending lifespan across many 

species.25, 26, 27, 28 CR involves restricting calorie intake without decreasing essential nutrient 

intake.  A true calorie restriction requires measuring mouse food intake and then reducing calories 

by a given percentage.  Dietary restriction (DR) is similar, but does not measure mouse food intake 

before beginning food restrictions and does not replace lost vitamins and minerals.  National 

Institutes of Health (NIH) have prescribed calorie restriction regimens for mice.  Specifically the 

NIH-31 diet is used at 40% calorie restriction, a decrease from 5 grams to 3 grams of food per day. 

Calorie restriction improves longevity and reduces disease occurrence.  In many mouse 

genotypes, a 40% CR can result in a 40% increase in lifespan.  CR also reduces occurrences of 

cancer, type 2 diabetes, and neurodegenerative disorders.  Four major pathways have been 

implicated in the CR effect: the sirtuin pathway, the adenosine monophosphate-activated protein 

kinase pathway (AMPK) pathway, the insulin like growth factor (IGF-1)/insulin signaling 

pathway, and the mammalian target of rapamycin (mTOR) pathway.29  We employed a 40% 

dietary restriction in mice based on NIH guidelines, but using a slightly different diet, to study 

effects on ribosome biogenesis and component replacement.  Even after 40% DR, essential 

vitamins and minerals were still delivered at satisfactory concentrations.  Ribosome biosynthesis 

is under mTOR control, suggesting large differences may be identified and eventually could be 

associated with DR phenotypes. 

1.8 Experiment Summary 
 

 We employed kinetic proteomic and rRNA turnover techniques to better understand 

ribosomal component turnover in ad libitum (AL) fed and dietary restricted (DR) hepatic tissues 

(see Figure3).  Dietary restriction was administered for 10 weeks prior to D2O labeling.  D2O was  
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Figure 3:  Experimental Design 

Kinetic proteomics and rRNA analysis experimental workflow.  Ribosomal protein turnover was measured using 
stable isotope labeling and mass spectrometry.  Mice were dietary restricted for 10 weeks then labeled with D2O 
continuously and sacrificed over a time course.  Ribosome liver protein turnover was analyzed in whole lysate (total 
pool), and enrichment of ribosomes (assembled pool).  rRNA turnover was also determined from the assembled 
pool.  After mass spectrometry, data were analyzed using mass isotopomer distributions and turnover rate was 
calculated using first-order rate kinetics. 

administered by intraperitoneal injection and drinking water to rapidly increase and maintain 5% 

D2O in vivo enrichment throughout the duration of the experiment.  Mice were sacrificed across a 

time course from zero (no D2O administration) to thirty-two days.  Ribosome kinetics were 

analyzed in both liver lysate and ribosomes purified through a sucrose cushion by mass 

spectrometry and mass isotopomer distribution analysis. 
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Kinetic analysis showed that ribosomal proteins are replaced at significantly different rates 

suggesting individual ribosomal proteins can be replaced without destruction of the entire 

ribosome.  Additionally, rRNA measurements are consistent with bulk ribosomal protein turnover 

and provide a metric of ribophagy.  Dietary restricted mice showed increases in ribosomal protein 

turnover compared to ad libitum fed mice.  However, ribophagy as measured by rRNA turnover 

did not significantly change.  This study provides insights into ribosome maintance in two different 

cellular states and provides a method to directly measure ribophagy at homeostasis in vivo. 

Chapter 2: Materials and Methods 

2.1 Mouse Handling 

Mice were housed, dietary restricted, and metabolically labeled according to NIH-

approved practices.  Protocols were performed with permission from the Brigham Young 

University Institutional Animal Car and Use Committee.  Ten Week old male C57BL/6 mice were 

obtained from Charles River Laboratories.  For the duration of the experiment, mice were housed 

in an specific-pathogen-free (SPF) facility with 12 hour light/dark cycles.  All mice were allowed 

one week on ad libitum fed diet to equilibrate with 3–4 mice per cage.  After one week mice were 

separated and assigned to a 40% dietary restricted or ad libitum fed diet on Harlan 8604 food.  

Mouse weights were taken each week and weight homeostasis was obtained in ad libitum and 

dietary restricted mice.  After 10 weeks of treatment, mice received a 5% body weight 

intraperitoneal sterile D2O injection to immediately bring body water to 5% D2O.  Drinking water 

was supplemented to 8% D2O to maintain 5% body water throughout the experiment.  Mice were 

sacrificed in at least duplicate at time points 0 days (no D2O injection), 0.375 days, 1 day, 2 days, 

4 days, 8 days, 16 days, and 32 days.  Sacrifice was performed using CO2 asphyxiation followed 

by diaphragm puncture.  Mice were immediately dissected, blood was extracted by cardiac 
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puncture for % D2O analysis, and organs were flash frozen on blocks of solid CO2.  Tissues were 

stored at -80 °C. 

2.2 Ribosomal Assembled Pool Enrichment 
 

Separation of free ribosomal proteins and assembled ribosomes was performed using a 

modified procedure from Ingolia et al.30 Frozen liver, 62–215mg, from time points 0, 1 day, 4 

days, 8 days, and 16 days was homogenized in polysome buffer (20mM Tris/HCl, 150 mM NaCl, 

5 mM MgCl2, 1 mM Dithiothreitol, 1:100 dilution protease inhibitor cocktail (Sigma), and 1% 

Triton X-100) using a bead homogenizer:  30 seconds, 4 m/s, repeated 1–3 times depending on 

need.  Lysate was placed into a new Eppendorf tube and clarified by centrifugation at 20,000g for 

20 minutes at 4 °C.  After clarification, sample was decanted then ~300 µL was passed through a 

2.2mL sucrose cushion (1M sucrose, 20mM Tris/HCl, 150 mM NaCl, 5 mM MgCl2, and 1 mM 

Dithiothreitol) for 12 hours at ~200,000g (40,600rpm) 4 °C using a ti-55 rotor on the Optima L-

100XP Ultracentrifuge (Beckman Coulter).  After centrifugation, sucrose was decanted and the 

ribosome pellet was suspended in 6M Guanidine/HCl, 100mM Tris/HCl pH 8.5. 

