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a b s t r a c t

For a positive integer m, an edge-cut S of a connected graph G is an m-restricted edge-cut
if each component of G− S contains at leastm vertices. Them-restricted edge connectivity
of G, denoted by λm(G), is defined as the minimum cardinality of all m-restricted edge-
cuts. Let ξm(G) := min{|∂(X)| : X ⊆ V (G), |X | = m, and G[X] is connected}, where ∂(X)
denotes the set of edges of G each having exactly one endpoint in X . A graph G is said to
be λm-optimal if λm(G) = ξm(G), and super-λm if every minimum m-restricted edge-cut
isolates a component of size exactlym.
In this paper, firstly, we give some relations among λ3-optimal, λi-optimal and super-

λi for i = 1, 2. Then we present degree conditions for arbitrary, triangle-free and bipartite
graphs to be λ3-optimal and super-λ3, respectively; moreover, we give some examples
which prove that our results are the best possible.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and notations

Let G be a connected undirected simple graph with vertex set V (G) and edge set E(G). Let n(G) denote the order of G,
dG(u, v) the distance between vertices u and v in G, and g(G) the girth of G. For a vertex v ∈ V (G), NG(v) denotes the set
of vertices adjacent to v in G, NG[v] := NG(v) ∪ {v}. Then d(v) = |NG(v)| is the degree of v in G, and δ(G) is the minimum
degree of G. If X ⊆ V (G), then G[X] denotes the subgraph of G induced by X , and X̄ = V (G) \ X . For disjoint sets X and Y
of vertices of G, [X, Y ] denotes the set of edges of G with one endpoint in X and the other one in Y . Put ∂(X) := [X, X̄]. We
denote NG[X](v) by NX (v), the complete graph with order n by Kn, and the complete bipartite graph with bipartite sets of
cardinalitiesm and n by Km,n. A (p, r)-barbell (p ≥ 3, r ≤ p) [19] is a graph G obtained by joining two copies of the complete
graph Kp with pr additional edges such that d(v) = p+ r − 1 for each vertex v ∈ V (G).
It iswell known that the underlying topology of an interconnection network is usuallymodeled by a graphGwith vertices

and edges representing the nodes and links, respectively. An edge-cut S of a connected graph G is called a restricted edge-
cut if G− S contains no isolated vertex. The minimum cardinality of all restricted edge-cuts, denoted by λ′(G), is called the
restricted edge connectivity ofG. Edge connectivityλ(G) and restricted edge connectivityλ′(G) have been used tomeasure the
reliability of a network. In order to more accurately measure the reliability, the parameter λm(G) received much attention.
Under some reasonable conditions,Wang and Li [18] showed that for two regular graphs G1 and G2 with λ(G1) = λ(G2) = λ
and λ′(G1) = λ′(G2) = λ′, and mλ(G1) = mλ(G2) and mλ′(G1) = mλ′(G2), G1 is more reliable than G2 if λ3(G1) > λ3(G2)
or λ3(G1) = λ3(G2) = λ3 and mλ3(G1) < mλ3(G2), where mi(G) denotes the number of disconnecting edge sets of size i in
graphG. So graphswithmaximal 3-restricted edge connectivity λ3(G) (namely λ3-optimal graphs) and the fewestminimum
3-restricted edge-cuts (super-λ3 graphs have these two properties) have higher reliability.
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Fig. 1. (a) The 3-leg spider graph, and (b) the friendship graph.

Them-restricted edge connectivity λm(G)was defined by Fábrega and Fiol [4,5] as follows:

Definition 1.1. An edge set S of a connected graph G is called an m-restricted edge-cut if G − S is disconnected and each
component of G− S contains at leastm vertices. Them-restricted edge connectivity of G, denoted by λm(G), is the minimum
cardinality of allm-restricted edge-cuts of G.

Balbuena et al. [1] improved the results contained in [4,5], andmore recently Bonsma et al. [2] andMeng and Ji [11] have
obtained very interesting results concerning the existence of m-restricted edge-cuts. Also see the survey by Hellwig and
Volkmann [9].
Note that λ1(G) = λ(G) and λ2(G) is just the usual restricted edge connectivity λ′(G). An m-restricted edge-cut S in G is

called a λm-cut, if |S| = λm(G), and trivial if S isolates a component of size exactlym. Obviously, for any λm-cut S, the graph
G− S has exactly two components.
For a connected graph G, let

ξm(G) := min{|∂(X)| : X ⊆ V (G), |X | = m, and G[X] is connected}.

Note that ξ1(G) = δ(G) and ξ2(G) is just theminimum edge-degree ξ(G) of G. A connected graph G is λm-connected if λm(G)
exists. Clearly, if G is λm-connected for m ≥ 2, then G is also λm−1-connected and λm−1(G) ≤ λm(G). In 1988, Esfahanian
and Hakimi [3] showed that every connected graph G of order n(G) ≥ 4, except a star K1,n−1, λ2(G) exists and satisfies
λ2(G) ≤ ξ2(G). Bonsma, Ueffing and Volkman [2], Wang and Li [22] characterized λ3-connected graphs as follows.

