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1. Introduction and notations

Let G be a connected undirected simple graph with vertex set V(G) and edge set E(G). Let n(G) denote the order of G,
dg(u, v) the distance between vertices u and v in G, and g(G) the girth of G. For a vertex v € V(G), Ng(v) denotes the set
of vertices adjacent to v in G, Ng[v] := Ng(v) U {v}. Then d(v) = |[Ng(v)| is the degree of v in G, and §(G) is the minimum
degree of G. If X € V(G), then G[X] denotes the subgraph of G induced by X, and X = V(G) \ X. For disjoint sets X and Y
of vertices of G, [X, Y] denotes the set of edges of G with one endpoint in X and the other one in Y. Put 9(X) := [X, X]. We
denote Ngx;(v) by Nx(v), the complete graph with order n by K, and the complete bipartite graph with bipartite sets of
cardinalities m and n by K, . A (p, r)-barbell (p > 3, r < p) [19] is a graph G obtained by joining two copies of the complete
graph K, with pr additional edges such that d(v) = p 4+ r — 1 for each vertex v € V(G).

It is well known that the underlying topology of an interconnection network is usually modeled by a graph G with vertices
and edges representing the nodes and links, respectively. An edge-cut S of a connected graph G is called a restricted edge-
cut if G — S contains no isolated vertex. The minimum cardinality of all restricted edge-cuts, denoted by A’(G), is called the
restricted edge connectivity of G. Edge connectivity A(G) and restricted edge connectivity A’ (G) have been used to measure the
reliability of a network. In order to more accurately measure the reliability, the parameter A,,,(G) received much attention.
Under some reasonable conditions, Wang and Li [ 18] showed that for two regular graphs G; and G, with A(G{) = A(G3) = A
and A'(Gy) = A (Gy) = X, and my (G;) = m; (G,) and m;,(G;) = m;,(G;), G is more reliable than G, if A3(G;) > A3(Gy)
or A3(Gq) = A3(Gy) = Az and my,(Gq) < m,,(Gy), where m;(G) denotes the number of disconnecting edge sets of size i in
graph G. So graphs with maximal 3-restricted edge connectivity A3(G) (namely A3-optimal graphs) and the fewest minimum
3-restricted edge-cuts (super-A3 graphs have these two properties) have higher reliability.
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Fig. 1. (a) The 3-leg spider graph, and (b) the friendship graph.
The m-restricted edge connectivity A,,,(G) was defined by Fabrega and Fiol [4,5] as follows:

Definition 1.1. An edge set S of a connected graph G is called an m-restricted edge-cut if G — S is disconnected and each
component of G — S contains at least m vertices. The m-restricted edge connectivity of G, denoted by A, (G), is the minimum
cardinality of all m-restricted edge-cuts of G.

Balbuena et al. [ 1] improved the results contained in [4,5], and more recently Bonsma et al. [2] and Meng and Ji [11] have
obtained very interesting results concerning the existence of m-restricted edge-cuts. Also see the survey by Hellwig and
Volkmann [9].

Note that A1(G) = A(G) and A,(G) is just the usual restricted edge connectivity A'(G). An m-restricted edge-cut S in G is
called a A;-cut, if |S| = A (G), and trivial if S isolates a component of size exactly m. Obviously, for any Ap,-cut S, the graph
G — S has exactly two components.

For a connected graph G, let

Eq(G) ;== min{|d(X)| : X C V(G), |X| = m, and G[X] is connected}.

Note that £1(G) = §(G) and &,(G) is just the minimum edge-degree & (G) of G. A connected graph G is A,,-connected if A, (G)
exists. Clearly, if G is A,-connected for m > 2, then G is also A,;,_1-connected and A,,_1(G) < A, (G). In 1988, Esfahanian
and Hakimi [3] showed that every connected graph G of order n(G) > 4, except a star K; ,—1, 1(G) exists and satisfies
A2(G) < &(G). Bonsma, Ueffing and Volkman [2], Wang and Li [22] characterized A3;-connected graphs as follows.

Theorem 1.2 ([2,22]). (a) A connected graph G of order n(G) > 6 is A3-connected if and only if G is not isomorphic to the 3-leg
spider graph (Fig. 1(a)) or any subgraph of the friendship graph (Fig. 1(b)).
(b) If G is As-connected, then A3(G) < &3(G).

