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ABSTRACT 
 

Role for Reactive Oxygen Species in Methamphetamine Modulation of Dopamine  
Release in the Striatum 

 
David Matthew Hedges 

Department of Chemistry and Biochemistry, BYU 
Doctor of Philosophy 

 
Methamphetamine (METH) is a highly addictive substance that is highly prevalent in 

today’s society, with over 1 in 20 adults over 26 having taken it at least once. While it is known 
that METH, a common psychostimulant, acts on both the mesolimbic dopamine (DA) and 
nigrostriatal DA systems by affecting proteins involved in DA reuptake and vesicular packaging, 
the specific mechanism of what is known as METH neurotoxicity remains obscure, but has been 
shown to involve oxidative stress. Studies have shown that reactive oxygen species act on the 
same proteins that METH affects. Oxidative species have also been known to catalyze the 
formation of melanins in dopaminergic cells. We explore this link more fully here. In an in vitro 
system, oxidative species (including Fe3+, an inorganic catalyst for oxidative stress), enhance the 
rate of melanization of DA. Methamphetamine increased oxidative stress in an in vivo model. 
Additionally, METH enhanced phasic (stimulated) DA release and caused an electrically-
independent efflux of DA. Lidocaine abolished phasic DA release, but did not affect METH-
induced DA efflux, indicating action-potential dependent and independent mechanisms behind 
METH’s effects. The sigma-1 receptor antagonist BD 1063 significantly attenuated METH’s 
effect on DA release. Depletion of intracellular calcium (Ca2+) reserves also attenuated METH-
enhancement of DA release. We investigated the role of oxidative species in METH-induced DA 
efflux. Reduced glutathione (the substrate for glutathione peroxidase) and 4-hydroxy-TEMPOL 
(a superoxide dismutase mimetic) blocked METH’s effect on DA release, suggesting that a 
reactive oxygen species (ROS), most likely superoxide, is necessary for METH-induced DA 
efflux. Finally, oxidative stress as well as acute METH impairs the vesicular monoamine 
transporter 2 (VMAT2) by S-glutathionylation modification of Cys-488, highlighting VMAT2 as 
a likely regulator of METH’s effects on electrically independent DA release. These findings help 
outline a model in which METH induces DA release in the NAc through a signaling cascade 
involving the sigma receptor and ROS signaling molecules. 

 
 
 
 
 
 
 
 
 

 
 

Keywords: dopamine release, methamphetamine, reactive oxygen species, neuromelanin, 
nucleus accumbens, voltammetry
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1 INTRODUCTION 

This report is divided along two lines of investigation, with both parts looking at the effects 

of reactive oxygen species (ROS). The first part looks at the chemical conversion of dopamine 

(DA) to melanin. Neuromelanin is unique to DA neurons of the substantia nigra, and it appears 

to form from DA molecules in response to oxidative stress. The second part investigates the 

mechanism of action underlying methamphetamine (METH) enhancement of DA transmission 

which is thought to lead to the addictive nature of METH. Methamphetamine is known to 

dramatically increase ROS levels in tissue and here we show that this formation of ROS is 

directly related to altered DA transmission. Overall, both aspects of this study look at the effects 

of ROS on DA and the DA systems. 

 The Mesolimbic Dopamine System 

The mesolimbic DA system in the mammalian brain projects from the ventral tegmental 

area (VTA) to structures associated with the limbic system, especially the nucleus accumbens 

(NAc).  This system has been implicated in the rewarding effects of drugs of abuse [4-7], [8, 9].  

The VTA is a relatively amorphous midbrain structure that contains at least three neuron types: 

primary type or dopamine (DA) neurons that project to the nucleus accumbens, secondary type 

or GABA neurons that may participate in local circuitry (acting to inhibit DA neurons) or project 

to other brain regions, and a small population of glutamatergic (GLUergic) neurons [10].  
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Dopaminergic neurons represent approximately 65%, GABAergic neuron about 30%, and 

GLUergic neurons represent about 5% of the neurons in the VTA [11, 12].   

Functionally, the NAc can be divided into two structures: the core, and the shell. Current 

thinking is that the NAc shell is more important than the core for drug reward [13]. Rats are 

more likely to self-administer psychostimulant agonists into the shell than into the core [14-16]. 

Additionally, conditioned place preference associated with psychostimulant administration can 

be ameliorated by lesions in the shell, as opposed to the core [17-19]. The core appears to be 

more involved in conditioned responses [20-22], impulsivity [23], and responding to 

motivational stimuli [24-26]. Despite the functional differences, proper function of both the core 

and shell are necessary to mediate learning and reinforcement of Pavlovian cues [25]. 

Many drugs of abuse act in both the VTA and the NAc.  However, most rats and mice 

will self-administer cocaine [27, 28], ethanol [29, 30], nicotine [31-33], cannabinoids [34], and 

opiates [35-38] into the VTA, suggesting that DA neurons in the VTA projecting to the shell of 

the NAc, and the GABA neurons that may inhibit DA neurons locally in the VTA, play an 

important role in mediating addiction to various drugs of abuse. 

Dopamine release in target areas of the mesolimbic system has been implicated in the 

rewarding properties of drugs of abuse [4-7].  The emerging view is that the dysregulated 

homeostasis that accompanies the development of drug addiction may result from experience-

dependent neuroadaptations that hijack normal synaptic transmission in the mesolimbic DA 

system [39-42], leading to abnormally high DA in this system [43, 44], and abnormally low DA 

release during periods of abstinence [45], ultimately driving drug-seeking behavior [46]. For 

more complete review, see Steffensen et al, 2016 [3] (Fig. 1). 
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 The Nigrostriatal Dopamine System 

This system originates in the Substantia Nigra (in the tegmentum posterior to the VTA) 

and terminates in the dorsal striatum. Principally, this system is involved with initiating 

movement, but evidence also shows that DA release in the dorsal striatum is associated with 

habit formation [47]. It has been postulated that a shift from initial drug reinforcement to habit 

formation is demonstrated by a shift in neural circuits, possibly by a shift from NAc-related 

reward to dorsal striatum-mediated habit formation [48, 49].  

 

Figure 1. Model of dopamine release during and after repeated drug use. 
During the first session of drug taking, DA levels in the brain are markedly increased and 
fall after drug binging. Dopamine levels fall after the drug session and return to pre-drug-
taking levels, or baseline. The second session of drug taking is characterized by increased 
levels of DA, as in the first session. However, the peak increase in DA release is slightly 
lower, the return to baseline is slightly faster, and DA levels drop below the baseline, likely 
the result of homeostatic compensatory mechanisms. Dopamine levels return slowly to 
baseline. With each subsequent session of drug taking, the peak DA level is progressively 
reduced, while the kinetics of recovery are faster and the lowering below baseline is 
enhanced. Figure adapted from Steffensen et al, 2016 [3]. 
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 Part 1: Dopamine Melanization 

1.3.1 Melanin and Neuromelanin 

Melanin is a broad term for a group of natural pigments.  Melanogenesis (the formation 

of melanin in living tissue) results from the oxidation of amino acids or catecholamines followed 

by polymerization.  The conversion of catecholamines to melanin is a ubiquitous process in 

nature.  Catecholamines have been identified in 44 plant families [50, 51] and some undergo 

melanogenesis when the flesh of the fruit is exposed to oxygen, yielding the browning that is 

characteristic of rotting fruits [52].  Melanization can occur via enzymatic or catalytic reactions.  

In fruit, the enzymes polyphenol oxidase or catechol oxidase [53] convert catecholamines into 

iron-containing melanin via oxidation of catecholamines to quinones and then to melanin.  There 

are three basic types of melanin found in humans: eumelanin, pheomelanin, and neuromelanin 

(NM). 

The most common type of melanin, eumelanin, gives the characteristic black and brown 

colors of hair and skin.  Melanin is a very effective absorber of ultraviolet (UV) radiation and is 

thought to protect skin cells (particularly their DNA) from UVB radiation damage, reducing the 

risk of cancer.  Melanin in the skin is produced enzymatically by melanocytes converting the 

amino acid tyrosine to melanin via tyrosinase.  However, melanocytes are also found in the eye 

(in both the iris pigment epithelium and in the retinal pigment epithelium), the inner ear [54, 55], 

and in the olfactory mucosa [56]. Disorders of melanogenesis (including albinism) result in 

lower levels of melanin in the skin (due to lack of functional tyrosinase), eye, ear and nose 

epithelium, but not in the brain. Lack of melanogenesis results in disturbances in visual, auditory 

and olfactory sensation and perception. In addition, albinism results in abnormal decussation of 

the optic nerve, nystagmus, and astigmatism [57]. Melanocytes may even play a role in some 
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immune responses [58].  Another melanin compound, pheomelanin, contains cysteine and is 

largely responsible for red and blonde hair. In the skin, melanogenesis results from exposure to 

UV radiation, causing the skin to visibly brown.  Besides melanin’s photoprotective properties, it 

is known to act either as a pro-oxidant or an antioxidant depending upon the degree of 

polymerization [59].  In the brain, melanin is found in melanocytes located in the meninges, 

along cerebral capillaries [60], and in the pigment epithelium in the retina. 

Neuromelanin (NM) is a dark polymer pigment produced in specific populations of 

catecholaminergic neurons in the brain, including noradrenergic neurons in the locus coeruleus 

and dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc) in the 

midbrain of humans and some non-human primates [61]. Parkinson’s disease (PD), a relatively 

common neurodegenerative disease, is characterized by motor deficits such as muscle rigidity, 

muscle tremors, slow planned movements, and postural instability [62].  The primary cause of 

these motor deficits is due to the loss of DA neurons in the nigrostriatal pathway, with DA 

somata located in the SNc and terminals in the dorsal striatum [63].  Since it has been observed 

that DA neurons containing less NM are more likely to die in models of PD [64, 65] and that NM 

can bind to and render iron ions redox inactive [66], it has been proposed that NM has a 

neuroprotective role [67], possibly acting as an antioxidant. 

1.3.2 Dopamine and Oxidative Stress 

Based on the susceptibility of DA neurons to oxidative stress, possessing an extra 

mechanism for dealing with ROS would be particularly important for DA neurons.  First, DA 

metabolism adds to generalized oxidative stress, as it generates hydroxyl radicals and 3,4- 

dihydroxyphenylacetaldehyde (DOPAL) when degraded by monoamine oxidase A [68, 69].  