Theorem 1.2 ([2,22]). (a) A connected graph G of order n(G) ≥ 6 is λ3-connected if and only if G is not isomorphic to the 3-leg
spider graph (Fig. 1(a)) or any subgraph of the friendship graph (Fig. 1(b)).
(b) If G is λ3-connected, then λ3(G) ≤ ξ3(G).

Form ≥ 4, Bonsma et al. [2] pointed out that the inequality λm(G) ≤ ξm(G) is no longer true in general, Ou characterized
graphs of order at least 3m−2 that containm-restricted edge-cuts [12] and showed that a λ4-connected graph Gwith order
at least 11 has the property λ4(G) ≤ ξ4(G) [13], and Zhang and Yuan [24] showed that for m ≤ δ(G) + 1, every connected
graph G with order at least 2(δ(G) + 1) except the graph G∗n,t is λm-connected and λm(G) ≤ ξm(G), where G

∗
n,t is obtained

from n copies of Kt by adding a new vertex u that is adjacent to every vertex of them. To maximize λm(G) and minimize the
number of λm-cuts of G, the following definition was proposed in [11,23,25].

Definition 1.3. For a positive integer m, a λm-connected graph G with λm(G) ≤ ξm(G) is said to be optimally m-restricted
edge connected, for short λm-optimal, if λm(G) = ξm(G), and super-m-restricted edge connected, for short super-λm, if every
λm-cut of G is trivial.

Note that λ1-optimal is just maximally edge-connected and λ2-optimal is the λ′-optimal; super-λ1 is just the super-edge
connected and super-λ2 is the super-λ′.
For the λ3-optimal and super-λ3 graphs, Bonsma et al. [2] showed that the complete bipartite graph Kr,swith r, s ≥ 2 and

r+ s ≥ 6 is λ3-optimal, Ou and Zhang characterized the 3-restricted edge connectivity of vertex transitive graphs with girth
four [14] and that of 3-regular and 4-regular vertex transitive graphs with girth three [15], Zhang and Meng [23] studied
the λ3-optimal vertex transitive graphs, Wang [19] presented Ore type sufficient conditions for graphs with diameter 2 to
be λ3-optimal and super-λ3, Zhang and Yuan [25] gave degree conditions for graphs with diameter 2 to be λm-optimal,
and Zhang [26] gave sufficient conditions expressed in terms of ξm(G) for graphs to be λm-optimal, m = 2, 3. For more
information onm-restricted edge connectivity of graphs, please refer to [6,7,13,16,20,24].
In this paper, we study the index λ3 of graphs and present degree conditions for arbitrary, triangle-free, and bipartite

graphs to be λ3-optimal and super-λ3, respectively; moreover, we give some examples which prove that our results are the
best possible.
Now we discuss some relations between λm-optimal and super-λm for m ≤ 3. A super-λm graph is also λm-optimal,

but the converse is not true, and a λ3-optimal graph is not always λ2-optimal. Hellwig and Volkman [8] gave the following
proposition about the relations between λ2-optimal, λ1-optimal and super-λ1.
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Fig. 2. A λ3-optimal but not super-λ2 graph with δ(G) = 4.

Fig. 3. Two λ3-optimal but not λ2-optimal graphs.

Proposition 1.4 ([8]). (a) If G is λ2-optimal, then G is also λ1-optimal.(b) If G is λ2-optimal and δ(G) ≥ 3, then G is super-λ1.

We give relations below between λ3-optimal, λi-optimal and super-λi for i = 1, 2.

Proposition 1.5. Let G be a λ3-optimal graph.
(a) If δ(G) ≥ 4, then G is λi-optimal for i = 1, 2 and super-λ1; if δ(G) > 4, then G is super-λi for i = 1, 2.
(b) Assume that G is triangle-free. If δ(G) ≥ 2, then G is λi-optimal for i = 1, 2; if δ(G) > 2, then G is super-λi for i = 1, 2.

Proof. Since G is λ3-optimal,

λ3(G) = ξ3(G)
= min{|∂(X)| : X ⊂ V (G), |X | = 3, and G[X] is connected}
= min{min{d(x)+ d(y)+ d(z)− 6 : G[{x, y, z}] is a triangle},
min{d(x)+ d(y)+ d(z)− 4 : G[{x, y, z}] is a path}}

≥

{
ξ2(G)+ δ(G)− 4, if G contains a triangle;
ξ2(G)+ δ(G)− 2, if G is triangle-free.

Hence, λ3(G) ≥ ξ2(G) if δ(G) ≥ 4 and λ3(G) > ξ2(G) if δ(G) > 4; and when G is triangle-free, λ3(G) ≥ ξ2(G) if δ(G) ≥ 2
and λ3(G) > ξ2(G) if δ(G) > 2. Since λ2(G) ≤ λ3(G), λ3(G) ≥ ξ2(G) implies λ2(G) = ξ2(G) and λ3(G) > ξ2(G) implies that
each λ2-cut is trivial, so by Proposition 1.4, both statements (a) and (b) hold. �

Remark 1. From the proof of Proposition 1.5, we know that a λ3-optimal graph G is super-λ2 if ξ3(G) > ξ2(G) and λ2-
optimal if ξ3(G) ≥ ξ2(G). A λ3-optimal graph G is not always super-λ2 if ξ3(G) = ξ2(G) or λ2-optimal if ξ3(G) < ξ2(G). In
Fig. 2, we give an example of a graphwith δ(G) = 4, ξ3(G) = ξ2(G) = 6, and λ3(G) = 6. So G is λ3-optimal but not super-λ2.
The cycle Cn(n ≥ 6), a λ3-optimal triangle-free graph with δ(Cn) = 2 and ξ3(Cn) = ξ2(Cn) = 2, is not super-λ2. In Fig. 3,
λ3(H1) = ξ3(H1) = 3, λ3(H2) = ξ3(H2) = 1, but λ2(H1) = 3 < 4 = ξ2(H1), λ2(H2) = 1 < 2 = ξ2(H2). So H1 and H2 are
λ3-optimal but not λ2-optimal.