For m > 4, Bonsma et al. [2] pointed out that the inequality A, (G) < &,(G) is no longer true in general, Ou characterized
graphs of order at least 3m — 2 that contain m-restricted edge-cuts [ 12] and showed that a A4-connected graph G with order
at least 11 has the property 14(G) < £4(G) [13], and Zhang and Yuan [24] showed that for m < §(G) + 1, every connected
graph G with order at least 2(5(G) + 1) except the graph G ; is Aj,-connected and A,,(G) < &4(G), where G, , is obtained
from n copies of K; by adding a new vertex u that is adjacent to every vertex of them. To maximize A.;(G) and minimize the
number of Ap,-cuts of G, the following definition was proposed in [11,23,25].

Definition 1.3. For a positive integer m, a A,,-connected graph G with A;(G) < &,(G) is said to be optimally m-restricted
edge connected, for short Ap,-optimal, if A, (G) = &,;,(G), and super-m-restricted edge connected, for short super-i,, if every
Am-cut of G is trivial.

Note that A;-optimal is just maximally edge-connected and A,-optimal is the A’-optimal; super-A is just the super-edge
connected and super-A; is the super-A'.

For the A3-optimal and super-A3 graphs, Bonsma et al. [2] showed that the complete bipartite graph K; ; withr, s > 2 and
r+s > 6is Az-optimal, Ou and Zhang characterized the 3-restricted edge connectivity of vertex transitive graphs with girth
four [14] and that of 3-regular and 4-regular vertex transitive graphs with girth three [15], Zhang and Meng [23] studied
the A3-optimal vertex transitive graphs, Wang [19] presented Ore type sufficient conditions for graphs with diameter 2 to
be A3-optimal and super-A3, Zhang and Yuan [25] gave degree conditions for graphs with diameter 2 to be A,;,-optimal,
and Zhang [26] gave sufficient conditions expressed in terms of &,,(G) for graphs to be A,;,-optimal, m = 2, 3. For more
information on m-restricted edge connectivity of graphs, please refer to [6,7,13,16,20,24].

In this paper, we study the index A3 of graphs and present degree conditions for arbitrary, triangle-free, and bipartite
graphs to be As;-optimal and super-A3, respectively; moreover, we give some examples which prove that our results are the
best possible.

Now we discuss some relations between A,,-optimal and super-A,, for m < 3. A super-A,, graph is also A,;,-optimal,
but the converse is not true, and a A3-optimal graph is not always A,-optimal. Hellwig and Volkman [8] gave the following
proposition about the relations between A,-optimal, A;-optimal and super-A1.
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Fig. 2. A A3-optimal but not super-A, graph with §(G) = 4.
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Fig. 3. Two XA3-optimal but not A,-optimal graphs.

Proposition 1.4 ([8]). (a) If G is A-optimal, then G is also Ay-optimal.(b) If G is A,-optimal and §(G) > 3, then G is super-A.

We give relations below between Az-optimal, A;-optimal and super-A; fori = 1, 2.

Proposition 1.5. Let G be a A3-optimal graph.
(a) If 6(G) = 4, then G is A;-optimal for i = 1, 2 and super-\1; if §(G) > 4, then G is super-A; fori = 1, 2.
(b) Assume that G is triangle-free. If §(G) > 2, then G is A;-optimal for i = 1, 2; if §(G) > 2, then G is super-1; fori =1, 2.

Proof. Since G is A3-optimal,
23(G) = &3(0)
= min{|d(X)| : X C V(G), |X| = 3, and G[X] is connected}
= min{min{d(x) + d(y) + d(z) — 6 : G[{x, y, z}] is a triangle},
min{d(x) + d(y) + d(z) — 4 : G[{x, y, z}] is a path}}

- & (G) +8(G) — 4, if G contains a triangle;
= 1&(G) +8(G) — 2, if Gis triangle-free.

Hence, A3(G) > &(G) if §(G) > 4 and A3(G) > & (G) if §(G) > 4; and when G is triangle-free, A3(G) > &(G) if §(G) > 2
and A3(G) > & (G) if 6(G) > 2.Since 1,(G) < A3(G), A3(G) > &(G) implies A;(G) = &(G) and A3(G) > &,(G) implies that
each A,-cut is trivial, so by Proposition 1.4, both statements (a) and (b) hold. O

Remark 1. From the proof of Proposition 1.5, we know that a A3-optimal graph G is super-A, if £3(G) > & (G) and A;-
optimal if £&3(G) > &,(G). A Az-optimal graph G is not always super-A; if £3(G) = & (G) or Ay-optimal if £3(G) < &,(G). In
Fig. 2, we give an example of a graph with §(G) = 4, £3(G) = &(G) = 6, and A3(G) = 6. So G is A3-optimal but not super-2.,.
The cycle C,(n > 6), a A3-optimal triangle-free graph with §(C,) = 2 and &3(C,) = &(C,) = 2, is not super-A,. In Fig. 3,
A3(H1) = &3(Hy) = 3, A3(Hy) = &3(H2) = 1,but Ax(Hy) = 3 < 4 = &(Hy), A2(H2) = 1 < 2 = §(Hy). So Hy and H, are
A3-optimal but not A,-optimal.

