Degree conditions for graphs to be λ_{3}-optimal and super- $\lambda_{3}{ }^{\text {x }}$

Li Shang ${ }^{\text {a,b,*, Heping Zhang }}{ }^{\text {b }}$
${ }^{\text {a }}$ School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, PR China

A R T I C L E I N F O

Article history:

Received 2 August 2007
Received in revised form 12 June 2008
Accepted 28 September 2008
Available online 7 November 2008

Keywords:

3-restricted edge connectivity Optimally 3-restricted edge connected Super-3-restricted edge connected

Abstract

For a positive integer m, an edge-cut S of a connected graph G is an m-restricted edge-cut if each component of $G-S$ contains at least m vertices. The m-restricted edge connectivity of G, denoted by $\lambda_{m}(G)$, is defined as the minimum cardinality of all m-restricted edgecuts. Let $\xi_{m}(G):=\min \{|\partial(X)|: X \subseteq V(G),|X|=m$, and $G[X]$ is connected $\}$, where $\partial(X)$ denotes the set of edges of G each having exactly one endpoint in X. A graph G is said to be λ_{m}-optimal if $\lambda_{m}(G)=\xi_{m}(G)$, and super- λ_{m} if every minimum m-restricted edge-cut isolates a component of size exactly m.

In this paper, firstly, we give some relations among λ_{3}-optimal, λ_{i}-optimal and superλ_{i} for $i=1,2$. Then we present degree conditions for arbitrary, triangle-free and bipartite graphs to be λ_{3}-optimal and super- λ_{3}, respectively; moreover, we give some examples which prove that our results are the best possible.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and notations

Let G be a connected undirected simple graph with vertex set $V(G)$ and edge set $E(G)$. Let $n(G)$ denote the order of G, $d_{G}(u, v)$ the distance between vertices u and v in G, and $g(G)$ the girth of G. For a vertex $v \in V(G), N_{G}(v)$ denotes the set of vertices adjacent to v in $G, N_{G}[v]:=N_{G}(v) \cup\{v\}$. Then $d(v)=\left|N_{G}(v)\right|$ is the degree of v in G, and $\delta(G)$ is the minimum degree of G. If $X \subseteq V(G)$, then $G[X]$ denotes the subgraph of G induced by X, and $X=V(G) \backslash X$. For disjoint sets X and Y of vertices of $G,[X, Y]$ denotes the set of edges of G with one endpoint in X and the other one in Y. Put $\partial(X):=[X, \bar{X}]$. We denote $N_{G[X]}(v)$ by $N_{X}(v)$, the complete graph with order n by K_{n}, and the complete bipartite graph with bipartite sets of cardinalities m and n by $K_{m, n}$. A (p, r)-barbell $(p \geq 3, r \leq p)$ [19] is a graph G obtained by joining two copies of the complete graph K_{p} with $p r$ additional edges such that $d(v)=p+r-1$ for each vertex $v \in V(G)$.

It is well known that the underlying topology of an interconnection network is usually modeled by a graph G with vertices and edges representing the nodes and links, respectively. An edge-cut S of a connected graph G is called a restricted edgecut if $G-S$ contains no isolated vertex. The minimum cardinality of all restricted edge-cuts, denoted by $\lambda^{\prime}(G)$, is called the restricted edge connectivity of G. Edge connectivity $\lambda(G)$ and restricted edge connectivity $\lambda^{\prime}(G)$ have been used to measure the reliability of a network. In order to more accurately measure the reliability, the parameter $\lambda_{m}(G)$ received much attention. Under some reasonable conditions, Wang and $\operatorname{Li}[18]$ showed that for two regular graphs G_{1} and G_{2} with $\lambda\left(G_{1}\right)=\lambda\left(G_{2}\right)=\lambda$ and $\lambda^{\prime}\left(G_{1}\right)=\lambda^{\prime}\left(G_{2}\right)=\lambda^{\prime}$, and $m_{\lambda}\left(G_{1}\right)=m_{\lambda}\left(G_{2}\right)$ and $m_{\lambda^{\prime}}\left(G_{1}\right)=m_{\lambda^{\prime}}\left(G_{2}\right), G_{1}$ is more reliable than G_{2} if $\lambda_{3}\left(G_{1}\right)>\lambda_{3}\left(G_{2}\right)$ or $\lambda_{3}\left(G_{1}\right)=\lambda_{3}\left(G_{2}\right)=\lambda_{3}$ and $m_{\lambda_{3}}\left(G_{1}\right)<m_{\lambda_{3}}\left(G_{2}\right)$, where $m_{i}(G)$ denotes the number of disconnecting edge sets of size i in graph G. So graphs with maximal 3-restricted edge connectivity $\lambda_{3}(G)$ (namely λ_{3}-optimal graphs) and the fewest minimum 3-restricted edge-cuts (super- λ_{3} graphs have these two properties) have higher reliability.

[^0]

Fig. 1. (a) The 3-leg spider graph, and (b) the friendship graph.
The m-restricted edge connectivity $\lambda_{m}(G)$ was defined by Fábrega and Fiol $[4,5]$ as follows:
Definition 1.1. An edge set S of a connected graph G is called an m-restricted edge-cut if $G-S$ is disconnected and each component of $G-S$ contains at least m vertices. The m-restricted edge connectivity of G, denoted by $\lambda_{m}(G)$, is the minimum cardinality of all m-restricted edge-cuts of G.

Balbuena et al. [1] improved the results contained in [4,5], and more recently Bonsma et al. [2] and Meng and Ji [11] have obtained very interesting results concerning the existence of m-restricted edge-cuts. Also see the survey by Hellwig and Volkmann [9].

Note that $\lambda_{1}(G)=\lambda(G)$ and $\lambda_{2}(G)$ is just the usual restricted edge connectivity $\lambda^{\prime}(G)$. An m-restricted edge-cut S in G is called a λ_{m}-cut, if $|S|=\lambda_{m}(G)$, and trivial if S isolates a component of size exactly m. Obviously, for any λ_{m}-cut S, the graph $G-S$ has exactly two components.

For a connected graph G, let

$$
\xi_{m}(G):=\min \{|\partial(X)|: X \subseteq V(G),|X|=m, \text { and } G[X] \text { is connected }\} .
$$

Note that $\xi_{1}(G)=\delta(G)$ and $\xi_{2}(G)$ is just the minimum edge-degree $\xi(G)$ of G. A connected graph G is λ_{m}-connected if $\lambda_{m}(G)$ exists. Clearly, if G is λ_{m}-connected for $m \geq 2$, then G is also λ_{m-1}-connected and $\lambda_{m-1}(G) \leq \lambda_{m}(G)$. In 1988, Esfahanian and Hakimi [3] showed that every connected graph G of order $n(G) \geq 4$, except a star $K_{1, n-1}, \lambda_{2}(G)$ exists and satisfies $\lambda_{2}(G) \leq \xi_{2}(G)$. Bonsma, Ueffing and Volkman [2], Wang and Li [22] characterized λ_{3}-connected graphs as follows.

Theorem 1.2 ([2,22]). (a) A connected graph G of order $n(G) \geq 6$ is λ_{3}-connected if and only if G is not isomorphic to the 3-leg spider graph (Fig. 1(a)) or any subgraph of the friendship graph (Fig. 1(b)).
(b) If G is λ_{3}-connected, then $\lambda_{3}(G) \leq \xi_{3}(G)$.