Additionally, the SNc contains higher levels of iron as compared to other brain areas [70], 
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around 300 µg/g [71].  These iron deposits are found in in the midbrain as well as in DA cell 

culture [72], indicating that iron is localized in DA somata and not just in neuroglia.  Iron is a 

significant source of oxidative stress, particularly when combined with H2O2 produced from DA 

metabolism, creating hydroxyl radicals via the Fenton reaction [73].  Therefore, the 

neuroprotective effect of NM is likely due to an antioxidant feature of NM that is able to bind 

and inactivate redox-active iron ions [66], preventing hydroxyl radical production [74].  

Neuromelanin has been shown to be a powerful chelator of neurotoxic metals and has two 

distinct chelation sites for Fe3+, a high affinity and low affinity site [75].  In fact, NM appears to 

contain the largest reservoir of iron in catecholaminergic cells [76, 77]. 

 Part 2: Methamphetamine Enhancement of Dopamine Transmission 

1.4.1 The Cycle of Addiction and Treatment Strategies 

A major goal of research on addiction is to characterize the critical neural substrates that 

are most sensitive to drugs of abuse, adapt in association with chronic consumption, and drive 

subsequent drug-seeking behavior.  A significant need exists for understanding how drugs of 

abuse affect DA transmission in the mesolimbic system.  The rationale for the second part of this 

study was predicated on the belief that advancement in the understanding of the brain 

mechanisms underlying the recreational use and abuse potential of methamphetamine will pave 

the way for more effective treatment strategies that could reverse drug dependency and save lives 

and resources throughout the world.   

Addicts continue their cycle of abuse as a result of low dopamine (DA) levels in pleasure 

areas of the brain.  These low levels of DA result in feelings of anxiety and dysphoria, impelling 

subsequent drug seeking and taking [46]. Systemic administration of psychostimulants 
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temporarily enhances DA levels.  Current dogma states that the short-lived enhancement of DA 

release in the NAc and other pleasure system structures is what underlies the euphoric aspect of 

psychoactive drugs and natural rewarding behaviors (e.g., eating, drinking, and sex).  However, 

drugs of abuse easily overwhelm this system and tolerance/dependence result in subsequent drug 

taking, ultimately causing persistent dysfunctional DA homeostasis.   

Conventional therapies for addiction include self-help groups, drug therapy, and 

substitution therapy. The search for effective medications for substance abuse and addiction has 

been difficult as contemporary medications produce akinesia, deficits in cognitive performance, 

and disrupt natural pleasure sensation [46]. These side-effects result in an understandable lack of 

patient compliance and poor prognoses. 

1.4.2 The Economic and Societal Costs of Methamphetamine Abuse 

Widespread drug abuse, both illicit and licit, takes an enormous toll on society as well as 

on individual human suffering. In 2005, it was reported that METH costs the nation about $23.4 

billion [78]. The consequences of drug abuse include: lost job productivity, squandered earnings, 

rising healthcare costs, incarcerations, investigations, vehicular accidents, domestic and non-

domestic violence, premature death, and the breakdown of the family unit (“National Survey on 

Drug Use and Health”). The economic and societal implications arising as direct or indirect 

result of drug abuse consumption are staggering. In 2012, the National Survey on Drug Use and 

Health reported that over 12 million people have tried methamphetamine at least once, with 1.2 

million users in the year preceding the survey [78]. Long-term problems of METH abuse include 

anxiety, confusion, insomnia, inexplicable violent behavior, mood disorders, paranoia, 

hallucinations, delusions, and decreased motor skills [79]. All of these side effects can negatively 

impact an individual’s ability to maintain relationships and manage productive employment. 
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1.4.3 Effects of Methamphetamine on VMAT2, DAT, and the Sigma Receptor 

While the physiologic effects of amphetamines have been experimented with for 

millennia, the specific mechanism of action is only just being understood. All accounts agree that 

amphetamines (including methamphetamine and MDMA) act directly on the dopamine 

terminals. Amphetamine has a myriad of effects that may influence DA release. As a substrate 

for the DA  transporter (DAT) [80, 81] and vesicular monoamine transporter 2 (VMAT2) [80, 

82, 83], amphetamines, including METH, disrupt neurotransmitter reuptake and repackaging, 

resulting in increases in evoked DA at low concentrations. Through its interactions with VMAT 

and vesicles, METH is thought to increase cytoplasmic levels of DA, overwhelming the DAT, 

and causing reverse transport of DA outside of the cell, and eventual depletion of DA stores [84-

89]. 

A pre-dose of reserpine (an irreversible antagonist of VMAT, which packages 

monoamine neurotransmitters into vesicles), has been shown to decrease amphetamine-mediated 

release of DA by 75% [90]. In fact, later evidence suggested competition between reserpine and 

methamphetamine in binding to VMAT [91]. A single dose of methamphetamine has been 

shown to lower the rate of vesicular packaging of DA [92], further implicating VMAT as a target 

of methamphetamine. 

However, it has also been shown that amphetamine (similar to cocaine) is able to bind to 

dopamine active transporter (DAT)  [93]. Strangely, they found that self-administration was 

more effective with amphetamine than would be expected when comparing its binding affinity to 

DAT to that of cocaine [93]. 

One promising protein target for METH’s effects on ROS formation is the sigma-1 

receptor (σ1R). The σ1R is a ligand-gated chaperone protein which, upon activation, translocates 
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to various cellular compartments of the endoplasmic reticulum (ER) where it is thought to affect 

protein folding, function of ion-channels and G-protein coupled receptors (GPCRs), and the 

formation of mitochondrial sourced ROS [94-97]. Interestingly, antagonizing the σ1R prevents 

METH-induced ROS generation and DA release [98], suggesting that METH’s actions on the 

σ1R may be a possible underlying mechanism behind the formation of METH-generated ROS, 

and subsequent DA release in vivo. Moreover, while selective σ1R agonists are not sufficient for 

driving positive reinforcement, many σ1R agonists substitute for both METH and cocaine in 

self-administration paradigms [94, 99], further implicating this receptor in the reinforcing effects 

of METH. 

1.4.4 Methamphetamine Modulation of Dopamine Release: Microdialysis versus 

Voltammetry 

Classically, measuring DA in tissue has been dominated by a technique called 

microdialysis, which effectively removes and replaces small volumes of cerebral spinal fluid 

(which contains both DA and DA metabolites) and separates particles using HPLC combined 

with electrochemical detection. Recently, researchers are turning to voltammetry to measure in-

tissue DA (for a full description of voltammetry procedures, see Methods section). Microdialysis 

and voltammetry are valuable, complementary tools for measuring DA release, but they both 

have their inherent advantages and disadvantages. Microdialysis is able to measure extracellular 

DA levels with specificity, accuracy, and precision. Dopamine concentrations in the NAc 

fluctuate on phasic (subsecond) and tonic (minutes) timescales [100]. However, microdialysis’s 

temporal resolution is on the order of 5-20 minutes and can be affected by changes in DA uptake 

[101], and its spatial resolution is limited to the size of relatively large probes. Voltammetry 

lacks the specificity of microdialysis, but is able to measure DA release with more precise spatial 
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resolution and at sub-second time resolution, and allows the added assessment of uptake kinetics. 

It also allows a complete analysis of phasic vs tonic release of DA, as it is possible to change the 

electrical evoked stimulus to different pulse trains, simulating phasic vs tonic release [102]. One 

clear advantage of voltammetry is the ability to study DA transients, which emulates 

microdialysis in some respects, as DA release is spontaneous and not evoked. Recent evidence 

suggests that methamphetamine alters both DA transients [103] and standard phasic DA firing 

and release [104]. In fact, it has been shown that methamphetamine slows phasic DA release, 

without affecting tonic release [105]. Taken together, these results provide compelling evidence 

for the need to use voltammetry to better understand the concrete pathways for 

methamphetamine neurotoxicity. 

1.4.5 Methamphetamine and Reactive Oxygen Species 

Reactive Oxygen Species (ROS) are implicated in many cellular processes. Of particular 

relevance are the effects of ROS on DA systems. First, decreased levels of ascorbate in the 

striatum are associated with Huntington’s disease [106], a disorder characterized by an 

overabundance of DA release. Cocaine has been shown to induce the generation of free radicals 

in DA neurons [107], possibly by inhibiting catalase [108]. Treating rats with an antioxidant was 

shown to decrease cocaine-induced motion sensitization, suggesting that oxidative stress is at 

least partially responsible for certain behavioral changes in cocaine-treated animals [109]. 

Furthermore, Parkinson’s disease (caused by a terminal degeneration of DA neurons in the 

substantia nigra) is associated with increases in iron homeostasis and the ensuing increase in 

oxidative stress [110].  

Methamphetamine is known to drive production of ROS [111-113]. Additionally, ROS 

have also been shown to decrease DAT function in the striatum [114]. Taken together, these 
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results suggest that it is possible that the neurotoxic effects of methamphetamine on the DA 

systems may occur indirectly, through ROS intermediates.  

Methamphetamine is known to increase metabolic function in DA neurons [115, 116], 

consequently raising brain temperature [116-118]. Cellular metabolism is a tightly controlled 

mechanism. When it becomes imbalanced (due to drug interactions or chronic health problems, 

etc.), the electron transport chain can start to produce ROS (free radicals and peroxides) [116]. 

Since mitochondria are densely concentrated near synapses [119, 120], alterations in metabolism 

that could spill oxidative stress into axon terminals could be particularly devastating, especially 

to DA neurons, which appear to be specifically targeted by methamphetamine, in that following 

chronic or high-dose methamphetamine exposure, damage to DA axons has been observed [121-

123]. It is possible that this selective targeting of DA axon terminals may be related to 

methamphetamine’s action on mitochondria and the ensuing increase in local oxidative stress. 

All things considered, significant evidence exists supporting the role for ROS in 

methamphetamine neurotoxicity. Oxidative stress is known to affect one of the two principle 

targets of methamphetamine and methamphetamine is able to induce ROS formation. Since 

studies have shown that blocking ROS can ameliorate the transient DA spikes following 

psychostimulant exposure, it is possible that initial exposure to ROS can actually increase DA 

release in terminal areas. Additionally, these findings indicate an interesting possibility for 

treatment of chronic psychostimulant users – a therapy focused on regulating oxidative stress in 

DA neural pathways. 

Overall, this study is divided into two main parts. The first deals with the chemical 

effects of oxidative stress (especially resulting from iron) on the DA molecule. Oxidative stress 

increases the rate of melanization of DA, and it appears that the presence of melanin in DA cells 
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indicates past oxidative stress. The second part of this study focused on the effects of oxidative 

stress (especially as induced by METH) on DA transmission in the striatum. Experiments 

involving quantification of DA release utilized fast-scan cyclic voltammetry, measuring DA in 

the striatum of C57Bl/6j mice. For greater detail, see the Methods section. 
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2 METHODS 

 Experimental Animals and Animal Care 

Animals for experimentation were obtained through Dr. Steffensen’s established rodent 

colonies. The utilization of mice for methamphetamine studies was to better approximate the 

therapeutic model on humans. 