We next present degree conditions for arbitrary, triangle-free, and bipartite graphs to be Az-optimal and super-\s,
respectively.

2. Conditions for arbitrary graphs

Lemma 2.1. Let G be a As-connected graph. Then:
(a) Gis Az-optimal if and only if either G is non-A4-connected, or G is A4-connected and 14(G) > &3(G).
(b) G is super-A3 if and only if either G is non-A4-connected, or G is L4-connected and A4(G) > &£3(G).

Proof. Since G is Asz-optimal, then A3(G) = &3(G). Thus to prove the necessity observe that if G is A4-connected, then by
X4(G) > A3(G), we have A4(G) > &3(G). If G is super-As3, then 14(G) > A3(G) and we have 14(G) > &3(G).

To prove the sufficiency note that if G is non-A4-connected, then each As-cut of G is trivial, and G is As-optimal and
super-As. Let G be A4-connected with A4(G) > &3(G). If A4(G) > A3(G), then each As-cut of G is trivial and G is thus super-
A3. Otherwise A3(G) = A4(G) > &3(G). Then A3(G) = &3(G), and G is Az-optimal. O
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In the following, we first list some degree conditions for graphs to be A,,-optimal and super-A,,, for m = 1, 2, 3, then
present sufficient conditions for arbitrary graphs to be A;-optimal and super-Xs.

Theorem 2.2. Let G be a connected graph.

(a) [10]If d(u) + d(v) = n(G) — 1 for all pairs u, v of nonadjacent vertices, then G is \.1-optimal.

(b) [10]If d(u) 4+d(v) > n(G) for all pairs u, v of nonadjacent vertices, and G is different from Ky, 2 X Ky, then G is super-A1.

(c) [20] If n(G) = 4 and d(u) + d(v) > n(G) + 1 for all pairs u, v of nonadjacent vertices, then G is A,-optimal.

(d) [8] Let G be a A,-connected graph such that §(G) > |[n(G)/2] — 1. If for each triangle T of G there exists at least one
vertex w € V(T) such that d(w) > |n(G)/2] + 1, then G is A,-optimal.

(e) [21]If Gis not a (p, 2)-barbell and d(u) + d(v) > n(G) + 2 for all pairs u, v of nonadjacent vertices, then G is super-X,.

) [19]If n(G) = 6 and d(u) + d(v) > n(G) + 3 for all pairs u, v of nonadjacent vertices, then G is Asz-optimal.

(g) [19] If Gis not (p, 3)-barbell (p > 4), n(G) > 6, and d(u) + d(v) > n(G) + 3 for all pairs u, v of nonadjacent vertices,
then G is super-\s.

Theorem 2.3. Let G be a connected graph with n(G) > 6. Then G is A3-optimal if the following three conditions hold:
(@) d(x) +d(y) = 2| n(G)/2] — 5 for each pair x,y € V(G) withd¢(x,y) = 3,
(b) d(x) +d(y) = 2| n(G)/2] — 1 for each pair x,y € V(G) withds(x,y) = 2, and
(c) for each subgraph K4 of G, there exists at least one vertex v € K4 with d(v) > [n(G)/2] + 2.

Proof. From Condition (b) and n(G) > 6, it follows that d(x) 4+ d(y) > 5 for each pair x, y € V(G) with ds(x, y) = 2. Hence
G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. From Theorem 1.2 we know that G
is A3-connected. So by Lemma 2.1 (a), it suffices to show that A4(G) > &3(G). Let d(X) be any A4-cut of G with |X| < |X]|. This
implies 4 < |X| < [n(G)/2]. Choose three vertices u, v and w in X such that G[{u, v, w}] is connected and satisfies

|0({u, v, w})| = min{|d(A)| : A C X, |A| = 3, and G[A] is connected}.

