β-degree closures for graphs

Ahmed Ainouche
UAG - CEREGMIA, Campus de Schoelcher - B.P. 7209, 97275 Schoelcher Cedex. Martinique, France

A R T I CLE I N F O

Article history:

Received 18 April 2007
Received in revised form 27 January 2008
Accepted 16 July 2008
Available online 28 August 2008

Keywords:

Closure

Stability

Hamiltonicity
Cyclability
Degree sequence
k-leaf-connected

Abstract

Bondy and Chvátal [J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135] introduced a general and unified approach to a variety of graph-theoretic problems. They defined the k-closure $C_{k}(G)$, where k is a positive integer, of a graph G of order n as the graph obtained from G by recursively joining pairs of nonadjacent vertices a, b satisfying the condition $d(a)+d(b) \geq k$. For many properties P, they found a suitable k (depending on P and n) such that $C_{k}(G)$ has property P if and only if G does. In this paper we show that the condition $d(a)+d(b) \geq k$ can be replaced by a much better one: $d(a)+d(b)+|Q(G)| \geq k$, where $Q(G)$ is a well-defined subset of vertices nonadjacent to a, b.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Bondy and Chvátal [6] observed that a graph $G=(V, E)$ of order n is Hamiltonian iff $G+a b$ is Hamiltonian where a, b are a pair of nonadjacent vertices satisfying the condition $d(a)+d(b) \geq n$. This observation motivated the introduction of the concept of the k-closure $C_{k}(G)$ of a graph G on n vertices. The graph $C_{k}(G)$ is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least k. For a number of various properties of a graph G on n vertices, they showed that it is possible to find a suitable integer k, such that if G has property $P(k)$, so does $C_{k}(G)$. It was proved in [6] that seven of the classic sufficient degree conditions for Hamiltonicity guarantee that $C_{n}(G)$ is complete, yielding easier proofs of the corresponding results. Moreover they proved that it takes polynomial time to construct $C_{n}(G)$ and if $C_{n}(G)$ is complete then a polynomial algorithm is provided for obtaining a Hamiltonian cycle in the original graph. Although the Hamiltonicity Problem is NP-hard in general, it becomes polynomial if $C_{n}(G)=K_{n}$. The authors showed also that $C_{k}(G)$ is unique. The closure concept is becoming a major tool in Hamiltonian Graph Theory (see a recent survey by Broersma et al. [8]).

Preserving the uniqueness, Ainouche and Christofides (see [1,2]), Zhu et al. [10] and Broersma et al. [7] introduced other closure conditions stronger than that of Bondy and Chvátal. The condition of Zhu et al. is dominated by that given in [2]. Surprisingly the condition of Broersma et al. is dominated by that given in [1] (a simple proof is given in another paper in preparation).

In this paper we show that the condition $d(a)+d(b) \geq k$ used by Bondy and Chvátal to define the k-closure can be replaced by a more powerful one: $d(a)+d(b)+|Q| \geq k$, where, given k, Q is a well-defined subset of vertices nonadjacent to a, b and different from a and b. This new condition is similar to the condition $d(a)+d(b)+\left|R^{\prime}\right| \geq k$ of Zhu et al., where R^{\prime} is also a set of vertices nonadjacent to a, b. However one of the drawbacks of Zhu et al.'s condition is that R^{\prime} has a specific definition for each property. Moreover for all properties considered here, $R^{\prime} \subseteq Q$.

To state the different new conditions and to relate them to existing ones, we need some preliminary definitions and notations.

[^0]
2. Definitions and notations

We use Bondy and Murty [9] for terminology and notation not defined here and consider simple graphs only. Let $G=(V, E)$ be a graph of order $n \geq 3$. The set of neighbors of a vertex $v \in V$ is denoted $N_{G}(v)$ and $d_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v. Paths and cycles in $G=(V, E)$ are considered as subgraphs and for simplicity we use the same notation to mean a subgraph, its vertex set or its edge set. If A is a subset of $V, G[A]$ will denote the subgraph induced by A. Let C be a cycle in G, in which a direction of traversing it is given. If a, b are vertices of a subset $R \subset V$ we let $R[a, b]$ denote the path with endpoints a, b and all internal vertices in R and if C (resp. P) is a cycle (resp. a path) with a chosen direction we let $C[a, b]$ (resp. $\pi[a, b]$) denote the sub-path of C (resp. π) from a to b in the chosen direction. We shall write $C(a, b)$ (resp. $\pi(a, b))$ if a, b or are excluded. Throughout, (a, b) is a pair of nonadjacent vertices and k is a positive integer. With (a, b) and k we associate.

$$
\begin{aligned}
& \sigma_{a b}(G):=d_{G}(a)+d_{G}(b), \quad \gamma_{a b}(G):=\left|N_{G}(a) \cup N_{G}(b)\right|, \quad \lambda_{a b}(G):=\left|N_{G}(a) \cap N_{G}(b)\right| \\
& \Delta_{a b}(G):=\max \left\{d_{G}(x) \mid x \in T_{a b}(G)\right\}, \quad \varpi_{a b}(G, x):=d_{G}(x)+\gamma_{a b}(G)+\varepsilon_{a b}(G) \\
& T_{a b}(G):=V \backslash\left(N_{G}(a) \cup N_{G}(b) \cup\{a, b\}\right), \quad t:=\left|T_{a b}(G)\right|, \quad \bar{\alpha}_{a b}(G)=2+t \\
& Q_{a b}(G):=\left\{x \mid \varpi_{a b}(G, x) \geq k\right\}, \quad x \in T_{a b}(G) \neq \varnothing,
\end{aligned}
$$

where $\varepsilon_{a b}(G)$ is a binary variable which takes the value 0 if and only if

$$
\begin{cases}(\varepsilon .1) & G\left[T_{a b}(G)\right]=K_{r} \cup \overline{K_{t-r}}, \quad 1 \leq r \leq t \quad \text { and } \\ (\varepsilon .2) & \varpi_{a b}(G, x)=k-1 \quad \forall x \in Q_{a b}(G) .\end{cases}
$$