We next present degree conditions for arbitrary, triangle-free, and bipartite graphs to be λ3-optimal and super-λ3,
respectively.

2. Conditions for arbitrary graphs

Lemma 2.1. Let G be a λ3-connected graph. Then:
(a) G is λ3-optimal if and only if either G is non-λ4-connected, or G is λ4-connected and λ4(G) ≥ ξ3(G).
(b) G is super-λ3 if and only if either G is non-λ4-connected, or G is λ4-connected and λ4(G) > ξ3(G).

Proof. Since G is λ3-optimal, then λ3(G) = ξ3(G). Thus to prove the necessity observe that if G is λ4-connected, then by
λ4(G) ≥ λ3(G), we have λ4(G) ≥ ξ3(G). If G is super-λ3, then λ4(G) > λ3(G) and we have λ4(G) > ξ3(G).
To prove the sufficiency note that if G is non-λ4-connected, then each λ3-cut of G is trivial, and G is λ3-optimal and

super-λ3. Let G be λ4-connected with λ4(G) ≥ ξ3(G). If λ4(G) > λ3(G), then each λ3-cut of G is trivial and G is thus super-
λ3. Otherwise λ3(G) = λ4(G) ≥ ξ3(G). Then λ3(G) = ξ3(G), and G is λ3-optimal. �
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In the following, we first list some degree conditions for graphs to be λm-optimal and super-λm for m = 1, 2, 3, then
present sufficient conditions for arbitrary graphs to be λ3-optimal and super-λ3.

Theorem 2.2. Let G be a connected graph.
(a) [10] If d(u)+ d(v) ≥ n(G)− 1 for all pairs u, v of nonadjacent vertices, then G is λ1-optimal.
(b) [10] If d(u)+d(v) ≥ n(G) for all pairs u, v of nonadjacent vertices, and G is different from Kn(G)/2×K2, then G is super-λ1.
(c) [20] If n(G) ≥ 4 and d(u)+ d(v) ≥ n(G)+ 1 for all pairs u, v of nonadjacent vertices, then G is λ2-optimal.
(d) [8] Let G be a λ2-connected graph such that δ(G) ≥ bn(G)/2c − 1. If for each triangle T of G there exists at least one

vertexw ∈ V (T ) such that d(w) ≥ bn(G)/2c + 1, then G is λ2-optimal.
(e) [21] If G is not a (p, 2)-barbell and d(u)+ d(v) ≥ n(G)+ 2 for all pairs u, v of nonadjacent vertices, then G is super-λ2.
(f) [19] If n(G) ≥ 6 and d(u)+ d(v) ≥ n(G)+ 3 for all pairs u, v of nonadjacent vertices, then G is λ3-optimal.
(g) [19] If G is not (p, 3)-barbell (p ≥ 4), n(G) ≥ 6, and d(u) + d(v) ≥ n(G) + 3 for all pairs u, v of nonadjacent vertices,

then G is super-λ3.

Theorem 2.3. Let G be a connected graph with n(G) ≥ 6. Then G is λ3-optimal if the following three conditions hold:
(a) d(x)+ d(y) ≥ 2b n(G)/2c − 5 for each pair x, y ∈ V (G) with dG(x, y) = 3,
(b) d(x)+ d(y) ≥ 2b n(G)/2c − 1 for each pair x, y ∈ V (G) with dG(x, y) = 2, and
(c) for each subgraph K4 of G, there exists at least one vertex v ∈ K4 with d(v) ≥ bn(G)/2c + 2.

Proof. From Condition (b) and n(G) ≥ 6, it follows that d(x)+ d(y) ≥ 5 for each pair x, y ∈ V (G)with dG(x, y) = 2. Hence
G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. From Theorem 1.2 we know that G
is λ3-connected. So by Lemma 2.1 (a), it suffices to show that λ4(G) ≥ ξ3(G). Let ∂(X) be any λ4-cut of Gwith |X | ≤ |X̄ |. This
implies 4 ≤ |X | ≤ bn(G)/2c. Choose three vertices u, v andw in X such that G[{u, v, w}] is connected and satisfies

|∂({u, v, w})| = min{|∂(A)| : A ⊂ X, |A| = 3, and G[A] is connected}.