C57BL6 mice (Steffensen Laboratory, Provo, UT) weighing 25-40 grams were housed 4-

5 to a cage with ad libitum access to food and water.  The room was temperature controlled (22-

25 oC) and maintained on a reverse 12 hr light/dark cycle (off 08:00 hrs, on 20:00 hrs).  All care 

and procedures are in accordance with the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals and approved by the BYU Institutional Animal Care and Use 

Committee.  

 Reagents and General Procedures 

3-Hydroxytyramine (dopamine; DA) was purchased from Sigma Aldrich.  Due to its 

reactive nature, DA solutions were prepared immediately before each experiment. The solutions 

that reactions were run in were: transferrin-treated double distilled H2O (which was 

subsequently filtered to remove the transferrin, an iron binding protein, and any residual 

iron contamination – see below), intracellular fluid (ICF; consisting of: 125.0 mM KCl, 

10.0 mM Hepes, 2.0 mM MgCl2, and 0.5 mM CaCl2), and extracellular fluid (ECF; 
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consisting of: 124.0 mM NaCl, 2.0 mM KCl, 1.25 mM NaH2PO4, 24.0 mM NaHCO3, 12.0 

mM Glucose, 1.2 mM MgSO4, and 2.0 mM CaCl2).  Both ICF and ECF were bubbled with 

95% O2 / 5% CO2 to help maintain pH 7.3.  In some experiments, Mg2+ and Ca2+ were either 

not added or added at different concentrations, as discussed in the Results section.  The 

concentration of DA was 30 µM in our experiments, except in specific experiments involving 

DA concentration-response studies.  Although ECF and ICF were used as buffers to mirror both 

extracellular and intracellular conditions, the focus of this paper is on monitoring the chemical 

reaction of DA being converted to melanin within physiologic parameters, thus the role of metal 

ions in DA melanization was evaluated at concentrations spanning their known cellular ranges. 

All other reagents were purchased from the suppliers shown in parentheses and were 

used at the concentrations indicated in the Results section: Sodium ascorbate (Spectrum 

Chemicals & Laboratory Products); Glutathione (Sigma- Aldrich); Hydrogen peroxide (Fisher 

Scientific); Desferrioxamine (Sigma-Aldrich); Transferrin (Lee Biosolutions). 

 Transferrin Treatment 

To ensure that there was no iron contamination in our analysis of Ca2+ and Fe3+, we 

treated molecular biology grade water (with 10 µM CO3
2-, to facilitate iron loading onto 

transferrin) with 10 µM transferrin (transferrin binds Fe3+ at 1023 M-1 and has a molecular weight 

of 80 kDa). After incubating for 15 minutes, the solutions were loaded into Amicon Ultra-4 

Centrifugal Filter Units with Ultracel-10 membrane, with a molecular cut-off at 10 kDa (EMD 

Millipore) and spun in a centrifuge at 4000 rpm for 15 minutes.  The transferrin was retained in 

the upper chamber of the filter and the filtrate (purified water) was recovered from the flow-

through of the filter and used for experiments. 
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 UV-Vis Spectrophotometry (the 480 nm Assay) 

Samples were placed into standard 10 mm light path quartz cuvettes (US Solid, Oakland, 

CA) and the full spectrum was scanned (200 nm – 900 nm) in a Thermo Scientific Biomate 3S 

UV-Visible Spectrophotometer (Waltham, MA).  For experiments that needed to be guaranteed 

iron-free, two-sided plastic disposable cuvettes (VWR) were used in place of quartz. An initial 

scan of the sample was taken immediately after sample preparation and collections continued 

every 10 minutes for two hours (13 collections total).  Our experiments, and those of others [1, 

2], have demonstrated that the process of melanization of catecholamines can be closely 

monitored in its early stages by the formation of an absorbance peak at 480 nm.  Over time, 

(and as melanin becomes less soluble), this peak becomes obscured as the spectrum approaches 

that of mature melanin. We have, therefore, developed a spectrophotometric assay that 

measures the early formation of melanin by quantifying the rate of polymerization based on the 

absorbance over time at 480 nm. 

 Slice Preparation 

Experimental protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) of Brigham Young University which met or exceeded NIH guidelines.  

Adult male C57BL6 mice (post-natal day 30-120) from our own breeding colony were used in 

this study.  Once weaned at PND 21, all mice were housed in groups of four/cage and placed on 

a reverse light/dark cycle with lights ON from 8 PM to 8 AM.  Horizontal brain slices were 

obtained as previously described (31).  Mice were anesthetized with ketamine (60 mg/kg, IP), 

decapitated, and the brains were quickly extracted and sectioned into 0 . 4  o r  1 mm thick 

coronal slices in ice-cold cutting solution, bubbled with 95% O2 / 5% CO2.  The cutting 
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solution consisted of 220.0 mM Sucrose, 3.0 mM KCl, 1.25 mM NaH2CO3, 12.0 mM MgSO4, 

10.0 mM Glucose, and 0.2 mM CaCl2.  Slices containing the striatum were immediately 

placed into an incubation chamber containing normal ECF bubbled with 95% O2 / 5% CO2.  

Slices were incubated for at least 30 minutes at 36°C and then transferred to a recording 

chamber with continuous normal ECF flow (2.0 ml/min), and the temperature was maintained at 

36°C throughout the experiment via a Warner Instruments TC-344B Dual Automatic 

Temperature Controller (Hamden, CT). 

 Voltammetry 

For fast scan cyclic voltammetry (FSCV) recordings, a 7.0 µm diameter carbon fiber was 

inserted into borosilicate glass capillary tubing (1.2 mm outer diameter; A-M Systems, Sequim, 

WA) under negative pressure and subsequently pulled on a vertical pipette puller (Narishige, 

East Meadow, NY).  The carbon fiber electrode (CFE) was then cut under microscopic control 

with 150 µm of bare fiber protruding from the end of the glass micropipette.  The CFE was 

back-filled with 3 M KCl.  The CFE’s were regularly calibrated with a known concentration of 

DA.  With the CFE positioned in the solution of ECF, we superfused a known concentration of 

DA at a high flow rate (5 mL/min) past the electrode and observed the maximum nA signal 

produced by DA.  These DA calibrations were averaged to convert a nA signal of DA oxidation 

to µM concentration of DA. 

To observe melanization utilizing FSCV, 3.0 mL of ECF was placed in a large flow cell 

bath chamber (Warner Instruments, Hamden, CT) that was modified to prevent leakage (i.e., 

static flow system).  Both a reference electrode and the CFE were positioned well below the 

surface of the fluid, but off the bottom of the chamber.  The electrode potential was linearly 
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scanned as a triangular waveform from -0.4 to 1.2 V vs Ag/AgCl using a scan rate of 400 V/s.  

Cyclic voltammograms were recorded at the CFE every 2 seconds (i.e. 0.5 Hz) by means of a 

ChemClamp voltage clamp amplifier (Dagan Corporation, Minneapolis, MN).  Voltammetric 

recordings were performed and analyzed using LabVIEW (National Instruments, Austin, TX)-

based customized software (Demon Voltammetry [124]).  The two-hour (or three-hour) 

recording was initiated without DA being present in solution (to allow for an appropriate 

baseline recording).  Dopamine was added to the bath chamber from a stock solution (10 mM) 

after five minutes of baseline recording at a volume to produce 30 µM in 3.0 mL of ECF. 

 Stimulation and Recording 

For ex vivo voltammetry recordings, electrodes were positioned ~75 µm below the 

surface of the slice in the NAc core.  Dopamine release was evoked every 2 min by a 1 msec, one 

to ten-pulse stimulation (biphasic, 350 µA) from a micropipette tip broken to 5-10 µm, filled 

with ACSF and oriented 100-200 µm from the CFE.  The CFE potential was linearly scanned as 

a triangular waveform from -0.4 to 1.2 V and back to -0.4 V vs Ag/AgCl using a scan rate of 400 

V/s.  Cyclic voltammograms were recorded at the CFE every 100 msec (i.e., 10 Hz) by means of 

a ChemClamp voltage clamp amplifier (Dagan Corporation, Minneapolis, MN).  Voltammetric 

recordings were performed and analyzed using LabVIEW (National Instruments, Austin, TX)-

based customized software (Demon Voltammetry, [124]). For calibrations, at end of 

experiments, CFEs were placed in bath flow with no tissue sample present. 3 µM DA was 

perfused in the bath solution and the resulting max current from the CFE was recorded. 

Dopamine currents were converted to concentration based on the average calibration ratios. 

Stimulations were performed periodically every 2 min. For recording the DA efflux 

(action potential independent release), once the stimulated DA response was stable for five 
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successive collections, and did not vary by more than 5%, the electrical stimulation was turned 

off. Without moving the electrodes, cyclic voltammograms were recorded at 0.5 Hz for 3 hrs. 

For TEMPOL and GSH experiments, the antioxidants were added 30 min prior to METH 

application. Unless otherwise specified, all other recordings were performed with the 

pharmacological agent at 30 min and METH at 60 min. Since voltammetry is a background 

subtracted technique, all data reflect changes in DA release, and not absolute extracellular DA 

concentrations. 