2.3 Mass Spectrometry Sample Preparation 
 

Ribosomal samples were prepared for mass spectrometry using modified filter-aided 

sample preparation.  Briefly, protein was denatured in 6M Guanidine/HCl 100mM Tris/HCl (pH 

8.5), cysteines were reduced using dithiothreitol and alkylated using iodoacetamide.  Samples were 

placed on 500 µL 10kD or 30kD filters and washed 2–3 times on the filters using 6M 

Guanidine/HCl 100mM Tris/HCl pH 8.5.  The guanidine solution was removed by two to three 

25mM ammonium bicarbonate washes.  Proteins were resuspended in 25 mM ammonium 

bicarbonate and digested overnight using Pierce MS-Grade Trypsin in a 1:50 (w:w) ratio or 
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minimum 0.1 µg or 0.5 µg of trypsin per sample.  Trypsin digest was quenched using 

phenylmethane-sulfonylfluoride (PMSF) or centrifuging through above mentioned filters to 

remove tryspin.  Samples were spun through filters, placed in mass spec vials, speed vacuumed to 

dry, and then suspended at ~1 µg/µL in 3% acetonitrile 0.1% formic acid. 

Total pool ribosome samples were prepared from whole liver lysates using similar 

protocols.  Liver was homogenized in a 100 mM ammonium bicarbonate solution with the protease 

inhibitor cocktail (Sigma) aiming for a final concentration of approximately 10 mg/ml protein 

concentration.  Approximately 500 µg of protein was lysed in 6M Guanidine/HCl 100mM 

Tris/HCl and subject to similar filter-aided preparations and trypsin digestion as described above.  

After digestion, samples were spun through filters, speed vacuumed to dry, and resuspended in 10 

mM LC-MS grade ammonium formate pH 9.5. 

Samples were fractionated using high pH C18 high performance liquid chromatography 

(HPLC), which is orthogonal to low pH C18 chromatography.  Fractionation was performed using 

the 1260 HPLC Infinity (Agilent) and the Gemini 50 x 2.00 mm C18 column with 3µm beads and 

110 angstrom pore size.  Peptides were eluted using a 10 mM ammonium formate pH 9.5 

H2O/acetonitrile gradient from 3% B to 60% B over 40 minutes flowing at 1 mL/min.  Gradient A 

is 97% H2O, 3% acetonitrile, 10mM ammonium formate pH 9.5.  Gradient B is 10% H2O, 90% 

acetonitrile, 10mM ammonium formate pH 9.5.  1 mL fractions were collected.  1 mL fractions 

were pooled into 8 fractions by pooling every 8th fraction.  For instance fractions 1, 9, 17, 25,… 

would be pooled into one fraction.  Pooled fractions were speed vacuumed to dryness then 

suspended in 200 µL of 80% acetonitrile (to extract peptides but leave some salts) and decanted 

into a mass spectrometry vial.  Samples were again speed vacuumed to dry and then suspended in 

40 µL of 3% acetonitrile 0.1% formic acid for LC-MS analysis. 
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2.4 LC-MS Proteomics Acquisition 

Protein identification and kinetic acquisition were performed on the Agilent 6530 Q-ToF 

mass spectrometer coupled to capillary and nanoflow Agilent 1260 HPLC using the chipcube 

nano-spray source.  Peptides were eluted from the Agilent C18 Polaris chip at 300 nL/min using 

an H2O-Acetonitrile gradient acidified to 0.1% Pierce LC-MS grade formic acid.  Buffer A was 

3% acetonitrile, 0.1% formic acid.  Buffer B was 97% acetonitrile, 0.1% formic acid.  The elution 

gradient is as follows: 0 minutes, 100% A; 0.1 minutes, 95% A; 27 minutes, 40% A; followed by 

high percentage B column washing and low percentage B equilibration.  The Agilent 6530 Q-ToF 

mass spectrometer was run in 2 Ghz high dynamic range mode.  Protein identification runs were 

performed in MSMS mode using collision induced dissociation with nitrogen gas.  MS1 and MS2 

data were collected at a maximum rate of 4 spectra/second with CID fragmentation on the top 10 

most abundant precursors.  Dynamic exclusion was set to 0.2 minutes.  Kinetic acquisitions were 

performed in MS-only mode and collected at 1 spectra/second.  MS only mode increases signal 

intensity, improves signal-to-noise, and gives more scan points per elution chromatogram greatly 

enhancing isotopomer analysis accuracy.  

2.5 Peptide Identification 

Peptide identifications were made using SpectrumMill then overlaid onto kinetic 

acquisitions.  SpectrumMill searches were performed against the Uniprot Mouse database with 

MS1 tolerance ±20ppm and a MS2 tolerance ±50 ppm, cabomidomethylation (C) as a static 

modification, and pyroglutamic acid (n-term) and oxidation(M) as dynamic modifications. 
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Data analysis workflow to determine turnover rate.  1.  Mass spectral data must be normalized according to the number 
of isotopomer peaks included in the calculation.  Number of isotopomer peaks to include is based on peptide m/z. 2.  
Theoretical calculations are made based on mouse body D2O enrichment.  % D2O is a direct measure of the precusor 
pool allowing a theoretical maxium to be calculated based on D2O incoporation into amino acids.  

Figure 4:  Mass Isotopomer Analysis Workflow 
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3.  Normalized data and theoretical calculations are combined to determine % new peptide.  % new peptide should be 
equal for all isotopomer peak normalized ratios.  The standard deviation of % new peptide for the isotopomer peaks 
is used as a filter for high quality data.  4.  Peptides are grouped into proteins and the median % new protein, based 
on M0, is plotted along with a standard deviation.  Data from multiple timepoints and biological replicates at the same 
timepoint are combined.  A rate is fit based on first-order rate kinetics using a non-linear least squares regression.   
 