Case 1. G[{u, v, w}] is a path. Assume that uw 6∈ E(G), by the choice of u, v andw, we have

d(a) ≥ d(w) and 2 ≤ dG(a, w) ≤ 3, for each a ∈ NX (u) \ NX [{v,w}]; (1)

d(b) ≥ d(u) and dG(b, u) = 2, for each b ∈ NX (v) \ NX [{u, w}]; (2)

d(c) ≥ d(u) and 2 ≤ dG(c, u) ≤ 3, for each c ∈ NX (w) \ NX [{u, v}]; (3)

d(d) ≥ d(w)+ 2 and dG(d, w) = 2, for each d ∈ (NX (u) ∩ NX (v)) \ NX [w]; (4)

d(e) ≥ d(v) and dG(e, v) = 2, for each e ∈ (NX (u) ∩ NX (w)) \ NX [v]; (5)

d(f ) ≥ d(u)+ 2 and dG(f , u) = 2, for each f ∈ (NX (v) ∩ NX (w)) \ NX [u]; (6)

and each vertex g ∈ NX (u) ∩ NX (v) ∩ NX (w) satisfies that

d(g) ≥ d(u)+ 2, d(g) ≥ d(w)+ 2, and dG(u, w) = 2. (7)

For each vertex a ∈ NX (u) \ NX [{v,w}], according to (1), |X | ≤ bn(G)/2c, and Conditions (a) and (b), we obtain

|NX̄ (a)| = d(a)− |NX (a)|

≥
1
2
(d(a)+ d(w))− (|X | − 3)

≥ bn(G)/2c −
5
2
− (bn(G)/2c − 3)

=
1
2
.

Since |NX̄ (a)| is an integer, it follows that |NX̄ (a)| ≥ 1. Similarly, we can deduce that

|NX̄ (b)| ≥ 3, for each b ∈ NX (v) \ NX [{u, w}];
|NX̄ (c)| ≥ 1, for each c ∈ NX (w) \ NX [{u, v}];
|NX̄ (d)| ≥ 3, for each d ∈ (NX (u) ∩ NX (v)) \ NX [w];
|NX̄ (e)| ≥ 2, for each e ∈ (NX (u) ∩ NX (w)) \ NX [v];
|NX̄ (f )| ≥ 3, for each f ∈ (NX (v) ∩ NX (w)) \ NX [u];
|NX̄ (g)| ≥ 3, for each g ∈ NX (u) ∩ NX (v) ∩ NX (w).

Case 2. G[{u, v, w}] is a triangle. By the choice of vertices u, v andw, we have

d(a) ≥ d(w)− 2 and dG(a, w) = 2, for each a ∈ NX (u) \ NX [{v,w}]; (8)

d(b) ≥ d(u)− 2 and dG(b, u) = 2, for each b ∈ NX (v) \ NX [{u, w}]; (9)
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Fig. 4. A non-λ3-optimal graph not satisfying Condition (b) of Theorem 2.3.

d(c) ≥ d(v)− 2 and dG(c, v) = 2, for each c ∈ NX (w) \ NX [{u, v}]; (10)

d(d) ≥ d(w) and dG(d, w) = 2, for each d ∈ (NX (u) ∩ NX (v)) \ NX [w]; (11)

d(e) ≥ d(v) and dG(e, v) = 2, for each e ∈ (NX (u) ∩ NX (w)) \ NX [v]; (12)

d(f ) ≥ d(u) and dG(f , u) = 2, for each f ∈ (NX (v) ∩ NX (w)) \ NX [u]; (13)

and each vertex g ∈ NX (u) ∩ NX (v) ∩ NX (w) satisfies that

d(g) ≥ max{d(u), d(v), d(w)} and G[{u, v, w, g}] is a K4. (14)

For each vertex a ∈ NX (u) \ NX [{v,w}], according to (8), |X | ≤ bn(G)/2c and Condition (b), we obtain

|NX̄ (a)| = d(a)− |NX (a)|

≥
1
2
(d(a)+ d(w)− 2)− (|X | − 3)

≥ bn(G)/2c −
3
2
− (bn(G)/2c − 3)

=
3
2
.

So |NX̄ (a)| ≥ 2. Similarly, we can deduce that

|NX̄ (b)| ≥ 2, for each b ∈ NX (v) \ NX [{u, w}];
|NX̄ (c)| ≥ 2, for each c ∈ NX (w) \ NX [{u, v}];
|NX̄ (d)| ≥ 2, for each d ∈ (NX (u) ∩ NX (v)) \ NX [w];
|NX̄ (e)| ≥ 2, for each e ∈ (NX (u) ∩ NX (w)) \ NX [v];
|NX̄ (f )| ≥ 2, for each f ∈ (NX (v) ∩ NX (w)) \ NX [u];
|NX̄ (g)| ≥ 3, for each g ∈ NX (u) ∩ NX (v) ∩ NX (w).

Hence, in both two cases, we have

λ4(G) = |∂(X)| = |[{u, v, w}, X̄]| + |[X \ {u, v, w}, X̄]|
≥ |[{u, v, w}, X̄]| + |[NX (u) \ NX [{v,w}], X̄]| + |[NX (v) \ NX [{u, w}], X̄]|
+ |[NX (w) \ NX [{u, v}], X̄]| + |[(NX (u) ∩ NX (v)) \ NX [w], X̄]| + |[(NX (u) ∩ NX (w)) \ NX [v], X̄]|
+ |[(NX (v) ∩ NX (w)) \ NX [u], X̄]| + |[NX (u) ∩ NX (v) ∩ NX (w), X̄]|

≥ |[{u, v, w}, X̄]| + |NX (u) \ NX [{v,w}]| + 2|NX (v) \ NX [{u, w}]|
+ |NX (w) \ NX [{u, v}]| + 2|(NX (u) ∩ NX (v)) \ NX [w]|
+ 2|(NX (u) ∩ NX (w)) \ NX [v]| + 2|(NX (v) ∩ NX (w)) \ NX [u]| + 3|NX (u) ∩ NX (v) ∩ NX (w)|

≥ |∂({u, v, w})| ≥ ξ3(G). �

Remark 2. The following examples illustrate that Conditions (b) and (c) in Theorem 2.3 cannot be weakened.