 Mass Spectrometry 

S-glutathionylation of purified human VMAT2 (Origene, Rockville, MD) was induced by 

incubation with 10 µM tetraethylthiuram disulfide (disulfiram, Sigma) in the presence of reduced 

L-glutathione (Sigma Aldrich) for 30 min at 37°C.  The sample was loaded onto 4-12% Bis-Tris 

precast gels and separated by Western Blot electrophoresis using MOPS buffer (Bio-rad, 

Hercules, CA) and a CriterionTM Cell system (CriterionTM, Bio-rad, Hercules, CA).  Following 

overnight staining with Proto Blue Safe (National Diagnostics), the protein band was destained, 

and digested for 3 hrs with Lys-C (Wako, Richmond, VA) and overnight with trypsin (Sigma 

Aldrich) in the presence of 1% Rapigest.  The peptides were extracted and acidified to cleave the 

Rapigest detergent.  Peptides were loaded on a trap column, eluted, and separated on a 75 µm x 

15 cm fused-silica column packed in house with C18 reversed-phase resin (YMC-ODS-AQ; 5-

μm particles; 120-Å pore from Waters, Milford, MA) using an acetonitrile gradient of 5-50% in 

120 min containing 0.2% formic acid on a LC Packings U3000 nano LC system at flow rate of 

200 nL/min.  Peptides were mass analyzed by a Thermo Orbitrap Elite with collision induced 

dissociation (CID), higher energy collisional dissociation (HCD), and electron transfer 

dissociation (ETD) fragmentation capabilities. Mass spectra were acquired in data dependent 
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mode using an alternating CID/ETD top 10 method.  One FTMS survey MS scan in the mass 

range of m/z 400-1700 was followed by tandem mass spectra (MS/MS) of the ten most intense 

precursors fragmented by both CID and ETD.  All MS/MS fragments were detected in the ion 

trap. The automatic gain control target value in the Orbitrap was 106 for the survey MS scan at a 

resolution of 60,000 at m/z 400.  Fragmentation in the LTQ was performed by collision induced 

dissociation with a target value of 10000 ions followed by ETD with no additional supplemental 

activation.  The threshold count was 500 for both CID and ETD.  Dynamic exclusion was 

enabled with a repeat count of 2, repeat duration of 30 sec, exclusion list of 50, and exclusion 

duration of 120 sec. The predominant neutral loss of γ glutamic acid (-129 Da) by CID or HCD 

was used to trigger the acquisition of an ETD tandem mass spectrum. With CID, disulfide bonds 

remain intact and fragmentation on either side of the disulfide bond results in the conversion of 

the disulfide linked cysteine to dehydroalanine (-33.99 Da) or persulfide (+31.97 Da).  

Glutathione, which increases the mass of cysteine by 305.07 Da, also undergoes fragmentation 

resulting in the neutral loss of γ glutamic acid (-129 Da)2.  By electron transfer dissociation, the 

disulfide bond is preferentially fragmented resulting in the loss of glutathione (305) from the 

precursor and fragment ions and the generation of the glutathione oxonium ion at m/z 308 [125]. 

The automatic gain control target value in the Orbitrap was 106 for the survey MS scan at a 

resolution of 60,000 at m/z 400.  Fragmentation in the LTQ was performed by collision induced 

dissociation with a target value of 10000 ions. Charge state enabled ETD reaction time was 

utilized and supplemental activation was turned off.  An additional analysis was performed with 

alternating CID and ETD with supplemental activation energy enabled. The threshold count was 

500 for both CID and ETD.  Dynamic exclusion was enabled with a repeat count of 3, repeat 

duration of 30 sec, and exclusion duration of 100 sec. The CID, HCD, and ETD MS/MS spectra 
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were searched using MASCOT (Version 2.4.01) and SEQUEST HT search algorithms utilizing 

Proteome Discoverer 1.4 (Thermo Scientific, Waltham, MA). For both algorithms, the search 

parameters allowed for 2 missed cleavages, precursor mass tolerances of ± 10 ppm, fragment 

mass tolerances ± 0.8 Da, dynamic modifications on cysteines included S-glutathionylation (305 

Da). 

 Nuclear Magnetic Resonance Studies 

For NMR experiments, 30 μM DA was pipetted into standard Norrell NMR tubes 

(Landisville, NJ).  The samples were analyzed using a Varian NMR-System 500 MHz (Agilent 

Technologies, Santa Clara, CA).  Solutions were prepared in D2O (Cambridge Isotope 

Laboratories, Andover, MA) to minimize solvent noise. 

 VMAT2 Activity Assay 

Fresh accumbens tissue was homogenized in a sucrose Hepes buffer (320 mM sucrose, 

10 mM Hepes, pH 7.4 with protease and phosphatase inhibitors) and centrifuged. The 

supernatant was treated with disulfiram (10 µM) and GSH (10 mM) and incubated at 37°C for 30 

minutes. Samples were run through bio-spin size exclusion columns (BioRad, Hercules, CA) and 

1 mM fluorescent probe was added in the dark (FFN 206, Abcam, Cambridge, MA). 

Fluorescence counts were determined using a plate reader (λex = 350 nm, λem = 460nm). 

 VMAT2 co-Immunoprecipitation Assay and Immunoblot 

Animals were divided randomly into three groups that were then double-injected with 

saline/saline, saline/METH (10 g/kg), and BD 1063 (30 g/kg) / METH (10 g/kg), respectively. The 

injections were approximately 10 minutes apart. 30 minutes after the second injection, NAc tissue 
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was immediately harvested and chilled. The tissue samples were lysed in ice-cold TNTE buffer 

(containing the following in mM: 50 Tris pH 7.4, 150 NaCl, and 1 EDTA in addition to 0.5% 

Triton X-100) for 10 min with a rotation at 4°C. Tissue lysates were triterated 10 times using a 23 

gauge needle and cleared by centrifugation at 14800 G for 10 min. Anti-VMAT2 antibody (EMD 

Millipore, Billerica, MA) was coupled to magnetic dynabeads (ThermoFisher, Waltham, MA) and 

immunoprecipitated VMAT2 from tissue lysates according to the manufacturer’s instructions. 

Immunoprecipitated VMAT2 was run on a 10% SDS-PAGE and immunoblotted for anti-GSH 

(Virogen, Watertown, MA) and anti-VMAT2 antibodies. 

 Drug Administration in Slice Preparation 

All drugs were bath applied.  Proper delivery was achieved by moving the peristaltic 

pump intake tube from the container containing the control solution to a container containing a 

predetermined concentration of the appropriate drug in control solution.  Drug-free washout 

ACSF was administered by moving the peristaltic pump intake tube back to the container 

containing control ACSF. 

 Statistical Analyses 

The results were compiled from spectrophotometers and the rate of melanization was 

calculated from the slope of the absorbance versus time.  For FCSV experiments, peak DA 

oxidation currents measured via FSCV were isolated and compiled.  The means were then 

grand-averaged across trials.  Values were expressed as means±SEM for cumulated data.  

Between-subject group comparisons were analyzed via one-way ANOVAs.  The criterion of 

significance was set at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (#).  All 

statistics were calculated with IBM SPSS Statistics 23 (Armonk, New York).
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3 RESULTS 

 Metal Chelation by the Dopamine Catechol can enhance the rate of Dopamine 

Melanization 

3.1.1 Role of Initial Substrate in Rate of Melanin Formation  

Dopamine in solution melanizes over time and can be tracked by measuring the change in 

absorbance at 480 nm (Fig. 2A, B). To determine if the formation of melanin was dependent on 

the initial concentration of DA, we examined the rate of melanization at 0.3, 3.0, and 30 μM 

DA (Fig. 3 A).  These concentrations are significantly lower than vesicle concentrations [126], 

but are comparable to intracellular and synaptic concentrations.  The rate of melanin formation 

was directly proportional to the initial concentration of DA in solution, with higher 

concentrations of DA resulting in faster rates of melanin formation (Fig. 3A).  This relationship 

was linear (R2= 0.987).  Because of this linear relationship, we decided to use the 30 μM 

concentration as our control standard.  

We then compared the rate of melanization produced by DA to that of tyrosine, L-

DOPA, epinephrine, and norepinephrine at equimolar concentrations (30 µM).  Dopamine 

showed the fastest rate of melanization when compared with the related compounds (Fig. 3B).  

Comparing all five groups via one-way ANOVA demonstrated significance between DA vs all 
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four other conditions (F(4,19)=30.734, p<0.0001).  Tukey post-hoc analysis did not demonstrate 

any significance between any groups outside of DA (p<0.05).  

In order to verify that the 480 nm peak we were measuring with spectrophotometry 

was melanin or a melanin precursor (rather than some form of oxidized DA or 

dopaminochrome), we performed proton nuclear magnetic resonance (H-NMR) experiments of 

the DA solution in ECF buffer.  We ran a kinetics study using H-NMR with Fe3+ (10 µM) 

present to maximize melanization.  A comparison of the NMR peaks showed that the 

predominant species in solution at both time zero (Fig. 4A) and 2 hours (Fig. 4B) was DA 

(melanin is inherently insoluble and ultimately precipitates).  This indicated that the colorimetric 

 
Figure 2. Spectrophotometric characterization of melanin. 
(A) Waterfall plot of full spectrum (190 –900 nm) demonstrating the progressive 
melanization of DA in ECF. As shown by Graham, 1978 and Mosca et al, 1998, this 480 
nm peak represents DA melanization [1, 2]. (B) This graph summarizes the kinetics of 
the 480 nm peak (n=8). (C) Characteristic spectrum of mature melanin. 
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change we were tracking with the 480 nm assay was either melanin or an immediate precursor 

to melanin.  

3.1.2 An Analysis of Physiologically Relevant Concentrations of Metals Linked with 

Oxidative Stress and their Effects on Melanin Synthesis 

As NM has been shown to have at least two iron chelation sites and it has been proposed 

previously that NM may act as an iron chelation agent in DAergic neurons [76, 77], we tested 

iron (III) chloride at five concentrations (1.0, 10.0 nM and  0.1, 1.0, 10.0 μM) mixed with the 

 
Figure 3. Chemical characterization of dopamine melanization. 
(A) The rate of growth (Δ Abs/min.) of DA melanization (as given by the growth of an 
absorbance peak at 480 nm) is dependent on initial DA concentration. The representative 
rates are calculated from a two-hour collection interval. 3.0 µM DA is approximately the 
concentration of DA release in the striatum. 0.3 µM DA approximates intracellular 
(extravesicular) concentrations and 30 µM is smaller than the concentration of DA in 
vesicles. There is a linear relationship between the concentration and rate. (B) This graph 
demonstrates the rate of growth (Δ Abs/min.) of DA melanization to that produced by its 
amino acid precursors and metabolic derivatives (all at 30 µM concentration). While all 
species tested show a certain amount of melanization, the unique chemistry of DA allows 
it to polymerize at a significantly faster rate. The n values for each experiment are n=4 
(tyrosine), n=4 (L-Dopa), n=8 (dopamine), n=4 (norepinephrine), and n=4 (epinephrine). 
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reaction mixture (transferrin-treated ddH2O + 30 µM DA) (Fig. 5).  Iron significantly 

induced DA melanization in a concentration-dependent manner (F(5,20)=90.812, p<0.0001).  

Calcium is known to coordinate to the hydroxyl groups of catechols, like Fe3+. Thus, we 

tested six concentrations of Ca2+ (0.1, 1.0, 10.0, 100 µM and 1.0, 10.0 mM Ca2+ in the reaction 

mixture – transferrin treated ddH2O + 30 µM DA) to determine if Ca2+ can drive melanization. 

Our result show that Ca2+ did not significantly induce melanization (F(6,20)= 1.201, p= 0.346).  