For simplicity of notation we may omit $a b$ and/or G if no confusion can arise. In [2], we proved:
Theorem 1. Let G be a 2-connected graph of order n and let $d_{1}^{T} \leq \cdots \leq d_{t}^{T}$ be the degree sequence (in G) of the vertices of the set $T \neq \varnothing$. If

$$
\begin{equation*}
d_{i}^{T} \geq \bar{\alpha}_{a b} \quad \text { is true for all } i \text { with } \max \left(1, \lambda_{a b}-1\right) \leq i \leq t \tag{1}
\end{equation*}
$$

then G is Hamiltonian if and only if $G+a b$ is Hamiltonian.
In [3], we improved Theorem 1 as follows.
Theorem 2. Let G be a 2-connected graph of order n and let $d_{1}^{T} \leq \cdots \leq d_{t}^{T}$ be the degree sequence (in G) of the vertices of the set $T \neq \varnothing$. If

$$
\begin{equation*}
d_{i}^{T}+\varepsilon_{a b} \geq \bar{\alpha}_{a b} \quad \text { is true for all } i \text { with } \max \left(1, \lambda_{a b}-1\right) \leq i \leq t \tag{2}
\end{equation*}
$$

then G is Hamiltonian if and only if $G+a b$ is Hamiltonian.
This new condition will be referred to as the " β-cc" for β-closure condition. This improved condition has two strong relaxations:

- a degree closure condition ($\boldsymbol{\beta}$-dcc) involving the degree sum of (a, b), corresponding to the case $\max \left(1, \lambda_{a b}-1\right)=\lambda_{a b}-1$, which is the subject of this paper.
- a neighborhood closure condition ($\boldsymbol{\beta}$-ncc), involving the neighborhood union of (a, b) and corresponding to the case $\max \left(1, \lambda_{a b}-1\right)=1$, which is the subject of another paper in preparation. For the particular case of the Hamiltonicity property, the " $\boldsymbol{\beta}$-ncc" was used to obtain a large number of extensions of known sufficient conditions (see [4,5]).
Following Bondy and Chvátal [6] and recalling that $\sigma_{a b}=\gamma_{a b}+\lambda_{a b}=n-\bar{\alpha}_{a b}+\lambda_{a b}$, we define:
Definition 1. Let P be a property defined for all graphs G of order n and let k be an integer. Let a, b be two nonadjacent vertices satisfying the condition

$$
\begin{equation*}
P(k): \sigma_{a b}(G)+|Q| \geq k \Leftrightarrow \bar{\alpha}_{a b}(G) \leq \lambda_{a b}+|Q|+n-k . \tag{*}
\end{equation*}
$$

Then P is k-degree stable if whenever $G+a b$ has property P and $P(k)$ holds then G itself has property P. We denote by $d C_{k}(G)$ the associated k-degree closure.

The k-degree closure $d C_{k}(G)$ is then obtained from G by recursively joining pairs of nonadjacent vertices a, b for which $\sigma_{a b}+|Q| \geq k$ until no such pair remains. Obviously $d C_{k}(G)$ reduces to the Bondy-Chvátal's closure $C_{k}(G)$ if $Q=\varnothing$. Both closures are well defined. The Proposition below is an easy adaptation of Proposition 2.1 in [6].

Proposition 1. If P is k-degree stable and $d C_{k}(G)$ has property P then G itself has property P.
We would like to point out that the condition $d(a)+d(b)+|Q| \geq k$ can be checked in polynomial time. As in [6], our results lead to algorithms which construct the closure in polynomial time. Moreover, if the property P under study is easily verified in $d C_{k}(G)$ (in particular if $d C_{k}(G)=K_{n}$), then the property P is verified in the original graph G in polynomial time.

In this paper, we investigate the stability of a number of properties of graphs which remain in any super-graph of G (a graph obtained from G by addition of edges). Most of these properties are studied in [6,10]. We also provide new properties. Throughout (a, b) are a pair of nonadjacent vertices of a graph G satisfying the condition $\left(^{*}\right)$ for a given positive integer k. For each one of the considered properties P we fix k so that G has properties P whenever $G+a b$ does. Throughout, $S \subset V$ denotes a subset with s vertices.