Example 1. Let Hi, i = 1, 2 be two copies of Kp, p ≥ 7 with V (H1) = {x1, x2, . . . , xp} and V (H2) = {y1, y2, . . . , yp}. The
graph G is defined as the disjoint union of H1 − x1x2 and H2 − y1y2 together with additional x1y1, x2y2 and 3p − 12 edges
between {x5, x6, . . . , xp} and {y5, y6, . . . , yp} such that d(xi) = d(yi) = p + 2 for i = 5, 6, . . . , p (Fig. 4). Then, n(G) = 2p,
d(xi) = d(yi) = p − 1 for i = 1, 2, 3, 4; d(xj) = d(yj) = p + 2 for j = 5, 6, . . . , p. Clearly, G satisfies Conditions (a)
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Fig. 5. A non-λ3-optimal graph not satisfying Condition (c) of Theorem 2.3.

Fig. 6. A non-super-λ3 graph G not satisfying Condition (b) of Theorem 2.5.

and (c) but not (b) of Theorem 2.3 as dG(x1, x2) = 2 and d(x1) + d(x2) = 2p − 2 < 2p − 1 = 2bn(G)/2c − 1. However,
ξ3(G) = 3p− 9, and since the set S of edges joining H1 − x1x2 and H2 − y1y2 is a 3-restricted edge-cut and |S| = 3p− 10,
then λ3(G) ≤ 3p− 10. Thus, G is non-λ3-optimal.

Example 2. Let Hi, i = 1, 2 be two copies of Kp, p ≥ 7 with V (H1) = {x1, x2, . . . , xp} and V (H2) = {y1, y2, . . . , yp}.
The graph G is defined as the disjoint union of H1 and H2 by adding 8 edges x4y1, x4y4, xiyi and xiyi+1 for i = 1, 2, 3,
and 3p − 12 edges between {x5, x6, . . . , xp} and {y5, y6, . . . , yp} such that d(xj) = d(yj) = p + 2 for j = 5, 6, . . . , p
(Fig. 5). Then, n(G) = 2p and G satisfies Conditions (a) and (b) but not (c) of Theorem 2.3 as G[{x1, x2, x3, x4}] is a K4 and
d(xi) = p+ 1 < p+ 2 = bn(G)/2c + 2 for i = 1, 2, 3, 4. However, ξ3(G) = 3p− 3 and λ3(G) ≤ 3p− 4 (since the set S of
edges that join H1 and H2 is a 3-restricted edge-cut and |S| = 3p− 4). Hence, G is not λ3-optimal.

Corollary 2.4. Let G be a connected K4-free graph with n(G) ≥ 6. Then G is λ3-optimal if the following two conditions hold:
(a) d(x)+ d(y) ≥ 2b n(G)/2c − 5 for each pair x, y ∈ V (G) with dG(x, y) = 3, and
(b) d(x)+ d(y) ≥ 2b n(G)/2c − 1 for each pair x, y ∈ V (G) with dG(x, y) = 2.

Similarly to the proof of Theorem 2.3, by Lemma 2.1 (b) we can obtain the following theorem.

Theorem 2.5. Let G be a connected graph with n(G) ≥ 6. Then G is super-λ3 if the following three conditions hold:
(a) d(x)+ d(y) ≥ 2b n(G)/2c − 3 for each pair x, y ∈ V (G) with dG(x, y) = 3,
(b) d(x)+ d(y) ≥ 2b n(G)/2c + 1 for each pair x, y ∈ V (G) with dG(x, y) = 2, and
(c) for each subgraph K4 of G, there exists at least one vertex v ∈ K4 with d(v) ≥ bn(G)/2c + 3.

Remark 3. (1) The example depicted in Fig. 6 shows that Condition (b) in Theorem 2.5 cannot be weakened. In Fig. 6,
n(G) = 10, d(v) = 5 for v ∈ V (G), and G fulfills Conditions (a) and (c) but not (b) of Theorem 2.5. Furthermore, by
Theorem 2.3, λ3(G) = ξ3(G) = 9, and the edge set S = {xiyi, x1y2, x2y1, x4y5, x5y4 : i = 1, 2, . . . , 5} is a nontrivial λ3-cut of
G, so G is non-super-λ3.
(2) (p, 3)-barbell (p ≥ 4) is any graph G obtained by joining two copies of the complete graph Kp with 3p additional edges

such that d(v) = p+2 for each vertex v ∈ V (G). We see that (p, 3)-barbell satisfies Conditions (a) and (b) but not Condition
(c) of Theorem 2.5. By Theorem 2.3, (p, 3)-barbell is λ3-optimal. Also, the set of 3p edges joining two copies of the complete
graph Kp is a nontrivial λ3-cut. So it is not super-λ3 and thus Condition (c) of Theorem 2.5 cannot be weakened.