Searches were performed using trypsin as a digestion enzyme allowing 2 missed cleavages. A 

second search with no specific enzyme was performed against a restricted library of identified 

proteins.  Identified peptides were exported and used to calculate mass isotopomer distributions 

and extract peptide isotope patterns from MS-only acquisitions. 

2.6 Mass Isotopomer and Kinetic Analysis 
 

MassHunter software was used to extract peptide isotope patterns from MS-only 

acquisitions.  MS-only isotopomer data was extracted based on peptide identification from MSMS 

acquisition using m/z (± 12 ppm) and retention time alignment (± 0.8 minutes).  Data were then 

processed using in house python-based programs based upon previous publications by Price et al.9  

Briefly, isotope peaks M0–M4 were normalized then compared to theoretical calculations based on 

percentage D2O enrichment to determine fraction deuterium enriched (new) peptide (see Figure 

4).  Theoretical calculations were determined using the eMASS algorithm and based on the number 

of possible deuterium incorporation sites per amino acid.31  Theoretically, changes in abundance 

of each isotope peak M0–Mn can be used to determine percent new peptide; however, M0–M4 are 

the most abundant and give better results.  A standard deviation of change was taken for M0–M4 

(peptide mass above 2400 Daltons) or M0–M3 (peptide mass below 2400).  If the percentage new 

peptide standard deviation exceeded 0.2, the data point was removed from downstream analysis.  

Additional filters were also applied to remove peptides with total relevant intensity below 20,000 

counts and a retention time deviation greater than 0.4 minutes. 
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Peptide data were combined into proteins and fit according to first-order rate kinetics.  M0 

% new data from the above mentioned peptides are combined and fit using a non-linear least 

squares regression based on first-order rate kinetic equations.  Time point zero is forced to 0% new 

and is given a standard deviation of 0.05.  A given protein’s rate is only calculated when 3 or more 

time points have protein data.   

Proteins were colored by turnover rate (red fastest, blue slowest) on a high resolution cryo-

electron microscopy human ribosome structure by Khatter et al.32 

2.7 rRNA Turnover Analysis 
 

rRNA turnover analysis was performed as follows: ribosome pellets from the sucrose 

cushion centrifugation were resuspended in 6M Guanidine/HCl 100mM Tris/HCl pH 8.5.  

Appoximently half of this sample was subjected to RNA purification using the PureLink RNA 

Mini-Kit.  The remaining rRNA was stored at -80 °C until RNase digestion.  RNA was digested 

in 100mM ammonium bicarbonate 5 mM EDTA pH 7.5 overnight at room temperature with RNase 

A/T1 (Fisher).  The digest was stored frozen until mass spectrometry analysis. 

Mass spectrometry analysis was performed on the Agilent 6530 Q-ToF coupled to the 

Agilent 1260 capillary HPLC using the Jetstream ESI source.  Nucleotides were desalted then 

eluted from a Zorbax SB-C18 150 x 0.5mm column with 5 µm resin using a 5mM ammonium 

acetate pH 5.0/MeOH gradient at 50 µL/min.  The elution gradient is as follows: 0.0–0.30 min 

,0.0% MeOH; 0.30–0.31 min, 0.0–0.2% MeOH; 0.31-0.45 min, 0.2–0.4% MeOH; 0.45–1.0 min, 

0.4–1.5% MeOH followed by column washing at 90% MeOH.  MS only and MSMS spectra were 

collected for analysis.  Mass isotopomer extractions and calculations were performed as described 

above with a few modifications.  MassHunter m/z mass accuracy filter was set to ± 20 ppm.  Mass 

isotopomer calculations were performed on guanosine monophosphate using Isotopomer3.01 
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software based on 5 incorporated deuteriums.  Only M0 was used for % new analysis and errors 

are solely based on standard deviations from least squared fits to first-order rate kinetics.  Data 

was fit using GraphPad Prism. 

2.8 Quantitative Polymerase Chain Reaction 

Quantitative polymerase chain reaction (qPCR) was performed using SBYR green on the 

Applied Biosytems 7500 instrument.  Reverse transcription was performed with the iScript cDNA 

synthesis kit (Bio Rad) and SYBR green master mix (Bio-Rad).  Primers: 18s rRNA 

forward(CTTAGAGGGACAAGTGGCG) reverse(ACGCTGAGCCAGTCAGTGTA); 16s 

Mitochondrial rRNA forward(CGAGGGTCCAACTGTCTCTT) reverse(GGTCACCCCAACC 

GAAATTT); vRNA forward(GCTGAGCGGTTACTTTGACA) reverse(GTCTCGAACCAA 

ACACTCATG); TATA forward(ACAGCCTTCCACCTTATGCT) reverse (GATTGCTGTA 

CTGAGGCTGC).  qPCR instrument parameters were as follows:  Stage 1 (1 cycle) 50 °C for 2 

minutes; Stage 2 (1 cycle) 95 °C for 15 seconds; Stage 3 (30–45 cycles depending on need), 95 °C 

for 15 seconds, 59 °C for 1 minute.  Melt curves to determine product purity and efficiency 

calculations were performed on all primer sets (supplemental data).  qPCR primer efficiency was 

calculated using Real-time PCR Miner 4.1.33  Relative concentrations were calculated using 

method by Pfaffl, which corrects for differences in primer efficency.34 

2.9 Statistical Analysis 

Statistical analysis was performed in Microsoft Excel, Graph Pad Prism and the JMP 

software package. Graphs were made in Microsoft Excel. Graph Pad Prism was used to fit the 

rRNA turnover rates to a first-order rate kinetic and calculate 95% confidence intervals. JMP was 

used to calculate p-values and 95% confidence intervals for protein turnover data comparisons. R2 
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adjust values were calculated in JMP according to linear fits.  R2 values were calculated in 

Microsoft Excel. 