3. Main results

Theorem 3. The property of being Hamiltonian is n-degree stable.
Proof. Suppose that a graph G satisfies the condition $P(n)$ for a given pair (a, b) of nonadjacent vertices. From $\left(^{*}\right)$ we get $\bar{\alpha}_{a b} \leq \lambda_{a b}+|Q|$ or $|Q| \geq \bar{\alpha}_{a b}-\lambda_{a b}$. Since $\bar{\alpha}_{a b}=2+t$ and $Q \subseteq T$, we deduce that $\lambda_{a b} \geq 2$ or $\max \left\{1, \lambda_{a b}-1\right\}=\lambda_{a b}-1$. Moreover any $x \in Q$ satisfies the condition $d_{i}^{T}+\varepsilon_{a b} \geq \bar{\alpha}_{a b}$ by definition. Since $\left|\left\{i \mid \lambda_{a b}-1 \leq i \leq t\right\}\right|=t+1-\left(\lambda_{a b}-1\right)=$ $\bar{\alpha}_{a b}-\lambda_{a b}$, it follows that $|Q| \geq\left|\left\{i \mid \lambda_{a b}-1 \leq i \leq t\right\}\right|$. Thus G is Hamiltonian by Theorem 2.

Example 1. If G is the Petersen graph then $G^{\prime}=G+K_{1}$ is Hamiltonian by Theorem 3 since for any pair (a, b) of nonadjacent vertices it is easy to check that $\sigma_{a b}\left(G^{\prime}\right)=8, \varepsilon_{a b}\left(G^{\prime}\right)=1$ and $\left|Q\left(G^{\prime}\right)\right|=3$. Thus $d C_{11}\left(G^{\prime}\right)=K_{11}$.

The graph G is S-Hamiltonian, $s \leq n-3$, if it remains Hamiltonian whenever some or all vertices of S are removed. We simply say that it is s-Hamiltonian if we are only interested by the number s instead of the set of vertices.

Theorem 4. The property of being S-Hamiltonian is $(n+s)$-degree stable.
Proof. For some $W \subseteq S$, set $H:=G-W$. Suppose now that $H+a b$ is Hamiltonian but H is not. Then

$$
\begin{cases}\sigma_{a b}+|Q| \geq n+s & \text { by hypothesis } \tag{3}\\ \sigma_{a b}(H)+|Q(H)|<|H|=n-|W| & \text { by Theorem } 3\end{cases}
$$

Subtracting the two inequalities of (3) and noting that $\sigma_{a b} \leq \sigma_{a b}(H)+2|W \backslash T|$ we get $2|W \backslash T|+|Q|-|Q(H)|>s+|W|$. As $|Q|=|Q \cap V(H)|+|Q \cap W|, W \subseteq S$ and $Q \subseteq T$, we obtain

$$
\begin{equation*}
|Q \cap V(H)|>|Q(H)| \tag{4}
\end{equation*}
$$

By (4) there must exist $u \in(Q \cap V(H)) \backslash Q(H)$. Clearly $d(x) \leq d_{H}(x)+|W|$ holds for all $x \in T$ and $\gamma_{a b} \leq \gamma_{a b}(H)+|W \backslash T|$. If $x=u$, we have by hypothesis $\varpi(G, u) \geq n+s$. Therefore $\varpi(H, u) \geq n+s-|W|+|T \cap W|-\varepsilon_{a b}+\varepsilon_{a b}(H)$. As $W \subseteq S$ and $\varepsilon_{a b}-\varepsilon_{a b}(H) \leq 1$ we obtain

$$
\varepsilon_{a b}=1, \quad \varepsilon_{a b}(H)=0, \quad W=S, \quad T \cap W=\varnothing .
$$

So $T(G)=T(H)$ and hence $G[T]=H[T]$ since $T \cap W=\varnothing$. By (ε) we necessarily have $\Delta_{a b}+\gamma_{a b} \geq n+s$ while $\Delta_{a b}(H)+\gamma_{a b}(H)=|H|-1$. Choose $z \in Q$ such that $d(z)=\Delta_{a b}$. Clearly $z \in T=T(H)$. Using the above inequalities, we easily get $d_{H}(z)+\gamma_{a b}(H) \geq|H|$. This is a contradiction to our assumption that $\Delta_{a b}(H)+\gamma_{a b}(H)=|H|-1$. The proof of Theorem 4 is now complete.

We say that G is S-cyclable (S-traceable resp.) if it contains a cycle C (a path resp.) with all vertices of S.
Theorem 5. The property " G is S-cyclable" is n-degree stable.
Proof. Suppose that $(G+a b)$ contains a cycle C such that $S \subset V(C)$ but G does not. Then a, b are connected by a path $\pi:=a_{1} \ldots a_{p}$ with $a=a_{1}, b=a_{p}, n \geq p \geq s$. Assume that π has a maximum length. If $|V(\pi)|=n$, then G is Hamiltonian by Theorem 3 and we are done. For the following we set $H:=G[V(\pi)]$ and we assume that $R:=V \backslash V(\pi) \neq \emptyset$. For simplicity we also denote $G[R]$ by R and $G[H]$ by H. Note that there exists no [a,b]-path with all internal vertices in R for otherwise G would contain a cycle C^{\prime} such that $V(C) \subset V\left(C^{\prime}\right)$, a contradiction. In particular $N(a) \cap N(b) \subset V(\pi)$.