For $m \geq 4$, Bonsma et al. [2] pointed out that the inequality $\lambda_{m}(G) \leq \xi_{m}(G)$ is no longer true in general, Ou characterized graphs of order at least $3 m-2$ that contain m-restricted edge-cuts [12] and showed that a λ_{4}-connected graph G with order at least 11 has the property $\lambda_{4}(G) \leq \xi_{4}(G)$ [13], and Zhang and Yuan [24] showed that for $m \leq \delta(G)+1$, every connected graph G with order at least $2(\delta(G)+1)$ except the graph $G_{n, t}^{*}$ is λ_{m}-connected and $\lambda_{m}(G) \leq \xi_{m}(G)$, where $G_{n, t}^{*}$ is obtained from n copies of K_{t} by adding a new vertex u that is adjacent to every vertex of them. To maximize $\lambda_{m}(G)$ and minimize the number of λ_{m}-cuts of G, the following definition was proposed in [11,23,25].

Definition 1.3. For a positive integer m, a λ_{m}-connected graph G with $\lambda_{m}(G) \leq \xi_{m}(G)$ is said to be optimally m-restricted edge connected, for short λ_{m}-optimal, if $\lambda_{m}(G)=\xi_{m}(G)$, and super-m-restricted edge connected, for short super- λ_{m}, if every λ_{m}-cut of G is trivial.

Note that λ_{1}-optimal is just maximally edge-connected and λ_{2}-optimal is the λ^{\prime}-optimal; super- λ_{1} is just the super-edge connected and super- λ_{2} is the super $-\lambda^{\prime}$.

For the λ_{3}-optimal and super $-\lambda_{3}$ graphs, Bonsma et al. [2] showed that the complete bipartite graph $K_{r, s}$ with $r, s \geq 2$ and $r+s \geq 6$ is λ_{3}-optimal, Ou and Zhang characterized the 3-restricted edge connectivity of vertex transitive graphs with girth four [14] and that of 3-regular and 4-regular vertex transitive graphs with girth three [15], Zhang and Meng [23] studied the λ_{3}-optimal vertex transitive graphs, Wang [19] presented Ore type sufficient conditions for graphs with diameter 2 to be λ_{3}-optimal and super- λ_{3}, Zhang and Yuan [25] gave degree conditions for graphs with diameter 2 to be λ_{m}-optimal, and Zhang [26] gave sufficient conditions expressed in terms of $\xi_{m}(G)$ for graphs to be λ_{m}-optimal, $m=2$, 3 . For more information on m-restricted edge connectivity of graphs, please refer to [6,7,13,16,20,24].

In this paper, we study the index λ_{3} of graphs and present degree conditions for arbitrary, triangle-free, and bipartite graphs to be λ_{3}-optimal and super- λ_{3}, respectively; moreover, we give some examples which prove that our results are the best possible.

Now we discuss some relations between λ_{m}-optimal and super $-\lambda_{m}$ for $m \leq 3$. A super λ_{m} graph is also λ_{m}-optimal, but the converse is not true, and a λ_{3}-optimal graph is not always λ_{2}-optimal. Hellwig and Volkman [8] gave the following proposition about the relations between λ_{2}-optimal, λ_{1}-optimal and super- λ_{1}.

Fig. 2. $\mathrm{A} \lambda_{3}$-optimal but not super $-\lambda_{2}$ graph with $\delta(G)=4$.

Fig. 3. Two λ_{3}-optimal but not λ_{2}-optimal graphs.
Proposition 1.4 ([8]). (a) If G is λ_{2}-optimal, then G is also λ_{1}-optimal.(b) If G is λ_{2}-optimal and $\delta(G) \geq 3$, then G is super- λ_{1}.
We give relations below between λ_{3}-optimal, λ_{i}-optimal and super- λ_{i} for $i=1,2$.
Proposition 1.5. Let G be a λ_{3}-optimal graph.
(a) If $\delta(G) \geq 4$, then G is λ_{i}-optimal for $i=1,2$ and super $-\lambda_{1}$; if $\delta(G)>4$, then G is super- λ_{i} for $i=1$, 2 .
(b) Assume that G is triangle-free. If $\delta(G) \geq 2$, then G is λ_{i}-optimal for $i=1,2$; if $\delta(G)>2$, then G is super- λ_{i} for $i=1,2$.

Proof. Since G is λ_{3}-optimal,

$$
\begin{aligned}
\lambda_{3}(G)= & \xi_{3}(G) \\
= & \min \{|\partial(X)|: X \subset V(G),|X|=3, \text { and } G[X] \text { is connected }\} \\
= & \min \{\min \{d(x)+d(y)+d(z)-6: G[\{x, y, z\}] \text { is a triangle }\}, \\
& \min \{d(x)+d(y)+d(z)-4: G[\{x, y, z\}] \text { is a path }\}\} \\
\geq & \begin{cases}\xi_{2}(G)+\delta(G)-4, & \text { if } G \text { contains a triangle; } \\
\xi_{2}(G)+\delta(G)-2, & \text { if } G \text { is triangle-free. }\end{cases}
\end{aligned}
$$

Hence, $\lambda_{3}(G) \geq \xi_{2}(G)$ if $\delta(G) \geq 4$ and $\lambda_{3}(G)>\xi_{2}(G)$ if $\delta(G)>4$; and when G is triangle-free, $\lambda_{3}(G) \geq \xi_{2}(G)$ if $\delta(G) \geq 2$ and $\lambda_{3}(G)>\xi_{2}(G)$ if $\delta(G)>2$. Since $\lambda_{2}(G) \leq \lambda_{3}(G), \lambda_{3}(G) \geq \xi_{2}(G)$ implies $\lambda_{2}(G)=\xi_{2}(G)$ and $\lambda_{3}(G)>\xi_{2}(G)$ implies that each λ_{2}-cut is trivial, so by Proposition 1.4, both statements (a) and (b) hold.

Remark 1. From the proof of Proposition 1.5, we know that a λ_{3}-optimal graph G is super- λ_{2} if $\xi_{3}(G)>\xi_{2}(G)$ and λ_{2} optimal if $\xi_{3}(G) \geq \xi_{2}(G)$. A λ_{3}-optimal graph G is not always super- λ_{2} if $\xi_{3}(G)=\xi_{2}(G)$ or λ_{2}-optimal if $\xi_{3}(G)<\xi_{2}(G)$. In Fig. 2, we give an example of a graph with $\delta(G)=4, \xi_{3}(G)=\xi_{2}(G)=6$, and $\lambda_{3}(G)=6$. So G is λ_{3}-optimal but not super- λ_{2}. The cycle $C_{n}(n \geq 6)$, a λ_{3}-optimal triangle-free graph with $\delta\left(C_{n}\right)=2$ and $\xi_{3}\left(C_{n}\right)=\xi_{2}\left(C_{n}\right)=2$, is not super- λ_{2}. In Fig. 3, $\lambda_{3}\left(H_{1}\right)=\xi_{3}\left(H_{1}\right)=3, \lambda_{3}\left(H_{2}\right)=\xi_{3}\left(H_{2}\right)=1$, but $\lambda_{2}\left(H_{1}\right)=3<4=\xi_{2}\left(H_{1}\right), \lambda_{2}\left(H_{2}\right)=1<2=\xi_{2}\left(H_{2}\right)$. So H_{1} and H_{2} are λ_{3}-optimal but not λ_{2}-optimal.