 
Figure 4. H-NMR analysis of dopamine pre and post melanization. 
NMR traces of the beginning and end of a 2 hour experiment in which 10 µM iron was 
added to 30 µM DA (to catalyze melanization). (A) The initial H-NMR trace showing 
the distinctive peaks for DA. (B) The same sample as in A, but two hours later when 
the solution began to visibly darken and precipitate with the presence of melanin. The 
peaks are nearly identical in both collections, indicating that the major species in solution 
in both samples is DA. 
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 Reactive Oxygen Species Enhance the Rate of Dopamine Melanization and 

Antioxidant Species can Decrease this Rate 

3.2.1 An Analysis of the Effects of Radical Initiators and Quenchers on the Rate of 

Melanin Formation 

To confirm that oxidative agents can drive the conversion of DA to melanin, we added 

H2O2 (500 µM) into the reaction mixture.  This concentration of H2O2 increased the rate of 

melanization by 54.6% (Fig. 6A).  We used an ECF buffer for this experiment as well as in the 

following analysis of pro- and antioxidants because preliminary studies have shown that it is a 

reliable buffer system to use for baseline growth and also provides a better control for our final 

study with KCl-evoked DA release. A one- way ANOVA showed that this increase in rate due to 

H2O2 is significant (F(1,10)=27.422, p=0.0004). 

To provide a correlate for the experiment with H2O2, we also tested the effects of the 

antioxidants ascorbate (ASC) and glutathione (GSH) on DA melanization.  Ascorbate 

 
Figure 5. The effect of iron on melanin 
formation. 
Iron increased the rate of melanization in 
a concentration-dependent manner in iron-
free water. The curve is roughly 
sigmoidal.  The n values for each run are 
n=4 (1.0 nM), n=4 (10.0 nM), n=4 (100.0 
µM), n=4 (1.0 µM), and n=6 (10.0 µM). 
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suppressed the formation of melanin at 100 µM or higher (Fig. 6B).  All concentrations of ASC 

were shown to be significant when compared against the DA control via one-way ANOVA 

(F(3,16)=36.009, p<0.0001).  Individual concentrations showed that 10 µM, 100 µM, and 500 

µM ASC were each significant when compared against the non-antioxidant control 

(respectively, F(1,10)=34.297, p<0.001; F(1,10)=38.937, p<0.0001; F(1,10)=39.226, p<0.0001).  

 
Figure 6. Effect of pro-oxidants and antioxidants on melanin formation. 
(A) Hydrogen peroxide (500 µM) significantly increase DA melanization (30 
µM DA) rate (Δ Abs/min). (B) Concentration response demonstrating that 
increased Ascorbic Acid concentrations completely block DA melanization 
(30 µM DA) rate (Δ Abs/min.). The number of experiments for each 
condition is n=8 (control), n=4 (10 µM), n=4 (100 µM), and n=4 (500 µM). 
(C) Two low concentrations of GSH that entirely block DA melanization (30 
µM DA) rate (Δ Abs/min.). Note that these concentrations are three orders of 
magnitude lower than those of ASC, and much lower than GSH levels 
normally seen in cells. The number of experiments for each condition is n=8 
(control), n=4 (5 µM), and n=4 (10 µM). 
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Ascorbate had an approximate IC50 of 10 µM.  Although there is a trend of decreasing rates 

with increasing concentrations of ASC, these values are not actually significant from each other 

as demonstrated by a Tukey post-hoc analysis.  GSH had a similar but more efficient action, 

suppressing DA melanization at concentrations as low as 5 and 10 μM (Fig. 6C; respectively, 

F(1,10)=38.957, p<0.0001; F(1,10)=38.771, p<0.0001). 

Neuromelanin is found inside DA cells. Since the previous experiments were run in ECF 

buffer, we validated the highlights (10 µM Fe3+ and 5 µM GSH) by replicating them using an 

ICF buffer (Fig. 7). As seen in the figure, trends match those seen with the ECF buffer 

(F(2,9)=228.715, p<0.0001).  

To confirm the spectrophotometric recordings of the conversion of DA to melanin, we 

replicated our findings using fast-scan cyclic voltammetry (FSCV).  Our voltage ramp was 

sufficient to measure both the concentration of DA and the concentration of melanin 

simultaneously.  We ran two conditions to confirm our spectrophotometry findings.  First, we 

 
Figure 7. Melanization in intracellular fluid. 
Iron (Fe3+) increases the rate of melanization as 
compared to a control of just DA (30 µM) dissolved 
in ICF. Reduced glutathione (5 µM), was able to 
block melanization. This data matches the trends 
seen in ECF, with pro-oxidants enhancing the rate of 
melanization and anti-oxidants suppressing the rate 
of melanization. The number of experiments in each 
condition is n= 4 (control), n=4 (10 µM iron), and 
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added DA into 3 mL of ECF buffer  for  a  resu l t ing concent ra t ion of  30  µM and 

monitored the conversion of DA to melanin over 2 hrs (Fig. 8A). Second, we combined GSH 

(100 µM) with 30 µM DA in ECF buffer (Fig. 8B).  Under these conditions, our carbon fiber 

electrodes detected no melanin peak, leading us to conclude that GSH was able to block 

melanization (F(1,5)=10.427, p=0.023).  Additionally, we wanted to confirm that DA released 

from a biological source could melanize under the same conditions.  We measured DA release 

evoked in oxygenated striatal slices following addition of 100 mM KCl to evoke massive DA 

release from DA terminals.  Just as we saw with chemically manufactured DA in our other 

trials, we observed a DA peak arise early and decay as a melanin peak rose later in the collection 

(Fig. 8C). A direct comparison of the mean rates of melanization show that the trends seen from 

DA evoked from striatal release are comparable to the trends determined using 

spectrophotometry (Fig. 8D).  

 Exposure to Methamphetamine increases Dopamine Release through an Increase of 

Reactive Oxygen Species 

3.3.1 Determine the EC50 of Methamphetamine in Slice Preparation in Different Regions 

of Dopamine Release 

Using fast scan cyclic voltammetry (FSCV), we evaluated the effects of METH (0.1 – 

100 µM) in the brain slice on two mechanisms of DA release in the NAc core: phasic DA release 

and DA efflux. Phasic DA release is electrically-evoked with a pulse train of 20 Hz and 10 

pulses while DA efflux is independent of any artificial stimulation and occurs only after METH 

administration. Methamphetamine significantly increased the peak amplitude of the phasic DA 

signal with an EC50 of about 5 µM (Fig. 9 A-C; F4,30 = 4.27, p < 0.01). Methamphetamine also 
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was able to induce spontaneous (i.e. no artificial stimulation) DA efflux with a similar EC50 (Fig. 

9 D-F; F4,16 = 3.54, p < 0.05).  

3.3.2 Methamphetamine Drives Transporter-mediated Dopamine Efflux in the Nucleus 

Accumbens Independent of Action Potentials or Artificial Stimulation 

To better understand the nature of both mechanisms of DA release, we evaluated both in 

the presence of lidocaine (100 µM), a voltage-gated sodium channel blocker. Lidocaine 

 
Figure 8. Fast-scan cyclic voltammetry of dopamine melanization. 
(A) Insets show representative cyclic voltammograms at the points indicated on the graph during equilibration 
(Aa) of DA (30 µM) and following partial conversion of DA to melanin (Ab) in a closed system (3 mL of ECF).  
The characteristic oxidation peak at 0.5 V and reduction peak at -0.38 V are evidence of DA (Aa).  The DA redox 
peaks are still visible (0.5 V and -0.38 V) more than 2 hrs after equilibration (Ab), but significantly reduced, 
indicating that DA is still in solution, but the redox signal slowly decays as the signal from melanin grows (a 
broad peak extending from -0.02 V and a sharper peak at -0.4 V). (B) In the presence of GSH, melanin does not 
appear, and the DA signal (30 µM) does not decay. (C) Striatal tissue exposed to KCl releases DA. Over time, 
this DA signal decreases, corresponding with a growing melanin signal. (D) Quantitative representation of the 
representative plots showing the relative concentrations of DA and melanin. The number of experiments for each 
condition is n=4 (DA), n=4 (control), n=4 (GSH), and n=3 (KCl-evoked). 



31 
 

suppressed phasic DA release (Fig. 10, A,C-left; 100 µM lidocaine: F1,16 = 15.04, p < 0.001), 

while having no impact on DA efflux resulting from acute METH (Fig 10, B,C-right; 100 µM 

lidocaine: F1,10 = 0, ns). To determine if DA efflux is the same DAT-mediated DA efflux 

described by others, we analyzed METH-induced DA release in the presence of GBR 12909 

(300 nM), a selective DAT blocker.  As expected, and similar to METH, GBR 12909 decreased 

 
Figure 9. Action-potential dependent DA release (A, B, & C) DA efflux (D, E, & F). 
Ai demonstrates a cyclovoltammogram for phasic DA release and Aii shows an IvsT plot following local tissue stimulation 
and the resulting DA spike. Di and Dii show cyclovoltammograms of a typical DA efflux experiment for before and after 
METH administration. Representative examples of phasic DA (B) and DA efflux (E). Dose-response of METH for phasic 
DA (C) and DA efflux (F). The concentration response experiments showed that METH has the same EC50 (~5 µM) for 
both mechanisms of DA release. Values in parentheses indicate n values. 
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DA uptake rates (the ratio of τafter/τbefore for GBR 12909 is 2.76 while for METH it is 7.41). Also, 

GBR 12909 markedly reduced METH-induced DA efflux (Fig. 10, E,F-right; 300 nM GBR 

12909: F1,9 = 13.16, p < 0.01), but failed to significantly prevent METH-induced increases in 

phasic DA release (Fig. 10, D,F-left; 1 µM GBR 12909: F1,16 = 1.94, ns).  While two different 

concentrations of GBR 12909 were used, this does not change the interpretation. Higher 

concentrations would have more nonspecific targets, specifically serotonin and norepinephrine 

transporters. However, fluoxetine (a selective SERT blocker) and desipramine (a selective NET 

blocker) have no effect on DA clearance in the NAc [127, 128]. These experiments confirm that 

METH-induced DA efflux is DAT mediated (and most likely the same efflux described by 

others), and that decreases in DAT function mediate the METH-induced increases in phasic DA 

release [80, 129].  

3.3.3 Determine if Methamphetamine Increases Reactive Oxygen Species Generation and 

Where this Happens Anatomically 

To determine ROS production in the NAc following chronic METH self-administration, we 

carried out immunohistochemical experiments with an antibody against 8-hydroxyquanine (8-

OHG) antibody (Abcam, ab62623), a cellular marker of oxidative stress [130, 131].  