Denote by $a_{p_{1}}, a_{p_{2}}, \ldots, a_{p_{\lambda_{a b}}}, p_{1}<p_{2}<\cdots<p_{\lambda_{a b}}, \lambda_{a b} \geq 2$, the vertices of $N(a) \cap N(b)$. These vertices cannot be consecutive on π for otherwise a Hamiltonian cycle exists in H. For $i=1, \ldots, \lambda_{a b}-1$, set $X_{i}:=V\left(\pi\left(a_{r_{i}}, a_{s_{i}}\right)\right)$, where $p_{i} \leq r_{i}<s_{i} \leq p_{i+1}$ are chosen so that:
(i) $a_{s_{i}}$ is joined to a (resp. $a_{r_{i}}$ is joined to b) by a path (possibly an edge) $R\left[a_{s_{i}}, a\right]$ say (resp. $R\left[a_{r_{i}}, b\right]$), whose internal vertices are all in R.
(ii) $X_{i} \subset T$.
(iii) For each i and among all possible choices of r_{i}, s_{i} we assume that $s_{i}-r_{i}$ is minimum. Clearly $R\left[a_{s_{i}}, a\right], R\left[a_{r_{i}}, b\right]$ exist since $a_{p+1} a, a_{p_{i}} b$ satisfy (i).

As first consequences we have:
(iv) $X_{i} \neq \varnothing$ for otherwise the cycle $a a_{2} \ldots a_{r_{i}} R\left[a_{r_{i}}, b\right] b a_{p-1} a_{p-2} \ldots a_{s_{i}} R\left[a_{s_{i}}, a\right]$ contains all vertices of S if $s_{i}=r_{i}+1$.
(v) $R\left[a_{r_{i}}, b\right]$ and $R\left[a_{s_{i}}, a\right]$ are vertex disjoint for if $u \in V\left(R\left(a_{r_{i}}, b\right)\right) \cap V\left(R\left(a_{s_{i}}, a\right)\right)$ then $V(\pi) \cup R[u, a] \cup R[u, b]$ induces a longer cycle than C, a contradiction,
(vi) there exists no path joining any $a_{i} \in X_{i}$ to either a or b with all internal vertices in R for otherwise we substitute this path to either $R\left[a_{r_{i}}, b\right]$ or to $R\left[a_{s_{i}}, a\right]$, in which case we contradict (iii).

Let us set $W_{i}:=\left(V\left(R\left(a_{r_{i}}, b\right)\right) \cup V\left(R\left(a_{s_{i}}, a\right)\right)\right)\left(\right.$ possibly $\left.W_{i}=\varnothing\right), W:=\cup_{i=1}^{\lambda_{a b}-1} W_{i}$ and $X:=\cup_{i=1}^{\lambda_{a b}-1} X_{i}$.
(vii) $N\left(a_{j}\right) \cap W=\varnothing$ holds whenever $a_{j} \in X$ for otherwise we contradict (iii). For simplicity we also set: $T_{R}:=T \cap R, T_{H}:=$ $T \cap V(H), Q_{R}:=Q \cap R$ and $Q_{H}:=Q \cap V(H)$.
(viii) $\forall a_{i} \in Q_{H}, N_{R}\left(a_{i}\right) \subseteq T_{R}$ and $N(v) \backslash R \subset H$ if $v \in N_{R}\left(a_{i}\right)$ as a consequence of (vi).

Claim 1. $\theta:=\left|\left\{i \mid X_{i} \subset Q_{H}\right\}\right|>\left|T_{R}\right|-|Q \cap R|$.
Otherwise, suppose that $\left|T_{H} \backslash Q_{H}\right|=\left|T_{H}\right|-\left|Q_{H}\right| \geq \lambda_{a b}-1-\theta$. By hypothesis $\sigma_{a b}+|Q| \geq n \Leftrightarrow \bar{\alpha}_{a b}=2+\left|T_{R}\right|+\left|T_{H}\right| \leq$ $\lambda_{a b}+|Q|$. Putting together these inequalities we get $\theta>\left|T_{R}\right|+\left|Q_{H}\right|-|Q|=\left|T_{R}\right|-|Q \cap R|$.

This result implies, since $Q_{R} \subseteq T_{R}$, that at least one subset X_{i} contains only vertices of Q_{H} and at least two if $\left|T_{R}\right|-|Q \cap R|>0$.

Claim 2. For all $a_{i} \in Q_{H}$ we have

$$
\begin{cases}(5.1) & d_{H}\left(a_{i}\right)+\gamma_{a b}(H)+\varepsilon_{a b}(H) \geq|H|-\varepsilon_{a b}+\varepsilon_{a b}(H) \tag{5}\\ (5.2) & \sigma_{a b}(H)+\left|Q_{H}\right| \geq|H|+|Q(H)|-\left|Q_{H}\right| .\end{cases}
$$

By hypothesis we have $\sigma_{a b}+|Q| \geq n=|H|+|R|$ and $d\left(a_{i}\right)+\gamma_{a b}+\varepsilon_{a b} \geq n$. Combining with the obvious inequalities $d\left(a_{i}\right) \leq d_{H}\left(a_{i}\right)+\left|T_{R}\right|, \sigma_{a b}=\sigma_{a b}(H)+|R|-\left|T_{R}\right|$ and $\gamma_{a b}=\gamma_{a b}(H)+|R|-\left|T_{R}\right|$ we get (5).