We next present degree conditions for arbitrary, triangle-free, and bipartite graphs to be λ_{3}-optimal and super- λ_{3}, respectively.

2. Conditions for arbitrary graphs

Lemma 2.1. Let G be a λ_{3}-connected graph. Then:
(a) G is λ_{3}-optimal if and only if either G is non- λ_{4}-connected, or G is λ_{4}-connected and $\lambda_{4}(G) \geq \xi_{3}(G)$.
(b) G is super $-\lambda_{3}$ if and only if either G is non- λ_{4}-connected, or G is λ_{4}-connected and $\lambda_{4}(G)>\xi_{3}(G)$.

Proof. Since G is λ_{3}-optimal, then $\lambda_{3}(G)=\xi_{3}(G)$. Thus to prove the necessity observe that if G is λ_{4}-connected, then by $\lambda_{4}(G) \geq \lambda_{3}(G)$, we have $\lambda_{4}(G) \geq \xi_{3}(G)$. If G is super- λ_{3}, then $\lambda_{4}(G)>\lambda_{3}(G)$ and we have $\lambda_{4}(G)>\xi_{3}(G)$.

To prove the sufficiency note that if G is non- λ_{4}-connected, then each λ_{3}-cut of G is trivial, and G is λ_{3}-optimal and super $-\lambda_{3}$. Let G be λ_{4}-connected with $\lambda_{4}(G) \geq \xi_{3}(G)$. If $\lambda_{4}(G)>\lambda_{3}(G)$, then each λ_{3}-cut of G is trivial and G is thus superλ_{3}. Otherwise $\lambda_{3}(G)=\lambda_{4}(G) \geq \xi_{3}(G)$. Then $\lambda_{3}(G)=\xi_{3}(G)$, and G is λ_{3}-optimal.

In the following, we first list some degree conditions for graphs to be λ_{m}-optimal and super $-\lambda_{m}$ for $m=1,2,3$, then present sufficient conditions for arbitrary graphs to be λ_{3}-optimal and super- λ_{3}.

Theorem 2.2. Let G be a connected graph.
(a) [10] If $d(u)+d(v) \geq n(G)-1$ for all pairs u, v of nonadjacent vertices, then G is λ_{1}-optimal.
(b) [10] If $d(u)+d(v) \geq n(G)$ for all pairs u, v of nonadjacent vertices, and G is different from $K_{n(G) / 2} \times K_{2}$, then G is super- λ_{1}.
(c) [20] If $n(G) \geq 4$ and $d(u)+d(v) \geq n(G)+1$ for all pairs u, v of nonadjacent vertices, then G is λ_{2}-optimal.
(d) [8] Let G be a λ_{2}-connected graph such that $\delta(G) \geq\lfloor n(G) / 2\rfloor-1$. If for each triangle T of G there exists at least one vertex $w \in V(T)$ such that $d(w) \geq\lfloor n(G) / 2\rfloor+1$, then G is λ_{2}-optimal.
(e) [21] If G is not $a(p, 2)$-barbell and $d(u)+d(v) \geq n(G)+2$ for all pairs u, v of nonadjacent vertices, then G is super $-\lambda_{2}$.
(f) [19] If $n(G) \geq 6$ and $d(u)+d(v) \geq n(G)+3$ for all pairs u, v of nonadjacent vertices, then G is λ_{3}-optimal.
(g) [19] If G is not $(p, 3)$-barbell $(p \geq 4), n(G) \geq 6$, and $d(u)+d(v) \geq n(G)+3$ for all pairs u, v of nonadjacent vertices, then G is super- λ_{3}.

Theorem 2.3. Let G be a connected graph with $n(G) \geq 6$. Then G is λ_{3}-optimal if the following three conditions hold:
(a) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor-5$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=3$,
(b) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor-1$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$, and
(c) for each subgraph K_{4} of G, there exists at least one vertex $v \in K_{4}$ with $d(v) \geq\lfloor n(G) / 2\rfloor+2$.

Proof. From Condition (b) and $n(G) \geq 6$, it follows that $d(x)+d(y) \geq 5$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$. Hence G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. From Theorem 1.2 we know that G is λ_{3}-connected. So by Lemma 2.1 (a), it suffices to show that $\lambda_{4}(G) \geq \xi_{3}(G)$. Let $\partial(X)$ be any λ_{4}-cut of G with $|X| \leq|\bar{X}|$. This implies $4 \leq|X| \leq\lfloor n(G) / 2\rfloor$. Choose three vertices u, v and w in X such that $G[\{u, v, w\}]$ is connected and satisfies

$$
|\partial(\{u, v, w\})|=\min \{|\partial(A)|: A \subset X,|A|=3, \text { and } G[A] \text { is connected }\} .
$$

Case 1. $G[\{u, v, w\}]$ is a path. Assume that $u w \notin E(G)$, by the choice of u, v and w, we have

$$
\begin{align*}
& d(a) \geq d(w) \text { and } 2 \leq d_{G}(a, w) \leq 3, \quad \text { for each } a \in N_{X}(u) \backslash N_{X}[\{v, w\}] ; \tag{1}\\
& d(b) \geq d(u) \text { and } d_{G}(b, u)=2, \quad \text { for each } b \in N_{X}(v) \backslash N_{X}[\{u, w\}] ; \tag{2}\\
& d(c) \geq d(u) \text { and } 2 \leq d_{G}(c, u) \leq 3, \quad \text { for each } c \in N_{X}(w) \backslash N_{X}[\{u, v\}] ; \tag{3}\\
& d(d) \geq d(w)+2 \text { and } d_{G}(d, w)=2, \quad \text { for each } d \in\left(N_{X}(u) \cap N_{X}(v)\right) \backslash N_{X}[w] ; \tag{4}\\
& d(e) \geq d(v) \text { and } d_{G}(e, v)=2, \quad \text { for each } e \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash N_{X}[v] ; \tag{5}\\
& d(f) \geq d(u)+2 \text { and } d_{G}(f, u)=2, \quad \text { for each } f \in\left(N_{X}(v) \cap N_{X}(w)\right) \backslash N_{X}[u] ; \tag{6}
\end{align*}
$$

and each vertex $g \in N_{X}(u) \cap N_{X}(v) \cap N_{X}(w)$ satisfies that

$$
\begin{equation*}
d(g) \geq d(u)+2, \quad d(g) \geq d(w)+2, \quad \text { and } \quad d_{G}(u, w)=2 \tag{7}
\end{equation*}
$$

For each vertex $a \in N_{X}(u) \backslash N_{X}[\{v, w\}]$, according to (1), $|X| \leq\lfloor n(G) / 2\rfloor$, and Conditions (a) and (b), we obtain

$$
\begin{aligned}
\left|N_{\bar{X}}(a)\right| & =d(a)-\left|N_{X}(a)\right| \\
& \geq \frac{1}{2}(d(a)+d(w))-(|X|-3) \\
& \geq\lfloor n(G) / 2\rfloor-\frac{5}{2}-(\lfloor n(G) / 2\rfloor-3) \\
& =\frac{1}{2}
\end{aligned}
$$