Methamphetamine self-administering rats showed a significant increase in numbers of 8-OHG 

positive cells about two-fold as compared with controls (Fig. 11, C; Student’s t-test, P < 0.05 vs. 

controls, n = 3-4). To further identify the types of cells producing ROS, we performed double 

immunofluorescence labeling using cell type markers: NeuN (a marker for neuron; green); 

GFAP (a marker for astrocytes; green); Iba-1 (a marker for microglia; green); and NG2 (a 

marker for oligodentrocytes; green). These results demonstrated that most 8-OHG positive cells 

(red signal) were co-localized with NeuN-positive neurons in the NAc (green nucleus with red 
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circle in Fig. 11F), but not astrocytes, microglia or oligodendrocyte (Fig. 11, I,L, and O). These 

data indicate that increased ROS production in the NAc of rats self-administering METH occurs 

 
Figure 10. Lidocaine and GBR 12909 block phasic dopamine release without having an effect on 
dopamine efflux. 
Phasic DA release was completely abolished by lidocaine (100 µM) (A, C-left). Cumulative phasic data is 
expressed as a percent change, but averaged raw values are: Control = 1.28 ± 0.52 µM, Lidocaine = 0.20 ± 0.05. 
Since we were unable to measure DA efflux without METH being present to drive it, we tested lidocaine (100 
µM) against METH (5 µM) (B,C-right). A quantitative analysis showed that while METH was unable to 
decrease METH-induced efflux, it significantly inhibited electrically-evoked DA release. This suggests that 
phasic DA release is dependent upon action potentials, while METH-induced DA efflux is independent, likely 
being driven by an intracellular process or event. GBR 12909 (1 µM), a DAT inhibitor, fails to attenuate METH-
enhancement of electrically-evoked DA release (D,F-left). Averaged raw phasic values are: control baseline = 
0.57 ± 0.15 µM; control METH = 1.52 ± 0.32 µM; experimental baseline = 0.84 ± 0.27 µM; GBR 12909+METH 
= 1.48 ± 0.32 µM. GBR 12909 (300 nM) blocked METH-induced DA efflux (E,F-right). ** p<0.01 and *** 
p<0.001 as compared to control values. Values in parentheses indicate n values. 
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mostly in neurons.  

3.3.4 The Sigma Receptor is involved in Methamphetamine’s Mechanism of Enhancing 

Dopamine Release 

Methamphetamine is a potent agonist of σ1Rs [132, 133]. Also, in cultured neurons, 

blocking the σ1R prevents METH-induced formation of ROS and DA release [98]. To extent these 

studies in cultured cells, the σ1R selective antagonist BD 1063 was pre-applied to prevent METH-

σ1R interactions. BD 1063 prevented METH enhancement of both phasic DA release (Fig. 12, 

A,C-left; 1 µM BD 1063: F1,16 = 4.96, p < 0.05) and METH-driven DA efflux (Fig. 12, B,C-right; 

100 nM BD 1063: F1,9 = 12.97, p < 0.01). σ1R activation is thought to increase ROS production 

by increasing intracellular Ca2+ signaling [134]. Therefore, Ca2+ stores were depleted using the ER 

Ca2+ ATPase inhibitor cyclopiazonic acid (CPA, 10 µM), and METH-induced DA release was 

measured. CPA significantly attenuated METH’s effect on both DA efflux (Fig. 12, E,F-right; 10 

µM CPA: F1,9 = 11.30, p < 0.01) and phasic release (Fig. 12, D,F-left; 10 µM CPA: F1,16 = 5.062, 

p < 0.05).  

3.3.5 Determine if Antioxidants are able to block Methamphetamine’s Enhancement of 

Dopamine Release 

Methamphetamine increases oxidative stress [135-137]. While it is known that oxidative 

stress is a result of excess DA, we sought to determine if oxidative stress affects DA release. One 

report has shown that overexpression of superoxide dismutase blocks METH-induced DA 

depletion in cultured neurons [135], indicating that there may be ROS formation before METH 

changes DA concentrations. In slice voltammetry experiments, we tested whether the superoxide 

scavenger TEMPOL could block the acute effects of METH (5 µM) on DA release. TEMPOL 
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Figure 11. Increased oxidative stress in neurons of the nucleus accumbens in rats self-administering 
methamphetamine (METH). 
A, B: Immunohistochemical staining of 8-hydroxyguanine (8-OHG; red), an oxidative stress marker, in the NAc 
of normal (Normal; A) or METH self-administering (METH SA; B) rats. C: A significant increase in 
fluorescence intensity of 8-OHG (8-OHG FI on y-axis) was found in the NAc of METH SA rats (C), compared 
to that of controls (A; * P < 0.05). D-O: These images show double-immunostaining in the NAc for 8-OHG 
(red) with NeuN (neurons; green) and merge (F), GFAP (astrocytes; green) with merge I, Iba-1 (microglia; green) 
with merge L, and NG2 (oligodendrocytes; green) with merge O. Most 8-OHG positive cells were double-
labeled with NeuN (F). Note double-labeled cells of green nucleus (NeuN) surrounded by red cytoplasm (8-
OHG) in neurons (F), but not other cells (I, L, O).  AC= anterior commissure. n = 3 - 4 per group. Scale bar = 
50 μm. 
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attenuated METH-induced enhancement of phasic DA release (Fig. 13, A,C-left; 1 mM TEMPOL:  

F1,17 = 5.51, p < 0.05), and decreased METH-evoked DA efflux (Fig. 13, B,C-right; 1 mM 

TEMPOL: F1,10 = 5.34, p < 0.05), suggesting that ROS production is necessary for some of 

METH’s effects on DA release.  

 
Figure 12. The sigma receptor antagonist BD 1063 induces a partial block of methamphetamine-
induced dopamine release. 
The increase of phasic DA caused by METH is not as intense in the presence of BD 1063 (1 µM) (A). Similarly, 
METH-induced efflux shows much lower DA release in the presence of BD 1063 (1 µM) (B). A quantitative 
representation of both efflux and phasic DA release (C). Averaged raw phasic values for BD 1063 are: control 
baseline = 0.57 ± 0.15 µM; control METH = 1.52 ± 0.32 µM; experimental baseline = 0.97 ± 0.31 µM; 
CPA+METH = 1.59 ± 0.58 µM. Cyclopiazonic acid (10 µM), which depletes intracellular Ca2+ stores, decreases 
METH enhancement of both phasic DA release (D,F-left) and DA efflux (E,F-right). * p <0.05 as compared to 
control values. Averaged raw phasic values for CPA are: control baseline = 0.57 ± 0.15 µM; control METH = 
1.52 ± 0.32 µM; experimental baseline = 0.82 ± 0.24 µM; CPA+METH = 1.33 ± 0.32 µM. Values in parentheses 
indicate n values. 
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To elaborate on the role of pro-oxidants, we examined an antioxidant system endemic in 

cells: glutathione peroxidase (GPx). Specifically, we tested the effects of reduced glutathione 

(GSH), a substrate for GPx, an endogenous ROS scavenger, on METH-induced DA release. GSH 

(100 µM) attenuated METH enhancement of DA release, both phasic release (Fig. 13, D,F-left; 

100 µM GSH: F1,25 = 9.87, p < 0.01) and the DA efflux (Fig. 13, E,F-right; 100 µM GSH: F1,13 

 
Figure 13. Effects of antioxidants. 
TEMPOL (a SOD-mimetic) is able to partially block the transient phasic increases of DA release (A) as well as 
METH-induced DA efflux (B). Glutathione (the substrate for glutathione peroxidase, an enzyme that decreases 
levels of hydrogen peroxide) is able to partially block METH-induced increases of phasic DA (D) as well as 
METH-induced DA efflux (E). Quantitative analyses show these trends for both TEMPOL and GSH (C, F). 
Averaged raw phasic values for TEMPOL are: control baseline = 0.57 ± 0.15 µM; control METH = 1.52 ± 0.32 
µM; experimental baseline = 0.53 ± 0.08 µM; TEMPOL+METH = 0.99 ± 0.10 µM. Averaged raw phasic values 
for GSH are: control baseline = 0.57 ± 0.15 µM; control METH = 1.52 ± 0.32 µM; experimental baseline = 1.38 
± 0.30 µM; GSH+METH = 2.24 ± 0.53 µM. * p < 0.05 as compared to control values. Values in parentheses 
indicate n values. 



38 
 

= 6.92, p < 0.05), further confirming that endogenous ROS production is involved in METH’s 

effects on DA release.  

3.3.6 Reactive Oxidative Species causes S-glutathionylation of VMAT2, Impairing 

Function 

Methamphetamine-induced DA efflux can be blocked by tetrabenazine, a VMAT blocker 

[138]. While this could be partly due to METH’s effects on the VMAT [82], METH-induced 

ROS production may also be altering VMAT. Therefore, we tested whether directly increasing 

ROS production can induce changes in VMAT function through protein modification. 

Recombinant human VMAT protein was isolated and exposed to disulfiram (to induce S-

glutathionylation) and subsequently analyzed using mass spectrometry. These studies revealed 

that Cys 488 became S-glutathionylated in the presence of disulfiram (Fig. 14). This post-

translational modification proved to dramatically decrease VMAT2 function in an activity assay 

using protein purified from fresh mouse accumbens tissue (Fig. 15; F1,6 = 576.96, p < 0.001).   

3.3.7 Parallel Mechanism in the Nucleus Accumbens Shell 

Since the NAc core and shell have different roles, we determined the effects of METH on 

DA efflux in the NAc shell to compare with our results in the core. Methamphetamine (5 µM) 

induced DA efflux in the shell. While not significantly different from efflux in the core, it appears 

that the shell may be slightly less sensitive than the core (Fig. 16; F1,11 = 3.74, p = 0.079). 

Additionally, we determined that BD 1063 (100 nM) is able to attenuate the effects of METH (5 

µM) in the NAc shell (Fig. 16; 100 nM BD 1063: F1,8 = 9.77, p < 0.05).  
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3.3.8 Acute Methamphetamine Causes S-glutathionylation of VMAT2 and Increases 

Oxidative Stress in the Nucleus Accumbens 

Using an antibody against 8-hydroxyguanosine (8-OHG, a mutated nucleic acid formed by 

exposing DNA to oxidative stress), we quantified relative levels of oxidative stress in animals 

following acute IP drug administration. Methamphetamine (5 g/kg) increased levels of 8-OHG as 

compared with saline-injected controls (Fig. 17, A-C; F1,25 = 8.17, p < 0.01).  