Claim 3. $N_{R}\left(a_{i}\right)=T_{R}$ for all $a_{i} \in Q_{H}$.
By (5), $N_{R}\left(a_{i}\right) \subseteq T_{R}$. If $\varepsilon_{a b}(H)-\varepsilon_{a b} \geq 0$ we see from (5.1) that $a_{i} \in Q_{H} \Rightarrow a_{i} \in Q(H)$ and hence $|Q(H)| \geq\left|Q_{H}\right|$. By (5.2) and Theorem 3, H is Hamiltonian, a contradiction. So we are left with the case $\varepsilon_{a b}(H)-\varepsilon_{a b}<0$ which implies $\varepsilon_{a b}(H)=0$ and $\varepsilon_{a b}=1$. $\operatorname{By}(5.1), d_{H}\left(a_{i}\right)+\gamma_{a b}(H) \geq|H|-1$. If $\Delta_{a b}(H)+\gamma_{a b}(H) \geq|H|$ then $\varepsilon_{a b}(H)=1$ by $\left(\varepsilon_{2}\right)$, a contradiction. Therefore

$$
\begin{equation*}
d_{H}\left(a_{i}\right)+\gamma_{a b}(H)=|H|-1 \quad \text { is true for all } a_{i} \in Q_{H} \tag{6}
\end{equation*}
$$

On the other hand suppose $\Delta_{a b}+\gamma_{a b} \geq n$. Adding the inequalities $\Delta_{a b} \leq \Delta_{a b}(H)+\left|T_{R}\right|$ and $\gamma_{a b}=\gamma_{a b}(H)+|R|-\left|T_{R}\right|$ we get $\Delta_{a b}(H)+\gamma_{a b}(H) \geq|H|$, another contradiction. Therefore

$$
\begin{equation*}
d\left(a_{i}\right)+\gamma_{a b}=n-1 \quad \text { is true for all } a_{i} \in Q_{H} \tag{7}
\end{equation*}
$$

Putting (viii), (6) and (7) together we get $d\left(a_{i}\right)=d_{H}\left(a_{i}\right)+\left|T_{R}\right|$ and hence the claim is proved.
Claim 4. $W=\varnothing$.
We have seen that there exists X_{i} such that $X_{i} \subset Q_{H}$. Choose $a_{j} \in X_{i}$. Then $N_{R}\left(a_{j}\right)=T_{R}$ and hence $W \subset N_{R}\left(a_{j}\right)$. We have now a contradiction to (vii) if $W \neq \varnothing$. From now on, we assume that $R\left[a_{r_{i}}, b\right]$ and $R\left[a_{s_{i}}, a\right]$ are respectively the edges $a_{r_{i}} b$ and $a_{s_{i}} a$.

Claim 5. $T_{R} \neq \varnothing$ and $\left|X_{i}\right|=1$ for all $i \in\left[1, \lambda_{a b}-1\right]$ satisfying the condition $X_{i} \subset Q_{H}$.
Otherwise suppose $T_{R}=\varnothing$. Now $G[T]=H[T]$ and $d(u)=d_{H}(u)$ holds for all $u \in T$. It is then obvious that $\varepsilon_{a b}=\varepsilon_{a b}(H)$, a contradiction. Since $T_{R} \neq \varnothing$, let u be any vertex of T_{R}. By Claim 3, $N_{X_{1}}(u)=X_{1}$ and hence we can insert u into two consecutive vertices π of X_{1} to obtain a longer path than π in G if $\left|X_{i}\right|>1$.

Claim 6. Last contradiction.
Since $T_{R} \neq \varnothing$, pick any vertex, v say, of T_{R}. Suppose first $Q \cap R=\varnothing$. Then by Claim 1, we have at least two indices, $h, e \in\left[1, \lambda_{a b}-1\right]$ with $e<h$ such that $X_{h} \cup X_{e} \subset Q_{H}$. By Claim 3, $v \in N\left(a_{h}\right) \cap N\left(a_{e}\right)$. But now the cycle $a a_{2} \ldots a_{e} v a_{h} a_{h+1} \ldots b a_{h-1} a_{h-2} \ldots a_{e+1} a$ is Hamiltonian in H. So we may assume $Q \cap R \neq \varnothing$. Then $d(v)+\gamma_{a b} \geq n-1$ or equivalently $d(v) \geq \bar{\alpha}_{a b}-1=1+\left|T_{H}\right|+\left|T_{R}\right|$. By Claim 1, we may assume that $X_{h} \subset Q_{H}$ for some $h \in\left[1, \lambda_{a b}-1\right]$ and hence $v \in N\left(a_{h}\right)$. Define

$$
J(v)=\left\{a_{i} \in H \mid a_{i+1} \in N(v) \text { if } i>h, a_{i-1} \in N(v) \text { if } i<h\right\} .
$$

Clearly $d(v)>1+\left|T_{H}\right|+\left|T_{R}\right| \Rightarrow d_{H}(v) \geq 2+\left|T_{H}\right|$. It is easy to check that $J \cap\{a, b\} \neq \varnothing$. Suppose, without loss of generality that, for some $l>h, a_{l} \in N(a) \cup N(b)$ (note that $l \geq h+2$ for otherwise we insert v into $a_{h} a_{h+1}$ to obtain a longer path than π). If $a_{l} \in N(a)$ then the cycle

$$
a a_{2} \ldots a_{h-1} b b a_{p-1} a_{p-2} \ldots a_{l+1} v a_{h} a_{h+1} \ldots a_{l-1} a
$$

is Hamiltonian in H. If $a_{l} \in N(h)$ then the cycle

$$
a a_{2} \ldots a_{h} v a_{l} a_{l+1} \ldots a_{p-1} b \ldots a_{l-1} a_{l-2} \ldots a_{h+1} a
$$