Since $\left|N_{\bar{X}}(a)\right|$ is an integer, it follows that $\left|N_{\bar{X}}(a)\right| \geq 1$. Similarly, we can deduce that
$\left|N_{\bar{X}}(b)\right| \geq 3, \quad$ for each $b \in N_{X}(v) \backslash N_{X}[\{u, w\}] ;$
$\left|N_{\bar{X}}(c)\right| \geq 1, \quad$ for each $c \in N_{X}(w) \backslash N_{X}[\{u, v\}] ;$
$\left|N_{\bar{X}}(d)\right| \geq 3, \quad$ for each $d \in\left(N_{X}(u) \cap N_{X}(v)\right) \backslash N_{X}[w] ;$
$\left|N_{\bar{X}}(e)\right| \geq 2, \quad$ for each $e \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash N_{X}[v] ;$
$\left|N_{\bar{X}}(f)\right| \geq 3, \quad$ for each $f \in\left(N_{X}(v) \cap N_{X}(w)\right) \backslash N_{X}[u] ;$
$\left|N_{\bar{X}}(g)\right| \geq 3, \quad$ for each $g \in N_{X}(u) \cap N_{X}(v) \cap N_{X}(w)$.
Case 2. $G[\{u, v, w\}]$ is a triangle. By the choice of vertices u, v and w, we have
$d(a) \geq d(w)-2$ and $d_{G}(a, w)=2, \quad$ for each $a \in N_{X}(u) \backslash N_{X}[\{v, w\}] ;$
$d(b) \geq d(u)-2$ and $d_{G}(b, u)=2, \quad$ for each $b \in N_{X}(v) \backslash N_{X}[\{u, w\}] ;$

Fig. 4. A non- λ_{3}-optimal graph not satisfying Condition (b) of Theorem 2.3.

$$
\begin{align*}
& d(c) \geq d(v)-2 \text { and } d_{G}(c, v)=2, \quad \text { for each } c \in N_{X}(w) \backslash N_{X}[\{u, v\}] ; \tag{10}\\
& d(d) \geq d(w) \text { and } d_{G}(d, w)=2, \quad \text { for each } d \in\left(N_{X}(u) \cap N_{X}(v)\right) \backslash N_{X}[w] ; \tag{11}\\
& d(e) \geq d(v) \text { and } d_{G}(e, v)=2, \quad \text { for each } e \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash N_{X}[v] ; \tag{12}\\
& d(f) \geq d(u) \text { and } d_{G}(f, u)=2, \quad \text { for each } f \in\left(N_{X}(v) \cap N_{X}(w)\right) \backslash N_{X}[u] ; \tag{13}
\end{align*}
$$

and each vertex $g \in N_{X}(u) \cap N_{X}(v) \cap N_{X}(w)$ satisfies that

$$
\begin{equation*}
d(g) \geq \max \{d(u), d(v), d(w)\} \quad \text { and } \quad G[\{u, v, w, g\}] \text { is a } K_{4} . \tag{14}
\end{equation*}
$$

For each vertex $a \in N_{X}(u) \backslash N_{X}[\{v, w\}]$, according to (8), $|X| \leq\lfloor n(G) / 2\rfloor$ and Condition (b), we obtain

$$
\begin{aligned}
\left|N_{\bar{X}}(a)\right| & =d(a)-\left|N_{X}(a)\right| \\
& \geq \frac{1}{2}(d(a)+d(w)-2)-(|X|-3) \\
& \geq\lfloor n(G) / 2\rfloor-\frac{3}{2}-(\lfloor n(G) / 2\rfloor-3) \\
& =\frac{3}{2} .
\end{aligned}
$$

So $\left|N_{\bar{X}}(a)\right| \geq 2$. Similarly, we can deduce that

$$
\begin{aligned}
& \left|N_{\bar{X}}(b)\right| \geq 2, \quad \text { for each } b \in N_{X}(v) \backslash N_{X}[\{u, w\}] ; \\
& \left|N_{\bar{X}}(c)\right| \geq 2, \quad \text { for each } c \in N_{X}(w) \backslash N_{X}[\{u, v\}] ; \\
& \left|N_{\bar{X}}(d)\right| \geq 2, \quad \text { for each } d \in\left(N_{X}(u) \cap N_{X}(v)\right) \backslash N_{X}[w] ; \\
& \left|N_{\bar{X}}(e)\right| \geq 2, \quad \text { for each } e \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash N_{X}[v] ; \\
& \left|N_{\bar{X}}(f)\right| \geq 2, \quad \text { for each } f \in\left(N_{X}(v) \cap N_{X}(w)\right) \backslash N_{X}[u] ; \\
& \left|N_{\bar{X}}(g)\right| \geq 3, \quad \text { for each } g \in N_{X}(u) \cap N_{X}(v) \cap N_{X}(w) .
\end{aligned}
$$

Hence, in both two cases, we have

$$
\begin{aligned}
\lambda_{4}(G)= & |\partial(X)|=|[\{u, v, w\}, \bar{X}]|+|[X \backslash\{u, v, w\}, \bar{X}]| \\
\geq & |[\{u, v, w\}, \bar{X}]|+\left|\left[N_{X}(u) \backslash N_{X}[\{v, w\}], \bar{X}\right]\right|+\left|\left[N_{X}(v) \backslash N_{X}[\{u, w\}], \bar{X}\right]\right| \\
& +\left|\left[N_{X}(w) \backslash N_{X}[\{u, v\}], \bar{X}\right]\right|+\left|\left[\left(N_{X}(u) \cap N_{X}(v)\right) \backslash N_{X}[w], \bar{X}\right]\right|+\left|\left[\left(N_{X}(u) \cap N_{X}(w)\right) \backslash N_{X}[v], \bar{X}\right]\right| \\
& +\left|\left[\left(N_{X}(v) \cap N_{X}(w)\right) \backslash N_{X}[u], \bar{X}\right]\right|+\left|\left[N_{X}(u) \cap N_{X}(v) \cap N_{X}(w), \bar{X}\right]\right| \\
\geq & |[\{u, v, w\}, \bar{X}]|+\left|N_{X}(u) \backslash N_{X}[\{v, w\}]\right|+2\left|N_{X}(v) \backslash N_{X}[\{u, w\}]\right| \\
& +\left|N_{X}(w) \backslash N_{X}[\{u, v\}]\right|+2\left|\left(N_{X}(u) \cap N_{X}(v)\right) \backslash N_{X}[w]\right| \\
& +2\left|\left(N_{X}(u) \cap N_{X}(w)\right) \backslash N_{X}[v]\right|+2\left|\left(N_{X}(v) \cap N_{X}(w)\right) \backslash N_{X}[u]\right|+3\left|N_{X}(u) \cap N_{X}(v) \cap N_{X}(w)\right| \\
\geq & |\partial(\{u, v, w\})| \geq \xi_{3}(G) . \quad \square
\end{aligned}
$$

Remark 2. The following examples illustrate that Conditions (b) and (c) in Theorem 2.3 cannot be weakened.

Example 1. Let $H_{i}, i=1,2$ be two copies of $K_{p}, p \geq 7$ with $V\left(H_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $V\left(H_{2}\right)=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$. The graph G is defined as the disjoint union of $H_{1}-x_{1} x_{2}$ and $H_{2}-y_{1} y_{2}$ together with additional $x_{1} y_{1}, x_{2} y_{2}$ and $3 p-12$ edges between $\left\{x_{5}, x_{6}, \ldots, x_{p}\right\}$ and $\left\{y_{5}, y_{6}, \ldots, y_{p}\right\}$ such that $d\left(x_{i}\right)=d\left(y_{i}\right)=p+2$ for $i=5,6, \ldots, p$ (Fig. 4). Then, $n(G)=2 p$, $d\left(x_{i}\right)=d\left(y_{i}\right)=p-1$ for $i=1,2,3,4 ; d\left(x_{j}\right)=d\left(y_{j}\right)=p+2$ for $j=5,6, \ldots, p$. Clearly, G satisfies Conditions (a)

Fig. 5. A non- λ_{3}-optimal graph not satisfying Condition (c) of Theorem 2.3.