2.10 Mouse Ribosome Compared to E. coli Turnover 
 

Proteins with sequence homology from an E. coli ribosome protein turnover study were 

compared to wild-type turnover rates in mouse liver (see Supplementary Figure 3).  Rates for E. 

coli ribosomal proteins turnover and mouse protein turnover differed significantly in range; 

therefore, within each species rates were normalized against the fastest turnover ribosomal protein 

measured.  This normalization effectively rank orders ribosomal proteins by turnover rate allowing 

a more direct comparison.  Homology was determined by searching identified mouse ribosomal 

proteins against the E. coli database using NCBI protein BLAST.  Mouse ribosomal proteins with 

any sequence homology to E. coli ribosomal proteins were included in the analysis.  Scores were 

associated with the probability of a given match happening by random chance in a database of 

given size.  A score of 1 indicates a high likelihood of the match occurring by random chance.  

Scores do not have a finite range, but the lowest NCBI grouping is below 40 and the highest above 

200.  R2 was calculated using Microsoft Excel. 

2.11 Yeast Eukaryotic Versus Mitochondrial Ribosome Absolute Concentrations 
 

 Eukaryotic versus mitochondrial ribosome concentration estimations from this study were 

compared to absolute protein concentration measurements by Ghemmhagami et al.  A median 

absolute concentration value was taken from 107 eukaryotic ribosomal proteins and 62 

mitochondrial proteins.  The median value was used to represent the given ribosome concentration. 
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Chapter 3: Ribosome Turnover in Mouse Liver 

Kinetic proteomics and rRNA turnover analysis show that the protein components of 

eukaryotic ribosomes in mouse liver turnover at different rates.  Mice were labeled with and 

maintained at 5% D2O body water and sacrificed over a time course ranging from 0 to 32 days. 

After sacrifice hepatic ribosomes were isolated from free pool ribosomal proteins through a 

sucrose cushion using ultracentrifugation and then analyzed by liquid chromatography mass 

spectrometry (LC-MS) to determine protein turnover rates.  Increases in fraction of deuterated 

protein/RNA were used as a metric of biomolecule turnover. Ribosome turnover data from sucrose 

cushion isolated ribosomes will be referred to as the assembled pool (proteins are assembled into 

the ribosome) and ribosome turnover data from the whole lysate will be referred to as the total 

pool (see Figure 3). 

3.1 Ribosomal Proteins in the Assembled Structure Turnover at Different Rates 

Assembled pool ribosomal proteins turnover at different rates (see Figure 5).  Assembled 

pool ribosomal protein (n=58) turnover ranged from 3.7% to 15.8% new protein per day with an 

9.3% average rate and 2.0% rate standard deviation.  Most ribosomal protein grouped close to the 

average, suggesting degradation by ribophagy, however, four proteins were more than two 

standard deviations above the average:  RPL19, RPL34, RPS27-like, and RPL10.  And one 

proteins was more than two standard deviations below the average: RPLP1. Though average 

ribosomal protein turnover rate is probably a good metric of ribosome turnover, we measured 

rRNA turnover in the assembled pool to directly quantify ribophagy.  Comparing ribophagy rates 

directly to protein turnover better identifies ribosomal proteins that may be individually exchanged 

after ribosome incorporation. 
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Protein turnover was measured in assembled ribosomal proteins from ad libitum fed mouse liver.  Rates vary from 
3.7% to 15.8% suggesting some ribosomal proteins are can be replaced after ribosome assembly.  Error bars are 
standard deviations from first order rate fits. 

Comparing ribophagy to protein turnover identified more ribosomal proteins that may be 

exchanged within the ribosome (see Figures 6–7).  rRNA turnover showed ribophagy occurs at  

8.8% new ribosome per day (95% confidence interval (CI) from 7.3% to 10.4%) in mouse liver, 

which is similar to the 9.3% average ribosomal protein turnover rate.  Five proteins were shown 

to be more than one standard deviation above the upper limits of the ribophagy 95% confidence 

interval suggesting these proteins may be individually replaced in assembled ribosomes: RPL19, 

RPL34, RPS27-like, RPL10, and RPL24.  These proteins may be extracted and destroyed instead 

of recycled into the free ribosomal protein pool or alternatively free pool turnover may be very 

fast and assembled to free pool turnover is rapid (Figure 11).  Two ribosomal proteins, RPLP0 and  

Figure 5:  Ribosomal Proteins Turnover at Different Rates   
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Figure 6: rRNA Turnover as a Metric of Ribophagy  

rRNA turnover was measured from the assembled ribosomal pool of three mice. Isotope incorporation into 
Guanosine monophosphate (GMP) turnover rate was fit with first order rate kinetics.  Ribophagy rate is 8.8% 
new/day 95% CI from 7.3% to 10.4% new rRNA per day. 

RPSA, were more than one standard deviation below the ribophagy 95% CI lower bound.  This 

data suggests RPSA and RPLP0 may be removed and eventually incorporated into new ribosomes 

before ribophagy destruction or alternatively free pool turnover is very slow, but exchange 

between free pool and assembled pool is very fast.  Though assembled pool ribosomal protein  

turnover compared to ribophagy provides compelling evidence ribosome incorporated proteins can 

be exchanged individually, these diverse ribosomal protein turnover rates may be caused by biases  

from free pool ribosomal protein turnover.   To address this concern, we performed turnover 

proteomics on total pool (assembled pool + free pool) ribosomal proteins to identify large changes 

in ribosomal protein turnover between pools that could bias assembled pool turnover rates. 
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Figure 7:  Ribophagy Rate Identifies Exchangeable Proteins   

Assembled pool protein turnover rates were plotted with the rRNA turnover rate to determine whose turnover is 
significantly above or below ribophagy rates.  Comparison identifies 7 ribosomal proteins that do not fall within the 
rRNA 95% confidence interval: RPL10, RPS27-like, RPL34, RPL19, RPL24, RPSA, and RPLP1 

Turnover data show many proteins have subtle but statistically significant changes between 

the assembled pool and the total pool (see figure 8a).  Little or no change in total pool turnover 

suggests two possibilities:  1. Most ribosome proteins bulk concentration exists in the ribosomal 

pool. 2. The free pool and ribosomal pool turnover at similar rates.  Diversity in total pool and 

assembled pool turnover rates suggests within ribosome protein turnover is not purely an artifact 

of free ribosomal pool turnover.  Linear regression analysis shows a possible significant difference 

between AL assembled and whole pools (fit line slope = 0.64, p-value = 0.0006, 95% CI from 