Although VMAT2 function was inhibited by METH in vitro, we were interested to see if 

in vivo administration of METH (IP, 10 mg/kg) might affect VMAT2 function through S- 

 
Figure 14. Fragmentation of S-glutathionylated peptides by CID and ETD tandem mass spectrometry. 
Tandem mass spectrometry analysis of in vitro S-glutathionylated VMAT2 shows that disulfiram-induced S-
glutathionylation results in modification of Cys 488. 
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Figure 16. S-glutathionylations in the nucleus accumbens decreases VMAT2 activity. 
C57BL/6 accumbens tissue was S-glutathionylated ex vivo with 10 µM disulfiram followed by measurement of 
VMAT2 activity with 4-(2-Aminoethyl)-7-(methylamino)-2H-chromen-2-one trifluoroacetate. p<0.0001. 
Protein samples exposed to disulfiram displayed a greatly reduced activity as compared to matched control 
samples. This indicates that the S-glutathionylation modification of cysteine residues decreases VMAT2 
function. **** p<0.0001 as compared to the controls. Values in parentheses indicate n values. 

 

 
Figure 15. Methamphetamine effects in the nucleus accumbens shell. 
Methamphetamine induced dopamine efflux occurs in both the nucleus 
accumbens core and shell. Although there appears to be a trend for decreased 
sensitivity in the shell, this is not significant. The effects of METH are 
blocked by BD 1063 in the shell, indicating that the outlined mechanism of 
METH-induced dopamine release is the same as in the core. *p<0.05 as 
compared against the shell controls. Values in parentheses indicate n values. 
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glutathionylation and if BD 1063 (IP, 30 mg/kg) could prevent it. Using a co-immunoprecipitation 

assay, administration of 10 mg/kg IP METH increased levels of modified VMAT2 as compared 

with saline controls (Fig. 17, D; F1,4 = 112.06, p < 0.001). BD 1063 appeared to decrease METH’s 

ability to modify VMAT2, albeit not quite significantly (Fig. 17, D; F1,4 = 7.64, p = 0.051).  

 
Figure 17. S-glutathionlyation of VMAT2 and enhancement of oxidative stress 
after acute methamphetmaine. 
(A) 8-OHG stain in NAc core in vehicle-injected (saline) animals. (B) 8-OHG stain in 
NAc core in METH-injected animals. (C) Immunohistochemical staining for 8-OHG, 
a marker of oxidative stress.  Oxidative stress increased following an injection of acute 
METH as compared with a control saline injection.  (D) Fluorescent intensities for S-
glutathionylated VMAT2 normalized against total VMAT2 intensity (n=3). Animals 
injected with METH show increased levels of S-glutathionylation as compared with 
controls and BD 1063 reduces METH enhancement of S-glutathionylation.  Asterisks 
**,*** represent significance level  p <0.01 and p < 0.001, respectively. Values in 
parentheses indicate n values. 
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4 DISCUSSION 

 Conversion of Dopamine to Melanin 

Dopamine spontaneously polymerizes into melanin, with the rate of formation being 

highly dependent on initial DA concentration.  While DA metabolic precursors and metabolites 

also can form into melanin, DA possesses unique chemical attributes that allow it to melanize 

more rapidly than related compounds. Following our initial investigations of melanization, we 

followed two parallel hypotheses for how the rate of melanization can be maximized. The first 

hypothesis focused on the possible role of the catechol functional group of DA-coordinating 

cations, specifically Fe3+ and Ca2+ as both these ions are able to associate with catechol groups 

[139].  The second line of investigation focused on a radical hypothesis, in which melanin is a 

polymer made of covalently bound DA molecules.  The process of polymerization would 

involve a radical intermediate. 

4.1.1 The Cation Hypothesis of Melanization 

Iron (III) increased the rate of melanization (EC50 = 50 nM).  However, Fe3+ can be 

implicated in both the cation (via catechol binding) and the radical (by generating radicals via 

the Fenton reaction) hypotheses.  In order to help us elucidate the differences between the 

cation hypothesis and the radical hypothesis, we determined whether another cation has a 

similar ability to induce melanization.  A key ion to examine with was Ca2+: It is biologically 
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relevant in varying concentrations and, like Fe3+, is known to associate with catechol groups 

[139].  Additionally, a key difference between DA cells in the VTA vs. SNc is that VTA DA cells have 

less intracellular Ca2+ than do SNc DA cells [140], meaning that increased Ca2+ correlates 

with NM deposits, implicating a possible role for Ca2+ with in vivo NM formation.  Despite 

previous evidence for Ca2+ driving some form of melanization[141], our results showed that once 

iron contamination was removed from the calcium salts, Ca2+ was unable to drive melanization 

within the time range studied. Based on these results, we largely reject the cation hypothesis of 

DA melanization. However, because of the large increase in polymerization when 10 μM Fe3+ 

was the catalyst, we cannot fully reject this theory. 10 μM Fe3+ provides the ideal stoichiometry 

for maximum aggregation of DA molecules around one Fe3+ (3 DA: 1 Fe3+). Each DA molecule 

has one catechol with two hydroxyl groups each providing lone electron pairs that can corm 

coordinate covalent bonds to Fe3+, which has six coordination sites. 

4.1.2 The Radical Hypothesis of Melanization 

We pursued the idea that melanization was partially dependent on reactive oxygen 

species (ROS) or on radical intermediates.  As mentioned earlier, the enhanced rate of 

melanization by Fe3+ can be easily explained either by Fe3+ interacting with DA’s catechol or by 

iron’s ability to exchange electrons.  Iron is able to induce lipid peroxidation and catalyze the 

formation of superoxide (21,35).  If free radicals from iron enhance melanization, then a free 

radical from H2O2 should also be able to catalyze the reaction of DA into melanin.  It has 

already been shown by Zecca et al., that a high concentration of H2O2 (approximately 1 M) is 

able to degrade NM [74], so we analyzed a much smaller concentration of H2O2 (500 μM).  

The results clearly demonstrated (Fig. 6A) that this concentration of H2O2 enhance 

melanization.  We thus conclude that DA neurons are able to buffer small amounts of H2O2-
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related oxidative stress, but that under chronic conditions of high levels of H2O2 this natural 

ROS buffer is overwhelmed and degrades. 

Simply adding H2O2 is not enough to confirm that the presence of ROS can drive 

melanization, as H2O2 is particularly volatile and decomposes quickly.  Because of this, 

measuring accurate concentrations of H2O2 is difficult under reaction conditions.  However, 

antioxidants are very stable in solution and are easy to measure accurately.  Thus, we 

investigated the effect of antioxidants on the rate of melanization.  The first logical choice of 

antioxidant was a s c o r b a t e  ( ASC).  Ascorbate is found across the brain in varying 

quantities dependent on anatomical location.  In particular, ASC is found in low millimolar 

levels in the striatum and at least an order of magnitude lower in the midbrain tegmentum where 

DA neurons originate [142].  Higher concentrations of ASC (1-5 mM) were able to completely 

block melanization.  This may explain why NM forms in cell bodies (tegmentum), but not in 

terminal areas (striatum). Our experiments had shown that whenever we kept DA in solution, it 

would spontaneously turn into melanin, so why doesn’t DA spontaneously form into NM in the 

striatum?  We speculate that the combination of high concentrations of ASC and low 

concentrations of iron in the striatum might prevent melanization. 

Ascorbate is not the only antioxidant endemic to the DA system. Glutathione oxidation 

has been heavily implicated in DA cell health [143].  This relationship between melanin growth 

and oxidative stress is interesting.  In the brain, DAergic neurons are particularly susceptible to 

oxidative stress.  In fact, DAergic neurons require a higher baseline level of GSH (35±3 

nmol/mg in DAergic cells as compared to 8±0.4 nmol/mg) for normal function [144].  Dopamine 

levels drop an additional 30-40% as PD progresses without a corresponding increase of 

oxidized GSH (GSSG) [145].  This is peculiar considering that the SNc has relatively high 
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concentrations of iron deposits [70, 146], which should increase oxidative stress in this area of 

the brain.  Additionally, DA metabolites (notably H2O2 and DOPAL) are also ROS. 

Taking this into consideration, we propose a model for DA melanization (Fig. 18). In this 

model, we speculate that DA molecules aggregate around a Fe3+ ion. Once in close proximity, it 

is possible for radicals to travel between the molecules, creating covalent bonds. This 

polymerization continues, creating chains of covalently linked DA molecules (in varying states 

of oxidation). 

Although previously thought otherwise, a growing body of literature is identifying NM 

as a neuroprotective polymer [74] , likely due to nascent antioxidant properties.  For example, 

in models of PD, cells containing less NM are more susceptible to death [64, 65].  We propose 

that DA neurons use NM as a mechanism to deal with this oxidative stress.  We suggest that 

NM may be able to act, at least indirectly, as a radical scavenger, decreasing oxidative stress in 

already over-stressed DAergic cells [74].  Dopamine neurons uniquely manufacture DA, and 

seem to capitalize on its distinctive chemistry—particularly its ability to spontaneously form 

 
Figure 18. Proposed model for dopamine melanization. 
To get optimal formation of melanin, two factors are necessary: chelation and radical polymerization. Dopamine 
molecules chelate iron by the catechol group, positioning the DA molecules to allow for quick radical 
polymerization between the benzene rings in response to ROS. Although only two DA molecules are shown 
coordinating the iron atom, there are most likely three DA molecules as there are six coordination sites on the 
iron. 
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into melanin.  Iron bound up in NM may be redox-inactive [75, 147, 148], thus unable to 

catalyze the Fenton reaction, curtailing production of hydroxyl radicals.  Furthermore, DA 

molecules bound up in NM are likewise unable to be converted by MAO into DOPAL and 

peroxides.  Effectively, we propose that NM is formed in DA somata in response to both 

oxidative stress and cellular stress (high iron levels). The formation of NM reduces levels of 

redox-active iron and likely inactivates radicals in the form of peroxides and superoxides. 

Thus, the presence of NM can be used as a marker of past oxidative or cellular stress. 

Furthermore, since NM possesses a stable radical [149], it can be an active antioxidant once 

formed. We further propose that in PD, NM+ cells begin to die when iron levels or oxidative 

stress exceed the cell’s ability to produce NM, or when iron levels overwhelm NM binding sites, 

as has been previously suggested [67].  In these instances, DA cells are unable to cope with 

high levels of ROS and succumb quickly to oxidative stress, as natural methods of quenching 

ROS are compromised as PD progresses [67, 150, 151]. 