Case 1. G[{u, v, w}] is a path. Assume that uw ¢ E(G), by the choice of u, v and w, we have
d(a) > d(w) and 2 < dg(a, w) <3, foreacha € Nx(u) \ Nx[{v, w}]; (
d(b) > d(u) and dg(b, u) =2, foreachb € Nx(v) \ Nx[{u, w}]; (
d(c) > d(u)and 2 < dg(c,u) <3, foreachc € Nx(w) \ Nx[{u, v}]; 3
d(d) > d(w) + 2 and dg(d, w) =2, foreachd € (Nx(u) N Nx(v)) \ Nx[w]; (
d(e) > d(v) and dg(e, v) =2, foreache € (Nx(u) N Nx(w)) \ Nx[v]; (
d(f) > d(u) +2and d¢(f,u) = 2, foreachf € (Nx(v) N Nx(w)) \ Nx[u]; (

and each vertex g € Ny (u) N Nx(v) N Nx(w) satisfies that

d(g) > d(u) + 2, d(g) >dw)+2, and ds(u, w) =2. (7)
For each vertex a € Nx(u) \ Nx[{v, w}], according to (1), |[X| < [n(G)/2], and Conditions (a) and (b), we obtain
IN3 (@) = d(a) — [Nx(a)l

\Y

1
> E(d(a) +dw)) — (X[ —3)

v

(©)/2) = 2 = (1n(©)/2) - 3
1

>
Since |Nx(a)| is an integer, it follows that [Ny (a)| > 1. Similarly, we can deduce that
INg(b)| > 3, foreachb e Nx(v) \ Nx[{u, w}];
INz(c)| = 1, foreachc € Nx(w) \ Nx[{u, v}];
INz(d)| > 3, foreachd e (Nx(u) N Nx(v)) \ Nx[w];
[Nz (e)| > 2, foreache e (Nx(u) N Nx(w)) \ Nx[v];
INx(f)| = 3, foreachf € (Nx(v) N Nx(w)) \ Nx[ul;
INz(g)] = 3, foreachg e Nx(u) N Nx(v) N Nx(w).
Case 2. G[{u, v, w}] is a triangle. By the choice of vertices u, v and w, we have
d(a) > d(w) — 2 and dg(a, w) =2, foreacha € Nx(u) \ Nx[{v, w}]; (8)
d(b) > d(u) — 2 and dg(b, u) = 2, foreachb € Nx(v) \ Nx[{u, w}]; 9)
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Fig. 4. A non-\s-optimal graph not satisfying Condition (b) of Theorem 2.3.

d(c) > d(v) —2and dg(c,v) =2, foreachc € Nx(w) \ Nx[{u, v}]; (10)
d(d) > d(w) and dg(d, w) = 2, foreachd e (Nx(u) N Nx(v)) \ Nx[w]; (11)
d(e) > d(v) and dg(e, v) =2, foreache e (Nx(u) N Nx(w)) \ Nx[v]; (12)
d(f) > d(uw) and dg(f,u) =2, foreachf € (Nx(v) N Nx(w)) \ Nx[ul; (13)
and each vertex g € Ny (u) N Nx(v) N Ny (w) satisfies that
d(g) > max{d(u), d(v),d(w)} and G[{u, v, w,g}]isaKy. (14)
For each vertex a € Nx(u) \ Nx[{v, w}], according to (8), |X| < [n(G)/2] and Condition (b), we obtain
IN3(a)| = d(a) — [Nx(a)|
1
> E(d(a) +d(w) —2) = (IX] —3)
3
> [n(G)/2] — 5~ (ln(G)/2] = 3)
_3
=5
So [Nz (a)| > 2. Similarly, we can deduce that
IN;(b)| > 2, foreachb € Nx(v) \ Nx[{u, w}];
IN;x(c)| = 2, foreachc e Nx(w) \ Nx[{u, v}];
INg(d)] > 2, foreachd e (Nx(u) N Nx(v)) \ Nx[w];
IN;(e)| > 2, foreache e (Nx(u) N Nx(w)) \ Nx[v];
INy(F)| > 2, foreachf e (Nx(v) N Nx(w)) \ Nx[ul;
IN;(g)| = 3, foreachg € Nx(u) N Nx(v) N Nx(w).
Hence, in both two cases, we have
24(G) = 19X = |{u, v, wh X]|+ 11X\ {u, v, ui},)_(]I .
> 0w, v, w), X][ -+ [[N () \ NxL{v, w)l, K]+ [N () \ Nx[{u, w} X]) ]
+ 1INx () \ Ny [{u, v}, X1+ |TNx ) 0 Nx () \ Nx[wl, X]1+ [T(Nx ) 0 Nx (w)) \ Nx[vl. X]I
+ I[(Nx (v) N Nx(w)) \ Nx[ul, X]| + |[Nx () 0 Nx (v) 1 Ny (w), X]|
> [{u, v, w}, XI| + [Nx (W) \ Nx[{v, w}| + 2|Nx (v) \ Nx[{u, w}]|
+ [Nx (w) \ Nx[{u, v}1| + 2| (Nx (1) N Nx(v)) \ Nx[w]|
+ 2[(Nx (1) N Nx(w)) \ Nx[v]] + 2|(Nx(v) N Nx(w)) \ Nx[u]] + 3|Nx(u) N Nx(v) N Nx(w)|
> [0({u, v, wh| = §3(G). O
Remark 2. The following examples illustrate that Conditions (b) and (c) in Theorem 2.3 cannot be weakened.
Example 1. Let H;, i = 1, 2 be two copies of Kp, p > 7 with V(Hy) = {x1,x2, ..., X%} and V(H2) = {¥1,¥2,...,¥p}. The