Fig. 6. A non-super- λ_{3} graph G not satisfying Condition (b) of Theorem 2.5.
and (c) but not (b) of Theorem 2.3 as $d_{G}\left(x_{1}, x_{2}\right)=2$ and $d\left(x_{1}\right)+d\left(x_{2}\right)=2 p-2<2 p-1=2\lfloor n(G) / 2\rfloor-1$. However, $\xi_{3}(G)=3 p-9$, and since the set S of edges joining $H_{1}-x_{1} x_{2}$ and $H_{2}-y_{1} y_{2}$ is a 3-restricted edge-cut and $|S|=3 p-10$, then $\lambda_{3}(G) \leq 3 p-10$. Thus, G is non- λ_{3}-optimal.

Example 2. Let $H_{i}, i=1,2$ be two copies of $K_{p}, p \geq 7$ with $V\left(H_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $V\left(H_{2}\right)=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$. The graph G is defined as the disjoint union of H_{1} and H_{2} by adding 8 edges $x_{4} y_{1}, x_{4} y_{4}, x_{i} y_{i}$ and $x_{i} y_{i+1}$ for $i=1,2$, 3 , and $3 p-12$ edges between $\left\{x_{5}, x_{6}, \ldots, x_{p}\right\}$ and $\left\{y_{5}, y_{6}, \ldots, y_{p}\right\}$ such that $d\left(x_{j}\right)=d\left(y_{j}\right)=p+2$ for $j=5,6, \ldots, p$ (Fig. 5). Then, $n(G)=2 p$ and G satisfies Conditions (a) and (b) but not (c) of Theorem 2.3 as $G\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ is a K_{4} and $d\left(x_{i}\right)=p+1<p+2=\lfloor n(G) / 2\rfloor+2$ for $i=1,2,3$, 4. However, $\xi_{3}(G)=3 p-3$ and $\lambda_{3}(G) \leq 3 p-4$ (since the set S of edges that join H_{1} and H_{2} is a 3-restricted edge-cut and $|S|=3 p-4$). Hence, G is not λ_{3}-optimal.

Corollary 2.4. Let G be a connected K_{4}-free graph with $n(G) \geq 6$. Then G is λ_{3}-optimal if the following two conditions hold:
(a) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor-5$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=3$, and
(b) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor-1$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$.

Similarly to the proof of Theorem 2.3, by Lemma 2.1 (b) we can obtain the following theorem.
Theorem 2.5. Let G be a connected graph with $n(G) \geq 6$. Then G is super $-\lambda_{3}$ if the following three conditions hold:
(a) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor-3$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=3$,
(b) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor+1$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$, and
(c) for each subgraph K_{4} of G, there exists at least one vertex $v \in K_{4}$ with $d(v) \geq\lfloor n(G) / 2\rfloor+3$.

Remark 3. (1) The example depicted in Fig. 6 shows that Condition (b) in Theorem 2.5 cannot be weakened. In Fig. 6, $n(G)=10, d(v)=5$ for $v \in V(G)$, and G fulfills Conditions (a) and (c) but not (b) of Theorem 2.5. Furthermore, by Theorem 2.3, $\lambda_{3}(G)=\xi_{3}(G)=9$, and the edge set $S=\left\{x_{i} y_{i}, x_{1} y_{2}, x_{2} y_{1}, x_{4} y_{5}, x_{5} y_{4}: i=1,2, \ldots, 5\right\}$ is a nontrivial λ_{3}-cut of G, so G is non-super- λ_{3}.
(2) ($p, 3$)-barbell ($p \geq 4$) is any graph G obtained by joining two copies of the complete graph K_{p} with $3 p$ additional edges such that $d(v)=p+2$ for each vertex $v \in V(G)$. We see that ($p, 3$)-barbell satisfies Conditions (a) and (b) but not Condition (c) of Theorem 2.5. By Theorem 2.3, ($p, 3$)-barbell is λ_{3}-optimal. Also, the set of $3 p$ edges joining two copies of the complete graph K_{p} is a nontrivial λ_{3}-cut. So it is not super- λ_{3} and thus Condition (c) of Theorem 2.5 cannot be weakened.

Corollary 2.6. Let G be a connected K_{4}-free graph with $n(G) \geq 6$. Then G is super- λ_{3} if the following two conditions hold:
(a) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor-3$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=3$, and
(b) $d(x)+d(y) \geq 2\lfloor n(G) / 2\rfloor+1$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$.

3. Conditions for triangle-free graphs

Hellwig and Volkmann [8] gave the following result about the λ_{2}-optimality of triangle-free graphs:

Fig. 7. A non- λ_{3}-optimal triangle-free graph with $d(v)=p+1$.

Theorem 3.1 ([8]). Let G be a λ_{2}-connected triangle-free graph. If $d(x) \geq\lfloor(n(G)+2) / 4\rfloor+1$ for all vertices x in G with at most one exception, then G is λ_{2}-optimal.

Inspired by the ideas in [8], we present the following two theorems.
Theorem 3.2. Let G be a connected triangle-free graph with $n(G) \geq 6$. If $d(x) \geq\lfloor(n(G)+2) / 4\rfloor+2$ for all vertices x in $V(G)$ with at most one exception, then G is λ_{3}-optimal.
Proof. Since $n(G) \geq 6$, then $d(x) \geq\lfloor(n(G)+2) / 4\rfloor+2 \geq 4$ for all vertices x in $V(G)$ with at most one exception. Hence G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. By Theorem 1.2, G is λ_{3}-connected. It now suffices to prove that $\lambda_{4}(G) \geq \xi_{3}(G)$ by Lemma 2.1 (a). Let $\partial(X)$ be any λ_{4}-cut of G with $|X| \leq|\bar{X}|$. This implies $4 \leq|X| \leq\lfloor n(G) / 2\rfloor$. Choose one vertex v in X such that $d(v)=\min \{d(x): x \in X\}$ and let $u, w \in X$ such that $G[\{u, v, w\}]$ is connected. Using Turán's [17] bound $2|E(G)| \leq n(G)^{2} / 2$ for triangle-free graphs G, we have

$$
\begin{aligned}
\lambda_{4}(G) & =|\partial(X)|=\sum_{x \in X} d(x)-2|E(G[X])| \\
& \geq d(u)+d(v)+d(w)-4+4+\sum_{x \in X \backslash\{u, v, w\}} d(x)-\frac{|X|^{2}}{2} \\
& \geq \xi_{3}(G)+(|X|-3)(\lfloor(n(G)+2) / 4\rfloor+2)-\frac{1}{2}\left(|X|^{2}-8\right) \\
& =\xi_{3}(G)+\frac{1}{2}(|X|-3)(2\lfloor(n(G)+2) / 4\rfloor-|X|+1)-\frac{1}{2} \\
& \geq \xi_{3}(G)+\frac{1}{2}(2\lfloor(n(G)+2) / 4\rfloor-\lfloor n(G) / 2\rfloor+1)-\frac{1}{2} \\
& \geq \xi_{3}(G) .
\end{aligned}
$$

In the proof above, when $n(G) \geq 10$, we have
if $|X|=4$, then

$$
\lambda_{4}(G) \geq \xi_{3}(G)+\lfloor(n(G)+2) / 4\rfloor-2>\xi_{3}(G)
$$

if $|X| \geq 5$, then

$$
\lambda_{4}(G) \geq \xi_{3}(G)+2\lfloor(n(G)+2) / 4\rfloor-\lfloor n(G) / 2\rfloor+1-\frac{1}{2}>\xi_{3}(G)
$$

By Lemma 2.1 (b), G is super $-\lambda_{3}$. So we have the following theorem.
Theorem 3.3. Let G be a connected triangle-free graph with $n(G) \geq 10$. If $d(x) \geq\lfloor(n(G)+2) / 4\rfloor+2$ for all vertices x in $V(G)$ with at most one exception, then G is super $-\lambda_{3}$.