0.296 to 1.000).  Many proteins show a potential for within ribosome exchange based on total 

versus free pool turnover data, but excluding proteins whose assembled protein turnover was 

within ribophagy rate: RPLP0 and RPL10 seem most likely.  A brief study of RPLP0 rate fit 

showed a bimodal distribution in % new protein, suggesting RPLP0 has splice variants or a post-
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translational modification.  Two RPLP0 peptides were identified and are from the same splice 

variant.  RPLP0 is acetylated at A2 and phosphorylated at S101 in humans.35, 36  We identified the 

peptide containing S101, but did not identify the phosphorylation.  However, these bimodal rates 

could still be explained by S101 phosphorylation.  Further analysis of RPLP0 turnover is required 

to understand this result.  We also looked at the structure position of RPL10 in the 80s human 

cryo-electron microscopy structure to qualitatively interrogate the possibility of RPL10 exchange 

based on location.   

RPL10 is located in the mRNA binding pocket and is very solvent exposed especially when 

the 60S subunit is free from the 40S subunit (see Figure 9).  Additionally, RPL10 plays important 

roles in ribosome quality control, motion, and 80s formation.  Solvent exposure without any 

protein segments buried deep within the ribosome increases the likelihood that RPL10 can be 

exchanged.  The other fastest turnover proteins, RPL19, RPL24, RPL35, and RPS27 are also fairly 

solvent exposed.  However, quantitative comparison of turnover to protein binding will require 

surface area analysis. To further understand ribosomal protein turnover, we perturbed a known 

regulator of ribosome biogenesis, mTOR, through 40% dietary restriction.  

3.2 Ribosomal Protein Turnover Changes Significantly in Dietary Restriction 

Assembled ribosomal protein turnover increases in dietary restriction. Ribosome 

homeostasis is controlled in part by the nutrient sensing mTOR complex 1 (mTORC1).  We altered 

mTORC1 response through a 40% dietary restriction in mice to better understand ribosome 

homeostasis and to identify proteins that may exchange after ribosome turnover.  We employed 

the same kinetic proteomic and rRNA turnover techniques used on the wild-type fed mice.  Linear 

regression shows a potential increase in DR protein turnover (fit line slope = 0.66, p-value = 0.011, 

95% CI from 0.28 to 1.04) with a protein turnover range from 4.5% to 23.6% new protein.  (see  
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Figure 8: Ribosome Proteins Turnover Can Differ in Assembled vs Total Pool 
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AL and DR rRNA turnover rates (AL: 8.8% and DR: 7.6%) and 95% rRNA turnover confidence intervals (AL: 
7.3% to 10.4% and CR: 5.1% to 10.0%) are plotted on relevant graphs A. AL ribosomal Proteins turnover at 
different rates in assembled vs total pools.  R2 adjusted = 0.23, fit line slope=0.64, p-value=0.0006, 95% CI from 
0.296 to 1.000  B. DR increases assembled ribosome pool turnover.  Correlation is higher than AL assembled pool 
versus total pool, R2 adjusted = 0.17, fit line slope = 0.66, p-value = 0.011, 95% CI from 0.28 to 1.04 C.  DR total 
less similar to DR assembled pool R2 adjusted = 0.04, but outliers likely skew the correlation. There is no significant 
difference between pools. Fit line slope = 0.56, p-value = 0.10, 95% CI from -0.10 to 1.23.  D.  DR total pool similar 
to AL total pool. R2 adjusted = 0.28, fit line slope = 1.31, p-value = 0.0003, 95% CI from -0.64 to 1.98. 
 

Figures 8b-c) An adjusted R2 of 0.17 shows a weak correlation still exists between DR and 

AL assembled ribosomes.  Importantly, RPL10 showed a significant shift in turnover from 15.8% 

to 23.6% new protein per day.   

Considering a bulk increase in ribosomal protein turnover we hypothesized one of three 

possibilities: 1. DR ribophagy increased. 2. Ribosome concentration decreased, 3. Free pool 

turnover increased.  Surprisingly, ribophagy if anything slowed in DR samples: 7.6% new 

ribosomes/day (95% CI from 5.1% to 10.0%, see Figure 9).  Another possibility is that DR 

ribosome concentration decreases, but turnover rate was maintained causing faster protein 

replacement.  Again surprisingly, 40S rRNA PCR showed no decrease in ribosome concentration 

(1.11 fold increase in CR standard deviation = 0.09). Lastly, a total increase in ribosomal protein 

turnover could explain the increased ribosomal protein turnover rates associated with assembled 

ribosomes in DR.  DR total pool turnover measurements when compared to DR assembled pool  

measurements showed no significant difference (Fit line slope = 0.56, p-value = 0.10, 95% CI from 

-0.10 to 1.23).  DR ribosomal protein turnover increase is primarily attributed to changes in 

assembled pool kinetics because DR total pool and AL total pool are very similar (fit line slope = 

1.31, p-value = 0.0003, 95% CI from -0.64 to 1.98, R2 adjusted 0.28, see Figure 8D). 

RPL10 turnover rate in DR assembled and DR total pools (Assembled: 23.6%, Total: 

22.8%) was much more similar than expected when compared to the stark RPL10 turnover 

difference in AL pools (Assembled: 15.8%, Total: 21.6%).  Diversity in assembled versus total 
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pool turnover rate suggests a two-pool kinetic where ribosomal proteins have diverse rates in 

distinct pools. 

3.3 Ribosomal Protein Two-Pool Kinetic 

Ribosomal proteins exist in at least one of two conditions: the free pool or the assembled 

pool (see Figure 11).  The free pool is loosely defined as all ribosomal proteins that are not 

assembled into a ribosome; therefore, ribosomal proteins only escape the free pool when 

incorporated into the ribosome.  Many studies have shown ribosomal protein insertion into the 

ribosome occurs in the nucleolus prior to ribosome transport into the cytoplasm.37  After a life time 

of translation, 60s ribosomes are known to be destroyed as an assembled ribophagy mechanism.  