is Hamiltonian in H. The proof is now complete.
The subgraph $G[S]$ is Hamiltonian if G is $V \backslash S$-Hamiltonian. Applying Theorem 4 we obtain:
Theorem 6. The property " $G[S]$ is Hamiltonian" is $(2 n-s)$-stable.
A caterpillar is a particular tree which results in a path when its leaves are removed. The spine of the caterpillar is its longest path. The graph G is called S-caterpillar spannable if it has a spanning tree that is a caterpillar, whose leaves are the vertices of $S:=\left\{x_{1}, \ldots, x_{s}\right\}$. Suppose that the spine is an $\left[x_{1}, x_{2}\right]$-path. Let G^{\prime} be a graph obtained from G by adding a new vertex, v say, that is joined to x_{1} and x_{2}. Then G is S-caterpillar spannable if G^{\prime} is ($S-\left\{x_{1}, x_{2}\right\}$)-Hamiltonian. Applying Theorem 4 to the graph G^{\prime} we obtain:

Theorem 7. Let $S \subset V(G)$ with s vertices, $2 \leq s<n$. Then the property " G is S-caterpillar spannable" is ($n+s-1$)-degree stable.

A set $F \subset E$ of edges such that the components of the graph (V, F) are vertex disjoint paths is called F-cyclable (or $|F|$-edge-Hamilton) if there exists a cycle that contains F. It is F-traceable if there exists a path that contains F. Applying Theorem 3 to the graph obtained from G by subdividing each edge in F into two, we obtain:

Theorem 8. The property " G is F-cyclable with $|F| \leq n-3$ ", is $n+|F|$-degree stable.
A graph G is defined to be $|F|$-Hamilton-connected if for each pair (x, y) of vertices there is a Hamiltonian path with endpoints x, y that contains F. Now G must be $(F \cup x y$)-cyclable and using Theorem 8 we obtain:

Theorem 9. The property " G is F-Hamilton-connected with $|F| \leq n-4$ ", is $n+|F|+1$-degree stable.
Theorem 10. Let n, s be positive integers with $s \leq \frac{n}{2}$. Then the property of containing $s K_{2}$ is $(2 s-1)$-stable.
Proof. If $G+a b$ contains an $s K_{2}$ but G does not, then there exists an $(s-1)$-matching $\left\{a_{1} b_{1}, \ldots, a_{s-1} b_{s-1}\right\}$ in G and an s-matching in $G+a b$. For $i \in[1, s-1]$ we set

$$
\left\{\begin{array}{l}
A:=\left\{a_{i}\right\}, \quad B:=\left\{b_{i}\right\}, \quad D:=V \backslash(A \cup B \cup\{a, b\}) \\
M:=\left\{a_{i} b_{i} \mid i \in[1, s-1]\right\}, \quad M_{i}=\left\{a_{i}, b_{i}\right\} \quad \text { and } \quad m_{i}:=\left|N_{M_{i}}(a) \cup N_{M_{i}}(b)\right| .
\end{array}\right.
$$

We label the vertices of A, B so that $a_{i} \in N(a) \cup N(b)$ whenever $m_{i} \geq 1$. An M-augmenting path is a path with an even number of vertices, unsaturated endpoints in $D \cup\{a, b\}$ and whose edges are alternatively in $E-M$ and M. To avoid contradiction, we obviously assume that G contains no M-augmenting path. Moreover $D \cup\{a, b\}$ must be an independent set for otherwise an s-matching would exist in G. We shall assume $Q \neq \varnothing$, by Bondy and Chvátal's result [6].

To distinguish the all possible configurations we define the following independent sets: $J_{0}:=\left\{i \mid m_{i}=0\right\}, J_{11}:=$ $\left\{i \mid m_{i}=1\right.$ and $\left.\left|N\left(a_{i}\right) \cap\{a, b\}\right|=1\right\}, J_{12}:=\left\{i \mid m_{i}=1\right.$ and $\left.\left|N\left(a_{i}\right) \cap\{a, b\}\right|=2\right\}$ and $J_{2}:=\left\{i \mid m_{i}=2\right\}$. If $j \in J_{2}$ then $d_{M_{j}}(a)+d_{M_{j}}(b)=2$ and either $d_{M_{j}}(a)=2$ or $d_{M_{j}}(b)=2$ for if $a a_{j}, b b_{j} \in E$ then $a a_{j} b_{j} b$ is an M-augmenting path. These sets form a partition of $J:=J_{0} \cup J_{11} \cup J_{12} \cup J_{2}$. We note that,

$$
\left\{\begin{array}{l}
s=|J|+1, \quad \sigma_{a b}=\left|J_{11}\right|+2\left(\left|J_{12}\right|+\left|J_{2}\right|\right) \tag{8}\\
\gamma_{a b}=\left|J_{11}\right|+\left|J_{12}\right|+2\left|J_{2}\right| \quad \text { and } \quad \lambda_{a b}=\left|J_{12}\right|
\end{array}\right.
$$

By hypothesis $\sigma_{a b}+|Q| \geq 2 s-1$. Using (8) we obtain

$$
\begin{equation*}
|Q|>2\left|J_{0}\right|+\left|J_{11}\right| \tag{9}
\end{equation*}
$$