Remark 4. The example depicted in Fig. $7(p \geq 4)$ shows that the results of Theorems 3.2 and 3.3 are the best possible. In Fig. 7, G is a bipartite graph with $n(G)=4 p$, and $d(v)=p+1<p+2=\lfloor(n(G)+2) / 4\rfloor+2$ for all $v \in V(G)$. However, $\xi_{3}(G)=3 p-1$ and $\lambda_{3}(G) \leq\left|\left\{y_{i} v_{i}, y_{i} v_{i+1}, y_{p+1} v_{p+1}, y_{p+1} v_{1}: i=1,2, \ldots, p\right\}\right|=2 p+2$, so G is non- λ_{3}-optimal.

4. Conditions for bipartite graphs

In regard to the λ_{3}-optimality of bipartite graphs, also inspired by the ideas of Hellwig and Volkmann in [8], we obtain the following result.

Theorem 4.1. Let G be a connected bipartite graph with $n(G) \geq 6$. If:
(a) $d(x)+d(y) \geq 2\lfloor(n(G)+2) / 4\rfloor-1$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=3$ and
(b) $d(x)+d(y) \geq 2\lfloor(n(G)+2) / 4\rfloor+3$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$
hold, then G is λ_{3}-optimal.
Proof. From $n(G) \geq 6$ and Condition (b), it follows that $d(x)+d(y) \geq 2\lfloor(n(G)+2) / 4\rfloor+3 \geq 7$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$. So G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. By Theorem 1.2, G is λ_{3}-connected. By Lemma 2.1 (a), it suffices to show that $\lambda_{4}(G) \geq \xi_{3}(G)$. Let (A, B) be the bipartition of G and $\partial(X)$ any λ_{4}-cut of G with $|X| \leq|\bar{X}|$. This implies $4 \leq|X| \leq\lfloor n(G) / 2\rfloor$. Set $X^{\prime}:=X \cap A$ and $X^{\prime \prime}:=X \cap B$. We assume, without loss of generality, that $\left|X^{\prime}\right| \leq\left|X^{\prime \prime}\right|$. It follows that $\left|X^{\prime}\right| \leq\lfloor n(G) / 4\rfloor$. Choose three vertices u, v, and w in X such that $G[\{u, v, w\}]$ is connected and satisfies that

$$
|\partial(\{u, v, w\})|=\min \{|\partial(H)|: H \subseteq X,|H|=3, \text { and } G[H] \text { is connected }\}
$$

and X^{\prime} contains as more as possible vertices of $\{u, v, w\}$. Since G is bipartite, $G[\{u, v, w\}]$ is a path. We assume that $u w \notin E(G)$. By the choice of u, v and w, we have

$$
\begin{align*}
& d(a) \geq d(w) \text { and } d_{G}(a, w)=3, \quad \text { for each } a \in N_{X}(u) \backslash N_{X}(w) \tag{15}\\
& d(b) \geq d(u) \text { and } d_{G}(b, u)=3, \quad \text { for each } b \in N_{X}(w) \backslash N_{X}(u) ; \tag{16}\\
& d(c) \geq d(u) \text { and } d_{G}(c, u)=2, \quad \text { for each } c \in N_{X}(v) \backslash\{u, w\} ; \tag{17}\\
& d(f) \geq d(v) \text { and } d_{G}(f, v)=2, \quad \text { for each } f \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\} . \tag{18}
\end{align*}
$$

Case 1. $\left|X^{\prime}\right|=\lfloor n(G) / 4\rfloor$. It follows that $\lfloor n(G) / 4\rfloor \leq\left|X^{\prime \prime}\right| \leq\lfloor n(G) / 4\rfloor+1$ from $|X| \leq\lfloor n(G) / 2\rfloor$.
Subcase 1.1. $\left|X^{\prime \prime}\right|=\lfloor n(G) / 4\rfloor$. We assume, without loss of generality, that $u, w \in X^{\prime}$ and $v \in X^{\prime \prime}$. According to (15) and Condition (a), we obtain

$$
\begin{aligned}
\left|N_{\bar{X}}(a)\right| & =d(a)-\left|N_{X}(a)\right| \\
& \geq \frac{1}{2}(d(a)+d(w))-\left(\left|X^{\prime}\right|-1\right) \\
& \geq\lfloor(n(G)+2) / 4\rfloor-\frac{1}{2}-(\lfloor n(G) / 4\rfloor-1) \\
& \geq \frac{1}{2}
\end{aligned}
$$

for each $a \in N_{X}(u) \backslash N_{X}(w)$. So $\left|N_{\bar{X}}(a)\right| \geq 1$. Similarly, we have

$$
\begin{aligned}
& \left|N_{\bar{X}}(b)\right| \geq 1, \quad \text { for each } b \in N_{X}(w) \backslash N_{X}(u) \\
& \left|N_{\bar{X}}(c)\right| \geq 2, \quad \text { for each } c \in N_{X}(v) \backslash\{u, w\} ; \\
& \left|N_{\bar{X}}(f)\right| \geq 2, \quad \text { for each } f \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\lambda_{4}(G)= & |\partial(X)|=|[\{u, v, w\}, \bar{X}]|+|[X \backslash\{u, v, w\}, \bar{X}]| \\
\geq & |[\{u, v, w\}, \bar{X}]|+\left|\left[N_{X}(u) \backslash N_{X}(w), \bar{X}\right]\right|+\left|\left[N_{X}(w) \backslash N_{X}(u), \bar{X}\right]\right| \\
& +\left|\left[N_{X}(v) \backslash\{u, w\}, \bar{X}\right]\right|+\left|\left[\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\}, \bar{X}\right]\right| \\
\geq & |[\{u, v, w\}, \bar{X}]|+\left|N_{X}(u) \backslash N_{X}(w)\right|+\left|N_{X}(w) \backslash N_{X}(u)\right| \\
& +2\left|N_{X}(v) \backslash\{u, w\}\right|+2\left|\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\}\right| \\
\geq & |\partial(\{u, v, w\})| \geq \xi_{3}(G) .
\end{aligned}
$$

Subcase 1.2. $\left|X^{\prime \prime}\right|=\lfloor n(G) / 4\rfloor+1$. Then $n(G) \equiv 2$ or $3(\bmod 4)$ by $\lfloor n(G) / 4\rfloor+\lfloor n(G) / 4\rfloor+1=\left|X^{\prime}\right|+\left|X^{\prime \prime}\right|=|X| \leq\lfloor n(G) / 2\rfloor$. This implies that $\lfloor(n(G)+2) / 4\rfloor=\lfloor n(G) / 4\rfloor+1$, hence, Conditions (a) and (b) are equivalent to the following (a) ${ }^{\prime}$ and (b) ${ }^{\prime}$, respectively.
(a)' $d(x)+d(y) \geq 2\lfloor n(G) / 4\rfloor+1$ for each pair $x, y \in V(G)$ such that $d_{G}(x, y)=3$;
(b) ${ }^{\prime} d(x)+d(y) \geq 2\lfloor n(G) / 4\rfloor+5$ for each pair $x, y \in V(G)$ such that $d_{G}(x, y)=2$.