However, this mechanism does not explain the diverse ribosomal protein rates measured by this 

study.  As such we hypothesize post ribosome assembly mechanisms exist to allow active and/or 

passive insertion of ribosome protein constituents.  In this way these large and expensive biological 

machines can be maintained and repaired while maximizing the cellular economy. 

The measured turnover rate and ribophagy rate in DR show RPL10 is very likely replaced 

throughout ribosome lifespan (see figure 11).  RPL10 turnover rate changes significantly in the 

AL assembled versus total pools from 15.8% to 21.6% (see Figure 8a).  However, in DR RPL10 

turnover rate changes from 23.6% to 22.8% (see Figure 8c).  Therefore, total pool turnover 

increases by 1.2% and assembled pool turnover increases by 7.8%.  Ribophagy, as measured by 

rRNA turnover, does not change significantly, so only 1.2% of the RPL10 increase in turnover in 

the assembled pool can be attributed to changes in total pool turnover.  The remaining DR induced 

increase in RPL10 turnover is likely due to a change in equilibrium between free and assembled 

pools. 
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Ribosomal proteins were colored according to rate (red fastest and blue slowest) on the human 80s ribosome to allow 
qualitative comparison of rate and location.  The fastest turnover protein, RPL10, is located in the mRNA binding 
pocket and is not buried deeply in the ribosome. 

Figure 9:  RPL10 Location Makes Exchange More Likely  
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Chapter 4: Discussion 

4.1 Measuring Ribosome Homeostasis 

Mouse hepatic ribosome turnover kinetics show ribosomal protein turnover differs 

significantly, suggesting some ribosomal proteins may be replaced during ribosome lifespan.  

Ribosomal protein turnover has been previously measured in E. coli and also showed ribosomal 

proteins turnover at different rates.22  However, no significant correlation was found between 

protein homologs in mouse liver and E. coli (supplemental figure).  Differences  

between prokaryotic and eukaryotic ribosomes including changes in ribosome structure, extra-

ribosomal function as well as the rapidity of E. coli cell division could account for these 

disparities.   

Comparison of ribosomal protein turnover rates to ribophagy rates allowed the 

identification of proteins that turnover significantly faster or slower than total ribosome turnover.  

Previous studies made rRNA turnover measurements ex vivo and in vivo including in humans  

using heavy labeled glucose.38,39,40,41  Because previous studies were not performed in liver 

tissues, a direct comparison of riboghay rates cannot be made, however, rRNA turnover rates 

were still similar.   In a study by Defoiche et al. in vivo rRNA turnover in CD3- cells from a 

patient with chronic lymphocytic leukemia were 11.6% new/day during pulse and 5.8% new/day 

during chase, and rRNA turnover in young cultured mouse fibroblasts was 9.2% new/day. 

However cultured young mouse fibroblasts were dividing every 30 hours, which suggests 

minimum percent new ribosome should be closer to 50%.41  This discrepancy maybe accounted 

by incorrect precursor pool measurements or challenges putting new ribosomes in the context of 

total ribosomes. 
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Figure 10: rRNA Turnover is Similar in AL and DR  

rRNA turnover rates were calculated based on GMP deuterium enrichment.  rRNA was extracted from the 
assembled ribosome fraction.  Data were fit to a first order kinetic and 95% confidence intervals were calculated 
AL: 8.8% new rRNA/day, 95% CI from 7.3% to 10.4% and DR: 7.8% new rRNA/day, 95% CI from 5.1% to 10.0%. 

At homeostasis assembled ribosome rRNA turnover is a direct measure of ribophagy.  

Ribosomal protein may be replaced throughout ribosome lifespan, but there is no evidence 

indicating rRNA is replaced during ribosome lifespan.  Furthermore, no evidence suggests a free 

rRNA pool of significant size, and strong evidence suggests at least some misprocessed rRNAs  

are targeted for exosome destruction.42 Additionally, rRNA was extracted from ribosomes after 

sucrose cushion enrichment, which selects for high density particles.  High density particles may 

include pre-40S and pre-60S complexes, but based on ribosome turnover rates these complexes 

are likely in low stoichiometry compared to mature ribosomes.  Lastly, eukaryotic ribosome 

turnover may be biased by other high density RNA containing protein complexes especially the 

mitochondrial ribosome.  To discern the effect of mitochondrial rRNA on eukaryotic rRNA 

turnover, we employed qPCR and RNA turnover measurement on ribosome purifications with 

and without Triton X-100 on AL mouse liver.  Expecting Triton X-100 to increase mitochondrial 
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permeability and increase mitochondrial ribosome enrichments.  Data showed a ten-fold increase 

in mitochondrial rRNA as compared to eukaryotic rRNA did not have a significant effect on 

rRNA turnover (see supplemental figure 2).  Stoichiometrically the eukaryotic ribosome has ~2.7 

time more base pairs than the mitochondrial ribosome.  Lastly, using absolute quantitation data 

in yeast from Gheammhagami et al. we estimate eukaryotic ribosome to mitochondrial 

concentration ratio to be approximately 14.5:1 respectively, meaning total rRNA base-pair 

stoichiometry is approximately 39.2:1 eukaryotic to mitochondrial.  Though this metric does not 

quantitatively translate to mouse liver, this data strenthgns our results that mitochondrial rRNA is 

less abundant than eukaryotic rRNA. 

We performed turnover proteomics on total pool ribosomal proteins to show differences 

in assembled pool ribosomal protein turnover was not simply an artifact of total pool turnover.  