Corollary 2.6. Let G be a connected K4-free graph with n(G) ≥ 6. Then G is super-λ3 if the following two conditions hold:
(a) d(x)+ d(y) ≥ 2b n(G)/2c − 3 for each pair x, y ∈ V (G) with dG(x, y) = 3, and
(b) d(x)+ d(y) ≥ 2b n(G)/2c + 1 for each pair x, y ∈ V (G) with dG(x, y) = 2.

3. Conditions for triangle-free graphs

Hellwig and Volkmann [8] gave the following result about the λ2-optimality of triangle-free graphs:
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Fig. 7. A non-λ3-optimal triangle-free graph with d(v) = p+ 1.

Theorem 3.1 ([8]). Let G be a λ2-connected triangle-free graph. If d(x) ≥ b(n(G) + 2)/4c + 1 for all vertices x in G with at
most one exception, then G is λ2-optimal.

Inspired by the ideas in [8], we present the following two theorems.

Theorem 3.2. Let G be a connected triangle-free graph with n(G) ≥ 6. If d(x) ≥ b(n(G)+ 2)/4c + 2 for all vertices x in V (G)
with at most one exception, then G is λ3-optimal.

Proof. Since n(G) ≥ 6, then d(x) ≥ b(n(G) + 2)/4c + 2 ≥ 4 for all vertices x in V (G) with at most one exception. Hence
G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. By Theorem 1.2, G is λ3-connected.
It now suffices to prove that λ4(G) ≥ ξ3(G) by Lemma 2.1 (a). Let ∂(X) be any λ4-cut of G with |X | ≤ |X̄ |. This implies
4 ≤ |X | ≤ bn(G)/2c. Choose one vertex v in X such that d(v) = min{d(x) : x ∈ X} and let u, w ∈ X such that G[{u, v, w}]
is connected. Using Turán’s [17] bound 2|E(G)| ≤ n(G)2/2 for triangle-free graphs G, we have

λ4(G) = |∂(X)| =
∑
x∈X

d(x)− 2|E(G[X])|

≥ d(u)+ d(v)+ d(w)− 4+ 4+
∑

x∈X\{u,v,w}

d(x)−
|X |2

2

≥ ξ3(G)+ (|X | − 3)(b(n(G)+ 2)/4c + 2)−
1
2
(|X |2 − 8)

= ξ3(G)+
1
2
(|X | − 3)(2b(n(G)+ 2)/4c − |X | + 1)−

1
2

≥ ξ3(G)+
1
2
(2b(n(G)+ 2)/4c − bn(G)/2c + 1)−

1
2

≥ ξ3(G). �

In the proof above, when n(G) ≥ 10, we have
if |X | = 4, then

λ4(G) ≥ ξ3(G)+ b(n(G)+ 2)/4c − 2 > ξ3(G);

if |X | ≥ 5, then

λ4(G) ≥ ξ3(G)+ 2b(n(G)+ 2)/4c − bn(G)/2c + 1−
1
2
> ξ3(G).

By Lemma 2.1 (b), G is super-λ3. So we have the following theorem.

Theorem 3.3. Let G be a connected triangle-free graph with n(G) ≥ 10. If d(x) ≥ b(n(G)+ 2)/4c + 2 for all vertices x in V (G)
with at most one exception, then G is super-λ3.

Remark 4. The example depicted in Fig. 7 (p ≥ 4) shows that the results of Theorems 3.2 and 3.3 are the best possible. In
Fig. 7, G is a bipartite graph with n(G) = 4p, and d(v) = p + 1 < p + 2 = b(n(G) + 2)/4c + 2 for all v ∈ V (G). However,
ξ3(G) = 3p− 1 and λ3(G) ≤ |{yivi, yivi+1, yp+1vp+1, yp+1v1 : i = 1, 2, . . . , p}| = 2p+ 2, so G is non-λ3-optimal.

4. Conditions for bipartite graphs

In regard to the λ3-optimality of bipartite graphs, also inspired by the ideas of Hellwig and Volkmann in [8], we obtain
the following result.
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Theorem 4.1. Let G be a connected bipartite graph with n(G) ≥ 6. If:
(a) d(x)+ d(y) ≥ 2b(n(G)+ 2)/4c − 1 for each pair x, y ∈ V (G) with dG(x, y) = 3 and
(b) d(x)+ d(y) ≥ 2b(n(G)+ 2)/4c + 3 for each pair x, y ∈ V (G) with dG(x, y) = 2

hold, then G is λ3-optimal.