At this point we split the proof into two cases.
Case 1. $Q \cap D \neq \varnothing$.
Choose $x \in Q \cap D$ such that $d(x)=\max \{d(y) \mid y \in Q \cap D\}$. Moreover we may assume without loss of generality that $d(x) \geq d\left(b_{i}\right)$ whenever $x a_{i} \in E$. If this is not the case, we exchange the labeling of x and b_{i}. We claim that $\forall i \in[1, s-1], d_{M_{i}}(x)+m_{i}=2$. Indeed, if $d_{M_{i}}(x)+m_{i} \geq 3$, it is easy to check that G has an M-augmenting path with 4 vertices and a, x (or b, x) as extremities. Therefore $\sum_{i=1}^{s-1}\left(d_{M_{i}}(x)+m_{i}\right)=d(x)+\gamma_{a b} \leq 2(s-1)$ (recall that D is an independent set). As $x \in Q \cap D$, we must have $\varpi(G, x) \geq 2 s-1$. This leads to the conclusion that $\varepsilon_{a b}=1$ and $d_{M_{i}}(x)+m_{i}=2$ as claimed. Moreover $x b_{j} \notin E$ whenever $j \in J \backslash J_{0}$ for if $x b_{j} \in E$ then $a a_{j} b_{j} x$ (or $b a_{j} b_{j} x$) is an M-augmenting path. Similarly $x a_{j} \notin E$ whenever $j \in J_{2}$. It is then clear that

$$
\begin{equation*}
N(x)=\left\{M_{i} \mid i \in J_{0}\right\} \cup\left\{a_{j} \mid m_{j}=1\right\} . \tag{10}
\end{equation*}
$$

Obviously $d(x)=\Delta_{a b}$, by the choice of x. Since $\varpi(G, x)=2(s-1)$ we deduce that $d(u)=\Delta_{a b}$ for any $u \in Q$. At this point we conclude that $G[T] \neq K r \cup K_{t-r}, 1 \leq r \leq t$ by $\left(\varepsilon_{1}\right)$.
Sub-Case 1.1: $J_{0} \neq \varnothing$.
We claim that $b_{j} \notin Q$ whenever $j \in J \backslash J_{0}$. This is obvious if $j \in J_{2}$ since then $a_{j}, b_{j} \in N(a) \cup N(b)$. If $j \in\left(J_{11} \cup J_{12}\right)$ then $d\left(b_{j}\right)=d(x)$. Exchanging the role of x and b_{j} we see that, in particular, $b_{j} b_{i} \in E$ where $i \in J_{0}$. But then either $a a_{j} b_{j} b_{i} a_{i} x$ or $b a_{j} b_{j} b_{i} a_{i} x$ is an M-augmenting path. Therefore $Q \subset\left\{M_{i} \mid m_{i}=0\right\} \cup D$. In fact $Q \cap D=\{x\}$ for if there exists $y \in(Q \cap D) \backslash\{x\}$ then, as for x, we have in particular $y b_{i} \in E$ with $i \in J_{0}$. But then $x a_{i} b_{i} y$ is an M-augmenting path, a contradiction. Therefore $Q \subset\left\{M_{i} \mid m_{i}=0\right\} \cup\{x\}$. By (9), we have more precisely $Q=\left\{M_{i} \mid m_{i}=0\right\} \cup\{x\}$. Since each vertex of $\left\{M_{i} \mid m_{i}=0\right\}$ can play the role of x, we conclude that $N(v)=\left\{M_{i} \mid i \in J_{0}\right\} \cup\left\{a_{j} \mid m_{j}=1\right\}$ holds for any $v \in Q$. Furthermore it is easy to check that $T \backslash Q=\left\{b_{j} \mid j \in J \backslash J_{0}\right\} \cup(D \backslash\{x\})$ is an independent set. This implies that $G[T]=K_{|Q|} \cup \overline{K_{t-|Q|}}$. This is a contradiction. Sub-Case 1.2: $J_{0}=\varnothing$.