graph G is defined as the disjoint union of H; — x1x, and H, — y1y, together with additional x;y1, x,y» and 3p — 12 edges
between {xs, X, ..., X} and {ys, ¥, ..., yp} such that d(x;) = d(y;) = p+ 2fori =5,6, ..., p(Fig. 4). Then, n(G) = 2p,
dx) = d@y;)) =p—1fori = 1,2,3,4,d(xj)) = d(y) = p+2forj = 5,6,...,p. Clearly, G satisfies Conditions (a)
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Fig. 5. A non-As-optimal graph not satisfying Condition (c) of Theorem 2.3.
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Fig. 6. A non-super-13 graph G not satisfying Condition (b) of Theorem 2.5.

and (c) but not (b) of Theorem 2.3 as d¢(x1,X;) = 2and d(x1) +d(x;) = 2p —2 < 2p — 1 = 2[n(G)/2] — 1. However,
&3(G) = 3p — 9, and since the set S of edges joining H; — x1X, and H, — y1y; is a 3-restricted edge-cut and |S| = 3p — 10,
then A3(G) < 3p — 10. Thus, G is non-A3-optimal.

Example 2. Let H;, i = 1,2 be two copies of K,, p > 7 with V(H1) = {x1,%2,...,xp} and V(Hy) = {¥1,¥2,....,Yp}
The graph G is defined as the disjoint union of H; and H, by adding 8 edges x4y1, X4y4, X;y; and x;y;4q fori = 1,2, 3,
and 3p — 12 edges between {xs, X, ..., Xp} and {ys, ¥s, ..., ¥p} such that d(x;) = d(y;) = p+2forj = 5,6,...,p
(Fig. 5). Then, n(G) = 2p and G satisfies Conditions (a) and (b) but not (c) of Theorem 2.3 as G[{x;, X2, X3, X4}] is a K4 and
dx)=p+1<p+2=[n(G)/2] +2fori=1,2,3,4 However, &(G) = 3p — 3 and A3(G) < 3p — 4 (since the set S of
edges that join H; and H, is a 3-restricted edge-cut and |S| = 3p — 4). Hence, G is not A3-optimal.

Corollary 2.4. Let G be a connected K4-free graph with n(G) > 6. Then G is A3-optimal if the following two conditions hold:
(@) d(x) +d(y) = 2| n(G)/2] — 5 for each pair x,y € V(G) withdg(x,y) = 3, and
(b) d(x) +d(y) = 2| n(G)/2] — 1 for each pair x,y € V(G) withdg(x,y) = 2.

Similarly to the proof of Theorem 2.3, by Lemma 2.1 (b) we can obtain the following theorem.

Theorem 2.5. Let G be a connected graph with n(G) > 6. Then G is super-As if the following three conditions hold:
(a) d(x) + d(y) = 2| n(G)/2] — 3 for each pair x,y € V(G) withds(x,y) = 3,
(b) d(x) +d(y) = 2| n(G)/2] + 1 for each pair x,y € V(G) with d¢(x,y) = 2, and
(c) for each subgraph K4 of G, there exists at least one vertex v € K4 with d(v) > |[n(G)/2] + 3.

Remark 3. (1) The example depicted in Fig. 6 shows that Condition (b) in Theorem 2.5 cannot be weakened. In Fig. 6,
n(G) = 10,d(v) = 5 for v € V(G), and G fulfills Conditions (a) and (c) but not (b) of Theorem 2.5. Furthermore, by
Theorem 2.3, A3(G) = &3(G) = 9, and the edge set S = {x;yi, X1¥2, X2V1, X4Y5, XsY4 : i = 1,2, ..., 5} is a nontrivial A3-cut of
G, so G is non-super-As.

(2) (p, 3)-barbell (p > 4)is any graph G obtained by joining two copies of the complete graph K, with 3p additional edges
such that d(v) = p+ 2 for each vertex v € V(G). We see that (p, 3)-barbell satisfies Conditions (a) and (b) but not Condition
(c) of Theorem 2.5. By Theorem 2.3, (p, 3)-barbell is A3-optimal. Also, the set of 3p edges joining two copies of the complete
graph K, is a nontrivial A3-cut. So it is not super-A3 and thus Condition (c) of Theorem 2.5 cannot be weakened.