Proof. From n(G) ≥ 6 and Condition (b), it follows that d(x)+d(y) ≥ 2b(n(G)+2)/4c+3 ≥ 7 for each pair x, y ∈ V (G)with
dG(x, y) = 2. So G cannot be isomorphic to the 3-leg spider graph or a subgraph of the friendship graph. By Theorem 1.2,
G is λ3-connected. By Lemma 2.1 (a), it suffices to show that λ4(G) ≥ ξ3(G). Let (A, B) be the bipartition of G and ∂(X) any
λ4-cut of G with |X | ≤ |X̄ |. This implies 4 ≤ |X | ≤ bn(G)/2c. Set X ′ := X ∩ A and X ′′ := X ∩ B. We assume, without loss of
generality, that |X ′| ≤ |X ′′|. It follows that |X ′| ≤ bn(G)/4c. Choose three vertices u, v, and w in X such that G[{u, v, w}] is
connected and satisfies that

|∂({u, v, w})| = min{|∂(H)| : H ⊆ X, |H| = 3, and G[H] is connected}

and X ′ contains as more as possible vertices of {u, v, w}. Since G is bipartite, G[{u, v, w}] is a path. We assume that
uw 6∈ E(G). By the choice of u, v andw, we have

d(a) ≥ d(w) and dG(a, w) = 3, for each a ∈ NX (u) \ NX (w); (15)

d(b) ≥ d(u) and dG(b, u) = 3, for each b ∈ NX (w) \ NX (u); (16)

d(c) ≥ d(u) and dG(c, u) = 2, for each c ∈ NX (v) \ {u, w}; (17)

d(f ) ≥ d(v) and dG(f , v) = 2, for each f ∈ (NX (u) ∩ NX (w)) \ {v}. (18)

Case 1. |X ′| = bn(G)/4c. It follows that bn(G)/4c ≤ |X ′′| ≤ bn(G)/4c + 1 from |X | ≤ bn(G)/2c.
Subcase 1.1. |X ′′| = bn(G)/4c. We assume, without loss of generality, that u, w ∈ X ′ and v ∈ X ′′. According to (15) and
Condition (a), we obtain

|NX̄ (a)| = d(a)− |NX (a)|

≥
1
2
(d(a)+ d(w))− (|X ′| − 1)

≥ b(n(G)+ 2)/4c −
1
2
− (bn(G)/4c − 1)

≥
1
2
,

for each a ∈ NX (u) \ NX (w). So |NX̄ (a)| ≥ 1. Similarly, we have

|NX̄ (b)| ≥ 1, for each b ∈ NX (w) \ NX (u);
|NX̄ (c)| ≥ 2, for each c ∈ NX (v) \ {u, w};
|NX̄ (f )| ≥ 2, for each f ∈ (NX (u) ∩ NX (w)) \ {v}.

Hence,

λ4(G) = |∂(X)| = |[{u, v, w}, X̄]| + |[X \ {u, v, w}, X̄]|
≥ |[{u, v, w}, X̄]| + |[NX (u) \ NX (w), X̄]| + |[NX (w) \ NX (u), X̄]|
+ |[NX (v) \ {u, w}, X̄]| + |[(NX (u) ∩ NX (w)) \ {v}, X̄]|

≥ |[{u, v, w}, X̄]| + |NX (u) \ NX (w)| + |NX (w) \ NX (u)|
+ 2|NX (v) \ {u, w}| + 2|(NX (u) ∩ NX (w)) \ {v}|

≥ |∂({u, v, w})| ≥ ξ3(G).

Subcase 1.2. |X ′′| = bn(G)/4c+1. Then n(G) ≡ 2 or 3 (mod 4) by bn(G)/4c+bn(G)/4c+1 = |X ′|+ |X ′′| = |X | ≤ bn(G)/2c.
This implies that b(n(G)+ 2)/4c = bn(G)/4c+ 1, hence, Conditions (a) and (b) are equivalent to the following (a)′ and (b)′,
respectively.
(a)′ d(x)+ d(y) ≥ 2bn(G)/4c + 1 for each pair x, y ∈ V (G) such that dG(x, y) = 3;
(b)′ d(x)+ d(y) ≥ 2bn(G)/4c + 5 for each pair x, y ∈ V (G) such that dG(x, y) = 2.
By a similar proof of Subcase 1.1, we can obtain the desired result.

Case 2. |X ′| ≤ bn(G)/4c − 1.
Subcase 2.1 u, w ∈ X ′ and v ∈ X ′′. According to (15)–(18) and Conditions (a) and (b), by a similar reasoning of Subcase 1.1,
we have

|NX̄ (a)| ≥ 2, for each a ∈ NX (u) \ NX (w);
|NX̄ (b)| ≥ 2, for each b ∈ NX (w) \ NX (u);
|NX̄ (f )| ≥ 3, for each f ∈ (NX (u) ∩ NX (w)) \ {v}.
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For each c ∈ NX (v) \ {u, w}, if |NX̄ (c)| ≥ 1, as in Subcase 1.1, we can obtain λ4(G) ≥ ξ3(G). Otherwise, there exists one
vertex c0 ∈ NX (v) \ {u, w} such that |NX̄ (c0)| = 0, and by (17) and Condition (b), we have

|NX (c0)| = d(c0) ≥
1
2
(d(u)+ d(c0)) ≥ b(n(G)+ 2)/4c +

3
2
. (19)

Choose one vertex x in NX (c0) \ {v} such that

d(x) = min{d(y) : y ∈ NX (c0) \ {v}}.

For each y ∈ NX (c0) \ (NX ({u, w}) ∪ {x}), d(y) ≥ d(x) and dG(x, y) = 2, hence

|NX̄ (y)| ≥
1
2
(d(x)+ d(y))− |X ′|

≥ b(n(G)+ 2)/4c +
3
2
− bn(G)/4c + 1

≥
5
2
.