In this sub-case and by (10) we have $N(x)=\left\{a_{j} \mid m_{j}=1\right\}$. It follows that $Q \subseteq\left\{b_{j} \mid j \in J_{11} \cup J_{12}\right\} \cup D$. We already know that $b_{j} \notin Q$ if $j \in J_{2}$. We claim that T is an independent set. We recall first that D is an independent set. Clearly $N(y) \subseteq\left\{a_{j} \mid m_{j}=1\right\}$ for all $y \in D$ for if $b_{j} \in N(y)$ with $j \in J_{11} \cup J_{12}$ then we have an M-augmenting path with 4 vertices and extremities (a, y)
or (b, y). Finally assume $b_{i} b_{j} \in E$ with $j \in J_{11} \cup J_{12}$. Then $x a_{j} b_{j} b_{i} a_{i} a$ (or $x a_{j} b_{j} b_{i} a_{i} b$) is an M-augmenting path. So $G[T]=\overline{K_{t}}$ as claimed and a contradiction is again obtained.
Case $2 . Q \cap D=\varnothing($ or $Q \subset A \cup B)$.
By (9), $|Q|>\left|J_{11}\right|$ and hence there exists $i, 1$ say, such that $1 \in J_{12}$ and $b_{1} \in Q$. As for the above sub-case we prove that T is an independent set. It is easy to see that an M-augmenting path with 4 vertices and extremities (a, y) or (b, y) exists if $b_{i} y \in E$ where $j \in J_{11} \cup J_{12} \cup J_{2}$ and $y \in D$. Suppose next $b_{1} b_{i} \in E, 1 \leq i \leq s-1$. Then either $a a_{i} b_{i} b_{1} a_{1} b$ or $b a_{i} b_{i} b_{1} a_{1} a$ is an $M-$ augmenting path. This implies that $N\left(b_{1}\right)=\left\{a_{j} \mid m_{j}=1\right\}$ since $b_{1} \in Q$. Finally, suppose $b_{i} b_{j} \in E, 1<i<j \leq s-1$. Assuming for instance $a a_{i} \in E$ then $b a_{1} b_{1} a_{j} b_{j} b_{i} a_{i} a$ is an M-augmenting path. From these observations we get $Q \subseteq\left\{b_{i} \mid i \in J_{11} \cup J_{12}\right\}$ and $N(v)=\left\{a_{j} \mid i \in J_{11} \cup J_{12}\right\}$ whenever $v \in Q$. Thus $d(v)+\gamma_{a b}=\left|J_{11}\right|+\left|J_{12}\right|+\left|J_{11}\right|+\left|J_{12}\right|+2\left|J_{2}\right|=2|J|=2(s-1)$. This means that $\varepsilon_{a b}=1$. On the other hand $\Delta_{a b}+\gamma_{a b}=2(s-1)$ and $G[T]$ is an independent set. Therefore $\varepsilon_{a b}=0$ by (ε). The proof is now complete.

Example 2. Consider the Petersen graph G. Obviously, it has a perfect matching. By Bondy-Chvátal's result, we have $C_{k}(G)=K_{10}$ only for $s \leq 3$. By Theorem $3, d C_{k}(G)=K_{10}$ for $s=5$ since $\sigma_{a b}+|Q|=6+3 \geq 9=2 s-1$ as each vertex of T is in Q since $d(x)+\gamma_{a b} \geq 8$ and $\varepsilon_{a b}=1$.

As another example, consider the graph $G=C_{6}=x_{1} x_{2} \ldots x_{6} x_{1}$. Obviously this graph contains a 3-matching. For instance $d\left(x_{1}\right)+d\left(x_{3}\right)+|Q|=5 \geq 2 s-1$ with $s=3$ since $d\left(x_{1}\right)+d\left(x_{3}\right)=4$ and $x_{5} \in Q$ (it satisfies the condition $\left.d\left(x_{5}\right)+\gamma_{x_{1} x_{3}}=2+3 \geq 2 s-1\right)$. It is simple to check that $d C_{5}(G)=K_{6}$ while $C_{5}(G)=G$. We would like to point out that the $(2 s-1)$-closures based on Bondy-Chvátal's condition and condition given in [10] are equal.

4. Corollaries

The following results can be easily derived as corollaries. Let G be a graph of order n, S be a subset of vertices and $s \leq|S|$ be an integer. Then the property:

- G is " S-vertex Hamiltonian-connected" is ($n+s+1$)-degree stable (the graph is said to be S-vertex Hamiltonian-connected if it remains Hamiltonian-connected if s vertices of S or less vertices are removed);
- of being S-pancyclable is $(n+s-3)$-degree stable with $3 \leq s \leq n$;
- of having $c(G) \geq s$ is n-degree stable, where $c(G)$ is the circumference of G;
- $\mu(G) \leq p$ is $(n-p)$-stable, $p \geq 1$, where $\mu(G)$ is the number of paths that collectively contain the vertices of G;
- G is S-leaf-connected (G has a spanning tree whose leaves are the vertices of S) is ($n+s-1$)-stable;
- of being s-edge-Hamiltonian is $(n+s)$-degree stable.

5. Open problem

We end the paper by posing the following open problem.
Problem 1. Let n, s be positive integers with $2 \leq s<n$. Then the property of having an s-factor is $(n+2 s-4)$-degree stable.

Acknowledgements

The author wishes to thank the anonymous referees for their pertinent comments and suggestions.

References

[1] A. Ainouche, N. Christofides, Strong sufficient conditions for the existence of hamiltonian circuits in undirected graphs, J. Comb. Theory (Series B) 31 (1981) 339-343.
[2] A. Ainouche, N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Appl. Math. 17 (1987) $213-221$.
[3] A. Ainouche, Extensions of a closure condition: The β-closure, Rapport de recherche CEREGMIA.
[4] A. Ainouche, I. Schiermeyer, 0-dual closures for several classes of hamiltonian and nonhamiltonian graphs, Graphs Combin. 19 (3) (2003) 297-307.
[5] A. Ainouche, Extension of several sufficient conditions for hamiltonian graphs, Discuss. Math. Graph Theory 26 (2006) 23-39.
[6] J.A. Bondy, V. Chvàtal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[7] H.J Broersma, I. Schiermeyer, A closure concept based on neighborhood unions of independent triples, Discrete Math. 124 (1994) 37-47.
[8] H.J Broersma, Z. Ryjàĉek, I. Schiermeyer, Closure Concepts: A Survey, Graphs Combin. 16 (2000) 17-48.
[9] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan \& Co., London, 1975.
[10] Yong-jin Zhu, Feng Tian, Xiao-tie Deng, More powerful closure operations on graphs, Discrete Math. 87 (1991) 197-214.

[^0]: E-mail address: a.ainouche@martinique.univ-ag.fr.