Corollary 2.6. Let G be a connected K4-free graph with n(G) > 6. Then G is super-A3 if the following two conditions hold:
(@) d(x) +d(y) = 2| n(G)/2] — 3 for each pair x,y € V(G) withd(x,y) = 3, and
(b) d(x) +d(y) = 2| n(G)/2] + 1 for each pair x, y € V(G) with dg(x,y) = 2.

3. Conditions for triangle-free graphs

Hellwig and Volkmann [8] gave the following result about the A,-optimality of triangle-free graphs:
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Fig. 7. A non-\;-optimal triangle-free graph withd(v) =p + 1.
Theorem 3.1 ([8]). Let G be a \,-connected triangle-free graph. If d(x) > | (n(G) + 2)/4] + 1 for all vertices x in G with at
most one exception, then G is A,-optimal.

Inspired by the ideas in [8], we present the following two theorems.

Theorem 3.2. Let G be a connected triangle-free graph with n(G) > 6. If d(x) > [ (n(G) + 2)/4] + 2 for all vertices x in V (G)
with at most one exception, then G is A3-optimal.

Proof. Since n(G) > 6, thend(x) > | (n(G) + 2)/4] + 2 > 4 for all vertices x in V(G) with at most one exception. Hence
G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. By Theorem 1.2, G is A3-connected.
It now suffices to prove that 14(G) > &3(G) by Lemma 2.1 (a). Let 9(X) be any A4-cut of G with |X| < |X]. This implies
4 < |X| < [n(G)/2]. Choose one vertex v in X such that d(v) = min{d(x) : x € X} and let u, w € X such that G[{u, v, w}]
is connected. Using Turan’s [17] bound 2|E(G)| < n(G)?/2 for triangle-free graphs G, we have

A4(G) = [0(X)| = Zd(X) — 2|E(GIXDI

xeX

2
> duw +d) +dw) —4+4+ Y dw - AF

xeX\{u,v,w} 2

1
> &(G) + (X[ = 3)(L(n(G) +2)/4] +2) — E(IXI2 -9
1 1
= &0 + (X = 3H2LMG) +2)/4] — X[+ 1) — 5

1 1
> &(6) + E(ZL(H(G) +2)/4] - [n(G)/2] + 1) — 3

> &(6). O
In the proof above, when n(G) > 10, we have
if |X| = 4, then
14(G) = &3(G) + L(n(G) +2)/4] — 2 > &(G);
if |X| > 5, then

1
*4(G) = &3(G) +2[(n(G) +2)/4] — [n(G)/2] +1— 5> §3(G).
By Lemma 2.1 (b), G is super-A3. So we have the following theorem.

Theorem 3.3. Let G be a connected triangle-free graph with n(G) > 10.If d(x) > | (n(G) 4+ 2)/4] + 2 for all vertices x in V (G)
with at most one exception, then G is super-\s.

Remark 4. The example depicted in Fig. 7 (p > 4) shows that the results of Theorems 3.2 and 3.3 are the best possible. In
Fig. 7, G is a bipartite graph with n(G) = 4p,andd(v) = p+ 1 < p+ 2 = |(n(G) + 2)/4] + 2 for all v € V(G). However,
&3(G) = 3p — 1and A3(G) < [{yivi, Yivig1, Yp+1Up+1, Yp+1v1 1 1= 1,2, ..., p}| = 2p + 2,50 G is non-A3-optimal.

4. Conditions for bipartite graphs

In regard to the A3-optimality of bipartite graphs, also inspired by the ideas of Hellwig and Volkmann in [8], we obtain
the following result.
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Theorem 4.1. Let G be a connected bipartite graph with n(G) > 6. If:
(@) d(x) +d@y) = 2|(n(G) 4+ 2)/4] — 1 for each pair x,y € V(G) withds(x,y) = 3 and
(b) d(x) + d(y) = 2[(n(G) + 2)/4] + 3 for each pair x,y € V(G) withd¢(x,y) =2
hold, then G is A3-optimal.