By a similar proof of Subcase 1.1, we can obtain the desired result.
Case 2. $\left|X^{\prime}\right| \leq\lfloor n(G) / 4\rfloor-1$.
Subcase $2.1 u, w \in X^{\prime}$ and $v \in X^{\prime \prime}$. According to (15)-(18) and Conditions (a) and (b), by a similar reasoning of Subcase 1.1, we have

$$
\begin{aligned}
& \left|N_{\bar{X}}(a)\right| \geq 2, \quad \text { for each } a \in N_{X}(u) \backslash N_{X}(w) \\
& \left|N_{\bar{X}}(b)\right| \geq 2, \quad \text { for each } b \in N_{X}(w) \backslash N_{X}(u) \\
& \left|N_{\bar{X}}(f)\right| \geq 3, \quad \text { for each } f \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\} .
\end{aligned}
$$

For each $c \in N_{X}(v) \backslash\{u, w\}$, if $\left|N_{\bar{X}}(c)\right| \geq 1$, as in Subcase 1.1, we can obtain $\lambda_{4}(G) \geq \xi_{3}(G)$. Otherwise, there exists one vertex $c_{0} \in N_{X}(v) \backslash\{u, w\}$ such that $\left|N_{\bar{X}}\left(c_{0}\right)\right|=0$, and by (17) and Condition (b), we have

$$
\begin{equation*}
\left|N_{X}\left(c_{0}\right)\right|=d\left(c_{0}\right) \geq \frac{1}{2}\left(d(u)+d\left(c_{0}\right)\right) \geq\lfloor(n(G)+2) / 4\rfloor+\frac{3}{2} . \tag{19}
\end{equation*}
$$

Choose one vertex x in $N_{X}\left(c_{0}\right) \backslash\{v\}$ such that

$$
d(x)=\min \left\{d(y): y \in N_{X}\left(c_{0}\right) \backslash\{v\}\right\}
$$

For each $y \in N_{X}\left(c_{0}\right) \backslash\left(N_{X}(\{u, w\}) \cup\{x\}\right), d(y) \geq d(x)$ and $d_{G}(x, y)=2$, hence

$$
\begin{aligned}
\left|N_{\bar{X}}(y)\right| & \geq \frac{1}{2}(d(x)+d(y))-\left|X^{\prime}\right| \\
& \geq\lfloor(n(G)+2) / 4\rfloor+\frac{3}{2}-\lfloor n(G) / 4\rfloor+1 \\
& \geq \frac{5}{2}
\end{aligned}
$$

From (19) and $\left|N_{X}(v) \backslash\{u, w\}\right| \leq\left|X^{\prime}\right|-2 \leq\lfloor n(G) / 4\rfloor-3$, we have

$$
\begin{equation*}
\left|N_{X}\left(c_{0}\right) \backslash\{x, v\}\right| \geq\lfloor(n(G)+2) / 4\rfloor-\frac{1}{2}>\left|N_{X}(v) \backslash\{u, w\}\right| \tag{20}
\end{equation*}
$$

Then

$$
\begin{aligned}
\lambda_{4}(G)= & |\partial(X)|=|[\{u, v, w\}, \bar{X}]|+|[X \backslash\{u, v, w\}, \bar{X}]| \\
\geq & |[\{u, v, w\}, \bar{X}]|+\left|\left[N_{X}(u) \backslash N_{X}(w), \bar{X}\right]\right|+\left|\left[N_{X}(w) \backslash N_{X}(u), \bar{X}\right]\right| \\
& +\left|\left[\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\}, \bar{X}\right]\right|+\left|\left[N_{X}\left(c_{0}\right) \backslash\left(N_{X}(\{u, w\}) \cup\{x\}\right), \bar{X}\right]\right| \\
\geq & |[\{u, v, w\}, \bar{X}]|+2\left|N_{X}(u) \backslash N_{X}(w)\right|+2\left|N_{X}(w) \backslash N_{X}(u)\right| \\
& +3\left|\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\}\right|+3\left|N_{X}\left(c_{0}\right) \backslash\left(N_{X}(\{u, w\}) \cup\{x\}\right)\right| \\
\geq & |[\{u, v, w\}, \bar{X}]|+\left|N_{X}(u) \backslash N_{X}(w)\right|+\left|N_{X}(w) \backslash N_{X}(u)\right|+2\left|\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\}\right|+\left|N_{X}\left(c_{0}\right) \backslash\{x, v\}\right| \\
> & |\partial(\{u, v, w\})| \geq \xi_{3}(G) .
\end{aligned}
$$

Subcase 2.2. $u, w \in X^{\prime \prime}$ and $v \in X^{\prime}$. According to (17), each vertex $c \in N_{X}(v) \backslash\{u, w\}$ satisfies

$$
\begin{aligned}
\left|N_{\bar{X}}(c)\right| & \geq \frac{1}{2}(d(u)+d(c))-\left|X^{\prime}\right| \\
& \geq\lfloor(n(G)+2) / 4\rfloor+\frac{3}{2}-\lfloor n(G) / 4\rfloor+1 \\
& \geq \frac{5}{2}
\end{aligned}
$$

If each vertex $x \in\left(N_{X}(u) \backslash N_{X}(w)\right) \cup\left(N_{X}(w) \backslash N_{X}(u)\right)$ has at least one neighbor in \bar{X} and each vertex $f \in\left(N_{X}(u) \cap N_{X}(w)\right) \backslash\{v\}$ has at least two neighbors in \bar{X}, as in Subcase 1.1, we can deduce that $\lambda_{4}(G) \geq \xi_{3}(G)$.