Differences in total and assembled pool turnover is not surprising considering the many known 

extra-ribosomal functions of ribosomal proteins.  Further free subunits generally turnover more 

rapidly than assembled complexes.  Diversity in protein turnover rates between total pools and 

assembly pools lead to the development of a two-pool kinetic model for ribosome turnover.  The 

two-pool kinetic model places ribosomal proteins into a free pool or assembled pool.  Where the 

free pool is all proteins that are not ribosome bound.  Ribosomal proteins move from the free 

pool to the assembled pool through ribosomal assembly processes or by exchange after ribosome 

assembly.  Turnover data from total pool and assembled pools strongly suggests at least some 

ribosomal proteins are exchanged after ribosome assembly. 

Seven ribosomal proteins turnover differs significantly from ribophagy turnover rates.  

RPL10, RPL24, RPL19, RPS27, and RPL35 turnover more rapidly than the measure ribophagy 

rate.  Fast turnover suggests ribosomal proteins are in rapid exchange with a fast turnover free 
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pool or ribosomal proteins are immediately destroyed after removal from the ribosome.   RPL10 

appears to exchange quickly with a faster turnover pool.  RPL19 and RPL24 turnover about the 

same rate in total and assembled pools.  Interestingly, when the 80S ribosome is assembled, 

RPL24, RPL19 and RPL35 all span between the 40S and 60S ribosome suggesting proteins key 

to 80S ribosome assembly are continually replaced.  Ribosomal proteins that are key to 

ribosomal function maybe replaced more often as a mechanism of ribosome quality control and 

repair.  RPLP1 and RPSA turnover more slowly than the measured ribophagy rate.  Slower 

turnover suggests rapid exchange with a slow turnover free pool or these proteins are escaping 

ribophagy and being assembled into new ribosomes.  Unexpectedly, RPLP1 turnovers over more 

rapidly in the total pool but as mentioned previously, RPLP1 has a bimodal rate distribution 

suggesting post translational modification is playing a role in regulating RPLP1 turnover and 

may manipulate in ribosome function or structure. 

4.2 Slight Changes in Diet May Alter Dietary Restriction Effects 

Previous calorie restriction studies by Price et al. and Karunadharma et al. show decreases 

or no change in CR total pool mouse hepatic ribosomal protein turnover. 9, 24  Our study data shows 

an increase in ribosomal protein turnover in the assembled pool, but similar results in the total 

pools.  However, global turnover proteomics data (data not shown) does not show the same DR 

turnover slowing expected based on previous studies.  The same C57BL/6 mice were used in all 

studies, however, a few keys differences between studies exist.  Age: Price et al. used 18-month-

old mice, Karunadharma et al. had two groups of mice 3-month-old mice and 25-month-old mice, 

and the current study used 3-month-old mice.  Gender: Karunadharma et al. used female mice, 

whereas Price et al. and the current study used male mice.  Importantly, the same general trends in 

protein turnover were seen between Price et al. and Karunadharma et al. older mice.  Diet: Price 
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et al. and Karunadharma et al. used 40% calorie restriction, whereas this study used a 40% dietary 

restriction.  However, both Price et al. and this study fed the same amount of food to calorie/dietary 

restricted mice.  Price et al. used the NIH-31 gold standard diet for calorie restriction. 

Karunadharma et al. used a diet nutritionally similar to NIH-31, Harlan Teklad diet #TD.99366.  

We used the Harlan 8604 diet, which contains about 6% more protein and 6% less carbohydrate 

than the NIH-31 diet.  Fat, carbohydrate, and protein sources also differed between diets.   

Despite unexpected shifts in global homeostasis, our data show slight changes in nutrient 

intake may significantly alter ribosome homeostasis.  However, connections between ribosome 

homeostasis and longevity and aging cannot yet be directly drawn from this study. 

4.3 RPL10 Probably Exchanges after Ribosome Formation 

Ribosomal protein L10 (RPL10) probably exchanges throughout ribosome lifespan. 

RPL10 turnover rates are significantly faster than ribophagy rates in ad libitum (AL) and dietary 

restricted (DR) mice.  In AL mice RPL10 turnover is slower in the assembled pool than the total 

pool suggesting a two-pool kinetic (see Figure 11).  In DR RPL10 assembled and total pool 

turnover are much closer to the AL total pool rate.  However, ribophagy does not increase, 

suggesting RPL10 exchange rate between assembled pool to the free pool has increased.  RPL10 

assembled pool turnover increase in DR is not necessarily linear, but shows exchange is likely 

occurring between free and assembled ribosome pools.  Further explanation of RPL10 function 

from previous studies strengthens the RPL10 exchange hypothesis. 

Previous studies show RPL10 may be likely to exchange during ribosome lifespan.  RPL10 

is one of few ribosomal proteins that is incorporated into the ribosome after pre-60S export into 

the cytoplasm.43  Cytoplasmic incorporation suggests that RPL10 active incorporation machinery 

exists in the cytoplasm, or RPL10 may be exchanged through passive mechanisms as has been 
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Figure 11:  A Two-Pool Kinetic Model to Describe RPL10 Turnover Change in DR 

ksyn(total) represents the total measured synthesis.  kdeg(free) represents free pool degradation and was not directly 
calculated in this experiment.  kassembly represents every new ribosome assembled and kribophagy represents every 
ribosome destroyed and is measured by rRNA turnover.  At homeostasis kassembly = kribophagy.  kadd and kremove represent 
exchange of ribosomal proteins in the assembled pool.  Exchange is partially measured by assembled pool turnover, 
but this measurement is biased by free pool turnover.  DR increases RPL10 turnover by 1.2% in the total pool, but 
7.8% in the assembled pool.  Ribophagy does not functionally change. 

shown previously in vitro.21  RPL10 is located in the top of the mRNA binding pocket and has no 

regions that are deeply buried within the ribosome suggesting replacement can occur without 

disrupting ribosome structure.32  Prior to 80s formation RPL10 quality control checks the 60S 

ribosome for functionality.44  Newly synthesized subunits also require RPL10 to remove the 

NMD3P nuclear export adaptor before 80s formation can occur.45  During translation RPL10 plays 

a major role in ribosome rotation, which is required for successful protein translation.46  When 

translation has ended and the 80s ribosome dissociates, RPL10 is solvent exposed and possibly 

ready for exchange.  Any significant damage to RPL10 would require exchange to maintain 60S 

ribosome functionality and ability to translate mRNA.  Without RPL10 replacement, the ribosome 

would become useless and would have to be degraded. 
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Considering the crucial role RPL10 plays in ribosome function, the ribosome turnover data 

which suggest high rates of RPL10 replacement, the cytoplasmic incorporation of RPL10 into the 

ribosome, and RPL10 solvent exposure in the 60S ribosome, we propose RPL10 can be exchanged 

from the free 60S subunit in vivo. This exchange improves cellular efficiency by repairing the very 

costly 60S ribosome without total destruction.  Further experiments targeting RPL10 and checking 

passive exchange rates will further solidify RPL10 exchange after ribosome assembly and RPL10 

exchange restoring 60S ribosome functionality. 