Proof. From n(G) > 6 and Condition (b), it follows that d(x) +d(y) > 2| (n(G)+2)/4]+3 > 7 for each pairx, y € V(G) with
dc(x,y) = 2.So G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. By Theorem 1.2,
G is A3-connected. By Lemma 2.1 (a), it suffices to show that A14(G) > &3(G). Let (A, B) be the bipartition of G and 9(X) any
Agq-cut of G with |X| < |X|. This implies 4 < |X| < [n(G)/2].Set X' := X NAand X” := X N B. We assume, without loss of
generality, that [X’| < |X”|. It follows that |X’| < [n(G)/4]. Choose three vertices u, v, and w in X such that G[{u, v, w}] is
connected and satisfies that

|0({u, v, w})| = min{|0(H)| : H € X, |H| = 3, and G[H] is connected}

and X’ contains as more as possible vertices of {u, v, w}. Since G is bipartite, G[{u, v, w}] is a path. We assume that
uw ¢ E(G). By the choice of u, v and w, we have

d(a) > d(w) and dg(a, w) = 3, foreacha € Nx(u) \ Nx(w); (15

d(b) > d(u) and dg(b, u) = 3, foreachb € Nx(w) \ Nx(u); (16

d(c) > d(u) and dg(c,u) =2, foreachc € Nx(v) \ {u, w}; (17

d(f) > d(v) and dg(f,v) =2, foreachf e (Nx(u) N Nx(w)) \ {v}. (18
Case 1. |X'| = [n(G)/4]. It follows that [n(G)/4] < |X"| < [n(G)/4] + 1from |X| < [n(G)/2].

Subcase 1.1. |X"| = [n(G)/4]. We assume, without loss of generality, that u, w € X’ and v € X”. According to (15) and
Condition (a), we obtain

INg ()| = d(a) — [Nx(a)]

\

1
z 5@ +dw)) — (X'1—1

v

1
L(n(G) +2)/4] — 37 (In(G)/4] = 1)
1
> —
-2
for each a € Nx(u) \ Nx(w). So [Ng(a)| > 1. Similarly, we have
INg(b)] > 1, foreachb € Nx(w) \ Nx(u);
INg(c)| =2, foreachc e Nxy(v) \ {u, w};
INy(f)l = 2, foreachf € (Nx(u) N Nx(w)) \ {v}.
Hence,
3a(6) = 1900 = [[{u, v, w}, K] + [[X \ {u, v, w}. X]| )
2 [y, v, wh XJ| + [INx @) \ Nx (w), X]| + [[Nx (w) \ Nx (W), X]|
FIINx @) \ {u, w, X[ + [[(Nx () 0 Nx(w)) \ {v}, X]|
> |[{u, v, w}, X1 + [Nx(u) \ Nx(w)| + [Nx(w) \ Nx(w)]
+2|Nx (v) \ {u, w} + 2|(Nx () N Nx(w)) \ {v}]
> [0({u, v, wh| = &(6).
Subcase 1.2. |X”| = |n(G)/4] + 1. Then n(G) = 2 or 3(mod 4) by [n(G)/4] + [n(G)/4] +1 = |X'| + |X"| = |X| < [n(G)/2].
This implies that | (n(G) +2)/4| = [n(G)/4] + 1, hence, Conditions (a) and (b) are equivalent to the following (a)’ and (b)’,
respectively.
(@) d(x) + d(y) > 2[n(G)/4] + 1 for each pair x, y € V(G) such that dg(x,y) = 3;

(b)’ d(x) + d(y) > 2|n(G)/4] + 5 for each pair x, y € V(G) such that ds(x, y) = 2.
By a similar proof of Subcase 1.1, we can obtain the desired result.

Case 2. 1X'| < [n(G)/4] — 1.
Subcase 2.1 u, w € X’ and v € X”. According to (15)-(18) and Conditions (a) and (b), by a similar reasoning of Subcase 1.1,
we have

INg(a)] > 2, foreacha € Nx(u) \ Nx(w);

INg(b)] > 2, foreachb e Nx(w) \ Nx(u);

IN3(f)] = 3, foreachf e (Nx(u) N Nx(w)) \ {v}.

’
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For each ¢ € Nx(v) \ {u, w}, if [Ng(c)| > 1, as in Subcase 1.1, we can obtain 14(G) > &;3(G). Otherwise, there exists one
vertex ¢p € Nx(v) \ {u, w} such that [Ny (co)| = 0, and by (17) and Condition (b), we have

1 3
INx(co)| = d(co) > E(d(u) +d(c)) > L(n(G) +2)/4] + 3" (19)
Choose one vertex x in Nx(cp) \ {v} such that

d(x) = min{d(y) : y € Nx(co) \ {v}}.
For eachy € Nx(co) \ (Nx({u, w}) U {x}),d(y) > d(x) and ds(x,y) = 2, hence

\

1
INyW)| = E(d(x) +dy) — IX'|

> L@ +2)/4] + 5 — [n(©)/4] + 1
5

> —.