Otherwise, if there exists one vertex $x \in\left(N_{X}(u) \backslash N_{X}(w)\right) \cup\left(N_{X}(w) \backslash N_{X}(u)\right)$ such that $\left|N_{\bar{X}}(x)\right|=0$. By the choice of the vertices u, v and w, either $d(x)>d(w)$ and $d_{G}(x, w)=3$ or $d(x)>d(u)$ and $d_{G}(x, u)=3$. According to Condition (a),

$$
\begin{equation*}
\left|N_{X}(x) \backslash\{u, w\}\right|=d(x)-1>\lfloor(n(G)+2) / 4\rfloor-\frac{3}{2} \tag{21}
\end{equation*}
$$

If there exists one vertex $x \in N_{X}(u) \cap N_{X}(w)$ such that $\left|N_{\bar{X}}(x)\right| \leq 1$, then from (18) it follows that

$$
\begin{equation*}
\left|N_{X}(x) \backslash\{u, w\}\right| \geq \frac{1}{2}(d(v)+d(x))-3 \geq\lfloor(n(G)+2) / 4\rfloor-\frac{3}{2} \tag{22}
\end{equation*}
$$

Choose one vertex z_{0} in $N_{X}(x) \backslash\{u, w\}$ such that

$$
d\left(z_{0}\right)=\min \left\{d(z): z \in N_{X}(x) \backslash\{u, w\}\right\}
$$

Then, each vertex $z \in N_{X}(x) \backslash\left(N_{X}(v) \cup\left\{z_{0}\right\}\right)$ satisfies that $d(z) \geq d\left(z_{0}\right)$ and $d_{G}\left(z, z_{0}\right)=2$. By Condition (b),

$$
\left|N_{\bar{X}}(z)\right| \geq\lfloor(n(G)+2) / 4\rfloor+\frac{3}{2}-(\lfloor n(G) / 4\rfloor-1) \geq \frac{5}{2}
$$

According to (21), (22) and $\left|N_{X}(\{u, w\}) \backslash\{v\}\right| \leq\left|X^{\prime}\right|-1 \leq\lfloor n(G) / 4\rfloor-2$, we have

$$
\begin{equation*}
\left|N_{X}(x) \backslash\left\{u, w, z_{0}\right\}\right| \geq\lfloor(n(G)+2) / 4\rfloor-2 \geq\left|N_{X}(\{u, w\}) \backslash\{v\}\right| . \tag{23}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\lambda_{4}(G) & =|\partial(X)|=|[\{u, v, w\}, \bar{X}]|+|[X \backslash\{u, v, w\}, \bar{X}]| \\
& \geq|[\{u, v, w\}, \bar{X}]|+\left|\left[N_{X}(v) \backslash\{u, w\}, \bar{X}\right]\right|+\left|\left[N_{X}(x) \backslash\left(N_{X}(v) \cup\left\{z_{0}\right\}\right), \bar{X}\right]\right| \\
& \geq|[\{u, v, w\}, \bar{X}]|+3\left|N_{X}(v) \backslash\{u, w\}\right|+3\left|N_{X}(x) \backslash\left(N_{X}(v) \cup\left\{z_{0}\right\}\right)\right| \\
& \geq|[\{u, v, w\}, \bar{X}]|+\left|N_{X}(v) \backslash\{u, w\}\right|+2\left|N_{X}(x) \backslash\left\{u, w, z_{0}\right\}\right| \\
& \geq|[\{u, v, w\}, \bar{X}]|+\left|N_{X}(v) \backslash\{u, w\}\right|+2\left|N_{X}(\{u, w\}) \backslash\{v\}\right| \\
& \geq|\partial(\{u, v, w\})| \geq \xi_{3}(G) .
\end{aligned}
$$

Remark 5. It is easy to test that the bipartite graph G depicted in Fig. 7 satisfies Condition (a) but not Condition (b) of Theorem 4.1, and by Remark 4, G is not λ_{3}-optimal. Hence Condition (b) of Theorem 4.1 cannot be weakened.

Similarly to the proof of Theorem 4.1, by Lemma 2.1 (b) we can show the following theorem.
Theorem 4.2. Let G be a connected bipartite graph with $n(G) \geq 6$. If:
(a) $d(x)+d(y) \geq 2\lfloor(n(G)+2) / 4\rfloor+1$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=3$ and
(b) $d(x)+d(y) \geq 2\lfloor(n(G)+2) / 4\rfloor+5$ for each pair $x, y \in V(G)$ with $d_{G}(x, y)=2$
hold, then G is super $-\lambda_{3}$.

Acknowledgments

We are very grateful to the referees for their fruitful comments and suggestions.

References

[1] M.C. Balbuena, A. Carmona, J. Fábrega, M.A. Fiol, Extraconnectivity of graphs with large minimum degree and girth, Discrete Math. 167/168 (1997) 85-100.
[2] P. Bonsma, N. Ueffing, L. Volkmann, Edge-cuts leaving components of order at least three, Discrete Math. 256 (2002) 431-439.
[3] A.-H. Esfahanian, S.L. Hakimi, On computing a conditional edge connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
[4] J. Fábrega, M.A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math. 127 (1994) 163-170.
[5] J. Fábrega, M.A. Fiol, On the extraconnectivity of graphs, Discrete Math. 155 (1996) 49-57.
[6] A. Hellwig, D. Rautenbach, L. Volkmann, Cuts leaving components of given minimum order, Discrete Math. 292 (2005) 55-65.
[7] A. Hellwig, L. Volkmann, Sufficient conditions for λ^{\prime}-optimality in graphs of diameter 2, Discrete Math. 283 (2004) 113-120.
[8] A. Hellwig, L. Volkmann, Sufficient conditions for graphs to be λ^{\prime}-optimal, super-edge-connected and maximally edge-connected, J. Graph Theory 48 (2005) 228-246.
[9] A. Hellwig, L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008) $3265-3296$.
[10] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974) 351-354.
[11] J. Meng, Y. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193.
[12] J. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005) 365-371.
[13] J. Ou, A bound on 4-restricted edge connectivity of graphs, Discrete Math. 307 (2007) 2429-2437.
[14] J. Ou, F. Zhang, 3-restricted edge connectivity of vertex-transitive graphs, Ars Combin. 70 (2005) 1-11.
[15] J. Ou, F. Zhang, 3-restricted edge connectivity of vertex-transitive graphs of girth three, J. Math. Res. Exposition 25 (2005) 58-63.
[16] L. Shang, H. Zhang, Sufficient conditions for graphs to be λ^{\prime}-optimal and super- λ^{\prime}, Networks 49 (2007) 234-242.
[17] P. Turán, An extremal problem in graph theory, Mat-Fiz Lapok. 48 (1941) 436-452.
[18] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002) $205-214$.
[19] Y. Wang, Optimization problems of the third edge connectivity of graphs, Sci. China Ser. A 49 (2006) 791-799.
[20] Y. Wang, Q. Li, Super-edge-connectivity properties of graphs with diameter 2, J. Shanghai Jiaotong Univ. (Chin. Ed) 33 (1999) 646-649.
[21] Y. Wang, Q. Li, An ore type sufficient conditions for a graph to be super restricted edge-connected, J. Shanghai Jiaotong Univ. (Chin. Ed) 35 (2001) 1253-1255.
[22] Y. Wang, Q. Li, Upper bound of the third edge connectivity of graphs, Sci. China Ser. A 48 (2005) 360-371.
[23] Z. Zhang, J. Meng, On optimally- λ^{3} transitive graphs, Discrete Appl. Math. 154 (2006) 1011-1018.
[24] Z. Zhang, J. Yuan, A proof of an inequality concerning k-restricted edge connectivity, Discrete Math. 304 (2005) 128-134.
[25] Z. Zhang, J. Yuan, Degree conditions for restricted-edge-connectivity and isoperimetric-edge-connectivity to be optimal, Discrete Math. 307 (2007) 293-298.
[26] Z. Zhang, Sufficient conditions for restricted-edge-connectivity to be optimal, Discrete Math. 307 (2007) 2891-2899.

[^0]: *This work is supported by NSFC (Grant No. 10831001).

 * Corresponding address: School of Information Science and Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu Province, PR China.

 E-mail addresses: lishang@lzu.edu.cn (L. Shang), zhanghp@lzu.edu.cn (H. Zhang).