From (19) and |NX (v) \ {u, w}| ≤ |X ′| − 2 ≤ bn(G)/4c − 3, we have

|NX (c0) \ {x, v}| ≥ b(n(G)+ 2)/4c −
1
2
> |NX (v) \ {u, w}|. (20)

Then

λ4(G) = |∂(X)| = |[{u, v, w}, X̄]| + |[X \ {u, v, w}, X̄]|
≥ |[{u, v, w}, X̄]| + |[NX (u) \ NX (w), X̄]| + |[NX (w) \ NX (u), X̄]|
+ |[(NX (u) ∩ NX (w)) \ {v}, X̄]| + |[NX (c0) \ (NX ({u, w}) ∪ {x}), X̄]|

≥ |[{u, v, w}, X̄]| + 2|NX (u) \ NX (w)| + 2|NX (w) \ NX (u)|
+ 3|(NX (u) ∩ NX (w)) \ {v}| + 3|NX (c0) \ (NX ({u, w}) ∪ {x})|

≥ |[{u, v, w}, X̄]| + |NX (u) \ NX (w)| + |NX (w) \ NX (u)| + 2|(NX (u) ∩ NX (w)) \ {v}| + |NX (c0) \ {x, v}|
> |∂({u, v, w})| ≥ ξ3(G).

Subcase 2.2. u, w ∈ X ′′ and v ∈ X ′. According to (17), each vertex c ∈ NX (v) \ {u, w} satisfies

|NX̄ (c)| ≥
1
2
(d(u)+ d(c))− |X ′|

≥ b(n(G)+ 2)/4c +
3
2
− bn(G)/4c + 1

≥
5
2
.

If each vertex x ∈ (NX (u)\NX (w))∪(NX (w)\NX (u)) has at least one neighbor in X̄ and each vertex f ∈ (NX (u)∩NX (w))\{v}
has at least two neighbors in X̄ , as in Subcase 1.1, we can deduce that λ4(G) ≥ ξ3(G).
Otherwise, if there exists one vertex x ∈ (NX (u) \ NX (w)) ∪ (NX (w) \ NX (u)) such that |NX̄ (x)| = 0. By the choice of the

vertices u, v andw, either d(x) > d(w) and dG(x, w) = 3 or d(x) > d(u) and dG(x, u) = 3. According to Condition (a),

|NX (x) \ {u, w}| = d(x)− 1 > b(n(G)+ 2)/4c −
3
2
. (21)

If there exists one vertex x ∈ NX (u) ∩ NX (w) such that |NX̄ (x)| ≤ 1, then from (18) it follows that

|NX (x) \ {u, w}| ≥
1
2
(d(v)+ d(x))− 3 ≥ b(n(G)+ 2)/4c −

3
2
. (22)

Choose one vertex z0 in NX (x) \ {u, w} such that

d(z0) = min{d(z) : z ∈ NX (x) \ {u, w}}.

Then, each vertex z ∈ NX (x) \ (NX (v) ∪ {z0}) satisfies that d(z) ≥ d(z0) and dG(z, z0) = 2. By Condition (b),

|NX̄ (z)| ≥ b(n(G)+ 2)/4c +
3
2
− (bn(G)/4c − 1) ≥

5
2
.

According to (21), (22) and |NX ({u, w}) \ {v}| ≤ |X ′| − 1 ≤ bn(G)/4c − 2, we have

|NX (x) \ {u, w, z0}| ≥ b(n(G)+ 2)/4c − 2 ≥ |NX ({u, w}) \ {v}|. (23)
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Hence,

λ4(G) = |∂(X)| = |[{u, v, w}, X̄]| + |[X \ {u, v, w}, X̄]|
≥ |[{u, v, w}, X̄]| + |[NX (v) \ {u, w}, X̄]| + |[NX (x) \ (NX (v) ∪ {z0}), X̄]|
≥ |[{u, v, w}, X̄]| + 3|NX (v) \ {u, w}| + 3|NX (x) \ (NX (v) ∪ {z0})|
≥ |[{u, v, w}, X̄]| + |NX (v) \ {u, w}| + 2|NX (x) \ {u, w, z0}|
≥ |[{u, v, w}, X̄]| + |NX (v) \ {u, w}| + 2|NX ({u, w}) \ {v}|
≥ |∂({u, v, w})| ≥ ξ3(G). �

Remark 5. It is easy to test that the bipartite graph G depicted in Fig. 7 satisfies Condition (a) but not Condition (b) of
Theorem 4.1, and by Remark 4, G is not λ3-optimal. Hence Condition (b) of Theorem 4.1 cannot be weakened.

Similarly to the proof of Theorem 4.1, by Lemma 2.1 (b) we can show the following theorem.

Theorem 4.2. Let G be a connected bipartite graph with n(G) ≥ 6. If:
(a) d(x)+ d(y) ≥ 2b(n(G)+ 2)/4c + 1 for each pair x, y ∈ V (G) with dG(x, y) = 3 and
(b) d(x)+ d(y) ≥ 2b(n(G)+ 2)/4c + 5 for each pair x, y ∈ V (G) with dG(x, y) = 2

hold, then G is super-λ3.
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