-2
From (19) and |Nx (v) \ {u, w}| < |X’| — 2 < [n(G)/4] — 3, we have

1
[Nx(co) \ {x, v}| = [(n(G) +2)/4] — 3> [Nx (v) \ {u, w}. (20)

Then

24(G) = 19001 = [[{u, v, w}, XI| + [IX\ {u, v, w}, X]|
> |[{u, v, w}, X1 + [[Nx (@) \ Nx(w), X]| + [[Nx(w) \ Nx(u), X]|
+ [[(Nx (@) N Nx (w)) \ {o}, X1 + [[Nx(co) \ (Nx (fu, w}) U {x}), X]|
> |[{u, v, w, XT] + 2[Nx () \ Nx(w)] + 2|Nx (w) \ Nx ()]
+ 3[(Nx (u) N Nx(w)) \ {v}| + 3INx(co) \ (Nx({u, w}) U {x})]
> |[{u, v, w}, X1| + [Nx (@) \ Nx(w)| + [Nx(w) \ Nx ()| 4 2|(Nx (1) N Nx(w)) \ {v}| + [Nx(co) \ {x, v}|
> [0({u, v, wh| = §(G).
Subcase 2.2.u, w € X” and v € X'. According to (17), each vertex ¢ € Nx(v) \ {u, w} satisfies

1
IN5 (O] = 2 (d(W) +d(c)) — X'l

%

3
L(n(G) +2)/4] + 5 — [n(G)/4] + 1
5

> —.
-2
Ifeach vertexx € (Nx(u) \Nx(w))U(Nx(w)\Nx(u)) has at least one neighbor in X and each vertex f € (Nx (1) NNy (w))\{v}
has at least two neighbors in X, as in Subcase 1.1, we can deduce that 14(G) > &3(G).
Otherwise, if there exists one vertex x € (Nx(u) \ Nx(w)) U (Nx(w) \ Nx(u)) such that N3 (x)| = 0. By the choice of the
vertices u, v and w, either d(x) > d(w) and dg(x, w) = 3 or d(x) > d(u) and d¢(x, u) = 3. According to Condition (a),
3
INxCO\ {u, w} =dx) — 1> |[(n(G) +2)/4] — > (21)

If there exists one vertex x € Nx(u) N Nx(w) such that [N;(x)| < 1, then from (18) it follows that

INx () \ {u, w}| = %(d(v) +dx) —3 = [(n(G) +2)/4] — % (22)
Choose one vertex zp in Nx (x) \ {u, w} such that

d(z0) = min{d(z) : z € Nx(0) \ {u, w}}.
Then, each vertex z € Nx(x) \ (Nx(v) U {zo}) satisfies that d(z) > d(zy) and d¢(z, zg) = 2. By Condition (b),

N @) = L) +2)/41 + 3 — (In(@)/4] = 1) = >
According to (21), (22) and |[Nx ({u, w}) \ {v}| < |X'| — 1 < [n(G)/4] — 2, we have

INx () \ {u, w, zo}| > [(n(G) +2)/4] —2 > |Nx({u, w}) \ {v}]. (23)
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Hence,

24(G) = 1000 = |[{u, v, w}, X1 + [[X \ {u, v, w}, X]|

[, v, wh, X]]+ [[Nx () \ {u, w}, X]] 4 |[Nx (%) \ (Nx (v) U {z0}), X]|
[{u, v, wh, X]| + 3INx () \ {u, w}| + 3INx () \ (Nx(v) U {z0})]

[, v, wh X][ + [Nx(0) \ {u, w}] + 2Nx () \ {u, w, zo}

L, v, wh, X]] + [Nx () \ {u, w}] + 2|Nx (fu, wh) \ {v}]

|a({us v, w})l = 53(G) U

IV IV IV IVl

v

Remark 5. It is easy to test that the bipartite graph G depicted in Fig. 7 satisfies Condition (a) but not Condition (b) of
Theorem 4.1, and by Remark 4, G is not A3-optimal. Hence Condition (b) of Theorem 4.1 cannot be weakened.

Similarly to the proof of Theorem 4.1, by Lemma 2.1 (b) we can show the following theorem.

Theorem 4.2. Let G be a connected bipartite graph with n(G) > 6. If:
(@) d(x) +d@y) = 2| (n(G) + 2)/4] + 1 for each pair x, y € V(G) with ds(x,y) = 3 and
(b)d(x) + d(y) = 2| (n(G) + 2)/4] + 5 for each pair x,y € V(G) withdg(x,y) =2
hold, then G is super-As.
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