 Methamphetamine’s Effects on Dopamine Release 

Methamphetamine robustly enhanced both action potential-dependent and independent DA 

release with an EC50 of 5 µM.  Lidocaine (100 µM) blocked phasic (electrically evoked, 20 Hz 

and 10 P) DA release at lower levels than others have reported [152], while leaving METH’s effect 

on the DA efflux unaltered. Lidocaine, a voltage-gated sodium channel blocker, prevents action 

potential dependent DA release, but not the METH-evoked DA efflux, indicating that the 

mechanisms underlying electrically evoked and non-evoked release are different. Similar to that 

shown in previous studies, METH-induced DA efflux is independent of action potentials, but 

thought to be dependent on DA reverse transport through the DAT [129]. Phasic DA release in the 

NAc is associated with burst firing activity of DA neurons in the VTA [153]. It has been postulated 
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that this burst firing and subsequent phasic DA release is critical for proper learning and goal-

oriented behavior [154]. Amphetamines increase the potential for learning and goal-oriented 

behavior [155, 156], indicating that amphetamines may increase phasic DA activity. Indeed, 

Ingram et al (2002) demonstrated that amphetamines could increase neuronal excitability through 

increases in DAT-mediated currents [157]. Our results are consistent with previous reports, that 

METH enhances phasic DA release, most likely through decreases in uptake [80], but can also 

trigger DA efflux independent of electrical impulses from the cell body [89, 158]. Importantly, 

increases in extracellular DA tone can influence the ability of the cell to generate phasic responses, 

specifically through decreases in readily releasable pools, and D2R autoreceptor-mediated 

inhibition.  

4.2.1 Role of the Sigma Receptor in Methamphetamine-induced Production of Reactive 

Oxygen Species 

The σ1R was originally thought to be an opioid receptor as the opioid dextromethorphan 

was a potent ligand at this receptor. However, this was soon shown to be due to a non-specific 

drug interaction, and it was discovered that sigma activity was not blocked by the non-selective 

opioid receptor antagonist naloxone, and that many non-opioids, including METH and cocaine, 

are also potent σ1R agonists [159]. While this unique receptor is ligand-activated, it is 

fundamentally different from classic ligand-activated receptors such as GPCRs and ion channels, 

in that it acts primarily as a chaperone receptor [160]. The σ1R is found on the ER, mitochondria, 

and on the plasma membrane interfaces [161, 162]. The σ1R has been shown to modulate Ca2+ 

flux at the interface between the ER and the mitochondria [163], and blocking the σR prevents 

ROS production [98]. Indeed, several reports have shown that both the σ1R and σ2R help regulate 

the cell’s antioxidant potential [164-166] (for complete review, see Katz review [94]). Interestingly, 
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AC927 (0.3 µM), a σR antagonist with high affinity for both σ1R and σ2R (σ-1R Ki = 30 ± 2 nM, 

σ-2R Ki = 138 ± 18 nM; [167]), was able to block ROS generation by METH in cultured neurons 

[98]. Since METH has been shown to increase cytosolic Ca2+, changing the intracellular Ca2+ and 

forming ROS [168], we postulated that increases in cytosolic Ca2+ and subsequent ROS formation 

were initiated upon METH-induced activation of σ1Rs. Indeed, our results confirm that the σR is 

involved in METH-induced changes in living striatal tissue and functional DA terminal physiology. 

Also, we were able to show that METH affected two very different types of DA release: 

synaptic/vesicular (modeled by electrically evoked phasic release) and DAT-mediated efflux 

through the σR. And while BD 1063 can antagonize both the σ1Rs and σ2Rs, it binds preferentially 

to the σ1R (Ki = 9 ± 1 nM vs. Ki = 449 nM for σ1R and σ2R, respectively), suggesting that METH’s 

effects on DA release are primarily through σ1R activation, although it is also possible that σ2R 

activation is involved. Furthermore, depleting intracellular Ca2+ levels with CPA (10 µM) 

prevented METH-induced DA efflux. Since Ca2+ is the likely signal between the σ1R on the ER 

and the mitochondria (for review of Ca2+ and the mitochondria, see Contreras et al [169]), it is 

logical to conclude that this is the mechanism between σ1R activation and ROS formation 

following METH exposure. Calcium signaling from the endoplasmic reticulum is potentially 

mediated through inositol 1,4,5-triphosphate (IP3) levels, as has been suggested by others [170-

173]. 

4.2.2 Methamphetamine-induced Production of Reactive Oxygen Species 

Methamphetamine induces oxidative stress in neural tissue. Levels of GSH peroxidase 

enzymes are lower following exposure to METH in DA cell culture [174], and levels of 

malondialdehyde, a product of lipid peroxidation, greatly increase in the brain following METH 

administration [175]. Also, recovering METH addicts evince higher levels of oxidative stress [176]. 
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While it has generally been assumed that most of the oxidative stress associated with METH abuse 

results from high levels of extra-vesicular DA that is then oxidized and broken down (a byproduct 

of monoamine oxidase is hydrogen peroxide), this doesn’t appear to be the sole source of oxidative 

stress in DA terminals following METH. Methamphetamine is known to inhibit complexes I, II, 

III, and IV in the electron transport chain in the mitochondria (for complete review see Barbosa et 

al, 2015 [177]), indicating that there are other potential sources of oxidative stress. Additionally, 

since we show that inhibiting both superoxide (TEMPOL experiments) and hydrogen peroxide 

(GSH experiments) decreases METH-induced DA release, suggesting that there is a secondary 

source of oxidative stress from METH that occurs upstream to DA vesicular leakage and 

subsequent auto-oxidation. Further evidence for a direct interaction between METH and 

mitochondrial-induced ROS formation come from studies where TEMPOL, a membrane-

permeable radical scavenger, reduced hydrogen peroxide-mediated decrease in mitochondrial 

function and malondialdehyde level in vitro and in vivo [178]. Others have also shown that 

TEMPOL attenuates mitochondrial-induced oxidative damage by METH and METH-induced 

sensitization [179]. Based on the results from part 1 of this study, it is likely that the ROS generated 

by acute METH will lead to melanin formation in DA cells. 

4.2.3 Methamphetamine-induced Oxidative Stress and VMAT2 

Methamphetamine-initiated widespread oxidative stress is fairly well-known, however, 

the mechanisms involved are still being elucidated. Chronic oxidative stress from METH 

exposure is thought to contribute to its neurotoxic effects [180]. However, immediate targets and 

consequences of the ROS are not well known. ROS can lead to S-glutathionylation, a post-

translational modification on cysteine residues within redox sensitive proteins that could lead to 

a change in structure and function of the target protein [181].  We have shown here using high 
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resolution mass spectrometry that ex vivo disulfiram-induced S-glutathionylation [182] causes 

modification on Cys 488 of VMAT2. This S-glutathionylation decreases VMAT2 functionality. 

Decreased VMAT function would prevent vesicles from maintaining “normal” DA 

concentrations, resulting in DA leakage [129], whether it be through inherently leaky vesicles 

[183] or through a disrupted proton gradient [184]. Decreased VMAT function will result in DA 

accumulation in the synapse, and eventual efflux through the DAT, as well as intracellular 

metabolization of DA via mitochondria-associated monoamine oxidases. Buildup and breakdown 

of DA increase oxidative stress (both inside and outside of the cell), as DA metabolites include 

superoxide, hydrogen peroxide, DA quinones, and 3,4-dihydroxyphenylacetaldehyde (DOPAL) 

[185-187]. This adds to METH-induced neurotoxicity. Supporting these findings, it has been 

shown that increasing expression of VMAT2 will help protect against METH neurotoxicity [188] 

and that chronic METH users show decrease VMAT2 expression [189]. The present study shows 

that application of strong antioxidants, such as TEMPOL, is sufficient for blocking METH’s 

effects on DA efflux. 

4.2.4  Mechanistic Model of Methamphetamine-induced Dopamine Release 

The current mechanistic model behind METH’s increase of DA release states that METH 

enters the DA terminal through DAT. Once in the cytosol, METH inhibits VMAT2, blocking 

vesicle transport and inducing vesicle depletion. The accumulation of DA in the cytosol 

overpowers the DAT, causing reverse transport. The current study adds considerable detail to the 

intracellular actions of METH. Once METH is inside the cell, it appears to activate the σ1R, 

altering proper Ca2+ signaling between the smooth ER and the mitochondria, resulting in 

disrupted mitochondrial function, and causing superoxide production. Superoxide 

(mechanistically related to many other ROS [190]) then causes S-glutathionylation of VMAT2, 
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which prevents proper function of VMAT, allowing for DA-containing vesicles to be depleted. 

The DA released from vesicle pools flows out through the compromised DAT. For illustration, 

see figure 19. 

 Future Directions 

This study has implicated the sigma receptor as a regulator of oxidative stress that 

disrupts normal DA packaging and release. The above experiments were conducted in slice 

preparation to allow for more accurate mapping of the mechanism. Such experiments are 

important, but preliminary. In dealing with disorders of DA depletion or DA cell health, all must 

 
Figure 19. Model of Methamphetamine-induced Dopamine Efflux. 
1. Methamphetamine enters DA terminals through the DAT. 2. Methamphetamine activates σ1Rs on the 
endoplasmic reticulum, resulting in σ1R activation of Ca2+ signaling, potentially through the IP3R. 3. Ca2+ 
enters the mitochondria, increasing metabolic activity and corresponding ROS formation. 4. ROS signal 
glutathionylation of VMAT, resulting in decreased VMAT function. 5. Reduced DA packaging results in 
increased intracellular DA. 6. High intracellular DA overwhelms DAT function, resulting in reverse transport. 
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be verified in a freely moving animal. Thus, it is a natural segue to take sigma pharmacology into 

behavioral paradigms. Can an in vivo blockade prevent either drug reinstatement or conditioned 

place preference studies? 

Additionally, it would be instructive to determine how long the effects (notably S-

glutathionylation of VMAT2 as well as increased ROS formation) of acute methamphetamine 

last. Is this post-translational modification reversible or does it require new protein to be made? 

Furthermore, this study has been focused on the nucleus accumbens core, with basic 

verification in the shell. However, measuring or understanding DA release in all parts of the 

striatum is necessary for a transition from rewarding behaviors to habitual behaviors. By this 

mechanism, amphetamines indiscriminately affect all DA terminals. We would like to determine 

a relative timeframe in which this happens and determine if different areas of the striatum 

develop a sensitivity to methamphetamine after behavioral sensitization. Eventually, determining 

the mechanization of this plasticity would be our ultimate goal. 

Based on our results and those of others, we have also established that neuromelanin 

forms in response to oxidative stress. We are interested to see if the oxidative stress generated by 

methamphetamine is enough to trigger neuromelanin formation. 

Finally, we have determined that METH interacts with the DAT and VMAT indirectly 

instead of directly as has been shown with amphetamine. Since much of what is known about 

METH’s mechanism of action has been extrapolated from what is known about amphetamine, it 

would be instructive to determine if the sigma receptor is involved in amphetamine’s mechanism 

of action. 
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