Chapter 5: Future Directions and Conclusions 

5.1 Perform Calorie Restriction using Standardized NIH Diet 

Comparing ribosome turnover from mice calorie restricted according to National Institutes 

of Health (NIH) gold standards will determine if subtle changes in diet change CR homeostasis. 

Using the same experimental tests, we will compare ribosomal homeostasis in the current study to 

calorie restricted mice fed the NIH-31 diet.  The NIH-31 diet is the gold standard diet for calorie 

restriction studies.  This comparison will serve three major purposes: 1. The comparison will 

confirm this study was performed correctly.  2.  Ribosomal turnover changes can be more directly 

compared to longevity phenotypes.  3.  Small changes in diet will be shown to have significant 

consequences on ribosome and cellular homeostasis. 

5.2 Determine Eukaryotic Ribosomal protein Kd In Vitro 

Measuring ribosomal component exchange in vitro will allow basic Kd to be estimated for 

ribosomal proteins.  In vitro ribosomal protein Kd’s for the assembled complex can be determined 

using tandem affinity purification (TAP)-tagged ribosomes, heavy isotope labeling, and mass 

spectrometry.  Briefly, TAP-tagged ribosome will be purified from lysate using TAP affinity beads 
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and extracted.  Ribosome bound beads will be placed in heavy labeled yeast lysate and allowed to 

incubate.  Portions of beads will be extracted throughout the experiment and prepared for mass 

spectrometry.  Throughout the time course, passively transported heavy isotope labeled ribosomal 

proteins will be exchanged into label free bead bound ribosomes.  Rates of passive ribosomal 

protein exchange into assembled ribosomes will be measured using mass spectrometry.  A similar 

experiment by Polk et al. was performed on damaged prokaryotic ribosomes in vitro.20  This study 

showed damaged ribosomes can exchange components with undamaged ribosomes and regain 

function.  Measuring in vitro eukaryotic ribosomal protein exchange will add to current knowledge 

in at least two important ways:  1. In vitro Kd values can be used in combination with in vivo 

turnover values to model ribosomal component exchange and the two pool kinetic model.  2. 

Comparing Kd values with protein turnover rates will aide in identifying potential active ribosomal 

component exchange in vivo.  Simply, if the protein turnover rate is high, but Kd is low the given 

ribosomal protein may require active exchange. 

5.3 Ribosomal Protein Surface Binding Analysis 
 

Use solved ribosome structures to estimate ribosomal protein binding energy based on 

intra-ribosomal interactions.  The energy associated with these protein-protein interactions will 

allow calculation of Keq, which is equivalent to Kd at equilibrium.  Theoretically, making the Keq 

measurement, the Kd measurement, and the turnover rate measurement will provide 

complimentary data proving individual components of the ribosome can be exchanged in vivo (see 

Figure 11). 
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5.4 Conclusions 
 

 Using kinetic turnover analysis of ribosomal proteins and rRNA, we have shown 

ribosomal proteins are replaced at different rates in vivo.  Differences between assembled and 

total pool protein turnover suggest individual ribosomal protein components can be replaced 

without ribosome destruction.  It is likely that some ribosomal proteins, including RPL10, are 

made and destroyed without ever being assembled into a ribosome.  This is not surprising 

considering ribosomal proteins are known to have extra-ribosomal functions and free protein 

subunits are generally destroyed more rapidly than assembled complexes. Based on assembled 

pool, total pool, and ribophagy turnover rates, we found that RPL10 likely exchanges throughout 

ribosome lifespan.  Modeling RPL10 exchange we postulate a model in which ribosomal 

proteins exchange between an assembled pool and free pool.  This model likely applies to many 

ribosomal proteins.  Comparing DR and AL, RPL10 turnover rates shows RPL10 likely 

exchanges after incorporation into 60S ribosomes.  These turnover data are consistent with 

known RPL10 functions and assembly mechanism and suggests that RPL10 is may be replaced 

to restore ribosome function. 
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Supplemental Figures 

Supplemental Figure 1:  qPCR primer melt curves 

qPCR product melt curves from 16s mitochondrial rRNA, TATA Box binding protein rRNA, and 18s rRNA have a 
single signal as shown by slope derivative versus temperature.   

Supplemental Figure 2: Ad libitum rRNA turnover rate is not affected by changes in 16S mitochondrial rRNA 
concentration. 

Mouse liver from time point 4 days was homogenized with and without Triton X-100 to determine how increased 
background RNA affects rRNA turnover rates after sucrose cushion ultracentrifuation.  Triton X-100 should 
increase lysis efficiency by permeabilizing organelle membranes.  qPCR was performed 18S rRNA and 16S 
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mitochondrial rRNA to show Triton X-100 extraction was effective.  Turnover rates were calculated based on 
deuterium incorporation into guanosine monophosphate.  Data show a large fold changes between 16S and 18s 
rRNA concentration to not significantly change rRNA turnover rates. 

 
Supplemental Figure 3:  E. coli ribosomal protein turnover rates do not correlate with mouse liver ribosomal protein 
turnover rates. 

Protein turnover rates were normalized against the fastest turnover ribosomal protein measured within the organism.  
Simple regression analysis shows no correlation between E. coli and Ad libitum fed mouse liver turnover. 
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